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Abstract

Novel ceramic membrane cells of BaCe0.5Zr0.3Y0.16Zn0.04O3-δ BCZYZ), a proton-

conducting oxide, have been developed for electrocatalytic ammonia synthesis.

Unlike the industrial Haber-Bosch process, in this work an attempt to synthesise

ammonia at atmospheric pressure has been made. The membrane cell fabricated by

tape casting and solution impregnation comprises of a 200 m-thick BCZYZ

electrolyte and impregnated electrode composites.

Electrocatalysts for anode and cathode were investigated. For the anode, the co-

impregnation of Ni and CeO2 provided excellent electrode performance including

high catalytic activity, sintering stability and compatibility with the BCZYZ

electrolyte. The best composition was the mixture of 25wt% NiO and 10 wt% CeO2.

A symmetrical cell prepared with this electrode composition revealed low polarisation

resistances of 1.0 and 0.45 cm2 in humidified 5% H2/Ar at 400 and 500 °C,

respectively. For the cathode, 25 wt% of impregnated Fe oxide provided a satisfactory

performance in non-humidified N2 atmosphere.

Significant amounts of ammonia were produced from the single cell with Ni-CeO2

anode and Fe oxide cathode at 400-500 °C under atmospheric pressure. Ammonia

formation rate was enhanced by Pd catalyst addition and electrochemical performance

was improved by Ru addition. The highest ammonia formation rate of 4 x 10-9

mol s-1cm-2 was attained using the cell with a Pd-modified Fe cathode at 450 °C. The

formation reaction of ammonia typically consumed around 1-2.5 % of total applied

current while most of the applied current was employed in H+ reduction. The total

current efficiency of around 90-100 % could be obtained from the membrane cells.
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1.1 Ammonia

Ammonia has been synthesised commercially for nearly a century. The production

capacity of ammonia has exceeded 100 million tons in 2000[1]. The most important

chemicals manufactured from ammonia are nitric acid, urea, ammonium sulphate and

ammonium phosphate. The fertilizer industry is by far the most important consumer

of ammonia and accounts for about 80% of the world production of ammonia. The

plastics industry is the next consumer, accounting for 10% of the ammonia

production[2]. Recently, ammonia has been used in fuel cell application as an

alternative hydrogen source.

1.1.1 Ammonia as a hydrogen carrier source

Alternative energy sources to fossil fuel have been intensively investigated. The

hydrogen fuel cell is an attractive power generation option as it provides substantial

power that can be used in transportation and power generation sectors. Considering

the availability factor of a power plant from the amount of time that electricity is

produced in a certain period, the fuel cell plant tends to provide higher power

availability than renewable energy sources e.g. wind and solar power plants. This is

because the power output generated by a fuel cell can be conveniently controlled by

the supply of hydrogen fuel, whereas the others depend on climatic conditions[3].

However, the use of hydrogen is restricted by the difficulty in storage and transport.

Typically, hydrogen is stored under very low temperature (-253 °C) or high pressure

(250 atm) leading to the requirement of a bulky gas cylinder. In addition, hydrogen is

a flammable gas with flammability limits of 4-75 vol% in air[4]. This wide range of
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flammability limits raises concerns about safe handling and transportation in order to

avoid explosion danger.

Ammonia contains hydrogen in a density of 17.6% by weight and can be easily

liquefied under 1 atm at –33oC or 10 atm at 20oC. Apart from ammonia, there are

many options for hydrogen storage. The comparison of various hydrogen sources

considered from storage conditions, gravimetric densities and volumetric densities are

shown in Table 1.1.

Table 1.1 Gravimetric and volumetric densities of selected H2 storage options[5].

Material Special storage conditions Gravimetric

densities

(wt% H)

Volumetric densities

(mol l-1H2)

H2 (gas)

H2 (liquid)

CH4 (gas)

NH3

CH3OH

Mg2NiHx

Gasoline,C8H18

250 atm

-253oC, 1 atm

250 atm

-33oC, 1 atm or 20oC, 10 atm

Normal T and P*

Normal T and P

Normal T and P

100

100

25

17.6

12.5

3.6

15.8

10

35

21

60

49

39

55

*T = temperature, P = pressure

According to the gravimetric densities, hydrogen is the best choice. However, its low

volumetric density makes it difficult to store and transport. The volumetric density of

a metal hydride is reasonable but the gravimetric density is too small. Hydrocarbons

show superior properties to the hydride in both storage and transportation. However,

the use of hydrocarbons in solid oxide fuel cells (SOFCs) causes a problem with

carbon deposition on the Ni anode that significantly decreases cell performance[6-8].
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As an alternative option, ammonia which has the best volumetric density and a good

gravimetric density of H2 storage is of interest.

Comparing with hydrogen, ammonia offers significant advantages in cost and

convenience as a vehicular fuel due to its higher density and its easier storage and

distribution. Regarding its safety, although anhydrous ammonia is toxic and

dangerous for the environment, it is lighter than air and tends to disperse in the

atmosphere. However, the leakage of ammonia can be easily sensed by the human

nose at low concentration, such as 5 ppm[9].

1.1.2 Synthesis of ammonia: Haber-Bosch process

The synthesis of ammonia from gaseous nitrogen and hydrogen on a uranium catalyst

at high pressure was firstly demonstrated by Fritz Haber and colleagues in 1909.

However, it was Carl Bosch who carried on the industrial scale-up giving rise to the

Haber-Bosch process for industrial ammonia synthesis[10].

Nowadays, an Fe-based catalyst is well known as the industrial catalyst for ammonia

synthesis. The reaction occurs at high pressure (150-300 bar) and in the temperature

range of 450-500°C. The reason for working at moderate temperature and high

pressure is considered from the nature of this reaction.

N2(g) + 3H2(g) ⇄ 2NH3(g)            ΔH298K = -92.4 kJmol-1 (1.1)

This reaction is exothermic and thermodynamically preferable at low temperature.

The values of equilibrium constant (Keq) given by:

Keq =
PNH3

2

PH2
3  ∙ PN2

(1.2)
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at various temperatures shown in Figure 1.1 indicate that the decomposition of NH3 is

significant at higher temperatures[11]. Working at lower temperature can avoid the

ammonia decomposition but the formation rate of ammonia will be relatively slow.

Figure 1.1 Equilibrium constant of ammonia synthesis reaction as a function of

temperature in the standard state.

Under operating conditions, the evolution of ammonia decreases the total gas volume

since 4 moles of reactant provides only 2 mole of product. According to the Le

Chatelier’s principle, an increase in pressure shifts the equilibrium towards the

product side and yields a larger amount of ammonia.

In order to achieve industrially acceptable conversion, the pressure and temperature

must be high enough to achieve a sufficiently fast rate of reaction but the equilibrium

constant should not be too small. For example in order to achieve 100% conversion

of reactants to ammonia product at 200oC, a pressure above 750 atm must be used.

Since there are difficulties in working with high pressure, nowadays ammonia is
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industrially synthesized at a temperature of about 500°C and a pressure of around 200

atm which provides 10-20% yield of ammonia[2,12].

The conflict between thermodynamic and kinetic considerations brings on the need of

an active catalyst which would help decrease the operating temperature and pressure.

Together with the catalyst studies, new methods for ammonia synthesis have been

investigated.

The synthesis of ammonia in an electrochemical cell has been suggested as an

alternative process over the last decade. Marnellos et al. reported that ammonia was

synthesized from gaseous hydrogen and nitrogen in a solid state proton conducting

cell reactor. This cell provided greater than 78 % conversion of hydrogen to ammonia

at 570 oC and atmospheric pressure[13]. It is likely that electrocatalytic ammonia

synthesis could be an effective method to avoid working with high pressure and the

thermodynamic limitations in the conventional catalytic reactor.

1.1.3 Catalysts in Haber-Bosch process

It is well know that the active catalyst for ammonia synthesis is successfully derived

from magnetite ore (Fe3O4) which contains a few percent of several promoters such as

oxides of calcium, aluminium, potassium, etc. Nowadays, the composition of the

catalyst employed in industry is still more or less identical to that demonstrated in a

German patent in 1910[14]. Interestingly, the continued use of this magnetite catalyst

has been explained by the highly porous structure of metallic iron which occurs after

the reduction of magnetite. The surface area of the iron catalyst after reduction could

be up to 20 m2g-1[15]. However, the presence of promoters on the iron catalyst is of

utmost importance. The roles of promoters on the iron catalyst can be divided into two

groups depending on their behaviours on iron catalyst[15]. The presence of aluminium
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oxide on the iron surface is believed to help prevent high surface area metallic iron

from sintering during operation. Therefore, this kind of promotion is named structural

promotion[15,16]. The role of potassium oxide may be different as it is reported to

enhance the rate of N2 dissociative adsorption and decreases the adsorption energy of

ammonia by transferring electronic charge from K to the Fe surface[16,17]. However,

Dahl et al. suggested that the K promoter on Fe catalyst may not take part in N2

dissociation but tends to destabilise the intermediate NH* and increase the ammonia

formation rate instead[18].

Apart from promoters affecting the rate of reaction, the crystal structure of the Fe

catalyst is also highly important. Surface science experiments on single crystals of

metallic iron as present during the operating conditions suggest that Fe (111) is the

most active surface among the structural surfaces such as Fe (110) and Fe (100),

respectively[19,20]. These results suggest that the ammonia synthesis reaction on iron

surface is a structure-sensitive reaction.

The reaction between H2 and N2 on an iron surface is quite complicated. The

mechanism of the reaction has been studied via the observation for intermediate

species adsorbed on the iron surface. By using spectroscopic techniques, the

intermediate species such as NH and NH2 could be identified. Hence, the sequence of

elementary steps has been proposed as follows;

N2(g) ⇄ N2(ad) ⇄ 2N(ad) (1.3)

H2(g) ⇄      2H(ad) (1.4)

N(ad) + H(ad) ⇄ NH(ad) (1.5)

NH(ad) + H(ad) ⇄ NH2(ad) (1.6)

NH2(ad) + H(ad) ⇄ NH3(ad) (1.7)

NH3(ad)     →        NH3(g) (1.8)
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It is well known that the dissociative chemisorption of N2 is a very slow process and it

could be the rate determining process for the overall reaction[14].

The sticking coefficient for N2 on the Fe catalyst is extremely low. The initial sticking

coefficient (s0) of N2 on the active sites of industrial Fe-based catalyst has been

proposed to be s0 = 10-5exp(-(4kJ/mol)/RT)[21] while H2 has much higher sticking

coefficient in order of 10-1[14,22]. Although H atoms are mobile and can bond

covalently with the Fe catalyst surface, the surface concentration of H atoms at

temperature higher than 400 ºC is rather small. Hence, the adsorption of nitrogen on

the Fe surface may not be inhibited by the surface H atoms[14]. Apart from hydrogen,

the presence of an oxygenated poison (O2, CO and H2O) causes rapid poisoning to the

Fe catalyst. The oxygenated poison forms an oxide layer on the Fe surface leading to

the expulsion of the adsorbed nitrogen from the surface[12,23] However, the poisoning

effect tends to be reversible upon removing the oxygenated poison from H2 and N2

reactants[24].

Osmium catalyst is one of the catalysts that can be applied in ammonia synthesis

reaction. It used to be employed by the early experiments of Haber but the osmium

metal was too expensive for the large-scale industrial plant[25]. Ruthenium catalyst is

one of the non-iron based catalysts that has been proposed as an active catalyst for

ammonia synthesis[26]. The ruthenium catalyst was found to be more active than the

Fe catalyst, so it can perform at milder conditions (low temperature and pressure)

compared to that for the Fe catalyst[18, 27, 28]. However, Ru is more expensive than Fe

and the lifetime of the Ru catalyst is shorter than that of the Fe catalyst.
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1.2 Electrocatalytic ammonia synthesis at atmospheric pressure

Because of the disadvantages of working under high pressure and the thermodynamic

limitations of the Haber-Bosch process, alternative methods for ammonia synthesis

have been proposed. One of the most promising methods is the utilisation of an

electrochemical cell. Various electrolytic cells have been employed with various

electrolyte materials, such as aqueous electrolytes[29] and molten salts[30,31]. In aqueous

electrolytes, the kinetics of the reaction is quite slow due to the low operating

temperature. In the case of molten salt electrolytes, the operating temperature could be

around 400 °C which is close to that for industrial ammonia synthesis but the

difficulty in molten salt preparation is a major concern. Typically, a mixture of alkali

salts such as LiCl, KCl and CsCl is usually used as the molten salt electrolyte. These

air-sensitive molten salts require that the experiment must be operated in inert

atmosphere which is not practical for large-scale synthesis. In 1981, an

electrochemical cell with a proton conducting oxide electrolyte based on SrCeO3 was

reported by Iwahara et al.[32]. Since then, several applications of cells utilising solid

state H+ conductors, working at temperatures of 500-1000 °C, have been considered.

Electrochemical devices utilising proton conducting oxides as electrolyte and

involving both hydrogen and hydrogen-containing compounds, include hydrogen

sensors, fuel cells, electrolysers and hydrogen pumps[33]. In particular, the application

of solid oxide proton conductors in electrocatalytic ammonia synthesis has been

investigated[34-40].
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1.2.1 Principle

The principle of ammonia synthesis via a proton conducting oxide electrolyte is

shown in Figure 1.2.

Figure 1.2 Operating principle of electrolytic ammonia synthesis cell using a proton

conducting electrolyte.

The apparatus consists of two compartments separated by a proton conducting oxide

ceramic membrane cell containing the anodic and cathodic electrocatalysts for

hydrogen oxidation and ammonia formation, respectively.

At the anode, gaseous H2 and H2O passing over the anode is converted to protons.

Anode : 3H2(g)   →   6H+ + 6e- (1.9)

Then protons are transported through the electrolyte membrane to the cathode where

the reaction with gaseous N2 is expected.

Cathode : N2 + 6H+ + 6e-  →  2NH3 (1.10)

Electrolyte

External
power source

+ -

e-
e-

H+

Anode Cathode

H2

N2

NH3
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The overall reaction is

Overall : N2 + 3H2   →  2NH3 (1.11)

Thermodynamically, this reaction is a non-spontaneous reaction with the reaction

Gibbs energy, ΔrG
o > 0 at temperature higher than 130 ºC[11].

Therefore, this reaction needs to be done under electrolysis condition by applying an

electric current to the cell via an external power source.

Under Open circuit condition

The difference in chemical potentials of electro-active ionic species (which are

protons in this case) between two electrodes induces some of the protons to move

from the anode (higher concentration) to the cathode (lower concentration). However,

the reactions at the cathode cannot be completed as the electrons cannot be

transported through the electrolyte and the high resistance external source connected

to the electrodes also forbids the flow of electrons. As the reaction between H2 and N2

should not occur under open circuit condition, the chemical potential difference

between the electrodes will cause a potential called the open-circuit voltage (OCV or

VOC) which can be theoretically calculated from the Nernst equation based on

hydrogen concentration cell consideration.

Voc = Ec- Ea=
RT

2F
ln

PH2
(cathode)

PH2
(anode)

(1.12)
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where Ec and Ea are the equilibrium potential of the cathode and anode, respectively,

R is gas constant (8.314 J/K mol), T is absolute temperature (K) and F is the Faraday

constant (96485 C)[41].

Under closed circuit condition

During electrolysis conditions, a Galvanostat-Potentiostat will provide a constant

potential or current to the membrane cell reactor and drive the reactions forward. The

minimum energy or electrical work (Welec) needed for the reaction is equal to the

change in Gibbs free energy[41].

Welec = -rG (1.13)

while,

Welec = EQ (1.14)

E = electrical potential (V)

Q = charge passes in electrolysis (C)

If the charge is assumed to be carried by electrons, then

Q = nF (1.15)

F = the Faraday constant, 96485 coulombs

n = stoichiometric number of electrons involved in the reaction

Therefore,

∆rG= -nFE (1.16)
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where E refers to the minimum voltage needed for the formation of the desired

product and is called the theoretical electrolysis voltage[41].

For example at 700 K, ammonia should be theoretically synthesised by imposing a

potential of at least 0.094 V.

However, Murakami et al.[31] suggested that the ammonia synthesis rate may not

depend on only the electrolysis potential. Other factors such as catalytic activity of

electrode material, partial pressure of gaseous reactants, and temperature are crucial

for the kinetics of ammonia synthesis[31, 34, 42].

1.2.2 Cell performance

When the external power source supplies a current or potential to the cell, all the

electrode reactions will be driven away from the equilibrium state. These irreversible

processes, including charge transfer, conduction and diffusion of charge species,

cause a decrease in operating voltage. Voltage losses or overpotential (η) can be

classified into activation overpotential (ηact), concentration overpotential (ηconc) and

ohmic overpotential (ηohm)[43].

Voperating = VOC - ηact - ηohm - ηconc (1.17)

The relation between potential and current density is expressed by a polarisation curve

(I-V curve) as shown in Figure 1.3.
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Figure 1.3 Schematic of a polarisation curve.

1.2.2.1 Ohmic losses (ηohm)

Ohmic losses attributed to electron and ion conduction processes exist in the

electrodes, electrolyte, interconnects, current collectors and contact resistances at the

electrode-electrolyte interface. Generally, the major contribution to the ohmic losses

tends to arise from high ionic resistivity of the electrolyte rather than electronic

resistivity of the electrodes. Ohmic losses are a linear function of current (i) and can

be simply defined by Ohm’s law:

ηohm = iR (1.18)

where R is the resistance.
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1.2.2.2 Activation overpotential (ηact)

Activation overpotential is the overpotential needed to overcome the activation barrier

associated with the electrochemical reaction at the reaction site at the three phase

boundary (TPB) between the electrode-electrolyte interface. The mechanism of the

charge transfer reaction A + ne- ⇄ Z and the electrocatalytic activity of electrode

material directly affect this overpotential. The relationship between current density (j)

and ηact is expressed by the Butler-Volmer equation.

j= j
0
ቀe∝nFηact/(RT)- e-(1-∝)nFηact/(RT)ቁ (1.19)

where η is the activation overpotential, n is the number of electrons involved in the

reaction, j
0

is the exchange current density and F, R and T have their usual meanings.

Note that this equation applies to each individual electrode separately. The value of 

is between 0 and 1 and refers to the symmetry of the activation barrier and expresses

the change in size of the forward versus reverse activation barrier under applied

potential. Thus, = 0.5 means the size of the forward activation barrier is equal to

that of the reverse.

From the Butler-Volmer equation, it can be seen that the current produced by an

electrochemical reaction increases exponentially with ηact.

The complication of the Butler-Volmer equation is simplified by using two

approximations when the ηact in the Butler-Volmer equation is either very small or
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very large.When ηact is very small, the current and the overpotential show linear

correlation and are independent of as exhibited in following equation;

j= j
0

nFηact

RT
(1.20)

When ηact is large, the forward reaction is prominent and the process becomes

completely irreversible. Thus, the second exponential term in the Butler-Volmer

equation will be ignored, then

j= j
0

e∝nFηact/(RT) (1.21)

or

 η
act

= -
RT

∝nF
ln j

0
+

RT

∝nF
ln j (1.22)

This equation is known as Tafel equation[41].

In details, ηact is also dependent upon the reactant concentration, temperature and the

TPB length[41].

1.2.2.3 Concentration overpotential (ηconc)

Concentration overpotential is the loss due to the mass transport of charges and

uncharged species from the reactant and product. This mass transport loss is

concerned with the concentrations of reactant and product within the catalyst layer

where the reaction takes place. The concentration overpotential is manifested as a

rapid decrease of cell potential due to the reactant concentration falling to zero at a

current density named the limiting current density (j
L
). The concentration

overpotential (ηconc) may be described as
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η
conc

=
RT

nF
ln൬1-

j

jL
൰ (1.23)

The factors that govern the concentration loss are diffusivity of reactants and products

in the porous electrode, electrode structure, the distribution of gaseous reactants and

reactant concentration[41].

1.3 Components of electrocatalytic membrane cell

1.3.1 Proton-conducting oxide electrolyte

The proton conducting oxide electrolytes that are used in ammonia synthesis

applications are usually perovskite type oxides (ABO3), as inspired by the first

reported proton-conducting oxide, doped-SrCeO3 from Iwahara et al[44]. Hence, the

application of SrCe0.95Yb0.05O3 (SCY) for ammonia synthesis was proposed by

Marnellos et al.[13,34]. Apart from SCY, other perovskite-structured oxides were also

employed such as SrZr0.95Y0.05O3-
35], Y-doped BaCeO3

[36,37] and complex perovskite-

type oxides e.g. Ba3(Ca1.18Nb1.82)O9
[38]. Other structure-type oxides such as

La1.95Ca0.05M2O7- (M= Ce, Zr)[39] and Ce0.8M0.2O2- (M= La, Y, Gd, Sm)[40], which

have the fluorite structure, were also studied for the ammonia synthesis application.

In order to consider a proton conducting oxide electrolyte for electrolytic ammonia

synthesis, the following requirements need to be fulfilled: (1) High ionic conductivity

of the order of 10-2 – 10-3 S/cm in the operating temperature range in order to

minimise the ohmic loss; (2) high transport number of protons, tH+> 0.9. (3) excellent

chemical stability under the operating atmosphere. (4) good sinterability to a dense
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ceramic and substantial mechanical strength, as to to prevent crossover of the

reactants.

Comparing perovskite- and non-perovskite-type oxides, the ionic conductivity of the

perovskite-structured oxides is much higher than the non-perovskite structure[45].

Among the perovskite-based oxides, barium cerates showed the highest ionic

conductivity especially Y-doped barium cerate, BaCe1-xYxO3-
[33]. Comparison of

their conductivities is depicted in Figure 1.4.

 
 
 
 
 
 
 
 
 
                                            
                                            Owing to copyright restrictions, 
                   the electronic version of this thesis does not contain this image
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.4 Comparison of conductivities of typical proton-conducting perovskite

oxides in a hydrogen atmosphere[33].“Reprinted from Solid State Ionics, Vol.77, H.

Iwahara, Technological challenges in the application of proton conducting ceramics, p.290,

(1995), with permission from Elsevier.”
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Consequently, the physical and chemical properties of doped BaCeO3 including ionic

conductivity, transport properties and applications have been extensively

investigated[46-50].

According to the A2+B4+O3 configuration of perovskite-type BaCeO3, the substitution

of B4+ (which is Ce4+ in this case) with a trivalent cation (M3+) creates oxygen

vacancies (VO
•• ) due to the depletion of positive charge within the crystal structure.

2CeCe
x + Oo

x +M2O3  →     2MCe
' + V୓

•• + 2CeO2 (1.24)

The oxygen vacancies in the structure lead to the formation of hydroxyl ions at their

sites by taking protons from water vapour or hydrogen under humid atmosphere.

H2O(g) + Oo
x + Vo

••  →     2OHo
• (1.25)

At elevated temperature, the proton transport is thermally activated. Two mechanisms

for proton conduction have been proposed. One is the Grotthus-type mechanism based

on the fact that protons travel or hop from one oxygen ion to the adjacent oxygen ion.

Another is the vehicle mechanism in which protons migrate along with an oxygen

ion[51,52]. By the investigation of the H/D isotope effect, the transport of protons

between stationary oxygen ions is likely to occurs via the Grotthus mechanism[53].

Hereby, the existence of Grotthus mechanism in solid oxide proton conductors has

been confirmed by a number of techniques such as thermal gravimetric analysis and

conductivity studies[54], concentration cell measurements[55] and quasielastic neutron

scattering (QENS)[56].
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The perovskite structure (ABO3) as shown in Figure 1.5 comprises of the large cation

A coordinated to 12 oxygen atoms O at the A-site and the smaller cation B occupying

the B-site which has a coordination number of 6. Ion A and atom O form a cubic close

packing while ion B occupies the octahedral holes.

Owing to copyright restrictions,

the electronic version of this thesis does not contain this image

Figure 1.5 Cubic perovskite structure ABO3 [57]. “Reprinted from Reports on Progress in

Physics, Vol.67, J. B. Goodenough, Electronic and ionic transport properties and other

physical aspects of perovskites, p.1917, (2004), with permission from IOP Publishing.”

Typically, the M3+ ion is a rare earth element such as Y3+, Yb3+, Nd3+and In3+[58,59].

The partial substitution of Ce4+ by M3+ results in the solid solution formation of

BaCe1-xMxO3-ö where x is usually less than 0.2 and ö is the number of oxygen

vacancies per formula unit. According to eq. (1.24) and (1.25), the oxygen vacancy

concentration is in proportion to the dopant content, x and the degree of hydration.

Kruth et al. studied the incorporation of water in BaCe1-xYxO3-ö as a function of

temperature and the dopant content. The results showed an almost linear correlation

between the dopant content and the degree of hydration. However, loss of water does

happen at high temperature. The sample with higher dopant content or oxygen
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vacancy concentration was able to retain more water than the others at the same

temperature[60.

Although the high ionic conductivity of doped BaCeO3 drew much attention, its

chemical stability soon became a critical issue. It has been reported that BaCeO3

readily reacts with CO2 and H2O forming undesired products, i.e barium carbonate

and cerium oxides[61,62]. Barium zirconate has higher chemical stability than barium

cerate but its proton conductivity is relatively low. For compensation, the partial

substitution of Ce4+ with Zr4+ seems to be a solution. It has been reported that the

chemical stability of doped BaCeO3-BaZrO3 solid solutions is greater than doped

BaCeO3. The increase of Zr content improves the chemical stability of the solid

solution but has an adverse effect on proton conductivity[63-67]. In addition, the

substitution of Zr in BaCeO3 dramatically increases its sintering temperature. In order

to achieve dense microstructure with reasonable grain boundary conductivity, the Zr-

substituted BaCeO3 ceramic needs to be sintered at very high temperature, around

1550-1700 oC[64, 66,67]. This high sintering temperature makes it unsuitable for low cost

preparation and it would furthermore be difficult to find a compatible electrode

material for a thin-electrolyte membrane cell using an oxide electrode as a support.

Therefore, sintering aids have played an important role in decreasing the sintering

temperature without impairing conductivity. ZnO has been used for this purpose. The

addition of Zn in small amounts did decrease the sintering temperature significantly[68-

71].

Recently, Tao et al. reported a new protonic conductor, BaCe0.5Zr0.3Y0.16Zn0.04O3-,

which has total conductivity in wet 5% H2 of 3.14 mS cm-1 at 400 ºC and over 10 mS

cm-1 above 600 ºC. Moreover, the chemical stability testing of this oxide under pure
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CO2 by thermal gravimetric analysis (TGA) also provided a satisfactory result as

compared to the other doped BaCeO3 materials[69].

1.3.2 Anode material

1.3.2.1 Anodic reactions

At the anode, a mixture of hydrogen and water vapour will be used. It has been

reported that the presence of water vapour at the anode can improve the area specific

resistance (ASR) of the cell[72,73]. The reason should be the additional proton

incorporation into the electrolyte through the following equation:

OO
x + VO

•• + H2O(g) → 2OHO
• (1.26)

Moreover, proton defects will be formed by the reaction with hydrogen as follows.

2h• + 2OO
x + H2   →  2OHO

• (1.27)

This is in the case where electron holes (h•) are present.

In some cases, the oxidation of hydrogen may cause the formation of free electrons

according to the following equation[52]

2OO
x + H2   →  2OHO

• + 2e' (1.28)

As a result, a gas mixture of hydrogen and water vapour is always used at the anode in

order to prevent the reduction of the electrolyte[72,74]. Concerning the catalytic effect
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of water on H2 oxidation, it was found that an appropriate amount of water vapour can

improve the polarisation resistance of the cermet anode containing a proton-

conducting ceramic phase[73,75]. However, the explanation for this effect is still

unclear.

1.3.2.2 Kinetics of hydrogen oxidation

The oxidation of hydrogen is rather simple. It includes at least three steps i.e. the

dissociation, adsorption and charge transfer steps.

H2(g) →  H2(ad), (1.29)

H2(ad) →  2H(ad), (1.30)

H(ad)  →     H+ + e- (1.31)

Figure 1.4 illustrates the details of reactions that occur at the three phase boundary

(TPB) of a cell with a metal electrode and proton conductor electrolyte.

Figure 1.6 Schematic of reactions at the electrode-electrolyte-H2 phases.
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Kek et al. has proposed that the reaction mechanism of hydrogen oxidation depends

on the nature of the electrode and hydrogen partial pressure. According to their

experiment, non-dissociative adsorption or diffusion of hydrogen molecules is likely

to be the rate determining step for a point contact Ni metal electrode using

Sr0.995Ce0.95Y0.05O2.970 (SCY) proton conducting oxide electrolyte[76]. From Figure 1.4,

there is a chance that adsorbed species like Had have to diffuse on the electrode

surface to the TPB site. This transport process has been considered as one of the

possible rate limiting steps by Akoshima et al.[77] while another possible step could be

the dissociative adsorption of H2 on the electrode surface at the TPB. In their

experiment, both models of possible rate limiting steps for H2 oxidation at

Pt/BaCe0.95Y0.05O3-interface are presented.

1.3.2.3 Anode materials in previous studies

When using hydrogen as a reactant for electrocatalytic ammonia synthesis, several

metal electrodes including Pd[34,42], Ag[35], Ag-Pd[39, 40], Ni cermet[37] were anticipated

as an anode material. In those studies, less attention was paid to the anodic reaction of

hydrogen oxidation as compared to the cathodic reaction of ammonia formation,

which is quite sluggish. Although metals in the same group as Pd and Pt have very

good catalytic activity for hydrogen oxidation, their costs discourage the usage of

these metals in a cost-efficient device. Ni is also considered as electrode material for

hydrogen oxidation, as it is commonly used in solid oxide fuel cell applications, with

excellent catalytic activity for hydrogen oxidation.
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1.3.3 Cathode materials for ammonia formation in previous studies

For the cathode reaction, protons from the anode will transport through the electrolyte

and readily react with nitrogen, which is either molecularly or atomically adsorbed on

the surface of the cathode catalyst, to form ammonia as mentioned in equation 1.10.

The ammonia formation reaction at the cathode may look simple but in the real

situation many factors that have to be considered. As a surface-catalysed reaction, the

factors that are involved in reaction kinetics could be the adsorption of the reactants

on the catalyst or into the structure of the catalyst. Only a few metal catalysts can

induce chemisorption of N2 on their surfaces. A classification of metals according to

their abilities in chemisorption is presented in Table 1.2.

Table 1.2 A classification of metals according to their abilities in chemisorption[15]

Group Metals

Gases

O2 C2H2 C2H4 CO H2 CO2 N2

A Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,

W, Fe, Ru, Os

+ + + + + + +

B1 Ni, Co + + + + + + -

B2 Rh, Pd, Pt, Ir + + + + + - -

B3 Mn, Cu + + + + ± - -

C Al, Au + + + + - - -

D Li, Na, K + + - - - - -

E Mg, Ag, Zn, Cd, In, Si, Ge,

Sn, Pb, As, Sb, Bi

+ - - - - - -

(+ strong chemisorption, ± weak chemisorption and – unobservable)
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From Table 1.2, it is obvious that N2 is the most difficult molecule to form

chemisorbed nitrogen on the metal surface and quite a limited number of metals can

be anticipated to work. However, the adsorption strength of each type of molecule on

the metal still depends on the adsorption coefficient.

Practically, it was reported that metallic Pd can be used as electrocatalyst for

electrocatalytic ammonia synthesis at atmospheric pressure by Marnellos et al.[13,34]

and Pd-Ag alloy was also employed in several experiments[36,38-40,78]. Apart from Pd

metal electrodes, the modifications of a metal electrode with a catalyst such as Fe or

Ru catalyst were also investigated with an attempt to extend the active site for N2

dissociation and NH3 formation. For example, Ouzounidou et al. employed an Fe

metallic electrode with an industrial Fe catalyst as an electrocatalyst[35]. A similar

experiment was performed by Skodra et al. who applied an industrial Ru catalyst over

metallic Ag[42]. Comparing Pd metal electrode with the combinations of the metal

electrode and the additional catalyst, the Pd metal electrode showed superior

performance despite the adsorption and dissociation of N2 on Pd metal being

relatively limited with regard to the information in Table 1.2. The reason for poor

performance in metallic electrode-catalyst combination must come from the difficulty

in proton transport form the electrolyte to the active site in the electrode phase. The

layer of the metallic electrode (Ag or Fe) on the electrolyte surface may block the

diffusion of protons, so the reaction cannot take place at the catalyst surface since the

reactant in this case is protons instead of H2. Consequently, the formation rate of

ammonia is limited by the inadequate number of protons on the catalyst surface.
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In the case of Pd metal, which has high capability for hydrogen adsorption, the metal

may act as an anchor for N2 to adsorb and initiate the reaction without the need of N2

dissociation as happens in some biological processes[34].

Considering previous works, the key factor for electrocatalytic ammonia synthesis

could be the number of TPB sites at the cathode in order to facilitate the reaction

between protons from the electrolyte, N2 from the gas phase and electrons from the

external power source.

1.3.4 Faradaic efficiency

Under the closed-circuit condition, the correlation between imposed current (I) and

the formation rate of product or the consumption rate of reactant (r) is expressed in

terms of Faradaic efficiency ().

 = r / (I/nF) (1.32)

where r is the formation rate of ammonia, I is the imposed current, F is Faraday’s

constant, n is the number of electrons involved in the reaction and (I/nF) is the

theoretical rate of ammonia production related to flux of protons through the

electrolyte. If =1, it means that protons pumped through the electrolyte by the

imposed current are all used in the reaction. This reaction obeys Faraday’s law and

has Faradaic effect. In some cases, the value can be higher than unity leading to a

phenomenon called Non-Faradaic Electrochemical Modification of Catalytic Activity

(NEMCA)[13,34,35,79]. This phenomenon is beyond the scope of this study. However,

the details about NEMCA can be found elsewhere[80,81].
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1.3.5 Electrocatalytic ammonia synthesis conditions

At atmospheric pressure, the decomposition of ammonia begins at about 450-500 oC.

With the presence of catalyst, the decomposition starts at 300 oC and is nearly

complete at 500-600 oC[2,12]. The fact that the proton conductivity of the electrolyte

increases with the temperature leads to compensation in the increase of H+ flux of the

ammonia decomposition rate.

Typical operating temperatures of electrocatalytic ammonia synthesis via a cell with

proton conducting solid oxide electrolyte are around 400-700 °C corresponding to the

working temperature of the proton conductor electrolyte. A volcano-shape

dependence of ammonia formation rates on temperature is observed in most cases.

The formation rate of ammonia increases with temperature due to the increase of the

H+ flux, then the formation rate reaches maximum value at a certain temperature

which varies between 450 and 650 ºC depending on experimental setup, proton

conductivity of electrolyte, type of catalyst and partial pressure of the reactants. When

the temperature is further increased, the ammonia formation rate then turns downhill

due to the decomposition of ammonia becoming prominent. The maximum formation

rates of ammonia from previous works and their experimental conditions are

summarised in Table 1.3. So far, the highest formation rate of ammonia of 8 x 10-9

mols-1cm-2 was reported by Liu et al.[40]. Surprisingly, doped ceria electrolyte, which

is known as an oxide-ion conductor, can provide high ammonia formation rates.

According to their results, the authors of this study claimed the coexistence of proton

and electron conduction in doped ceria under a hydrogen-containing atmosphere.

However, one must be aware that under higher oxygen partial pressure oxide ion

conduction may become pronounced and undesirable NOx gases could be

synthesised.
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Table 1.3 Summary of previous works on electrocatalytic ammonia synthesis with various experimental conditions.

Electrolyte Anode Cathode Temperature

range (°C)

Optimum

temperature

(°C)

Rate of NH3

formation

(mol s-1 cm-2)

Applied V or I Ref

SrCe0.95Yb0.05O3

SrCe0.95Yb0.05O3

Ba3(Ca1.18Nb1.82)O9-δ 

La1.95Ca0.05Zr2O7-δ 

Ce0.8Sm0.2O2-δ

SrZr0.95Yb0.05O3-δ

BaCe0.85Gd0.15O3-δ

BaCe0.85Y0.15O3-δ

Pd

Pd

Ag-Pd

Ag-Pd

Ag-Pd

Ag

Ni-BCGO

Ag-Pd

Pd

Pd

Ag-Pd

Ag-Pd

Ag-Pd

Fe metal

Ag-Pd

Ag-Pd

-

550-750

550-680

460-560

400-800

450-700

400-480

440-570

570

570

620

520

650

450

480

500

4.6 x 10-9

1.5 x 10-9

2.16 x 10-9

2.0 x 10-9

8.2 x 10-9

6.3 x 10-12

4.63 x 10-9

2.1 x 10-9

1.5 mA cm-2

2.3 mA cm-2

0.6 V

0.6 V

0.6 V

2 V

1.9 mA cm-2

0.75 mA

[13]

[34]

[38]

[39]

[40]

[35]

[37]

[36]
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2.1 Overview

The properties of the proton-conducting oxide electrolyte, BCZYZ, which was used in

this project, have been evaluated. The ceramic preparation, sintering conditions and

characterizations including electrochemical measurements are summarised in this

Chapter. Moreover, electrolytic ammonia synthesis was characterised to evaluate the

possibility of using this electrolyte in ammonia synthesis.

2.2 Preparation of oxide ceramic

2.2.1 Solid state synthesis

Solid state reaction is the oldest and simplest method for preparing ceramics. This

method involves physical mixing of powdered reactants then pressing or shaping them

before sintering. This method is intrinsically slow as the reactants are mixed as

individual particles while soft chemistry methods, e.g. sol-gel methods, provide

mixing on the atomic level. The advantages of solid state reaction are the inexpensive

reactants and the convenience for a large scale preparation. In solid state reaction, the

reaction happens at the interface between grains of the reactants. First of all,

nucleation of product crystals occurs at the interface by the diffusion of ions from the

contacting reactants. The reaction is fast in the first stage due to a large chemical

potential difference. In the second stage, the growth of product impedes the reaction

as the reactants are no longer in contact. Hence, the reaction progresses slowly

between the product and each reactant interface instead. Consequently, it is difficult to

attain reaction completion even if very high temperatures and prolonged periods are

applied. However, the problem with unreacted reactants can be solved by grinding the
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partially reacted mixtures in order to break up reactant/product interfaces and allow

the residual reactants into contact. Another way is the addition of a small amount of

liquid or gaseous sintering aid into the mixture. This gas- or liquid-phase assists the

transport of matter and accelerates the reaction rates[1].

2.2.2 Densification of ceramics

Since an electrolyte ceramic membrane with high density is required, the densification

and sintering processes need to be considered.

The sintering process happens at the interface between the particles and at least six

mechanisms can be involved. Typically, the sintering is accompanied by the shrinkage

of the ceramic body, the removal of interstitial porosity, grain growth and coarsening.

The possible mechanisms of the sintering process are displayed in Figure 2.1.

Owing to copyright restrictions,

the electronic version of this thesis does not contain this image

Figure 2.1 Schematic of six mechanisms take place between the particles leading to

densification of a powder system[2]. “With kind permission of Springer Science and

Business Media:<Ceramic materials science and engineering, 2007, p.431, Chapter 24, C. B.

Carter and M. G. Norton, Fig. 24.8>”
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There are several mathematic approaches for the theoretical analysis of sintering.

Most of the models assume that the spherical particles and uniform packing and omit

the change in shape of particles during sintering. The model that has been used widely

is the analytical model. In this model, the sintering process is divided into three

stages. At the initial stage, the growth of necks between the particles is rapid due to

surface diffusion, lattice diffusion or vapour transport. Neck growth leads to bonding

between the particles and substantial shrinkage (3-5%) of the powder compact. The

initial stage lasts until the radius of the neck has approached half of the particle radius.

The intermediate stage includes grain growth, shrinkage and the isolation of pores. At

the end of this stage a density of 90% of the theoretical should be reached. In the final

stage, the isolated pores at the grain corners are assumed to shrink continuously and

are finally eliminated.

Often, solid-state sintering can be difficult to complete or require very high sintering

temperatures, In some cases, a small amount of additive which has relatively low

melting temperature can be added into the system to enhance the sintering rate by

creating a liquid phase during sintering. The presence of liquid phase facilitates the

transport of matter by producing a high diffusivity path between grains.

Liquid-phase sintering typically proceeds via the rearrangement of the particulate

solid, solution-precipitation and Ostwald ripening (a coarsening process). The

summary of stages of liquid phase sintering is depicted in Figure 2.2.



39

Owing to copyright restrictions,

the electronic version of this thesis does not contain this image

Figure 2.2 Stages of liquid-phase sintering[3]. “With kind permission from Springer

Science+Business Media: <Journal of Materials Science/Review: liquid phase sintering, 44,

2009, 3, R. M. German, P. Suri, and S. J. Park, Fig. 1>.”

In this experiment, a small amount of ZnO (4 wt%) was used as sintering aid. ZnO

which has a lower melting point than the other oxides will form a liquid phase at the

firing temperature and enhance the sintering. Tao and Irvine reported that the addition

of ZnO lowered the sintering temperature of barium cerate/zirconate ceramic and

dramatically improved density of the sintered body. In addition, a change in unit cell

parameters was also observed. Hence, it was suggested that ZnO enters in the crystal

lattice and forms a solid solution with the other reactants[4].
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2.3 Experimental

2.3.1 Powder preparation

The perovskite proton conducting oxide, BaCe0.5Zr0.3Y0.16Zn0.04O3-(BCZYZ), was

prepared by solid-state reaction. Starting oxides, CeO2 (Sigma-Aldrich,99.9%) , ZrO2

(Riedel-de Haen, 99%), ZnO (Hopkin and Williams, 99%) and Y2O3 (Alfa Aesar,

99.9%) were dried in air at 600 oC for 2 h to remove absorbed H2O and CO2, while

BaCO3 (Aldrich, 99.9%) was dried at 300 °C due to its low melting point. All the

dried powders were removed from the furnace at around 300 oC and weighted

immediately. Stoichiometric amounts of all starting materials except ZnO were mixed

in a planetary ball mill (Pulverisette 7, Fritsch) for 2 h using six zirconia balls (8.8

mm in diameter) in acetone medium. After ball milling, the powder was dried in an

oven at 80 °C before being calcined in air at 1250 oC for 2 h. In the last step, a

stoichiometric amount of ZnO was added into the calcined powder and followed by

another ball-milling for 2 h. The finished powder appeared as fine and almost white

particles. This calcined powder, called BCZYZnO, was used for both uniaxial

pressing (in this chapter) and tape casting (in Chapter 3). Phase identification of this

powder was performed by X-ray diffractometry (XRD).

2.3.2 Electrolyte sintering

Dense electrolyte ceramic for electrochemical measurements were prepared by

uniaxial dry-pressing BCZYZnO powder at room temperature. About 1.9 g of

BCZYZnO powder was placed into a 2.3 cm diameter steel die and pressed under a

pressure of 1 ton. The pressed pellets were then transferred to a furnace using an
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alumina plate as a support. The sintered BCZYZ pellets with ~ 1 mm thickness and

~ 19 mm diameter were attained after sintering under a stagnant air atmosphere. The

sintering temperature was varied from 1300 to 1400 °C and the most suitable sintering

temperature was determined from the microstructure of sintered samples. The

sintering conditions also required careful attention. It was found that the BCZYZ

pellet react with either alumina or zirconia support if they were in direct contact.

Therefore, a layer of sintered BCZYZ powder derived from a sintered pellet was

applied as a buffer layer between the alumina plate and the BCZYZnO pellet. This

sintered powder layer worked effectively in preventing the highly reactive BCZYZnO

from reacting with the alumina support.

Besides the undesired reaction, another problem for sintering this material came from

the thermal stress that developed during sintering. Serious cracking of specimens

occurred during heating and cooling when the heating/cooling rates were too high or

too low. Consequently, the heating/cooling rates needed to be optimised. After trial

and error tests, it was speculated that the cracks were likely to happen during the

cooling step as a result of temperature gradients between the high heat capacity

ceramic disk and the atmosphere above the ceramic. Therefore instead of cooling

down directly to room temperature, the disks were held at 650 oC for 2 h. This was

expected to reduce the thermal stress inside the ceramic disks. Finally, the electrolyte

ceramic disks were successfully sintered by the sintering treatment as shown in Figure

2.3.



42

Figure 2.3 Diagram of optimum sintering treatment for BCZYZ 1 mm thick pellet

2.3.3 Ex-situ characterisation

2.3.3.1 X-ray Diffraction (XRD)

X-ray powder diffraction is a non-destructive method providing information about the

crystallographic structure and crystalline phases or compounds in polycrystalline or

powdered solid samples. The theory of diffraction is based on Bragg’s law. A crystal

structure consists of three-dimensional arrangements of atoms in a repeating pattern.

This pattern is built up from a smallest unit called the unit cell. This array of atoms

may be divided up into sets of lattice planes. These parallel planes are present in

various orientations and directions with their individual interplanar distance, d. When

the incoming beams of X-rays strike these lattice planes, they will be diffracted in all

directions due to the interaction with atoms in the lattice planeIn a few specific
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directions, the diffracted X-rays beams interfere constructively resulting in a set of

intense reflection beams which can be detected. Theoretically, the constructive

interference of two reflected beams occurs when Bragg’s law is satisfied. Figure 2.4

exhibits the derivation of Bragg’s law. For two incident beams with an angle Ɵ to the 

lattice planes, beam 22ʹ has to travel the extra distance xyz comparing to beam 11ʹ. For 

beam 2ʹ to be still in phase with 1ʹ, the path difference xyz needs to be an integral

number of wavelengths (n)[1].

Figure 2.4 Derivation of Bragg’s law.

From Figure 2.4,

xy = yz =d sinƟ (2.1) 

Then

xyz = 2d sinƟ (2.2) 

For constructive interference, the distance xzy must be equal to an integral number of

wavelengths (n. Therefore,

                                                      2d sinƟ = n Bragg’s law (2.3)
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The X-ray diffraction pattern of each crystalline solid represents its ‘fingerprint’

which can be used to identify unknown crystalline materials by comparing with a

reference source, Powder Diffraction File (International Center for Diffraction Data,

USA).

Instruments

Phase purity of the starting powder and sintered ceramic were examined by two X-ray

diffractometers with different working modes. The Philips PW 1710 diffractometer

operates in reflection mode using CuK radiation (1.5406 Å) and is suitable for the

examination of bulk ceramic surfaces. The STOE Stadi-P Transmission X-ray

diffractometer operates in transmission mode with CuK1 radiation and provides data

suitable for evaluating the lattice parameters of the powder. X-POW Software was

employed for the lattice parameter calculation using least squares refinement method.

The XRD data from the Philips diffractometer were collected using a continuous scan

with a range of 2 = 15-100°, 0.02° step size and 1° 2min-1 scan rate. In the case of

the STOE Stadi-P diffractometer, the same scan range was employed but a 0.01° step

size and a 2000 sec/step slow scan rate were used instead.

2.3.3.2 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) is a technique that provides information about

the texture, topography and features of the sample surface. The narrow electron beam

of the SEM provides excellent depth of field allowing the three-dimensional structure

of the surface to be imaged. A schematic of a typical SEM is displayed in Figure 2.5a.
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By scanning the sample surface with a high-energy beam of electrons thermionically

generated from an electron gun equipped with a tungsten filament cathode, the

interaction between electrons and the surface atoms emits several types of signals

such as secondary electrons, back-scattered electrons, characteristic X-rays, light and

heat as displayed in Figure 2.5b. For SEM imaging, secondary electrons (SE) with

low energy (~5 eV) are commonly used. The secondary electron comes from the

loosely bound electrons scattered from the surface. The resolution of SEM in SE

mode is around 0.7 nm at 25 kV[2].

Owing to copyright restrictions,
the electronic version of this
thesis does not contain this

image

(a)    (b)

Figure 2.5 (a) schematic of a typical SEM components[2]* and (b) possible signals

emitted by an electron beam. *“With kind permission of Springer Science and Business

Media:<Ceramic materials science and engineering, 2007, p.158, Chapter 10, C. B. Carter and

M. G. Norton, Fig. 10.5>”
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2.3.3.3 Energy-dispersive X-ray spectroscopy (EDS)

As mentioned above, it is possible to have characteristic X-rays emitted from the

sample by the collision between electron beam and atoms at the sample surface. In

this case, the inner shell electron is hit by a high-energy beam of electrons and ejected

from its shell creating an electron hole. If the replacement electron is a higher energy

electron from the outer shell, the excess energy may be released as an X-ray. The

energy of this X-ray is related to the difference in energy between two shells and

corresponds to the atomic structure of a particular element. Therefore, the elemental

composition of the sample within a sampling depth of 1-2 microns can be revealed.

This technique allows both qualitative and quantitative (standards are required)

analysis. The advantage of EDS is the ability to indicate the distribution of elements

on a sample surface by elemental mapping technique.

Instrument

SEM analysis was carried out on a JEOL 5600 scanning electron microscope with

secondary electron image mode coupled to an EDS (Oxford Inca) analysis system.

Working distance was set at 20 mm. The voltage in the range of 5-20kV was used

with a spot size around 30.
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2.3.3.4 Density of sintered ceramic

The actual density,  of a sintered pellet can be calculated as follows;

(2.4)

where h is an average height of the specimen in cm, r is an average radius of the

specimen in cm and m is the specimen weight in grams.

The actual density value will be compared with the theoretical density (TD or

theoretical) which is calculated from the unit cell parameter as follows:

(2.5)

where Mw denotes relative molecular mass of material (g mol-1)

V is the unit cell volume calculated from unit cell parameter, a, b and c (Å)

Z is the number of molecules per unit cell (Z= 1 in this case)

2.3.3.5 Thermogravimetric Analysis (TGA)

Thermogravimetry is a technique for studying physical and chemical properties of a

substance as a function of temperature. A certain amount of sample is heated with

constant rate and the change in mass of the sample is recorded continuously. A plot of

mass against temperature indicates the initial temperature of a process and final

temperature when the process has been completed. Those temperatures are dependent

on the nature of the sample such as its particle size, heating rate and the testing
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atmosphere. Typically, H2O uptake of a proton conducting ceramic oxide can be

characterised by this technique[5, 6].

Instrument

The studies of hydrogen incorporation in BCZYZ ceramic were carried out on a

Netzch STA 449C Jupiter thermal analyser. The sample was prepared from a ground

sintered BCZYZ pellet. The powder was heated up to 900 °C in argon with a heating

rate of 5 °C/min and dwelled for 1 h before cooling down in 5% H2 at the same rate.

Once the temperature decreased to 50 °C, the sample was heated up in argon to 900

°C again in order to confirm the previous result.

2.3.4 Electrochemical Measurements

2.3.4.1 Cell preparation

Metal ink electrodes were employed as electrode and current collector on the 1 mm

thick BCZYZ pellet. Three kinds of metal inks, either Pd (Metalor), Pt (G.E.M) or Au

(Metalor), were employed in this experiment. The electrode ink was applied on the

electrolyte pellet by hand-painting. The electrode was painted in full-circle pattern at

the centre on both sides of the pellet creating a cell with two-electrode configuration

as displayed in Figure 2.6. The superficial surface area of each electrode was

1.23 cm2.

Figure 2.6 Geometry of electrode on BCZYZ pellet for electrochemical testing.

BCZYZ Electrodes
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After painting, the electrode was fired at 900 oC, for Pd and Pt electrodes, and at 800

oC, for Au electrodes, in air for 1 h in order to attain good adhesion with the

electrolyte. Cracking of the electrode was still a problem during the cooling step after

firing . The solution of this problem was similar to the sintering treatment. A dwell

step was applied during cooling. The pellets were held at 450 oC for 2 h before

cooling to room temperature. The optimised heat treatment for electrode firing is

shown in Figure 2.7.

Figure 2.7 Electrode firing conditions.

2.3.4.2 Experimental apparatus: Two-chamber apparatus

Electrochemical measurements of BCZYZ cells were carried out in a two-chamber

apparatus. A schematic representation of the apparatus is shown in Figure 2.8. The

measurements were performed in the temperature range 400-750 oC. The sample was

fixed between two alumina tubes by alumina sealant (P-24, To Ku ceramic) creating
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two gas-tight compartments. The outlet tube with 0.25 mm diameter was placed

centrally inside the 20 mm diameter tube. Both 20 mm and 0.25 mm diameter tubes

were fitted with a Swagelok stainless steel T-shape fitting. Electrical connections

were achieved by connecting the electrodes of the cell to the stainless steel fitting

from inside the alumina tube using Au paste and Au wires. The schematic of the two-

chamber setup is shown in Figure 2.8. Inside the furnace, the cell was dwelled at 150

°C for 1-2 h in order to cure the ceramic sealant. Then the temperature was raised

with a heating rate of 2.5 °C/min to 750 °C. In this study, only humidified 5% H2 was

used as the anode gas. Humidified 5%H2 was achieved by bubbling 5%H2/Ar gas

through room-temperature water resulting in a gas mixture of 3 % H2O and 4 % H2 in

Ar. The flow rate of 5% H2 of 30 ml/min was controlled by a needle flow meter. For

the cathode, three kinds of gases i.e. O2, N2 and Ar were used.

The open circuit voltage (OCV) of the cell under testing condition was recorded as a

function of time until the system reached the steady state before performing the

electrochemical measurements. The electrochemical measurements were carried out

using a frequency response analyzer (Solartron 1255, UK) coupled with an

electrochemical interface (Solartron 1287, UK). The voltage-current (V-I)

measurement was performed by sweeping potentials across the cell using a scan rate

of 2 mV/sec with the applied potentials from 0-3 V with respect to the OCV. The AC-

impedance measurement was obtained in a frequency range of 1 MHz to 0.1 Hz using

a potential amplitude of 50 mV under open-circuit conditions. In some cases, the

polarisation under applied potential was also investigated.

For ammonia synthesis, non-humidified N2 was fed into the cathode, as it has been

reported that the presence of moisture in the gas mixture would inhibit the formation

of ammonia[7]. During electrolysis, the gaseous products in the cathode outlet stream
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were examined by a mass spectrometer (MS) (Prolab, Thermo Scientific). In order to

determine the ammonia formation rate, a constant flow rate of N2 was required. In this

work, a mass flow controller (Model 5850S, Brooks instrument) was employed.

However, the actual flow rate of the outlet stream was checked periodically by a glass

soap bubble flow meter.

The electrolysis was done by applying a constant potential to the cell. The values of

applied potentials were varied between 1.8 and 3.5 V depending on the cell resistance

due to obtain a target current which was in the range of 10-30 mA. The transient

period was set at 20 min and the concentrations of evolved products in mol% were

taken from the concentration difference between open circuit and closed circuit.

Figure 2.8 Two-chamber testing apparatus.
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2.3.4.3 AC impedance spectroscopy

AC impedance spectroscopy is a powerful technique that is able to separate different

contributions in an electrochemical cell. The information obtained from the

impedance measurement concerns not only electrochemical processes but also

physical or chemical transport limitations which can include electrolyte response,

electrode response and transportation limitations of reactants and products.

The impedance measurement is performed by applying a small sinusoidal voltage

perturbation to the cell expressed as a function of time:

V(t) = Vm sint (2.6)

So then the resultant current will also be a sinusoid at the same frequency but shifted

in phase as expressed by:

I(t) = Im sin(t + ).

Vm and Im are the maximum amplitude of signal, is frequency in radians per second,

 is the phase shift in radians and equals to zero for purely resistive behaviour. The

relationship between  and frequency (f) is

= 2 f (2.7)

From the above equations, the relationship between system properties and response to

voltage or current excitation is very complex in the time domain. In general, the

impedance (Z) can be expressed as

Z() = Z' + jZ'' where j = ට-1 (2.8)

When plot Z in the plane with rectangular coordinates;

Re(Z) = Z' = | |ܼcos(and Im(Z) = Z'' = | |ܼsin( 
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Since Z is frequency-dependent, a Nyquist plot, such as that shown in Figure 2.9., is a

result of the impedance at individual frequencies. Normally, the sample is measured

in a wide range of frequency of 107 to 10-2 Hz.

The impedance spectrum can be characterised as a arrangement of electrical circuits.

For a ceramic sample, the impedance is usually characterised by a resistance (R) and a

capacitance (C) placed in parallel as displayed in Figure 2.9. From the relationship

between the characteristic relaxation time ( of each parallel RC component ( = RC)

and the frequency at maximum loss, max, the different RC elements in different

regions in the sample can be identified[8].

Figure 2.9 An example of Nyquist plot with impedance vector.

In a real sample, several semicircles may be attained. The capacitance from each

semicircle provides information about the corresponding response that occurs in

different regions in the sample. Some relationships between capacitance and

corresponding response are shown in Table 2.1.
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Table 2.1 Relationship between capacitance values and corresponding processes[9].

Capacitance (F) Corresponding processes

10 -12

10-11

10-11-10-8

10-9-10-7

10-7-10-5

10-4

Bulk

Minor, second phase

Grain boundary

Surface layer

Sample-electrode interface

Electrochemical reactions

Considering electrochemical reactions at the electrode, there are two main processes

which are normally seen by the impedance spectroscopy technique as shown in Figure

2.10. First, a charge transfer process which kinetically controls the electrochemical

reaction. The speed of this process depends on the temperature, type of reaction and

the concentration of reactants. Inevitably, a diffusion process also happens along with

the charge transfer process. However this process controlled by mass transport, tends

to appear at low frequency. In some cases, both charge transfer and diffusion features

may not be well distinguished. If the electrochemical reaction rate is slow, the charge

transfer resistance (Rct) will be pronounced and the mass transfer may be negligible

and vice versa. The characteristic impedance for diffusive systems is shown in Figure

2.11. Semi-infinite diffusion appears as a straight line with a slope of 0.5. This type of

diffusion is known as the Warburg impedance (Zw) and occurs when the diffusion

layer has an infinite thickness. In some cases, the impedance tends to bend down into

a semicircle due to the diffusion happens through a layer of finite thickness.
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Figure 2.10 Impedance plot in the complex plane revealing factors controlling

electrochemical reactions. Charge transfer process for kinetic control and diffusion

process for mass transfer control. Rel is the resistance of electrolyte, Rct is charge-

transfer resistance[10]. “With kind permission from Springer Science and Business Media:

<Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and

applications, 2010, p. 117, Chapter 3, X.-Z.Yuan, C. Song, H. Wang, J. Zhang, Fig. 3.8>”

Figure 2.11 Characteristic impedances for diffusive systems: (a) semi-infinite

diffusion, (b) reflective finite diffusion and (c) transmissive finite diffusion[10]. “With

kind permission from Springer Science and Business Media: < Electrochemical Impedance

Spectroscopy in PEM Fuel Cells: Fundamentals and applications, 2010, p. 117, Chapter 3, X.-

Z.Yuan, C. Song, H. Wang, J. Zhang, Fig. 3.9>”
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2.3.4.4 Current efficiency calculation

Since there will be more than one faradaic reaction occurring at the cathode, the

current efficiency for each reaction must be calculated individually from the fraction

of current used in the particular reaction (ir) to the total current that is imposed across

the cell (itotal)
[11]

Current efficiency (%) =
ir

itotal
x 100 (2.10)

Then ir can be obtained from:

ir (amperes) =
dQ

dt
(coulombs/sec) (2.11)

and

Q

nF

(coulombs)

(
coulombs

mol
)

= N (mol electrolysed) (2.12)

where n is the stoichiometric number of electrons involved in the reaction and F is

Faraday’s constant, 96485 coulombs. From equation 2.11 and 2.12, moles of analysed

gas (N) produced per second is equal to

dN

dt
=formation rate (mol/s)=

ir

nF
(2.13)

Hence, the formation rate of each product relates to the amount of current consumed

in the reaction (ir) and the ratio of ir to the total current (itotal) is referred to as the

current efficiency.
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By applying the ideal gas law, the molar flow rate of the outlet stream can be

calculated from:

Molar flow rate (mol/s)=P
(dV/dt)

RT
(2.14)

where dV/dt is the volumetric flow rate (cm3/s); T and P values are regarding to

standard conditions for temperature (298.15 K) and pressure (0.101 MPa),

respectively based on the United Environmental Protection Agency (EPA) standard,

and R is the gas constant (8.314 cm3 MPa K-1 mol-1).

Because the amount of analysed gas detected by a mass spectrometer was presented in

mol% of the molar flow rate, then its formation rate can be calculated as followed:

formation rate (mol/s)= mol% of analysed gas x molar flow rate (mol/s) (2.15)

2.3.4.5 Mass spectrometry (MS)

Mass spectrometry is a technique for analysing gas compositions in the gaseous

sample. Both quantitative and qualitative information can be provided via the

determination of mass-to-charge ratio (m/z) of ions or fragments of analysed

molecule. A mass spectrometer comprises of inlet system, ion source, mass analyser,

detector and data analysis system as shown in Figure 2.12.

Figure 2.12 Components of a mass spectrometer.
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First, the sample will be totally vaporised before passing through the ion source. At

the ion source, the gaseous sample is then ionised by one of several ionisation

methods, such as by bombarding gaseous molecules with an electron beam. This

fragments those molecules into positively-charged ions. These positively-charged

particles are then accelerated in an electric field before reaching a mass analyser. At

the mass analyser, an electromagnetic field is applied to the charged particles while

they are travelling across the mass analyser. Particles with different m/z values will be

sorted by the electromagnetic field and sent into the detector in sequence. An

electrical signal is generated when ions strike the detector. The signal is converted

into a plot between intensity and m/z values and called a mass spectrum. Nowadays,

all of the components are under computer control.

Instrument

The outlet gas stream from the cathode was analysed in a quadrupole mass

spectrometer (Prolab 300, Thermo Scientific). The concentrations of gas compositions

including H2, NH3, O2 and H2O were detected continuously especially under closed-

circuit condition. The instrument contains an electron ionisation ion source and triple

filter Quadrupole Mass Filter. The Faraday detector was set for recording mass

channels of 2, 17, 18 and 28. The calibration gas was a mixture of 500 ± 10 ppm H2

and 500 ± 10 ppm NH3 with balance of N2. The operation and data analysis were

controlled by GasWorks software. Because a significant amount of water may be

present in the gas stream, the overlapping peaks at m/z 17 (NH3
•+ or OH•+) and 18

(15NH3
•+ or H2O

•+) will cause errors in both qualitative and quantitative analysis of

ammonia. Therefore, the fragmentation patterns of water and ammonia needed to be
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identified. From these patterns and their relative intensities, the fraction of a certain

peak intensity related to a certain gas can be calculated.

2.4 Results and discussion

2.4.1 Physical properties of sintered BCZYZ pellet

After sintering, flat ceramic pellets with dark colour of the BCZYZ as shown in

Figure 2.13 were obtained. The sample pellets used in this experiment had electrolyte

thicknesses of 1.22 ± 0.02 mm and 95 ± 2 % of theoretical density.

Figure 2.13 Typical sintered BCZYZ pellet.

2.4.2 Microstructure Characterisation

The microstructures of pellets sintered at various temperatures were investigated by

SEM. Figure 2.14 displays a comparison between samples sintered at 1400 °C and

1300 °C. The SEM images of the fracture surfaces of both samples reveal dense

microstructure with some isolated pores. The fracture path happens across the grains

and is called transgranular fracture. This kind of fracture suggests good bonding

between grain boundaries as a result of well-sintered ceramic which may be

encouraged by the presence of a liquid phase during sintering. Samples sintered at
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higher temperature tend to have larger grains but also larger pores. Large pores can

more easily nucleate cracks than small pores. In addition, the distribution of porosity

in the 1300 °C sample is better than the 1400 °C sample. The homogeneous grain size

and pore distribution are preferred microstructure for good mechanical strength in

ceramics.

Figure 2.14 SEM images of fracture surface of BCZYZ pellets after sintered at (a)

1400 °C and (b) 1300 °C for 10 h.

(b)

(a)
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2.4.3 Phase Identification

The X-ray diffraction patterns at room temperature of sintered BCZYZ and calcined

BCZYZnO powder are shown in Figure 2.15. The XRD pattern of the calcined

powder show a mixed phase of BaCeO3 and BaZrO3 (ICDD PDF card No. 22-74 and

6-399, respectively) but after sintering at 1300oC for 10 h, a single perovskite phase

was obtained. By using X-POW software, refinement of the XRD data gave the

sintered BCZYZ a cubic structure with unit cell parameter a = 4.3376(6) Å.

Figure 2.15 XRD results of BaCe0.5Zr0.3Y0.16Zn0.04O3-BCZYZ (a) BCZYZnO after

calcining at 1250oC, (b) BCZYZ after sintering at 1300oC (o : BaCeO3 peaks, * :

BaZrO3 peaks)
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2.4.4 TGA characterisation for water uptake

The TGA data in Figure 2.16a of the powdered BCZYZ in Ar exhibits a sharp mass

loss between the start of heating and 100 °C which could be a loss of adsorbed water

from the powder surface. There is a gradual mass gain before a drastic weight loss

between 500 °C and 800 °C. The loss at 500-800 °C is expected to be a loss of water

bound within the crystal lattice. On cooling in 5%H2/Ar (Figure 2.16b), the mass gain

started at ~800 °C and finished at a lower temperature than that observed in the

heating step. It is typical for a process to be slower on cooling than on heating. The

uptake of water in 5% H2 may arise from either H2 or some moisture in the gas line.

However, the result was confirmed again by continuously heating the sample in Ar

atmosphere. On the 2nd heating round (Figure 2.16c), the mass loss was observed to

occur in the same temperature range.

The weight difference derived from TGA data was 0.25 mass%. Assuming that the

loss occurred from the uptake/loss of water from the crystal lattice, 0.045 moles of

water per mole of BCZYZ was attained. Theoretically, the amount of oxygen

vacancies (Vo
•• ) in BaCe0.5Zr0.3Y0.16Zn0.04O3-(BCZYZ) is equal to 0.12 mol V୭

∙∙ per

mol BCZYZ. According to;

H2O(g) + Oo
x + Vo

••  →     2OHo
• (2.16)

Hence, the uptake of H2O 0.045 moles by the BCZYZ crystal lattice claims that

~37.5 % of total Vo
•• is filled by H2O.
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Figure 2.16 TGA data of sintered BCZYZ powder (a) on heating in Ar (b) on cooling

in 5%H2/Ar and (c) on 2nd heating in Ar.
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2.4.5 Electrochemical measurements

2.4.5.1 OCV measurements of PtǀBCZYZǀPt cell  

Performances of the PtǀBCZYZǀPt cell under humidified 5% H2 (3%H2O/Ar/4%H2) in

the anode chamber and non-humidified O2 or N2 or Ar gases in the cathode was

investigated. In Figure 2.17, open circuit voltages (OCV) with various cathode gases

are displayed. As expected, OCV values between humidified 5% H2 and pure O2 are

higher than in the case of pure N2 or Ar. According to the Nernst’s equation,

E= E°-
RT

2F
ln൤

PH2O

PH2
∙PO2

1/2൨ (2.17)

where E° is standard cell potential (1.229 V) and R, T and F have their usual

meanings.

From the Nernst’s equation, theoretical OCV values for the cell operated in 5% H2

and pure O2 at various temperatures are present as a dashed line in Figure 2.17. The

measured OCV is close to the theoretical value only at 450 °C then it decreases with

increasing temperature. The reduction of the measured OCV may stem from the

increasing of electronic conduction in BCZYZ electrolyte as usually observed in

barium cerates. The ratio between measured OCV and theoretical OCV provides the

ionic transport number (tion) that decreases from 1 (purely ionic) at 450 °C to 0.78

(mixed ionic/electronic) at 750 °C.
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In cases of pure Ar and N2, the unexpected high OCV may arise from some leakages

within the testing apparatus. For example if 0.1% O2 was present within the cathode

gas, the theoretical OCV would be 1.02 V which is 0.1 V less than that of 100% O2.

Figure 2.17 Open circuit voltage measured at different temperatures and cathode

gases. Dashed line expresses theoretical OCV values in 5%H2/Ar and pure O2.

2.4.5.2 AC impedance spectra of 5% H2,PtǀBCZYZǀPt,O2 cell

Figure 2.18 shows the impedance spectra of the BCZYZ cell with Pt electrodes in

humidified 5% H2 and non-humidified O2 under open circuit conditions. The

impedance comprises of at least two overlapping depressed semicircle arcs and the

equivalent circuit fitting suggests that there are three possible electrode processes

included in these spectra. The equivalent circuit is shown in Figure 2.19.

The series resistance, Rs, derives from the resistances of the electrolyte and the

electrode materials and also the contact resistance at the electrode/electrolyte
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interface. A set of parallel Rn and CPEn (Constant Phase Element) is equivalent to an

electrode process derived from the electrode polarisation. The CPE is employed in

this study instead of the pure capacitance (C) due to the depression of the observed

semicircle arcs. From the equivalent circuit, at least three electrode processes are

suggested. The capacitances of the high frequency arc with peak frequency of 105 Hz

are between 10-7- 10-6 F/cm2 which is associated to the charge transfer process at the

electrode/electrolyte interface. The remaining electrode responses were assigned as

medium- and low-frequency responses related to their summit frequencies. The

medium-frequency contribution with peak frequency around 102 Hz possesses the

capacitances of 10-6-10-5 F/cm2 which corresponds to a combination of electrode

reaction and charge diffusion processes. The low frequency contribution with peak

frequency around 1 Hz may mainly relate to mass transfer process at the electrode

surface.

With increasing temperature, the total polarisation resistance (Rp) calculated from the

sum of R1, R2 and R3 tends to decrease as a result of the improvement of catalytic

activity of the Pt electrode with temperature. Compared to the high frequency

contribution, the contribution at medium frequency shows much stronger temperature

dependence.

From Rs values, the conductivities of this cell are in the range of 2.5 – 3.9 mS cm-1 for

the temperature range of 450-650 °C, much lower than conductivities of the same

material in humidified 5 % H2 reported by Tao and Irvine[4]. In their report, the

conductivities of BCZYZ in wet 5% H2 were 3.14 mS cm-1 at 400 °C and

> 10 mS cm-1 above 600 °C. Smaller conductivities in this experiment may arise from

the different atmospheres in two-chamber testing. The proton conductivity in non-

humidified O2 atmosphere should be very low.
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Due to the limitation of two-electrode configuration, the impedance spectrum can

provide only the overall processes occurring at both anode and cathode. However by

fixing the anode condition and changing the cathode atmosphere, it is possible to

notice the difference between anodic and cathodic polarisations by the AC impedance

measurement.

Figure 2.18 Nyquist plots of 1 mm thick Pt│BCZYZ│Pt cell in humidified 5% H2

and non-humidified O2 under open circuit at various temperatures where the number

indicates frequency in Hz.

Figure 2.19 An equivalent circuit for the impedance from cell with Pt electrode.

0 500 1000 1500

-1000

-500

0

500

Z'

Z
''

301207_450 O2 3.z
311207_O2 550 2.z
020108_O2 650 3.z
040108_O2 750 3.z

0 100 200 300 400 500

-400

-300

-200

-100

0

100

Z'

Z
''

301207_450 O2 3.z
311207_O2 550 2.z
020108_O2 650 3.z
040108_O2 750 3.z

0 25 50 75 100 125

-100

-75

-50

-25

0

25

Z'

Z
''

301207_450 O2 3.z
311207_O2 550 2.z
020108_O2 650 3.z
040108_O2 750 3.z

1

10
102

103

105

450 °C
550 °C
650 °C

750 °C

1
10102

103

105

105
103 102

10 1
105

10

Rs R1 R2 R3



68

2.4.5.3 Performances of PtǀBCZYZǀPt cell in different cathode gases 

In order to understand the electrode polarisation in the impedance spectrum, different

cathode gases were employed. On the other hand, the purpose of this project is to find

a cathode that can be used in pure N2 atmosphere. Therefore, pure Ar or pure N2 gases

were introduced to the cathode instead of O2. The impedance spectra are shown in

Figure 2.20. Note that the impedance was taken in N2 or Ar atmosphere which

contained some O2 from the leakage as seen from the OCV measurements. The

impedance spectra at 450-650 °C indicate that the contributions at medium and low

frequency are strongly affected by the change of gas types or oxygen partial pressure.

It confirms that the oxygen partial pressure in the cathode controls the behaviours of

the medium- and low-frequency responses.

It can be concluded that medium- and low-frequency processes stem from cathodic

polarisation and the process that dominates the polarisation is the diffusion.
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 Figure 2.20 Nyquist plots of 1 mm thick Pt│BCZYZ│Pt cell in different cathode 

gases under open circuit (□) O2, (o) N2, (Δ) Ar at (a) 450 ºC, (b) 550 ºC (c) 650 ºC and 

(d) 750 ºC.
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2.4.5.4 Cell performance after electrode geometry modification

Problems due to poor adhesion of the electrode to the electrolyte are often found in

cells with metal electrodes. In this experiment, the Pt electrode was quite dense and

particles tended to agglomerate with each other rather than attach to the electrolyte

surface after the firing step. The dense layer of Pt with poor adhesion and small three-

phase boundary length are responsible for high Rp values. Therefore, electrode

modification was necessary. The electrode was therefore painted in a grid pattern

instead of painting in a full-circle as shown in Figure 2.21. By using the grid pattern,

the adhesion with the electrolyte was improved and also the cell performance.

Full-circle pattern Grid pattern

Figure 2.21 Modification of Pt electrode pattern

The comparison in cell performances for different electrode patterns was carried out

in humidified 5 % H2 and non-humidified N2. Examples of the impedance spectra of

Pt│BCZYZ│Pt cells with different electrode patterns under open circuit are shown in 

Figure 2.22. Note that both pellets had similar densities and thicknesses. The results

show that the Pt electrode with grid pattern provides much better performance. The

Rp value of this grid electrode at 600 °C is smaller than the full-circle electrode by

approx. 10 times. The shape of the high-frequency contribution was slightly changed

and much smaller in size. The change in both shape and size was significant at the low
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frequency arc which relates to the mass transfer process. It can be explained that Pt

electrode may act as a dense layer on BCZYZ pellet instead of a porous electrode.

Therefore, the activity of the Pt electrode did improve with the increase of TPB length

in the grid pattern. Moreover, the improvement of ohmic resistance was also

observed. This is probably due to the reduction of the contact resistance at

electrode/electrolyte interface in the grid pattern. Hence, the conductivities of BCZYZ

increase to the range of 2.4 – 5.4 mScm-1 at 400-600 °C which are around 40% higher

than the full-circle pattern.

Figure 2.22 Impedance spectra of Pt│BCZYZ│Pt cell with different electrode 

geometry (□) full-circle pattern and (o) grid pattern at (a) 600 °C and (b) 450 °C in 

humidified 5% H2 and non-humidified N2 under open-circuit condition
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2.4.5.5 Performances of cells with different cathodes

In order to find a proper cathode for operating in non-humidified N2, the

performances of cells with various cathodes was investigated. The electrodes were

painted in the grid pattern. The anode was kept in humidified 5% H2. The temperature

range of the studies was varied from 400-600 °C in order to avoid the presence of

electronic conduction and the decomposition of ammonia at temperature higher than

600 °C.

Examples of the impedance spectra of cells with different cathodes are displayed in

Figure 2.23. At different temperatures, the behaviours of cells with different cathodes

are quite distinct. However, the difference in performances of cells with different

cathodes can be noticed clearly at high temperature. At 600 °C, cell with Au cathode

provided a better performance than the others while Pd cathode exhibited a poor

performance. It is likely that the impedance of all cells contains at least three electrode

responses. The behaviours of high- and medium-frequency contribution are similar in

most cases but the low-frequency contribution is different in the case of Au cathode It

seems that the mass transfer process is much better on the cell with Au cathode.

Considering Rs and Rp values, the cell with Pd cathode showed highest Rs and Rp

values although the thicknesses of all cells are similar. The difference in Rs value may

be attributed to the additional contact resistance at the electrode/electrolyte interface

or the resistance of PdO which may form during operation in N2 atmosphere. The

presence of PdO could be a reason for the poor catalytic activity observed.
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Figure 2.23 Impedance spectra under open circuit of cells with different cathodes in

non-humidified N2 at (a) 600 °C and (b) 400 °C. Pt was employed as anode and

operated in humidified 5% H2/Ar.

2.4.5.6 Cell performances under closed-circuit condition

It is important to characterise behaviour of cell under a potential or current loading.

One method for characterisation is polarisation curve measurement or V-I curve. From
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to them, positive currents were driven across the cell. The amount of corresponding

current is dependent on the total resistance of cell which can be roughly estimated

from the slope of the V-I curve. There is no significant difference in generated current

among the three cells at 600 °C but at 400 °C the performance of the cell with Au

cathode seems slightly better than the others. It could be a result of the catalytic

activity of Au itself or the difference in metal paste properties such as particle size of
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In order to track the changes in cell performance during closed circuit, the impedance

spectra of cells under voltage loading were investigated. As shown in Figure 2.25, the

high frequency arcs were relatively constant under closed-circuit conditions especially

at low temperature. When applying 1 V, the impedance at medium frequency became

prominent. Then the increase of potential to 2 V definitely decreases the polarisation

resistance of cells. Note that there are no changes in Rs values during closed-circuit

conditions. This confirms that the applied potential results in changes only to the

electrochemical reactions. The increase of the polarisation resistance when applying

1 V could be attributed to the resistances from the transport of electro-active species

across electrode/electrolyte interfaces and the charge blocking effect due to the

accumulation of protons at the cathode surface, since the amount of electrons to

reduce them to H2 was too small. The decrease of polarisation resistance when 2 V

was applied is probably attributable to the reduction reaction of protons becoming

feasible because of the higher availability of electrons.
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Figure 2.24 Polarisation curves from cells with different cathodes at 400 °C (dashed

lines) and 600 °C (Solid lines). A sweep rate of 2 mV/s was employed when applying

potential to the cell.
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Figure 2.25 Impedance spectra of cells with various cathodes under DC loading at (a)

600 °C and (b) 400 °C in humidified 5 % H2 and non-humidified N2.
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2.4.5.7 Ammonia formation rate

A significant amount of ammonia was produced when a constant potential was

applied to the cell. The ammonia formation rates in Figure 2.26 indicate that the

reaction requires current of at least 7 mA cm-2 in order to form ammonia. The

formation rates tend to increase with increasing current and reach their maximum

between 15-20 mA cm-2. This study was performed in the temperature range of 450-

600 °C. At temperature higher than 600 °C, the decomposition of ammonia may be

pronounced and at temperature lower than 450 °C, very high potential (>3V) was

needed to generate enough current for the reaction.

The formation rates of ammonia from the three cathode materials are varied with

temperature and type of the electrode. The Pt cathode provided highest formation rate

of about 1.4 x 10-9 mol s-1 cm-2 at 450 °C. This corresponds to 2.7 % of current

efficiency as shown in Figure 2.27. The current efficiencies of the cell with the Pt

cathode are also higher than the Pd and Au, respectively.

The current efficiencies of ammonia formation tend to decrease with increasing

current in the case of Pd and Au cathode. It is plausible that the formation reaction of

H2 is favourable on these electrodes at high current instead of ammonia formation.

For example, the ammonia formation rate of the cell with the Au cathode at

24 mA cm-2 was close to zero while the highest H2 evolution rate (shown in the next

section) was attained. The results confirm that Au and Pd have poorer catalytic

activity for ammonia formation reaction compared to Pt.
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Figure 2.26 NH3 production rate at different imposed currents and temperatures
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Figure 2.27 Current efficiencies of NH3 formation versus current at various

temperatures
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2.4.5.8 H2 evolution rate and overall current efficiency

During the closed circuit tests, a significant amount of H2 was also detected along

with ammonia. Figure 2.28 depicts the evolution rates of H2 as a function of current.

Note that the significant amount of O2 (0.1-0.2 mol%) was usually detected in the

cathode stream under open circuit condition. It may come from leakage within the

apparatus or at the sealing area. Therefore under closed circuit, some evolved H2

readily reacted with O2 and formed H2O. Consequently, the changes of H2O or O2

concentrations were used in the calculation of total amount of produced H2.

At low current, it is hard to detect H2 as most of it is used in the reaction with O2. At

higher current, a higher flux of protons was attained and the excess H2 from the

reaction with O2 can be seen. However, the total H2 produced is still lower than the

theoretical value.

The loss in current efficiency is shown in Figure 2.29. The total current efficiencies

including ammonia formation are just around 80%. The 20 % loss may concern the

formation of the other side products or short circuits. Note that the internal short

circuit occurred from electronic conduction of the electrolyte must be significant at

600 °C according to the lowest current efficiencies in all cells.
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Figure 2.28 H2 evolution rates at different imposed currents and temperatures (a) cell

with Pt cathode, (b) cell with Pd cathode and (c) cell with Au cathode. Dashed lines

are theoretical values. Open symbols for data derived from amount of H

MS, Closed symbols for total amount of H
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evolution rates at different imposed currents and temperatures (a) cell

with Pt cathode, (b) cell with Pd cathode and (c) cell with Au cathode. Dashed lines

are theoretical values. Open symbols for data derived from amount of H

bols for total amount of H2 produced including H2O formation.
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evolution rates at different imposed currents and temperatures (a) cell

with Pt cathode, (b) cell with Pd cathode and (c) cell with Au cathode. Dashed lines

are theoretical values. Open symbols for data derived from amount of H2 detected by

O formation.
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Figure 2.29 Current efficiencies at various temperatures evaluated from H2 evolution

rates (open symbols) and total product formation rates including H2, H2O and NH3

(closed symbols).
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2.5 Conclusions

A perovskite proton conducting oxide, BaCe0.5Zr0.3Y0.16Zn0.04O3-(BCZYZ), was

synthesised via solid state reaction. Sintering conditions and optimum thermal

treatment were also determined. The BCZYZ 1 mm-thick pellet with high density

(>90%) was attained by sintering at 1300 °C. Electrochemical characterisations of this

ceramic electrolyte were performed. Under humidified 5% H2 at the anode and non-

humidified N2 at the cathode, the performance of the cell is controlled by the diffusion

processes that were observed as medium- and low-frequency impedance features. The

improvement of cell performance by increasing the contact area between the

electrolyte and the electrode proves the importance of the three-phase boundary (TPB)

length. The performances derived from cells with metal electrodes (Pt, Au and Pd) are

not sufficient for operating in electrolysis mode. High potential is needed to generate

enough current for the reactions. The highest ammonia formation rate of 1.4 x 10-9

mol s-1 cm-2 was obtained from a Pt cathode at 450 °C.

For further work, the cell components need to be improved. The ohmic resistance

should be decreased by the reduction of the electrolyte thickness. The electrode

component definitely required a greater TPB length.
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3.1 Introduction

The performance of an electrochemical cell is affected by many factors including

ohmic losses, activation losses and concentration losses. Ohmic losses are influenced

from the ionic and electronic conduction of electrolyte and electrode materials,

activation losses are related to reaction kinetics, and concentration losses originate

from the transportation of reactants and products in the cell. In high temperature solid

oxide fuel cells, concentration losses mainly depend on the microstructure of porous

electrodes, while ohmic losses can be limited by decreasing the electrolyte thickness.

Losses associated with reaction kinetics can be improved by employing electrode

materials with high electrocatalytic activity and by increasing the length of the three-

phase boundary (TPB) where the electrochemical reactions take place[1,2].

By decreasing the thickness of the electrolyte, the mechanical strength of the cell is

also decreased. In this scenario, the electrode is used to provide the mechanical

strength to the cell instead of the electrolyte, thus affording electrode-supported cells.

Ceramic-metallic (cermet) composite electrodes are widely used for supporting thin

electrolyte membranes. The presence of electrolyte phase (ceramic) in the electrode

composite diminishes the thermal expansion mismatch between the electrode and the

electrolyte components, especially when the electrode is reduced from metal oxide to

metal in reducing atmospheres. A homogeneous and continuous structure of electrode

and electrolyte materials in a porous cermet ensures good adhesion at the electrode-

electrolyte interface and permits the conduction of ions, in this case protons, from the

electrolyte to the deep parts of the electrode. This extends the TPB length available

for the reaction leading to the lowering of polarisation losses[2,3]. A possible drawback

of cermet electrodes arises during sintering, when electrode and electrolyte materials
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are mixed and co-sintered at high temperature in order to achieve a cermet

framework. Therefore, this method is largely limited to electrode and electrolyte

materials that have similar sintering temperatures and show no undesired reactions

during high temperature sintering.

Ion impregnation or infiltration is a method for avoiding undesired reactions between

electrode and electrolyte materials. Solutions containing salts of the metals that go to

make up the desired electrode material are introduced into a well-established porous

framework made from the electrolyte material. This method requires much lower

firing temperatures compared to the cermet method. In addition, the impregnated

electrode tends to deposit on the surface of the electrolyte scaffold, providing a non-

random distribution that lowers the amount of electrode material required for good

electronic conduction, and ensuring good connections between electrode-electrode,

electrolyte-electrolyte and electrode-electrolyte phases[4].

Tape casting is a method that has been widely used for preparing dense electrolytes

and porous electrolyte frameworks for ion impregnation. The porosity of the porous

layer can be conveniently controlled by the amount and type of pore formers.

Importantly, good adhesion between dense and porous layer is also readily accessible

using tape casting[4-6].

In this study, the tape casting process was used to fabricate a 3-layer cell by

sandwiching a dense electrolyte layer of BCZYZ with two porous layers made from

the same material. The porous-dense-porous geometry is similar to a typical solid

oxide fuel cell except for the presence of electrode materials. Electrocatalytic

materials for anode and cathode were introduced into these porous frameworks by ion

impregnation method, and this aspect of the study is considered in the later Chapters.

In this Chapter, only the fabrication procedure of tape cast porous and dense films of
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BCZYZ is considered. The final product should possess adequate open porosity

within the porous layers, a dense and crack-free electrolyte layer, and good adhesion

between layers.

3.2 A brief overview of tape casting process

Tape casting is a well known process for fabricating thin and flat sheets/films of

ceramic and metallic materials. Large-area films with controlled thickness can be

easily produced. The flexibility of unfired tapes allows them to be punched with

holes, cut into various shapes or assembled into multilayered packages[7]. Using this

process, a multi-layer ceramic can be prepared by lamination and co-sintered at the

same firing temperature. Therefore, it is possible to prepare a multi-layer ceramic

composed of layers having different porosities. Porous ceramics can be generated by

the addition of pore formers that may or may not be pyrolysed. The former type

combusts during high-temperature treatment, while the latter type remains in the fired

tape and needs a separate step for removing it e.g. acid leaching for NiO pore

former[8].

Slurry preparation usually involves two steps. The first step is called powder

dispersion, when the ceramic powder is mixed with a dispersant in a solvent to create

well-dispersed suspension. In the second step, binder is added to the suspension to

ensure the cohesion between ceramic particles. In this step, some plasticizers are

incorporated with the binder in order to increase the plasticity of the slurry before

casting into desired tape form.
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3.2.1 Tape slurry ingredients

In order to understand how ceramic particles and pore formers can be stabilised in a

cast tape, brief details of tape slurry components are given below.

3.2.1.1 Solvent

The solvent plays an important role in providing fluidity to the powder by dissolving

additives and allowing them to uniformly disperse throughout the powder[9].

Therefore, the choice of solvent is based on the choice of binder and other additives[7].

In tape casting, nonaqueous solvents are commonly employed due to their low latent

heat of evaporation and low surface tension compared with water. Following the

previous work of Irvine and co-workers[10], a binary solvent system of methyl ethyl

ketone (MEK)/ethanol was used here. Theoretically, a binary or ternary solvent may

help to extend the solubility range for the different additives used in the tape slurry.

At the same time, the physical properties of the solvent mixture, such as the

evaporation rate, is also modified[7,9]. For example, a tape casting slurry that contains

only MEK may provide a quick drying cast tape due to the low heat of evaporation of

MEK. However, the obtained cast tape tends to be inhomogeneous as a result of the

drying out of the MEK solvent during the casting step. In addition, it is possible to

create a solvent gradient within the cast tape due to the formation of a dried surface (a

so-called ‘skin’) that blocks the evaporation of the solvent underneath it. By adding a

solvent with higher heat of evaporation, such as ethanol, the evaporation rate of the

solvent mixture decreases and allows the slurry to be processed and dried
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homogeneously. Some physical and dielectric properties of ethanol and MEK are

shown in Table 3.1.

Table 3.1 Physical and dielectric properties of ethanol and methyl ethyl ketone[11].

3.2.1.2 Dispersants/deflocculants

A dispersant/deflocculant is commonly used in the first step of tape casting. It helps

break down soft agglomerates in the starting powder by preventing the particles from

re-agglomerating. The dispersant/deflocculant works by holding dispersed particles in

suspension and allowing the solvent to form a separating layer between particles, thus

leading to a stable dispersed state. A well-dispersed suspension is required prior to the

polymeric binder addition step. If agglomerates are present, the binder will wrap the

whole group of particles instead of individual particles, making it difficult to destroy

any remaining agglomerates (so-called zipper bag theory)[7]. Particle agglomerates

covered with binder will affect the density of sintered tapes by trapped air inside and

uneven distribution of particles[7].

Particle size and the attractive force (i.e van der Waal’s force) between ceramic

particles influence dispersion. If the particle size is too large or the attractive force is

Solvent Boiling point

(°C)

Dielectric

constant

at 293.2 K

Heat of

evaporation

(kJ/mol)

Ethanol 78 25.3 38.6

MEK 80 18.5 31.3
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too strong, undesired sedimentation of particles tends to happen easily. Consequently,

a method for creating repulsive force between particles is required to overcome the

attractive force. Some repulsive forces commonly found in a suspension are briefly

reviewed.

1. Electrostatic forces

Particles can be stabilised in a suspension by employing a repulsive force from the

charge developed at the solid-liquid interface. This charge covers the particle’s

surface and leads to a diffuse electrical double layer. The strength of this interparticle

force relies on the surface potential induced on the interacting particles and the

dielectric properties of the surrounding media[12]. Details about DLVO theory (named

after Derjaguin and Landau, Verwey and Overbeek) describing this interaction have

been published elsewhere[13]. In general, this type of interaction is significant in

aqueous systems, although it is also possible to have electrostatic forces in non-

aqueous solvent[14].

2. Steric forces

Steric stabilisation created by the adsorption of organic molecules, normally as

uncharged polymers, on the surface of a ceramic particle can be used in both aqueous

and non-aqueous systems. These adsorbed molecules form an adlayer on the particle’s

surface and prevent particles bridging to one another at a separation distance less than

twice that of the adlayer thickness[12]. This coating adlayer must be stable against

particle collisions during processing. Apart from the effect of coating a polymer on

the particle’s surface, the free polymer in the solvent also imparts steric stabilisation.

This free polymer disperses in the solvent and prevents collisions between particles,
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so-called depletion stabilisation. If the repulsion is not strong enough, flocculation

may happen instead. In case the amount of polymer is not enough to cover the entire

surface of the particles, the polymer may act as a bridge and bring particles close to

each other instead. This type of flocculation is referred to as bridging flocculation. In

another case, free polymer molecules between particles are excluded from the gap

between particles, creating a concentration gradient and this generates a type of

osmotic effect between particles. This effect is comparable to an attractive force and

causes the flocculation called depletion flocculation[9]. Figure 3.1 summarises steric

forces and their influence on particle dispersion.

Repulsion Attraction

Adsorbing

polymer

Steric stabilisation Bridging flocculation

Nonadsorbing

polymer

Depletion stabilisation Depletion flocculation

Figure 3.1 Schematic illustration of steric forces occurring in the presence of

uncharged polymer chains[9].

particle

particle
particle

particle

Solvent
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In summary, the roles of a dispersant include:

- lowering the viscosity of a slurry and therefore allowing an increase in the solid

concentration

- incorporating with solvent to break up aggregates and stabilise the primary

particles by holding a fluid layer between them

- improving homogeneity of the suspension

- preparing the particles for addition of the binder and allowing the binder to

attach to each particle separately

In organic solvent-based systems, the dispersion mechanism of most of the

dispersants used is steric stabilisation. The dispersant used here was a polyphosphate

ester which works very well in the MEK/EtOH system[7,15]. This polyphosphate ester

works by attaching one part of its chain molecule to the particle surface while the rest

of its molecule interacts with the solvent. The barrier formed by the “tail” in the

solvent prohibits particle-particle contact.

3.2.1.3 Binder

Binder is an important additive for the tape casting process. The binder function is to

hold the entire chemical system together. It distributes strength, flexibility,

laminatability, durability and smoothness to the green tape by encapsulating the

powder in its continuous polymeric resin[7]. Long chain polymers are usually

employed as binders. Generally, a binder is introduced into the tape slurry after the

dispersion step to avoid competitive adsorption with the dispersant on the particle’s

surface. In addition, the presence of high molecular weight binder increases the
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viscosity of the slurry, which would not be suitable for particle dispersion step. The

selection of a binder depends on the other components in the system. Factors such as

solubility in the solvent, compatibility with the dispersant, burnout characteristics,

glass transition temperature, viscosity, ash residue and cost are usually taken into

account[7,9]. Since the binder plays an important role in binding particles together, the

amount of binder in a cast tape is considerably greater than the other additives. The

molecular weight of the binder is also important. A polymer with lower molecular

weight provides lower viscosity, high solid loading but lowers the mechanical

strength of the cast tape. Higher molecular weight polymers provide high binding

strength. However, glass transition temperature (Tg) also increases when molecular

weight increases. The Tg is the temperature at which the polymer changes from a

glassy state to a rubbery state. Green tapes containing a higher Tg binder will have

higher strength, however lack flexibility.

In this study, poly(vinyl butyral) (PVB) with molecular weight range of 40,000-

70,000 g mol-1 was selected as a binder. The chemical structure of PVB is shown in

Figure 3.2c. Since PVB has a Tg higher than room temperature (Tg = 72-78 °C), this

renders green tapes made using PVB alone brittle and rigid. In order to improve the

plasticity of the cast tape, plasticizers are needed.

3.2.1.4 Plasticizers

The role of plasticizers in tape slurries is to soften the binder in the dry state and

improve flexibility of the green tape. These plasticizers are comprised of low

molecular weight organic substances that can soften the binder effect by dissolving
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homogeneously with the binder and inserting their small molecules inside the

macromolecular network formed by the binder. This restrains the intermolecular

interaction between adjacent polymeric chains of the binder, thereby causing an

increase in the mobility of the chains that leads to a decrease in mechanical strength of

the cast tape. However, the influence of plasticizer on the strength of the cast tape

depends on the amount of organic phase and the pore volume of the tape[16]. Two

plasticizers suitable for the PVB binder used here are polyethylene glycol (PEG) and

dibutyl phthalate (DBP), the structures of which are shown in Figure 3.2.

(a)

(b)

HO-CH2-(CH2-O-CH2-)n-CH2-OH

(c)

Figure 3.2 Chemical structures of (a) DBP, (b) PEG and (c) PVB[17].
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3.2.2 Tape forming

A typical tape caster is shown in Figure 3.3. It contains a slurry container (also called

a reservoir), a stationary doctor blade and a moving carrier. In the casting process, the

doctor blade is firstly adjusted to provide a gap between the blade and the carrier film.

The slurry is then poured into a reservoir behind the doctor blade. When the carrier

film is moving, the slurry will be pulled through the gap underneath the doctor blade

and cast into a tape. In addition to gap height, the wet thickness of cast tapes is also

influenced by viscosity of the slurry, speed of the carrier motion and level of slurry in

the reservoir[7].

Figure.3.3 Schematic of a tape casting machine.

Slurry
Cast tape

Carrier
film

Doctor BladeReservoir

Direction of carrier motion
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3.2.3 Tape drying

Once the tape has been cast, the drying process is started. The drying happens mainly

through the surface of the cast tape due to its fine thickness and the presence of an

impermeable carrier on the bottom. Drying process mechanisms mainly relate to the

rate of capillary migration of solvent from the surface and the rate of solvent diffusion

through the tape up to the surface, where the latter is much slower than the former.

The rate of surface evaporation is governed by the latent heat of evaporation of the

solvent and the atmosphere above the tape surface. On the other hand, the rate of

solvent diffusion through the green tape body is quite slow and limited by the body

itself. All tape components i.e. particles, binder and plasticizers can retard the motion

of solvent to the surface. The retarding effect becomes more severe as the tape shrinks

with drying. This leads to some solvent remaining at the cast tape/carrier interface,

although it is important to keep the solvent concentration throughout the tape as

uniform as possible. During the drying stage, stresses from shrinkage can build up in

the tape. Inappropriate drying rates can cause problems like cracks or a drying crust or

skin on the tape surface[7].

3.2.4 Organics burnout

In cast tapes, solid particles are held together by a significant amount of organic

additives (up to 20 wt%). These organics should be completely removed from the

green tape prior to ceramic sintering. Although there are many strategies to remove

the organics, the most convenient method for this ceramic fabrication is thermal

debinding. All organic additives chosen should be able to burn out under the same
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atmosphere for sintering the desired ceramic and they must be completely removed at

lower temperature than the sintering temperature of the ceramic. Organics burnout is a

crucial step and it can affect the quality of the sintered tape, especially for

multilayered-cast tapes. Cracks and large voids can be created in this step by the fast

escape of gases generated from polymer decomposition. Both chemical and physical

factors of the organics influence the burnout process. The chemistry of the organics

i.e. molecular weight and interaction between them determines the decomposition

temperature and the decomposition products. In addition, physical factors such as heat

transfer into the body of the tape and the escape of decomposition products are

involved in the decomposition process. These changes may cause problems for the

quality of the final tape such as delamination, cracking or distortion when using

inappropriate heat treatment. Usually, a slow heating rate (less than 1 °C/min) is used

during decomposition and a fast heating rate may be used after the decomposition has

been completed[9]. Information about the thermal decomposition of organic additives

and pore formers is usually obtained via thermal gravimetric analysis (TGA).
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3.3 Experimental

3.3.1 Powder processing

According to Chapter 2, the starting powder used for preparing tape slurries was

synthesised by solid-state reaction. Stoichiometric amounts of analytical grade

BaCO3, CeO2, ZrO2, and Y2O3 were milled together in acetone for 2 hours using a

planetary micro mill (Pulverisette 7, Fritsch). After acetone evaporation, the mixed

powder was calcined in air at 1250 ˚C for 4 h. In the final step, a stoichiometric 

amount of ZnO was milled with the as-calcined powder in acetone for 2 hours. The

resulting powder was called BCZYZnO powder. The phase identification of this

powder was determined by a powder X-ray diffractometer (see section 3.3.2.4). The

XRD pattern of this powder shown in Figure 3.4 indicated that the powder contained

mixed phases of barium cerate and barium zirconate (ICDD PDF No. 22-74 and 6-

399, respectively)[18,19].

Figure 3.4 XRD pattern of BCZYZnO powder ( ͦ : BaCeO3 peaks, * : BaZrO3 peaks).
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3.3.2 Tape casting process

The procedure for preparing tape casting slurries was based on a process for YSZ

tapes that had been developed previously by the group of Prof Irvine and co-

workers[10]. The slurry was prepared by dissolving a dispersant (Triton QS-44, Sigma-

Aldrich Ltd) with the solvent mixture of methyl ethyl ketone (MEK) and ethanol

(60/40 % by weight) in a 125 cm3 Nalgene bottle (Sigma Ltd) before adding the

BCZYZnO powder and grinding media (18x zirconia balls each of 8.8 mm diameter).

The mixture was then milled for 18 h on a home-made ball mill with a speed of 160

rpm. This step allowed some soft agglomerates to be broken down and the powder

particles to be mixed and dispersed homogeneously throughout the solvent. In the

next step, PEG (Mn = 285-315, Sigma-Aldrich) and DBP (Fisher scientific)

plasticizers and PVB (Butvar® B-98, Mw = 40,000-70,000, Sigma-Aldrich) binder

were added to the dispersed mixture. Plasticizers with short chain polymer and low

molecular weight should be added into the mixture before the long chain binder. This

is to ensure that the plasticizers are fully dissolved in the solvent and ready to interact

with the binder. Once the binder had contacted with the solvent in the mixture, it

tended to agglomerate into lumps. Thus, the bottle was then vigorously shaken on a

vibratory mixer for 20 min to deagglomerate binder lumps and to help dissolve the

binder into the mixture. Most of the binder was dissolved at this stage but the mixing

process was still continued on the ball mill for another 4 h using 100 rpm speed. In the

last step, the homogeneous slurry was sieved through a piece of nylon net in order to

remove the zirconia balls. The slurry in the new container was then rotated slowly on

the ball mill for at least 18 h at a speed of 26 rpm for de-aeration. The slurry for

porous BCZYZnO cast tape was prepared by the same procedure as mentioned above

except that a certain amount of BCZYZnO powder was replaced by pore formers. The
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pore formers used in this experiment were graphite (325 mesh, Alfa Aesar) and glassy

carbon (10-20 m, Alfa Aesar). The amounts of graphite and glassy carbon added to

the slurry were varied in order to obtain optimised open porosity in the porous layer

after sintering.

A TTC-1000 (Richard E Mistler Inc) tape caster was used for casting. The design of

this tape caster is similar to the depiction in Figure. 3.1. The slurry was poured into a

single 4 inch doctor blade reservoir which was set on a carrier film (silicon-coated

Mylar). The gap height between the blade and the carrier film was kept at 0.012 cm

(120 μm) for electrolyte tapes and at 0.030 cm (300 μm) for porous tapes. The slurry 

was cast by moving the carrier film at approximately 42 cm s-1. The cast tapes were

left to dry in air at room temperature for 30 min. The thickness of green tapes was ~70

μm for electrolyte tapes and ~280 μm for porous tapes.  

3.3.2.1 Lamination of ceramic green tape

Although a thin electrolyte will provide low ohmic resistance, the mechanical strength

of the cell also decreases. Therefore it is necessary to compromise between reasonable

ohmic resistance and strength of cell for handling. One layer of BCZYZnO electrolyte

cast tape provided about 50 μm of ceramic electrolyte thickness after sintering. This 

was quite fragile and had a strongly curling edge. Theoretically, the mechanical

strength of the cell can be improved by increasing the thickness of the electrode part.

Therefore porous tapes were in the first instance laminated in an attempt to increase

the mechanical strength of the cell. Unfortunately, the results after several tests

revealed that the mechanical strength of the cell mainly came from the dense part.

There was no significant improvement in the mechanical strength when the thickness
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of porous layers was increased and the sintered cell was still not flat. Consequently,

the thickness of electrolyte tape had to be increased.

The lamination of green electrolyte tapes was performed with or without additional

heat, depending on the condition of the green tape surface. In most cases, the green

tape surface was covered with a thin film of residual solvent and the green tape was

quite soft and sticky. This made the green tapes easily attach to each other and only a

hand-rubber roller was needed to ensure adhesion. In some cases, the green tape

surface was dried out after storage but the green tape body still had good flexibility.

The tapes were then laminated using additional heat of ~50 ˚C generated using a 

household iron. The laminated tape was held at temperature for around 10 sec without

additional pressure except the weight of the iron. The lamination process and tape

configuration is shown in Figure 3.5.

Figure 3.5 Green electrolyte tape lamination.

carrier film

electrolyte tape

Two-layer laminate

Press with rubber-hand roller or

Press two sets of two-layer laminate together

Four-layer laminate
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In the final step, the laminated electrolyte or porous tapes were punched into circular

discs using steel punches. Two circular discs of porous BCZYZnO tape with one disc

smaller than the electrolyte were then attached on both sides of the electrolyte disc. A

schematic of a finished disc is shown in Figure 3.6. The porous layer with the same

diameter of the electrolyte acts as a support for the electrolyte while the smaller one

prevents cross-contaminations between the two electrode materials during the

impregnation process.

Figure 3.6 Geometric pattern of a three-layer green tape stack.

3.3.2.2 Thermal decomposition of green tapes

The thermal decompositions of organic components and pore formers were

investigated using a Thermogravimetric Analyzer model TG 209 (NETZSCH-

Geratebau GmbH, Germany). The sample weight of the dense or porous green tapes

was about 10 mg in each experiment. All samples were tested in air flowed at a rate of

25 mL min-1. The samples were heated up to 900 ˚C at a rate of 1 ˚C min-1 then cooled

down to room temperature with a cooling rate of 40 ˚C min-1. Changes in the weight

of samples under heating were recorded continuously.

Porous layers
Dense layer
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3.3.2.3 Sintering support

As mentioned in Chapter 2, BCZYZ was found to react with the alumina support at

sintering temperature range of 1300-1400 ˚C. Therefore, a layer of sintered BCZYZ 

powder was applied between the green tapes and the alumina support in order to

minimise undesired reactions. In this case, the sintered powder was used for other

purposes. Firstly, this powder helps diminish adhesion between green tapes and

alumina support which causes deformation in final products. The powder assisted the

shrinkage of green tapes, allowing them to shrink freely in x and y dimensions

without surface friction with the alumina surface. Secondly, the gases generated by

polymer and pore former combustion quickly escaped through the voids within the

powder layer. Although some powder attached onto the sintered porous layer, removal

was not difficult.

The environment in the sintering furnace was found to affect the quality of sintered

products. The furnace used in this experiment was a chamber furnace (Carbolite, UK)

with maximum operating temperature of 1400 ˚C. The silicon carbide heating 

elements are located on both sides of the chamber. The samples were placed between

those elements and close to the lower elements. It was possible that the samples

received heat directly radiated from the elements. As a result, the samples still had a

distorted body after sintering. Sample flatness was improved by placing two sets of

alumina plates and thin furnace bricks between the samples and heating elements, as

shown in Figure 3.7.
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Figure 3.7 Setup inside furnace chamber for sintering BCZYZnO green tapes.

3.3.2.4 Sintered body characterisation

Due to co-sintering of the porous layer with the dense layer, the porosity of the porous

layer was considered from the geometry of a two-layer disc. After deducting the mass

of the dense layer, the porosity of the porous layer can be obtained. The thickness of

both dense and porous layers was evaluated from SEM images. Note that this

measurement was applied to the specimen with reasonable flatness.

Phase purities of starting powder and sintered ceramic were examined by a Philips

PW 1710 diffractometer operating in reflection mode using CuK radiation (see

Chapter 2 for details). The XRD data were collected using a continuous scan with a

2range of 15-100°, 0.02° step size and 1° min-1 scan rate.

SEM analysis (details in Chapter 2) was carried out on a JEOL 5600 scanning

electron microscope using an acceleration voltage between 5kV and 20kV.

Microstructures of both green and sintered tapes were investigated. For non-
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conductive samples like green tapes or calcined-BCZYZnO powder, the samples

needed to be coated by a thin layer of evaporated gold. In these cases samples were

mounted onto specimen holders with silver paint (Agar Scientific Ltd) prior to gold

evaporation using a home-made machine. For conductive samples such as graphite

and glassy carbon, the samples were mounted onto specimen holders directly with

electrically conductive carbon adhesive discs (Agar Scientific Ltd). For the sintered

BCZYZ membrane, the cross-section microstructure was taken from fracture surface

of the ceramic membrane without the need for gold coating.
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3.4 Results and discussion

3.4.1 Thermal analysis of green tapes

The thermal decomposition of organic components and pore formers in green

electrolyte and porous tapes prepared from the slurry formulations shown in Table 3.2

were studied. TG curves of those cast tapes are shown in Figure 3.8. In green

electrolyte tapes, there are three apparent mass change regions. The first region with a

small mass loss (~5%), starting from room temperature to around 80 ˚C, corresponded 

to evaporation of residual solvent in the matrix. According to the TGA data of each

organic additive from Jones[20], the decomposition temperatures of the two plasticizers

used, DBP and PEG, start from 120 ˚C and 140 ˚C, respectively. The long-chain 

binder starts to decompose at the higher temperature of 220 ˚C. The initial burnout 

temperature of the dispersant is between those of the plasticizers and the binder. Only

a small amount of the dispersant was used in the green tape (~1 wt%), and so it was

quite difficult to notice. The organics in green electrolyte tapes started to decompose

at 120 ˚C and were completely removed by 420 ˚C. The total mass loss was around 

23%, which was in agreement with the amount of organic content of the green

electrolyte tape formulation as shown in Table 3.2.

In green porous tapes, weight loss patterns were more complicated however were

grouped into three main regions. Unlike the green electrolyte tapes, a negligible

amount of solvent remained in the porous green tapes. This observation is consistent

with the appearance of those tapes. The green electrolyte tape was quite flexible and a

small amount of solvent was readily apparent on its surface, while green porous tapes
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were much drier and stiffer due to high solid loading. The decomposition temperature

for organic additives in porous tapes began at 110 ˚C and ended at around 400 ˚C. The 

last region, which was not present for green electrolyte tapes, was obviously due to

the loss from the combustion of carbon pore formers. The different kinds of pore

former provided different combustion temperatures. Glassy carbon (GlC) started to

burn out earlier in the heating cycle (410 ˚C) compared to graphite (Gra) (500 ˚C). 

This difference in combustion temperatures could have been a result of the different

particle size and shape of these pore formers. The SEM images in Figure 3.9 exhibit

spherical particles of glassy carbon and plate-like particles of graphite. By mixing 10

wt% GlC into 40 wt% Gra, the initial burnout temperature shifted to lower

temperature. It is likely that GlC with lower ignition temperature induced the graphite

particles to burnout at a lower temperature. However, combustion in mixed pore

formers still completed at the same temperature with 50 wt% graphite tape at 680 ˚C.    

Table 3.2 Formulations of green tapes for thermogravimetric analysis.

Compositions

Formulations (g)

Electrolyte 50GlC 50Gra 40Gra10GlC

BCZYZnO powder 15.000 7.500 7.500 7.500

Pore

formers

Graphite - - 7.500 6.000

Glassy Carbon - 7.500 - 1.500

Triton QS-44 0.142 0.112 0.100 0.246

PEG 1.208 1.044 1.395 1.412

DBP 1.007 1.004 1.117 1.071

Butvar (PVB) 1.800 2.500 1.680 2.000

Solvent 6.876 10.004 15.056 12.038
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Figure 3.8 TG curves of green electrolyte and porous tapes with various pore former

contents (50GlC: 50wt% glassy carbon, 50Gra: 50wt% graphite, 40Gra10GlC: 40wt%

graphite+10wt% glassy carbon) at 1 ˚C min-1 in air with flowing rate of 25 mL min-1.

Figure 3.9 Microstructures of (a) graphite and (b) glassy carbon pore formers.
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3.4.2 Optimum heating treatment

The heating rates for heat treatment were studied in order to obtain high density

electrolyte layers and good adhesion between layers.

During the first heating step, organic additives start to deform and decompose. In

order to avoid warping and edge curling, the heating rate needs to be slow. For

example, samples with the heating rate of 1 ˚C min-1 still revealed those problems.

Hence, the most suitable heating rate for this first step was found to be 0.5 ˚C min-1.

Green tapes were heated up using this rate to 950 ˚C in order to ensure that all organic 

additives and carbon pore formers had been completely burned out. After the organics

burnout step, the tapes were heated up to the ceramic sintering temperature with a

similar heat treatment as used for sintering the 1 mm thick BCZYZ pellet in Chapter

2. The optimum heat treatment for the BCZYZnO tape is shown in Figure 3.10.

Figure 3.10 Optimum sintering treatments for laminated tapes.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70

T
em

p
er

a
tu

re
(o

C
)

Time (h)

0.5 oC/min

2 oC/min

2 oC/min

3.5 oC/min

annealed at 650 oC
for 2 h

1300-1400 oC for 7-20 h

950 oC



113

3.4.3 Dense electrolyte layer

3.4.3.1 Slurry formulation

A high density green cast tape is required for sintering a high density electrolyte

ceramic membrane. The proper amount of organic additives is a key to success. A

good green electrolyte cast tape should have high bulk green density, smooth surface,

good flexibility and laminatability. As mentioned before, the formulations for both

electrolyte and porous layers were based on previous formulations reported by

Jones[20]. However, the difference in physical properties of the starting powder here

required a few adjustments to the final formulation. The starting formulation for the

electrolyte slurry and some modified formulations which were used in this experiment

are summarised in Table 3.3.

Table 3.3 Starting formulation and modified formulations for BCZYZnO electrolyte

slurries.

Chemicals Formulations

(g)

As-started A B Final

BCZYZnO 15.000 15.000 15.000 15.000

Triton QS-44 0.097 0.100 0.107 0.115

PEG 1.215 1.184 1.262 1.223

DBP 1.095 1.004 1.042 1.027

Butvar (PVB) 1.680 1.680 2.000 1.800

Solvent 7.000 6.454 7.075 6.850
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All the electrolyte slurries prepared in this study showed a consistent homogeneous

texture. By using the same formulation which was used for the YSZ powder, the

starting slurry had quite low viscosity. This may have been because the surface area of

the BCZYZnO powder (1.893 m2 g-1) was much lower than that of the YSZ powder (7

m2 g-1). Consequently, a highly porous sintered body was obtained from this slurry.

By decreasing the amount of solvent, the viscosity of the slurry was increased,

although the porosity of the sintered tape was still high. The SEM images of dense

BCZYZ layers from as-started and formulation A are shown in Figure 3.11.

Figure 3.11 SEM images of cross section of dense BCZYZ layers from (a) as-started

and (b) formulation A. The samples were sintered under similar sintering treatment at

1300 ˚C for 2 h and 7 h, respectively. 

(a) (b)
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3.4.3.2 Effect of organic additive: Binder

In the tape casting process, the binder is the most important processing additive of the

system, ensuring cohesion of the ceramic powder. In an attempt to raise the density,

the amount of PVB binder was increased from 1.68 g to 2.00 g for 15 g of ceramic

powder. Other additives were kept constant except that the amount of solvent was

adjusted to allow the complete dissolution of the binder and homogeneity of the

slurry. The results of samples with different binder contents are shown in Figure. 3.12.

By increasing the amount of binder to 2.00 g, the pores seemed to be smaller and the

number of pores was seemingly higher. However, the even distribution of pores in the

microstructure of the sample with 2.00 g binder was a sign of an increase in the

homogeneity caused by the additional binder. The small pores could form during the

organic burnout step because of the excess of organic polymer presented.

Figure 3.12 SEM images of dense electrolyte layer with different amounts of binder in

the slurries (a) 1.68 g and (b) 2.00 g of the PVB binder. Samples were sintered under

similar sintering treatment at 1350 ˚C for 15 and 12 h, respectively.   

(a) (b)
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3.4.3.3 Final slurry formulation

After several adjustments, the slurry formulation was fine-tuned into the final

formulation shown in Table 3.3. The green electrolyte tape using 1.8 g of binder

possessed an adhesive surface, good plasticity and adequate mechanical strength for

further handling.

3.4.3.4 Microstructure of green electrolyte tape surface

Microstructures of dried green tape surfaces prepared from the final formulation are

revealed in Figure 3.13. The tape surfaces exhibited well-dispersed microstructures of

BCZYZnO powder. The BCZYZnO particles were closely packed together. Small

open pores with diameter up to 1 m in the upper side and less than 1 m in the

carrier film side were illustrated. These pores were created by solvent evaporation and

shrinkage of dried organic contents. Therefore, the upper side that was left exposed to

air revealed higher porosity than the side which was in contact with the carrier film.

The higher content of the organic phase in the carrier side is a result of the limitation

of solvent evaporation by the impermeable carrier film. The presence of a significant

amount of organic phase made this side smoother and shinier than the upper side as

was observed with the naked eye. The SEM image of primary BCZYZnO powder in

Figure 3.14 reveals some agglomerates of small particles among some large particles.

From the electrolyte green tape surface, the small particles from agglomerates were

well dispersed. This confirmed the success of this tape casting process both in

deagglomeration and particle binding steps for this green electrolyte tape.
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(a) upper side (b) carrier side

Figure 3.13 SEM images of the dried green tape surface (a) upper side and (b) carrier

side. An arrow in Figure 3.13b indicates an example of low electron density area

scattered from the organic polymer.

Figure 3.14 SEM image of BCZYZnO starting powder.
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3.4.3.5 Sintering conditions

During the slurry optimization process, the sintering conditions and the optimum

thickness of the dense layer were simultaneously investigated.

3.4.3.5.1 Effect of sintering temperature

The effect of sintering temperature on the microstructure of sintered samples is

illustrated in Figure 3.15. These samples were prepared from the same formulation

green tapes and sintered under the same heating treatment. The SEM image of the

fracture surface of the sample sintered at 1400 ˚C exhibits dense microstructure with 

isolated large grains (up to 10 m) surrounded by small grains. The grain sizes in the

sample sintered at 1300 ˚C were much smaller and more uniform with a grain size of 

around 5 m. There was no significant difference in porosity between sintering

temperatures. Although a larger grain size microstructure will present lower grain

boundary resistance, the non-uniform microstructure will decrease the mechanical

strength and thermal shock resistance of the membrane.

Another aspect that needs to be considered is the chemical reaction between

BCZYZnO tape and Al2O3 support. The results showed that the sample sintered at

1400 ˚C severely reacted with Al2O3 support while only a trace of the reaction could

be seen at 1300 ˚C. Therefore the optimum temperature for sintering BCZYZnO green 

tapes was determined to be 1300 ˚C. 
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Figure 3.15 SEM image of fracture surface of BCZYZ electrolyte sintered at different

temperatures (a) 1400 ˚C and (b) 1300 ˚C, each for 10 hrs. The dotted circle shows a 

large grain compared with the surrounding grains indicated by an arrow. Both samples

were prepared from slurry formulation B.

(a)

(b)



120

3.4.3.5.2 Thickness of the electrolyte layer

The thickness of the electrolyte layer was varied by multi-layer lamination of green

tapes. Theoretically, the thickness of electrolyte layer should be as thin as possible in

order to minimise ohmic resistance while at the same time possessing adequate

mechanical strength for handling and being gas tight when sealing in the testing

apparatus. The experimental results revealed that the mechanical strength and flatness

of this BCZYZ ceramic disc was mainly derived from the electrolyte part. This meant

that the thickness of this part needed to be optimised. The disc containing one layer of

electrolyte (~50 m) showed strong edge curling and lack of mechanical strength.

When the electrolyte thickness was increased to ~100m, the mechanical strength

was improved but the specimen still exhibited poor flatness and strength. The

specimen with ~200 m thick electrolyte had good flatness and reasonable

mechanical strength. Figure 3.16 shows photographs of sintered specimens with 50,

100, 150 and 200 m thick electrolyte layers. Note that all specimens were sintered

under the same conditions and co-sintered with porous layers.

(a) (b) (c) (d)

Figure 3.16 Sintered specimens with different electrolyte thicknesses. (a) 50 m (b)

100 m (c) 150 m and (d) 200 m. All samples were sintered in air at 1300˚C for    

10 h.
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3.4.3.5.3 Sintering duration and final microstructure

The sintering duration was varied from 2 h to 15 h along with the variation of binder

and solvent content. At this stage of the investigation, the microstructure of the

electrolyte part still contained a significant amount of isolated porosity. Accordingly,

the sintering duration was increased to 20 h in order to attain higher density. This

condition and the final green tape formulation were utilised thereafter. The

microstructures of the dense layer prepared from this formulation are shown in Figure

3.17.

The laminated dense layer was fully sintered and showed no sign of interfacial

defects. The residual pores could be seen all over the fracture surface of the specimen,

however tended to be concentrated in the middle area. The intense residual porosity at

the middle may have been due to a more sluggish organics removal process compared

to the edge. In Figure 3.17a, around 20 μm depth from the edge of this layer is almost 

fully dense and denser than the middle area. Higher magnification of the middle area

(Figure 3.17b) revealed dense microstructure with small isolated pores (around 1-2

m in diameter). The porosity is located mostly at the joint between grains and rarely

found within the grain. This kind of porosity can be diminished by further

optimisation. The fracture surface shows both intergranular and transgranular

fractures. Transgranular fracture paths through the grains made it quite difficult to

determine the grain size due to lack of sharp edges. Therefore the grain size was

estimated to be around 4 μm from grains that were exposed by intergranular fracture. 

Nevertheless, the sintered density of this layer was quite high at around 95% of the

theoretical density.
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Figure 3.17 SEM images of fracture cross section of 4-layer laminated dense layer at

different magnifications (a) x500 and (b) x1500. The sample was sintered in air at

1300 ˚C for 20 h. 

Edge EdgeMiddle

(a)

(b)
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3.4.4 Porous substrate layer

Porous BCZYZ frameworks achieved with the addition of pore formers into

BCZYZnO green tapes importantly served as supports for impregnated electrode

materials. In the same time, this BCZYZ framework also provided an extension of the

TPB length from the electrolyte-electrode interface deep into the electrode structure.

The porosity of the porous layer is of utmost important for allowing reactant gases to

transport to the TPB site, with porosity of around 40 % being optimal[1]. In addition,

pores should be interconnected and open to the surface. Porosity can be determined in

several ways, however most methods focus on a porous sample that can be sintered

alone. Unfortunately, the BCZYZ porous layer could not be sintered alone without the

dense electrolyte layer since calcination of green porous tapes resulted in a powder-

like layer. This may have been a result of the large particle size and loose packing of

the particles that made the nucleation difficult to process. However, the porous layer

was successful sintered on the dense layer. It is plausible that dense layer acts as a

substrate and promotes the nucleation of BCZYZnO grains in porous layer from its

surface. Therefore, the porosity of the sintered porous layer was examined by

measuring mass and volume of 2-layer disc containing dense and porous layers. Then

the subtraction of the dense electrolyte layer mass from the 2-layer disc provided the

porous layer mass. The thickness of each layer was obtained from SEM images.

Hence, sample discs required good flatness for this measurement. As mentioned in

section 3.4.3, most samples in the early stage of the experiments experienced poor

flatness. Therefore, the optimum slurry formulation for the porous layer was mostly

evaluated by structure determination using SEM.

(b)
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3.4.4.1 Porous structure optimisation

In this study, graphite was the main pore former component while the addition of

glassy carbon was to disrupt layered packing of the graphite.

The slurry formulation for the porous layer was adapted from the formulation for the

dense electrolyte. The total amount of solid powder in the slurry was kept constant.

The amount of pore formers added was in wt% of total solid content (15 g). In most

cases, dispersant and plasticizer contents were not changed. In some cases, the amount

of solvent and binder were varied in order to achieve an acceptable viscosity. In tape

slurry formulation process, pore formers were added in the first step along with

BCZYZnO powder and dispersant. Comparing to the tape slurry without pore former,

the substitution of pore former (e.g. 50 wt% of graphite) into the BCZYZnO powder

dramatically increased the viscosity due to its high surface area. Therefore, the

amount of solvent was increased until the mixture reached enough fluidity for a good

dispersion. After adding plasticizers and the binder, most of the slurries reached a

satisfactory viscosity and presented a homogeneous suspension. Consequently, all

green porous tapes produced in this experiment had good flexibility with a smooth

and crack-free surface. Table 3.4 presents selected formulations for the porous tape

slurries.

Apart from the adjustments of the organic contents, the amount and shape of pore

formers were also varied in order to reach an optimum porous microstructure with

adequate and interconnected porosity. A well-sintered porous structure with moderate

size scaffold is desired for low grain boundary resistance and high mechanical

strength.
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Table 3.4. Selected formulations for porous BCZYZnO tape slurries

Chemicals Formulations(g)

P1

50 wt% Gra

P2

30 wt% Gra

P3

40 wt% Gra +

10 wt% GlC

BCZYZnO 7.500 10.500 7.500

Pore formers Graphite 7.500 4.500 6.000

Glassy

carbon

- - 1.500

Triton QS-44 0.100 0.100 0.127

PEG 1.395 1.278 1.298

DBP 1.117 1.109 1.108

Butvar (PVB) 1.680 2.000 1.700

Solvent 12.000 10.000 10.500

3.4.4.2 Effect of sintering temperature

There are several factors that influence the microstructure of the porous layer.

Sintering temperature is one of them since the rate of grain growth relies on

temperature. The influence of the sintering temperature on the microstructure of the

porous layer is clearly shown in Figure 3.18. Samples prepared from the same green

tape containing 30 wt% of graphite were sintered at two different temperatures. The

SEM images of fracture surfaces of both samples demonstrated well-sintered porous

structure with high porosity and relative uniformity. As expected, the sample sintered

at the higher temperature possessed a denser microstructure. The temperature affected
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the density of the sintered ceramic by increasing the rate of grain growth, thereby

caused higher shrinkage in the structure. Such high shrinkage could have made it

difficult to control the porosity and microstructure of the porous layer. Moreover, the

reaction between BCZYZ and Al2O3 support was also accelerated at the higher

temperature. Therefore, the sintering temperature was chosen at around 1300 ºC.

(a) 1300 ºC (b) 1400 ºC

Figure 3.18 SEM images of specimens prepared from tapes containing 30 wt%

graphite sintered for 10 h at different temperatures.
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3.4.4.3 Influence of pore former morphology

Many researchers have suggested that pore size and microstructure of porous ceramics

are influenced by the morphology and amount of pore former used[8,20-22]. The

influences of pore former morphology and amount in green tapes are considered here.

Green tapes containing only graphite or a mixture of graphite and glassy carbon were

prepared. SEM images of the fracture surface of sintered tapes are presented in Figure

3.19. All samples demonstrated well-connected networks of the sintered BCZYZ

scaffold and open porosity. The images also indicate good adhesion at the interface

between porous and dense layers, which is important for transporting H+ ions from the

electrolyte membrane to the TPB sites in the porous electrode matrix.

In Figure 3.19a, the cross-section of the sample with 30 wt% graphite reveals the

pores with long and narrow shapes lying parallel to the surface. The morphology of

the pores is in agreement with the morphology of the graphite particles. The uniform

and open porous network in the porous layer suggests that both BCZYZnO and

graphite particles were well-dispersed and they both formed their own percolating

network throughout the green tape.

When the graphite content was increased to 50 wt%, (Figure 3.19b), the pore size

became larger and the size of the BCZYZ scaffold decreased. These observations

were obviously due to segregation of the graphite particles, which hindered the

packing of the BCZYZnO particles. In addition, porosity also increased with the

increase of the graphite content, as expected

From the two cases described above, the sample with 30 wt% graphite provided good

size of the BCZYZ scaffold but poor porosity, while the sample with 50 wt% graphite

provided good porosity but a quite thin scaffold, which could cause problems for ionic
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transport and mechanical strength. Therefore, a modification to the microstructure

was expected with the addition of spherical glassy carbon into the graphite matrix.

Figure 3.19c reveals the porous microstructure created from the mixture of 40 wt% of

graphite and 10 wt% of glassy carbon. As a result, the porous microstructure was

improved, exhibiting a moderately sized BCZYZ scaffold and a mixture of large and

small pores. This was attributed to the different shape of spherical glassy carbon,

which prevented the segregation of graphite particles. At this point in the study, the

mixture of glassy carbon with graphite had a positive effect on the microstructure of

the porous layer, so that this mixture was used as a starting point for further organic

additive adjustments.
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Contents: 30 wt% graphite, 2 g binder

Sintering condition: 1300 ºC for 10 h

Features: relatively uniform porosity with

long and narrow pore shape, which is

similar to graphite’s shape. The scaffold

was thick and dense.

Contents: 50 wt% graphite, 1.68 g binder

Sintering condition: 1350 ºC for 15 h

Features: larger pores, thin scaffold

Contents: 40 wt% graphite + 10 wt%

glassy carbon, 1.7 g binder

Sintering condition: 1350 ºC for 20 h

Features: combination of large and small

pores with moderate scaffold

Figure 3.19 SEM images of fracture surface of sintered BCZYZ porous layers

prepared from various amounts and types of pore formers.

(a)

(b)

(c)
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3.4.4.4 Microstructure of porous green tape surface

In order to confirm the behaviour of pore formers in the green tape, the microstructure

from the surface of a green porous tape containing 40wt% graphite and 10wt% glassy

carbon was investigated. The SEM images in Figure 3.20 reveal the packing of the

pore former particles within the BCZYZnO powder. Similar to the case of the dense

electrolyte tape, the BCZYZnO powder were disaggregated, revealing small and well-

dispersed primary particles. In contrast to the dense electrolyte tape, there was no sign

of residual organics on both upper and bottom side surfaces. However, the results

from TGA measurements of green porous tapes in section 3.4.1 exhibited a significant

weight loss at 120-350 ºC corresponding to the weight loss from the decomposition of

organic contents. It is possible that the solvent quickly evaporated via the highly

porous created by the pore former particles, leaving only dried organics between the

particles which were hardly noticeable with SEM.

Regarding the upper side surface, the BCZYZnO powder was well-dispersed among

the graphite and glassy carbon particles. The graphite particles packed down parallel

to the surface and allowing the BCZYZnO powder to situate among them. This

hindered the BCZYZnO particles from closely packing and was the probable cause of

the failure in sintering this layer alone without a dense supporting layer.

A sediment layer of the BCZYZnO particles was found on the bottom side surface, as

evidenced in Figure 3.20b. Due to the high solid loading of the pore former, it is

possible that some of the BCZYZnO particles, which are much smaller than the pore

former particles, were repelled from the pore former matrix. Note that most of the

precipitate particles were forming a connecting particle network. As such this powder

layer could be used as a sintering base in order to promote the adhesion between the
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porous layer and the dense electrolyte interface by attaching this bottom side to the

dense green tape during lamination.

The TGA data of the green porous tapes with various pore formers in section 3.4.1

suggests that all pore formers were removed from the green tape up to 700 ºC, before

the densification of the BCZYZnO powder. By considering the influence of pore

former morphology to the pore structure, obviously the key role of pore formers is to

serve as templates for the porous structure.

Figure 3.20 SEM images of green porous tape surfaces for tape containing 40 wt%

graphite + 10 wt% glassy carbon (a) upper side and (b) bottom side.

(a)

(b)
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3.4.4.5 Effect of dispersant and binder contents

By modifying the P3 formulation in Table 3.4, the effects of dispersant and binder

contents on sintered porous film microstructure were examined. Considering their

roles in tape slurries, the dispersant helps separate groups of particles and disperse

them homogeneously during the dispersion step. The binder then brings the particles

close to each other, and this applies to both BCZYZnO and pore former particles.

Regarding influences on particle distribution, the effect of the dispersant and binder

contents on porous microstructure is investigated in this section. The amount of pore

former used was fixed at 40wt% of graphite + 10wt% of glassy carbon. The

microstructures of the sintered bodies with various dispersant and binder contents are

shown in Figure 3.21. Comparing samples with the same amount of binder, the

sample with higher dispersant content exhibited a porous microstructure with finer

scaffold and more uniform pores. Accordingly it is possible that the amount of the

dispersant of 0.12 g that was used for preparing the dense electrolyte tape was not

enough to disperse all pore former and BCZYZnO particles. Figure 3.21c indicates

that higher binder and dispersant contents dramatically increased the thickness of the

scaffold. This dense microstructure is in accordance with the increase of binding

effect from the additional binder. Consequently, the microstructure obtained from

using 0.25 g dispersant and 1.7 g binder was chosen as a suitable microstructure for

further impregnation process. The final formulation for the porous tape slurry is

shown in Table 3.5 and an example microstructure of a sample sintered from this

formulation is exhibited in Figure 3.22.
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a) 0.12 g dispersant, 1.7 g binder

b) 0.25 g dispersant, 1.7 g binder

c) 0.25 g dispersant, 2 g binder

Figure 3.21 SEM images of fracture surface of samples prepared using various

amounts of dispersant and binder. All samples were sintered at 1300 ºC for 20 h.
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Table 3.5 Final formulation for the porous tape slurry.

BCZYZnO

(g)

Graphite

(g)

Glassy

carbon(g)

Triton QS-44

(g)

DBP

(g)

PEG

(g)

PVB

(g)

Solvent

(g)

7.5 6.0 1.5 0.25 1.0 1.24 1.7 10.5

Figure 3.22 SEM image of fracture surface of sample prepared from final slurry

formulation for both dense and porous layers.
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3.4.4.6 Phase identification of sintered porous BCZYZ layer

During sintering, 3-layer discs were fired by facing the larger diameter porous side

down against the Al2O3 support, with a layer of sintered BCZYZ powder acting as a

buffer between the sample and the support. Surfaces of the dense and porous layers

were examined by reflection mode XRD. From Figure 3.23, the XRD pattern of a

BCZYZ disc without porous layer indicated a single perovskite phase. The XRD

pattern of the upper side porous layer from the 3-layer disc also revealed a single

perovskite phase, however the XRD pattern of the bottom porous layer, which was

sintered while in contact with the Al2O3 support, revealed several weak peaks. Most

of these peaks were consistent with of the presence of CeO2, which could have come

from the reaction between BCZYZ and Al2O3 according to the following reaction

suggested by Chen et al.[23]:

BaCeO3 + Al2O3 BaAl2O4 + CeO2

If the porous BCZYZ layer reacted with the Al2O3 support, the sintered powder buffer

layer that was in direct contact with the Al2O3 support should have had a more severe

reaction. The XRD spectrum of the sintered powder buffer layer in Figure 3.24

confirms that Al2O3 did react with the BCZYZ sintered powder, although the reaction

was not severe and the main phase was still a perovskite phase. In order to prevent

this reaction from happening, the buffer layer of sintered BCZYZ powder should be

quite thick. The shortening of sintering duration could be another way to decrease the

extent of reaction between these two materials. Figure 3.25 shows the XRD spectrum

for a sample sintered at 1300 °C for 10 h. No sign of impurities was found, thereby
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confirming that the weak peaks observed in the 20 h sintered sample came from the

reaction between BCZYZ and the Al2O3 support.

Figure 3.23 XRD patterns of sintered porous layers (a) porous bottom layer (b) porous

top layer and (c) electrolyte layer. Sample was sintered at 1300 °C for 20 h.
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Figure 3.24 XRD data of BCZYZ powder buffer layer after use as a sintering support

at 1300 °C.

Figure 3.25 XRD pattern of bottom porous layer sintered at 1300 °C for 10 h showing

the absence of peaks due to reaction with Al2O3.
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3.5 Conclusions

Tape casting procedures and slurry formulations developed by Prof Irvine and co-

workers for commercial YSZ powder can be readily applied to the house-made

barium cerate/zirconate (BCZYZnO) powder. The 3-layer cast tape of BCZYZnO

powder, porous-dense-porous, was successfully co-sintered in air at 1300 °C. The

optimised slurry formulation provided a maximum green body density of 3 g cm-3 for

electrolyte tape, which is almost 50% of the theoretical density of sintered electrolyte.

The electrolyte layer with an appropriate thickness of ~200 m maintains adequate

mechanical strength to the whole sintered body. This 200 m thick electrolyte was

fabricated by 4-layer lamination and showed a homogeneous body without any

appearance of defects between laminated layers after sintering. The density of the

electrolyte layer was normally in the order of ~ 95 % of the theoretical density.

Porous BCZYZ layers were achieved by the addition of graphite and glassy carbon

pore formers. The morphology of the pores was related to the morphology of pore

former particles and other slurry components. However, the optimum porous

microstructure was obtained using 40 wt% graphite together with 10 wt% glassy

carbon in the green BCZYZnO tape. The porosity in the sintered porous layer was

open and pores well interconnected. This confirms that both BCZYZnO and pore

former particles were well-dispersed and linked into networks. The removal of pore

formers before reaching the ceramic sintering temperature had no adverse effect on

the BCZYZnO particle network. A porosity of the final product of about 50% was

normally obtained. Porous layers were adhered very well with underlying dense

layers, an important requirement for transporting H+ ions from the electrolyte to the

electrode matrix.
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In this chapter, electrochemical measurements of cells fabricated by tape casting and

ion impregnation were investigated in order to select the proper anode and cathode

materials for ammonia synthesis. The contents of this chapter include the

investigations of the promising anode and cathode materials which were performed

individually in a single-atmosphere apparatus. Symmetrical cells of the anode or

cathode materials were tested in H2 and N2-containing atmospheres, respectively.

4.1 Ion Impregnation of Electrode Materials

Ion impregnation is one of the most effective methods for preparing an electrode-

electrolyte composite. Typically, the electrode material is prepared in a solution form

and then impregnated into a porous scaffold made from the same material of the

electrolyte. So, the porous scaffold should act as an extension that builds upon a dense

electrolyte base. This extends the ionic-conductive path from the electrolyte/electrode

interface deep into the electrode matrix. When the impregnated electrode is deposited

on the surface of the porous scaffold, an electronic conducting path will be created.

Therefore, this method ensures not only the contact between the electrode and the

electrolyte but also the connection between electrode-electrode and electrolyte-

electrolyte phases. It was found that the impregnation of the electrode material onto

the porous support can reduce the amount of electrode needed to reach the percolation

threshold. Like the cermets, this method provides a good adhesion between the

electrode/electrolyte interface and is capable to extend the length of triple-phase

boundary (TPB) between the electrolyte, electrode and reactant gas phase into the

electrode matrix. Unlike the cermets, the electrode-electrolyte composite can be

assembled without the need of high temperature sintering which probably would
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cause sintering and grain growth of the electrode and/or electrolyte phases in the

cermet[1]. Low firing temperature in the impregnation process provides an advantage

for the usage of electrolyte and electrode materials with different sintering

temperature requirements and also reduces the intercomponent reactivity. A well-

known example of this advantage has been demonstrated by Gorte et. al[2,3] in the

replacement of Ni with Cu which has lower sintering temperature than NiO and YSZ

in a hydrocarbon SOFC. This versatile process is also suitable for modifying the

surface of a well-sintered porous electrode with an additional catalyst[1] or allowing a

complex combination of two or more metal electrodes to be easily established[4].

4.2 Experimental

4.2.1 Impregnation procedure

The solution of the electrode materials was prepared by dissolving nitrate salts of the

metal electrodes in absolute ethanol in order to obtain a solution with low surface

tension and rapid evaporation. The concentration of the solution was about 1 M.

Although a solution with higher concentration may reduce the numbers of repeated-

impregnation, it tends to produce larger metal oxide particles which are likely to

deposit near the surface of the porous support. These particles will be agglomerated

after repeated the impregnation leading to blockages in some areas on the surface. It is

important to ensure that the metal solution is uniformly distributed and reaches the

electrode-electrolyte interface where the electrochemical reactions occur intensively.

The metal nitrate solution was introduced drop-wise onto the porous BCZYZ layer
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using a 1 ml syringe fitted with a needle. The impregnated sample was dried in an

oven at 80 ˚C for 10 minutes and the process was repeated until the porous substrate 

reached a saturated point. Then, the sample was transferred to the furnace where the

nitrate decomposition was performed in a stagnant air. The heating treatment

consisted of a fast heating rate of 8 ˚C/min to 650 ˚C and dwelling at this temperature 

for 30 min before cooling down to room temperature at a rate of 5 ˚C/min. The 

technique of fast drying provides uniform distribution of the metal particles. Slow

drying tends to cause the migration of the metal salt upward and accumulate near

porous layer surface[5]. After the heating treatment, the metal oxides of the electrode

material should deposit on the BCZYZ porous scaffold surface. The desired loading

of the electrode oxide was achieved after repeating the process about 5-10 times in

each porous support. Phase composition and metal oxide distribution inside the

porous substrate were investigated by SEM-EDS.

4.2.2 SEM and EDS elemental analysis

The distribution of the metal oxide inside the porous structure was investigated by a

JEOL 5600 scanning electron microscope (SEM) equipped with EDS system using a

voltage of 20kV, working distance of 20 mm and a spot size around 30. Without gold

sputtering on their fracture surfaces, small pieces of specimens were attached directly

on a specimen holder using electrically conductive carbon adhesion discs (Agar

Scientific Ltd). The EDS elemental analysis was applied to investigate the percolation

and distribution of the impregnated electrode inside the porous matrix.



145

4.2.3 X-ray diffraction

Phase composition of the impregnated composites was examined on a Philips PW

1710 diffractometer operating in reflection mode using CuK radiation. The XRD

data were collected using a continuous scan with a 2 range of 15-100°, 0.02° step

size and 1° 2/min scan rate.

4.2.4 Details of electrode materials and catalysts

Table 4.1 presents anode, cathode and catalyst precursors employed in this study. For

the anode, Ni metal was a candidate electrode due to its excellent catalytic activity of

hydrogen oxidation and good electronic conductivity. In addition to the Ni metal,

CeO2 catalyst was added into the Ni electrode in order to improve the stability of the

electrode and prevent the growth of Ni particles.

For the cathode, the Fe metal was selected due to it is normally employed as a catalyst

for ammonia synthesis. However, in order to apply the Fe metal into an

electrochemical cell as an electrode, factors such as stability of Fe in operating

conditions and electronic conductivity have to take into account. Therefore, the proper

amount of the Fe impregnated electrode and performance of Fe was determined in

both N2 and H2-containing atmospheres. The addition of catalyst onto Fe cathode was

carried out only in two-chamber experiment for ammonia synthesis (Chapter 5). The

amount of the impregnated electrode was reported in the weight percentage of metal

oxide to the weight of BCZYZ porous layer.
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Table 4.1 List of electrode and catalyst precursors used in this experiment.

Anode Catalytic additive

Ni Ni(NO3)26H2O (98%, Alfa Aesar) CeO2 Ce(NO3)3 (99+%, Fisher Scientific)

Cathode Catalytic additives

Fe Fe(NO3)39H2O

(98+%, Sigma-Aldrich)

Pd 5 % Pd solution (NH3)4Pd(NO3)2

(Alfa Aesar)

Ru 0.3 M Ru(NO)(NO3)3 (Alfa Aesar)

4.2.5 Single-atmosphere testing apparatus

The experiment in single atmosphere was designed for studying the electrochemical

reaction of a particular electrode in a symmetrical cell configuration. The symmetrical

cell comprised of two electrodes with the same composition but different in size. The

circular ceramic disc with two electrode sizes of 1.5 and 0.7 cm in diameter was

employed in this experiment. The difference in size of both electrodes prevents cross-

contamination during impregnation which can cause short-circuit under testing

condition. The active electrode area was considered from the small electrode which

was ~ 0.4 cm2. On the top of each electrode was the current collector which was

prepared by painting metal paste as a mesh pattern, allowing a good connection on the

exposed electrode surface and adequate gas transportation through the electrode

composite. Different kinds of metal current collectors were also studied. For the Ni-

based electrode, only Au and Pt current collectors were chosen while Au, Pt and Pd

current collectors were employed in the case of the Fe-based cathode. After painting,

the current collector was fired in air at 900 °C for 1 h to decompose organic additives
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and obtain good adhesion with the electrode composite. The finished cell was placed

in a testing apparatus as shown in Figure 4.1. This two-electrode apparatus consisted

of two Pt leads and beads for electrical connection with total resistance of ~1 Ω, gas 

inlet and outlet tubes and a thermocouple. This testing jig was sealed in a quartz tube

allowing a single atmosphere testing. Within this set up, only AC impedance

measurement under open circuit was performed.

Figure 4.1 Schematic of experimental set up for single atmosphere test

The AC impedance measurements were carried out on a frequency response analyzer

(Solartron 1255, UK) coupled with an electrochemical interface (Solartron 1287, UK)

using a frequency range of 0.1 Hz to 1 MHz and amplitude of 20 mV. The

temperature range for the measurements was 400-700 ˚C with intervals of 50 ˚C. The 

equilibration time was at least 30 min or until the steady state had been reached.

The thickness of tape cast electrolyte was between 200-250 μm. Both electrode 

composites had thicknesses of ~100 μm with porosity around 57% before 

impregnation. The actual thickness of each component was examined by SEM after

electrochemical testing. The atmospheres used for anode or cathode material testing

are summarised in Table 4.2.

Gas inlet

Pt leads

Quartz tube
Thermocouple

Gas outlet

Sample Pt beads

Furnace

Furnace
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Table 4.2 A summary of testing atmospheres for anode or cathode materials

Anode (Ni-based) Cathode (Fe-based)

1. humidified 5%H2 (3%H2O/Ar/4%H2)

2. humidified pure H2 (3%H2O/97%H2)

3. non-humidified 5%H2 (5%H2/Ar)

1. humidified 5%H2 (3%H2O/Ar/4%H2)

2. humidified mixed 5%H2/N2

3. humidified pure N2 (3%H2O/97%N2)

4. non-humidified 5%H2 (5%H2/Ar)

5. non-humidified mixed 5%H2/N2

6. non-humidified pure N2 (99.998% N2)

4.2.6 Cell with painted Pt electrode as a reference cell

The usage of Pt paste as a current collector on the Ni impregnated electrode raises

some concerns due to the catalytic activity of the Pt for the H2 oxidation reaction.

However, the catalytic activity of Pt depends on several factors such as its surface

area and particle size. In order to indicate the catalytic activity of this Pt paste on the

H2 oxidation, a cell with a Pt electrode was prepared by painting Pt paste on thin

BCZYZ electrolyte disc and firing under the same condition with the Pt current

collector. The results provided a comparison between the polarisation resistance of Pt

alone and that of the Ni impregnated electrode with a layer of Pt current collector on

the top. The Pt│BCZYZ│Pt cell was tested only in humidified 5% H2/Ar from 400-

700 °C.
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4.3 Results and discussion

4.3.1 Decomposition temperature of metal nitrates

Firstly, the firing conditions for the impregnation of the Ni electrode were

investigated. According to the literatures[7,8], the thermal decomposition of

Ni(NO3)2·6H2O in air begins at 300 ˚C. With an intention to prevent any thermal 

shock that may happen in this fairly strong ceramic membrane after repeated

impregnation, the decomposition temperature of the impregnated nickel nitrate was

set at 350 °C with dwell time of 30 min. However after several impregnation cycles,

the impregnated samples were completely disintegrated and delaminated. The SEM

images in Figure 4.2 show a significant change in the microstructure of both dense

and porous layers, especially in an area that directly contacted with the impregnation

solution. In this area, the intergranular fracture which usually happens in weak grain

boundaries was observed. The high magnification image in Figure 4.3d reveals the

faceted individual grains. It was found that the change of the microstructure appeared

deep into the dense BCZYZ layer where it was not directly in contact with the

solution. It seems that the impregnation solution can diffuse into the grain boundary

and continuously react with the BCZYZ dense layer.
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Plain porous substrate NiO on BCZYZ scaffold surface

Figure 4.2 SEM images of fracture-cross section of three-layer BCZYZ membrane

with an impregnated porous layer. (a) porous-dense-porous membrane with Ni-

impregnated layer on top layer, (b) higher magnification of porous layer without

impregnation, (c) and (d) higher magnifications of Ni-impregnated layer.

a c

db
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It was speculated that water of crystallisation in hydrated nickel nitrate may react with

the BCZYZ ceramic and cause the degradation. Bhide and Virkar[9] studied the effect

of boiling water on the chemical stability of barium cerates. They reported that the

degradation of these oxides in contact with the boiling water was severe and the

kinetics of the decomposition should be proportional to the surface area. Therefore,

the reaction seems to take place at the grain boundary as the sample became porous

after being exposed to the boiling water. The reaction between water and the barium

cerates was proposed as follows[9].

BaCe1-xRExO3- + H2O Ba(OH)2 + Ce1-xRExO2-

Although the firing temperature in this study of 350 °C is much higher than the

boiling water, it is possible that the above reaction is still favourable at this

temperature.

Based on the idea of water attacking the grain boundaries still occurring at 350 °C, an

increase of the firing temperature would completely remove the water out of the

ceramic structure. Hence, the firing temperature was increased to 650 °C and the SEM

results in Figure 4.3 show no sign of degradation in BCZYZ ceramic after repeating

the impregnation more than 10 times. The NiO particles are evenly distributed on the

BCZYZ surface with particle sizes in the range of hundred of nanometres as usually

found in impregnated particles[10].
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Figure 4.3 SEM images of fracture surface of Ni impregnated sample when using

firing temperature at 650 ˚C (a) x1500 and (b) x3300. The arrow indicates NiO 

particles deposited on BCZYZ porous skeleton.

BCZYZ
dense layer

(a)

(b)
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4.3.2 Phase compositions of impregnated electrodes

Phase identification of three impregnated electrodes prepared from metal nitrates was

determined by X-ray diffraction (XRD). Figure 4.4 displays the XRD patterns from

the surfaces of three electrode composites comprising of Ni, Ni with CeO2 addition

(NiCe) and Fe electrodes. For comparison, an XRD pattern of the BCZYZ porous

layer is also included. After the decomposition of nitrates at 650 °C, XRD peaks of

NiO (PDF no. 4-835), a mixture of CeO2 (PDF no. 34-394) and NiO and Fe2O3 (PDF

no. 33–664) were revealed in Ni, NiCe and Fe impregnated electrodes, respectively.

Figure 4.4 XRD patterns of impregnated electrodes before testing (a) BCZYZ porous

substrate (b) Ni electrode (c) NiCe electrode and (d) Fe oxide electrode. The symbols

indicate: (*), BCZYZ; (o), NiO; (Δ), CeO2; and (□), Fe2O3 peaks.
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4.3.3 Performances of Ni impregnated anodes in H2 atmospheres

Various contents of NiO in the electrode composites were investigated. Also, the

metal that is capable of being a current collector was also demonstrated. The current

collector plays an important role in providing efficient electric contact between

electrode and electrical connections. However, it should neither react with the

electrode material nor suppress the catalytic activity of the electrode.

For the Ni-based electrode, two kinds of metal current collectors, Pt and Au, were

studied. The results showed that the painted Au reacted with the Ni electrode after

testing in reducing atmosphere. Pt was much more stable than Au, therefore it was

used as the current collector throughout the experiment. The electrode polarisation of

cells with varying contents of the impregnated NiO was investigated in humidified

and non-humidified 5% H2 or pure H2 atmospheres. The AC impedance data were

plotted using Zview software. So far, only a few detailed studies has been published

for electrochemical characterisation of Ni-proton conductor composite electrodes[11-

13]. Therefore, the interpretation of the observed data will be compared with the

information obtained from the experiments on Ni-YSZ composites in the literature.
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4.3.3.1 Ni electrodes without catalyst addition

Symmetrical cells with 1:1, 0.5:1 and 0.3:1 w/w of NiO:the BCZYZ porous support

were prepared. Figure 4.5 exhibits the AC impedance spectra of these cells plotted as

a function of temperature in humidified (3%H2O) 5%H2/Ar after correction for Pt

leads resistance of 1 . Most of the impedance plots consist of at least three major

contributions, an ohmic resistance and two overlapping depressed semicircles. The

ohmic resistance (Rs) which includes the resistances from electrolyte and electrode

materials can be estimated from the high frequency intercept at the real axis. Hence,

the polarisation resistance (Rp) of the electrode occurs at lower frequencies than the

ohmic resistance and can be estimated from the intercepts of high- and low-frequency

contributions with the abscissa. For a symmetrical cell, the attained Rp value must be

divided by two as the correction for two identical electrodes used in the cell. From the

impedance spectra, the associated capacitance of each electrode response can be

interpreted by fitting the spectrum with an equivalent circuit using Zview software. In

this experiment, an equivalent circuit, LRs(R1CPE1)(R2CPE2), is one of several

possible circuits corresponding to the impedance data. The circuit consists of an

inductance (L) introduced by the instrument, the ohmic resistance (Rs) and two sets of

a resistor (R1 and R2) in parallel with a constant phase element (CPE1 and CPE2). The

values were in the range of 10-5-10-6. This circuit is consistent with the behaviour

of the impedance suggesting at least two rate-limiting processes exist in the electrode

reactions and can be applied to the impedance data obtained at 450-700 °C for all Ni-

BCZYZ electrodes. However at 400 °C, the typical equivalent circuit above could not

be fitted with the impedance of 1:1 NiO:BCZYZ electrode and an additional set of R

in parallel to CPE was required. This additional contribution presents at high
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frequency (105 Hz) and its capacitance of 1.3x10-9 Fcm-1 corresponding to the grain

boundary response which usually appears at low temperature. This grain boundary

response was also noticed in 0.5:1 NiO:BCZYZ electrode at the same temperature. An

equivalent circuit for NiO:BCZYZ electrodes is shown in Figure 4.6.

For all Ni-BCZYZ electrodes, the higher frequency arc shows stronger temperature

dependence than the lower frequency arc. This is due to the fact that the size of the

high-frequency arc decreased significantly with the increasing temperature and the

summit frequency shifted to the lower frequencies. Note that the capacitance of the

high-frequency arc also increased with temperature. For example in the case of the 1:1

NiO:BCZYZ electrode, the capacitances of the electrode contribution at high

frequency increase from 4x10-5 F/cm2 to 9x10-3 F/cm2 with temperature increased

from 400 to 600 °C while the capacitances of the low frequency arc are were quite

constant with temperature with slightly increasing values from 3x10-3 F/cm2 to 3x10-2

F/cm2 at 400 to 600 °C. For lower NiO contents, the behaviour of both high- and low-

frequency arcs was similar to the high NiO content but their sizes were greater by a

factor of 20. Considering its capacitance and behaviour, the high frequency arc which

strongly depends on temperature may arise from the charge transfer process at the

electrode/electrolyte interface[14,15]. However, the overlap between high and low

frequency arcs makes it difficult to specify the rate-limiting process for the low

frequency contribution.

In this Ni-BCZYZ electrodes, the lowest Rs and Rp values were obtained from the

cell with 1:1 NiO:BCZYZ. The Rs and Rp values of this cell at 500 °C are 3.3 cm2

and 0.35 cm2, respectively. Higher Rs and Rp values were attained from 0.3:1

NiO:BCZYZ electrode, the Rs value was 4 times higher and the Rp value was about

30 times greater than those of 1:1 NiO:BCZYZ electrode. An increase in ohmic
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resistances of the lower Ni content electrodes may be attributed to the rise of contact

resistance between Ni particles due to lower Ni percolation in the composite. The

influence of Ni contents on Rp values suggests the changes in microstructure of Ni

electrodes that affects the catalytic activity.

Figure 4.5 AC impedance data under open circuit from the cells with Ni impregnated

electrodes in humidified 5%H2/Ar (a) 1:1 (b) 0.5:1 and (c) 0.3:1 w/w NiO:BCZYZ

porous layer. Thicknesses of electrolyte membrane in those cells are 220, 227 and 212

m, respectively. The numbers (10n) indicate frequency in Hz.
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Figure 4.6 An equivalent circuit for the impedance from cells with Ni electrodes

4.3.3.2 Degradation of Ni impregnated electrodes

Although the cells with Ni impregnated electrodes provided reasonable performances,

the degradation of these cells with time and thermal cycling was notable. Figure 4.7

shows the selected impedance data of cells with 1:1 and 0.5:1 w/w NiO:BCZYZ

electrodes after a deterioration testing. The cell with 1:1 NiO:BCZYZ electrode was

tested under three thermal cycles from 400 to 650 °C. The results show increasing in

both ohmic and polarisation resistances. Obviously, the impedance at 400 °C was

strongly affected by the cell degradation. After two thermal cycles, the Rs value

increased by 50% and the Rp value was greater by a factor of 6 at 400 °C. Not only

the thermal cycle that affects the impedance, the cell with 0.5:1 NiO:BCZYZ

electrode that was kept at 600 °C for 70 h also showed significant changes in the

impedance spectra with greater resistances in both high-and low-frequency

contributions. It is possible that the acquired NiO particles via the ion impregnation

were in nano-size and easily sintered or agglomerated in reducing atmosphere at these

working temperatures. Therefore, the stability of Ni electrode needs to be improved.

By introducing another phase such as an oxide which is stable in reducing atmosphere

into NiO matrix, the sintering problem of Ni particles should be resolved. CeO2 is one

of oxides that can be used to improve the distribution of Ni particles[17].

Grain boundary
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Advantageously, the catalytic activity of CeO2 for the redox reactions has been proved

to enhance the cell performance[16-18].

Figure 4.7 Comparison of cell degradation of symmetrical cells with NiO:BCZYZ

electrodes in humidified 5%H2/Ar (a) 1:1 at 600 °C (b) 1:1 at 400 °C and (c) 0.5:1 at

600 °C. The numbers (10n) indicate frequency in Hz.
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4.3.3.3 Ni electrodes with CeO2 addition

The mixed solutions of Ce(NO3)3 and Ni(NO3)2 in different ratio were used for the

impregnation. Two different compositions of the NiO and CeO2 mixtures were NiO

35wt% + CeO2 15 wt% (35Ni15Ce) and NiO 25 wt% + CeO2 10 wt% (25Ni10Ce),

with respect to the weight of BCZYZ porous support. Figure 4.8 shows the impedance

spectra of these cells which were similar to those of cells with the Ni electrodes. At

lower temperatures (400-450 °C), the equivalent circuit suggested three electrode

responses, LRs(R1CPE1)(R2CPE2)(R3CPE3). When increasing the temperature, the

electrode response at higher frequency became smaller. Therefore, only two electrode

responses were notified.

The high frequency contribution with associated capacitance of 9x10-6 – 1x10-4 F/cm2

which disappears at higher temperature may result from the charge transfer process.

The contributions at mid-and low-frequencies also depend on temperature. The

corresponding capacitances of these contributions were close to each other within the

range of 3x10-3 – 5x10-2 F/cm2 from 400-600 °C. Note that when increased the

temperature to 650-700 °C, the medium- and low-frequency arcs were no longer

separated and an additional arc with summit frequency at 4-6 Hz was emerged. The

capacitance of this additional arc of 2-4 F/cm2 indicates that another type of electrode

process had emerged. It can probably be attributed to the concentration polarisation in

the gas above the electrode structure that is usually observed at high temperatures[19].
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Figure 4.8 AC impedance data under open circuit from the cells with CeO2-NiO co-

impregnated electrodes at different temperatures in humidified 5%H2/Ar. (a) 35Ni15Ce

and (b) 25Ni10Ce. Thicknesses of those cells were 250 m. The numbers (10n) indicate

frequency in Hz.
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4.3.3.4 NiO-CeO2 electrodes in different H2 partial pressures

In this study, the H2O content was kept constant while the H2 gas was switched from

5%H2/Ar to pure H2 With increasing H2 partial pressure, the impedance dramatically

decreased. Typical impedance spectra shown in Figure 4.9 represent a significant

reduction of the low frequency contribution when operating in pure H2 for both

35Ni15Ce and 25Ni10Ce cases. At 450 °C, the dependence on H2 partial pressure of

the lower frequency arc indicates that this arc with the summit frequency of 100-200

Hz would involve hydrogen adsorption/ diffusion processes on the electrode

surface[15]. At 650 °C, the arc with the summit frequency of 4-6 Hz observed in 5%H2

was invisible when operated in pure H2. The limiting process of this arc must be the

gas conversion limitation which depends on gas concentration and can be observed

only at high temperature.

The plots of Rs and Rp values obtained from these cells are shown in Figure 4.10. A

cell with 25Ni10Ce electrode showed better performance than a cell with 35Ni15Ce

electrode in both 5%H2 and pure H2. With increasing temperature, the polarisation

resistance of the 25Ni10Ce electrode dramatically decreased from 0.35 cm2 at 450

°C to 0.02 cm2 at 650 °C. Comparing with Ni/YSZ anodes, the polarisation

resistance for conventional Ni/YSZ cermet anode in humidified H2 was in the order of

0.16 cm2 at 850 °C[20], 8 times higher than the results reported here. The key factor

for this high electrode performance could be CeO2 that provides electronic conduction

while preventing Ni particles from agglomerating. It is also possible that the presence

of CeO2 may enhance the catalytic activity of Ni for H2 oxidation reaction.

Comparing between 25Ni10Ce and 35Ni15Ce, the higher Ni content may cause

poorer microstructure that depresses electrode performance.
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Figure 4.9 Comparison of the impedance spectra of cells with 35Ni15Ce electrode and

25Ni10Ce electrode in humidified 5%H2 and pure H2 at (a) 450 °C and (b) 650 °C for

35Ni15Ce electrode and at (c) 450 °C and (d) 650 °C for 25Ni10Ce.
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Figure 4.10 Temperature dependences of (a) the polarisation resistances and (b) the

ohmic resistances of 35Ni15Ce cell (□) and 25Ni10Ce cell (○) in humidified 5% H2

(---) and pure H2 (▬).   
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4.3.3.5 Stability of NiO-CeO2 electrodes

Comparing between 25Ni10Ce and 1:1 NiO:BCZYZ electrodes, 25Ni10Ce electrode

showed slightly better performance but much greater stability than the 1:1

NiO:BCZYZ electrode. The stability tests were carried out under similar conditions

with those performed in NiO:BCZYZ electrodes. The sample was kept in humidified

5% H2 and the temperature was decreased from 600 to 400 °C before increased back

to 600 °C for one thermal cycle. Impressively, the 25Ni10Ce electrode exhibited

excellent stability, much better than the 35Ni15Ce electrode as shown in Figure 4.11.

The low stability of 35Ni15Ce electrode may relate to the higher content of Ni in the

composite. For the Ni-based electrode, it is difficult to avoid sintering and coarsening

of Ni particles under reducing atmosphere, especially at high temperature.

Comparing to the 1:1 NiO:BCZYZ electrode, the Rs and Rp values from the stability

tests of 1:1 NiO:BCZYZ and 25Ni10Ce cells are plotted as a function of operating

duration in Figure 4.12. Obviously, the cell with 25Ni10Ce electrode provides

superior performances and stability, especially when operated at low temperature

(400 °C).
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Figure 4.11 Comparison of cell degradation as function of time and thermal cycle

from 600 to 400 °C in cells with different NiO-CeO2 electrodes. (a) and (b) 25Ni10Ce

electrode at 600 °C and 400 °C, respectively and (c) 35Ni15Ce electrode at 600 °C.
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Figure 4.12 Plots of Rs and Rp values versus time comparing electrode stabilities in

humidified 5% H2 of pure Ni electrode (1:1 NiO:BCZYZ) and NiO-CeO2 electrode

(25Ni10Ce) at 400 and 600 °C. The number in the brackets indicates the increased

percentage of each resistance compared to the starting values.
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4.3.3.6 NiO-CeO2 electrodes in different regimes of H2O contents

The cell with 25Ni10Ce electrode in 5%H2/Ar was tested under different water

content atmospheres in order to confirm the appearance of proton conduction in this

BCZYZ membrane cell. In the presence of the water vapour, protons from water also

take part in the electrolyte conductivity of the proton conductor.

The measurement was performed from 600 to 400 °C. The sample was kept in

humidified 5%H2 before changing to non-humidified 5%H2 and then switching back

to humidified condition again. Note that the impedance was carried out periodically

until reaching a steady state in each atmosphere. Normally, the equilibration time was

more than 1 h. Figure 4.13 depicts that the impedance spectra in non-humidified

5%H2/Ar have higher ohmic resistance than in humidified atmosphere. This is related

to the loss of protons from the crystal lattice under low partial pressure of water. The

increase in Rs value under non-humidified condition was obvious at higher

temperature. It is possible that the kinetics of diffusion of protons out of the

electrolyte lattice is faster at higher temperature. After switched back to humidified

atmosphere, the ohmic resistance was set back to its original value which confirms

that the H2O uptake is a reversible process. For the polarisation resistance, the change

in the water content did not affect the shape of the impedance curves but decreased

the size of the low frequency contribution. The dependences of the low frequency

contribution on the fraction of H2 and water vapour suggest that

adsorption/dissociation of H2 or surface diffusion of hydrogen species on the Ni-based

electrode could be the rate-limiting processes for this low frequency contribution[15,21-

22].
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Figure 4.13 Behaviour of 25Ni10Ce electrode under the atmospheres with different

water contents at (a) 600 °C, (b) 450 °C, and (c) 400 °C. (□) Humidified 5% H2 and

(○) non-humidified 5% H2.
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dependence. Nevertheless, being ~200 times higher in the polarisation resistance of

the Pt electrode confirms that the excellent catalytic activity that caused low

polarisation resistance in the 25Ni10Ce electrode definitely came from the composite

itself.

Figure 4.15 displays the plots of polarisation resistances as a function of temperature

from the Ni impregnated electrodes, 1:1 NiO:BCZYZ and 25Ni10Ce, and painted Pt

electrodes. From the slope of the plots, the activation energies of the H2 oxidation

reaction on Pt, 1:1 NiO:BCZYZ, and 25Ni10Ce electrodes are 0.56, 0.54 and 0.61 eV,

respectively. These values were consistent with the value of 0.7 eV obtained from Pt

and Ni metal electrodes in a point contact with a proton conductor, SCY, at various H2

contents and 600-800 °C[23]. Comparing with YSZ, these values are much lower than

the values of the Ni-YSZ electrode which are in the range of 0.7-1.3 eV[19]. The lower

activation energy of the Ni-BCZYZ electrode probably comes from the presence of

BCZYZ in the electrode composite as it may take part in the catalytic reaction of the

H2 oxidation.
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Figure 4.14 Impedance spectra of thin BCZYZ electrolyte cell with Pt electrodes

tested as function of temperature in humidified 5% H2/Ar. Electrolyte thickness is 230

m and electrode active area is 0.24 cm2.

Figure 4.15 Comparison of polarisation resistances as a function of temperature tested

in humidified 5% H2 from (♦) Pt, (■) 25Ni10Ce, and (▲) 1:1 NiO:BCZYZ electrodes.  
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4.3.3.8 Microstructure of Ni impregnated electrodes after testing

The microstructures of the Ni impregnated electrodes after testing were revealed in

Figure 4.16. Comparing to the microstructure of NiO crystallites before testing in

Figure 4.3, there is a significant change in the microstructure of Ni particles after

tested in reducing atmospheres. The thin, flake-like NiO crystallites had changed into

small Ni clusters with less than 1 m in diameter. The clusters of the Ni particles

became larger in the higher Ni content electrodes. The Ni-CeO2 electrodes show

distinct microstructures. In 35Ni15Ce electrode, a layer of the electrode on BCZYZ

surface was found instead of particle clusters. In the 25Ni10Ce electrode, an even

distribution of fine Ni-CeO2 clusters was revealed which seems to be the reason for its

superior electrode performance. Certainly, the proper CeO2 content promotes the

nucleation and limits the growth of the Ni particles. Figure 4.17 illustrates the even

distribution of Ni and CeO2 inside the 25Ni10Ce electrode composite using EDS

elemental analysis.
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Figure 4.16 SEM images of Ni and Ni-CeO2 impregnated electrodes after testing. (a)

1:1, (b) 0.5:1, (c) 0.3:1 NiO:BCZYZ, (d) 35Ni15Ce and (e) 25Ni10Ce.

Figure 4.17 EDS elemental analysis of 25Ni10Ce impregnated electrode after testing

(e)

(d)
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4.3.4 Cathode material: impregnated Fe oxide

4.3.4.1 Cell with 1:1 Fe oxide:BCZYZ electrode

A symmetrical cell with 1:1 by weight of Fe oxide: BCZYZ porous substrate was first

considered. In this cell, three kinds of metal paste (Au, Pt or Pd) were applied as a

current collector. As observed in the Ni impregnated electrodes, Au paste was found

reacted with the impregnated Fe after testing. Thus, Pt or Pd paste was used as a

current collector in this experiment.

Figure 4.18 shows an example of the impedance spectra from the cell with the 1:1 Fe

oxide:BCZYZ electrode using painted Pt as current collector in different regimes of

H2 contents at 550 °C. In humidified 5%H2/Ar, the impedance data show a small

imperfect semicircle at high frequency and a low-frequency spike. When decreased

the H2 content by mixing N2 along with the 5%H2, there was no significant change in

the size of the high frequency contribution but that of the low-frequency spike was

slightly increased. When switched to pure N2, both high- and low-frequency

contributions became dramatically greater with time but the impedance characteristics

were still unchanged. It is plausible that the electroactive species for this electrode

were hydrogen species, thus the atmosphere with very low H2 content directly

suppressed the electrochemical processes on the Fe surface leading to the increase in

polarisation resistance. The low H2 content atmosphere affected both high- and low-

frequency contribution which are related to charge transfer and hydrogen

adsorption/diffusion processes, respectively.

The increase of Rs value by a factor of 10 when switching from humidified H2 to

humidified N2 seems to be incredibly high for the ionic resistance of a 200 m-thick
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BCZYZ membrane. It is likely that the increase of Rs value stems from the formation

of Fe oxide when operated in N2 atmosphere. From Ellingham-Richardson diagram,

metallic Fe tends to be oxidized in an atmosphere which has an oxygen partial

pressure (pO2) of 10-6 Pa or greater[25]. Data from another instrument containing pO2

sensor has confirmed that pO2 of pure N2 gas is around 10-5 Pa at 550 °C. It is likely

that a non-conductive Fe oxide layer may be formed at the surface of the Fe electrode

resulting in the rise of the contact resistance as exhibited in Figure 4.18. Perhaps, the

poor conductance of the Fe/FeOx dramatically increases the lateral resistance of the

electrode reducing the effective contact area.

Figure 4.18 AC impedance data of cell with 1:1 Fe:BCZYZ electrode in various H2

content atmospheres at 550 °C. Active area of this cell was 0.35 cm2.
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4.3.4.2 Microstructure of Fe oxide impregnated electrode

SEM images of Fe oxide electrode before and after testing in Figure 4.19 reveal a

dense layer of Fe oxide covering the BCZYZ surface. The SEM images of Fe oxide

before reduction show an even distribution of large Fe oxide crystallites. After testing,

small white particles which are likely to be Fe metal particles appeared all over the Fe

layer. The dense morphology of the impregnated Fe may be responsible for large Rp

value when operating in humidified N2. The dense layer of the impregnated Fe

probably blocks the diffusion of the reactant gas and the transport of charge between

the electrode/electrolyte interface.

Figure 4.19 SEM image of a fractured cross-section of 1:1 Fe:BCZYZ electrode

(a)-(b) before and (c)-(d) after testing.

BCZYZ

Fe oxide

Fe oxide
(a) (b)

(c) (d)
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4.3.4.3 Cell with 25 wt% Fe oxide-BCZYZ electrode

With the concern over the additional resistance arisen from the oxidation of Fe, a

small content of the impregnated Fe oxide such as 25% by weight of the BCZYZ

porous layer was employed. Figure 4.20 displays the impedance spectra under open

circuit of the cell with 25 wt% Fe oxide using Pt as current collector. In hydrogen-

containing atmospheres, the impedance curves comprise of an imperfect arc at higher

frequencies and low frequency spike which were similar to that of the 1:1 Fe

oxide:BCZYZ electrode. When increasing temperature, the high frequency arc

became smaller and the low-frequency spike turned over into a depressed semicircle.

After switching to humidified N2, the impedance spectra show the increase in both

ohmic and polarisation resistances. Apparently, the Rs value in humidified N2 is 5

times smaller than that found in the 1:1 Fe oxide:BCZYZ electrode and close to the

theoretical value. The small Rs value of this 25 wt% Fe electrode in humidified H2

confirms a good connection between the Fe particles that adequate to reach the

percolation threshold. The high frequency contribution with the summit frequency of

1x104 Hz shows strong dependences on both H2 content and temperature. The charge

transfer process between the Fe electrode and the BCZYZ electrolyte interface could

be a rate-limiting process for this contribution. For the low-frequency spike which

also depends on temperature and H2 content, the rate-determining process for this

contribution could be either the hydrogen adsorption/diffusion or gas concentration

polarisation.

Along with the Pt current collector, the impedance data of a cell with 25 wt% Fe

oxide electrode using Pd as a current collector are shown in Figure 4.21. The Pd
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current collector slightly improved both ohmic and polarisation resistances. It must be

the microstructure of these current collectors that affects the performance.

Figure 4.20 AC impedance spectra under open circuit of cell with 25 wt% Fe oxide

electrode with Pt current collector in humidified atmospheres as a function of

temperature. The numbers (10n) indicate frequency in Hz.
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Figure 4.21 AC impedance spectra under open circuit of cell with 25 wt% Fe oxide

electrode with Pd current collector in humidified atmospheres as a function of

temperature. The numbers (10n) indicate frequency in Hz.
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4.3.4.4 Behaviour of 25wt% Fe electrode in non-humidified atmospheres

Under the real condition for ammonia synthesis, the Fe cathode will be operated in

non-humidified N2. Actually, a significant amount of H2 will be electrochemically

pumped from the anode to the cathode under closed-circuit conditions. Therefore, the

behaviours of the 25 wt% Fe oxide electrode in non-humidified atmospheres with

varying H2 contents were investigated. The results in Figure 4.22 exhibit that the

behaviour and shape of the impedance spectra in non-humidified atmosphere were

similar to those in the humidified atmospheres. The reduction of the H2O content did

increase the ohmic resistance by ~ 10%. The polarisation resistances were slightly

better than those in the humidified atmospheres. It could be the catalytic activity of Fe

that was improved in the non-humidified atmosphere.

As the Fe cathode will be operated in redox atmospheres, the stability of the Fe

impregnated electrode after being reduced and oxidized is shown in Figure 4.23. The

sample was switched between N2, N2 mixed with H2 and H2 atmospheres before being

switched back to N2 within 26 h at 600 °C. The impedance of the cell in non-

humidified N2 before and after being reduced and oxidised showed no significant

changes in the ohmic resistance. A small improvement in the electrode polarisation in

the low frequency contribution could be a result of the sintering of the impregnated

electrode after being reduced in H2 atmosphere. The improvement in the stability of

the 25 wt% Fe oxide electrode compared to the 1:1 Fe oxide:BCZYZ electrode may

be influenced by the improvement of the electrode microstructure by lowering the Fe

oxide content.

The microstructure of the 25 wt% Fe oxide electrode after testing is displayed in

Figure 4.24. The SEM images reveal small Fe clusters anchored on BCZYZ surface
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providing a number of active TPB sites as both Fe electrode and BCZYZ electrolyte

were in good contact and exposed to the gas phase.

Figure 4.22 Impedance spectra of cell with 25 wt% Fe oxide electrode in non-

humidified atmospheres as a function of temperature. Painted Pd was used as current

collector.
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Figure 4.23 Stability of 25 wt% Fe oxide impregnated electrode at 600 °C in non-

humidified atmosphere with various H2contents.

Figure 4.24 SEM images of a fractured cross-section of 25 wt% Fe oxide impregnated

electrode after testing. (a) x1000 and (b) x2700 magnifications.

(a) (b)

0 25 50 75 100

-75

-50

-25

0

25

Z'

Z
''

081105 DN600_9.z
081105 DNH600_4.z
081105 DH600_2.z
081106 DN600_6.z

Non-humidified

600 °C

N2

N2 mixed H2

H2

N2 (2nd)

BCZYZ



184

4.3.5 Comparison between ohmic conductivities of cells with various electrodes

The conductivities derived from the Rs values of cells with different kinds of

electrode are plotted as a function of reciprocal temperature in Figure 4.25. The

results show that the ohmic conductivities of the cell with 25 wt% Fe oxide

impregnated electrode with Pt current collector were 2 times lower than that of the

cell with the 25Ni10Ce impregnated electrode. The activation energies from cells with

the painted Pt (reference cell with painted Pt electrode) and the 25Ni10Ce

impregnated electrode were 0.40 eV which were slightly lower than that of cells with

25 wt% Fe oxide impregnated electrodes (0.45 eV). However, these values are

in agreement with the value of 0.48 eV from the previous work for

BaCe0.5Zr0.35Sc0.1Zn0.05O3–δ
[26].

Figure 4.25 Arrhenius plots for ohmic conductivities of cells with various electrodes;

impregnated 25Ni10Ce (♦), painted Pt (■), impregnated 25 wt% Fe with Pd current 

collector (▲), and impregnated 25 wt% Fe with Pt current collector (×).  
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4.4 Conclusions

A proton conducting oxide membrane cell with Ni-based anode and Fe-based cathode

has been developed by tape casting and ion impregnation. The electrode compositions

have been individually investigated in order to attain the suitable electrode composites

for the real working conditions in ammonia synthesis. For the anode, the high Ni

content electrode, i.e. 1:1 NiO:BCZYZ, provided better performance than the low Ni

content electrodes. However, the Ni impregnated electrode suffered severely from the

sintering of Ni particles during operation. Hence, CeO2 was co-impregnated with Ni

in order to improve the sintering problem. As expected, the performance of Ni-CeO2

impregnated electrode was higher than Ni impregnated electrode. The best

performance was achieved from the combination of 25 wt% NiO and 10 wt% CeO2

with the lowest polarisation resistance of 0.02 cm2 at 650 °C in humidified H2. In

the temperature range of 400-500 °C which tends to be the working range for

ammonia synthesis, the reasonable Rp values of 1-0.45 cm2 in humidified 5%H2

were obtained. For the cathode, it was found that the re-oxidation of Fe in N2

atmospheres affected the performance of the high Fe oxide content electrode.

However by decreasing the content of the impregnated Fe oxide to 25 wt%, the

electrode exhibited a fair performance and an excellent stability in non-humidified N2.
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5.1 Components of a membrane cell for electrocatalytic ammonia synthesis

With the proper compositions for anode and cathode materials from the results in

Chapter 4, a single cell for electrocatalytic ammonia synthesis were assembled. The

geometry of a single cell along with its components is displayed in Figure 5.1.

(b) Top view

Figure 5.1 Schematic of the components of a single cell prepared for electrocatalytic

ammonia synthesis. (a) cross-section view and (b) top view.

Anode: 25 wt% NiO + 10 wt% CeO2 (25Ni10Ce)
Thickness 50 mm, 50 % porosity

Current collector: Painted Pt paste

Cathode: 25 wt% Fe oxide (25Fe)
Thickness 100 mm, 50 % porosity

Dense BCZYZ 200 mm thick

Current collector: Painted Pd or Pt paste

(a)

Painted current collector on

top of electrode composite
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5.2 Experimental

The electrocatalytic synthesis of ammonia was carried out in two-chamber jig at 400-

600˚C under atmospheric pressure. The thickness of the anode layer was reduced from 

100 m in symmetrical cell testing to 50 m. The reduction of anode thickness was

expected to improve gas diffusion and catalyst utilization. Despite the sluggish

reactions at the Fe cathode, the thickness of this layer was kept at 100 m in order to

provide higher catalyst loading and probably increase the TPB length. The superficial

surface areas of the anode and cathode layers were 0.4 and 1.8 cm2, respectively. The

active area of the cell was considered to be equal to the surface area of the anode. The

membrane cell was tested in a two-chamber reactor as shown in Figure 5.2. The cell

was sealed between two alumina tubes by a ceramic adhesive (P-24, Toku ceramic).

The testing atmosphere was kept constant. The anode was fed by humidified 5%H2

which was obtained by bubbling 5%H2/Ar gas through room-temperature water

resulting in a gas mixture of 3 % H2O and 4 % H2 in Ar. The flow rate of 5% H2/Ar

gas was 30 mL/min. In the cathode, a constant flow of non-humidified N2 was

required. The flow rate of pure N2 gas of 38 ml/min was controlled by a mass flow

controller (Model 5850S, Brooks instrument). However, the actual flow rate of the

cathode outlet was checked periodically by a glass soap bubble flow meter.

The electrical connections were established by attaching Ag wire and Ag paste

directly to each electrode as shown in Figure 5.2. The electrochemical measurements

were carried out using a frequency response analyzer (Solartron 1255, UK) coupled

with an electrochemical interface (Solartron 1287, UK). The voltage-current (V-I)

measurement was performed by sweeping potentials across the cell using a scan rate

of 2 mV/sec with the applied potentials from 0-3 V with respect to the OCV. The AC-
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impedance measurement was obtained in a frequency range of 0.1 Hz to 1 MHz and

potential amplitude of 20 mV under open-circuit condition. In some cases, the

polarisation under applied potential was also investigated.

For ammonia synthesis, a constant potential was imposed against the open circuit

voltage through the cell for a transient period of 20 min. During the closed-circuit, the

amount of evolved ammonia was continuously detected by a mass spectrometer (MS)

(Prolab 300, Thermo Scientific). Along with the ammonia concentration, the changes

in concentration of O2, H2O and H2 were also recorded and used for evaluating total

current efficiency from all competitive reactions. The concentrations of those gases

detected from the MS were in unit of mol%. The differences in concentrations of

those gases under open circuit and closed circuit were used in the calculations of

formation rate and current efficiency. The details about these calculations have been

explained in Chapter 2, section 2.3.4.4.

Figure 5.2 Two-chamber testing apparatus.
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5.3 Results and discussion

5.3.1 Effect of cathode current collector on ammonia formation

The impedance spectra under open circuit of single cells containing 25Ni10Ce anode

and 25Fe cathode with different current collectors, Pd or Pt, on the Fe cathode are

shown in Figure 5.3. The impedance of these single cells showed a similar behaviour

with the impedance of a symmetrical cell with Fe oxide electrode in non-humidified

N2. However, the ohmic resistance seems to be smaller than that of the symmetrical

cell due to the presence of H2 and H2O in the anode side. It is likely that the

polarisation resistance was mainly influenced by the cathodic polarisation regarding

to the fact that the polarisation resistances of the 25Ni10Ce electrode in humidified

5% H2 at 400-500 °C were much smaller than that of the Fe electrode which are only

1-0.45 cm2, respectively.

During the closed-circuit condition, the amount of H2 emerged at the cathode with Pd

current collector was much lower than the cell with the Pt current collector and the

expected values. The current efficiency calculated from the total amount of H2 and

H2O produced with respect to the theoretical value derived from the imposed current

was only 30-50% at 500-400 °C. Importantly, there was no sign of NH3 being

produced although high potential was imposed. According to the results from Chapter

2, cell with painted Pd electrode also produced a small amount of H2. This may be due

to the catalytic activity of Pd on the reaction of hydrogen and oxygen.

Therefore, Pt paste was used as current collector on the Fe cathode for the rest of the

experiment. Although Pd current collector used to provide better performance than Pt

current collector in the symmetrical cell tests, the impedance data achieved from cells
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with Pt or Pd current collector in Figure 5.3 show that there was no significant

difference between those cells in the single cell testing. Instead, the electrode

performance of the single cell with Pt current collector was better than that of Pd

current collector at lower temperature.

Figure 5.3 Impedance spectra under open circuit from single cells, humidified 5%

H2,25Ni10Ce│BCZYZ│25Fe, N2 with Pd or Pt current collector on Fe cathode at (a)

500 °C and (b) 400 °C.
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5.3.2 Investigations of single cells with and without catalyst addition

Single cells with 25 wt% NiO + 10 wt% CeO2 (25Ni10Ce) anode and 25 wt% Fe2O3

(25Fe) cathode using Pt current collector on both sides was tested for electrolytic

ammonia synthesis. Note that the working temperature was in the range of 400-500

°C in order to prevent the decomposition of ammonia at high temperature[1].When

operated at temperature higher than 500 °C, the formation rate of ammonia was

obviously unstable and sharply decreased with time. In addition, the results from the

Chapter 2 (section 2.4.5.1) suggested the increase of the electronic conduction in the

BCZYZ electrolyte at high temperature which resulted in the loss of the current

efficiency.

Apart from the study of the catalytic activity of the Fe electrocatalyst, the Fe surface

was modified by two kinds of catalysts i.e., Pd and Ru. By impregnating the catalysts

onto the Fe surface, the amount of the catalyst loading was fixed at 10wt% with

respect to weight of the Fe oxide.

Pd catalyst addition

Like other platinum-group metals, Pd has been used widely as a catalyst for several

reactions such as hydrogenation or dehydrogenation of H-containing compounds[2,3],

hydrogen sensors and hydrogen separation[4,5]. Its strong interaction with hydrogen

makes Pd become a promising catalyst for electrochemical ammonia synthesis. It is

expected that the presence of Pd catalyst on the Fe electrode could facilitate the
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transportation and adsorption of hydrogen (both H+ and Had) allowing them to react

with adsorbed N at Fe surface and form NH3.

Ru catalyst addition

Metallic Ru is another active catalyst for ammonia synthesis and has been employed

in the ammonia industrial production for many years[6,7]. The performance of Ru in

ammonia synthesis is better than Fe leading to the possibility to operate under milder

conditions. In oxide form, RuO2 with its metallic conductivity is widely used in

polymer electrolyte fuel cells or electrolyser as an electrocatalyst[8-10]. Therefore, the

addition of RuO2 onto the Fe electrode is possible to improve the conductivity of the

Fe cathode under open circuit while the nanoparticles of Ru metal, which arise under

closed circuit may enhance the catalytic activity of the Feelectrode on ammonia

formation reaction.

5.3.2.1 AC impedance measurement under open-circuit condition

Figure 5.4 displays the impedance spectra of cells with and without catalyst addition

at different temperatures under the open circuit. The behaviours of the impedance of

cells without catalyst and with Pd addition were similar with at least three electrode

responses at high frequency (105 Hz), medium frequency (10 Hz) and low frequency

(1 Hz). A large depressed arc at high frequency which was assigned as the charge

transfer response in the impedance of Fe symmetrical cell seemed to dominate the

electrode process in these cells. An imperfect arc at medium frequency and a spike at
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low frequency suggested that the adsorption/dissociation and diffusion of nitrogen or

oxygen on the Fe electrode could be responsible for these contributions.

By impregnating 10 wt% PdO on the Fe oxide cathode, the Rs and Rp values were

higher than those of the unmodified cell by a factor of 2. The rise of Rs values may

result from the increase of the contact resistance at the electrolyte/electrode interfaces

due to the presence of resistive PdO particles. Moreover, it seems that the presence of

PdO on the Fe surface obstructed the electrode processes and caused a significant

increase in polarisation resistance especially for the high-frequency contribution.

The addition of 10 wt% of RuO2 into the Fe cathode exhibited quite interesting

results. The impedance spectra obtained from this cell under open circuit showed the

lowest Rs values and different electrode polarisation characteristics to the unmodified

cell. The electrode responses were composed of a high-frequency contribution which

is much smaller than in the case of the unmodified and Pd-modified Fe cell. The low

frequency contribution appeared as a straight line with almost 45° angle to the real

axis. The straight line tends to turn down to the real axis with the increasing

temperature indicating the dominant process became more favourable at higher

temperature. The improvement of the impedance by the addition of the Ru catalyst is

related to the metallic conductivity and catalytic activity of RuO2 that overwhelms the

electrode properties of the Fe oxide. At 500 °C, the ohmic conductivity of 2 mScm-1

obtained from both unmodified cell and Ru-modified Fe cell which were determined

from the high-frequency intercept were close to the ionic conductivity of the

symmetrical cell with the Fe electrode measured in humidified 5% H2 at the same
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temperature. The ohmic conductivities of Pd-modified cell, however were 2 times

lower than that of the unmodified Fe cell.

Figure 5.4 AC impedance spectra under open circuit of humidified 5% H2,

25Ni10Ce│BCZYZ│25Fe, N2 cell with and without catalyst addition on the Fe

cathode at different temperatures. (a) unmodified Fe, (b) Pd-modified Fe and (c) Ru-

modified Fe. Electrolyte thicknesses of those cells are 268, 198 and 192 m for cells

(a), (b), and (c), respectively.
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5.3.2.2 Polarisation properties under closed-circuit condition

The polarisation response of cells under closed-circuit condition was studied by

sweeping various potentials from 0 to 3 V with respect to open circuit voltage (OCV)

across the cells. The polarisation characteristics were considered from plots between

the swept potential and corresponding current density (V-I curve) as shown in Figure

5.5. Unexpectedly, the OCV of all three cells under humidified 5%H2/Ar in the anode

and non-humidified N2 in the cathode were as high as -1.05 V. This high OCV may

arise from the reversible reaction between humidified 5% H2/Ar in the anode side and

~0.1 mol% of O2 that was usually found in the cathode chamber and this OCV value

was in agreement with the theoretical value calculated from the Nernst equation. The

typical gas compositions of the cathode outlet stream during open-circuit condition

are presented in Table 5.1.

Table 5.1 Gas composition from the cathode outlet stream under open circuit.

Gas Concentration (mol%)

Ar

H2O

O2

H2

CO2

0.3-0.4

0.1-0.2

0.1-0.15

0-0.001

8-10 ppm

The small amount of O2 in the cathode stream may come from some air leakage inside

the cathode chamber. At the same time, the presence of O2 in the cathode chamber

would be a driving force for the reaction between H2 and O2 and responsible for the

presence of H2O. As a proton conducting membrane cell, it has been reported that
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steam diffusion in a proton-conducting oxide can happen in a water vapour

concentration cell. However, this phenomenon is pronounced at 900-1000 °C

according to Coors’s study for Y-doped barium cerate[11]. Estimating from his data,

the amount of H2O that can be transported from the anode is just around 0.02 mol% at

600 °C and the rate of steam diffusion tends to decrease exponentially with decreasing

temperature. Within the working temperature of 400-500 °C, the steam diffusion

phenomenon would be negligible.

Polarisation properties of this cell at different temperatures in Figure 5.5 indicate that

the Ru-modified Fe cell with the lowest ohmic and polarisation resistances provided

the highest corresponding current density when applying the same potential range

compared to the other cells, as might be expected. The Ru-modified Fe cell provides

the current density of 0.16 A cm-2 when a potential of 2 V was applied at 500 °C

which was 30% and 100% higher than those of cells with Pd catalyst and without

catalyst, respectively.

The correlation between the polarisation curve and AC impedance under high

potential loads was observed. After deducting Rs values from the impedance spectra,

the changes in electrode responses of the cell without catalyst addition under the

potential loads are revealed in Figure 5.6. By applying 1 V, the polarisation resistance

became greater than under open circuit due to the enlargement of the low frequency

contribution. When higher potentials were applied, the polarisation resistances

became much smaller and gave an unusual dependence. The reduction of total cell

resistance was consistent with the small cell resistance observed in region B of the

corresponding V-I curve in Figure 5.5. The improvement of electrode polarisation

suggests that the ammonia formation reaction at the cathode might be achieved by

applying potentials in the range of region B of the V-I curve.
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Figure 5.5 Polarisation curves of humidified 5% H2, 25Ni10Ce│BCZYZ│25Fe, non-

humidified N2 cells at various temperatures. (a) without catalyst addition, (b) Pd

addition, and (c) Ru addition.

Figure 5.6 AC impedance spectra of cell without catalyst addition at Fe cathode

measured at OCV and under loading.
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5.3.2.3 The relationship between applied potential and cell resistance

The value from the slope of the V-I curve (dE/dI) evaluated from the linear region of

the curve indicates the changes of the cell resistance at non-steady state conditions.

From Figure 5.5, the polarisation curves of all cells show two linear regions with

different slopes and the slopes of these regions are summarised in Figure 5.7. The

region A at lower imposed voltages contains high dE/dI values while the dE/dI values

from region B were much smaller. The relationship between applied potentials and the

cell resistances can be explained in two stages. First, cells under open-circuit

condition have more negative anode and positive cathode related to the spontaneous

reactions that take place at both electrodes. At OCV, these following reactions are in

equilibrium.

at the anode: H2   →  H+ + 2e- (5.1)

at the cathode: O2 + 2H+  →   H2O (5.2)

When potentials were applied across the cell, the anode became less negative and

cathode became more negative as a number of electrons were driven to the cathode by

the external power source. In this region which is called region A, the cell resistances

(dE/dI) were higher than expected from the impedance spectra under open circuit in

cases of unmodified and Pd-modified cell due to the additional resistances from the

charge transfer of driven electro-active species. There is no change in the cell

resistances of the Ru-modified cell since the resistance from the charge transfer

process in this cell was negligible. In the second stage when the applied voltage was

increased until the region B is reached, the dE/dI values of all cells were significantly
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decreased suggesting that the reactions at the electrodes were enhanced by applying

this range of potentials.

Figure 5.7 Plots of dE/dI values evaluated from the slopes in polarisation curves in (a)

region A and (b) region B of cells with and without catalyst addition as a function of

temperature.
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5.3.2.4 Overall overpotentials of cells with and without catalyst addition

Overall overpotentials (overall) of these three cells were considered by deducting the

loss from ohmic resistance (iRohmic) from the V-I curves. Rohmic corresponding to the

electrolyte resistance was evaluated from the ohmic conductivity of the cell with

25Ni10Ce electrode which showed the best electrode performance in order to

minimise the inclusion of the electrode resistance in the ohmic conductivity. The plots

of the overpotentials versus the current density are shown in Figure 5.8. According to

the thermodynamic data, the standard reduction potentials (Eo) of NH3 formation

reaction are -0.07, -0.089 and -0.1 V at 400, 450 and 500 °C, respectively. These

values were smaller than those of O2 reduction and H+ reduction reactions[12],

O2(g) + 4H+ + 4e- → 2H2O(g), E° = 1.08 V at 427 °C (5.3)

2H+ + 2e-  → H2(g) E° = 0 V (5.4)

When a potential is applied to the cell, the reduction reaction with higher E° usually

proceeds first. Hence, O2 should be reduced before H+ and N2, respectively. The

overpotential values in the region A may derive from the O2 reduction reaction as

those were close to 1 V for the Ru-modified cell while the other cells consumed

higher overpotentials. The difference in overpotential values for different catalysts

and temperature suggests that the kinetics of the reaction plays a role on the

overpotential characteristics.

Note that the proof for the order of the reactions at the cathode was performed by

recording the change in the cathode gas compositions during continuously applied

potential to the cells. The results are discussed in the following section.
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Figure 5.8 Plots of overpotentials (IRohmic-free) versus current density of cells with

and without catalyst addition.
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5.3.2.5 Changes in the gas compositions during V-I measurement

Along with the V-I measurement, the changes in concentration of cathode gases were

monitored by the mass spectrometer. Figure 5.9 shows the plots of the concentrations

of H2, O2 and H2O gases and the corresponding current as a function of time. Once the

current had been produced, the reaction between H+ (at anode) and O2 (at cathode) via

the proton conducting electrolyte was instantly activated resulting in the increase of

H2O and the reduction of O2 which was in agreement with the order of E° values as

mentioned in previous section. However, the development of the ammonia formation

was also observed. This suggests that the ammonia formation reaction is not strongly

dependent upon applied potential and it is not kinetically sluggish. Therefore, the

nature of catalyst and the number of active sites more or less govern the reaction.

Note that the ammonia formation rate was increased sharply with the concentration of

H2 revealing the dependence of this reaction on the reactant concentration.

As the current increased, the amount of H+ driven from the anode through the cathode

was also increased significantly. A new equilibrium between H2 and O2 reaction was

also observed due to the limit concentration of O2 in the system. When the current

was stopped, the concentration of H2 was suddenly decreased as the concentration of

O2 was gradually increased back to the original value.

Cell with the Ru-modified Fe cathode which had the lowest cell resistance provided

the highest corresponding current and also the highest amount of produced H2.



208

0 200 400 600 800 1000 1200 1400 1600

0.0

0.1

0.2

0.3

0.4

0.5
H

2

NH
3

H
2
O

O
2

current

Time (sec)

g
a

s
c
o

n
c
e

n
tr

a
tio

n
s

(m
o

l%
)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

C
urrent

(A
m

ps)

(a) unmodified Fe

0 200 400 600 800 1000 1200

0.0

0.1

0.2

0.3

0.4

0.5

0.6 H
2

NH
3

H
2
O

O
2

current

Time (sec)

g
a

s
co

n
c
e

n
tr

a
ti
o
n

s
(m

o
l%

)

0.00

0.01

0.02

0.03

0.04

0.05

C
urren

t
(A

m
ps)

(b) Pd-modified Fe



209

Figure 5.9 Correlation between electrolytic current and changes in concentrations of

gases in cathode outlet stream during potential sweep at 2mV/s. (a) without catalyst

addition, (b) Pd addition, and (c) Ru addition.

5.3.2.6 Microstructure of single cells with catalyst impregnated Fe

The microstructures of the membrane cells after testing were investigated by SEM.

The SEM images in Figure 5.10 exhibit that all cells have similar electrode

microstructures. With the attempt to investigate the difference in microstructure of Fe

electrode with and without the addition of the catalyst, the SEM images at higher

magnification on the Fe-BCZYZ electrode side were taken as shown in Figure 5.11.

There is no significant change in the microstructure of the porous layer or on the Fe

surface. The EDS elemental analysis was performed on these electrodes in order to

investigate the distribution of Pd or Ru on Fe surface. Unfortunately, the amount of

the Pd or Ru catalyst on the Fe electrode was inadequate to provide a clear element

map of the catalyst.
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Figure 5.10 SEM image of a fractured cross-section of 25Ni10Ce│BCZYZ│25Fe cell 

without catalyst addition after testing. Note that Pt was used as current collector for

both electrodes.

25Ni10Ceunmodified Fe

(a)

25Ni10Ce Pd modified Fe

(b)

25Ni10CeRu modified Fe

(c)

Pt current

collector
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Figure 5.11 SEM images of fractured cross-section of Fe-BCZYZ impregnated

electrode after testing (a) unmodified Fe, (b) Pd modified Fe and (c) Ru modified Fe.

The electrode particles are in granular form (lighter colour) situated on BCZYZ

surface.

(a)

(b)

(c)

BCZYZ
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5.3.3 Ammonia production

In this section, the ammonia formation rates obtained from the cells with and without

catalyst addition on Fe-BCZYZ electrode are discussed. Typical MS data analysed

from the outlet gas during closed-circuit condition is shown in Figure 5.12. The

changes in concentrations of H2, O2, H2O, and ammonia were online-monitored.

When a constant potential was applied across the cell, a certain amount of protons is

electrochemically driven from the anode through the electrolyte to the Fe cathode.

These protons are expected to react with adsorbed N atoms (Nads) on Fe

electrocatalyst.

Nads + 6H+ + 6e-   →  2NH3 (5.5)

On the other hand, H+ may incorporate electrons and evolve as H2 molecules.

2H+ + 2e-   →  H2 (5.6)

As a significant amount of O2 was always found in the system, the partial amount of

evolved H2 may instantly react with O2 that produced H2O.

2H2 + O2   →     2H2O (5.7)

From Figure 5.12, the increase of H2, NH3 and H2O was immediately observed once

the potential was applied as results of the reactions above. The formation rates of the

H2, NH3 and H2O were increased until reaching their new equilibriums. The formation

rate of H2O was in proportion with the reduction of O2 and reached its equilibrium

after applying the potential for 200 sec. The formation of ammonia was slower than

that of H2O and reached its equilibrium at 300 sec at the same time with that of the
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evolved H2. By varying the potential, it was found that the formation rates of H2, NH3

and H2O before reaching their equilibria depends on the applied potential and the

corresponding current. Higher applied current increased the formation rate of the

products. The concentrations of the products (H2, NH3 and H2O) at equilibrium were

used in calculation of current efficiency with respect to the applied current.

It is worthy noticing that the applied potentials were considered from the V-I curves

and were in the range of region B (low dE/dI region). Therefore, the ranges of

potentials applied to these cells are exhibited in Figure 5.13. Normally in order to

achieve 10-30 mA, the potentials of 1-3 V were needed. However, only the potentials

of 1-2 V were enough to generate that range of the current in the case of Ru-modified

Fe cell.
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Figure 5.12 typical data obtained from the cathode outlet stream recorded by Mass

spectrometer. The data received from cell without catalyst addition at 400 °C,

imposed potential of 2.23V, corresponding current of 15.7 mA and transient time of

20 min.
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Figure 5.13 Correlation between applied potential and corresponding current

employed for ammonia synthesis in cell with (a) unmodified Fe, (b) Pd-modified Fe,

and (c) Ru-modified Fe.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.02 0.04 0.06 0.08 0.1

400 C

450 C

500 C

A
p

p
li

ed
p

o
te

n
ti

al
(V

)

(a) unmodified Fe

Current density (A cm-2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.02 0.04 0.06 0.08 0.1

400 C

450 C

500 C

Current density (A cm-2)

(b) Pd-modified Fe

A
p

p
li

ed
p

o
te

n
ti

al
(V

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.02 0.04 0.06 0.08 0.1

400 C

450 C

500 C

(c) Ru modified Fe

A
p

p
li

ed
p

o
te

n
ti

al
(V

)

Current density (A cm-2)



216

5.3.3.1 Ammonia formation rate

Under open circuit, a very small amount of ammonia was frequently detected along

with a small amount of H2 in the cathode stream. Hence, the rate of ammonia

formation was considered from the difference of concentrations between open-circuit

and closed-circuit conditions. The plots of ammonia formation rate versus current

density from cells with and without catalyst addition are shown in Figure 5.14. For the

cell without catalyst addition, the rate of NH3 formation decreased with the increasing

temperature which may result from the decomposition of NH3 at higher temperatures.

The cell with Pd-modified Fe cathode exhibited similar results and provided the

lowest NH3 formation rate at 500 °C. However at 450 °C, the NH3 formation rate of

this cell overcame the decomposition rate and resulted in the highest NH3 formation

rate with the value of 4x10-9 mol s-1 cm-2.

In principle, the NH3 formation rate should increase with the applied current or the

amount of protons. In these cases, the formation rate reached the maximum value at

the current density around 0.06 A cm-2. This limitation is in agreement with the fact

that the NH3 formation rate must be restricted by a limited number of N2 dissociation

sites on an Fe surface[13].

For the Ru-modified cell, the NH3 formation rates show less temperature and current

dependences and the attained values are in the same range as the unmodified cell.

From Faraday’s law, the current efficiency for the NH3 formation can be calculated

based on theoretical values, I/nF where n is equal to 3 for the number of electrons
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involved in the reaction and I is the corresponding current. The plots of the current

efficiency versus the current density are depicted in Figure 5.15.

Cells with unmodified and Pd-modified Fe cathode provided current efficiencies in

the range of 2.5-0.5 % while the current efficiencies for the cell with Ru-modified Fe

were in the range of 1.5-0.7%. Although the current efficiency is quite small, these

NH3 formation rates and current efficiencies are promising.

The limitation of the number of active site for N2 dissociation is one of the possible

reasons for the small NH3 formation rate. Dahl et al.[13] suggested that the number of

active sites used for the N2 dissociation on a multipromoted iron-based catalyst at 350

°C and atmospheric pressure is around 4 mol g-1. The amount of the impregnated Fe

oxide used in the present experiment was about 0.01 g. Therefore on the unmodified

Fe, the expected number of the active sites must be less than 2x10-8 mol. Moreover,

the number of available active sites could be decreased by the poisoning effect of O2

and H2O
[14,15]. On the other hand, the coverage of hydrogen or NHx intermediates

(x=0, 1, 2, 3) on the catalyst surface also affects the ammonia formation rate[13,16].

Therefore, the value of 4x10-9 mol s-1 cm-2 for the highest NH3 formation rate attained

from Pd-modified Fe cell at 450 °C was close to the theoretical value. The poisoning

effects of those species seem to be minor. It is likely that the formation rate would be

increased by the increasing of the active sites on the catalyst.

In previous works, the electrocatalytic ammonia synthesis using proton conducting

oxide electrolyte has been investigated using Pd electrodes on SrCe0.95Yb0.05O3 (SCY)

electrolyte[2,17], Ag-Pd electrodes on various electrolyte oxides[18-22] and an industrial
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iron catalyst on metallic Fe for SrZr0.95Y0.05O3- electrolyte[23]. Compared to those

previous works; it seems that the results obtained in this study were close to those

from painted Pd and Ag-Pd electrodes and much higher than that of the combination

of industrial iron catalyst on Fe layer which was around 6.3 x 10-12 mol s-1 cm-2.

To confirm that the formation of ammonia occurred electrochemically at Fe surface, a

gas mixture of H2 and N2 was fed into the Fe cathode side. The results show that no

significant amount of ammonia was produced directly from the gas mixture of H2 and

N2 in this reactor and the ammonia formation should happen electrochemically on the

catalyst surface.
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Figure 5.14 NH3 production rate at different imposed currents and temperatures.

(a) cell without catalyst, (b) cell with Pd addition and (c) cell with Ru addition
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Figure 5.15 Current efficiency for NH3 formation versus current density.
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5.3.3.2 H2 evolution rate and overall current efficiency

From the MS data, a significant amount of H2 was generated during closed circuit.

The evolution rates of H2 in Figure 5.16 are plotted against the current density from

cells with and without catalyst addition at various temperatures. The results show that

there is no difference between the H2 evolution rates from each cell. The evolution

rate seems to depend on only the applied current and has no dependence on type of

catalyst. Comparing with theoretical values calculated from I/2F (dashed lines), the

evolution rates of H2 were varied from 0-60 % of the applied current. The losses in the

current efficiency could be due to some misdirected electrons participating in other

competitive reactions including NH3 and H2O formation reactions. The amount of H2

consumed in the competitive reaction with O2 was calculated from the increase in the

concentration of H2O during closed circuit. From the experiment, the amount of

produced H2O was approximate 2 times higher than the reduction of the amount of O2

which is consistent with the coefficients of O2 and H2O in the following reaction.

2H2 + O2      →      2H2O

The significant amount of H2 consumed in this reaction is related to the loss in current

efficiency of the H2 evolution reaction. Considering all reactions including the NH3

formation reaction, the total current efficiencies at the cathode are displayed in Figure

5.17. The cell with Pd-modified Fe shows the highest current efficiency (close to

100%) while the other cells experience the current efficiency losses of 10-20%. These

losses may stem from the consumption of the current in the partial reduction of Fe

oxide. In the case of the Pd-modified Fe, a Pd catalyst was found to help accelerate

the reduction of the Fe oxide under a reducing atmosphere[24]. Hence, the presence of

the Pd catalyst on the Fe oxide could diminish the loss of the current.
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Figure 5.16 H2 evolution rate at different imposed currents and temperatures (a) cell

without catalyst, (b) cell with Pd catalyst and (c) cell with Ru catalyst. Dashed lines

are theoretical values.
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Figure 5.17 Total current efficiency evaluated from (open symbol) H2 evolution rate

and (closed symbol) total amount of H2 and H2O formation rate including NH3

production rate.
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5.4 Conclusions

The application of impregnated Ni-CeO2 and Fe electrodes in a single cell provided

interesting results for electrocatalytic ammonia synthesis at 400-500 °C. As expected,

the impedance behaviour of the single cell was similar to that of the symmetrical cell

with Fe oxide impregnated electrode but the Rs and Rp values in the single cell were

slightly better due to the incorporation of the 25Ni10Ce impregnated anode.

The highest ammonia formation rate of a single cell without catalyst addition of

2.9x10-9 mol s-1 cm-2 was attained at 400 °C. The ammonia formation rate was

increased by the addition of 10 wt% PdO onto the Fe cathode. The increase of the

formation rate of 34% suggests that Pd catalyst must take part in the catalytic activity

for the ammonia formation reaction. Pd is a well-known metal for hydrogen

adsorption. The affinity between Pd and hydrogen may create a high H+ density area

in the vicinity of the active site for N2 dissociation and encourage H+ to react with

Nads on the Fe surface.

The addition of RuO2 did improve the electrode performance but there is no

significant change in the ammonia formation rate. It is possible that only metallic Ru

is active for ammonia synthesis and this metallic form may be not achieved under

these testing conditions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The application of BaCe0.5Zr0.3Y0.16Zn0.04O3-(BCZYZ) as a proton conducting

electrolyte in an electrocatalytic cell for ammonia synthesis has been explored. The

project firstly addressed the study of the electrolyte ceramic sintering and the

improvement of cell performance via tape casting and ion impregnation.

The electrochemical characterisations of the electrolyte material were performed on 1

mm-thick BCZYZ pellets with Pt metal as anode and Pt, Pd or Au as cathode. These

cells contributed low cell performance with high polarisation resistances. So, there

were two major problems found in these cells. First, the adhesion between the metal

electrode and the electrolyte surface was quite poor, and second, the metal cathodes

had low catalytic activity in non-humidified N2 which may relate to the sintering or

agglomeration of the metal particle during electrode firing. However, only a small

amount of ammonia was detected along with a significant amount of H2 when

operating these cells under electrolysis mode. These results definitely confirm the

proton conduction in this electrolyte material. In this experiment, the highest rate of

ammonia formation of 1.4 x 10-9 mol s-1 cm-2 was obtained from the cell with Pt

cathode at 450 °C. Most of the cells cannot be operated at 400 °C because the cell

resistance increased dramatically at low temperature and high potential was needed

for generating adequate proton fluxes for the reactions.
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The improvement of cell performance was carried out by decreasing the thickness of

the electrolyte and utilising a high catalytic activity electrode. The tape casting

method was employed in order to reduce the electrolyte thickness and prepare porous

ceramic support for the electrode material. The electrode materials were introduced

into porous BCZYZ support by ion impregnation technique and a composite

electrode/electrolyte was achieved. For the anode, the combination of Ni and CeO2

provided the best electrode performance. The symmetrical cell with 25wt% NiO and

10 wt% CeO2 (25Ni10Ce) impregnated electrode exhibited low polarisation

resistances of 1-0.45 cm2 at 400-500 °C, respectively in humidified 5% H2/Ar.

Compared to the painted Pt electrode in the same conditions, the Rp values from the

25Ni10Ce electrode were smaller than those of Pt electrode by ca. 300 times. For the

cathode, 25wt% Fe2O3 (25Fe) impregnated electrode displayed a reasonable

performance in non-humidified N2.

Then the tape cast membrane cell with 25Ni10Ce impregnated anode and 25Fe

impregnated cathode was employed in electrocatalytic ammonia synthesis. Compared

to 1 mm-thick cell with painted Pt electrode, the performance of the membrane cell

was ~10 times improved.

The addition of catalysts, i.e. Pd or Ru, into Fe impregnated cathode improved the cell

performance in different ways. The Pd catalyst enhanced the catalytic activity of

ammonia formation reaction whereas the Ru catalyst decreased the cell resistance

with its high electronic conductivity.

The highest ammonia formation rate was attained from the cell with Pd modified Fe

cathode. The formation rate of 4 x 10-9 mol s-1 cm-2 was achieved at 450 °C. In most

cases, the current efficiency of the ammonia formation was around 1-2.5 % while the
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rest was consumed in the H2 evolution reaction. Note that the highest formation rate

of ammonia from this experiment was 18 times higher than the expected rate

calculated from the equilibrium constant, Keq, of the reaction of gaseous N2 and H2 at

the same conditions.

It can be concluded that there are several factors that control the formation of

ammonia. A specific range of applied current or potential is also crucial. By applying

too low potential, the amount of current may not be enough to force the reaction to

occur but with too high potential, the reaction mainly undergoes H2 evolution instead.

The number of active sites could be another factor. The results from the Pd modified

cathode suggested that the cathode with appreciable proton conduction is preferable

for the electrocatalytic ammonia reaction.

6.2 Future work

The results from the formation rate of NH3 and H2 suggests that a vital factor that

controls the rate of NH3 formation would be the number of active sites on the cathode

catalyst. Therefore, the increase of the electrode active area should provide the higher

amount of NH3 and lower the amount of H2 produced by the same applied current.

This can be done by increasing size of the button cell or changing the geometry of the

cell to a tubular cell which can be easily performed via tape casting process.

Although Fe oxide showed a reasonable performance, the cell resistance was quite

high comparing to the cell with Ru-modified Fe. The improvement of the cathode

material needs to be carried on. The cathode material that can transport H+ would be

an ideal cathode for electrocatalytic ammonia synthesis. For further work, the
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25Ni10Ce anode with high catalytic activity and stability is likely to be tested in a gas

mixture with higher steam content. Steam electrolysis is expected to happen at this

anode. However, a small amount of H2 is still required in order to keep the Ni anode

in a metallic form at this low working temperature.


