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Abstract  
 
Oropouche virus (OROV) is a medically important orthobunyavirus, which causes 

frequent outbreaks of a febrile illness in the northern parts of Brazil. However, despite 

being the cause of an estimated half a million human infections since its first isolation 

in Trinidad in 1955, details of the molecular biology of this tripartite, negative-sense 

RNA virus remain limited. The work presented in this thesis has re-determined the 

nucleotide sequences of OROV strain BeAn19991 (GenBank accession numbers: L, 

KP052850; M, KP052851 and S, KP052852), and demonstrates that the S segment is 

significantly longer than the published sequence with an additional 204 nucleotides at 

the 3' end. Data analysis revealed that there is a critical nucleotide mismatch at position 

9 within the base-paired terminal panhandle structure of each genomic segment. Using a 

combination of deep sequencing and Sanger sequencing the complete genome 

sequences of 10 field isolates of OROV were also determined for the first time, and led 

to the identification of a novel OROV reassortant virus. Phylogenetic analysis of these 

sequences and of published sequences showed that there are two genotypes of OROV, 

rather than the four genotypes previously proposed. Further work led to the 

development of a T7-RNA polymerase-driven minigenome and virus-like particle 

(VLP) production systems for OROV; the information from these was subsequently 

used to develop a reverse genetics system for OROV. Using reverse genetics, OROV 

mutants that lack either the non-structural proteins NSm or NSs were generated. In vitro 

growth properties of the OROV mutant lacking NSm were indistinguishable from the 

wild-type virus, but the NSs mutant was attenuated in growth, particularly in interferon 

(IFN) competent cells. Further work demonstrated NSs as a viral IFN antagonist and 

that it’s C-terminus is required for this activity. Interestingly, OROV is more resistant to 

IFN-α treatment than Bunyamwera virus, but this is not related to its NSs protein.  

 

The development of a reverse genetics system for OROV, which is the main human 

pathogen within the Simbu serogroup of orthobunyaviruses, will prove invaluable for 

future studies designed to further investigate the molecular pathogenesis of this virus 

and in the development of attenuated vaccine strains.   
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Chapter I. General Introduction 
 
 

athogenic viruses have a huge impact on human, animal and plant health causing 

significant morbidity and mortality, as well as placing a costly burden on 

economies. Global development in the past century has caused tremendous 

change bringing the human population in much closer proximity to each other and the 

surrounding environment than ever before. Human behaviour has altered ecosystems, 

accelerated climate change and increased our chances of coming into contact with 

pathogens and their vectors. Some examples of infectious virus spill-overs into the 

human population include Hendra virus in Australia in 1994 (Murray et al., 1995), 

Nipah virus in Malaysia in 1997 (Uppal, 2000), H1N1 influenza in Mexico in 2009 

(Dawood et al., 2009), severe acute respiratory syndrome coronavirus (SARS-CoV) in 

China in 2002 (Holmes & Rambaut, 2004), Severe fever with thrombocytopenia 

syndrome virus (SFTSV) in China in 2010 (Li, 2013) and the Middle East respiratory 

syndrome coronavirus (MERS-CoV) in Saudi Arabia in 2012 (Raj et al., 2014). This is 

a trend that is likely to continue. With SARS-CoV and the recent (2013 – 2015) Ebola 

virus outbreak in West Africa (Gatherer, 2014) we have learnt the potential devastation 

that these viruses can have once introduced into a naive population. It is therefore of 

paramount importance that we continue to elucidate the molecular biology of these 

emerging and re-emerging pathogens, and understand their evolution in our complex 

society. 

 

The focus of this study has been on the human pathogen Oropouche virus (OROV). 

OROV belongs to the Bunyaviridae family, which also contains the recent emergent 

viruses Schmallenberg virus (SBV) (Hoffmann et al., 2012) and SFTSV (Zhang et al., 

2013). OROV has a geographic distribution in South America where it causes recurring 

outbreaks of flu-like illness in the Amazonian regions of Brazil. Over half a million 

OROV infections have occurred in over 30 outbreaks since its isolation in 1955. In an 

urban environment, OROV is transmitted to humans by the midge Culicoides paraensis. 

The natural host of the virus is the pale-throated three-toed sloth and possibly other non-

human primates (Anderson et al., 1961; Pinheiro, 1962). Recently however, OROV has 

been isolated outside the current known epidemic zone in Brazil (Nunes et al., 2005), 

P 
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while OROV reassortant viruses capable of infecting humans have been isolated in Peru 

and Venezuela (Aguilar et al., 2011; Ladner et al., 2014), indicating that OROV may be 

circulating more widely in South America than previously appreciated. This thesis 

describes the establishment of a reverse genetics system for OROV and its initial 

characterisation that will enable us to study this important yet poorly understood 

emerging viral zoonosis.  

 

The literature review that now follows describes our current understanding of the 

Bunyaviridae family and how these viruses manipulate the human host cell. This is then 

followed by research so far published on OROV. Developments in bunyavirus reverse 

genetics are also discussed followed by the specific aims of this PhD project. 

 

1.1 The family Bunyaviridae   

 
The Bunyaviridae family is one of the largest groups of segmented RNA viruses (Figure 

1.1) consisting of over 350 known pathogenic and non-pathogenic members. Based on 

serological cross-reactivity of each virus, biochemical characteristics and conserved 

terminal untranslated regions (UTR) in their genome these viruses are further sub-

divided into the genera Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus and 

Tospovirus (Hunt & Calisher, 1979; Elliott & Blakqori, 2011; Elliott & Schmaljohn, 

2013). All viruses in general are referred to as bunyaviruses. With the exception of 

hantaviruses all other members are transmitted to their host primarily by arthropods, 

mainly sandflies [eg. sandfly fever Sicilian virus (SFSV) in the Mediterranean basin], 

midges (eg. OROV in South America), mosquitoes [eg. Rift Valley fever virus (RVFV) 

in Africa or La Crosse encephalitis virus (LACV) in the United States] or ticks [eg. 

Crimean-Congo haemorrhagic fever virus (CCHFV) in Africa, Asia, Eastern Europe 

and the Middle East]. Hantaviruses for an unknown evolutionary advantage tend to 

cause persistent asymptomatic infection in rodents and are transmitted onwards to 

humans via aerosolised rodent urine/faeces; examples include Hantaan virus (HTNV), 

Seoul virus (SEOV), Puumula virus (PUUV) and Sin Nombre virus (SNV). The 

Tospovirus genera consist of important plant pathogens such as thrips-transmitted 
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Tomato spotted wilt virus (TSWV) (Elliott & Blakqori, 2011; Elliott & Schmaljohn, 

2013).  

      

Bunyaviruses became recognised as a separate family of viruses by the International 

Committee on Taxonomy of Viruses (ITCV) in 1975 (Elliott & Blakqori, 2011) and it 

was using a bunyavirus, Bunyamwera virus (BUNV), that in 1996 Bridgen and Elliott 

made the first breakthrough for segmented negative-sense RNA virus recovery via 

plasmid DNA alone (Bridgen & Elliott, 1996). BUNV has since become the prototype 

virus of the Bunyaviridae family and initial discoveries made on BUNV by Elliott and 

colleagues have been crucial to our understanding of how these viruses replicate and 

manipulate their host cell.  

 

Our continued understanding of this major virus family is important, because it 

constitutes viruses that are highly pathogenic in humans as well as viruses that can only 

infect invertebrates, making them an ideal model for comparative RNA virus evolution.   

 



   

	

         

 

              
Figure 1. 1. Phylogenetic relationship of RNA viruses.  

(A) Unrooted maximum likelihood tree based on the viral polymerase protein. Bunyaviruses are highlighted in yellow and cluster with 

other segmented RNA virus families (in red). The number of genome segments for each genus is presented in brackets. Chuviridae (in 

blue) consists of viruses that have either a circular genome, or both circular and segmented genome or only linear genomes. (B) 

Transmission cycles. The image illustrates the various transmission cycles through which arboviruses circulate in nature. These figures 

were taken from a recent study by Li et al. on the diversity of RNA viruses in arthropods (Li et al., 2015). 

A B 

Andrew
Typewritten Text
5

Andrew
Typewritten Text



  Chapter I. General Introduction 

	 6	

1.1.1 The bunyavirus virion and genome  

All bunyaviruses share a similar genomic organisation and replication strategy. The 

genome is composed of three single-stranded negative/ambi-sense RNA segments 

named according to their sizes large (L), medium (M) and small (S). Each segment 

consists of a coding region flanked by UTRs, which have terminal ends that are partially 

complementary and give the genome its pseudo-circular appearance (Figure 1.2). It was 

recently demonstrated that these complementary regions of both 5’ and 3’ UTRs 

interact on separate sites in the viral polymerase, a feature now thought to be conserved 

in all negative strand RNA virus polymerases (Gerlach, 2015). The secondary structure 

of the UTR functions as a promoter for viral genome replication and transcription (von 

Bonsdorff & Pettersson, 1975; Raju & Kolakofsky, 1989; Dunn et al., 1995; Elliott & 

Weber, 2009; Elliott & Blakqori, 2011).  

 

The main bunyavirus structural proteins encoded by all members include the RNA-

dependent RNA polymerase (L protein) by the L segment, the glycoproteins Gn and Gc 

by the M segment and a nucleocapsid (N) protein by the S segment. Some members 

encode an additional non-structural medium (NSm) protein on the M segment, while 

some orthobunyaviruses, phleboviruses and tospoviruses encode an additional non-

structural small (NSs) protein on the S segment (Elliott & Blakqori, 2011; Elliott & 

Schmaljohn, 2013). Some new world hantaviruses have now been shown to also encode 

a putative NSs protein (Vera-Otarola et al., 2012). The L and M segment proteins are 

encoded in a negative-sense orientation, however the coding strategy used for the S 

segment proteins differs for certain genera. Phleboviruses and tospoviruses use an 

ambisense coding strategy. In ambisense, genes are coded both in negative and positive 

polarities allowing proteins to be translated from separate mRNAs. Orthobunyaviruses 

have both proteins encoded in overlapping reading frames and so translation of both 

proteins occurs from the same mRNA transcript (Figure 1.3). The N protein interacts 

with the genome and with the L protein, as well as the glycoproteins to form the 

bunyavirus virion (Elliott & Blakqori, 2011; Elliott & Schmaljohn, 2013).  

 

Andrew
Typewritten Text
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Cryo-electron tomography and microscopy of Uukuniemi (UUKV), RVFV MP12, 

LACV, BUNV and Tula virus (TULV) depicts a difference in bunyavirus virion 

morphology between the different genera (Elliott & Schmaljohn, 2013). Phleboviruses 

appear to be spherical, whilst orthobunyaviruses and hantaviruses are pleomorphic. 

Hantaviruses can additionally consist of elongated virions (Figure 1.2 B). Common to 

all bunyaviruses is a lipid envelope, which is about 4 – 5 nm thick and encloses the 

densely packed ribonucleoprotein (RNP). Gn-Gc heterodimer spikes about 10 – 18 nm 

in length surround the envelope, with connections going between the RNP and the 

glycoproteins. The glycoproteins of orthobunyaviruses have a tripodal-like structure; 

these are arranged as pentamers and hexamers in phleboviruses and as unevenly 

distributed tetramers in hantaviruses. The virion diameter of BUNV was found to be 

108 ± 8 nm (Bowden et al., 2013), that of LACV 75 – 115 nm (Talmon et al., 1987), 

RVFV MP12 100 nm (Freiberg et al., 2008; Sherman et al., 2009), UUKV 95 – 125 nm 

(von Bonsdorff & Pettersson, 1975; Hewlett et al., 1977; Overby et al., 2008) and that 

of TULV 120 – 160 nm (Huiskonen et al., 2010).  
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Figure 1. 2. Bunyavirus virion structure.  

(A) Schematic diagram showing a bunyavirus virion. Electron microscopy of OROV 

data estimates that OROV virions are ≈70 nm in diameter (Personal communication, Dr. 

Gustavo Olszanski Acrani, University of Sao Paulo). On the right is the coding strategy 

used by OROV along with its genomic segments and expressed proteins. The size of the 

segments and proteins are given in brackets. (B) Cryo-electron micrographs of virus 

particles: (i) LACV (Talmon et al., 1987); (ii) RVFV (Huiskonen et al., 2009); (iii) Tula 

virus (Huiskonen et al., 2010), the image shows an elongated tubular particle; (iv) 

electron micrographs showing UUKV RNA molecules with panhandle (Hewlett et al., 

1977).  
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Figure 1. 3. The different coding strategies used by bunyaviruses.  

A schematic representation of the various coding strategies of the L, M and S 

bunyavirus segments. RNA molecules are in the negative-sense orientation 3’ – 5’. 

Representative viruses include Bunyamwera virus (BUNV), Rift Valley fever virus 

(RVFV), Dugbe virus (DUGV), Hantaan virus (HTNV) and tomato spotted wilt virus 

(TSWV). mRNA orientation is in the 5’ – 3’ direction (black arrows). Viral proteins  

(coloured boxes) include L, polymerase; Gn and Gc, glycoproteins; N, nucleocapsid 

protein; and the non-structural proteins, NSm and NSs (Elliott & Schmaljohn, 2013). 
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The protein coding regions 

 

L  

The L gene on the L segment encodes an RNA dependent RNA-polymerase (RdRp) that 

the virus requires in order to transcribe and replicate its genome (Jin & Elliott, 1991). 

Work in the early 1990’s by Jin and Elliott established that the bunyavirus polymerase 

domain resides in the central region of the protein (Jin & Elliott, 1992, 1993b). This 

work succeeded in the initial identification of a probable “polymerase module” that 

appeared to remain evolutionarily conserved in every available RdRp sequence (Poch et 

al., 1989). Segmented negative strand virus RdRps additionally exhibit endonuclease 

activity and for bunyaviruses this was identified by isolating positive/coding-sense 

RNA that contained 5 – 15 nucleotide long host-cell derived capped oligonucleotides at 

the 5’ termini (Patterson et al., 1984; Jin & Elliott, 1993b, a; Garcin et al., 1995). This 

endonuclease activity termed “cap-snatching” was first identified in Influenza virus 

(Krug et al.; Plotch et al., 1979) and is a transcription initiation method where by short 

5’ caps from the host pre-mRNAs are cleaved for the purpose of priming viral mRNA 

synthesis (Reich et al., 2014). The cap-snatching endonuclease domain of the 

bunyavirus L protein is present at its N-terminus (Muller et al., 1994), and is supported 

by structural data on LACV (Reguera et al., 2010). Nairoviruses have an Ovarian 

Tumor (OTU)-domain additionally present before the endonuclease domain around 

amino acids 29 – 158 (Honig et al., 2004; Kinsella et al., 2004; Capodagli et al., 2011; 

Devignot et al., 2015). Interestingly this domain is also present in RdRps of several 

positive-sense RNA viruses, and is implicated in antagonising the host innate immune 

pathway as discussed in 1.1.3.  

 
The L protein localises in the cytoplasm and around the perinuclear region suggesting 

an association with intracellular membrane compartments. Co-localisation of the N-

protein further suggests that these regions harbour the viral replication complexes 

(Kukkonen et al., 2004; Shi & Elliott, 2009; Brennan et al., 2011). The sizes of various 

bunyavirus L proteins are listed in Table 1.1. 
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M 

The M gene encodes a large polyprotein precursor, which is co-translationally cleaved 

into glycoproteins Gn and Gc (Elliott & Schmaljohn, 2013). The sizes of various 

bunyavirus M proteins are listed in Table 1.1. Cleavage of the M polyprotein occurs by 

host signal peptidases and the mature Gn and Gc proteins are transported from the 

endoplasmic reticulum (ER) as heterodimers to the site of viral budding in the Golgi 

apparatus (Persson & Pettersson, 1991; Lappin et al., 1994; Elliott & Schmaljohn, 

2013). For BUNV the Golgi-targeting and retention signals are found within the Gn 

protein (Shi & Elliott, 2004). Work on BUNV and HTNV glycoproteins has shown that 

both Gn and Gc are altered by N-linked glycosylation, and failure to rescue BUNV 

lacking the Gn N-glycan that is present on its N-termini showed the importance of Gn 

for proper Gc folding (Shi & Elliott, 2004; Shi et al., 2005). The ER chaperones 

calnexin and calreticulin have also shown to play a role in HTNV Gn-Gc folding (Shi & 

Elliott, 2004). HTNV Gn and Gc are of the high-mannose type (Shi & Elliott, 2004), 

whereas it appears that only the Gn of BUNV, LACV and Inkoo viruses are 

predominately high-mannose (Shi et al., 2005). The Gn and Gc proteins are responsible 

for virus entry into a host cell, although it is still uncertain whether both or just one 

protein is responsible for attachment to the host cell receptor (Cifuentes-Munoz et al., 

2014). Computational modelling of the HTNV (Ogino et al., 2004; Tischler et al., 2005) 

and Sandfly fever virus (Garry & Garry, 2004) glycoproteins implicated Gc as a fusion 

protein. This was then followed on by experimental evidence using LACV Gc which 

mapped residues 860 – 1442 as essential for the fusogenic activity (Plassmeyer et al., 

2005; Plassmeyer et al., 2007). In BUNV a domain on the C-terminus of Gc around 

residues 930 to 982 was also mapped as important for cell-to-cell fusion (Shi et al., 

2009). Further work on Andes virus also supported the role of Gc in fusion by mapping 

its activity to residues 115 – 121 (Cifuentes-Munoz et al., 2011). Such fusion proteins 

are responsible for the virus and host cell membranes to merge, and is an important step 

in the virus entry process (reviewed in section 1.1.2). A Maguari virus (MAGV) mutant 

lacking the N-terminal 239 aa of Gc (Pollitt et al., 2006), as well as a BUNV 

recombinant containing a fluorescent protein in place of the first 346 aa of Gc (Shi et 

al., 2010) demonstrated Gc N-terminus as dispensable for infectivity of the virus. The 

crystal structure of RVFV Gc has now recently revealed a three domain protein fold 
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similar to that of the class II fusion proteins of alphaviruses and flaviviruses, further 

strengthening the evidence for Gc in fusion (Dessau & Modis, 2013).  

 

In addition to Gn/Gc some bunyaviruses also encode a non-structural protein (NSm) on 

the M segment (Figure 1.3 and Table 1.1) (Fazakerley et al., 1988; Matsuoka et al., 

1988), and from early work using BUNV it was shown that this protein also localises to 

the Golgi (Nakitare & Elliott, 1993; Shi et al., 2006). A MAGV mutant with two-thirds 

of its NSm C-terminus missing suggested that the C-terminus of this protein is not 

crucial for the virus in cell culture (Pollitt et al., 2006). This is also true for SBV, as a 

large internal deletion in the NSm C-terminus does not affect the virus infectivity even 

in vivo (Kraatz et al., 2015). What role the protein may play in the virus life-cycle in the 

case of these orthobunyaviruses is still unclear. However, for the phlebovirus RVFV the 

NSm protein is important for infection in mosquitoes by allowing the virus to cross the 

midgut barrier (Crabtree et al., 2012; Kading et al., 2014). Additionally, in RVFV the 

NSm can stay fused to Gn, producing a protein called P78 (Figure 1.3), which also has a 

role in virus circulation in mosquitoes (Kreher et al., 2014). In tospoviruses the NSm 

protein has been shown to be important for virus cell-to-cell spread (Kormelink et al., 

1994; Storms et al., 1995; Soellick et al., 2000).  

 

S 

The S segment mainly encodes the N protein. However, some ortho- and hanta- viruses 

have evolved to take advantage of the leaky scanning of ribosomes. In these viruses N is 

encoded from the first AUG site, whilst an additional protein called NSs is encoded 

from a downstream AUG site on the same mRNA transcript (Fuller & Bishop, 1982; 

Fuller et al., 1983; Vera-Otarola et al., 2012). In contrast to this, phlebo- and tospo- 

viruses employ an ambisense coding strategy so that N and NSs can be translated on 

separate mRNA transcripts from the same genomic segment. Nairoviruses are not 

known to encode NSs (Elliott & Schmaljohn, 2013). The size of various bunyavirus S 

segment proteins are listed in Table 1.1.  

 

The NSs protein functions mainly as an interferon (IFN) antagonist (see section 1.1.3 

for a detailed explanation), but may also play a role in the regulation of the L protein 
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(Weber et al., 2001; Elliott & Schmaljohn, 2013; Brennan et al., 2015). The N protein 

on the other hand is important in the viral life-cycle, interacting with L protein during 

genome replication and with Gn-Gc during virus particle formation. Due to this, high 

quantities of N are present in both virions and in the virus infected host cells (Elliott & 

Schmaljohn, 2013). N is responsible for encapsidating and protecting each vRNA 

segment in the form of RNPs, and though virions contain genome and antigenome 

segments there appears to be a preference for genomic encapsidation (Richmond et al., 

1998; Osborne & Elliott, 2000). N does this via a signal in the 5’ UTR panhandle 

structure (Osborne & Elliott, 2000; Severson et al., 2001; Mir & Panganiban, 2004) and 

encapsidation begins via N-N interaction. Using reverse genetics these interacting 

regions in BUNV N were mapped to residues 1 to 10 of the N-terminus and residues 

216 to 233 of the C-terminus, along with a central domain encompassing amino acids 

94 to 158 (Leonard et al., 2005; Eifan & Elliott, 2009). Similar N-N oligomerisation 

and RNA binding have also been suggested for viruses in the tospo- and hanta- virus 

genera (Uhrig et al., 1999; Kaukinen et al., 2001; Severson et al., 2001; Kaukinen et al., 

2003). Protein structural data for several orthobunyavirus N proteins have now 

confirmed the original BUNV mutagenesis studies. N protein structures for BUNV (Li 

et al., 2013), leanyer virus (LEAV) (Niu et al., 2013), SBV (Dong et al., 2013b; Dong 

et al., 2013a) and LACV (Reguera et al., 2013) demonstrate that N forms a tetrameric 

ring and each of the monomers are folded to contain a globular head domain (made up 

of N- and C- terminal domains) and flexible arms (N- and C- terminal arms) with a 

positively charged RNA-binding groove between them (Figure 1.4.A). The groove in 

each monomer binds 11 bases (Figure 1.4.B). The flexible arm facilitates N-N 

interaction in a head-to-head and tail-to-tail manner. The N proteins of phleboviruses 

RVFV (Raymond et al., 2010; Ferron et al., 2011) and Toscana virus (TosV) (Olal et 

al., 2014) on the other hand form a hexameric ring arrangement with the N-terminal 

arm of one monomer interacting with the globular domain of another. Each monomer 

can bind six bases in a similar manner to the orthobunyaviruses. The nairovirus CCHFV 

that does not encode an NSs protein on the S segment interestingly shares a closer 

structural homology with arenavirus Lassa virus NP than with other bunyaviruses, 

specifically at its RNA binding domain (Carter et al., 2012). Additionally, CCHFV N 

contains a structurally exposed caspase-3 dependent cleavage site (Asp-Glu-Val-Asp) at 
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its N-terminus, which can result in the cleavage of the N protein. This site was shown to 

be conserved in several CCHFV strains, although what significance it holds in terms of 

the virus life-cycle is yet to be determined (Karlberg et al., 2011; Carter et al., 2012). 

  

An interesting deviation from the typical NSs-encoding orthobunyaviruses is Brazoran 

virus. Its putative NSs ORF is encoded from the first initiation codon prior to N, 

although using a weak Kozak sequence. This putative protein is 19.6 kDa in size which 

is larger than the “typical” ≈10 kDa orthobunyavirus NSs protein size. In addition, the 

C-terminus of N contains a glutamine-rich domain not present in other orthobunyavirus 

N proteins (Lanciotti et al., 2013). At present it is unclear what the significance of any 

of these observations are; future functional and structural work on these proteins will 

however prove useful to understanding the evolution of these diverse bunyaviruses. 

 

Table 1. 1. Bunyavirus protein size 

The various proteins (sizes in kDa) encoded by representative members of each genus.  

Genus Virus L Gn Gc NSm N NSs 

Hantavirus Hantaan 247 70 35 0 48 0 

Nairovirus Dugbe 459 35 73 0 50 0 

Orthobunyavirus Bunyamwera 259 32 110 11 26 11 

Phlebovirus Rift Valley fever 238 55 62 14 27 30 

Tospovirus Tomato spotted wilt 332 46 75 34 29 52 
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Figure 1. 4. Crystal structure of SBV N.  

(A) Protomer structure of SBV N showing the N terminal arm (NTA; blue), a C-

terminal domain (CTD) and the C terminal arm (CTA; red). Taken from (Dong et al., 

2013a). (B) Tetrameric structure of SBV N–RNA complex. RNA (42 nucleotide, stick 

form, orange) bound inside the tetrameric SBV N ring, formed by four protomers (blue, 

green, yellow and cyan). The dotted line shows a gap in the bound RNA. Taken from 

(Dong et al., 2013b). 

A 

B 
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The untranslated regions 

The bunyavirus UTR contains signals for genome replication, packaging and 

encapsidation. RNA secondary structures are crucial for such functions. In 

bunyaviruses, the terminal 3’ and 5’ ends of each segment are complementary and 

based on available sequences the first 8 to 11 nucleotides of all three segments are 

highly conserved within a given genus (Table 1.2). Beyond the conserved nucleotides 

the sequences and UTR lengths begin to vary and become unique within a segment and 

a specific virus (Elliott et al., 1991; Kohl et al., 2004a; Barr et al., 2005; Elliott & 

Schmaljohn, 2013).  

 

Table 1. 2. The terminal UTR consensus sequence of bunyaviruses 

Sequences are represented in genomic sense. Some orthobunyaviruses differ from the prototype 

sequence at positions 8 and 9, which are highlighted in bold. The mismatch at position 9 is 

highlighted in red.  

Genus  Virus  Terminal nucleotides  

Hantavirus  Hantaan 3'- AUCAUCAUCUG...  
5'- UAGUAGUAUGC...  

Nairovirus  Dugbe 3'- AGAGUUUCU...  
5'- UCUCAAAGA...  

Orthobunyavirus  Bunyamwera 3'-  UCAUCACAUGA...  
5'- AGUAGUGUGCU... 

Phlebovirus  Rift Valley fever 3'- UGUGUUUC...  
5'- ACACAAAG...  

Tospovirus  Tomato spotted wilt 3'- UCUCGUUA...  
5'- AGAGCAAU...  

 

 

Orthobunyaviruses have a very diverse range of UTR lengths (Table 1.3) and point 

mutations in any of the first 20 nucleotides can either partially disrupt or completely 

eliminate promoter activity (Dunn et al., 1995; Kohl et al., 2004a). The sequences 

upstream of this region are specific to each segment and when disrupted can have a 

drastic effect on the regulation of the encoded gene. This was demonstrated when 

Lowen et al. created a viable, but highly attenuated recombinant BUNV that was 

engineered to have its L gene flanked by the M segment UTRs (Lowen et al., 2005). 

Though the internal regions of the UTR are essential for gene regulation, recombinant 
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viruses lacking large portions of these sequences are viable (Lowen & Elliott, 2005; 

Mazel-Sanchez & Elliott, 2012). The minimum requirement for a viable BUNV S 

segment mutant is a 22-nucleotide 5’-UTR and at least 112 nucleotides at the 3’-

terminus (Lowen & Elliott, 2005). Further work on BUNV M revealed that nucleotides 

20 to 33 at both termini are important for genome packaging (Kohl et al., 2006). Also 

the segment-specific sequences appear to have a role in regulation of packaging and co-

packaging of each segment into a single virion (Kohl et al., 2006; Terasaki et al., 2011). 

Recent work on BUNV has now demonstrated that the L protein evolves to some degree 

in order to accommodate mutations in these UTRs (Mazel-Sanchez & Elliott, 2015) 

 

Table 1. 3. Examples showing the 3’ and 5’ UTR lengths for different 

orthobunyaviruses (antigenome sense) 

Virus Serogroup 
L M S GenBank 

Accession No.s 5' 3' 5' 3' 5' 3' 
Oropouche Simbu 43 50 31 91 44 218 KP052850-52 
Schmallenberg Simbu 27 90 23 138 31 106 KC355457-59 
Leanyer Simbu 68 180 40 141 67 179 HM627179-81 

Brazoran unclassified 44 126 58 230 71 272 NC_022038-39, 
KC854416 

Bunyamwera Bunyamwera 50 108 56 100 85 174 NC_001925-27 

La Crosse California 
encephalitis 61 127 61 140 81 195 NC_004108-10 

 

 

Bunyaviruses in the genera Phlebovirus and Tospovirus employ an ambisense strategy 

to encode proteins from their S, and M and S segments, respectively. Between the two 

genes on these segments is an intergenic region (IGR) that allows for differential 

regulation of gene expression and termination (Flick et al., 2004). Phleboviruses and 

tospoviruses, along with plant infecting tenuiviruses (currently in an unassigned family) 

are so far the only known viruses to have both negative and ambisense genome 

segments. It is probable that these viruses form an evolutionary link between the purely 

segmented negative stranded viruses (Orthomyxoviridae) and the purely segmented 

negative stranded ambisense viruses (Arenaviridae) (Nguyen & Haenni, 2003). 
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1.1.2 The life-cycle of a bunyavirus particle in mammalian cells 

Attachment and entry 

Similar to other enveloped viruses a bunyavirus virion utilises its glycoproteins Gn and 

Gc to attach and enter into a host cell. The type of cellular receptor the virion binds to 

will determine the cell tropism of that virus. Current understanding of host cell 

receptors for bunyaviruses are limited, however knowledge of the varied cell tropism of 

some bunyaviruses indicate that these viruses may have evolved to interact with a 

number of mammalian cell receptors (Elliott & Schmaljohn, 2013). Phleboviruses 

RVFV, SFTSV, TosV, Punta Toro (PTV) and UUKV, and orthobunyavirus Germiston 

virus were shown to interact with host cell receptor DC-SIGN (DC [dendritic cell] - 

specific ICAM [intercellular adhesion molecule] - 3 grabbing non-integrin). DC-SIGN 

is a receptor present on immature DCs, which reside in peripheral tissues and are likely 

the first cells to encounter incoming viruses. DC-SIGN is a type II membrane protein 

with a calcium-dependent lectin extracellular domain likely capable of interacting with 

the glycosylated sites on the viral glycoproteins (Lozach et al., 2011; Hofmann et al., 

2013). This interaction would then trigger a response in the DC causing it to mature into 

an antigen-presenting cell (Tan & O'Neill, 2005). As number of viruses appear to have 

evolved to use DC-SIGN as entry into mammalian cells they have also evolved 

mechanisms of blocking the maturation of these cells (Rogers & Heise, 2009). 

Phleboviruses RVFV and TosV have also been shown to interact with the proteoglycan 

heparin sulfate receptor (Jin et al., 2002; de Boer et al., 2012b).  Whilst, pathogenic 

hantaviruses can interact with integrins β1, β2 (CR3 and CR4) and β3 (Gavrilovskaya et 

al., 1998; Gavrilovskaya et al., 1999; Raftery et al., 2014), as well as Decay-

accelerating factor (DAF)/CD55 and gC1qR/p32 (Choi et al., 2008; Krautkramer & 

Zeier, 2008) for attachment to endothelial and epithelial cells.  

 

Upon attachment bunyaviruses take advantage of the endocytic pathway for 

internalization. OROV, LACV, HTNV and CCHFV were shown to use the clathrin-

mediated endocytotic (CME) pathway (Figure 1.6 A) (Jin et al., 2002; Santos et al., 

2008; Simon et al., 2009; Hollidge et al., 2012). CME is used by all cells and is 

probably the reason why several enveloped viruses use it to gain entry into cells (Figure 
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1.5 A, step 2). Interestingly, UUKV appears to predominantly use a clathrin-

independent pathway to enter A549 (human) and BSC-40 (money) cell-lines (Lozach et 

al., 2010). Akabane virus (AKV) on the other hand uses the clathrin-independent 

pathway in bovine-derived cell-lines, whereas in non-bovine cells it seems to use the 

CME pathway (Bangphoomi et al., 2014).  

Membrane fusion 

The endocytic pathway follows a pH gradient that can be detected by bunyavirus 

glycoproteins triggering a conformational change in their structure (Överby et al., 

2008). This pH sensing is possible due to protonation of the histidine residues typically 

found on the viral fusion protein (Kampmann et al., 2006; Mueller et al., 2008). As 

discussed previously, Gc likely functions as a fusion protein. This is further 

strengthened by work on RVFV, where certain conserved histidine residues on Gc were 

found to be important for virus infectivity (de Boer et al., 2012a). Conformational 

changes in Gc would then mediate fusion between viral and endosomal membranes, 

hence allowing release of viral RNP into the cell cytoplasm (Figure 1.5 A, step 3) 

(Mercer et al., 2010; Cosset & Lavillette, 2011). Several enveloped viruses are known 

to use this mode of penetration (White et al., 1981; Kielian et al., 2010). Detailed work 

by Lozach et al. demonstrated that UUKV is transported from the early endosomes (pH 

<6.3) to late endosomes (pH <5.3) before infection occurs (Figure 1.6 B). The authors 

demonstrated that infection was pH dependent since neutralisation of vesicular pH 

inhibited infection, whilst acidification of the external cell environment was sufficient 

to trigger fusion of the viral and cell plasma membranes (Lozach et al., 2010). Cell-to-

cell fusion has been shown using different bunyaviruses, where over-expression as well 

as infection induces syncytium formation (Jacoby et al., 1993; Hacker & Hardy, 1997; 

Ogino et al., 2004; Plassmeyer et al., 2005; Shi et al., 2007).  

Transcription and Replication 

Bunyaviruses replicate in the host cell cytoplasm and progeny virions mature and bud at 

the Golgi apparatus, Figure 1.5 A (Shi et al., 2010; Elliott & Schmaljohn, 2013). Upon 

release of RNP the virion-associated L begins transcription of the genome via a cap-

snatching mechanism (Figure 1.5 B). Work on SNV suggests that N can recognise 5’ 

caps of cellular mRNA, which are then cleaved by L (Mir et al., 2008). Work prior to 
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this using BUNV and RVFV demonstrated that both L and N are together required for 

active transcription (Dunn et al., 1995; Lopez et al., 1995). As N also encapsidates the 

genome, structural data suggests that N could potentially expose the UTRs using its 

flexible arms allowing L to bind (Elliott, 2014). Recent structural data on LACV L 

bound to vRNA revealed that the terminal 3’ and 5’ UTR sequences are crucial and that 

they each bind specific regions in the L molecule, confirming all prior in vitro 

mutagenesis work. The overall crystal structure of L indicates a main globular core, 

which harbours the RdRp and RNA-binding domains connected to a flexible 

endonuclease domain by a linker region. The template entry and exit tunnels and the 

nascent RNA exit tunnels are located in the main globular core (Gerlach et al., 2015).  

 

Transcription occurs prior to replication and unlike transcription, replication occurs in a 

cap-independent manner. The exact mechanism for switching from cap-dependent to 

cap-independent initiation is still uncertain, but the possibilities of host cell translation 

shut-off forcing this switch; or that viral and/or host proteins may be involved in the 

process have been proposed (Guu et al., 2012; Elliott & Schmaljohn, 2013). In 

transcription the nascent mRNA terminates upstream of the 5’ end, however in 

replication the nascent strand is processed right to the very end of the 5’ termini. 

Transcription termination signals ubiquitous to all three segments have not been found, 

but a pentanucleotide sequence 5’-UGUCG-3’ in BUNV S segment appears to be able 

to signal termination (Barr et al., 2006; Ikegami et al., 2007; Blakqori et al., 2012).  

 

Translation commences immediately on the growing nascent mRNA strand and is 

required to prevent this strand from hybridising to the template and halting 

transcription. These mRNA species are not poly(A) tailed. The L and S segment 

mRNAs are translated by free ribosomes, whilst M is translated by membrane-bound 

ribosomes (Elliott & Schmaljohn, 2013; Elliott, 2014). Once in the replication mode it 

is suggested that nascent cRNA undergoes immediate circularisation by polymerase 

dimerisation followed by immediate N encapsidation. This replicative intermediate 

RNP is known as the antigenome (Figure 1.5.B) and it serves as a template for another 

round of replication (Gerlach et al., 2015). 
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Release 

The M segment products Gn and Gc are post-translationally modified by N-linked 

glycosylation. Primary glycosylation takes place at the ER (Elliott & Schmaljohn, 2013; 

Elliott, 2014). All viral proteins then migrate towards the Golgi and signals in the Gn 

cytoplasmic tail (CT) help recruit RNP for assembly (Shi et al., 2007; Strandin et al., 

2013). Early EM work on UUKV and BUNV demonstrated viral factories at the Golgi 

complex where these viruses appear to bud (Figure 1.6 B and C) (Kuismanen et al., 

1982; Salanueva et al., 2003; Fontana et al., 2008). Mature bunyaviruses are then 

transported to the plasma membrane in large vesicles via the secretary pathway (Figure 

1.6 D) where membrane fusion then enables the virions to exit the host cell (Figure 1.5 

A, step 8-10; Figure 1.6 D and E) (Elliott & Schmaljohn, 2013; Elliott, 2014). 
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Figure 1. 5. Life cycle of the bunyaviruses.   

(A) Schematic diagram of the various stages in a bunyavirus life-cycle. EE, early endosomes; LE, late endosomes; ER, endoplasmic 

reticulum; SV, secretary vesicles. (B) Transcription and replication of the bunyavirus genome. The genome is in a negative-sense 

orientation and is transcribed into a replicative intermediate known as the antigenome. Red circles depict the N protein encapsidating the 

genome/antigenome. The red dashed-box highlights that the mRNA contains 10 – 15 nt long host-derived primers/caps. Numbers 

correspond to the stages found in (A). Illustrations adapted from (Elliott & Schmaljohn, 2013; Elliott, 2014).
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Figure 1. 6. Electron micrographs of bunyavirus entry and exit from the host cell.  

(A) OROV (arrowhead) entering HeLa cells via clathrin-coated pits (arrow). Image 

taken from (Santos et al., 2008). (B) UUKV inside early (EE#2) and late (LE) 

endosomal vesicles in A549 cells. Image taken from (Lozach et al., 2010). (C) Viral 

factories of BUNV in the BHK-21 cells. G, Golgi; V, virus particle. The arrows show 

various tubular and globular structures that form part of the viral factories. Image taken 

from (Fontana et al., 2008). (D) BUNV inside the Golgi in BHK-21 cells (arrows), post-

Golgi area (arrowhead). (E) BUNV exiting BHK-21 cells by secretary vesicles (SV) (F). 

Exited BUNV attached to the cell surface. Images (D), (E) and (F) were taken from 

(Salanueva et al., 2003), where the cryosections were labelled with anti-Bunyamwera 

virus antiserum. 
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1.1.3 Host responses to bunyavirus infection 

 
Vertebrate and invertebrate cells have evolved to recognise molecular signatures, 

thereby enabling them to distinguish between “self” and “non-self”. In terms of a virus 

infection, certain distinct features on the viral genome or on their replication 

intermediate are recognised by “pattern” recognition receptors (PRRs) on or within the 

host cell. These foreign molecular features are known distinctively as pathogen-

associated molecular patterns (PAMPs) and they can set in motion a series of events all 

geared towards preventing onwards spread of the infection (Ausubel, 2005; Randall & 

Goodbourn, 2008; Iwasaki, 2012). 

The type 1 interferons and bunyaviruses 

Mammalian cells can sense the presence of foreign RNA through cellular receptors 

(PRRs) such as transmembrane toll-like receptors (TLR), and cytosolic receptors RIG-I 

(retinoic acid-inducible gene 1) and MDA5 (melanoma differentiation-associated 

protein 5). TLRs are mainly expressed in lymphocytes, dendritic cells, macrophages and 

epithelial cells. For instance, TLR3 is highly expressed in the endosomes of myeloid 

dendritic cells and can recognise dsRNA following endocytosis of the virus (Schaefer et 

al., 2004). RIG-1 and MDA5 on the other hand are more widely expressed. RIG-I 

receptors recognise short dsRNA with triphosphorylated 5’ (5’ppp) ends, whereas 

MDA5 can recognise long dsRNA structures (Goodbourn et al., 2000; Randall & 

Goodbourn, 2008; Reikine et al., 2014; Schneider et al., 2014; Hoffmann et al., 2015; 

Weber, 2015). Recognition by RIG-1 and MDA5 triggers phosphorylation of 

transcription factors such as the interferon regulatory factors (IRF) IRF-3 and IRF-7, 

and NF-κB (nuclear factor kappa-light-chain enhancer of activated B cells) via 

activation of mitochondrial adaptor molecule called Cardif/VISA/MAVS/IPS-1 (CARD 

adaptor inducing IFN-β/Virus-induced signalling adaptor/Mitochondrial antiviral 

signalling protein/IFN-β promoter stimulator protein-1). The phosphorylation of the 

transcriptional factors leads to their translocation into the nucleus in order to induce the 

production of type 1 interferons (IFNs), IFN-α and IFN-β (Figure 1.7). Translocation 

occurs when for example the C-terminus of IRF-3 is phosphorylated hence causing its 

dimerization and exposure of its nuclear localisation signal (NLS), whilst the NLS of 
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NF-κB is exposed after phosphorylation of its inhibitor molecule (Inhibitor of NF-κB, 

IκB) that is subsequently degraded by the proteasome. Tank Binding Kinase 1 (TBK1) 

and IKKε are essential kinases which are also involved in activating IRF-3 and IRF-7. 

IRF-3 activation can also occur via TLR3 signalling through adaptor molecule Toll-

interleukin (IL)-1-resistance (TIR) domain-containing adaptor inducing IFN-β (TRIF) 

and kinases TBK1 and IKKε (Goodbourn et al., 2000; García-Sastre & Biron, 2006; 

Randall & Goodbourn, 2008; Schneider et al., 2014; Hoffmann et al., 2015). 

 

IFN-α and IFN-β are cytokines that are expressed widely by a number of cell-types, and 

are encoded on chromosome 9 along with other type 1 IFNs (IFN-ε, IFN-Κ and IFN-ω) 

(Reikine et al., 2014). The produced IFN-α/β use the JAK-STAT signalling pathway to 

signal the expression of a number of proteins that have antiviral effects and/or are 

positive or negative regulators of the pathway (IFN-stimulated genes, ISGs) 

(Goodbourn et al., 2000; Randall & Goodbourn, 2008; Schneider et al., 2014; 

Hoffmann et al., 2015). The JAK-STAT pathway is activated when IFN-α/β bind to the 

type 1 IFN heterodimeric receptor complex (IFNAR1 and IFNAR2), both on the cell 

they were produced in and on adjacent cells. The IFNAR receptors are expressed on 

almost all cells and when activated lead to a conformational change in the bound IFN 

receptor chain with Janus activated Kinase 1 (JAK1) and non-receptor tyrosine kinase 2 

(TYK2). JAKs are ubiquitously present in cells and activated JAKs lead to 

phosphorylation of transcriptional activator proteins STAT1 and STAT2 (signal 

transducer and activator of transcription). STAT1 is phosphorylated by JAK1 on 

tyrosine 701 and Tyk2 phosphorylates STAT2 on tyrosine 690. This causes the 

dimerization of STAT1 and STAT2 hence forming a NLS, further STAT1/STAT2 

interact with IRF9 to form a heterotrimeric transcription factor complex ISG factor 3 

(ISGF3), which translocates to the nucleus and binds to an IFN-stimulated response 

element (ISRE) in the genome. Activation of ISRE then leads to induction of over 100 

ISGs (Figure 1.7) (Goodbourn et al., 2000; García-Sastre & Biron, 2006; Randall & 

Goodbourn, 2008; Reikine et al., 2014; Schneider et al., 2014; Hoffmann et al., 2015). 

 

This intracellular defence mechanism is part of a highly evolved mammalian innate 

immune response designed to clear the cell of virus infection. However, several viruses 
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have evolved to encode proteins that function specifically as antagonists against this 

system (Goodbourn et al., 2000; Randall & Goodbourn, 2008; Schneider et al., 2014; 

Hoffmann et al., 2015). Bunyaviruses tend to target the cells’ early response stage. New 

York-1 hantavirus (NY-1) for instance, uses its Gn-CT tail to inhibit RIG-1 as well as 

TBK1 (Helgason et al.; Fitzgerald et al., 2003; Alff et al., 2006). Whilst, NSs-encoding 

bunyaviruses mainly use the NSs protein to target the transcriptional machinery of the 

host cell hence inhibiting IFN induction (Weber et al., 2002; Elliott & Weber, 2009; 

Elliott & Blakqori, 2011). The first evidence of NSs being an IFN antagonist was 

demonstrated in 2001 when Bridgen et al. created a BUNV mutant lacking a 

functioning NSs ORF (rBUNdelNSs) (Bridgen et al., 2001). This mutant displayed a 

reduced ability to shut-off host cell protein synthesis, was attenuated in mice and 

induced high levels of type I IFN in cultured cells. Similar results were soon shown 

with the phlebovirus RVFV (Bouloy et al., 2001). RVFV mutants Clone-13, with a 

large in-frame NSs deletion of 549 nucleotides, and MP12 with a single-amino acid 

substitution at position 513 in NSs are attenuated in vivo and in vitro. When both these 

mutant NSs ORFs were replaced with that of wild-type (wt) RVFV the viruses behaved 

similar to the wt in terms of IFN induction and replication efficiency in IFN-competent 

mice. The absence of IFN-β mRNA in both the wt RVFV and wt BUNV infected cells 

demonstrated that NSs was blocking IFN-β production at the transcription level (Bouloy 

et al., 2001; Weber et al., 2002). Similar results were obtained with other bunyaviruses 

such as LACV, AKV, SBV and UUKV (Blakqori & Weber, 2005; Ogawa et al., 2007; 

Elliott et al., 2013; Rezelj et al., 2015) demonstrating that at least in these viruses NSs 

is non-essential for virus replication, but rather enhances replication by antagonising the 

host cells response.  

 

We are still in the process of understanding all NSs interactions within a mammalian 

cell. From work on BUNV and RVFV we know that its ability to inhibit IFN-β 

activation occurs downstream of transcriptional activation through disruption of the 

DNA-dependent RNA polymerase II (RNAPII) activity (Weber et al., 2002; Kohl et al., 

2003b; Billecocq et al., 2004). RNAPII is an enzyme that transcribes all protein- coding 

genes of the eukaryotic genome and is regulated by multiprotein complex Mediator 

(Med)	(Allen & Taatjes, 2015). Sub-units of this Mediator complex respond to external 
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cell stimuli signalling the complex formation, which consists of modules head, middle 

and tail. The head module is involved in stabilizing the RNAPII initiation complex 

(Plaschka et al., 2015) and BUNV NSs was found to interact with sub-unit Med8 of this 

module (Figure 1.8) (Leonard et al., 2006). Med8 is one of the sub-units that interact 

with the carboxy-terminal domain (CTD) of RNAPII. The CTD is made up of a heptad 

repeat sequence (Y1S2P3T4S5P6S7), of which there are 52 in the mammalian RNAPII, 

and its phosphorylation is essential for RNAPII function. Phosphorylation at serine 

(Ser) 5 is required for initiation and recruitment of capping enzymes, while Ser2 

phosphorylation is required for elongation and 3’-end processing of the nascent mRNA 

transcript, Figure 1.8 (Robinson et al., 2012; Corden, 2013; Eick & Geyer, 2013). Cells 

infected with BUNV show a significant reduction in RNAPII Ser2 phosphorylation. 

This was initially thought to be due to an interaction of the BUNV NSs C-terminus 

(amino acids 83 – 91) with Med8, however a BUNV NSs mutant lacking a N-terminus 

of 21 amino acids was also unable to degrade RNAPII, indicating that both the C- and 

the N- terminus are important for NSs function (Thomas et al., 2004; Leonard et al., 

2006; van Knippenberg et al., 2010). LACV and SBV NSs target RNAPII for 

degradation by the proteasome and C-terminal mutations of SBV NSs have been shown 

to affect the protein’s ability to degrade RNAPII (Blakqori et al., 2007; Verbruggen et 

al., 2011; Barry et al., 2014). The NSs protein of RVFV on the other hand interacts with 

subunits of the general transcription factor TFIIH (Figure 1.8), which also has a role in 

RNAPI transcription (Assfalg et al., 2012). With RVFV NSs preventing subunits p44 

and XPD from interacting, it presumably affects the activity of Cdk7 (cyclin-dependent 

kinase) of CAK (Cdk activating kinase), which is responsible for Ser5 phosphorylation 

on RNAPII, Figure 1.8 (Le May et al., 2004).  

 

RVFV NSs is intriguing as so far it is the only known bunyavirus NSs to form 

filamentous structures in the nucleus. It is also so far the only bunyavirus NSs shown to 

directly target the IFN-β promoter by interacting with SAP30 (Sin3A associated protein 

30) and transcriptional repressor protein YY1. This interaction maintains the 

YY1/SAP30/NCor/HDAC/Sin3A co-repressor complex in a silent state on the IFN-β 

promoter thereby directly inhibiting IFN-β transcription (Le May et al., 2008). With 

SFTSV it seems that the NSs forms viral inclusion bodies in the cytoplasm which the 
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virus uses to capture kinases TBK1 and IKKε, and the proteins STAT1 and STAT2 

(Ning et al., 2014; Ning et al., 2015). Viruses from the Anopheles A, B and Tete 

serogroups encompass some of the non-NSs encoding orthobunyaviruses, and as 

expected show no inhibition of IFN-β production (Mohamed et al., 2009). For rodent 

viruses TULV and PUUV, only putative NSs ORFs have been predicted, and over-

expression of these in reporter assays have shown an inhibition of IFN-β, NF-kB and 

IRF-3 activity (Jaaskelainen et al., 2007). HTNV, Dobrava (DOBV) and SEOV rodent 

viruses on the other hand have been shown to use their N protein to inhibit NF-kB 

activation, by targeting the signalling protein tumor necrosis factor-α (TNF-α) (Taylor 

et al., 2009). Nairovirus CCHFV however, seems to use its L protein to antagonise the 

host immune system. For the TNF-α mediated NF-kB pathway to be activated its 

inhibitor IκB must be ubiquitinated, and with an OTU-domain present on the CCHFV L 

protein the virus is able to inhibit protein ubiquitination in the cell. OTU-domains have 

protease activity and these domains are also present in other nairoviruses such as 

DUGV and Nairobi sheep disease virus (NSDV) (Frias-Staheli et al., 2007). 
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Figure 1. 7. Schematic of the type I IFN pathway.  

A simplified schematic of IFN induction and signalling via RIG-1 and MDA5.  

Recognition of viral nucleic acid eventually leads to phosphorylation of transcription 

factors causing their translocation into the nucleus to turn on type I IFN transcription. 

Produced IFNs bind to IFNAR receptors on the cell and in adjacent cells causing 

phosphorylation of STAT1/2. This in turn leads to the transcription of various ISGs, for 

example MxA (Myxovirus resistance), OAS (2’5’-oligoadenylate synthase) and PKR 

(protein kinase R). M, Mitochondria.  

Modified version from (Goodbourn et al., 2000; Randall & Goodbourn, 2008). 
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Figure 1. 8. Bunyavirus and the host cell transcriptional machinery.  

A simplified version of mammalian-cell transcription (Eick & Geyer, 2013; Allen & 

Taatjes, 2015). CTD, C-terminal domain of RNAPII; GTF, general transcription factors; 

EF, elongation factors. The grey box is the promoter. BUNV NSs interacts with MED8 

preventing it from assembling with other subunits of the mediator complex. Serine 2 

phosphorylation levels are low in BUNV-infected cells and this prevents elongation. 

RVFV NSs interacts with p44 and p62 subunits of TFIIH of the GTF. RVFV NSs 

prevents Serine 5 phosphorylation. Phosphorylation of the CTD is important for 

RNAPII to progress to various stages. The red arrows and crosses indicate disruption.  
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Bunyaviruses and the antiviral response 

Enzymes dsRNA-dependent protein kinase R (PKR) and 2’5’-oligoadenylate synthase 

(2’5’OAS), along with the Mx (Myxovirus resistance) class of proteins have been 

studied extensively for their role in the antiviral response. PKR and 2’5’ OAS are both 

activated by dsRNA. PKR phosphorylates the α-subunit of the eukaryotic translational 

initiation factor 2 (eIF2α), which then prevents its recycling and cuts short initiation. 

2’5’ OAS on the other hand catalyses ATP binding to RNase L, ultimately degrading all 

RNA in the infected cell. Both of these enzymes also play a role in IFN signal induction 

(Goodbourn et al., 2000; Randall & Goodbourn, 2008). BUNV replication upregulates 

PKR, however its antiviral effects, if any, are only seen in vivo (Streitenfeld et al., 

2003). With RVFV, the NSs protein specifically targets and degrades PKR (Habjan et 

al., 2009b). LACV, RVFV, PUUV, HTNV, CCHFV, Tahyna virus (TAHV) and sandfly 

fever Sicilian virus (SFSV) appear to be sensitive to the antiviral effects of IFN-induced 

MxA (Frese et al., 1996; Kanerva et al., 1996). MxA belongs to the Mx family, which 

are large GTPases and from work on LACV it was shown to sequester the viral N 

protein into perinuclear complexes thereby preventing viral replication (Kochs et al., 

2002). Work on CCHFV and RVFV have also shown similar results where MxA targets 

the N protein to inhibit RNA synthesis (Andersson et al., 2004; Habjan et al., 2009a). 

Sequencing of the host cell transcriptome has shown that a number of ISGs are 

upregulated in response to bunyavirus infection, however we are only starting to 

understand their role in viral clearance. The ISG viperin (virus inhibitory protein, 

endoplasmic reticulum associated, interferon inducible) for example is expressed in 

A549 cells infected with a BUNV mutant lacking the NSs protein, and over-expressing 

viperin in cells can inhibit BUNV replication (Carlton-Smith & Elliott, 2012). 

Similarly, IFITM- (IFN-induced transmembrane protein) -2 and -3 proteins can reduce 

RVFV replication (Mudhasani et al., 2013). Bunyaviruses are susceptible to the effects 

of IFN-α in vitro, but only when cells have been pre-treated prior to infection. BUNV 

and RVFV titres can decrease by a 1000-fold in cells pre-treated with IFN-α, indicating 

that these viruses are susceptible to the downstream effects of various ISGs (Streitenfeld 

et al., 2003; Carlton-Smith & Elliott, 2012; Mudhasani et al., 2013). 
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Programmed death of a bunyavirus-infected cell 

External and internal signals can activate programmed death pathways in virus-infected 

cells as a means to rid infection. Receptors such as TNFR1 or Fas on the cell surface, as 

well as anti-apoptotic bcl-2 and pro-apoptotic Bax proteins inside the cell, can trigger 

this death pathway. IFN-inducible proteins such as transcriptional regulator p53, as well 

as PKR and 2’5’ OAS have been implicated in inducing activation of apoptosis. These 

events ultimately lead to the activation of various caspases with protease activity 

(Roulston et al., 1999; Kotwal et al., 2012). Viruses either use cell death as a means to 

spread, or slow, or even inhibit the process altogether. The BUNV NSs protein interacts 

with IRF-3 and delays apoptosis in cultured cells (Kohl et al., 2003b). Similarly, RVFV 

uses its NSm protein to inhibit caspase 8 and 9 activation (Terasaki et al., 2013). On the 

other hand LACV, HTNV, Prospect Hill virus (PHV), OROV, San Angelo virus (SAV), 

California encephalitis virus (CEV) and SBV induce apoptosis. LACV was shown to 

induce apoptosis in vivo in mouse brain, with regulator protein bcl-2 being an important 

factor (Pekosz et al., 1996). The C-terminus of LACV, SAV and CEV NSs proteins 

were shown to share sequence similarities to Drosophila Reaper protein (an inhibitor of 

Inhibitors of Apoptosis [IAP]) (Colon-Ramos et al., 2003). These NSs proteins were 

also found to function in a manner similar to Reaper, by accelerating cytochrome-C 

release independent of caspase activation (Colon-Ramos et al., 2003). For LACV and 

SBV, the NSs protein appears to be important for inducing apoptosis (Blakqori & 

Weber, 2005; Barry et al., 2014), whether this is the case for pro-apoptotic OROV is 

currently unknown (Acrani et al., 2010). HTNV can activate caspases 8 and 3 (Li et al., 

2004) presumably triggered by the down-regulation of p53 protein levels (Park et al., 

2013), bcl-2 protein levels (Kang et al., 1999) and disruption of Fas-signalling (Li et al., 

2002). Caspase activation is mainly mediated by the viral N protein. 

 
 
 
 
 
 
 
 



  Chapter I. General Introduction 

	 33	

1.2 Oropouche virus 

The following section highlights our current understanding of Oropouche virus - the 

focus of this PhD project.  

1.2.1 Epidemiology 

OROV is a midge-borne orthobunyavirus that causes a febrile illness in the South 

American human population. OROV is currently endemic in Brazil where all major 

Oropouche fever (OROF) outbreaks have been reported in Amazonian cities (Figure 1.9 

A). OROV, however, was first recorded in Trinidad, West Indies, in 1955. The virus 

was isolated from the acute-phase serum of a 24-year old febrile forest worker from a 

village called Vega de Oropouche, located near the Oropouche river in Sange Grande 

town in Trinidad (Anderson et al., 1961). Interestingly, no other febrile cases were 

reported, however serological surveys found neutralising antibodies in 3/46 humans, 

8/26 capuchin monkeys (Cebus capucinus) and 9/26 red howler monkeys (Alouatta 

seniculus insularis) indicating that the virus was indeed circulating. In 1960 the virus 

was again isolated in Trinidad from a pool of Mansonia venezuelensis mosquitoes 

(Anderson et al., 1961; Roberts et al., 1977). That same year the virus was isolated for 

the first time in Brazil from a dead sloth found near a Belem-Brasilia highway 

construction site. The following year in 1961 in Belem city 11,000 people were reported 

ill in what became the first OROF outbreak (Pinheiro, 1962). The largest OROF 

outbreak to date occurred in 1980 in the state of Para with an estimated 100,000 cases 

(Pinheiro et al., 1981b; Pinheiro F P, 2004). Between 1978 and 1981 about 220,000 

OROF cases were reported in Para, Amazonas and Amapa States (Anderson et al., 

1961; Pinheiro, 1962; Pinheiro et al., 1976; Dixon et al., 1981; Epidemiological 

Bulletin, 1982). In 1988 the virus spread to the states of Maranhao and Goias where 

about 200 people were reported ill (Vasconcelos et al., 1989). OROF outbreaks were 

soon being reported in cities all along the Amazon River, and between 1961 to 1996 

more that 30 outbreaks were recorded with an estimated 500,000 cases (Table 1.4) 

(Pinheiro F P, 2004). Outside of Brazil OROF outbreaks were reported for the first time 

in Panama in 1989 and Peru in 1992. The geographic distribution of OROV today 

includes Brazil, Panama, Peru and Argentina. Serological evidence suggests that the 

virus may also be circulating in Ecuador and Bolivia, and in nonhuman primates in 
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Colombia (Tesh, 1994; Rosa et al., 1996; Watts et al., 1997; Baisley et al., 1998; 

Pinheiro et al., 1998; Pinheiro F P, 2004; Mercer & Castillo-Pizango, 2005; Azevedo et 

al., 2007; Bernardes-Terzian et al., 2009; Epidemiological Alert, 2010; Forshey et al., 

2010). 

 

Similarity in signs and symptoms of OROF to other endemic viral diseases such as 

dengue, chikungunya and Mayaro fevers and the lack of a differential surveillance 

system has resulted in underreporting, and hence the exact epidemiology of OROV in 

Central and South America remains unclear. It is important to point out that the Belem-

Brasilia highway construction that took place between 1958 and 1960 resulted in 

considerable loss of the Amazon Rain forest. Similarly, the original Trinidad case was 

from a highly deforested area around Melajo forest. An interesting publication by 

Vasconcelos et al. describes the ecological changes that took place in Brazil in the early 

60s and 80s and reports the identification of 187 different viruses that were isolated 

between 1954 and 1998 (Vasconcelos et al., 2001). OROF is a classical example of how 

human impact on the environment can contribute to spillover and re/emergence of a 

new zoonosis. OROV circulates in two cycles; in the urban cycle it is transmitted 

amongst human populations via the biting midge Culicoides paraensis (Pinheiro et al., 

1976; Dixon et al., 1981; Pinheiro et al., 1981a; Roberts et al., 1981; Pinheiro et al., 

1982a). In contrast, tropical forest cycles involve the pale-throated three-toed sloth, 

Bradypus tridactylus and the black-tufted marmoset, Callithrix penicillata, though the 

vector/s remain largely unknown (Figure 1.9 B) (Nunes et al., 2005). OROF outbreaks 

typically occur during the rainy season, presumably due to high vector density (Pinheiro 

F P, 2004). Laboratory experiments and epidemiological surveys have reported that 

mosquitoes Aedes serratus, Aedes scapularis, Aedes albopictus, Culex fatigans, Culex 

quiquefaciatus, Coquilettidia venezuelensis and Psorophora ferox are susceptible to 

OROV infection (Anderson et al., 1961; Roberts et al., 1977; Pinheiro et al., 1981b; 

Smith & Francy, 1991). Neutralizing antibodies against OROV have also been detected 

in both wild and domestic birds (Pinheiro et al., 1976; Roberts et al., 1977; Pinheiro et 

al., 1981b), leading to speculation that birds could be carriers of the virus (Personal 

communication, Professor Alan Barrett, University of Texas Medical Branch). 
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Figure 1. 9. Epidemiology of OROV.  

(A) Map showing the geographic distribution of OROV in South America. Data on 

virus isolation in Brazil (green dots) was obtained from the Evandro Chagas Institute in 

Belem, Brazil. The red box highlights Trinidad, where OROV was first isolated in 1995. 

The grey area highlights where OROV has been detected in humans either by serology 

or virus isolation. The map was created using QGIS Version 2.2.0. (B) OROV 

transmission cycle. OROV reservoirs; Pale-throated three-toed sloth, Bradypus 

tridactylus (i) and (ii) Black-tufted marmoset, Callithrix penicillata. (iii) human 

settlements along the banks of the Amazon River (iv) OROV vector Culicoides 

paraensis. Image of Culicoides paraensis taken from 

https://cedarcreek.umn.edu/insects/029023n.html. Images (i), (ii) and (iii) were 

photographed during my stay in Brazil. 
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Table 1. 4. Recorded Oropouche fever outbreaks in South America 

County State Location Year Month Estimated 
cases 

Viral 
Isolation Reference 

Brazil Para Belem  1961 Feb - 
May 11000 15 Pinheiro et al. 

1981b 

Brazil Para Caratateua 1967 Feb - 
Mar 400 2 Pinheiro et al. 

1981b 

Brazil Para Braganca 1967 Mar - Jul 6000 8 Pinheiro et al. 
1981b 

Brazil Para Belem 1968 Feb - Jul n/a 101 Pinheiro et al. 
1981b 

Brazil Para Baiao 1972 Jun - 
Sept 85 n/a Pinheiro et al. 

1981b 
Brazil Para Santarem 1974 n/a n/a n/a Pinheiro et al. 2003 

Brazil Para Itupiranga 1975 May - 
Jun 420 9 Pinheiro et 

al.1981b 

Brazil Para Santarem 1975 Feb - 
Apr 14000 65 

Pinheiro et al. 1976;  
Pinheiro et al. 
1981b 

Brazil Para Alter do 
Chao 1975 Jul - Aug 280 16 Pinheiro et al. 

1981b 

Brazil Para Mojui dos 
Campos 1975 Dec - 

Apr 600 42 Pinheiro et al. 
1981b 

Brazil Para Palhal 1975 Feb - 
Apr 420 22 Pinheiro et al. 

1981b 

Brazil Para Belterra 1975 Apr - Jun 1600 n/a Pinheiro et al. 
1981b 

Brazil Para Tome-Aci 1978 Jun - Oct 2000 22 Pinheiro et al. 
1981b 

Brazil Para Belem 1979 Apr - Jun 16,000 16 Tesh 1994 

Brazil Para Several 1979 Mar - 
Nov 9000 46 Tesh 1994 

Brazil Para Belem 1980 Feb - Oct 102,000 n/a Tesh 1994 

Brazil Para Several 1980 Mar - 
Aug 37,000 52 Tesh 1994 

Brazil Amapa Mazagao 1980 n/a n/a n/a Tesh 1994 

Brazil Amazo
nas  Barcelos 1980 May - 

June 171 n/a Tesh 1994 

Brazil Amazo
nas  Manaus 1980 

- 81 
Nov - 
Mar 97,000 9 

Epidemiological 
Bulletin, 1982, 
Tesh 1994 

Brazil Amapa Mazagao 1981 n/a n/a n/a Vasconcelos et al. 
2001 

Brazil Maranh
ao 

Porto 
Franco 

1987 
- 88 

Dec - 
Mar 130 75 Tesh 1994, Pinheiro 

1998 

Brazil Goias Tocantinop
olis 

1988 
- 88 

Dec - 
Mar n/a 10 

Vasconcelos et al. 
1989, Tesh 1994, 
Pinheiro 1998 

Brazil Rondon
ia Ariquemes 1991 Feb - 

Mar 58,574 n/a Tesh 1994 

Brazil Rondon
ia 

Quro Preto 
do Oeste 1991 Feb - 

Mar 35,413 n/a Tesh 1994 

Brazil Para Serra 1994 Nov - 5000 12 Rosa et al. 1996, 
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County State Location Year Month Estimated 
cases 

Viral 
Isolation Reference 

Pelada Dec Pinheiro 1998 

Brazil Para Oriximina 1996 Apr - 
May n/a 33 Pinheiro 1998 

Brazil Para Altamira  1996 Feb - Jun n/a n/a Vasconcelos et al. 
2001 

Brazil Para Brasil 
Novo 1996 Jan - Feb n/a 7 Pinheiro 1998 

Brazil Amazo
nas  

Novo 
Airao 1996 Mar - 

May n/a 40 Pinheiro 1998 

Brazil Para Vitoria do 
Xingu 1996 n/a n/a 3 Pinheiro 1998 

Brazil Acre Xapuri 1996 Mar - 
Apr n/a 4 

Vasconcelos et al. 
2001, Pinheiro 
1998 

Brazil Para Paraua-
pebas 2003 Apr - 

May n/a n/a Azevedo et al. 2007 

Brazil Para Porto de 
Moz 2004 Jul - Aug n/a n/a Azevedo et al. 2007 

Brazil Acre n/a 2004 
- 06 n/a n/a n/a Bernardes-Terzian 

et al. 2009 

Brazil Para Braganca 2006 Apr - 
Aug 18000 n/a Vasconcelos et al. 

2009 

Brazil Manaus n/a 2007 
- 08 

Nov - 
Mar 128 n/a Mourao et al. 2009 

Brazil Amapa Mazagao 2009 Jun - Oct - - 
Personal 
Communication, 
IEC 

Panama Panama 
Chame/Sa
n 
Miguelito 

1989 Sept n/a n/a Tesh 1994 

Panama Panama Chilibre 1990 n/a n/a n/a Tesh 1994 
Peru Loreto Iquitos 1992 Jan - Apr n/a n/a Tesh 1994 

Peru Loreto Iquitos 1996 
- 97 n/a n/a n/a Watts et al. 1997 

Peru Pachiza Bagazan n/a May 282 n/a 

Epidemiological 
Alert: Outbreak of 
Oropouche Fever, 
Pan American 
Health 
Organization, 2010 
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1.2.2 Clinical profile  

The signs and symptoms of OROF include fever, headache, malaise, myalgia, 

arthralgia, photophobia, retrobulbar pain, nausea, vomiting, dizziness, skin rash, 

encephalitis and in some cases meningitis (Figure 1.10). OROV is not known to be fatal 

in humans. The incubation period of the virus ranges between 4 and 8 days. Symptoms 

typically last between 2 and 7 days, but can prolong for up to one month. A relapse of 

symptoms appears to be quite common with OROF, and some patients report a 

recurrence 10 days after acute-phase symptoms have subsided. Attempts to isolate virus 

during this period have not been successful (Pinheiro et al., 1976; Pinheiro et al., 

1981b; Pinheiro F P, 2004; Bastos Mde et al., 2012). 

 

Three routine diagnostic tests are carried out on all febrile patients in Brazil, and these 

include hemagglutination inhibition (HI) test, complement fixation text and ELISA. For 

the HI test samples are screened for 19 different arboviruses, but its low specificity 

often results in cross-reaction. More specific tests like the ELISA-immunoglobulin M 

(IgM) are then carried out. OROV-positive samples are taken forward for viral isolation 

only if the sample was collected within a five-day window, as OROV titres in patients 

decrease by day 5. Virus is isolated in newborn mice (Mus musculu) and cell culture 

(Personal communication, Department of Arbovirology and Hemorrhagic Fevers, 

Evandro Chagas Institute in Belem, Brazil). 

 

1.2.3 Molecular Epidemiology 

The first genome sequences for OROV were reported almost 15 years ago (Saeed et al., 

2000; Wang et al., 2001; Aquino et al., 2003; Aquino & Figueiredo, 2004). Since then 

the epidemiology and genetic variation of OROV has been widely studied and 

discussed. In most cases the information is largely based only on partial gene sequences. 

Saeed et al. carried out the first phylogenetic analysis for OROV (Saeed et al., 2000). 

The author’s analysis was based on the N ORF of 28 isolates and they identified that 

OROV clustered into three distinct genotypes. All subsequent studies confirmed this 

finding (Nunes et al., 2005; Mourao et al., 2009; Vasconcelos et al., 2009; Ladner et al., 

2014). In 2011, Vasconcelos et al. attempted to analyse the genetic evolution and 
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dispersal of OROV in South America (Vasconcelos et al., 2011). Using samples from 

1961 to 2009 the authors mapped a dispersal route for OROV and, more interestingly, 

identified that the OROV N ORF clusters in a novel fourth genotype. However, the 

information presented has to be treated with caution as the authors again utilised only 

partial genetic information.  

 

1.2.4 Pathogenesis 

The first OROV report in 1961 (Anderson et al., 1961) demonstrated that mice and 

hamsters are equally susceptibility to OROV infection. The authors also showed that 

adult mice were resistant to infection via intraperitoneal inoculation (i.p) compared to 

infant mice. In order to understand OROV pathogenesis, models based on these two 

animal models have since been established. Subcutaneous inoculation of OROV in adult 

Syrian golden hamsters (Mesocricetus auratus) results in a systemic infection, with 

symptoms similar to human infection appearing 72 hours post infection (p.i). Using 

immunohistochemistry the authors demonstrated OROV antigens in the liver and brain 

at 4 days p.i, indicative of hepatitis and CNS damage (Rodrigues et al., 2011). In 

contrast to what was seen in hamsters, Santos et al. found that in neonatal BALB/c mice 

OROV could be detected solely in the brain and spinal cord, both at high titres (Santos 

et al., 2012). Using immunohistochemistry Santos et al. subsequently demonstrated that 

in these mice OROV could be found in the brainstem and in particular the 

periaqueductal gray about 3 days p.i (Santos et al., 2014). During this period animals 

did not exhibit any symptoms until infection progressed to the forebrain 5 to 6 days p.i. 

Infection in neonatal mice lead to death approximately 10 days p.i (Santos et al., 2012). 

Though disease progression is not as exaggerated in human cases, OROV has been 

isolated from patient CNS (Pinheiro et al., 1982b; Bastos Mde et al., 2012). The highest 

number of meningitis cases were reported during a 1980 OROF outbreak in Para, in 22 

out of a total 292 patients. OROV was subsequently isolated from the CNS of one of 

these patients (Pinheiro et al., 1982b; Bastos Mde et al., 2012).  
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Figure 1. 10. Clinical symptoms of OROV.  

Percentage of 113 patients with OROF patients that presented indicated clinical 

symptoms during a 2006 outbreak in Para, Brazil. Data to produce the graph was taken 

from (Vasconcelos et al., 2009). 
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1.2.5 Virus-host interaction 

The lack of a reverse genetics system for OROV has limited research on a molecular 

level. As discussed earlier in this Chapter, Santos et al. demonstrated that OROV enters 

HeLa cells via the CME pathway (Santos et al., 2008). Acrani et al. later reported that 

OROV causes apoptosis in HeLa cells, and that this is triggered by viral protein 

synthesis, indicating that a particular protein may have a pro-apoptotic role (Acrani et 

al., 2010). In a recent study comparing 6-week old C57BL/6 mice knockout mutants, it 

was shown that MAVS activation is crucial for type 1 IFN signalling during OROV 

infection. The authors demonstrated that MDA5 knockout mice did not show any 

increased susceptibility to OROV infection, indicating that MAVS activation did not 

occur via MDA5. The authors also demonstrated that downstream to this both IRF 3 and 

7 are required together for transcriptional activation. Similar to an earlier hamster model 

study, the authors also found extensive hepatic necrosis in the liver of Mavs-/-, Ifnar-/- 

and Irf3-/- × Irf7-/- knockout mice, while other tissues either had no detectable virus or 

extremely low viral yields. The authors further demonstrated that, similar to other 

orthobunyaviruses, in human immunocompetent cell-lines such as 2fTGH and U3A, 

OROV is capable of inhibiting type 1 IFN production (Proenca-Modena et al., 2015a).  

 

1.2.6 Antivirals and OROV  

The antivirals Ribavirin and Mycophenolic acid have been tested against OROV in vivo 

and in vitro (Livonesi et al., 2006; Livonesi et al., 2007a). Both these drugs have been 

proven to exhibit antiviral activity against several RNA viruses and are being used 

clinically for several viral infections. However, both drugs demonstrated no antiviral 

effect against OROV. In a comparative study on the effects of IFN-α against several 

different orthobunyaviruses it was shown that OROV displayed resistance to its 

antiviral effects both in vivo and in vitro (Livonesi et al., 2007b). A decrease in OROV 

titres was only observed at a high dose of IFN-α (10,000 U/ml), and only when cells 

were either pre-treated for 24 hours or treated 2 hours p.i. Similarly, the survival rate of 

mice increased only when they were treated prophylactically with IFN-α. 
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1.3 Reverse genetics  

Genetics in the classical sense involves phenotypic observation prior to genetic 

identification and modification. The establishment of reverse genetics on the other hand 

allows recombinant DNA technology to be used in order to introduce specific mutations 

in the genome prior to phenotype observation. This targeted approach allows any 

phenotypic alteration to be attributed to the introduced mutation and has been a major 

step forward in virus research (Walpita & Flick, 2005; Elliott & Schmaljohn, 2013; 

Stobart & Moore, 2014). 

 

Reverse genetics for RNA viruses are complicated due to the lack of stability to the 

RNA molecule, and hence the genome requires conversion into cDNA before a 

mutation can be introduced. Negative-sense RNA viruses are further complicated by the 

fact that its genome in is the opposite orientation to the host cell’s mRNA. To overcome 

this they have evolved to package their own RNA-dependent RNA polymerase (RdRp) 

in order to initiate viral transcription and replication once inside a host cell. The naked 

genome of a negative-sense RNA virus is therefore not infectious, but instead it is the 

RNP complex that forms the minimal infectious unit for these viruses (Walter et al., 

2011). DNA and positive-sense RNA viruses on the other hand can use the host cell 

machinery to initiate their replication cycle, which means they are relatively easier to 

rescue as infectious virus can be generated directly from DNA plasmids (Elliott & 

Schmaljohn, 2013). 

 

The ability to generate recombinant viruses has allowed us to understand mechanisms 

used by viruses to evade the host immune system, and most importantly it has enabled 

us to target crucial proteins for antiviral and vaccine development (Elliott & 

Schmaljohn, 2013; Stobart & Moore, 2014). A lot of the work reviewed in this chapter 

would not have been possible had it not been for the initial work by Bridgen and Elliott 

in 1996 (Bridgen & Elliott, 1996), who established how segmented negative-sense RNA 

viruses could be recovered solely from cDNA.  
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1.3.1 A brief history 

The first DNA virus to be rescued was T2 Bacteriophage in 1957 by Fraser et al. (Fraser 

et al., 1957) and the first RNA virus to be rescued was Bacteriophage Qβ in 1978 by 

Taniguchi et al. (Taniguchi et al., 1978). The first mammalian cell-infecting positive-

sense RNA virus recovered from DNA plasmids was poliovirus (Racaniello & 

Baltimore, 1981). In the late 1980s methods were developed to purify vRNP for 

segmented negative-sense influenza A virus, which allowed viral transcripts to be 

synthesised in vitro and so functional RNPs could then be transfected into cells 

(Kawaoka & Neumann, 2004). Using this method Luytjes et al. (Luytjes et al., 1989) 

generated influenza viral transcripts encoding chloramphenicol acetyltransferase (CAT), 

and Enami et al. (Enami & Palese, 1991) rescued mutant influenza A viruses by 

genome reassortment with a helper influenza A virus. In 1994 Schnell et al. (Schnell et 

al., 1994) rescued rabies virus; this was the first time a non-segmented negative-sense 

virus was recovered entirely from cDNA alone. Here, the authors discovered that it in 

order to generate infectious negative-sense virus the cDNA plasmids had to contain 

antigenome (positive-sense) copies of the viral genome. The authors also supplied the 

system with “helper plasmids” in order to express the viral proteins required to start 

primary transcription. The first breakthrough for segmented negative-sense RNA 

viruses however, came when Bridgen and Elliott (Bridgen & Elliott, 1996) rescued 

BUNV. The authors used a similar system to Schnell et al., but due to the amount of 

plasmids being transfected the system was not very efficient and was later developed to 

allow virus recovery using three antigenome plasmids alone (Lowen et al., 2004). 

 

Reverse genetics systems for negative-sense RNA viruses are well established today, 

and the methodology to generate the viral transcripts can be either through use of the 

bacteriophage T7 RNA polymerase or cellular DNA dependent RNA polymerase I and 

II (Kawaoka & Neumann, 2004). 

 

1.3.2 Bunyavirus reverse genetics 

To date, a number of bunyaviruses have been rescued and these include BUNV 

(Bridgen & Elliott, 1996), LACV (Blakqori & Weber, 2005), RVFV (Ikegami et al., 
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2006), AKV (Ogawa et al., 2007), SBV (Elliott et al., 2013; Varela et al., 2013), 

SFTSV (Brennan et al., 2015), UUKV (Rezelj et al., 2015) and CCHFV (Bergeron et 

al., 2015). To rescue these viruses mammalian cell lines are transfected with three 

“transcription plasmids” that contain an antigenomic-sense cDNA copy of the three 

viral segments (Figure 1.11). Here, RNA transcription is usually under the control of a 

T7 promoter, and T7 RNA polymerase is delivered to the cells either through a helper 

vaccinia virus (vTF7-3) or fowlpox virus (FPT7) or it is constitutively expressed, for 

example, in BSR-T7/5 cells (Buchholz et al., 1999). Support/helper plasmids encoding 

viral proteins N and L are also transfected in some cases in order to boost initial 

transcription (Kawaoka & Neumann, 2004; Bouloy & Flick, 2009). Further, 

transcription efficiency of the T7 promoter in the transcription plasmid is increased with 

the addition of a G residue (either one, two or three) immediately after the promoter 

sequence. Billecocq et al. (2008) found that infectious RVFV could only be produced 

when at least two of the transcription plasmids had at least one ‘G’ after the T7 

promoter. The authors found that, without that increased efficiency the number of 

produced transcripts were too low to initiate replication (Billecocq et al., 2008). Hence, 

bunyavirus transcription plasmids contain one, two or three G’s immediately after the 

T7 promoter sequence. The newly generated viral RNA transcripts do not function if 

they contain extra nucleotides at the 3’ UTR, and so to prevent this, a self-cleaving 

hepatitis delta virus (HDV) ribozyme sequence is usually placed just before the T7 

terminator (Figure 1.11) (Perrotta & Been, 1990; Schnell et al., 1994; Bouloy & Flick, 

2009). A study by Ghanem et al., (Ghanem et al., 2012) demonstrated the inability of 

rabies virus to replicate when the transcripts contained extra nucleotides at their 3’end, 

whereas 5’ UTR overhangs were tolerated. The authors were able though to enhance 

rescue efficiency by using a hammerhead ribozyme (HHrz) to generate exact 5’ ends as 

well.  

 

Although the T7 system is the preferred method to rescue bunyaviruses the cellular 

polymerase I/II system has also been used. This system was initially developed for 

viruses that replicate in the nucleus, such as influenza viruses (Kawaoka & Neumann, 

2004; Billecocq et al., 2008). In 2001 Flick et al. (Flick & Pettersson, 2001) used the 

system to rescue UUKV minigenomes (discussed below), and also demonstrated that 
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pol-I derived CCHFV (Flick et al., 2003b) and HTNV (Flick et al., 2003a) minigenome 

segments could be packaged. Then in 2007 Ogawa et al. (Ogawa et al., 2007) rescued 

AKAV using this system. In 2008, Billecocq et al. (Billecocq et al., 2008) conducted a 

comparative study of both transcription systems using RVFV. Results from the study 

demonstrated that both the pol-I system and the T7 system efficiently generated high 

titres of infectious virus. Results also demonstrated that it was only the T7 system that 

produced infectious virus in the absence of the N and L helper plasmids. The N and L 

transcripts that are generated from the transcription plasmids are sufficient to initiate 

further steps, and hence bunyavirus rescue systems are successful with three plasmids 

(Bridgen & Elliott, 1996).  

 

Some bunyaviruses are, however proving to be difficult to rescue, for example viruses 

of the Hantavirus genus. Considerable efforts are being made towards understanding 

the underlying causes preventing virus recovery in cultured cells. With the current 

advancement in sequencing technology, comparisons between the dynamics of clinical 

isolates and cell-culture adapted virus populations will become easier, and with our 

growing understanding of how bunyaviruses function we may be a step closer to 

creating viruses from this important genus as well. These viruses do prove that although 

we have come a long way since Dimitrii Ivanovsky first observed tobacco mosaic 

“disease” in 1892, we still have a long way to go in our understanding of how a virus 

population functions.  

 

Minigenome and Virus-like Particle (VLP) production assay  
 
Minigenomes and Virus-like Particle (VLP) assays can also be used to study various 

aspects of the virus life cycle without the need to rescue infectious virus. This can be 

especially useful when viruses require high containment for their use, like CCHFV, 

which requires a biosecurity level 4 laboratory. In the minigenome system viral UTRs 

flank reporter genes such as Green Fluorescent protein (GFP), CAT or luciferase. These 

genes are placed in a viral genomic sense (negative-sense), so expression can only be 

derived with the correct viral L and N protein. Hence, the system also serves as a way to 

test viral UTRs and protein-coding genes for functionality before attempting to rescue 

the virus (Figure 1.12). The minigenome system has served as a way to study 
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bunyavirus transcription, encapsidation and promoter strength (Dunn et al., 1995; 

Weber et al., 2001; Blakqori et al., 2003; Flick et al., 2003a; Kohl et al., 2004b; 

Ikegami et al., 2005; Bergeron et al., 2010). In 2006 Shi et al. demonstrated that by 

including a glycoprotein expression plasmid in the minigenome system VLPs could be 

generated, Figure 1.12 (Shi et al., 2006). VLPs are formed because the L and N proteins 

interact with the reporter segment to form RNPs, and as the authors subsequently 

demonstrated using this assay, the RNP interacts with the Gn-CT in order to assemble 

and eventually bud out as a virion (Shi et al., 2006; Shi et al., 2007). Overby et al. 

(Overby et al., 2006) compared UUKV-VLPs to authentic UUKV-virions showing that 

their morphology in cell culture was identical. Since VLPs do not contain all the 

elements of an authentic virus they are not capable of further rounds of replication. 

Recently Devignot et al. demonstrated that by transfecting the “VLP-recipient” cells 

with L, M and N expression plasmids VLP production could be increased, which, as the 

authors point out, could be highly beneficial for VLP-based vaccine/antiviral 

development (Devignot et al., 2015).  
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Figure 1. 11. Bunyavirus rescue system.  

(A) BUNV UTR sequences. Sequences are presented in the antigenomic sense. 

Nucleotides in red highlight the mismatch at nucleotide number 9. The black line 

separates the first 11 nucleotides that are conserved for all three segments and within the 

Orthobunyavirus genus. Positions 8 and 9 vary in some viruses. The red shading shows 

the nucleotides that are conserved for that particular segment in the Orthobunyavirus 

genus, nucleotides beyond this vary for each virus. (B) Rescue system based on BUNV. 

The viral sequences shown in (A) need to be accurate in order for them to function 

(black box in the transcription plasmid). The transcription plasmid contains a T7 

promoter and terminator, a hepatitis delta ribozyme and the cDNA copy of the viral 

segment. These are transfected into cells that express T7 polymerase to allow 

transcription from the plasmids. Viral proteins expressed are sufficient to initiate 

replication. Figure B adapted from (Elliott, 2014). 
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Figure 1. 12. Schematic of a minigenome and VLP assay.  

The diagram explains how a minigenome and a VLP (virus-like particle) assay are 

carried out. The minigenome plasmid contains a reporter gene flanked by viral UTRs in 

the genomic sense orientation. Expression plasmids encode the viral L (polymerase) and 

N (nucleocapsid) protein, and in order to produce VLPs an M (glycoprotein) expression 

plasmid is used as well. If the plasmids are under the control of a T7 promoter, cells 

must be able to produce T7 RNA polymerase (eg. BSR-T7/5 cells).  
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1.4 Aims 
 
From the reviewed literature it is evident that we still have a lot to learn about OROV. 

Being able to genetically modify the virus would be a huge advantage to allow future 

investigation, and to build on all the important findings that have been discussed above.  

 

The overall aim of my PhD project was to establish a reverse genetics system for 

OROV and begin initial characterization of the virus in a cell-culture based system.  

 

To achieve my overall aim I developed the following approach: 

 

1. To re-sequence the genome of OROV prototype strain BeAn19991.  

2. To deep sequence OROV field isolates.  

3. To compare the prototype and field isolates.  

4. To establish a minigenome system for OROV. 
5. To establish a VLP system for OROV. 
6. To rescue OROV strain BeAn19991. 
7. To rescue OROV mutants lacking (a) NSm (b) NSs.  
8. To compare OROV with BUNV in its ability to inhibit type I IFN production.  
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Chapter II. Materials and Methods 

 

2.1 Materials  

2.1.1 Bacterial strains 

JM109 Escherichai coli strain: endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), 

relA1, supE44, Δ(lac proAB), [F´ traD36, proAB, laqIqZΔM15]. 

 

 Grown in LB medium. 

2.1.2 Eukaryotic cell lines 

2fTGH  Human Epithelial fibrosarcoma cells. 

Maintained in Dulbecco’s modified Eagle’s medium (DMEM; 

Invitrogen) supplemented with 10% fetal bovine serum (FBS). 

 

A549 Adenocarcinomic human alveolar basal epithelial cells. 

Maintained in DMEM (Life Technologies) with 10% (v/v) FBS (Life 

Technologies). 

 

A549NPro A cell line derived from A549 cells. These cells express the NPro protein 

of bovine viral diarrhea virus.  The NPro protein antagonises IFN-β 

production by targeting IRF-3 for proteasomal degradation. 

Maintained in DMEM (Life Technologies) with 10% (v/v) FBS (Life 

Technologies). 

 

A549V A cell line derived from A549 cells. These cells express the V protein of 

simian virus 5. The V protein blocks type 1 IFN signalling by 

degradation of STAT1. 
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Maintained in DMEM (Life Technologies) with 10% (v/v) FBS (Life 

Technologies). 

 

Aag-2  Derived from Aedes aegypti mosquito neonatal larvae. 

Maintained in Schneider’s Drosophila medium with L-glutamine 

(Gibco) supplemented with 10% FBS. 

 

BHK-21 BHK-21 clone 13, derived from baby hamster kidney fibroblast cells.  

Maintained in Glasgow modified Eagle’s medium (GMEM, Life 

Technologies) with 10% (v/v) newborn calf serum (NCS, Life 

Technologies) and 10% (v/v) tryptose phosphate broth (TPB; 

Invitrogen).  

 

BSR-T7/5 Derived from BHK-21 cells, these cells stably express the T7 

bacteriophage T7 RNA polymerase (T7RNAP) (Buchholz et al., 1999).  

Maintained in GMEM (Life Technologies) supplemented with 10% (v/v) 

FBS, 10% (v/v) TPB and 1 mg/ml G418 (Geneticin; Invitrogen).  

 

CPT-Tert Sheep choroid plexus cells. These cells have been immortalized with the 

simian virus 40 T-antigen and human telomerase reverse transcriptase. 

These cells lack a fully functioning IFN system. 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

DF-1  Chicken embryo fibroblasts. 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

HeLa  Human cervix adenocarcinoma epithelial cells. 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 
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LLC-MK2 Macaca mulatta kidney epithelial cells.  

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

MDCK Canine kidney epithelial cells. 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

MRK101 Derived from Grey red-backed vole kidney cells (Myodes rufocanus). 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

QT-35  Japanese quail fibrosarcoma cells. 

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS (Life Technologies). 

 

U4.4  Derived from Aedes albopictus mosquito neonatal larvae. 

Maintained in L-15 cell culture medium (Life Technologies) and 

supplemented with 10% (v/v) FBS and 10% TPB 

 

Vero E6 African green monkey (Cercopithecus aethiops) kidney epithelial cells.  

Maintained in DMEM (Life Technologies) and supplemented with 10% 

(v/v) FBS.  

  

2.1.3 Viruses  

Encephalomycocarditis virus (EMCV). 

 

Bunyamwera virus (BUNV)   

wtBUNV and rBUNVdelNSs2. 

rBUNVdelNSs2 is a recombinant virus that does not express the NSs protein.  
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Oropouche virus (OROV)  

OROV strain BeAn 19991 was kindly donated by Professor Luiz Tadeu Moraes 

Figueiredo, from the Ribeirao Preto School of Medicine, University of Sao Paulo, 

Brazil. 

 

OROV isolates - BeH 759021, BeH 759022, BeH 759024, BeH 759025, BeH 759040, 

BeH 759146, BeH 759529, BeH 759620, BeAn 789726 and BeAn 790177 were kindly 

provided by Professor Pedro Vasconcelos, from the Department of Arboviruses and 

Hemorrhagic Fever, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil. 

 

All experiments with OROV were conducted under Containment Level 3 laboratory 

conditions.  

 

2.1.4 Oligonucleotides 

All synthetic oligonucleotides were purchased from Integrated DNA technologies (IDT) 

at 25 nM scale with standard desalt purification.  

 

Table 2. 1. Common sequencing Primers 

Oligonucleotide Sequence (5'-3') Purpose 

PCR Anchor Primer GACCACGCGTATCGATGTCGAC 3’ RACE analysis 

Oligo d(T)-Anchor 

Primer 

GACCACGCGTATCGATGTCGAC

TTTTTTTTTTTTTTTTV 
3’ RACE analysis 

pTM-R CAACTCAGCTTCCTTTCGGGC Reverse sequencing pTM1 

plasmids 

pTM-up GGTGCACATGCTTTACATGTG 
Forward sequencing pTM1 

plasmids 

pUC118-F AGCGCCCAATACGCAAAC 
Forward sequencing 

pTVT7R plasmids 
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Table 2. 2. List of primers used in chapter 3, section 1 

Name 5’ - 3’ Segment Position 
Ama460MF CGGAACAACTTCGACATCAGG M 460 – 480 

Ama1151MF GCAATCATTTTGGTATTGTTGC M 1151 – 1172 
Ama2737MR CATTATAGTTTATCTGTCTC M 2756 – 2737 
Ama2795MF GGATCAGATTTGATGACACAC M 2795 – 2815 
Ama4056MR GCACTGGAGATCCTCTTCCC M 4075 – 4056 
Ama2470MF CACTGCGCAACCAGCAGATATG M 2470 – 2491 
H759529 MR GCTTTATATTTGCTGTCTATC M 2334 – 2314 
H759529 MF GCAATGATATGGATATATTAG M 3324 – 3344 
H759620 MR TTCAATATTCCAATCATCTG M 2105 – 2087 
AMA2930LF GCAAAAATGTGCCTGTACCTTGTC L 2930 – 2953 
AMA3082LR CTTTATTGTATTACTGATATAC L 3061 – 3082 
Ama4987LF CAGAGAGAATATGAGAGAG L 4987 – 5005 
Ama4202LF GCTTAGGTACATATCTCTTG L 4202 – 4226 
Ama5447LF GAGAGTTAAATTCTTAGGA L 5446 – 5464 
Ama2733LF CAGATTACACAGACTATATG L 2733 – 2752 
Ama1513LR GTCCCACATTTCTACACTAC L 1513 – 1494 
Ama267LF CACCTGATAATTACTTACTG L 267 – 286 
Ama944LF CCAAGCATGCATTTTATATGG L 944 – 964 

Ama1466LF GAGCATTTTTCAGCTAAGAT L 1466 – 1485 
Ama2509LR GTTATTTGCATTTTCTACTCG L 2509 – 2489 
Ama2489LF CGAGTAGAAAATGCAAATAAC L 2489 – 2509 
Ama794LF GAGTTTACTAAAGGGCATGC L 794 - 813 
Ama2118F CAGCATACGAGCAGAGGAAA L 2118 - 2137 

Ama2998LF GATAAGTGAACCAGGTGATTC L 2998 - 3018 
Ama3508LF GGAAGCAGCAACATTATTAG L 3508 - 3527 
Ama4089LF GAAAATTATCATCTCCGATC L 4089 - 4108 
Ama6099LF TGGATCTGTCAGAGTTAATG L 6099 - 6118 

OROVL_Anti ACCTCTCCAAAAATCTCATT L 5' UTR 384 – 365 
OROVL_gen GAACTAGACAATTGTATTCA L 3' UTR 6494 – 6513 

OROVM_Anti CTAATATCACATGCTGCTCTACATG M 5' UTR 396 – 372 
OROVM_gen GCACATATCTGTGGGAGAGACAT M 3' UTR 3959 – 3981 

OROSlig1 CTTGCGCCAATTCGGAATTGAC S UTR 713 – 734 
OROSlig2 GGTACATCGTTGAAAATGAAC S UTR 73 – 53 
PRM_Anti CCTGTATTGGGTTGCACTCG M 3' UTR 300 – 281 
PRM_gen GGGCTACCCATCCTTAGAC M 3' UTR 4206 – 4224 
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Table 2. 3. List of primers used for OROV BeAn19991 genome sequencing and cloning in Chapter 3, section 2. 

Oligonucleotide Sequence (5'-3') Segment/ gene Position 
OROLFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTCCTATTCCG L 1 – 19  
OROL1 GAAGTTAGTTAGATATGTCT L 3706 – 3687  

OROLRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTCCTATTTAG L 6833 – 6852  
OROL2 CCCTTGTGA ACTCAATGGTA L 3537 – 3556  

OROMFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTACCGGCAACAAACA M 1 – 25  
OROMRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTACCGACAACAATTT M 4508 – 4484  
OROSFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTCCACAATTC S 1 – 20  
OROSRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTCCACTATAT S 754 – 785 §  

OROdelNSsF GAGTTCATTTTCAACGACGTACCACAACGGACTACATCTACATTTGATCCGGAGGC
AGCATACGTAGCATTTGAAGC delNSs 51 – 127  

OROdelNSsR GCTTCAAATGCTACGTATGCTGCCTCCGGATCAAATGTAGATGTAGTCCGTTGTGG
TACGTCGTTGAAAATGAACTC delNSs 127 – 51  

pTM1-OROVL-F AAAACACGATAATACCATGTCACAACTGTTGCTCAACCAATATCG L 44 – 72  
pTM1-OROVL-R TTAATTAGGCCTCTCTTAGAAGTCAAATTTGGATTTGCCAGT L 6802 – 6776  
pTM1-OROVM-F AACACGATAATACCATGGCGAATTTAATAATTATTTCAATGGTTC Glycoprotein 32 – 62  

pTM1-OROVM-R TTAATTAGGCCTCTCCTACTTGATTTTCTGCTCCATGGCATATTCTATTTCATGT
CTGATT Glycoprotein 4294 – 4249  

pTM1-OROVS-F AAACACGATAATACCATGTCAGAGTTCATTTTCAACGATGTACCAC N 45 – 75  

pTM1-OROVS-R TTAATTAGGCCTCTCCTATATGTCAATTCCGAATTGGCGCAAGAAGTCTCTTGC
TGC N 740 – 699  

OROVL_Anti ACCTCTCCAAAAATCTCATT L 5' UTR 384 – 365  
OROVL_gen GAACTAGACAATTGTATTCA L 3' UTR 6494 – 6513  

OROVM_Anti CTAATATCACATGCTGCTCTACATG M 5' UTR 396 – 372  
OROVM_gen GCACATATCTGTGGGAGAGACAT M 3' UTR 3959 – 3981  

OROSlig1 CTTGCGCCAATTCGGAATTGAC S UTR 713 – 734  
OROSlig2 GGTACATCGTTGAAAATGAAC S UTR  73 – 53    

Viral sequences are shown in bold, §Based on GenBank accession number NC_005777.1.
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Table 2. 4. List of primers used for cloning in Chapter 3, section 2. 

Oligonucleotide Sequence (5'-3') Purpose 
pTVT7OROVMRen(–) 

OROVMhRen+ CAACAAACAGTGACAATGGCTTCCAAGGTGTACG
AC Amplify Renilla 

OROVMhRen- GGGAAAAATCGGTTTATTACTGCTCGTTCTTCAGC
ACG  

OROVdelMORF+ ATTTGGCTAAAAAGGGTAGG Delete M ORF 
OROVdelMORF- ACAGTGACAAACAACGACC  

OROVMhRenFlip+ GAAATTAATACGACTCACTATAGAGTAGTGTGCTA
CCAACAAC Invert Renilla 

OROVMhRenFlip- GGAGATGCCATGCCGACCCAGTAGTGTACTACCA
GCAACAAAC  

pTVT7OROVLRen(–) 

OROVLhRen+ CAAACAAAAACAATCTCAAAATGGCTTCCAAGGT
GTACGAC Amplify Renilla 

OROVLhRen- CTACTTTTACATGTGTATACCTTACTGCTCGTTCT
TCAGCACG  

OROVdelLORF+ GGTATACACATGTAAAAGTAGTGTT Delete L ORF 
OROVdelLORF- TTTGAGATTGTTTTTGTTTGTTTCGG  

OROVLhRenFlip+ TTAATACGACTCACTATAGAGTAGTGTGCTCCTAT
TTAGAAAC Invert Renilla 

OROVLhRenFlip- GGAGATGCCATGCCGACCCAGTAGTGTACTCCTA
TTCCGAAACAAAC  

pTVT7OROVSRen(–) 

OROVShRen+ CATAAAAAGAAATTCCAATAATGGCTTCCAAGGT
GTACGAC Amplify Renilla 

OROVShRen- AGTAGTGTGCTCCATTACTGCTCGTTCTTCAGCAC
G  

OROVdelSORF+ TGGAGCACACTACTGGGTCG Delete S ORF 
OROVdelSORF- TATTGGAATTTCTTTTTATGTTTTGAATTG  

OROVShRenFlip+ GAAATTAATACGACTCACTATAGAGTAGTGTGCTC
CATTACTGCTCGTTC Invert Renilla 

OROVShRenFlip- GGAGATGCCATGCCGACCCAGTAGTGTACTCCAC
AATTCAAAAC  

M -UTR 
OROMRenF9 GTTTGTTGCTGGTAGCACAC Quick-change 
OROMRenR9 GTGTGCTACCAGCAACAAAC  

OROMRenTCF GTTTGTTGCCGGTAGTACAC Quick-change 
OROMRenTCR GTGTACTACCGGCAACAAAC  

L -UTR 
OROVLRenGAF GTTTCGaAATAGGAGTACAC Quick-change 

OROVLhRenGAR GTGTACTCCTATTtCGAAAC  
S -UTR 

LShRen- TTATTTGTTTACTGTACTCCATTACTGCTCGTTCTT
CAGCACG 

Amplifying 
Renilla 

LOROVdelSORF+ TGGAGTACAGTAAACAAATAA Deleting S ORF 

LShRenFlip+ GAAATTAATACGACTCACTATAGAGTAGTGTGCT
CCCAATTCAA Invert Renilla 
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Oligonucleotide Sequence (5'-3') Purpose 
Tagging OROV NSs 

ONSsV5F CTGCTAGGTTTAGACAGCACCTAATAGTGAGAGA
GGCCTAATTAATTAAG V5 tag 

OVNSsV5R TGGGTTAGGGATGGGCTTGCCGGTATCCTGACAG
ACGGTGCAGGG  

ONSseGFPF GAAAAACACGATAATACCATGTACCACAACGG eGFP tag 
ONSseGFPR GCCCTTGCTCACCATGGTATCCTGACAGAC  

Bold, viral sequences 
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Table 2. 5. Oligonucleotides used to generate plasmids for M-UTR analysis in Chapter 3, section 3. 

Oligonucleotide 3'-5' Purpose 
OROVtoSBV3F CACTATAGAGTAGTGTTCTACCAACAC 8A/A 9A/A  (point mutation at the 3’ UTR) 
OROVtoSBV3R GTGTTGGTAGAACACTACTCTATAGTG  
OROVtoSBV5F GTTGCTGGTAGTTCACTACTGGGTCGGC 8A/A 9A/A  (point mutation at the 5’ UTR) 
OROVtoSBV5R GCCGACCCAGTAGTGAACTACCAGCAAC  
SBVtoOROV3F CACTATAGAGTAGTGTGCTACCACATGAAA 8T/A 9C/A (point mutation at the 3’ UTR) 
SBVtoOROV3R TTTCATGTGGTAGCACACTACTCTATAGTG  
SBVtoOROV5F CATTTTGATTGTGGTAGTACACTACTGGGTC 8T/A 9C/A (point mutation at the 5’ UTR) 
SBVtoOROV5R GACCCAGTAGTGTACTACCACAATCAAAATG  
OROV13delRenR GTAGCACACTACTCTATAGTGAG Using pTVT7OROVMRen(-) excise Renilla gene along with OROV M  
OROV13delRenF GTAGTACACTACTGGGTCGGCATG UTR, but maintaining 13 conserved nts 
OROV13CF CTATAGAGTAGTGTGCTACTTACTGCTCGTTCTTC Amplify Renilla gene along with the terminal 13 nts of OROV UTR as  
OROV13CR CCCAGTAGTGTACTACATGGCTTCCAAGG overhangs 

Bold, viral sequences.  
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Table 2. 6. Oligonucleotides used to create minigenome plasmids in Chapter 3, 
section 3.  

Oligonucleotide 3'-5' Purpose 
TVT7RSBVLhRen(-) 

SBVLhRenF 
CCCCTAATTACAATCACTATGGCTTCCAAGGTGTACGACC
CCGA  

Amplify 
Renilla  

SBVLhRenR GTATTATTTAAGATCAAGTTACTGCTCGTTCTTCAGCACG
CGC   

SBVdelLF CTTGATCTTAAATAATACATAATCTTTGCCCC  Delete SBV L 
ORF 

SBVdelLR AGTGATTGTAATTAGGGGTACACTACT    

SBVLhRenFlipF 
TTAATACGACTCACTATAGAGTAGTGTGCCCCTAATTACA
TGAAAC Invert Renilla   

SBVLhRenFlipR 
GGAGATGCCATGCCGACCCAGTAGTGTACCCCTAATTAC
AATCAC    

pTVT7AKVMhRen(-) 

AKVMUTRRLF GAACTACCACAACAAAATGGCTTCCAAGGTGTACG Amplify 
Renilla  

AKVMUTRRLR GTCTATTTTAATTTGATTACTGCTCGTTCTTCAGC   

AKVdelMR TTTGTTGTGGTAGTTCACTAC 
Delete AKV 
M ORF 

AKVdelMF TCAAATTAAAATAGACATAATGG   
AKVMhRenFlipF TACGACTCACTATAGAGTAGTGTTCTACCAC Invert Renilla   
AKVMhRenFlipR ATGCCATGCCGACCCAGTAGTGAACTACCAC   
pTVT7LENMhRen(-) 

Leanyer3UTRR1 
TTATATTCTCATTTTAAATTGGAGTGGAGCACACTACTC
TATAGTGAGTCGTA 3' UTR 

Leanyer3UTRF1 
GGATTTGTCTTAACCTCACATTCAATTTATTTGATGTAT
TACTGCTCGTTCTTC 3' UTR 

Leanyer3UTRR2 
CCCTTCTCGATGATTCTTTTCCCAGCTACTTATATTCTC
ATTTT 3' UTR 

Leanyer3UTRF2 
ATTTGTTCTATCTTTTTGTTTTACATTGACTTAATTGGAT
TTGTCTTAACC 3' UTR 

Leanyer3UTRR3P 
CCTGCAATGTTCAACTAACAGATTTATATTTATTATCCC
TTCTCGATGATTC 3' UTR 

Leanyer3UTRF3P 
TTTTTGTTTTATTTTTTATTTTTATTTTTATTTATTTTATT
TGTTCTATCTTT 3' UTR 

Leanyer5UTRFP GTAGTGCACTACTGGGTCGGCATGGCAT 5' UTR 
Leanyer5UTRRP CACTACAAAGTTAAAATGGCTTCCAAGGTG 5' UTR 
pTVT7OYAMhRen(-) 

Oya3hRenF1 
AATAAATTTGAATGTTTGTACGTGGTAGCACACTACTCT
ATAGTGAGTCG 3' UTR 

Oya3hRenR1 
GATTTATTCTCACTTGCTATATACACTGCACTTACTGCTC
GTTCTTCAGC 3' UTR 

Oya3hRenF2P 
GAACCGAAAGGTTCTACACAACTGCTAATTAAATAAATT
TGAATG 3' UTR 

Oya3hRenR2P 
TATTTTATTTTATTTTATTCGTCTGTATTTATTAGTTGAT
TTATTCTC 3' UTR 

OyaMR5PF GTATGTGGTAGTACACTACTGGGTCGGCATGGCATC 5' UTR 

OyaMR5PR 
AACAAACTTTTCAGAGAATTAAAATGGCTTCCAAGGTGT
AC 5' UTR 
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pTVT7PEDMhRen(-) 

PR48433UTRR1 
TAACATAATATTGTTGGTAGCACACTACTCTATAGTGAG
TCGTA 3' UTR 

PR48433UTRF1 
GATAGCACAGATCTATATTAGTCATTCTATTTATTTTACT
GCTCGTTCTT 3' UTR 

PR48433UTRF2P 
AGGACTTAGATAATATAATAAAATACAAATATATAAAAT
AACATAATATTGTTGG 3' UTR 

PR48433UTRR2P 
GTGATTCTATAATATAATCAACTTGTTAGGTTTATTGAT
AGCACAGATCTA 3' UTR 

PR48435UTRFP GTAGTACACTACTGGGTCGGCATGGCATC 5' UTR 
PR48435UTRRP CAACAACAAGATGGCTTCCAAGGTG 5' UTR 
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Table 2. 7. Oligonucleotides used in Chapter 3, section 4. 

Primer Sequence (5'-3') Plasmid 

delNSmOROVR TCCTGCAATTGGTGAGATGAATTC pTVTOROVdelNSm 

delNSmOROVF GATGAAGATTGCTTATCTAAAGAT pTVTOROVdelNSm 

OROV48NSsF CAGCATATGTAGCATTTGAAGCTAGATACG pTVTOROV48delNSs 

OROV48NSsR CGTATCTAGCTTCAAATGCTACATATGCTG pTVTOROV48delNSs 

OROV246NSsF CGGACAACGGTCTAACCCTGCACCGTCTGT pTVTOROV246NSs 

OROV246NSsR ACAGACGGTGCAGGGTTAGACCGTTGTCCG pTVTOROV246NSs 
 
OROVdelNSs2F 

 
GAGTTCATTTTCAACGACGTACCACAACGGACTACATCTACATTTGATCCGGAGGCAGCATACGTA
GCATTTGAAGC 
 

 
pTVTOROVdelNSs2 

OROVdelNSs2R GCTTCAAATGCTACGTATGCTGCCTCCGGATCAAATGTAGATGTAGTCCGTTGTGGTACGTCGTTG
AAAATGAACTC 

pTVTOROVdelNSs2 
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2.1.5 Plasmids 

Expression plasmids 

pTM1, contains a bacteriophage T7 promoter followed by an EMCV internal ribosome 

entry site (IRES) and a T7 terminator sequence (Moss et al., 1990). This plasmid was 

also used as a backbone in construction of other expression plasmids.  

 

Table 2. 8. Plasmids based on pTM1 backbone 

Plasmid Purpose Reference 
pTM1-FF-Luc Firefly luciferase  Weber et al. 2001 
pTM1OROV-L OROV L ORF This study 
pTM1OROV-M OROV M ORF This study 
pTM1OROV-N OROV N ORF This study 
pTM1OROV-NSs OROV NSs ORF This study 
pTM1SBV-L SBV L ORF Prof Elliott 
pTM1SBV-M SBV M ORF Prof Elliott 
pTM1SBV-N SBV N ORF This study 
pTM1BUNV-L BUNV L ORF Prof Elliott 
pTM1BUNV-M BUNV M ORF Prof Elliott 
pTM1BUN-N BUNV N ORF Prof Elliott 
pTM1eGFP eGFP Prof Elliott 
pTM1ONSseGFP OROV NSs tagged with eGFP This study 
pTM1ONSsV5 OROV NSs tagged with V5 This study 

 

 

Transcription plasmids 

pTVT7R(0,0), is a T7 RNA polymerase transcription plasmid (Johnson et al., 2000). 

Plasmids used in this study contain one ‘G’ immediately after the T7 promoter sequence 

in order to aid efficient transcription. The plasmid also contains the hepatitis δ ribozyme 

sequence followed by the T7 terminator sequence. 

 

Table 2. 9. Plasmids based on pTVT7 backbone 

Plasmid Purpose Reference 
pTVTOROVL OROV BeAn19991 L segment  This study 
pTVTOROVM OROV BeAn19991 M segment  This study 
pTVTOROVS OROV BeAn19991 S segment  This study 
pTVTOROVdelNSs(48NSs) OROV mutant S segment, refer to 

Chapter 3, Section 4 This study 
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Plasmid Purpose Reference 

pTVTOROVdelNSs2 
OROV mutant S segment, refer to 
Chapter 3, Section 4 This study 

pTVT7-246NSsOROV OROV mutant S segment, refer to 
Chapter 3, Section 4 This study 

pTVT7-159NSsOROV OROV mutant S segment, refer to 
Chapter 4 This study 

pTVT7-90NSsOROV OROV mutant S segment, refer to 
Chapter 4 This study 

pTVT7-78NSsOROV OROV mutant S segment, refer to 
Chapter 4 This study 

pTVTOROV2080S OROV mutant S segment, refer to 
Chapter 3, Section 4 This study 

pTVTOROVdelNSm OROV mutant M segment, refer to 
Chapter 3, Section 4 This study 

 

 

Reporter plasmids 

Minigenome-expressing plasmids contain the pTVT7R(0,0) backbone. The T7 

transcripts produced contain Renilla luciferase in negative-sense polarity.  

 

phRL-CMV, is a reporter plasmid expressing Renilla luciferase under the control of the 

cytomegalovirus (CMV) promoter. Provided by Professor Richard M. Elliott. 

 
Table 2. 10. Minigenome plasmids 

Plasmid Purpose Reference 
pTVT7OROVMRen(-) OROV M-minigenome This study 
pTVT7OROVLRen(-) OROV L-minigenome This study 
pTVT7OROVSRen(-) OROV S-minigenome This study 
pTVT72080SRen(-) OROV isolate BeH759025 S-minigenome This study 
T7OROVMRenminus9 M UTR mutant; 9C:G 15U:A; refer to Chapter 

3, Section 2 This study 
T7-OROV-MRen(-) 
9C/A15C:G M UTR mutant; refer to Chapter 3, Section 2 This study 
T7-OROV-MRen(-) 
9C/A15C/A M UTR mutant; refer to Chapter 3, Section 2 This study 
T7-OROV-MRen(-) 
9C:G15C:G M UTR mutant; refer to Chapter 3, Section 2 This study 
pTVT7OROV-shortSRen(-) OROV S-minigenome, with 14 nt 3' UTR This study 
T7-OROV-LRen(-)/18 OROV L-minigenome, mutation at nt 18 This study 
TVT7-SBVLRen(-) SBV L-minigenome This study 
pTVT7AKVMRen(-) AKV M-minigenome This study 
pTVT7LENMRen(-) LENV M-minigenome This study 
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Plasmid Purpose Reference 
pTVT7OYAMRen(-) OYAV M-minigenome This study 
pTVT7PEDMRen(-) Perdoes virus M-minigenome This study 
TVT7-SBVMRen(-) SBV M-minigenome Prof Elliott 
pTVT7-BUN-M-Renilla BUNV M-minigenome Prof Elliott 

 

2.1.6 Reagents  

2.1.6.1 Bacterial Culture 

• LB-Agar Miller, Formedium 

 40 g in 1 L of distilled water. Autoclaved. Stored at 4 °C. 

• LB-Broth Miller, Formedium 

25 g in 1 L of distilled water. Autoclaved. Stored at 4 °C. 

• Ampicillin Sodium, Sigma-Aldrich  

Stock solution at 100 mg/ml in distilled water, filter sterilised. Stored at -20 °C. 

2.1.6.2 Tissue Culture  

• 2X MEM 

20% (v/v) 10X Modified Eagle’s media (MEM, Invitrogen), 2% (v/v) L-

glutamine, 0.435% (v/v) sodium bicarbonate, 4% NCS, diluted in distilled water. 

• 1X MEM 

(Minimum Essential Medium), no glutamine, no phenol Red, Life Technologies. 

• DMEM  

Dulbeccos modified Eagle’s medium, Life Technologies. 

• FBS (Fetal Bovine Serum), Life Technologies. 

• GMEM 

Glasgow modified Eagle’s medium, Life Technologies. 

• G418 sulphate, Invitrogen. 

• Leibovitz 15 medium (Life Technologies). 

• NCS (Newborn Calf Serum), Life Technologies. 

• Opti-MEM (Opti-Minimum Essential Medium), Life Technologies. 
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• Phosphate buffered saline (PBS) 

137 mM NaCl, 15 mM KCL, 10 mM Na2HPO4/KH2PO4, pH 7.4. 

• TPB (Tryptose Phosphate Broth), Life Technologies 

Trypsin (10X), 2.5%, no Phenol Red, Invitrogen. 

2.1.6.3 Fixing and staining solutions 

• 8% formaldehyde (v/v) in PBS. 

• Crystal violet stain  

20% (v/v) ethanol, 1% (v/v) methanol, 0.1% (w/v) crystal violet, diluted in H2O. 

• Neutral Red, Sigma-Aldrich 

Stock made at 10X in PBS and filtered. Used at 0.6% (w/v).  

2.1.6.4 Virus plaque assay overlay 

Agarose overlay 0.6% (w/v) 

3% (w/v) of Agarose type HSA (Park Scientific Ltd.) in 100 ml of distilled water. 

Autoclaved and stored at room temperature (RT) until use. Diluted in 1XMEM (no 

phenol Red) prior to use in plaque assay. 

 

Avicel overlay 0.6% (w/v) 

1.2% (w/v) of Avicell (Avicell RC/CL, Microcrystalline cellulose & Sodium 

carboxymethylcellulose) in 100 ml of distilled water. Autoclaved and stored at room 

temperature (RT) until use. Prior to use in plaque assay diluted 50:50 with 2X MEM. 

2.1.6.5 Transfection reagents 

• Lipofectamine 2000, Invitrogen. 

• TransIT-LT1 Transfection Reagent, Mirus. 

2.1.6.6 DNA analysis  

• Agarose, Molecular Grade, BIOLINE. 

• Blue/Orange 6X Loading Dye, Promega. 

• Ethidium bromide, 10 mg/ml, Biotechnology grade, AMRESCO. 

• KOD Hot Start DNA polymerase, 1000u, Novagen, Cat No: 71086-4, Lot No: 
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D00144074. 

• 1Kb DNA ladder, Promega. 

• 10X TAE buffer 

0.4 M Tris, 1.142% (v/v) acetic acid, 0.01 M EDTA, diluted in H2O. Diluted to 

1X in H2O prior to use. 

• 10X TBE buffer 

1 M Tris, 0.9 M boric acid, 0.01 M EDTA, diluted in H2O. Diluted to 1X in H2O 

prior to use.  

2.1.6.7 RNA analysis 

• TRizol Reagent, Invitrogen.  

2.1.6.8 Protein analysis  

• Acrylamide:bis-acrylamide  

37.5:1 solution, Fisher Scientific. 

• Benzonase, Novagen. 

• Blotting Pad, 707, VWR International 

Hybond ECL nitrocellulose membrane (GE Healthcare Life Sciences).  

• Permeabilisation buffer 

0.1% (v/v) Triton X-100 diluted in PBS. 

• PBS 0.1% (v/v) Tween-20. 

• Protein Disruption Buffer (PDB) 

0.125 M Tris-HCl (pH 6.8), 4% (w/v) SDS, 25% (v/v) glycerol, 0.02% (w/v) 

bromophenol blue. Prior to use mix DTT 1M in a ratio of 4:1 (v/v), with 5 µl 

benzonase (≥ 250 units/µl) per 1 ml PDB. 

• Membrane transfer buffer 

20X NuPAGE Transfer Buffer (Novex, Life technologies) diluted in H2O. 

• MES SDS running buffer 

20X NuPAGE MES SDS Running Buffer (Invitrogen, Cat no. NP0002-02), 

diluted in H2O. 

• NuPAGE 4 – 12% Bis-Tris protein gel, 1.0 mm 10 or 12 or 15 wells, novex, life 

technologies, LOT 14030571. 
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• SuperSignal West Pico Chemiluminescent Substrate, Thermo Scientific, Prod ♯ 

34080, Lot ♯ OA183286. 

• TEMED (Fisher Scientific). 

• VECTASHIELD antifade mounting medium with DAPI (Vector Laboratories). 

• Western Blot blocking buffer 

5% skimmed milk powder (Marvel Original Dried Skimmed Milk) diluted in 

PBS 0.1% Tween-20.  

2.1.7 Antibodies 

Primary antibodies 

• Anti-OROV, ascetic fluid from mice infected with OROV. This was a gift from 

Dr. Eurico Arruda (University of Sao Paulo, Brazil). Used at dilutions 1:500 

(Western Blot) and 1:400 (IF).  

• OROV anti-N polyclonal rabbit antibody (1:1000; GenScript) was a kind gift 

from Professor Massimo Palmarini (MRC-University of Glasgow Centre for 

Virus Research).  

• BUNV anti-N-Rb (1:5000; (Shi & Elliott, 2009)). 

• anti-MxA (1:500; catalogue no. sc-50509, Santa Cruz Biotech). 

• anti-pSTAT1 (1:750; catalogue no. 9167S; Cell signaling). 

• anti-STAT1 (1:750; catalogue no. 9172, Cell signaling). 

• anti-tubulin monoclonal antibody (1:5000; catalogue no. T5168, Sigma). 

• Anti-V5 mouse. This was a gift from Professor Richard E. Randall (University 

of St. Andrews). Used at dilutions 1:1000 (Western Blot) and 1:400 (IF). 

 

Secondary antibodies 

• HRP-coupled secondary anti-rabbit (catalogue no. A0545; Sigma) and anti-

mouse (catalogue no. A4416; Sigma) were used at 1:5000.  

2.1.8 Enzymes 

Restriction enzymes  

Bbs1 (New England BioLabs). 

Bsg1 (Promega). 
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BsmB1 (Promega). 

 

Modifying enzymes 

Dpn1 (Promega). 

In-Fusion® HD Cloning Plus Kit (Clonetech, Takara Bio). 

KOD Hot Start DNA Polymerase (Novagen, Merck Millipore International). 

Moloney murine leukemia virus (MMLV) reverse transcriptase (Promega). 

Poly-A tailing kit (Ambion). 

T4 RNA ligase (New England Biolabs). 

RNaseOUTTM Recombinant Ribonuclease Inhibitor (Life Technologies).  

Shrimp Alkaline Phosphatase (rSAP) (New England BioLabs). 

T4 DNA ligase (Roche). 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell maintenance   

Mammalian cells 

Cell monolayers were cultured and maintained in 25, 75 or 225 cm2 tissue culture flasks. 

At 90% confluency cell monolayers were washed three times with PBS and then 

detached in 1X trypsin EDTA (Gibco) at 37°C. Detached cells were re-suspended in 

appropriate media and cell numbers determined using an automated cell counter (TC20, 

BioRad). For general maintenance cells were split at a ratio of 1:10 in fresh media. All 

mammalian cells were incubated at 37°C in 5% CO2 in a humidified atmosphere. 

 

Insect cells 

Mosquito cell lines were cultured and maintained in non-vented 25 or 75 cm2  tissue 

culture flasks. At 90% confluency cell monolayers were washed once with PBS and 

then detached using a cell scraper. Cells were then counted and re-suspended in 

appropriate media as described above. Insect cells were incubated at 28°C in a non-

humidified atmosphere. 

 

2.2.1.2 Transfection of mammalian cells 

Transfection  

Cells were seeded 24 hour (h) prior to transfection in 6-, 12- or 24-well cell culture 

dishes. Cells were transfected at 60 – 70 % confluency. For a 6-well vessel (surface area 

of one well 9 cm2), calculated amount of DNA was aliquoted into polystyrene tubes 

with 125 µl of serum-free Opti-MEM (Gibco). In separate tubes 125 µl Opti-MEM was 

mixed with 3 µl transfection reagent per µg of DNA. After 5 minutes (min) at room 

temperature (RT), the DNA and Opti-MEM mix was added to the Opti-MEM and 

transfection reagent mix. This was incubated for 20 min at RT. Cell culture media was 

then removed from monolayers and the transfection mix added drop-wise. Cells were 
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then incubated for 2 h at 37°C, before removing the transfection mix and replacing with 

fresh cell culture media.  

 

The volumes used were scaled up or down depending on the cell culture vessel.  

 

Minigenome assay 

1.5 ✕ 105 BSR-T7/5 cells/ml in 24-well plates were transfected with the desired amount 

of protein-expressing plasmids, 0.5 µg of a minigenome-expressing plasmid and 100 ng 

pTM1-FF-Luc (Weber et al., 2001) using 5 µl of Lipofectamine 2000 (Invitrogen), as 

per manufacturers instructions. The amount of DNA in each well was kept constant by 

addition of empty vector, pTM1. To normalize transfection efficiencies cells were co-

transfected with the firefly luciferase expression plasmid pTM1-FF allowing induction 

levels of Renilla luciferase to be calculated. At 24 h post-transfection (p.t), cells were 

washed with 0.5 ml PBS and then lysed using 100 µl Passive lysis buffer from the 

Promega Dual-Luciferase Reporter Assay kit (Promega) and the rest of the assay carried 

out as per manufacturer’s recommendations. Readings were measured on a GloMax 

20/20 luminometer (Promega).  

 

Virus-like particle production assay 

1.5 ✕ 105 BSR-T7/5 cells/ml in 12-well plates were transfected with desired amount of 

protein-expressing plasmids, 0.5 µg of a minigenome-expressing plasmid and 100 ng 

pTM1-FF-Luc (Weber et al., 2001) using 5 µl of Lipofectamine 2000 (Invitrogen), as 

per manufacturers instructions. At 24 h p.t Renilla and firefly luciferase activities were 

measured using Dual-Luciferase Reporter Assay kit (Promega). To generate VLPs, the 

transfection mix was supplemented with 0.5 µg of glycoprotein-expressing plasmid. At 

24 and 48 h p.t supernatants were harvested, clarified by centrifugation (4,000 rpm for 5 

min), digested with benzonase (≥ 250 units/µl, Novagen), and then used to infect naive 

BHK-21 cells or BSR-T7/5 cells that were pre-transfected with protein-expressing 

plasmids 24 h prior to infection. Renilla activity was measured after 24 h using the 

Promega Dual-Luciferase Reporter Assay kit (Promega).  

 

To neutralise VLPs, samples were incubated with hyperimmune mouse ascetic fluid to 
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OROV or with anti-BUNV rabbit antiserum for 1 h at RT before infecting cells.  

 

2.2.1.3 Oropouche virus rescue  

Recombinant OROV viruses were generated by transfecting BSR-T7/5 cells (1.5×105 

cells/ml) in 6-well cell culture dishes with 1 µg of pTVTOROVL, pTVTOROVM (or 

pTVTOROVdelNSm) and pTVTOROVS (or pTVTOROV2080S) using 3 µl 

transfection reagent TransIT-LT1 (Mirus Bio LLC) per µg of DNA. Replacing the wild-

type (wt) S segment (pTVTOROVS) with 1.5 µg of pTVTOROVdelNSs, 

pTVTORO246NSs, or pTVTOROVdelNSs2, mutant NSs viruses were generated.  

 

7 days p.t. cell culture media was removed and centrifuged at 4,000 rpm for 5 min at 

4°C to pellet cell debris. The clarified supernatant was then separated into 1 ml aliquots 

and stored at -80°C. Rescue outcome and virus titre were determined by plaque assay on 

BHK-21 cells. These viral stocks were termed passage-0 (p0).  

 

2.2.1.4 Preparation of working viral stocks 

All viruses used in this study were grown in Vero E6 cell lines. Cells were infected at 

MOI 0.001 PFU/cell in PBS 2% (v/v) FBS. Cells were incubated at 37°C for 1 h and 

then topped up with appropriate cell media and incubated at 37°C/5% CO2. When 

cytopathic effect (CPE) was evident the supernatant from the flasks were removed and 

centrifuged at 4,000 rpm for 5 min at 4°C to pellet any cell debris. The clarified 

supernatant was then stored in 0.5 ml aliquots at -80°C.   

 

2.2.1.5 Virus titration by plaque assay 

BHK-21 cells were seeded at a density of 3.5×105 cells/ml in 6 (or 12) well cell culture 

plates. 12 – 18 hours later cells were infected with 150 µl (12-well plate) or 200 µl (6-

well plate) of a 10-fold serial dilution of the virus stock prepared in PBS 2% (v/v) NCS. 

After 1 h incubation at 37°C the cell monolayer was overlaid with 0.6% Avicell (FMC) 

in 2X MEM/2% NCS and incubated at 37°C for 72 h. The cell monolayers were then 

fixed by immersion of the plates in 8% formaldehyde fixing solution. After a period of 
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4 h (sufficient time to ensure complete inactivation of the pathogen), the plates were 

removed and rinsed with dH2O. Plaques were visualised by staining the monolayers 

with crystal violet staining solution. Plaques were counted and titres estimated as 

PFU/ml. 

 

PFU/ml = P/D x V   P = Plaque number 

D = Dilution factor of the well counted 

V = Volume of diluted virus added to the well 

 

2.2.1.6 Plaque purification  

A plaque assay similar to the one described above was carried out on BHK-21 cells 

using only the dilution that produced individual plaques. A 0.6% Agarose overlay 

diluted in 1XMEM without phenol red was used to overlay the cells and incubated for 

96 h at 37°C. 1 ml of 0.06% neutral red diluted in PBS was added onto the overlay and 

incubated for 1 h at 37°C to stain for plaques. Using a 1000 µl pipette tip plaques were 

picked through the agarose and rinsed in 0.5 ml DMEM. Confluent Vero E6 monolayers 

were then infected with this inoculum and incubated at 37°C until CPE was visible. 

Supernatant was then harvested and clarified by centrifugation for 5 min at 4,000 rpm to 

remove any cell debris. Samples were stored as 0.5 ml aliquots at -80°C and titrated on 

BHK-21 cells to determine viral titre.  

 

2.2.1.7 Virus yield assay 

Cells were seeded at a density of 2.5×105 cells/ml in 12-well cell culture plates. 12 – 18 

h later cells were infected with 150 µl virus inoculum calculated at the desired viral 

MOI and diluted in PBS 2% (v/v) FBS. After an adsorption period of 1 h at 37°C, virus 

inoculum was removed and cells washed three times with PBS. Cells were then topped 

up with complete medium and incubated at the 37°C/ 5% CO2. At 48 h post infection 

(p.i) supernatant was harvested and cells collected for analysis by western blot. Viral 

titres were then determined by plaque assay on BHK-21 cells as described above.   
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2.2.1.8 Virus growth curve 

To study viral growth kinetics, cells were seeded in 12-well plates at 2.5×105 cells/ml. 

12 – 18 h later cells were infected with 150 µl virus inoculum calculated at the desired 

viral MOI and diluted in PBS 2% (v/v) FBS. After an adsorption period of 1 h at 37°C, 

virus inoculum was removed and cells washed three times with PBS. At desired time 

points supernatant was harvested and cells collected for analysis by western blot. Viral 

titres were determined by plaque assay on BHK-21 cells. 

 

2.2.1.9 Interferon-based assays 

Biological IFN production assay 

IFN-competent A549 cells were seeded at 3×105 cells per ml in a 6-well plate. 12 – 18 h 

later cell monolayers were infected with an MOI of 1 PFU/cell in PBS 2% (v/v) FBS. 

After an adsorption period of 1 h at 37°C virus inoculum was removed and cells washed 

three times in PBS. Cells were then topped up with complete medium and incubated at 

37°C for 24 h. Supernatant was clarified by centrifugation and residual virus was 

inactivated by UV irradiation (8W, 254nm at a distance of 2 cm for 4 min with 

occasional shaking). A two-fold serial dilution of the UV-inactivated supernatant was 

added onto fresh IFN-incompetent A549/BVDV-Npro cells grown in 96-well plates for 

24 h. The cells were then infected with encephalomyocarditis virus (EMCV; a virus that 

is sensitive to IFN) at 0.03 PFU/cell in DMEM 2% (v/v) FBS.  Cells were incubated at 

37°C for 72 h and fixed by immersion of the 96-well plate in 8% formaldehyde fixing 

solution. After a period of 4 h, the plates were removed and rinsed with dH2O. Cells 

were stained with crystal violet staining solution to monitor EMCV-induced CPE. The 

relative amount of IFN produced was calculated as Relative IFN units (RIU) = 2N, 

where N is the dilution affording protection against EMCV infection.  

 

IFN sensitivity assay 

IFN-deficient Vero E6 cells were seeded at 1.5×105 cells per ml in a 12-well plate. At 

desired time points either pre- or post- viral infection cell monolayers were treated with 

universal type-1 IFN-α (0, 10, 100, 1000 or 10,000 IFN units/ml). Cells were infected 

with virus at a desired MOI in PBS 2% (v/v) FBS. After an adsorption period of 1 h at 



  Chapter II. Materials and Methods       

	 76	

37°C virus inoculum was removed and cells washed three times in PBS. Cells were then 

topped up with complete medium with or without universal IFN-α. Cells were incubated 

at 37°C for 48 h before harvesting and determining virus yield by plaque assay. Cell 

extracts were also collected for analysis by western blot.    

 

2.2.2 Protein analysis 

2.2.2.1 Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis 

(SDS-PAGE) 

NuPAGE Novex 4-12% Bis-Tris polyacrylamide gels (Invitrogen) for SDS-PAGE were 

placed in BioRad electrophoresis chambers filled with MES SDS running buffer 

(Invitrogen) and run 180 V for 50 min. When resolving smaller proteins a higher 

percentage gel (15%) was prepared by first setting the separating gel (0.375 M Tris-

HCl, pH 8.8 (Sigma-Aldrich); 40% Acrylamide:bis-acrylamide 37.5:1 solution (Fisher 

Scientific), 0.1% ammonium persulfate (APS), 0.1% SDS, 0.1% TEMED (Fisher 

Scientific)), and then the stacking gel (0.125 M Tris-HCl, pH 6.8; 40% Acrylamide:bis-

acrylamide 37.5:1 solution (Fisher Scientific), 0.1% APS, 0.1% SDS; 0.1% TEMED).   

 
Cell lysates were denatured for 5 min at 95ºC before being loaded into wells. All gels 

were run with an appropriate marker. 

 

2.2.2.2 Western blotting   

Cell lysates were prepared in lysis buffer (100 mM Tris-HCl [pH 6.8], 4% SDS, 20% 

glycerol, 200 mM DTT, 0.2% bromophenol blue, and 25 U/ml Benzonase [Novagen]), 

about 30 µl/cm2 cell monolayer area. Samples were then boiled at 100 °C for 5 min and 

centrifuged at top speed for 1 min. Proteins were then separated on a 4-12% gradient 

NuPAGE Bis-Tris gel (Invitrogen) along with a PageRule pre-stained protein ladder 

(Fermentas), at 180 V for 50 min in MES SDS running buffer (Invitrogen). Proteins 

were transferred to a nitrocellulose membrane (Amersham) using membrane transfer 

buffer. Semi-dry transfers were performed using the Trans-Blot® TurboTM Transfer 

System (Bio-Rad) at 10 V for 50 min. Membranes were then blocked for 1 h in 5% 
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milk/PBS 0.1% (v/v) Tween-20 under constant agitation. Membranes were then 

incubated in primary antibody overnight at 4°C and secondary antibody for 1 h at 37 °C. 

Between each incubation step membranes were washed with PBS 0.1% (v/v) Tween-20 

for 30 min with 2X 15 min washes. Proteins were then visualized using SuperSignal 

WestPico chemiluminescent substrate (Pierce) followed by exposure on a Bio-Rad 

ChemiDoc imager.  

 

2.2.2.3 Immunofluorescence 

Cells were seeded at a density of 1.5×105 cells per well of a 12-well cell culture vessel 

containing 30 mm glass coverslips. At 12 – 18 h cells were infected with virus at 

desired MOI as in 2.2.1.7.  At appropriate time points cells were fixed for 30 min in 5% 

formaldehyde + 2% sucrose in PBS. Cells were then incubated for 10 min in 

permeabilising buffer (0.5% NP-40 + 10% sucrose in PBS). Cells were then incubated 

in the dark for 1 h with primary antibody at the required dilution and then washed three 

times in PBS to get rid of any unbound antibody. Cells were incubated for 1 h again in 

dark with conjugated secondary antibody and washed again using PBS. The coverslips 

were then mounted onto slides using VECTASHIELD mounting solution (Vector 

Laboratories). Slides were stored at - 20°C until use. Antibodies were diluted in PBS 

2% (v/v) NCS. 

 

2.2.2.4 Metabolic labelling of mammalian cells  

Vero E6 cells were grown in 12-well plates and infected at an MOI of 3 of each virus 

and at indicated time points supernatant was removed and cells starved in 

methionine/cysteine-free DMEM at 37 °C for 30 min. Cells were then washed and 

labeled with 10µCi per well of [35 S]-EasyTag™ EXPRESS mixed in 

methionine/cysteine-free DMEM for 2 h at 37 °C. Cell were then lysed in 150 µl of 

lysis buffer (100 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 200 mM DTT, 0.2% 

bromophenol blue, and 25 U/ml Benzonase [Novagen]) and proteins separated by SDS-

PAGE. Gels were fixed and dried and then labeled proteins were visualized by 

phosphorimaging (Storm840 Phosphorimager [Molecular Dynamics]). 
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2.2.2.5 Luciferase assay 

Luciferase assays was performed using the Dual-Luciferase® Reporter System 

(Promega) according to manufacturer’s recommendations. Assays were performed in 

triplicate in 6-, 12- or 24-well culture plates, with two or three repeats. Luciferase 

readings were measured on a GloMax® 20/20 Single Tube-Luminometer (Promega), 

using manufacturers recommended protocol, with a 10 second integration period.  

 

2.2.3 Viral RNA Extraction 

 
Total cellular RNA 

Total cellular RNA was extracted using TRIzol reagent (Invitrogen) according to 

manufacturers recommendations. As OROV is a Containment Level 3 pathogen, cells 

were left in TRIzol for 30 minutes to ensure complete inactivation of the virus before 

removal from the laboratory. Samples were stored at -80°C until extraction. To extract 

RNA 0.2 volumes of chloroform was added to the samples and mixed by inverting 5 – 

10 times. The samples were centrifuged at >13,000 rpm (>15,000 g) for 10 min before 

the aqueous phase was removed to a fresh tube containing 500 µl of isopropanol. After 

mixing, samples were incubated at RT for 15 min before centrifugation at >13,000 rpm 

for 20 min at 4°C. Supernatant was carefully removed and the pellet washed in 1000 µl 

of ice-cold ethanol before further centrifugation at >13,000 rpm (>15,000 g) for 10 min 

at 4°C. Supernatant was removed and the pellet allowed to air-dry before being re-

suspended in 50 µl nuclease-free water. The concentration of RNA was determined 

using a NanoDrop spectrophotometer (Thermo Scientific). 

 

Virion RNA 

For virion RNA extraction the QIAamp Viral RNA mini kit (Qiagen) was used, 

following manufacturers recommendations. RNA was eluted in 50 µl nuclease-free 

water and the concentration determined using a NanoDrop spectrophotometer (Thermo 

Scientific). 
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2.2.4 Nucleic acid manipulation  

2.2.4.1 Polymerase Chain Reaction (PCR) 

PCR reactions were carried out in 50 µl volumes containing 2.5 µl of each primer (10 

µM), 5 µl 10X PCR reaction buffer, 5 µl dNTP mix (2 mM each), 3.5 µl MgSO4 

solution (25 mM), I U of KOD Hot Start DNA polymerase (Merck) and 1 µl of template 

DNA (1-10 ng/µl). Reaction conditions were - initial denaturation of 5 min at 95°C 

followed by 30 cycles of denaturing at 95°C for 30 seconds, primer annealing at 45 – 

60°C for 30 seconds, extension at 70 °C and final extension of 70 °C for 5 min. Samples 

were then held at 4°C. Primer annealing temperature was determined by primer Tm and 

extension time was determined by the length of the amplicon, using an amplification 

speed of KOD polymerase set at 25 seconds per 1 Kb of amplicon size.  

 

Quick-change and excision PCRs 

For introducing specific mutations into a plasmid a quick-change (site-directed 

mutagenesis) PCR was carried out. Here, complementary 30 – 35 nucleotide primers 

were designed targeting the region where the change was to be made. The specific 

mutation to be introduced was designed in the centre of the primer sequence.  

 

Excision PCR was used to delete specific nucleotides. Here, 18 – 25 nucleotides long 

primers flanking each side of the deletion were designed in outward directions.  

 

The PCR cycle number was reduced to 18 cycles. PCR reactions were then treated with 

1 U DpnI and incubated for 1 h at 37°C. 1 in 10 dilution of this reaction in nuclease-free 

water was then used to transform competent JM109 bacteria.  

 

Reverse transcription polymerase chain reaction (RT-PCR) 

2 ng/µl RNA with 1.5 µl of RT primer (10 µM/ml) was added to DNase/RNase-free 

water making up a total reaction of 25 µl. The reaction was then heated to 74°C for 5 

min before rapidly cooling on ice for 5 min. To this 200 U Moloney murine leukemia 

virus (MMLV) reverse transcriptase (Promega), 10 µl 5X buffer, 1 µl 10 mM 4xdNTPs 

and 40 U (1 µl) of RNaseOUT (Life Technologies) were added and the reaction 
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incubated at 42°C for 2 h. Samples were then heated to 90°C for 10 min to inactivate 

the enzyme before being stored at -20°C until use in a PCR reaction. PCRs were 

performed using 5 µl of the synthesised cDNA in a 50 µl reaction containing 2.5 µl of 

each primer (10 µM/ml), 5 µl 10X PCR reaction buffer, 5 µl dNTP mix (2 mM each), 

3.5 µl MgSO4 solution (25 mM) and I U of KOD Hot Start DNA polymerase (Merck). 

PCR conditions were followed as described above.  

 

2.2.4.2 Cloning 

Restriction digestion 

Restriction digests were performed in a reaction volume of 50 µl containing 1 U of 

restriction enzyme per 1 µg of DNA and 1X final concentration of appropriate enzyme 

buffer. Nuclease-free water was used to make up final reaction volume. Reactions were 

incubated at 37 °C for between 1 to 4 h. Digested DNA was then analysed using agarose 

electrophoresis gels and extracted and purified using a gel extraction kit (Promega).  

Ligation 

Prior to ligation the vector was linearised either using PCR or restriction digestion 

methodology. Samples were then dephosphorylated with CIAP (calf intestinal alkaline 

phosphatase; Promega) by addition of CIAP Reaction buffer and 0.1 U CIAP per µl 

(final volume). Reactions were incubated at 37 °C for 1 h before being purified using a 

gel purification kit (Promega). Ligations were performed using T4 DNA ligase 

(Promega) overnight at RT, using a 1:3 and 1:5 molar ratio of vector to insert. The 

amount of insert DNA to be added was calculated using the equation below.  

ng of vector X size of insert in bp
size of vector in bp

 X molar ratio of 
insert
vector

= ng of insert 

 
 
bp = total number of base pairs.  

Infusion reaction 

Infusion cloning was used as an alternative to restriction enzyme based cloning. 

Plasmids were linearised using restriction enzymes or by excision PCR. Excision PCR 

primers for linearising the plasmid (vector) were designed to incorporate the terminal 15 
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nt of the insert. Primers for the insert sequence were then designed to include 15 nts of 

the linearised plasmid boundaries. PCR products thus contain 15 nt complementary 

sequences at each end. 100 ng of insert, 50 ng of vector and 2 µl 5X InFusion enzyme 

pre-mix  (InFusion HD Cloning Kit; Clonetech Laboratories Inc.) along with nuclease-

free water made up to a volume of 10 µl was incubated at 50°C for 15 min. The reaction 

mix was then placed on ice for 5 min before using the entire 10 µl to transform 

competent JM109 bacteria. Bacterial cells were plated on LB-agar with appropriate 

antibiotic, and incubated at 37°C.  

Colony PCR 

Bacterial colonies were screened for insert using colony PCR. Individual colonies were 

resuspended in 13.5 µl of DNase free water and heat shocked at 95 °C for 5 min before 

cooling on ice. PCR was carried out using 4 µl 5X PCR buffer, 0.4 µl dNTP mix (10 

mM), 1 µl forward primer (10 mM), 1µl reverse primer (10 mM) and 0.1 µl GoTaq 

polymerase (Promega). PCR conditions were - initial denaturation at 95°C for 5 min; 30 

cycles of denaturation at 95°C for 30 seconds, primer anneal for 30 seconds, extension 

at 72°C final extension at 72°C for 10 min; followed by cooling and storage at 4°C. 

Bacterial colonies that were positive for the insert were then used to inoculate 5 ml LB-

broth cultures for DNA preparation using Qiagen QIAprep Spin Miniprep kit (Qiagen, 

Germany). Plasmids were then sequenced via Sanger sequencing (Source BioScience). 

 

Agarose gel electrophoresis 

DNA fragments were visualised using agarose gel electrophoresis. Agarose gels were 

prepared by melting agarose (Bioline) in 1X TBE buffer (89 mM Tris-Borate, 2 mM 

EDTA, pH 8.3; Sigma-Aldrich) or 1X TAE buffer (40 mM Tris-acetate and 1 mM 

EDTA, pH 8.3; Sigma-Aldrich) with ethidium bromide (10 mg/ml, Biotechnology 

grade; AMRESCO). The solution was microwaved in order to melt the agarose and left 

to cool at RT. The solution was then poured into a horizontal gel chamber with a comb 

and left at RT until set. DNA samples were prepared by adding an appropriate amount 

of Gel Loading Dye (in a ratio of 1:6 of dye to sample). A maximum sample volume of 

50 µl was then loaded onto the agarose gel. DNA bands were separated at 75 – 100V for 

at least 30 min in running buffer. DNA fragments were then visualized using a UV 

transilluminator (Bio-Rad). If required DNA bands were cut using sterile blades and 
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transferred into eppendorfs and then purified from the gel using Wizard® SV Gel and 

PCR Clean-Up System (Promega), according to manufacturer’s recommendations. If 

required, DNA bands were sequenced via Sanger sequencing (Source BioScience). 

Preparation and maintenance of plasmid stocks 

JM109 cells were made chemically competent using the Mix & Go E. coli 

Transformation Kit & Buffer Set (Zymo Research).  

 

All plasmids used in this project contained Ampicillin selection genes and so 

transformation of these plasmids in competent cells involved only 5 mins on ice. 5 ml 

LB-broth cultures (starter culture) were inoculated with the transformation mix for 18 h 

at 37°C with constant agitation. For large-scale plasmid preparation, 150 ml cultures 

were inoculated with 1.5 ml of the starter culture for another 18 h. Cultures were 

centrifuged at 4,000 rpm for 30 min at 4°C. Supernatant was discarded and the bacterial 

pellet re-suspended in re-suspension buffer for either small-scale DNA preparation 

(Qiagen QIAprep Spin Miniprep Kit; Qiagen; Germany) or large-scale DNA 

preparation (NucleoBond Xtra midiprep kit; Macherey-Nagel; Germany). Protocols for 

DNA extraction were according to manufacturers recommendations. DNA 

concentration was determined on a NanoDrop spectrophotometer (Thermo Scientific). 

DNA preparations were stored at -20°C. 

 

Cultures containing cDNA plasmids for viral M-segments or the glycoprotein were 

grown at RT with constant agitation for 36 h.  

 

Generation of bacterial glycerol stocks 

500 µl from bacterial cultures containing sequence-validated plasmids were mixed with 

500 µl of sterile 50% glycerol. Glycerol stocks generated were stored at -80°C for long-

term storage. 

 

The sequences of all plasmids generated in this study have been confirmed by Sanger 

sequencing (Source BioScience). 
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2.2.5 Viral genome sequencing 

2.2.5.1 Amplification of viral sequences for Sanger sequencing 

Virus was first grown in cell culture and both cells and supernatant were harvested, and 

both total cellular RNA and virion RNA was extracted. cDNAs to each segment were 

synthesized separately, using segment-specific primers, and random primers (Promega), 

together with MMLV reverse transcriptase (Promega). Each cDNA preparation was 

used in a segment-specific PCR using the appropriate primer pairs and KOD Hot Start 

DNA polymerase (Merck), according to the manufacturer’s protocol. The full-length 

PCR products were cloned into pGEM-T Easy cloning vector (Promega) and nucleotide 

sequences determined (SourceBioscience) using the T7F and SP6 primers in the first 

genome walking reaction. 

2.2.5.2 RACE analysis 

As total infected cell RNA contains both genomic and antigenomic segments, 3’ RACE 

analysis was capable of generating both the 5’ and 3’ terminal sequences using strand-

specific primers. RNA was first polyadenylated (Ambion) for 1 h at 37°C and then 

purified using an RNeasy Mini kit (Qiagen), as per manufacturer’s protocol. The 

polyadenylated RNA was then used in a reverse transcription reaction with MMLV 

reverse transcriptase (Promega) and oligo-d(T) primer, followed by PCR using 3’ PCR 

anchor primer (Roche) and the appropriate segment specific primer with KOD Hot Start 

DNA polymerase (Merck). Amplified products were purified on an agarose gel and 

their nucleotide sequence determined (Sanger sequencing at SourceBioscience). 

2.2.5.3 RNA ligation 

Total infected cell RNA was first denatured at 90°C for 3 min and then ligated using T4 

RNA ligase (New England Biolabs) for 2 h at 37°C. The reaction was heat inactivated at 

65°C and purified using an RNeasy Mini kit (Qiagen). cDNA was synthesized using 

MMLV reverse transcriptase (Promega) and segment specific oligonucleotide. PCR was 

then performed with KOD Hot Start DNA polymerase (Merck). The PCR product was 

purified on an agarose gel and its nucleotide sequence determined. 
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2.2.5.4 Deep sequencing 

Virus was harvested and filtered through a 0.2 µm sterile filter and then concentrated 

using polyethylene glycol (PEG) 8000. The virus aggregate was resuspended in 500 µl 

PBS and treated with 25 U/µl of benzonase (Novagen) for 30 min at 37°C. RNA was 

extracted using TRIzol reagent (Invitrogen) according to manufacturer’s protocol and 

quantified on a Qubit 2.0 Flurometer (Invitrogen). The genomes were obtained using the 

following basic steps: i) cDNA synthesis using random primers (cDNA synthesis kit, 

Roche Life Science); ii) library preparation (second strand cDNA synthesis and 

emulsion PCR); and iii) nucleotide sequencing using both GS FLX 454 (Roche Life 

Science) and Ion Torrent (Life Technologies) as previously described (Margulies et al., 

2005; Rothberg et al., 2011). The SSF (Standard Flowgram Format) files generated by 

both GS FLX 454 and Ion Torrent machines containing the sequencing trace data were 

transferred onto a Linux-based computer for analysis. De novo DNA sequence 

assemblers Newbler v.2.6 (GS Assembler, 454 sequencing, Roche) and Celera were 

used to assemble reads. Adaptors were first trimmed from generated reads and then 

assembled to generate contigs. These contigs were then compared against sequences in 

Genbank (NCBI) by performing a BLASTx search. Using the top hit generated by 

BLASTx as a reference sequence, reads were assembled against it to generate more 

contigs using GS Reference Mapper Software (Roche). Parameters were left to default. 

Sequences were evaluated for homopolymers before attempting to fill gaps in the 

genome by the mapping reference method in CLC Genomics Workbench 6 (CLC bio). 

Scaffold sequences from a consensus of reads and contigs were generated and evaluated 

before generating the final genome sequence.  

 

2.2.6 Genetic analysis 

2.2.6.1 Phylogenetic analysis 

Bunyavirus sequences to be included in the analysis were downloaded from Genbank 

(NCBI) and compiled to include a single sequence for each strain. The L, M and S 

segment coding regions were aligned using the MUSCLE algorithm in MEGA6.06 

(Tamura et al., 2013). A model test was then performed on this alignment and the best 
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DNA substitution model was used to generate the phylogenetic trees for the L, 

glycoprotein and N ORFs using a Maximum Likelihood method in MEGA6.06 (Tamura 

et al., 2013), with 1000 bootstrap replicates. Final trees were created using 

FigTreev1.4.2. Each gene segment was aligned according to the protein alignment using 

Clustal Omega (Sievers et al., 2011) and PAL2NAL (Suyama et al., 2006). Phylogenetic 

analyses were reconstructed using the GTR+GAMMA+I substitution model as selected 

by the Bayesian Information Criterion (BIC) in jModeltest (Darriba et al., 2012). 

Maximum likelihood phylogenies were generated in Phyml (Guindon et al., 2010) using 

1000 bootstrap replicates and Bayesian tree reconstruction was carried out using 

MrBayes (Ronquist & Huelsenbeck, 2003) across 4 chains for 2 million generations 

sampling every 100 generations, and stationarity was determined from examination of 

the log likelihoods and the convergence diagnostics. Trees recovered prior to 

stationarity being reached were discarded and Bayesian posterior probabilities of each 

bipartition, representing the percentage of times each node was recovered, were 

calculated from a 50% majority rule consensus of the remaining trees. 

2.2.6.2 Reassortant and genetic divergence analysis  

To examine reassortment, all genes were concatenated for isolates that had complete 

genomes and the concatenated alignment was analyzed in RDP3 (Martin et al., 2010) 

using the various built-in recombination analysis methods. Genetic distances were 

calculated at the amino acid level using a pairwise p-distance method with complete 

deletion in MEGA6.06 (Tamura et al., 2013). Pairwise sliding-window analysis at the 

amino acid level was performed using SimPlot V3.5.1 (Lole et al., 1999). With a 200 bp 

window, step 20 bp, Kimura (2-parameter) and 1000 bootstrap replications, results were 

plotted in Prism 6.2. 

 

2.2.7 Data analysis 

CLC Genomic Workbench 6 (CLC bio, www.clcbio.com) was used to carry out 

sequence analysis, primer and plasmid design. 
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All statistical analysis were performed using GraphPad Prism version 6.2 for Mac OS X 

(GraphPad software, La Jolla California USA, www.graphpad.com) 

 

Maps in this study were created using QGIS version 2.2.0 (www.qgis.org) 
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      Chapter III 

Results 

(Sections 1 – 4) 

 
 
       Note: 
 

Sections 1, 2 and 4 are published and describe the sequencing of Oropouche virus 

(OROV) and the development of a reverse genetics system. Section 1 re-determines 

OROV phylogeny and reports the identification of a new Simbu serogroup virus M 

segment.  

 

Section 3 describes an application for OROV minigenome system in reassortment 

studies with Schmallenberg virus.  
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Chapter III. Results 
 
 

Section 1: Genetic analysis of members of the species 

Oropouche virus and identification of a novel M segment 

sequence 

 

In 2013 I was awarded the MRC Centenary Award for Early Career Researchers which 

enabled me to spend four months at the Evandro Chagas Institute (IEC) in Belem, 

Brazil. In collaboration with Dr. Marcio Roberto Teixeira Nunes at the Center for 

Technological Innovation, IEC, I cultured and deep sequenced OROV field isolates. 

The results of that work are discussed in this section. 

 

3.1.1 Introduction and Aims  

The first attempt to determine a phylogenetic relationship among OROV isolates was in 

2000 by Saeed et al. (Saeed et al., 2000). Using the N gene of 28 isolates the authors 

found that OROV formed three distinct lineages or genotypes. Genotype 1 consisted 

mainly of isolates from Brazil, whilst genotype 2 consisted of isolates from Peru and 

genotype 3 from Panama. In 2011 Vasconcelos et al. (Vasconcelos et al., 2011) carried 

out a more extensive genetic analysis using the N gene of 66 isolates covering a 49-year 

period from 1960 to 2009. Here, the authors found that OROV N gene formed an 

additional lineage, indicating that there were now 4 genotypes based on the N gene, 3 

genotypes based on the Gn gene and 2 genotypes based on the L gene.  

 

Although the molecular epidemiology of OROV has been extensively studied these 

analysis are solely based on partial genetic information. There are just over a hundred 

complete N gene sequences for OROV available in GenBank, and even less for the L 

and M genes. The aim of this study was to therefore use deep sequencing technology to 

determine the complete genome sequences of OROV field isolates, and additionally 

identify variations, in the NSs protein, in comparison to our laboratory strain OROV 
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BeAn19991.  

 

This is the first time deep sequencing and Sanger sequencing have been used together to 

obtain complete genome sequence for OROV isolates.   

 

3.1.2 A brief look at deep sequencing technology  

Deep sequencing is carried out on a set of “Next” generation sequencers, each varying 

slightly in the underlying technology. The various platforms include 454 [(Roche), 454 

LifeSciences/Roche], Illumina (illumina), SOLiD [(Solid) Applied 

Biosystems/ThermoFisher Scientific] and Ion torrent [(IonTorrent) Life 

Technologies/ThermoFisher Scientific]. Originally developed to sequence large 

eukaryotic genomes we now have modified protocols to allow these platforms to also 

sequence the small genomes of viruses. “Genome” walking has traditionally been used 

to sequence unknown viral genomes, and consensus primers used to amplify unknown 

viruses, such as with bunyaviruses (Pringle et al., 1984; Elliott, 1989). However, 

sequences obtained this way are prone to errors due to mutations generated during 

genome amplification, cloning and/or Sanger sequencing. To obtain a reference 

sequence several clones are then usually sequenced and a consensus generated from this 

(Grada & Weinbrecht, 2013; Marston et al., 2013). This method is time-consuming and 

now with our increasing appreciation of the extent of genomic diversity within a virus 

population, deep sequencing is preferable in order to obtain a “true” consensus 

sequence. Deep sequencing has also gained wide-use in clinical and diagnostic virology 

(Barzon et al., 2011; Quinones-Mateu et al., 2014), and with the continuous 

advancement in technology we can now carry sequencers out onto field sites and 

perform “real-time” sequencing of an on-going outbreak (Carroll et al., 2015). 

 

In order to sequence OROV isolates in this study, we used the Roche 454 FLX+ 

platform. The system sequences fragments of approximately 600 - 1000 bp long with 

approximately 1,000,000 reads per run. The 454 platform works by using 

pyrosequencing technology. It is also known as “sequencing by synthesis” method, 

whereby chemiluminescent enzymatic reactions allow detection of nucleotide 
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incorporation. Sequencing reactions are carried out on fibre optic plates. A charged-

coupled device (CCD) camera is placed in front of the optic plate to detect light emitted 

from the reaction. These are then recorded as peaks in an output graph called a 

pyrogram. Data files are then transferred to computers and nucleotide reads analysed to 

detect regions of overlap within the sequence. These overlaps allow sequences to be 

stitched together forming longer sequences, hence removing the need to use a reference 

sequence. This method of assembly is known as De novo sequencing. Another 

advantage of using next-generation sequencers is the use of random primers instead of 

“consensus” primers, this is important as will be discussed in detail in section 2 of this 

chapter. Though deep sequencing is still PCR-based a large number of reads are 

generated for the entire genome allowing one to visualise the consensus sequence. 

Genomes can also be “barcoded” with small sequence tags allowing multiple samples to 

be sequenced in a single run (Center for Genome Innovation; Roche). A flow-chart of 

the various stages involved in the sequencing protocol for 454 is presented in Figure 

3.1.1.  
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Figure 3.1. 1. Stages involved in 454 sequencing. 

(A) Sequencing. OROV RNA was fragmented using ZnCl2. Samples are analysed using 

a bioanalyzer before proceeding to cDNA synthesis. Adaptors and a barcode are then 

ligated onto DNA sequences and checked for quality and concentration before ligation 

onto beads. An emulsion is then created into which the beads are added so that each 

bead is held in a micro-reactor of its own, allowing a clonal amplification of the 

sequence. The fibre optic plate is known as a Picotitre plate and contains about 1,600,00 

wells of about 44 µM in size. Enzymes (polymerase, sulfurylase and luciferase) are 

added along with the samples. dNTPs are added in a timed manner. Apyrase is also 

added to degrade any un-incorporated dNTP. Light signals are proportional to the 

number of incorporated nucleotides. PPi, pyrophosphate. (B) De novo assembly. 

Softwares Newbler and Celera were used in this study to assemble OROV sequence 

reads. Newbler is designed by Roche specifically for 454. Reads are aligned, assembled 

and merged at overlapping regions to form a longer sequence, which is known as a 

contig. Figures modified from online literature available on Roche’s website (Roche). 
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3.1.3 Sample information 

Samples used in this study were obtained from the World Health Organization 

Reference Centre for Arboviruses at the Department of Arbovirology and Hemorrhagic 

Fevers, Instituto Evandro Chagas (Belem, Brazil). OROV isolates BeH759021, 

BeH759022, BeH759024, BeH759025, BeH759040, BeH759146, BeH759529 and 

BeH759620 represent a small portion of OROV isolates that were obtained from febrile 

humans between June and August 2009 in the town of Mazagao, Amapa state, Brazil 

(Table 3.1.1, Figure. 3.1.2). The mean age of the patients was 26.5 years and all had 

presented a similar clinical picture characterized by fever, headache, arthralgia, myalgia 

and ocular pain. Viral isolates BeAN790177 and BeAN789726 were isolated from liver 

samples collected from two separate black-tufted marmosets (Callithrix penicillata) 

found dead in the municipality of Perdoes, Minas Gerais state, in 2012. A suspension of 

monkey viscera prepared with PBS (pH 7.4) and antibiotics (penicillin and 

streptomycin) was used to inject suckling mice (Mus musculus) via the intracranial 

route. Animals were observed daily and collected immediately when disease was 

evident.  

 

OROV clinical isolates BeH759021, BeH759022, BeH759024, BeH759025, 

BeH759040, BeH759146, BeH759529 and BeH759620 had previously been passaged 

three times in Vero E6 cells. This stock was used to inoculate cultures for sequencing. 

Suckling mice inoculated with OROV isolates BeAN790177 and BeAN789726 were 

previously stored at -80°C. A suspension of these mice brain in PBS (pH 7.4) was used 

to infect Vero E6 cells. Virus was harvested 72 h p.i. when CPE was evident.   

 
Table 3.1.1 and Figure. 3.1.2 describe the viral isolates used in the study and the 

geographical locations. 
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Table 3.1. 1. Information about samples sequenced in this study 

NA, not applicable 

Sample ID Isolation date Host Country State Town Age Gender Source GenBank 
accession nos 

BeH759021 AMA 2076 23/07/2009 Human Brazil Amapa Mazagao 18 M Serum KP691606–8 

BeH759022 AMA 2077 24/07/2009 Human Brazil Amapa Mazagao 39 M Serum KP691609–11 

BeH759024 AMA 2079 24/07/2009 Human Brazil Amapa Mazagao 24 M Serum KP691603–5 

BeH759025 AMA 2080 24/07/2009 Human Brazil Amapa Mazagao 23 F Serum KP691612–14 

BeH759040 AMA 2095 23/07/2009 Human Brazil Amapa Mazagao 48 M Serum KP691615–17 

BeH759146 AMA 2337 20/08/2009 Human Brazil Amapa Mazagao 31 M Serum KP691630–32 

BeH759529 AMA 2238 17/06/2009 Human Brazil Amapa Mazagao 13 F Serum KP691618–20 

BeH759620 AMA 2329 23/06/2009 Human Brazil Amapa Mazagao 16 M Serum KP691621–23 

BeAn789726   PR 4837 2012 Callitrhix penicillata Brazil Minas Gerais Perdoes NA NA Viscera KP691624–26 

BeAn790177   PR 4843 2012 Callitrhix penicillata Brazil Minas Gerais Perdoes NA NA Viscera KP691627–29 
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Figure 3.1. 2. Location of samples sequenced in this study.  

The map also shows Iquitos and Madre de Dios in Peru where OROV M segment 

reassortants were isolated, and Tucuruı´, a municipality in Para, Brazil, where JATV 

was isolated. AC, Acre; AM, Amazonas; AP, Amapa; BA, Bahia; CE, Ceara; GO, 

Goias; MA, Maranhao; MG, Minas Gerais; MS,Mato Grosso do Sul; MT, Mato Grosso; 

PA, Para; PI, Piaui; PR, Parana; RO, Rondonia; RR, Roraima; SC, Santa Catarina; SP, 

Sao Paulo; RS, Rio Grande do Sul; TO, Tocantins. The map was created using QGIS 

Version 2.2.0.  
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3.1.4 Complete genome sequences of OROV clinical isolates S segment  

For samples BeH759021, BeH759022, BeH759024, BeH759025, BeH759040, 

BeH759146, BeH759529 and BeH759620 a De Novo assembly generated an average S 

segment contig length of 867 nt. This is 113 nt longer than the published S segment 

sequence for OROV prototype strain BeAn19991 (GenBank Accession number 

NC_005777.1). Simultaneously, while attempting to establish a rescue system for 

OROV BeAn19991 it was found that the published S segment (NC_005777.1) lacked 

approximately 200 nts at the 3’ UTR. Details of this work will be discussed in Section 2 

of the results chapter. Using our re-determined BeAn19991 S segment (GenBank 

accession no. KP052852) as a reference sequence a complete S segment of 947 nt was 

obtained for clinical isolate BeH759022. This is 11 nt shorter than that of BeAn19991 

(KP052852). Due to poor read converge at the 3’ UTR it was not possible to complete 

the sequences for the remaining seven isolates. The 3’ UTR of OROV S segment is 

poly-A rich and sequencing of this region can be problematic. Using a 3’ RACE 

analysis and RNA ligation methods the complete 3’ and 5’ UTRs for all isolates were 

sequenced via Sanger sequencing (Source BioScience) with primers OROSlig1 and 

OROSlig2 (Table 2.2).  

 

The S segment of these isolates lack nt 781–791 compared to the S segment of 

BeAn19991 (Chapter 3, Section 2). Differences are also observed at positions G750A, 

A754G, C771T, T820C and T888C, resulting in 92.6% 3’ UTR similarity with 

BeAn19991 (Figure.3.1.3.A). The encoded N gene is 95% similar to BeAn19991, with 

a 100% conservation of the translated protein sequence. The NSs coding region contains 

a tandem AUG translational start codon, formed by C/U variation at nt 56. Additionally, 

position 332 (A to G) results in a Gln to Arg change in the NSs protein at position 89, in 

comparison to BeAn19991.  

 

M and L segments 

Sufficient reads could not be generated to complete the L and M segments of samples 

BeH759024, BeH759529, BeH759620 and BeH759146. These genomes were therefore 

cloned into pGEM-T Easy cloning vector and nucleotide sequences were determined 

using the T7 F and SP6 primers in the first genome walking reaction. Primers used to 
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complete the remaining pieces of the genome are listed in Table 3.1.2. Terminal UTR 

sequences were confirmed using 3’ RACE analysis (Table 2.2). The clinical isolates 

displayed a 99% similarity among each other across the complete L and M segments, 

and all had identical UTR sequences that showed 90 and 96% similarity to the L and M 

segment UTRs respectively, of BeAn19991. The amino acid sequences of the M and L 

segment encoded proteins were 98.5 and 98.0% similar to the M and L segment proteins 

of BeAn19991, respectively. 

 

3.1.5 Complete sequence of a novel Simbu virus M segment  

The L and S segments of isolates BeAn789726 and BeAn790177 showed 99 and 100% 

similarity, respectively, to those of the eight clinical isolates described above. The S 

segment of both BeAn789726 and BeAn790177 similar to the clinical isolates lacked 11 

nt at the 3’ UTR in comparison to BeAn19991 (GenBank accession no. KP052852). 

The 3’ and 5’ UTRs of both the L and S segments were confirmed by 3’ RACE and 

RNA ligation methods, respectively (Table 2.2). 

 

De Novo assembly of the M segments on the other hand generated a sequence with only 

56% identity at the nucleotide level to other OROV M segment sequences (about 48% 

at the amino acid level). A BLASTx search of the translated protein sequence resulted 

in a 76.5% similarity to JATV polyprotein (BeAn423380, GenBank accession number: 

AFI24667). To confirm if this was indeed a new sequence, the genomes were re-

sequenced on the Ion Torrent (Life Technologies) platform (Technical assistance for 

this was provided by Clayton Lima, Janaina M. Vasconcelos and Layanna Oliveria, at 

the Institue Evandro Chaga, Brazil). The 3’ and 5’ UTRs were then completed using 3’ 

RACE analysis (Table 2.2). Figure.3.1.3A shows an alignment of the UTRs of this 

novel sequence. The 11 nt terminal consensus sequence with the conserved C/A 

mismatch at position 9/-9 is present. Similar to JATV, BeAn790177 and BeAn789726 

contain shorter 5’ UTRs of about 23 nt in comparison to 31 nt in OROV.  

 

The complete M segment of BeAn790177 and BeAn789726 is 4418 nt in length and 

encodes a 1417 aa polyprotein. There are two nucleotide differences between the two M 
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segments. A silent mutation at position 1676 (U in BeAn790177, C in BeAn789726), 

and a second at position 1856 (G in BeAn790177, U in BeAn789726) that caused an 

amino acid change in the translated protein sequence of K or N at position 611 in the 

polyprotein. 
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Figure 3.1. 3. Comparison of UTR sequences.  

(A) Comparison of the UTRs of BeH759022 isolate (chosen as a representative of the 

clinical isolates) with OROV strain BeAn19991*. The bases in red highlight differences 

between BeAn19991 and BeH759022. Sequences are given in the anti-genome sense. 

 

*Sequence information from Chapter 3-Section 2. 

TGGAGTACAG TAAACAAATA AAATATAAAA CACAAAAAAA CAACAAAAAA AGAAATAAAA
TGGAGTACAA TAAGCAAATA AAATATAAAA TACAAAAAAA - - - - - - - - - - - GAAATAAAA

TAACAAAAAT ACAAAAAAAT TAAAAAATAT ATAAAATAAA TAAAAAAAGT GCGAAAGCAC
TAACAAAAAT ACAAAAAAAC TAAAAAATAT ATAAAATAAA TAAAAAAAGT GCGAAAGCAC

AAAAAAAGAA CTGCAGCTGT AATAT TATAA AGGGT TGGGT GGT TGGGGAA AGCTATGT CA
AAAAAAAGAA CTGCAGCTGT AATAT TACAA AGGGT TGGGT GGT TGGGGAA AGCTATGT CA

T T T TAGAAAA CGTAT T T T TG AAT TGGGAGC ACACTACT
T T T TAGAAAA CGTAT T T T TG AAT TGGGAGC ACACTACT
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  1 
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Figure 3.1.3 (B) Comparison of the M segment UTRs of the novel M segment 

(BeAn790177) with those of OROV, Iquitos virus (IQTV), Madre de Dios virus 

(MDDV) and JATV. The C/A mismatch is highlighted in red. The line indicates the 

extent of the conserved terminal sequence. New information on OROV BeAn19991 is 

presented in Chapter 3-Section 2 of this thesis. 
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3.1.6 Phylogenetic analysis 

The newly sequenced isolates were compared to other Simbu serogroup viruses in order 

to determine a phylogenetic relationship. Information about the Simbu sequences used 

in this analysis are provided in Table 3.1.2. First, the complete L, M and S segment 

coding regions were aligned using the MUSCLE algorithm in MEGA6.06 (Tamura et 

al., 2013). A model test was then performed on this alignment, and the best DNA 

substitution model was used to generate the phylogenetic trees for the L, M and S ORFs 

using a maximum-likelihood method in MEGA6.06 (Tamura et al., 2013), with 1000 

bootstrap replicates. The results demonstrate that the L, M and N genes of all eight 

clinical isolates cluster with that of OROV (Figure 3.1.4. A, B and C). However, with 

primate-derived isolates BeAn790177 and BeAn789726 only the L and N genes cluster 

with OROV (Figure 3.1.4. A and C), whilst the M gene displays a closer relationship to 

JATV (Figure 3.1.4. B).  

 

Pairwise comparisons of the polymerase amino acid sequence for all 10 isolates 

revealed a pairwise p-distance of 2% towards BeAn19991 and an even closer 

relationship with Iquitos virus (IQTV) L protein (Figure 3.1.5.A). The glycoprotein 

precursor of the eight clinical isolates displayed a pairwise p-distance value of 1% 

towards BeAn19991 (Figure 3.1.5.A). Whilst, BeAn790177 and BeAn789726 had a 

pairwise p-distance value of 21% with JATV and a much higher value of 48 – 49% with 

IQTV, OROV and Madre de Dios virus (MDDV) (Figure 3.1.5.A), indicating a closer 

relationship to JATV. A pairwise sliding-window analysis of BeAn790177, IQTV 

(strain IQT9924), MDDV (strain FMD1303) and JATV (strain BeAn423380) was then 

performed to analyse the level of similarity in the M polyprotein in comparison with 

OROV (strain BeAn19991). The highest level of similarity between OROV and 

BeAn790177 occurred between amino acid positions 1141 and 1341 (Figure 3.1.5.B). 

 



      
 
 

	
 
 

101	

Table 3.1. 2. Information and accession numbers of all the Simbu serogroup viruses that were used in the phylogenetic analysis 

L, large; M, medium; S, small; NA, not available 

*, isolate K0098, location Australia; §, isolate CSIRO153, host biting midges (Culicoides sps.)  

Virus Strain Accession number (L, M, S) Source Location Reference 
Aino 38K HE795087 HE795088 HE795089 NA NA GenBank 

Akabane OBE-1 - - - Bovine fetus Japan Personal communication 
Oropouche BeAn19991 - - - Three-toed slot Brazil This PhD 

Bunyamwera - NC_001925 NC_001926 NC_001927 NA NA GenBank 
Buttonwillow BFS 5002 KF697160 KF697161 KF697162 Biting midges (Culicoides sps.) USA GenBank 

Cat Que VN04-2108 JQ675598 JQ675599 JQ675600 Mosquitoes (Culex sps.) Vietnam Ladner et al. 2014 
Douglas isolate 93-6 HE795090 HE795091 HE795092 NA NA GenBank 

Facey's Paddock Aus Ch 16129 KF697138 KF697137 KF697136 Mosquito Australia Ladner et al. 2014 
Ingwavuma SA An 4165 KF697139 KF697140 KF697141 Spectacled weaver S. Africa Ladner et al. 2014 

Iquitos IQT9924 KF697142 KF697143 KF697144 Humans Peru Ladner et al. 2014 
Jatobal BeAn 423380 JQ675603 JQ675602 JQ675601 Ring-tailed coati Brazil Ladner et al. 2014 
Leanyer AusN16701 HM627178 HM627176 HM627177 Mosquito Australia GenBank 

Madre de Dios FMD 1303 KF697147 KF697145 KF697146 Humans Peru Ladner et al. 2014 
Manzanilla TRVL 3586 KF697150 KF697149 KF697148 Red howler monkeys Trinidad Ladner et al. 2014 

Mermet AV 782 KF697153 KF697151 KF697152 Purple martin USA Ladner et al. 2014 
Oya SC0806 JX983194 JX983193 JX983192 Mosquito China GenBank 

Peaton CSIRO 110 HE795093 HE795094 HE795095 Biting midges (Culicoides sps.) Australia GenBank 
Sabo IB AN 9398 HE795096 HE795097 HE795098 Goat Nigeria GenBank 

Sathuperi - HE795102 HE795103 HE795104 NA NA GenBank 
Shamonda IB An 5550 HE795105 HE795106 HE795107 Adult cattle Nigeria GenBank 

Shmallenberg BH80/11-4 HE649912 HE649913 HE649914 Cow Germany Elliott et al. 2013 



      
 
 

	
 
 

102	

Virus Strain Accession number (L, M, S) Source Location Reference 
Shuni Ib An 10107 HE800141 HE800142 HE800143 NA NA GenBank 
Simbu SA Ar 53 HE795108 HE795109 HE795110 Mosquito (Aedes sps.) S. Africa GenBank 

Tinaroo - incomplete *AB208700 §AB000819 - - GenBank 
Utinga Be An 84785 KF697154 KF697155 KF697156 Pale-throated sloth Brazil Ladner et al. 2014 
Utive Pan An 48878 KF697157 KF697159 KF697158 Brown-throated sloth Brazil Ladner et al. 2014 

 
 
(Table 3.1.3.  Cont’d)  
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Figure 3.1. 4. Phylogenetic trees of the Simbu serogroup viruses. 

 (A) and (B). (Explanation on the next page) 
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Figure 3.1.4. Phylogenetic trees of the Simbu serogroup viruses. The trees were 

recreated using a maximum-likelihood method based on the general time reversible 

model (GTR) with five rate categories and assuming sites are evolutionary invariable, 

for the L gene (A) the GTR model with discrete gamma distribution for the M 

polyprotein gene (B) and the Tamura three-parameter model with discrete gamma 

distribution for the N gene (C) Bars, number of nucleotide substitutions per site. 

Positions with lower than 95% site coverage were eliminated. Alignment and analysis 

were conducted in MEGA6 (Tamura et al., 2013) and final trees were created using 

FigTree v.1.4.2. Samples sequenced in this study are highlighted in red.
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   Figure 3.1.5 
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Figure 3.1. 5. Amino acid comparisons among viruses comprising the species 
Oropouche virus.  

(A) Pairwise amino acid p-distance scores of BeH759022 and BeAn790177 with 

Oropouche virus species and Utinga virus (UTIV). (B) Amino acid similarity plots 

using OROV as a query sequence and IQTV, MDDV, JATV and BeAn790177 as 

reference sequences. The degree of conservation in the NSm region of the M 

polyprotein is shown below, with white being 100% conserved.  
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3.1.7 Genetic relationships among members of the species Oropouche 

virus   

All 10 isolates sequenced in this study were analysed against all available OROV 

sequences in GenBank (Appendix, Supplementary Table). This work was done in 

collaboration with Dr. Joseph Hughes (MRC-University of Glasgow Centre for Virus 

Research).  

 

First, all OROV sequences were downloaded from GenBank and compiled to include a 

single sequence for each isolate. Only sequences with complete ORFs were included. 

Each gene segment was aligned according to the protein alignment using CLUSTAL 

Omega (Sievers et al., 2011) and PAL2NAL (Suyama et al., 2006). Phylogenetic 

analyses were reconstructed using the general time reversible (GTR)+GAMMA+I 

substitution model as selected by the Bayesian Information Criterion (BIC) in 

jModeltest (Darriba et al., 2012). Maximum-likelihood phylogenies were generated in 

Phyml (Guindon et al., 2010) using 1000 bootstrap replicates and Bayesian tree 

reconstruction was carried out using MrBayes (Ronquist & Huelsenbeck, 2003). 

Bootstrapping and Bayesian posterior probabilities are statistical tests that are 

performed in order to evaluate the reliability of a generated phylogenetic tree from a 

given dataset (Baldauf, 2003; Erixon et al., 2003). In this study these values have been 

presented as percentages on tree branches, with 100 demonstrating high support for a 

produced clade.  

 

Results produced two clearly identifiable clades for the L and M genes of OROV. This 

is supported by high bootstrap and posterior probabilities (Figure 3.1.6.A and B). The 

trees were topologically different especially with respect to the M gene of isolates 

BeAn790177 and BeAn789726, which clustered with high support with JATV 

(BeAn423380) (Figure 3.1.6. B). Interestingly, the Amapa clinical isolates in the L gene 

tree clustered with IQTV (IQT9924) and the Peruvian OROV isolate (IQT1690) with 

high bootstrap support and posterior probability (100 and 1, respectively) (Figure 3.1.6. 

A). The N gene phylogeny on the other hand was less resolved, with most isolates 

belonging to a single clade and all being closely related (Figure 3.1.6. C).  
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Next, in order to analyse reassortment within Oropouche species a dataset of 

concatenated genes for each isolate was created and analyzed with the Recombination 

Detection Program (RDP). This recognized four reassortment events with breakpoints 

close to the gene boundaries, and a total of 33 isolates were identified as reassortants. 

Three of these reassortment events were well supported by the gene phylogenies and 

formed three different mosaic patterns: (i) IQT1690, BeH759021, BeH759022, 

BeH759024, BeH759025, BeH759040, BeH759146, BeH759529 and BeH759620; (ii) 

IQT9924; and (iii) BeAn790177 and BeAn789726. These isolates represented inter-

clade reassortants (Figure 3.1.7.). The fourth reassortment event suggested an intra-

clade (D) reassortment, for which there was less phylogenetic support. 

 
 
 



  Chapter III. Results - Section 1 

	
 
 

109	

 
 
Figure 3.1. 6. Phylogenetic trees of viruses comprising members of the species 
Oropouche virus.  

(A). (Explanation on page 112).  
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Figure 3.1.6. Phylogenetic trees of viruses comprising members of the species 
Oropouche virus. (B) 
(Explanation on page 112). 
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Figure 3.1.6. Phylogenetic trees of viruses comprising members of the species 
Oropouche virus. (C) 
(Explanation on page 112).  
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Figure 3.1.6. Phylogenetic trees of viruses comprising members of the species 

Oropouche virus. (A) Maximum-likelihood phylogeny of the L gene with bootstrap 

support/Bayesian posterior probability shown on the branch. (B) Maximum-likelihood 

phylogeny of the M polyprotein gene with bootstrap support/Bayesian posterior 

probability shown on the branch. (C) Maximum-likelihood phylogeny of the N gene 

with bootstrap supports/Bayesian posterior probability shown on the branch. In (A) (C), 

* represents 100% bootstrap support. Isolates sequenced in this study are highlighted in 

red. Full details of the strains used in this analysis are presented in Table S2. Bars, 

number of nucleotide substitutions per site. Clades A–D are indicated. 
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Figure 3.1. 7. Reassortment among viruses comprising the species Oropouche 
virus.  

Maximum-likelihood phylogeny of the L segment with each isolate annotated with their 

clade assignment (A–D) according to the L-, M- and S segment phylogenies. The 

different patterns represent the different interclade reassortments: pattern 1, C-D-D; 

pattern 2, C-B-D; pattern 3, C-A-D; pattern 4, D. Isolates sequenced in this study are 

highlighted in red. 
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3.1.8 Discussion  

Recent phylogenetic analysis of the OROV N gene had re-classified OROV into four 

genotypes (Nunes et al., 2005; Azevedo et al., 2007; Vasconcelos et al., 2009; Aguilar 

et al., 2011; Vasconcelos et al., 2011). However, the bootstrap values for this 

classification into four distinct genotypes did not give strong support, prompting the 

current study to re-analyse all available OROV sequences in GenBank, along with the 

newly sequenced field isolates. This analysis revealed that OROV N gene tree lacks 

structure and that the recently classified genotypes are in fact not clearly 

distinguishable. It appears that OROV N gene is much more conserved compared to its 

L and M genes, where two distinct clades are distinguishable. Based on this finding 

OROV N gene does not form four genotypes.  

 

In 2011 Vasconcelos et al., analyzed the genetic evolution and dispersal of OROV in 

South America using samples from 1961 to 2009 (Vasconcelos et al., 2011). This is the 

first study aimed at understanding the molecular epidemiology of OROV in South 

America, however the authors only used partial genetic information from each segment, 

and not complete sequences. The S segment 3’ UTR for all field isolates sequenced in 

the present study differs from that of the prototype BeAn19991 quite significantly with 

the loss of 11 nucleotides between position 781 – 791 in the 3’ UTR. Interestingly these 

isolates are separated temporally and spatially as well as the host from which they were 

derived (Table 3.1.1 and Figure 3.1.2). For the M segment UTRs, the field isolates 

differed from BeAn19991 at positions G4299A, T4319C and T4343C, whilst for the L 

segment the differences were G20A, C6809T and A6810G. These highlight the need to 

consider complete sequence information as they can reveal important information when 

trying to understand the evolutionary history of a virus. Current advancement in 

nucleotide sequencing technology means that full-genome determination is now feasible 

on a routine basis. The loss of 11 nt in the S segment is intriguing, and the effect of this, 

if any, on the virus will be discussed in Section 2 and 3.  

 

Another important finding of this study was the identification of a novel Simbu 

serogroup virus M segment (in samples BeAn790177 and BeAn789726). These samples 
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were obtained from the primate Callithrix penicillata in the Minas Gerais state, south-

east Brazil, seven years after OROV was first isolated there (Nunes et al., 2005). 

Interestingly the OROV isolate (BeAn626990, GenBank accession number AY117135) 

described by Nunes et al. (Nunes et al., 2005) was also isolated from Callithrix 

penicillata. The S segment of BeAn626990 had a 92% pairwise sequence identity 

compared to the S segments of BeAn790177 and BeAn789726, and they clustered 

separately in the phylogenetic tree (Figure 3.1.6. C). The L and M sequence information 

for sample BeAn626990 is currently unavailable, but this virus was identified as OROV 

based on complement fixation tests that measure antibody responses against the N 

protein, similar to the way in which the viruses in this study were initially identified as 

OROV isolates (Personal communication, Dr. Marcio Nunes, IEC). The fact that 

OROV has been detected in the area twice is of concern, as it would suggest that the 

virus is stabely circulating in the marmoset population in a region where currently 

OROV or other Simbu virus outbreaks have not yet been reported. For epidemiological 

and phylogenetic research purposes, sequencing of all three segments is crucial so that 

reassortants, such as the one described in this study, are detected.  

 

Genetic reassortment is common among segmented viruses such as bunyaviruses 

(Briese et al., 2013). IQTV and MDDV, both isolated from febrile patients in Peru in 

1999 and 2007, respectively, contain L and S segments highly similar to those of 

OROV, but with M segments that cluster further away from OROV in a sister clade 

(Aguilar et al., 2011; Briese et al., 2013; Ladner et al., 2014). The L and S segments of 

the primate-derived virus in this report revealed a similar level of nucleotide identity to 

that of OROV and IQTV, whilst the M segment was unique and clustered close to 

JATV. JATV was originally isolated in 1985 from a ring-tailed coati (Nasua nasua) in 

Para, Brazil (Figueiredo & Da Rosa, 1988). In 2001, the S and M segments of JATV 

were sequenced, classifying this virus as a potential OROV reassortant based on the fact 

that its N and NSs proteins encoded by the S segment were highly similar to OROV 

isolates from Peru and that its M segment was unique (Saeed et al., 2001). Recent deep 

sequencing on the same JATV virus stock now suggests that the S, M and L segments 

of JATV are more divergent from OROV than initially thought (Ladner et al., 2014). 

Based on our genetic analysis of the BeAn790177 and BeAn789726 M segments and 



  Chapter III. Results - Section 1 

	
 
 

116	

the significant distance to OROV, IQTV, MDDV and JATV, we propose naming this 

isolate Perdoes virus, after the municipality in which it was isolated.  

 

In this study, the viruses currently comprising the species Oropouche virus were 

classified into clades A, B and D. IQTV fell into its own clade C for the L gene; 

however, it clustered in clades B and D for the M and N genes, respectively (Figure 

3.1.7). In a recent analysis of the species Manzanilla and Oropouche virus, Ladner et al. 

(2014) suggested that Manzanilla and Utinga viruses could be thought of as distinct 

strains of a single virus owing to the level of genetic similarity among current members. 

The authors suggest that this may not be applicable to the Oropouche virus species due 

to the level of M segment differences. However, it is possible that these viruses also 

represent different strains of the same virus, but with a higher degree of M segment 

divergence. Unlike the L and S segment encoded proteins that function together in RNA 

synthesis and hence potentially co-evolve together, the M segment codes for the Gc and 

Gn envelope glycoproteins that are entry binding proteins as well as being major 

antigenic targets. Selective pressure to produce viable virus in different host species and 

in different geographical settings could potentially result in higher levels of variation in 

the M segment. If this were true, we would assume that the non-structural NSm ORF 

would remain more conserved, and would expect a higher level of variation in the Gn 

and Gc proteins.  

 

Pairwise, sliding-window distance analysis of OROV (BeAn19991) and the possible 

reassortants IQTV, MDDV, JATV and Perdoes virus (BeAn790177) indicated an 

almost equidistant position between IQTV and MDDV, and between the more distant 

JATV and BeAn790177, with the lowest similarity scores in the N-terminus of Gn 

protein (positions 1–200, Figure 3.1.5.B). The similarity pattern for the NSm and Gc 

ORFs was constant, maintaining the distance between IQTV/MDDV and 

JATV/BeAn790177 almost unchanged until residue 950, where a sudden variation of 

sequence divergence could suggest possible recombination. From residues 950 to 1200, 

we observed a higher degree of variation within a single viral genome for each virus, 

with a higher percentage of divergence when compared with the rest of the protein. 

However, this was the region with the highest degree of similarity among all four viral 
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sequences (except OROV), in contrast to what is observed in the rest of the protein, 

which could suggest that this particular region is subjected to more selective pressure 

and prone to a higher degree of conservation. It could also suggest that at some point 

during evolution they all shared the same sequence with a common ancestor, and the 

distribution to different geographical regions, such as Brazil (Para, Amazonas, Acre, 

Rondonia, Amapa, Maranhao, Tocantins, Minas Gerais), Peru and Venezuela, to 

different hosts (humans, Bradypus trydactulus, Callithrix sp. and wild birds) and to 

different invertebrate vectors (Culicoides paraensis, Culex quinquefasciatus, 

Coquillettidia venezuelensis and Ochlerotatus serratus) allowed a higher degree of 

variation through natural selection in the whole M segment, but not in this region, nor in 

the S and L segments (Pinheiro et al., 1982b; Baisley et al., 1998; Nunes et al., 2005; 

Vasconcelos et al., 2009). This analysis of the amino acid sequences could suggest that 

these five viruses are all variants of a single species, contrary to the proposal of Ladner 

et al. (2014) based on the nucleotide sequence.  

 

It is interesting that the two viruses closer to OROV (IQTV and MDDV) are human 

isolates, whilst the ones more distant in this analysis were isolated from animals (JATV 

and An790177), potentially explaining the different selective pressure and the degree of 

similarity among these viruses 
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3.1.9 Summary 

1. OROV N gene is highly conserved across all available isolates in GenBank, 

based on this it is therefore not possible to classify the virus into four 

genotypes/lineages  

2. S segments of recently isolated field isolates sequenced in this study display a 

loss of 11 nucleotides in the 3’ UTR compared to OROV strain BeAn19991 

that was isolated in 1960.  

3. A novel Simbu serogroup M segment was identified. This virus contains S and 

L segments similar to OROV. This novel virus has been named Perdoes virus, 

after its location.    

 

Complete nucleotide sequences for the L, M and S segments of samples BeH759021, 

BeH759022, BeH759024, BeH759025, BeH759040, BeH759146, BeH759529, 

BeH759620, BeAN790177 and BeAN789726 were deposited into GenBank. Accession 

numbers for these sequences are listed in Table 3.1.1.   
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Chapter III. Results 
 
 

Section 2: Establishment of a minigenome system for 

Oropouche virus reveals the S genome segment to be 

significantly longer than reported previously 

 
 

3.2.1 Introduction and Aims  

Minigenome systems have been established for bunyaviruses BUNV (Weber et al., 

2001), LACV (Blakqori et al., 2003), UUKV (Flick et al., 2004), RVFV (Ikegami et al., 

2005), SBV (Dong et al., 2013a; Elliott et al., 2013), SFTSV (Brennan et al., 2015) and 

CCHFV (Devignot et al., 2015). It is a robust tool in virus research, allowing various 

aspects of the virus life-cycle to be studied without the need to use infectious virus. The 

minigenome system comprises of a negative-sense genome analogue encoding a 

reporter gene, which gets packaged into RNP to be transcribed and replicated by co-

expressed viral N and L proteins, leading to measurable reporter activity. Further, by 

expressing the glycoprotein gene, the minigenome can also be packaged into virus-like-

particles (VLP), analogous to virus rescue (Shi et al., 2006; Elliott & Schmaljohn, 

2013). By generating a minigenome construct for each viral segment, the promoter 

activity, encapsidation and packaging ability of each segment can be studied and 

compared. The system therefore also serves as a test for sequence accuracy, before 

attempting to rescue infectious virus (Dunn et al., 1995; Weber et al., 2001; Blakqori et 

al., 2003; Flick et al., 2003a; Kohl et al., 2004b; Ikegami et al., 2005; Bergeron et al., 

2010). Recent examples illustrating the importance of a minigenome system include 

work on the evolutionary relationship between the viral polymerase and the UTRs in 

BUNV (Mazel-Sanchez & Elliott, 2015), and the identification of the endonuclease 

domain in CCHFV polymerase (Devignot et al., 2015). The aim of this section was to 

develop such a minigenome system for OROV.  
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The main step in establishing reverse genetics systems involves obtaining accurate 

sequence information for the virus in order to generate functional cDNA plasmids. 

Minigenome constructs can either be under the control of T7-RNA polymerase 

(T7RNAP) or RNA-polymerase I promoters. Reverse genetics systems for bunyaviruses 

have typically used the T7RNAP method, which requires the polymerase to be supplied 

in trans (Elliott & Schmaljohn, 2013). The approach chosen for OROV was to develop 

cDNA clones based on a T7RNAP-driven plasmid system as described for SBV (Elliott 

et al., 2013), another closely related Simbu virus. BSR-T7/5 cells that have been 

engineered to constitutively express T7RNAP were used here (Buchholz et al., 1999). 

The sequences generated in this study are based on OROV strain BeAn19991. This 

virus was originally isolated from a sloth (Bradypus tridactylus) in 1960, in Brazil.  

 

3.2.2 Cloning and sequence determination of the genome of Oropouche 

virus strain BeAn19991 

OROV strain BeAn19991 was cultured in BHK-21 cells at 37°C. Both cells and 

supernatant were harvested 30 h p.i and RNA extracted using TRIzol reagent 

(Invitrogen). Extracted RNA was then reverse transcribed using random primers before 

amplifying each segment using segment-specific primers (Table 3.2.1). 

Oligonucleotides were designed based on available complete sequences in GenBank [L, 

accession number NC_005776.1 (Aquino et al., 2003); M, NC_005775.1 (Wang et al., 

2001); and S, NC_005777.1; V. H. Aquino and others, unpublished]. PCR products 

were first cloned into pGEM-T Easy (Promega). After selection of positive clones, the 

inserts were excised by digestion with BsmBI and ligated into BbsI-linearized T7 RNA 

polymerase transcription plasmid TVT7R(0,0) (Johnson et al., 2000), Figure 3.2.1. The 

L segment cDNA was amplified in two fragments using primer pairs OROFLg/OROL1 

and OROL2/OROLRg (Table 2.2, Figure 3.2.1). The first primer pair amplified nt 1–

3706 and the second pair amplified nt 3537–6852, resulting in two PCR products with a 

170 bp overlapping region containing a unique BsgI restriction site (nt 3590 in the full-

length segment). The inserts from pGEM-T Easy were then excised by digestion with 

restriction enzymes BsgI and BsmBI, and the full-length L segment was assembled by 
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ligating both fragments into TVT7R(0,0). L and M segments were initially cloned by 

Dr. Gustavo Olszanski Acrani (University of Sao Paulo School of Medicine) and 

differences in the L ORF determined prior to the start of my Ph.D. OROV cDNAs were 

cloned such that T7 polymerase would transcribe antigenome sense RNAs. An extra G 

residue was also included at the 5’ end of the cDNA for efficient T7 transcription. 

These OROV plasmids were designated pTVTOROVL, pTVTOROVM and 

pTVTOROVS. All sequences presented in this work are in the antigenome sense 

orientation, i.e. 5’-3’.  

 
L segment  
 
The complete L segment sequence obtained was 6852 nt in length which is 6 nt longer 

than the published complete L segment sequence for OROV BeAn19991 (GenBank 

accession number NC_005776.1). Alignment of this sequence with that of GenBank 

accession number NC_005776.1 revealed a number of differences in the regions from nt 

2405 to 2450 and from nt 2592 to 2617, resulting in amino acid changes in the region 

from aa 798 to 812 and from aa 860 to 867 (Figure. 3.2.2). The sequence of this region 

was verified by reverse transcription (RT)-PCR amplification of a fragment from nt 

2130 to 2980 using specific primers and viral RNA as template. Alignment of this 

sequence with partial sequences of the L segments of OROV strains TRVL-9760, 

GML-444479 and IQT-1690 (GenBank accession numbers KC759122.1, KC759128.1 

and KC759125.1, respectively) revealed that, apart from a few variations at the 

nucleotide level, the translated amino acid sequence for this region was conserved 

(Figure. 3.2.2). Based on this finding it appears that the published sequence for the 

BeAn19991 L segment contains errors in this region. Additionally, two other amino 

acid differences were noted, L to F at position 415 and N to D at position 1021. These 

differences have also been confirmed by re-sequencing. The F residue at position 415 is 

also found in the L protein of other strains of OROV (TRVL-9760, GML-444479 and 

IQT-1690). 

 

The terminal sequences of the L segment UTRs were determined by 3’ RACE 

procedure on total infected cell RNA, using oligonucleotides designed to anneal to 

either the genomic or antigenomic strands (Table 2.2). Position 9 of the 5’ UTR was 



   Chapter III. Results - Section 2    
 

 

	
 
 

122	

determined as a A residue and the corresponding – 9 position in the 3’ UTR was 

determined as an C residue, resulting in the characteristic mismatch that has been 

observed in the predicted panhandle structure of other orthobunyavirus genome 

segments (Kohl et al., 2004a). This mismatch is not present in the published sequence. 

Additional to this, position 18 at the 5’ end was determined to be a T rather than a C 

residue, as in the published sequence (Figure 3.2.3.A). 

 

M segment  
 

The complete M segment sequence obtained in this study was 4385 nt in length, in 

agreement with the published sequence (GenBank accession number NC_005775.1). A 

small number of nucleotide variations were found, six of which resulted in amino acid 

differences: I274F, F587L, K614N, D750G, K981Q and G982S. These differences were 

confirmed in independent cDNA clones of the M segment cDNA and also by specific 

RT-PCR amplification of appropriate regions of the viral RNA.  

 

RACE analysis was then used to confirm the 3’ and 5’ UTR sequences (Table 3.2.1). 

Compared to the published sequence two single nucleotide differences were found in 

the 5’ UTR (A at position 9 and at position 15), Figure 3.2.3.B, and one nucleotide 

difference was found at the 3’ UTR (U at position 15; or T at position 4371 of the 

cDNA sequence). The predicted panhandle therefore has a C/A mismatch at position 9/–

9 and a U/A pairing at position 15/–15 (Figure. 3.2.3). 

 

S segment  
 

Amplification of the S segment surprisingly generated two products of ~750 and 1000 

nt (Figure 3.2.1). After cloning, the sequences of both products were determined. The 

nucleotide sequence of the smaller fragment was identical to GenBank accession 

number NC_005777 (V. H. Aquino and others, unpublished) that is described as 

‘Oropouche virus segment S, complete genome’, but no strain designation is given. 

Saeed et al. (Saeed et al., 2000) reported the complete sequence of the TRVL-9760 

strain of OROV also to be 754 nt, although GenBank accession number AF164531 only 

gives the coding sequence for this strain. The larger 1000 nt fragment contained an 
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additional 204 nt after the apparent consensus 3’ terminal sequence in the GenBank 

entry. To confirm these additional sequences an RNA ligation method was carried out. 

Here, total cell RNA was first ligated and then reverse transcribed using oligonucleotide 

OROSlig1 (Table 2.2). PCR was then performed using primers OROSlig1 and 

OROSlig2 (Table 2.2) generating a PCR product of 319 bp (Figure 3.2.4.A). 

Sequencing this product confirmed that OROV S segment is indeed longer than the 

published sequence (Figure 3.2.4.B).  

 

To investigate further, the two bands from amplification of the S segment (Figure 

3.2.5.A) were gel extracted and used as a template in another PCR reaction. The smaller 

fragment resulted in a single band, which when sequenced was exactly the same as the 

published S segment. The larger fragment results in two products again of sizes ~750 

and 1000 nt (Figure 3.2.5.B). The same results were obtained when these S segment 

primers were used to amplify the S segment from one of the clinical isolates described 

in Chapter 3, Section 1 (BeH759025 AMA2080). Sequence inspection of the longer S 

segment revealed that the primer used to amplify OROV S segment could potentially 

anneal at nt 735 – 752. Binding of the primer to this “internal binding site” would result 

in a cDNA product with a 3’ termini matching that of the orthobunyavirus consensus 

sequence making it appear complete (Figure 3.2.5.C and D).  
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Figure 3.2. 1. Cloning OROV BeAn19991.  

RT-PCR products derived from the L, M and S segments of OROV BeAn19991. 

Amplified products were separated on a 1% agarose gel along with a 1 kb marker 

(Promega). Products were cloned into a plasmid containing a T7 RNA polymerase 

promoter and a hepatitis delta ribozyme (TVT7R(0,0)) as shown in the schematic 

below. 
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Figure 3.2. 2. Alignment of newly sequenced OROV L segment with published 
sequences.  

Alignment of part of the OROV L segment highlighting the differences between the 

published sequence for the BeAn19991 strain (GenBank accession number 

NC_005776) and the sequence obtained in this study (new data), along with three 

published OROV sequences from different genotypes GML-444479, IQT-1690 and 

TRVL-9760 (GenBank accession numbers KC759128.1, KC759125.1 and 

KC759122.1, respectively). The nucleotide alignment is shown in the top panel and the 

amino acid alignment is shown in the bottom panel. The highlights show differences in 

the sequences. Alignments were performed using CLC Genomics Workbench 6.5. 

 
 
 
 
 
 
 
 
 
 
 

  760BeAn19991, NC_005776
  760BeAn19991 (new data)
  769GML-444479, KC759128
  756IQT-1690, KC759125
  770TRVL-9760, KC759122

  828BeAn19991, NC_005776
  830BeAn19991 (new data)
  839GML-444479, KC759128
  826IQT-1690, KC759125
  840TRVL-9760, KC759122

  898BeAn19991, NC_005776
  900BeAn19991 (new data)
  909GML-444479, KC759128
  896IQT-1690, KC759125
  910TRVL-9760, KC759122

  968BeAn19991, NC_005776
  970BeAn19991 (new data)
  979GML-444479, KC759128
  966IQT-1690, KC759125
  980TRVL-9760, KC759122

  1038BeAn19991, NC_005776
  1040BeAn19991 (new data)
  1049GML-444479, KC759128
  1036IQT-1690, KC759125
  1050TRVL-9760, KC759122

  1108BeAn19991, NC_005776
  1110BeAn19991 (new data)
  1119GML-444479, KC759128
  1106IQT-1690, KC759125
  1120TRVL-9760, KC759122

  1178BeAn19991, NC_005776

Y SAYEQRKKV Q I RD I K L TDY D I TQKGVDSK RDLK S I WF PG KVNLKEY LNQ I Y L P F Y FNSK GLHEKHHVL I   760BeAn19991, NC_005776
720 740 760

Y SAYEQRKKV Q I RD I K L TDY D I TQKGVDSK RDLK S I WF PG KVNLKEY LNQ I Y L P F Y FNSK GLHEKHHVL I   760BeAn19991 (new data)
Y SAYEQRKKV Q I RD I K L TDY D I TQKGVDSK RDLK S I WF PG KVNLKEY LNQ I Y L P F Y FNSK GLHEKHHVL I   769GML-444479, KC759128
Y SAYEQRKKV Q I RD I K L TDY D I TQKGVDSK RDLK S I WF PG KVNLKEY LNQ I Y L P F Y FNSK GLHEKHHVL I   756IQT-1690, KC759125
Y SAYEQRKKV Q I RD I K L TDY D I TQKGVDSK RDL XXXXXXX XXXXXXXXXQ I Y L P F Y FNSK GLHEKHHVL I   770TRVL-9760, KC759122

DLAKTV L E I E KEQRE S L P E P WS E I PAKR- L S LNV L I Y S L - QE LNLDT S RH NFVR S RVENA NNFNR S I TT I   828BeAn19991, NC_005776
780 800 820 840

DLAKTV L E I E KEQRE S L P E P WS E I PAKQTV NLNVL I Y S I A RNLNLDT S RH NFVR S RVENA NNFNR S I TT I   830BeAn19991 (new data)
DLAKTV L E I E KEQRE S L P E P WS E I PAKQTV NLKV L I Y S I A RNLNLDT S RH NFVR S RVENA NNFNR S I TT I   839GML-444479, KC759128
DLAKTV L E I E KEQRE S L P E P WS E I PAKQTV NLNVL I Y S I A RNLNLDT S RH NFVR S RVENA NNFNR S I TT I   826IQT-1690, KC759125
DLAKTV L E I E KEQRE S L P E P WS E I PAKQTV NLNVL I Y S I A RNLNLDT S RH NFVR S RVENA NNFNR S I TT I   840TRVL-9760, KC759122

S T F T S SK SC I K I GDF E E EKR EKLRM I QKKL AKD I S K L T I A NPAF LDE I TN EHE I RHS TYE DLKQS I PDYT  898BeAn19991, NC_005776
860 880 900

S T F T S SK SC I K I GDF E E EKK RKTKNDTKKL AKD I S K L T I A NPAF LDE I TN EHE I RHS TYE DLKQS I PDYT  900BeAn19991 (new data)
S T F T S SK SC I K I GDF E E EKK KKTKNDAKKL AKD I S K L T I A NPAF LDE I TN EHE I RHS TYE DLKQS I PDYT  909GML-444479, KC759128
S T F T S SK SC I K I GDF E E EKK RKTKNDAKKL AKD I S K L T I A NPAF LDE I TN EHE I RHS TYE DLKQS I PDYT  896IQT-1690, KC759125
S T F T S SK SC I K I GDF E XXXX XXTKNDTKKL AKD I S K L T I A NPAF LDE I TN EHE I RHS TYE DLKQS I PDYT  910TRVL-9760, KC759122

DYMSVKV FDR LYEK I TTNE I NDKETVKL I L ETMKKHK I FH FGF FNKGQKT AKDRE I F LGE F EAKMCLY LV  968BeAn19991, NC_005776
920 940 960 980

DYMSVKV FDR LYEK I TTNE I NDKETVKL I L ETMKKHK I FH FGF FNKGQKT AKDRE I F LGE F EAKMCLY LV  970BeAn19991 (new data)
DYMSVKV FDR LYEK I TTNE I SDKETVKL I L ETMRKHK I FH FGF FNKGQKT AKDRE I F LGE F EAKMCLY LV  979GML-444479, KC759128
DYMSVKV FDR LYEK I TTNE I SDKETVKL I L ETMKKHK I FH FGF FNKGQKT AKDRE I F LGE F EAKMCLY LV  966IQT-1690, KC759125
DYMSVKV FDR LYEK I TTNE I SDKETVKL I L ETMKKHK I FH FGF FNKGQKT AKDRE I F LGE F EAKMCLY LV  980TRVL-9760, KC759122

ER I AKERCKL NP E EM I S E PG DSKLRV L EKQ S EDE I RY I SN T I KT LGNA I E NLQSGS LNWA D I CENKARGL   1038BeAn19991, NC_005776
1,000 1,020 1,040

ER I AKERCKL NP E EM I S E PG DSKLRV L EKQ S EDE I RY I SN T I KT LGNA I E DLQSGS LNWA D I CENKARGL   1040BeAn19991 (new data)
ER I AKERCKL NP E EM I S E PG DSKLRV L EKQ S EDE I RY I S Y T I KT LGNA I E S LQSGS LNWA D I CENKARGL   1049GML-444479, KC759128
ER I AKERCKL NP E EM I S E PG DSKLRV L EKQ S EDE I RY I SN T I KT LGSA I E S LQSGS LNWA D I CE SKARGL   1036IQT-1690, KC759125
ER LAKERCKL NP E EM I S E PG DSKLRV L EKQ S EDE I RY I SN T I KT LGNA I E S LQSGS LNWA D I CENKARGL   1050TRVL-9760, KC759122

K I E I NADMSK WSAQDVL FKY FWL I V LDP I L YPAERKR I I Y F LCNYMQKR L I MPDE L L TT I LDQRVPY SND  1108BeAn19991, NC_005776
1,060 1,080 1,100 1,120

K I E I NADMSK WSAQDVL FKY FWL I V LDP I L YPAERKR I I Y F LCNYMQKR L I MPDE L L TT I LDQRVPY SND  1110BeAn19991 (new data)
K I E I NADMSK WSAQDVL FKY FWL I V LDP I L YPAERKR I I Y F LCNYMQKR L I MPDE L L TT I LDQRVPY SND  1119GML-444479, KC759128
K I E I NADMSK WSAQDVL FKY FWL I V LDP I L YPAERKR I I Y F LCNYMQKR L I MPDE L L TT I LDQRVPY SND  1106IQT-1690, KC759125
K I E I NADMSK WSAQDVL FKY FWL I V LDP I L YPAERKR I I Y F LCNYMQKR L I MPDE L L TT I LDQRVPY SND  1120TRVL-9760, KC759122

I I G LMTNNYR SNTVE I KRNW LQGNLNYT S S Y LHSC SMSVY KD I I R EAA I L L EGEALVNSM VHSDDNQT S I   1178BeAn19991, NC_005776
1,140 1,160 1,180

1

TRVL-9760, KC759122 

  2444BeAn19991, NC_005776
  2450BeAn19991 (new data)
  2435GML-444479, KC759128 
  2395IQT-1690, KC759125
  2438TRVL-9760, KC759122 

  2514BeAn19991, NC_005776
  2520BeAn19991 (new data)
  2505GML-444479, KC759128 
  2465IQT-1690, KC759125
  2508TRVL-9760, KC759122 

  2584BeAn19991, NC_005776
  2590BeAn19991 (new data)
  2575GML-444479, KC759128 
  2535IQT-1690, KC759125
  2578TRVL-9760, KC759122 

  2653BeAn19991, NC_005776
  2659BeAn19991 (new data)
  2644GML-444479, KC759128 
  2604IQT-1690, KC759125
  2647TRVL-9760, KC759122 

  2723BeAn19991, NC_005776
  2729BeAn19991 (new data)
  2714GML-444479, KC759128 
  2674IQT-1690, KC759125
  2717TRVL-9760, KC759122 

  2793BeAn19991, NC_005776
  2799BeAn19991 (new data)
  2784GML-444479, KC759128 
  2744IQT-1690, KC759125
  2787TRVL-9760, KC759122 

BeAn19991, NC_005776

TCATGTCTTG ATAGATTTGG CTAAAACAGT ACTAGAAATC GAAAAAGAGC AAAGGGAGTC ACTACCTGAGTRVL-9760, KC759122 

CCATGGTCAG AGATACCTGC TAAGC-GACT GTCACTT--A ATGTTTTAAT TTACTCA-TT GCAGGAA--C  2444BeAn19991, NC_005776
2,400 2,420 2,440

CCATGGTCAG AGATACCTGC TAAGCAGACT GTCAACTTAA ATGTTTTAAT TTACTCAATT GCAAGGAACT  2450BeAn19991 (new data)
CCGTGGTCAG AGATACCTGC TAAGCAGACT GTTAACTTAA AAGTTTTGAT TTACTCAATT GCAAGGAATT  2435GML-444479, KC759128 
CCATGGTCAG AGATACCTGC CAAGCAGACT GTCAACTTAA ATGTTTTAAT TTACTCAATT GCAAGGAACT  2395IQT-1690, KC759125
CCATGGTCAG AGATACCTGC TAAGCAGACT GTCAACTTAA ATGTTTTAAT TTATTCAATT GCAAGGAATT  2438TRVL-9760, KC759122 

TGAATTTAGA TACTTCAAGA CATAATTTTG TAAGAAGCCG GGTGGAAAAC GCAAATAATT TCAACAGATC  2514BeAn19991, NC_005776
2,460 2,480 2,500 2,520

TGAATTTAGA TACTTCAAGA CATAATTTTG TAAGAAGCCG GGTGGAAAAC GCAAATAATT TCAACAGATC  2520BeAn19991 (new data)
TGAATTTAGA TACTTCAAGA CATAATTTCG TAAGAAGCCG AGTAGAAAAT GCAAATAATT TCAACAGGTC  2505GML-444479, KC759128 
TGAACTTAGA TACTTCAAGA CATAATTTTG TGAGGAGCCG AGTAGAAAAT GCAAATAACT TTAACAGATC  2465IQT-1690, KC759125
TGAATTTAGA TACTTCAAGA CATAATTTTG TAAGAAGCCG GGTAGAAAAT GCAAATAATT TCAACAGATC  2508TRVL-9760, KC759122 

TATAACGACA ATATCTACTT TTACCAGCTC AAAATCATGC ATTAAGATTG GTGATTTTGA AGAAGAAAAA  2584BeAn19991, NC_005776
2,540 2,560 2,580

TATAACGACA ATATCTACTT TTACCAGCTC AAAATCATGC ATTAAGATTG GTGATTTTGA AGAAGAAAAA  2590BeAn19991 (new data)
TATAACAACA ATATCTACCT TTACCAGTTC GAAATCATGC ATCAAGATTG GTGATTTTGA AGAAGAAAAA  2575GML-444479, KC759128 
TATAACGACA ATATCCACCT TTACCAGCTC GAAATCATGT ATTAAGATTG GTGATTTTGA AGAGGAGAAA  2535IQT-1690, KC759125
TATAACGACA ATATCTACTT TTACCAGCTC AAAATCATGC ATTAAGATTG GTGATTTTGA AGNNNNNNNN  2578TRVL-9760, KC759122 

A-GAGAAAAA CTAAGAATGA TACAAAAGAA ACTTGCAAAG GATATTTCTA AATTAACCAT AGCCAACCCA  2653BeAn19991, NC_005776
2,600 2,620 2,640 2,660

AAGAGAAAAA CTAAGAATGA TACAAA-GAA ACTTGCAAAG GATATTTCTA AATTAACCAT AGCCAACCCA  2659BeAn19991 (new data)
AAGAAAAAAA CCAAAAATGA TGCAAA-AAA GCTTGCAAAG GATATTTCTA AATTAACTAT AGCCAATCCA  2644GML-444479, KC759128 
AAGAGGAAAA CCAAAAATGA TGCAAA-GAA ACTAGCAAAG GATATTTCTA AATTAACTAT AGCCAATCCA  2604IQT-1690, KC759125
NNNNNNNAAA CTAAGAATGA TACAAA-GAA ACTTGCAAAG GATATTTCTA AATTAACCAT AGCCAACCCA  2647TRVL-9760, KC759122 

GCATTCTTAG ATGAGATCAC AAACGAACAT GAGATAAGGC ATTCAACTTA TGAGGACTTA AAACAATCTA  2723BeAn19991, NC_005776
2,680 2,700 2,720

GCATTCTTAG ATGAGATCAC AAACGAACAT GAGATAAGGC ATTCAACTTA TGAGGACTTA AAACAATCTA  2729BeAn19991 (new data)
GCATTCTTAG ACGAAATCAC AAACGAGCAT GAGATAAGAC ACTCAACTTA TGAAGACTTA AAACAATCCA  2714GML-444479, KC759128 
GCATTCTTAG ACGAAATCAC AAATGAACAT GAGATAAGAC ACTCAACTTA TGAGGATTTA AAACAATCCA  2674IQT-1690, KC759125
GCATTCTTAG ATGAAATCAC AAACGAACAT GAGATAAGGC ATTCAACTTA TGAGGACTTA AAACAATCTA  2717TRVL-9760, KC759122 

TCCCAGATTA CACAGATTAT ATGTCTGTGA AAGTTTTTGA CAGATTGTAC GAGAAGATTA CTACCAATGA  2793BeAn19991, NC_005776
2,740 2,760 2,780 2,800

TCCCAGATTA CACAGATTAT ATGTCTGTGA AAGTTTTTGA CAGATTGTAC GAGAAGATTA CTACCAATGA  2799BeAn19991 (new data)
TCCCGGATTA CACAGACTAT ATGTCTGTGA AAGTTTTTGA CAGATTATAC GAGAAGATTA CTACCAATGA  2784GML-444479, KC759128 
TCCCGGATTA TACAGACTAT ATGTCTGTAA AAGTTTTCGA CAGACTATAT GAGAAGATTA CTACCAATGA  2744IQT-1690, KC759125
TCCCAGATTA CACAGATTAT ATGTCTGTGA AAGTTTTTGA CAGATTGTAC GAGAAGATTA CTACCAATGA  2787TRVL-9760, KC759122 

AATAAATGAT AAGGAAACAG TCAAGCTGAT TCTAGAGACC ATGAAAAAAC ATAAAATATT TCATTTTGGABeAn19991, NC_005776
2,820 2,840 2,860

1

Nucleotide Alignment 

Amino acid Alignment 
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Figure 3.2. 3. Sequencing results of OROV L and M segment UTRs.  

Chromatograph from RACE analysis shows the differences between 5’ UTR sequences 

of L and M, and the 3’ UTR of M, obtained in this study compared to the published 

sequences (L, NC_005776.1 and M, NC_005775.1). The numbers above the arrows 

denotes the nucleotide position, for L (A) and M (B). A, Green; T, Red; G, Black; C, 

Blue.  

 

 

 

 

 

 

 

1

AGT AGTGT ACT CCT AT T CCGAAACAAACAAAAACAAT CT CAAAATGT CACAACTGT TGCT CAACCAAT AT CGGAAT AGGAT A

AGT AGTGT ACT CCT AT T T CGAAACAAACAAAAACAAT CT CAAAATGT CACAACTGT TGCT CAACCAAT AT CGGAAT AGGAT A

AGT AGTGT ACT CCT AT T T CGAAACAAACAAAAACAAT CT CAAAATGT CACAACTGT TGCT CAACCAAT AT CGGAAT AGGAT A

AGT AGTGT ACT CCT AT T T CGAAACAAACAAAAACAAT CT CAAAATGT CACAACTGT TGCT CAACCAAT AT CGGAAT AGGAT A

T TGCACTGCCGTGAACCTGAGAT AGCAAAGGAT AT ATGGCGAGAT CT AT T AAATGAT CGACACAAT T ACT T T T CT CGGGAAT

T TGCACTGCCGTGAACCTGAGAT AGCAAAGGAT AT ATGGCGAGAT CT AT T AAATGAT CGACACAAT T ACT T T T CT CGGGAAT

T TGCACTGCCGTGAACCTGAGAT AGCAAAGGAT AT ATGGCGAGAT CT AT T AAATGAT CGACACAAT T ACT T T T CT CGGGAAT

T TGCACTGCCGTGAACCTGAGAT AGCAAAGGAT AT ATGGCGAGAT CT AT T AAATGAT CGACACAAT T ACT T T T CT CGGGAAT

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �NC_005776.1  

This study 

OROV BeAn19991 UTR: 

L 
5’ UTR  

9  18 
A  

1

AGT AGTGT ACT ACCGGCAACAAACAGTGACAATGGCGAAT T T AAT AAT T AT T T CAATGGT T CTGGGCGT TGCCT ATGGGCAT CCGCT T

AGT AGTGT ACT ACCAGCAACAAACAGTGACAATGGCGAAT T T AAT AAT T AT T T CAATGGT T CTGGGCGT TGCCT ATGGGCAT CCGCT T

AGT AGTGT ACT ACCAGCAACAAACAGTGACAATGGCGAAT T T AAT AAT T AT T T CAATGGT T CTGGGCGT TGCCT ATGGGCAT CCGCT T

AGT AGTGT ACT ACCAGCAACAAACAGTGACAATGGCGAAT T T AAT AAT T AT T T CAATGGT T CTGGGCGT TGCCT ATGGGCAT CCGCT T

T CAACAAGT CAAAT TGGTGACCGCTGT T T TGCTGGTGGT AACCT CT T CAAGGAGATGAACT TGAGTGT AGGACT TGGCGAAAT ATGTG

T CAACAAGT CAAAT TGGTGACCGCTGT T T TGCTGGTGGT AACCT CT T CAAGGAGATGAACT TGAGTGT AGGACT TGGCGAAAT ATGTG

T CAACAAGT CAAAT TGGTGACCGCTGT T T TGCTGGTGGT AACCT CT T CAAGGAGATGAACT TGAGTGT AGGACT TGGCGAAAT ATGTG

T CAACAAGT CAAAT TGGTGACCGCTGT T T TGCTGGTGGT AACCT CT T CAAGGAGATGAACT TGAGTGT AGGACT TGGCGAAAT ATGTG

T T AAAGATGACAT AT CT AT TGT T AAGAGT ACT ACTGT T T T T AGCAAGAAT AAACCAGCT CT TGAGGCAACT ACAAAAT T T T AT AGAT C

T T AAAGATGACAT AT CT AT TGT T AAGAGT ACT ACTGT T T T T AGCAAGAAT AAACCAGCT CT TGAGGCAACT ACAAAAT T T T AT AGAT C

T T AAAGATGACAT AT CT AT TGT T AAGAGT ACT ACTGT T T T T AGCAAGAAT AAACCAGCT CT TGAGGCAACT ACAAAAT T T T AT AGAT C

T T AAAGATGACAT AT CT AT TGT T AAGAGT ACT ACTGT T T T T AGCAAGAAT AAACCAGCT CT TGAGGCAACT ACAAAAT T T T AT AGAT C

T T T T AT TGTGAAAGAT TGGT CTGAGTGCAAT CCAGTGCT AGACAAAT T TGGAAAT T T T ATGGT T T T AAGTGT TGATGAT AATGGCCAT

T T T T AT TGTGAAAGAT TGGT CTGAGTGCAAT CCAGTGCT AGACAAAT T TGGAAAT T T T ATGGT T T T AAGTGT TGANGAT AANGGCCA

T T T T AT TGTGAAAGAT TGGT CTGAGTGCAAT CCAGTGCT AGACAAAT T TGGAAAT T T T ATGGT T T T AAGTGT TGANGAT AANGGCCAN

T T T T AT TGTGAAAGAT TGGT CTGAGTGCAAT CCAGTGCT AGACAAAT T TGGAAAT T T T ATGGT T T T AAGTGT TGANGAT AANGGCCAN

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �NC_005775.1  

This study M 
5’ UTR  

9  15  
B  

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

T TGGACCAT AT T AAT T T AT T CAAT T AT AGGTGTGGT AAT AAT TGTGAT AT TGGT T T AT AT CCTGT TGCCCAT AGGT CGGCT T T T AAAAGC

AT T CCT AAT CAGACATGAAAT AGAAT ATGCCATGGAGCAGAAAAT CAAGT AGAT T TGGCT AAAAAGGGT AGGCAGGT CT AAAAT CAGGT A

T AAAT AAAAT T CAT AT AAAT AAAGT CAAAAAT TGT TGT TGGT AGCACACT ACTGGGT CGGCATGGCAT CT CCACCT CCT CGCGGT CCGAC

CTGGGCAT CCGAAGGAGGACGT CGT CCACT CGGATGGCT AAGGGAGAGCT CGGAT CCGGCTGCT AACAAAGCCCGAAAGGAAGCTGAGT T

GGCTGCTGCCACNGCTGANCAAT AACT AGCAT AACCCCT TGGGGCCT CT AAACGGGT CT TGAGGGGT T T T T TGCTGAAAGGAGGAACT AT

4371 

M 
3’ UTR  

NC_005775.1  

This study 
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Figure 3.2. 4. Sequencing results of OROV S segment UTRs.  

(A) Agarose gel electrophoresis of RNA-ligation products for the S segment. 1 and 2 

are duplicate samples. (B) Chromatograph from sequencing (A). Only the terminal ends 

of the UTRs are shown. The dotted line highlights where the 3’ and 5’ ends are ligated. 

Nucleotides highlighted in red show differences between the sequences generated in this 

study to the publish sequence on top (in black). Arrow shows the 9th position is A, as 

seen with the L and M segment 5’ UTRs (Figure 3.2.3). A, Green; T, Red; G, Black; C, 

Blue.  
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B 

500 
250 

PCR sample 
   1    2 1 kb 

319 

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

GT TGGGTGGT TGGGGAAAGCT ATGT CAT T T T AGAAAACGT AT T T T TGAAT TGGGAGCACACT ACT AGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAAAT T

��������������������������������������

9  

������������������������������������������������������



   Chapter III. Results - Section 2    
 

 

	
 
 

128	

 
 
 
 
 
 
 
 

 
 

Figure 3.2. 5. Analysis of the OROV S segment.  

(A) Agarose gel electrophoresis of OROV S segment (B) Reamplified DNA products 

using the 754 and 958 nt PCR products (A) as template. (C) Schematic drawing of the 

OROV S segment, comparing the published sequence of 754 nt (upper drawing) with 

the newly determined 958 nt sequence (lower drawing). Black boxes, N ORF; grey 

boxes, NSs ORF; hatched boxes, UTRs. The sequence is presented in the antigenomic 

5’ to 3’ sense. Numbers indicate nucleotide positions in the sequence. (D) Diagram 

showing the potential internal binding site (bold) in the OROV S segment. Numbers 

represent nucleotide positions. OROSRg primer represents the primer sequence that was 

used in this paper to amplify the S segment. 
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3.2.3 Establishment of an OROV minigenome system 

Using plasmids pTVTOROVL, pTVTOROVM and pTVTOROVS the ORFs of each 

segment were amplified and sub-cloned into pTM1 expression vector (Moss et al., 

1990) (Table 3.2.1), under the control of T7 promoter and EMCV internal ribosome 

entry site sequence (IRES). The constructs were designated pTM1OROV-L and 

pTM1OROV-M. To generate a plasmid expressing only the N protein, three point 

mutations (T68C, T113C and G116A) were introduced into pTVTOROVS using 

primers OROdelNSsF and OROdelNSsR (Table 3.2.1), by site-directed mutagenesis, 

prior to PCR amplification of the N ORF. These mutations changed the first and second 

methionine codons in the NSs ORF into threonine codons, and introduced an in-frame 

translation stop codon at codon 17 (Figure 3.2.6). The coding sequence of the 

overlapping N ORF was unaffected. This plasmid was designated pTM1OROV-N. A 

plasmid expressing only NSs was also generated and this was designated pTM1OROV-

NSs (Table 3.2.1). pTM1OROV-L and pTM1OROV-NSs cloning was carried out by 

Dr. Daisy da Silva (Institute Evandro Chagas, Brazil).  

 

Minigenome constructs were created for all three viral segments. This was done by first 

replacing the viral ORF in each cDNA plasmid (pTVTOROVL, pTVTOROVM and 

pTVTOROVS) with the sequence for Renilla luciferase. The region containing Renilla 

luciferase flanked by the viral UTRs was then amplified and inverted into plasmid 

TVT7R(0,0) (Johnson et al., 2000) so that T7 transcripts would be in the genomic sense 

(Weber et al., 2001). A schematic of the cloning strategy used is in Figure 3.2.7. The 

primers used are listed in Table 2.4. These constructs were designated 

pTVT7OROVMRen(–), pTVT7OROVLRen(–) and pTVT7OROVSRen(-).  
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Figure 3.2. 6. pTM1OROV-N.  

Chromatograph from Sanger-sequencing demonstrating where mutations were made in 

the S segment in order to generate a plasmid that would express only the N protein. A, 

Green; T, Red; G, Black; C, Blue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

GAAAAACAT AAGAAGAAT T T CCAT AATGT CAGAGT T CAT T T T CAACGATGT ACCACAACGGACT ACAT CT ACAT T TGAT CCGGAGGCAGCAT ATGTGGCAT T TGAAGCT AGAT

ACGGACAAGTGCT CAATGCTGGTGT TGT T AGAGT CT T CT T CCT CAACCAAAAGAAGGCCAAAGATGT CT T ACGT AAGACAT CGAGGCCCATGGT TGACCT T ACT T T TGGTGGG

GT CCAAT T TGCAATGGT T AAT AACCAT T T CCCACAGT T CCAGT CGAAT CCAGTGCCGGACAACGGT CT T ACCCTGCACCGT CTGT CAGGAT ACCT AGCGCGCTGGGCCT T T AC

CCAGATGCGAT CACCAAT T AAGCAAGCTGAGT T CAGAGCCACTGT AGT AGTGCCT T TGGCTGAGGT AAAGGGCTGT ACT TGGAATGATGGTGACGCAATGT ACCTGGGGT T TG

GAAAAACAT AAGAAGAAT T T CCAT AATGT CAGAGT T CAT T T T CAACGATGT ACCACAACGGACT ACAT CT ACAT T TGAT CCGGAGGCAGCAT ATGTGGCAT T TGAAGCT AGAT

ACGGACAAGTGCT CAATGCTGGTGT TGT T AGAGT CT T CT T CCT CAACCAAAAGAAGGCCAAAGATGT CT T ACGT AAGACAT CGAGGCCCATGGT TGACCT T ACT T T TGGTGGG

GT CCAAT T TGCAATGGT T AAT AACCAT T T CCCACAGT T CCAGT CGAAT CCAGTGCCGGACAACGGT CT T ACCCTGCACCGT CTGT CAGGAT ACCT AGCGCGCTGGGCCT T T AC

CCAGATGCGAT CACCAAT T AAGCAAGCTGAGT T CAGAGCCACTGT AGT AGTGCCT T TGGCTGAGGT AAAGGGCTGT ACT TGGAATGATGGTGACGCAATGT ACCTGGGGT T TG

OROV S:  

CCCTGATGGCGAT T CAT T AATGCAGGGGGAT CT CGAT CCCGCGAAAT T AAT ACGACT CACT AT AGAGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAA

AT T CCAAT AATGT CAGAGT T CAT T T T CAACGACGT ACCACAACGGACT ACAT CT ACAT T TGAT CCGGAGGCAGCAT ACGT AGCAT T TGAAGCT AGAT ACG

GACAAGTGCT CAATGCTGGTGT TGT T AGAGT CT T CT T CCT CAACCAAAAGAAGGCCAAAGATGT CT T ACGT AAGACAT CGAGGCCCATGGT TGACCT T AC

T T T TGGTGGGGT CCAAT T TGCAATGGT T AAT AACCAT T T CCCACAGT T CCAGT CGAAT CCAGTGCCGGACAACGGT CT T ACCCTGCACCGT CTGT CAGGA

CCCTGATGGCGAT T CAT T AATGCAGGGGGAT CT CGAT CCCGCGAAAT T AAT ACGACT CACT AT AGAGT AGTGT ACT CCACAAT T CAAAACAT AAAAAGAA

AT T CCAAT AATGT CAGAGT T CAT T T T CAACGACGT ACCACAACGGACT ACAT CT ACAT T TGAT CCGGAGGCAGCAT ACGT AGCAT T TGAAGCT AGAT ACG

GACAAGTGCT CAATGCTGGTGT TGT T AGAGT CT T CT T CCT CAACCAAAAGAAGGCCAAAGATGT CT T ACGT AAGACAT CGAGGCCCATGGT TGACCT T AC

T T T TGGTGGGGT CCAAT T TGCAATGGT T AAT AACCAT T T CCCACAGT T CCAGT CGAAT CCAGTGCCGGACAACGGT CT T ACCCTGCACCGT CTGT CAGGA

OROV N:  

N  
NSs  

N  
NSs  
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Figure 3.2. 7. Schematic representation for cloning OROV minigenome plasmids.  

First, the coding sequence in each pTVT7 clone was deleted by excision PCR, leaving 

the UTRs intact. These linearized DNAs were then used in an In-Fusion reaction (In-

Fusion HD Cloning; Clontech) with amplified luciferase ORF containing 15 nt 

extensions homologous to the UTR sequences in the linearized pTVT7 construct. The 

UTR–luciferase–UTR sequence was then amplified by PCR using primers containing 

15 nt extensions homologous to the T7 terminator (5’ end) and T7 promoter (3’end). 

This amplified products were combined with TVT7R(0,0) DNA in an In-Fusion 

reaction to generate minigenome-expressing plasmids such that in T7 transcripts the 

Renilla luciferase was in the negative sense. 
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Optimisation of OROV minigenome activity 

An initial minigenome was created based on the OROV M segment, as studies with 

BUNV demonstrated that the M-minigenome was the most active (Barr et al., 2003). 

However, initial attempts using the M segment UTR sequences as reported in GenBank 

gave low activity over background. Subsequently re-designing the construct to contain 

UTR sequences generated in this study, with the C/A mismatch at position 9/–9 and 

U/A at position 15/-15 resulted in high levels of luciferase activity, indicating that (i) 

both N- and L-expressing constructs were functional and (ii) that the M segment UTR 

sequences determined herein were active promoters. 

 

The amounts of L- and N- cDNA expressing plasmids required to efficiently transcribe 

and replicate the minigenome in order to obtain maximum reporter activity was then 

determined. Briefly, BSR-T7/5 cells (Buchholz et al., 1999) were transfected with 

various concentrations of pTM1OROV-L, pTM1OROV-N and minigenome 

pTVT7OROVMRen(–). Cells were also co-transfected with a plasmid expressing firefly 

luciferase (pTM1-FF-luc).  At 24 h p.t cells were lysed and luciferase activity measured 

using a Dual-Luciferase Reporter Assay kit (Promega). Renilla luciferase values were 

normalised to firefly luciferase values, and minigenome activity expressed as a fold 

induction over the background control. Control wells did not contain pTM1OROV-L 

(No L).  

 

High levels of luciferase activity from OROV M-minigenome was obtained when L and 

N were at a concentration of 1 µg each (1:1 ratio), in a 6-well culture dish (Figure 

3.2.8). Increasing concentrations of L decreased minigenome activity. This has been 

seen with other bunyaviruses as well and has been attributed to the cap-snatching ability 

of the viral polymerase (Blakqori et al., 2003; Elliott & Schmaljohn, 2013). These 

optimized amounts were used in all further experiments. 
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Figure 3.2. 8. Optimisation of OROV minigenome activity.  

BSR-T7/5 cells in 6-well plates were co-transfected with 500 ng of OROV M-

minigenome expressing plasmid (pTVT7OROVMRen(–)), varying concentration of 

pTM1OROV-L and pTM1OROV-N, and 100 ng pTM1-FF-Luc. The background 

control lacked pTM1OROV-L (No L). At 24 h p.t luciferase was measured using a 

Dual-luciferase Assay kit (Promega). Minigenome activity is expressed as fold 

induction over the No L control. Error bars indicate SD (n=3). 
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Functionality analysis of published OROV UTRs and UTRs from this 

study  

To confirm that all the sequence discrepancies generated in this study were not 

sequencing artifacts, they were compared to the published sequences for minigenome 

activity. Plasmids reflecting discrepancies were generated using pTVT7OROVMRen(–

), pTVT7OROVLRen(–) and pTVT7OROVSRen(-) as templates (Table 2.4; M-UTR, 

L-UTR, S-UTR). Mutations were confirmed by nucleotide sequencing (Source 

BioScience). As described above BSR-T7/5 cells were transfected with the optimized 

amounts of L- and N- along with the indicated OROV minigenome. At 24 h p.t cells 

were lysed and luciferase activity measured. The M segment UTR as previously 

published (9C:G, 15C:G) showed low activity, whereas the minigenome with UTR 

sequences as determined here (9C:A, 15U:A) showed a 2000-fold increased activity 

over background (cells where no L-expressing plasmid was transfected), Figure 3.2.9A. 

However, it was not just the mismatch at position 9/–9 that was critical for maximal 

activity, but also the base-pairing at position 15/–15, as the minigenome with the 

position 9 C/A mismatch, but C/G at position 15/–15 showed only 500-fold increase in 

activity. Introduction of the U/A pairing was notable to rescue activity when position 

9/–9 was C/G and other nucleotide combinations at position 15 were less active than 

U/A. Taken together, these results highlight the importance of certain residues within 

the M segment promoter. Next, the L-minigenomes with either a C or U residue at 

position 18 in the 5’ UTR, resulted in similar high levels of luciferase activity (Figure 

3.2.9.B). The minigenome assay was also used to compare the short and long S segment 

UTR sequences (Figure. 3.2.9 C). Minigenome constructs contained the same 5’ UTR 

and either the 14 nt (published) or 218 nt (as determined herein) long 3’ UTR. The 

minigenome with the short UTR did not result in any activity, whereas the minigenome 

with the 218 nt 3’ UTR resulted in high luciferase activity.  

 

Together, these results confirmed that the UTR sequences as determined for the L, M 

and S segments were functional promoters, and that a base mismatch at position 9/–9 

was critical for promoter activity. A comparison of the published OROV UTR 

sequences and the UTR sequences determined in this study are presented in Figure 

3.2.10. 
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Figure 3.2. 9. Minigenome assay.  

(A) Comparison of M-minigenomes. BSR-T7/5 cells were transfected with 1 µg each 

pTM1OROV-L and pTM1OROV-N, 0.5 µg M-minigenome plasmid, and 100 ng 

pTM1-FF-Luc; the background control lacked pTM1OROV-L. M-minigenomes 

contained different nucleotides at position 9/–9 and 15/-15 as indicated. Minigenome 

activity is expressed as fold induction over the background control. (B) Comparison of 

L-minigenomes containing a C or U at position 18 in the 3’ UTR. (C) Comparison of S-

minigenomes containing the published (17 nt) or newly defined long (218 nt) 5’ UTR. 

Error bars indicate SD (n=3). 
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Figure 3.2. 10. Comparison of the published and the revised OROV BeAn19991 

UTR sequences shown as a panhandle structure (antigenomic sense).  

Differences between the published and revised sequences are shown in red. The length 

of each segment is also given. nt, nucleotide. The terminal 11 conserved residues are 

separated by a vertical line. The box highlights nucleotides that are conserved for that 

particular segment within the Orthobunyavirus genus, nucleotides beyond this vary for 

each virus. 
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3.2.4 A comparison of two different OROV S segment UTRs  

In Chapter 3, Section 1, OROV field isolates were deep sequenced. Results from that 

study revealed that the recently isolated viruses (from 2009 and 2012) contained 

significant differences in the S segment 3’ UTR, in comparison to the prototype strain 

used in this study. The complete S segment length of the OROV isolates was 

determined as 947 nt, in contrast to the S segment length determined in this study for 

strain BeAn19991 (958 nt). Our collaborators (Dr Martin Spiegel and Prof Manfred 

Weidmann, University Medical Center Göttingen) have subsequently re-sequenced 

OROV strain TRVL9760 that was originally isolated in Trinidad in 1955. Similar to 

strain BeAn19991, this S segment length is also 958 nt (GenBank accession number, 

KP026181). The UTR sequences for the field isolates were confirmed using the RNA 

ligation method as described for BeAn19991 in this study. Nucleotide sequencing 

confirmed the absence of 11 nt between position 781 – 791 (Figure 3.2.11.A). 

Additional differences have been discussed in Chapter 3, Section 1 of this thesis.  

 

To test if the UTR variations also resulted in variation in promoter activity a 

minigenome construct based on one of the isolates (OROV Ama2080 BeH759025) was 

generated, as described in section 3.2.3. This construct was designated as 

pTVT72080SRen(–). A minigenome assay in BSR-T7/5 cells was carried out as 

described above. Despite the sequence differences, promoter activity of BeH759025 

was similar to that of BeAn19991 (Figure 3.2.11.B), in a minigenome assay. It is 

probable that the loss of these nucleotides offers an in vivo advantage to the virus.  
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Figure 3.2. 11. Comparison of OROV S segment UTRs.  

(A) Sanger-sequencing results demonstrating that the S segment 3’ UTR of clinical 

isolate BeH759025 lacks nts between 781 to 791 of prototype strain BeAn19991. A, 

Green; T, Red; G, Black; C, Blue. (B) Minigenome activity of the clinical isolate and 

the prototype S UTRs. BSR-T7/5 cells in 24-well plates were transfected with 250 ng of 

pTM1OROV-L and pTM1OROV-N, 125 ng of S-minigenome expressing plasmid 

pTVT72080SRen(–) or pTVT7OROVSRen(–) and 100 ng pTM1-FF-Luc. Control 

transfection mix lacked pTM1OROV-L (No L). At 24 h p.t cells were lysed and 

luciferase values determined. Error bars indicate SD (n=3). 
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3.2.5 Establishment of a virus-like particle assay for OROV  

To investigate whether the glycoprotein gene was also functional, a VLP assay was 

developed. In this system a plasmid expressing the glycoprotein precursor was added to 

the minigenome system, allowing the minigenome-based RNP to be packaged into 

virus-like particles. Gn and Gc are co-translational products from the viral glycoprotein 

precursor and are responsible for virus assembly and budding (Shi et al., 2007). As 

described above, BSR-T7/5 were transfected with pTM1OROV-L, pTM1OROV-N and 

pTVT7OROVMRen(–), along with a glycoprotein expressing cDNA plasmid 

(pTM1OROV-M). At 24 and 48 h p.t cells were lysed and luciferase activity measured, 

using Dual-luciferase Reporter kit (Promega). Supernatants from these samples were 

clarified and used to treat naive BHK-21 cells. At 24 h p.t cells were lysed and 

luciferase activity measured as before. 

 

Renilla values were normalised to firefly values, and minigenome activity expressed as 

fold-induction over the background control (No L). A significant increase in luciferase 

activity in cells that were transfected with the glycoprotein cDNA at 48 h was observed 

(Figure 3.2.12.A), suggesting spread of VLPs within the culture. Transfer of this 

supernatant to BHK-21 cells had resulted in high levels of luciferase activity (Figure 

3.2.12.B, L+M) compared with those exposed to supernatants from cells not transfected 

with the glycoprotein cDNA (Figure 3.2.12.B, +L). This confirmed that VLPs were 

produced and were capable of infecting cells. This is a stringent assay relying only on 

transcription of the packaged minigenome in the VLP without the need for exogenously 

supplied viral N and L proteins. Incubation of the supernatant with antibodies to OROV 

(antibody neutralisation test) before infection markedly reduced luciferase expression, 

whereas incubation with an irrelevant antiserum (anti-BUNV serum), had no effect 

(Figure 3.2.12.B).  

 

Taken together, these results indicated that the OROV glycoprotein gene cDNA was 

functional in this VLP assay. 



   Chapter III. Results - Section 2    
 

 

	
 
 

140	

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2. 12. VLP production assay.  

BSR-T7/5 cells in 6-well plates were transfected with 1 µg each of pTM1OROV-L and 

pTM1OROV-N, 0.5 µg pTM1OROV-M, 0.5 µg M-minigenome expressing plasmid 

(pTVT7OROVMRen(–)) and 100 ng pTM1-FF-Luc; control transfection mixes lacked 

pTM1OROV-L (No L) or pTM1OROV-M (+L). At 24 or 48 h post-transfection, 

clarified supernatants were used to infect naive BHK-21 cells, and luciferase activity 

measured 24 h later. (A) Minigenome activity in transfected BSR-T7/5 cells at 24 or 48 

h post-transfection. (B) Minigenome activity in BHK-21 cells infected with 

supernatants from cells in (A). VLPs were also incubated with anti-OROV antibodies 

(+ve) or irrelevant antibodies (–ve) before infection of cells as indicated. Error bars 

indicate SD (n=3). 
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3.2.6 Analysis of OROV promoter strength  

Bunyaviral UTRs contain signals for genome replication, packaging and encapsidation. 

The promoter strength of these UTRs varies for each segment allowing a differential 

regulation of each gene (Elliott & Schmaljohn, 2013). In mammalian cells the relative 

levels of promoter activity for BUNV (Barr et al., 2003; Kohl et al., 2004b) and UUKV 

(Flick et al., 2004) was found to be the highest in M, followed by L and then S (M > L 

> S). For RVFV this was found to be in the order of L > S > M (Gauliard et al., 2006). 

In mosquito cells for BUNV, M was again found to be the highest, whilst the activities 

of the L and S promoters appeared similar (Kohl et al., 2004b). To test the difference 

between OROV UTRs both minigenome and VLP assays were used. The assays were 

performed as previously described. At 48 h p.t luciferase activity from BSR-T7/5 cells 

transfected with L+M was significantly higher using the S-minigenome (Figure 

3.2.13.A, L+M), in comparison to cells without M (Figure 3.2.13A, +L) where 

luciferase activity is higher with the L-minigenome. BHK-21 cells exposed to the 

supernatants from these samples for 24 h show high levels of luciferase activity from 

the S-minigenome based assay (Figure 3.2.13.B). Based on these results it would appear 

that in a minigenome assay that measures transcription and replication, the promoter 

strength of OROV UTRs follows an order of L > M > S, whereas in a VLP assay which 

also measures packaging ability, the UTRs are in a S > L > M order.  
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Figure 3.2. 13. OROV promoter strength.  

BSR-T7/5 cells in 12-well plates were transfected with 0.5 µg each of pTM1OROV-L 

and pTM1OROV-N, 0.25 µg pTM1OROV-M, 0.25 µg L, M or S-minigenome 

expressing plasmid, and 100 ng pTM1-FF-Luc; control transfection mixes lacked 

pTM1OROV-L (No L) or pTM1OROV-M (+L). At 48 h post-transfection, clarified 

supernatants were used to infect naive BHK-21 cells, and luciferase activity measured 

24 h later. (A) Minigenome activity in transfected BSR-T7/5 cells at 48 h post-

transfection. (B) Minigenome activity in BHK-21 cells infected with supernatants from 

cells in (A). Error bars indicate SD (n=3). 

 
 

 

 

N
o 

L +L

L 
+ 

M

N
o 

L +L

L 
+ 

M

N
o 

L +L

L 
+ 

M

0

2000

4000

6000

80000

100000

120000

Fo
ld

 In
du

ct
io

n

L UTR M UTR S UTR 

Minigenome  

A 

Control L M S
0

5000

10000

15000

1500000

2000000

2500000

Re
ni

lla
 v

al
ue

s

VLP 

B 



   Chapter III. Results - Section 2    
 

 

	
 
 

143	

3.2.7 Analysis of OROV NSs  

Effect of OROV NSs on minigenome activity 

Bunyavirus NSs proteins have a regulatory role on the L protein and this is seen when 

NSs-expressing cDNA is added to a minigenome assay (Weber et al., 2001; Kohl et al., 

2004b; Brennan et al., 2011; Brennan et al., 2015). To determine if OROV NSs has 

similar dose-dependent effects, BSR-T7/5 cells were transfected as previously 

described. In addition, cells were also transfected with increasing concentrations of 

pTM1OROV-NSs (1, 10, 100, 1000 ng). The minigenome assay was carried out using 

pTVT7OROVMRen(–). At 24 h p.t cells were lysed and luciferase activity measured. 

Renilla values were normalized to firefly values. Cells that did not contain OROV NSs 

resulted in high levels Renilla readings (Figure 3.2.14, No NSs). OROV NSs appears to 

drastically decrease minigenome activity even at low concentrations (1 ng)  (Figure 

3.2.14).  

 

Effect of OROV NSs on CMV promoter 

BUNV and RVFV NSs proteins have been demonstrated to reduce gene expression 

from CMV driven plasmids (Billecocq et al., 2004; Leonard et al., 2006). To determine 

if a similar effect occurs with OROV NSs, BSR-T7/5 cells were transfected with 

pTM1OROV-NSs, phRL-CMV and pTM1-FF-luc. phRL-CMV contains Renilla 

luciferase gene under the control of CMV immediate-early promoter. pTM1-FF-luc 

(T7RNAP-driven) was included as a control to determine whether any effect observed 

was CMV specific. At 24 h p.t cells were lysed and luciferase activity determined. Cells 

without NSs resulted in high luciferase readings. Addition of OROV or BUN NSs 

decreased Renilla values significantly (Figure 3.2.15). NSs had no effects on firefly 

values indicating NSs specificity for CMV-driven expression and not T7-driven 

expression.  
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Figure 3.2. 14. Effect of NSs on minigenome activity.  

BSR-T7/5 cells were co-transfected with pTM1OROV-N (1 µg), pTM1OROV-L (1 

µg), pTM1-FF-luc (100 ng) and pTVT7OROVMRen(–) (0.5 µg), along with indicated 

amounts of NSs-expressing pTM1OROV-NSs. Luciferase values were measured 24 h 

p.t using a Dual-luciferase Reporter Assay kit (Promega). Values for NSs samples are 

plotted as fold-induction over control (No NSs), set at 100% activity. The experiment 

was carried out in triplicate. 

 

                     
Figure 3.2. 15. Effect of NSs on CMV-driven reporter gene expression.  

BSR-T7/5 were co-transfected with 0.5 µg of phRL-CMV, pTM1-FF-luc and 

pTM1BUNVNSs or pTM1OROVNSs. Luciferase values were measured 24 h p.t using 

a Dual-luciferase Reporter Assay kit (Promega). Values for BUNV and OROV NSs 

samples are plotted as fold-induction over Control (No NSs), set at 100% activity. The 

experiment was carried out in triplicate.  
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Cellular localization of OROV NSs  

To determine the intracellular localization of OROV NSs, the protein was tagged with 

eGFP or V5. Both tags were C-terminally placed using pTM1 plasmid as a backbone. 

Briefly, to tag OROV NSs with eGFP, a pTM1 plasmid expressing eGFP was first 

linearized. OROV NSs was then amplified with eGFP overhangs at the 5’ and 3’ ends, 

and ligated to the linearized eGFP plasmid by In-Fusion reaction (Clonetech 

Laboratories Inc.). With the V5 tag, pTM1OROV-NSs was PCR-linearised using 

primers containing the V5 sequence, such that the PCR amplified product could then be 

ligated back together (T4 DNA ligase, Promega). Primers used are in Table 2.4. 

Plasmids were confirmed by nucleotide sequencing (Source BioScience), and 

designated as pTM1ONSsV5 and pTM1ONSseGFP.  

 

Intracellular localisation was determined by immunofluorescence. BSR-T7/5 cells on 

coverslips were transfected with pTM1ONSseGFP or pTM1ONSsV5. At indicated 

time-points cells were fixed, and pTM1ONSsV5 samples were stained using anti-V5 

antibody. Both fusion proteins were detected in the cytoplasm of the cells (Figure 

3.2.16.A, B; Figure 3.2.17.A, B). However, the eGFP version at later time points was 

also detected in the nucleus (Figure 3.2.16.A, B; 24 h). eGFP is a larger protein tag 

(26.9 KDa) and over-expression is known to cause fused-proteins to translocate into the 

nucleus. Expression and functionality of pTM1ONSseGFP and pTM1ONSsV5 were 

tested by Western blotting, minigenome and CMV-driven assays. In a Western-blot 

samples were stained using anti-GFP (Figure 3.2.16.C) and anti-V5 (Figure 3.2.17.C) 

confirming appropriate proteins sizes. Both fusion protein were active in reducing 

minigenome activity ((Figure 3.2.16.D; Figure 3.2.17.D), however pTM1ONSseGFP 

was unable to efficiently reduce CMV-driven Renilla luciferase expression (Figure 

3.2.16.E) in comparison to pTM1ONSsV5 (Figure 3.2.17.E).  
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Figure 3.2. 16. eGFP-tagged OROV NSs protein.  

(A), (B) Intracellular localization of eGFP-tagged OROV NSs in BSR-T7/5 cells. Cells 

were transfected with 500 ng of pTM1OROVNSseGFP in a 6-well culture dish, and 

fixed and stained at indicated time points. (C) Western blotting demonstrated that 

pTM1OROVNSseGFP expresses a protein of appropriate size (NSseGFP, 37.61 kDa). 

The size of eGFP is 32.7 kDa. (D) Minigenome assay, and (E) CMV-driven Renilla 

expression. BSR-T7/5 cells were transfected as described in section 3.2.7.  
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Figure 3.2. 17. V5-tagged OROV NSs protein.  

(A), (B) Intracellular localization of V5-tagged OROV NSs in BSR-T7/5 cells. Cells 

were transfected with 500 ng of pTM1OROVNSsV5 in a 6-well culture dish, and fixed 

and stained at indicated time points. (C) Western blotting demonstrated that 

pTM1OROVNSsV5 expresses a protein of appropriate size (NSsV5, 12.11 kDa). (D) 

Minigenome assay, and (E) CMV-driven Renilla expression. BSR-T7/5 cells were 

transfected as described in section 3.2.7.  
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3.2.8 Discussion 

A crucial step in developing reverse genetic systems for RNA viruses is obtaining 

cDNA clones that are representative of the authentic viral genome sequence. As 

described above, a number of sequence differences were found in the clones derived 

from the BeAn19991 strain in this study compared with sequences in the database. 

These included an additional ~200 nt at the 3’ end of the S genome segment, an 

apparent frame shift in the L segment coding sequence and a critical mismatched 

nucleotide pair in the terminal panhandle sequence on each segment. These significant 

differences were confirmed when the complete sequence of the Trinidadian prototype 

strain TRVL-9760 was also determined by our collaborators (Dr Martin Spiegel and 

Prof Manfred Weidmann, University Medical Center Göttingen; GenBank accession 

nos. KP026179 – KP026181). Early studies comparing orthobunyavirus genome 

sequences indicated that the terminal 11 nt of each segment exhibited a high degree of 

conservation, and hence consensus primers based on sequences of Bunyamwera and 

California serogroup viruses (Elliott, 1989; Elliott & McGregor, 1989; Elliott et al., 

1991; Dunn et al., 1994) have traditionally been used to amplify unknown bunyavirus 

genomes. However, the actual terminal sequences for the majority of sequences 

currently available in GenBank have not been verified directly, e.g. by RACE 

techniques. With regard to the orthobunyavirus ‘consensus sequence’, there is a single 

nucleotide difference between the 3’ and 5’ complementary ends such that, using total 

infected cell RNA as template, mispriming by either primer could occur or a single 

primer could bind to both genomic and antigenomic RNAs. Indeed, a single primer was 

used to amplify the OROV M segment (Aquino & Figueiredo, 2004) or the S segments 

of a range of orthobunyaviruses (Lambert & Lanciotti, 2008). The importance of the 

terminal sequence has been investigated by minigenome assays for BUNV (Dunn et al., 

1995; Barr et al., 2003; Kohl et al., 2003a; Barr & Wertz, 2004; Kohl et al., 2004a) and 

the mismatch at position 9/–9 was shown to be crucial for promoter activity (Barr & 

Wertz, 2005). As more diverse orthobunyavirus genomes have been sequenced, 

particularly using next-generation sequencing methods (deep sequencing) that are not 

reliant on specific primers to amplify cDNA, it has become clear that there is more 

variation in the ‘bunyavirus consensus’ than observed between Bunyamwera and 

California serogroup viruses (e.g. (Ladner et al., 2014)), highlighting the requirement 
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for direct determination of the terminal sequences. In a similar vein, as the genomes of 

more members of the genus Phlebovirus  (another genus in the family Bunyaviridae) 

have been sequenced, it is apparent that the termini also diverge from the ‘phlebovirus 

consensus’ (Dilcher et al., 2012; Matsuno et al., 2013; Elliott & Brennan, 2014). A 

recent paper (Ladner et al., 2014) suggested the standards that should be applied to viral 

genome sequence determination and we strongly support the recommendations 

proposed therein. Saeed et al. (Saeed et al., 2000) reported the first nucleocapsid gene 

sequences of 28 strains of OROV, including the prototypic Trinidadian OROV isolate 

TRVL-9760 and the Brazilian isolate BeAn19991. They determined the complete S 

segment to be 754 nts and noted the unusually short length of the 3’ UTR, just 14 nts 

after the translational stop codon, compared with other orthobunyavirus S segments. 

They employed various experimental procedures to verify the 3’ UTR, including 

chemical denaturation of the purified viral RNA with methylmercury hydroxide before 

RT-PCR (in case there was a secondary structure that impeded reverse transcription), 

and a 5’ RACE procedure using both purified viral RNA and total cellular RNA as 

starting material (Saeed et al., 2000). All approaches yielded that same short 3’ UTR. 

Results in the current study indicate that the true length of the S segment is actually 958 

nt. Examination of the correct sequence reveals an internal region highly similar to the 

terminal sequence that could hybridize with the primer and in this study resulted in two 

PCR products. The functionality of the longer 3’ UTR determined in this study was 

demonstrated in the minigenome assay. We further confirmed that the sequences of the 

BeAn19991 N and L proteins were functional in driving reporter gene expression from 

minigenomes, and similarly that the determined UTR sequence for all three segments 

could be used to construct functional minigenomes. Lastly, by co-transfecting a cDNA 

that expressed the glycoprotein gene, VLPs capable of packaging a minigenome and 

infecting naive cells were produced. Taken together, these data provide strong evidence 

that the cDNA clones reported in this study are fully functional.  

 

In addition, the study has used the established minigenome system to analyse OROV 

promoter strength, and found that in a minigenome assay OROV promoters are in a L > 

M > S order, whilst in a VLP assay follow S > L > M. This is in contrast to other 

bunyaviruses in which the M promoter is the most active (Barr et al., 2003; Flick et al., 
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2004; Kohl et al., 2004b). OROV NSs does however, behave similar to other tested 

bunyavirus NSs proteins in its function to reduce minigenome activity and CMV-driven 

gene expression. Lastly, the loss of 11 nts in the S segment of OROV field isolates was 

investigated, although it appeared to have no effect on the UTR function when analysed 

using the minigenome system. Previous work has demonstrated that internal deletions in 

the S-segment UTRs of BUNV do not affect virus viability, but do interfere with 

replication causing growth attenuation in cell culture (Lowen & Elliott, 2005). Similar 

results have also been shown for the BUNV M- and L-segment UTRs (Mazel-Sanchez 

& Elliott, 2012). The apparent natural deletion of these 11 nts could be important for 

virus replication efficiency and virus fitness, both in vitro and in vivo, and are worth 

pursuing further. 

 

3.2.9 Summary 

 
1. The genome sequences of OROV BeAn19991 have been re-determined.  

2. OROV S segment is 958 nt long and not 754 nt as published. 

3. OROV field isolates demonstrate a loss of nucleotides at the 3’ UTR.  

4. A minigenome and a VLP assay for OROV have been established.  

 

The corrected sequences of the OROV strain BeAn19991 genome were deposited in 

GenBank with accession numbers KP052850 (L), KP052851 (M) and KP052852 (S). 
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Chapter III. Results 
 

Section 3: Minigenome analysis suggests that Oropouche and 

Schmallenberg orthobunyaviruses would be capable of 

reassortment 

 

3.3.1 Introduction and Aims  

Chapter 3, Section 2 described the establishment of a minigenome and (VLP) system 

for OROV. The present study utilised that system to test protein-protein and protein-

RNA interactions between OROV and SBV. OROV and SBV are both midge-borne 

pathogenic orthobunyaviruses, occupying separate clades of the Simbu serogroup 

(Ladner et al., 2014). OROV causes a febrile illness in humans in South America, 

whilst SBV is responsible for ruminant fetal malformations in Europe (Anderson et al., 

1961; Hoffmann et al., 2012). Separated by host and geographic distance these viruses 

are ideal for studying determinants of cross-species transmission. The aim of this 

section was to take advantage of the new reverse genetics tools for OROV that were 

developed in this PhD project and combine it with that of SBV (Dong et al., 2013a; 

Elliott et al., 2013; Varela et al., 2013), in order to assess if these viruses are capable of 

reassortment. 

 

Reassortment is a well-documented phenomenon for viruses with segmented-genomes 

and can occur when two genetically related viruses co-infect the same cell. Thomas 

Briese recently hypothesized that all bunyaviruses may have arisen due to reassortment 

(Briese et al., 2013). Examples of orthobunyavirus reassortants include Apeu virus (de 

Brito Magalhaes et al., 2011), Aino virus (Yanase et al., 2010), Ngari virus (Gerrard et 

al., 2004) and Perdoes virus. As described in Chapter 3, Section 1, Perdoes virus 

consists of L and S segments similar to OROV and an M segment of unknown Simbu 

origin. Similarly, IQTV and MDDV are also OROV reassortants with unique M 

segments (Aguilar et al., 2011; Ladner et al., 2014). Bunyavirus reassortants tend to 

contain L and S segments from the same parental virus, whilst the M segment donor 



  Chapter III. Results – Section 3 

	
 
 

152	

remains in most cases unknown. The L and S segments encode the viral polymerase (L) 

and nucleocapsid (N) proteins, which together replicate the viral genome, so it is likely 

that they coevolve together (Iroegbu & Pringle, 1981; Elliott, 2014). The M segment, on 

the other hand, encodes a non-structural protein (NSm) and the viral surface proteins Gn 

and Gc. The Gn/Gc proteins enable the virus to bind to the receptor and enter the host-

cell, so they function as the major antigenic targets. Progeny viruses that arise from an 

M segment reassortant would hence contain new genetic information with the potential 

of increased infectivity and a new host-range (Briese et al., 2013; Elliott, 2014). 

 

3.3.2 SBV L and N are capable of replicating and transcribing OROV 

minigenomes  

 

SBV minigenome assay 

First, a plasmid expressing SBV N protein was generated since previously the entire S 

ORF that encodes for both N and the overlapping NSs was cloned into a pTM1 

expression vector (Moss et al., 1990) to be used in the minigenome assay (Dong et al., 

2013a; Elliott et al., 2013; Varela et al., 2013). NSs is known to decrease minigenome 

activity (Chapter 3, Section 2), hence to silence the NSs ORF primers previously used 

to generate SBV mutant lacking the NSs protein (rSBVdelNSs;  (Elliott et al., 2013)) 

were used. This plasmid was designated as pTM1SBV-N, where SBV N is under the 

control of T7 promoter and EMCV IRES. cDNA expressing plasmid for SBV L protein 

was previously cloned by Dr Xiaohong Shi (MRC-University of Glasgow, Centre for 

Virus Research) and SBV M-minigenome (pTVT7R-SBVMRen(–)) has previously 

been described (Dong et al., 2013a). 

 

Next, the SBV minigenome system was optimised to determine the amounts of L- and 

N- cDNA expressing plasmids required to obtain maximum reporter activity. Briefly, 

BSR-T7/5 cells (Buchholz et al., 1999) were transfected with indicated concentrations 

of pTM1SBV-L, pTM1SBV-N and minigenome pTVT7R-SBVMRen(–)(Dong et al., 

2013a). Cells were also co-transfected with a firefly luciferase expressing plasmid 

(pTM1-FF-luc), control wells did not contain pTM1OROV-L (No L), but was 
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substituted with an empty pTM1 plasmid to equalize the total amount of DNA added to 

each well. At 24 h p.t cells were lysed and luciferase activity measured using a Dual-

Luciferase Reporter Assay kit (Promega). Renilla values were normalised to firefly 

values, and the minigenome activity calculated as fold induction over the background 

control (No L). Minigenome activity was the highest when L and N were at a ratio of 

1:2 (Figure 3.3.1). This is in contrast to OROV, where equal amounts of L and N were 

required. As observed with OROV, activity of SBV minigenome decreases with higher 

concentrations of L protein (Chapter 3, Section 2). 
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Figure 3.3 1. SBV minigenome optimisation.  

BSR-T7/5 cells (6-well plate) were transfected with pTM1SBV-N and/or pTM1SBV-L 

and minigenome-expressing TVT7R-SBVMRen(–). Firefly luciferase-expressing 

pTM1-FF-Luc (100 ng) served as a transfection control. At 24 h p.t Renilla and firefly 

luciferase were measured using a Dual-Luciferase Reporter Assay kit (Promega). 

Luciferase values were normalized. Minigenome activity is expressed as fold-induction 

over background control (No L). Error bars indicate SD (n = 3).  
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Protein-protein and protein-RNA interactions between OROV and SBV  

To assess protein-protein and protein-RNA interactions between OROV and SBV, 

BSR-T7/5 cells were transfected with OROV or SBV minigenomes, as previously 

described (OROV: Chapter 3, Section 2; SBV: 3.3.2), along with the L and N protein-

expressing plasmids of the respective virus or with a combination of OROV and SBV L 

and N (Figure 3.3.2). In the minigenome plasmid the reporter gene Renilla Luciferase is 

placed in the viral genomic sense and is flanked by the viral UTRs. Hence it served as a 

genomic segment analogue. Expression from the minigenome plasmid is derived only 

when the L and N proteins can recognize the viral UTR as a functional promoter. 

Transcription and replication of the viral minigenome then leads to measurable activity. 

The presence of luciferase activity was chosen as an indication that a potential genomic 

rearrangement between the tested viruses would be feasible. At 24 h p.t cells were lysed 

and luciferase activity measured using a Dual-luciferase Assay Reporter Kit (Promega). 

As expected, minigenome activity was detected with OROV L-N using OROV M-

minigenome, and with SBV L-N using SBV M-minigenome (Figure 3.3.2). 

Interestingly, a greater than 50-fold increase in minigenome activity was also detected 

with SBV L-N using OROV M-minigenome, contrasting a less than 10-fold increase 

over background with OROV L-N using SBV M-minigenome (Figure 3.3.2). To test if 

the low reporter activity with OROV L-N on SBV M-minigenome was due to 

optimisation efficiency, the assay was repeated by titrating various concentrations of 

OROV L-N. No increase in reporter activity was detected (Figure 3.3.3).  
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Figure 3.3 2. Minigenome activity.  

BSR-T7/5 cells (24-well plate) were transfected with pTM1-N and/or pTM1-L (250 ng) 

and M-minigenome (125 ng) plasmids, pTVT7R-SBVMRen(–) or 

pTVT7OROVMRen(-). Firefly luciferase-expressing pTM1-FF-Luc (25 ng) served as a 

transfection control. At 24 h.p.t Renilla and firefly luciferase were measured using a 

Dual-Luciferase Reporter Assay kit (Promega). Luciferase values were normalized and 

minigenome-activity expressed as fold-induction over background control (no pTM1-

L). Error bars indicate SD (n=3). 
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Figure 3.3 3. Titration of OROV L-N on SBV M-minigenome.  

BSR-T7/5 cells (24-well plate) were transfected as described above. Indicated amounts 

of pTM1OROV-N and/or pTM1OROV-L were transfected along with TVT7R-

SBVMRen(–) (125 ng) and pTM1-FF-Luc (25 ng). At 24 h.p.t Renilla and firefly 

luciferase were measured using a Dual-Luciferase Reporter Assay kit (Promega). 

Luciferase values were normalized and minigenome-activity expressed as fold-

induction over background control (no pTM1-L). Error bars indicate SD (n = 3). 
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SBV L and N functionality with OROV UTRs 

SBV L and N were tested for their ability to also utilise OROV L and S UTRs. BSR-

T7/5 cells were transfected with SBV L and N cDNA expressing plasmids, along with 

OROV L- (pTVT7OROVLRen(–)), OROV M- (pTVT7OROVMRen(–)), or OROV S- 

(pTVT7OROVSRen(-)) minigenome expressing plasmids. The minigenome assay was 

performed as described above. At 24 h p.t luciferase activity was measured and 

calculated. SBV L-N proteins were able to recognize the UTRs of all OROV segments 

(Figure 3.3.4). In an OROV-minigenome assay the promoter strength of OROV UTRs 

follows an order of L > M > S (Chapter 3, Section 2; Figure 3.2.13), however using 

SBV L-N it appears that the promoter strengths of L and M are similar in activity  

(Figure 3.3.4).  
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Figure 3.3 4. OROV UTRs.  

BSR-T7/5 cells (24-well plate) were transfected as previously described. 250 ng of 

pTM1SBV-N and/or pTM1SBV-L were transfected with 125 ng of 

pTVT7OROVLRen(–), pTVT7OROVMRen(–), or pTVT7OROVSRen(-), and pTM1-

FF-Luc (25 ng). At 24 h.p.t Renilla and firefly-luciferase were measured using a Dual-

Luciferase Reporter Assay kit (Promega). Luciferase values were normalized and 

minigenome-activity expressed as fold-induction over background control (no pTM1-

L). Error bars indicate SD (n = 3). 
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3.3.3 Viral Like Particles (VLPs) confirm minigenome results  

Next, a VLP production assay was performed in order to further assess whether OROV 

and SBV can reassort as the minigenome data suggests. Briefly, BSR-T7/5 cells were 

transfected with SBV or OROV L and N protein expression plasmids and SBV or 

OROV M-minigenome, along with SBV or OROV glycoprotein-expressing plasmid 

(concentration as indicated in the graph, Figure 3.3.5). BUNV glycoprotein was also 

included as a control. At 48 h p.t the supernatant was harvested, clarified and used to 

infect fresh BSR-T7/5 cells that were transfected with L, N and M plasmids for 24 h in 

order to boost transcription, as previously described (Devignot et al., 2015). VLP-

infected BSR-T7/5 cells were lysed 24 h p.i and luciferase activity measured as 

described above. Renilla luciferase was detected with OROV glycoproteins in 

combination with SBV N-L in both OROV and SBV M-minigenomes (Figure 3.3.5.A 

and B; SBVN + SBVL + OROVM). This suggests that VLP reassortants containing 

OROV glycoproteins and SBV L and N proteins could be formed, indicating that a 

viable virus could potentially also form. In contrast, the combination of OROV L-N 

proteins and SBV M glycoproteins did not produce measurable reporter activity with 

SBV M-minigenome (Figure 3.3.5.B; OROVN + OROVL + SBVM) and relatively low 

activity with OROV M-minigenome (Figure 3.3.5.A). Similarly, low activity was 

observed with SBV N + SBV L + BUNV M protein combination (Figure 3.3.5; SBVN 

+ SBVL + BUNVM). These results indicate that OROV glycoproteins can interact with 

heterologous SBV RNPs and assemble viral particles that are capable of infecting new 

cells.  
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Figure 3.3 5. VLP assay.  

BSR-T7/5 cells (12-well plate) were transfected with pTM1SBV-L (200 ng) and 

pTM1SBV-N (400 ng) or pTM1OROV-L and pTM1OROV-N (400 ng), along with 

pTM1-M (200 ng), and M-minigenome (200 ng) and pTM1-FF-Luc (40ng). At 48 h.p.t 

clarified supernatant was used to infect cells pre-transfected with proteins only, as 

indicated. At 24 h.p.i luciferase readings were measured as described above. Renilla 

activity is expressed as fold induction over control pTM1-N. Error bars indicate SD (n = 

3).  
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3.3.5 The importance of UTR positions 8 and 9  

In contrast to OROV L and N, which are unable to function using SBV M UTR, the L 

and N proteins of SBV can recognise OROV M UTR. To investigate the sequence 

difference that contributes to UTR recognition a nucleotide alignment of OROV and 

SBV M segment UTRs along with that of other Simbu viruses Akabane virus (AKV), 

Oya virus (OYAV), Leanyer virus (LENV), Perdoes virus and the family prototype 

BUNV were carried out (Figure 3.3.6.A). Interestingly, SBV and AKV (another 

ruminant pathogen) contain 8A/A-9A/A “double-mismatch” at positions 8 and 9 of the 

M UTR, and LENV consists of 8A/C-9C/A “double-mismatch”. These are variations 

from the “typical” 8A/T-9C/A “pairing/mismatch” as present in OROV, BUNV, OYAV 

and Perdoes virus. These positions have previously been shown to be important for 

orthobunyavirus promoter activity (Barr et al., 2005; Chapter 3, Section 2). To 

investigate if these residues contributed to promoter recognition by the viral N and L 

proteins, point mutations were inserted in the minigenome plasmids by site-directed 

mutagenesis (Table 2.5). The 8th and 9th nucleotides of OROV M-minigenome (8A/T-

9C/A) were altered to mimic the residues of SBV M-UTR (8A/A-9A/A), resulting in 

the first 11 residues of OROV M-UTR being changed to those of SBV (Figure 3.3.6.A). 

A minigenome assay using this plasmid resulted in loss of UTR functionality with 

OROV L-N proteins and a decreased efficiency of UTR functionality with SBV L-N 

proteins (Figure 3.3.6.B; 8A/A 9A/A). A similar approach using the SBV M-

minigenome was then carried out, where the first 11 residues of SBV M-UTR were 

altered to mimic OROV M-UTR (8A/T-9C/A), however this did not result in rescue of 

luciferase activity for OROV L-N (Figure 3.3.6.B; 8T/A 9C/A). To test whether the 

terminal 11 nucleotides are sufficient for promoter activity, an OROV M-minigenome 

containing only the terminal 5’ and 3’ 13-nucleotides was generated (Table 2.5; plasmid 

generated using In-Fusion HD Cloning, Clontech). This new minigenome was not 

functional with either OROV or SBV L-N (Figure 3.3.7.A). The length of the 3’ UTR 

of orthobunyaviruses vary considerably (Dunn et al., 1994; Elliott & Blakqori, 2011), 

and amongst the viruses focused on in this study AKV has the shortest 5’ UTR, only 22 

nucleotides (Figure 3.3.7.B). Previous work has demonstrated that the minimum 

requirement for a viable BUNV S segment mutant is a 22 nucleotide 5’ UTR, with at 

least 112 nucleotides at the 3’ terminus (Lowen & Elliott, 2005).  



  Chapter III. Results – Section 3 

	
 
 

163	

 

 
 

Figure 3.3 6. Analysis of the Simbu M UTR.  

(A) Sequence comparison of the 3’ and 5’ panhandle nucleotides of the M segments of 

viruses OROV (GenBank accession no, KP052851, this PhD), SBV (Elliott et al., 

2013), BUNV (GenBank accession no, NC_001926), OYAV (GenBank accession no, 

JX983193), LENV (GenBank accession number, HM627176), AKV (GenBank 

accession no, NC_009895) and Perdoes virus (GenBank accession no, KP691628, this 

PhD). (B) and (C) Minigenome assays. Performed as described above. Error bars 

indicate SD (n = 3). 
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5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C

PEDV 

OROV 
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3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A

SBV 

3’ - T C A T C A C A A G A G G T G A A T A A T T G A T A G A A T T
     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
5’ - A G T A G T G T A C T C C A C A C T A C A A A C T T G C T A T T G T T G A A A A T C G C T G T G C T A T T A A A T C C A A C A G A A G G T C A T T A A A G G C T C T T T A

OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A A C T T A A A G T C C T T T A A T A G T

LENV 

3’ - T C A T C A C A C G A G G T G C A G T T T G C A A T T T A G T T C C A T T A A T A T A T A G T A A T C A G T C C G T C T A
     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
5’ - A G T A G T G T G C T C C A C G T C A A A C G T A G T G C A C T C C A T A A T C A A A C A A T C T A T T G A A T T T A C A

AKV 
3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C G C A T T G C A

PEDV 

3’ - T C A T C A C A C G A T G G T T G T T G T T A A A A A C T G A
     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
5’ - A G T A G T G T A C T A C C A G C A A C A A A C A G T G A C A
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3’ - T C A T C A C A A G A T G G T G T A C T T T T
     | | | | | | |     | | | | | | | |       | | |      4373 nt
5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A
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3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
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3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
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     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
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     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
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3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
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3’ - T C A T C A C A C G A T G G T T G T T G T T A A A A A C T G A
     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
5’ - A G T A G T G T A C T A C C A G C A A C A A A C A G T G A C A
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5’ - A G T A G T G T A C T A C C A A C A A C A A G

PEDV 
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3’ - T C A T C A C A A G A T G G T G T A C T T T T
     | | | | | | |     | | | | | | | |       | | |      4373 nt
5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A

OYAV 

3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
5’ - A G T A G T G T A C T C C T A T T T C A A A A C A A A C A A A A A C A A T C T C A A A

L"UTR"

SBV 

3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C
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3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A
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     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
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OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
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     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
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3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
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     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
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5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A

OYAV 

3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
5’ - A G T A G T G T A C T C C T A T T T C A A A A C A A A C A A A A A C A A T C T C A A A

L"UTR"

SBV 

3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C

PEDV 

OROV 

S"UTR"

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A

SBV 

3’ - T C A T C A C A A G A G G T G A A T A A T T G A T A G A A T T
     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
5’ - A G T A G T G T A C T C C A C A C T A C A A A C T T G C T A T T G T T G A A A A T C G C T G T G C T A T T A A A T C C A A C A G A A G G T C A T T A A A G G C T C T T T A

OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A A C T T A A A G T C C T T T A A T A G T

LENV 

3’ - T C A T C A C A C G A G G T G C A G T T T G C A A T T T A G T T C C A T T A A T A T A T A G T A A T C A G T C C G T C T A
     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
5’ - A G T A G T G T G C T C C A C G T C A A A C G T A G T G C A C T C C A T A A T C A A A C A A T C T A T T G A A T T T A C A

AKV 
3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C G C A T T G C A

PEDV 
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Figure 3.3 7. Analysis of the terminal UTR nucleotides.  

(A) OROV M-minigenome activity with complete or only 13 terminal-nucleotides. 

Performed as previously described. Error bars represent SD (n=3). (B) Conservation 

and diversity of the 5’ terminus of Simbu viruses: AKV, SBV, Perdoes virus, LENV, 

OROV, OYAV and BUNV. 

 

 

 

 

 

 

 

3’ - T C A T C A C A C G A T G G T T G T T G T T A A A A A C T G A
     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
5’ - A G T A G T G T A C T A C C A G C A A C A A A C A G T G A C A

OROV 

3’ - T C A T C A C A C G A T G G T T G T T A T A A
!!!!!!!!!!!!!!|!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!|!!!|!!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!!!!!!!!!!!!!!!!!!!!!!!!4418 nt
5’ - A G T A G T G T A C T A C C A A C A A C A A G

PEDV 

M"UTR"

3’ - T C A T C A C A A G A T G G T G T A C T T T T
     | | | | | | |     | | | | | | | |       | | |      4373 nt
5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A

OYAV 

3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
5’ - A G T A G T G T A C T C C T A T T T C A A A A C A A A C A A A A A C A A T C T C A A A

L"UTR"

SBV 

3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C

PEDV 

OROV 

S"UTR"

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A

SBV 

3’ - T C A T C A C A A G A G G T G A A T A A T T G A T A G A A T T
     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
5’ - A G T A G T G T A C T C C A C A C T A C A A A C T T G C T A T T G T T G A A A A T C G C T G T G C T A T T A A A T C C A A C A G A A G G T C A T T A A A G G C T C T T T A

OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A A C T T A A A G T C C T T T A A T A G T

LENV 

3’ - T C A T C A C A C G A G G T G C A G T T T G C A A T T T A G T T C C A T T A A T A T A T A G T A A T C A G T C C G T C T A
     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
5’ - A G T A G T G T G C T C C A C G T C A A A C G T A G T G C A C T C C A T A A T C A A A C A A T C T A T T G A A T T T A C A

AKV 
3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C G C A T T G C A

PEDV 

(a) 

(b) 
AGTAGTGAAC TACCACAACA AA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AGTAGTGAAC TACCACAAT C AAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AGTAGTGTAC TACCAACAAC AAG- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AGTAGTGCAC TACCACTACA AAGT TAAA - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AGTAGTGTAC TACCAGCAAC AAACAGTGAC A - - - - - - - - - - - - - - - - - - - - - - - - -
AGTAGTGTAC TACCACATAC AACAAACT T T T CAGAGAAT T AAA - - - - - - - - - - - - -
AGTAGTGTAC TACCGATACA T CACAAACCT T T CAGAGACA CAT CT T TAT T T CCAAG
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3.3.6 Analysis of SBV L UTR  

Next, the L segment UTR sequences were analysed. Interestingly, the L UTRs of 

viruses OROV, SBV, BUNV, AKV, OYAV, LENV and Perdoes virus in contrast to 

their M UTRs contain identical nucleotides in the first 11 positions (Figure 3.3.8.A). 

The L UTR of SBV and AKV do not contain the 8A/A-9A/A “double-mismatch” at 

positions 8 and 9 that are present in their M UTR (Figure 3.3.6.A). This double 

mismatch is also present in the S segment of these viruses (Figure 3.3.9). The L UTR of 

SBV and AKV consist of the “typical” 8A/T 9C/A “pairing/mismatch” similar to 

OROV, BUNV, OYAV and Perdoes virus (Figure 3.3.8.A). Hence, the SBV L segment 

promoter was tested for its functionality with OROV or BUN L-N proteins. First, an 

SBV L-minigenome plasmid was generated using a similar approach as described in 

Chapter 3, Section 2 (Table 2.5). The previously described SBV L segment plasmid was 

used as a template (Elliott et al., 2013). SBV L-minigenome (designated as 

TVT7RSBVLRen(-)) was then tested for functionality in a minigenome assay as 

previously described. Interestingly, OROV and BUNV L-N proteins were able to 

transcribe and replicate SBV L-minigenome (Figure 3.3.8.B). These results demonstrate 

that, in contrast to SBV M UTR (Figure 3.3.2), the L and N proteins of OROV are 

capable of recognising and using SBV L UTR as a promoter.   
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Figure 3.3 8. Analysis of Simbu L segment UTRs.  

(A) Sequence comparison of the 3’ and 5’ panhandle nucleotides of the L segments 

from viruses OROV (GenBank Accession no. KP052850; this study), SBV (Elliott et 

al., 2013), BUNV (GenBank Accession no. NC_001925), OYAV (GenBank Accession 

no. JX983194), LENV (GenBank Accession no. HM627178) and Perdoes virus 

(GenBank Accession no. KP691627). (B) Minigenome assays. BSR-T7/5 cells (24-well 

plate) were transfected with OROV N-L, or SBV N-L, or BUN N-L (250 ng), and 

TVT7RSBVLRen(-) (125 ng) and pTM1-FF-Luc (40ng). At 24 h p.t luciferase activity 

was measured and calculated as described above. Error bars indicate SD (n = 3).  

 

3’ - T C A T C A C A C G A T G G T T G T T G T T A A A A A C T G A
     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
5’ - A G T A G T G T A C T A C C A G C A A C A A A C A G T G A C A

OROV 

3’ - T C A T C A C A C G A T G G T T G T T A T A A
!!!!!!!!!!!!!!|!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!|!!!|!!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!!!!!!!!!!!!!!!!!!!!!!!!4418 nt
5’ - A G T A G T G T A C T A C C A A C A A C A A G

PEDV 

M"UTR"

3’ - T C A T C A C A A G A T G G T G T A C T T T T
     | | | | | | |     | | | | | | | |       | | |      4373 nt
5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A

OYAV 

3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
5’ - A G T A G T G T A C T C C T A T T T C A A A A C A A A C A A A A A C A A T C T C A A A

L"UTR"

SBV 

3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C

PEDV 

OROV 

S"UTR"

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A

SBV 

3’ - T C A T C A C A A G A G G T G A A T A A T T G A T A G A A T T
     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
5’ - A G T A G T G T A C T C C A C A C T A C A A A C T T G C T A T T G T T G A A A A T C G C T G T G C T A T T A A A T C C A A C A G A A G G T C A T T A A A G G C T C T T T A

OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A A C T T A A A G T C C T T T A A T A G T

LENV 

3’ - T C A T C A C A C G A G G T G C A G T T T G C A A T T T A G T T C C A T T A A T A T A T A G T A A T C A G T C C G T C T A
     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
5’ - A G T A G T G T G C T C C A C G T C A A A C G T A G T G C A C T C C A T A A T C A A A C A A T C T A T T G A A T T T A C A

AKV 
3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C G C A T T G C A
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Figure 3.3 9. Analysis of Simbu S segment UTRs.  

(A) Sequence comparison of the 3’ and 5’ panhandle nucleotides of the S segments from viruses OROV (GenBank Accession no. 

KP052852; this study), SBV (Elliott et al., 2013), BUNV (GenBank Accession no. NC_001927), OYAV (GenBank Accession no. 

JX983192), LENV (GenBank Accession no. HM627177) and Perdoes virus (GenBank Accession no. KP691629). 

3’ - T C A T C A C A C G A T G G T T G T T G T T A A A A A C T G A
     | | | | | | | |   | | | | | |   | | | | | |         | | | |        4385 nt
5’ - A G T A G T G T A C T A C C A G C A A C A A A C A G T G A C A

OROV 

3’ - T C A T C A C A C G A T G G T T G T T A T A A
!!!!!!!!!!!!!!|!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!|!!!|!!!!|!!!|!!!|!!!!|!!!|!!!|!!!|!!!!!!!!!|!!!!!!!!!!!!!!!!!!!!!!!!!!4418 nt
5’ - A G T A G T G T A C T A C C A A C A A C A A G

PEDV 

M"UTR"

3’ - T C A T C A C A A G A T G G T G T A C T T T T
     | | | | | | |     | | | | | | | |       | | |      4373 nt
5’ - A G T A G T G A A C T A C C A C A A T C A A A

SBV 

BUNV 
3’ - T C A T C A C A C G A T G G C T A T T G T T T T G T C G G A A C A A A A A A C T G T G T T A C A C A G T T A T A
     | | | | | | | |   | | | | | | | | |         |     |   | | | |                 | | |       |       |         |        4458 nt     
5’ - A G T A G T G T A C T A C C G A T A C A T C A C A A A C C T T T C A G A G A C A C A T C T T T A T T T C C A A G

3’ - T C A T C A C A C G A T G G T G C A T G T T T G T A A G T T T A A A T A A A T T A A T
     | | | | | | | |   | | | | | | |   | | | | |     |                   |               |      4481 nt
5’ - A G T A G T G T A C T A C C A C A T A C A A C A A A C T T T T C A G A G A A T T A A A

OYAV 

3’ - T C A T C A C A C G A G G T G A G G T T A A A T T T T A
     | | | | | | |     | |   |             |           | |        4503 nt 
5’ - A G T A G T G C A C T A C C A C T A C A A A G T T A A A

LENV 

3’ - T C A T C A C A A G A T G G T G T T G T T T
     | | | | | | |     | | | | | | | | | | | | |      4309 nt
5’ - A G T A G T G A A C T A C C A C A A C A A A

AKV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C A
     | | | | | | | |   | | | | | | | | |   | | | | | | | | | |     |         |           6852 nt
5’ - A G T A G T G T A C T C C T A T T T C G A A A C A A A C A A A A A C A A T C T C A A A

OROV 

3’ - T C A T C A C A C G A G G A T A A A T C T T T G T T T G T G A T G A A A A T G T A C G
     | | | | | | | |   | | | | | | | | |     | | | | | | | | |     |         |                  6852 nt
5’ - A G T A G T G T A C T C C T A T T T C A A A A C A A A C A A A A A C A A T C T C A A A

L"UTR"

SBV 

3’ - T C A T C A C A C G G G G A T T A A T G T A C T T T G
     | | | | | | | |   | | | | | | | | | | | |       |          6882 nt 
5’ - A G T A G T G T A C C C C T A A T T A C A A T C A C T

BUNV 

3’ - T C A T C A C A C G A G G A T G T A T T C T T T T A A C A T G A A A A A A C T T A C G A C A A T A G
     | | | | | | | |   | | | | | | | | | |       | | |   |   | |         |   |   |         |       |          6875 nt
5’ - A G T A G T G T A C T C C T A C A T A T A G A A A A T T T A A A A A T A T A A C C A G T A G G A G T

OYAV 

3’ - T C A T C A C A C G G G G A T C C T T G T A A T T A T A T G A A T G T T T T T T C C G G T A G T T T C A C T T T
     | | | | | | | |   | | | | | | | |               | | |   |       |         | |       |           | |       | | |      6928 nt 
5’ - A G T A G T G T A C C C C T A G G T T A C A A C A T A C A A C G A T T C T A A G A A C A T A T C A A T C A A A A

LENV 

3’ - T C A T C A C A C G A G G G T A A T A T C T T T C A T G T G T A C A A
     | | | | | | | | | | | | | |   | | |         | |   | | | |     |            6923 nt
5’ - A G T A G T G T G C T C C C C T T A A T A G A A A T A C A A T T A A A

AKV 

3’ - T C A T C A C A C G G G G A T T T A C G T T A T T A T A T G
     | | | | | | | |   | | | | | | | | |   | | |   |         | |      6868 nt
5’ - A G T A G T G T A C C C C T A A A T A C A A C A T A C A A C

PEDV 

OROV 

S"UTR"

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |         |            958 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C C A A T A

3’ - T C A T C A C A C G A G G G T T A A G T T T T T A T G C A A A A G A T T T A C T G T A
     | | | | | | | |   | | | |     |   |     | | | |   |                 | |   |   |            947 nt
5’ - A G T A G T G T A C T C C A C A A T T C A A A A C A T A A A A A G A A A T T C A A T A

SBV 

3’ - T C A T C A C A A G A G G T G A A T A A T T G A T A G A A T T
     | | | | | | |     | | | | | | |     |   |       |         |        830 nt            
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C A G A A A T

BUNV 
3’ - T C A T C A C A C G A G G T G G A T T T T G A A T T T T A T G G T A A T T G T T A T A T T A C A A C T A A A T C G G G C G A C A G A A A G A C A G G G G T T G G T G G G T
     | | | | | | | |   | | | | | |       |   |               | |       | |       | | |                   | | |   |     | |                         |             |           |      961 nt                 
5’ - A G T A G T G T A C T C C A C A C T A C A A A C T T G C T A T T G T T G A A A A T C G C T G T G C T A T T A A A T C C A A C A G A A G G T C A T T A A A G G C T C T T T A

OYAV 

3’ - T C A T C A C A C G A G G G T T A A G T T T C T A C T A A T A T G T C T G G A A T A A T
     | | | | | | | |   | | | |     |   |     | |   |       |   |                                  984 nt           
5’ - A G T A G T G T A C T C C A C A A T T C A A A A A C T T A A A G T C C T T T A A T A G T

LENV 

3’ - T C A T C A C A C G A G G T G C A G T T T G C A A T T T A G T T C C A T T A A T A T A T A G T A A T C A G T C C G T C T A
     | | | | | | | | | | | | | | | | | | | | | | | |                         |   |     |             |     |   |                    939 nt                       
5’ - A G T A G T G T G C T C C A C G T C A A A C G T A G T G C A C T C C A T A A T C A A A C A A T C T A T T G A A T T T A C A

AKV 
3’ - T C A T C A C A C G A G G T G A T T A A T T G A T A T T T G T T A
     | | | | | | |     | | | | | | | |   |   |             |                858 nt 
5’ - A G T A G T G A A C T C C A C T A T T A A C T A C G C A T T G C A

PEDV Perdoes virus 
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3.3.7 Analysis of minigenome activity within the Simbu serogroup 

In order to further investigate the importance of the M segment UTRs in genomic 

reassortment, M-minigenomes for Simbu viruses AKV, LENV, OYAV and Perdoes 

virus were generated. The activity of these minigenome plasmids were then assessed 

using SBV, OROV or BUNV L and N proteins.  

 

AKV minigenome (pTVT7AKVMRen(-)) was generated as previously described in 

Chapter 3, Section 2, using a plasmid containing the entire AKV M segment (a gift 

from Professor Massimo Palmarini, MRC-University of Glasgow, Centre for Virus 

Research; Table 2.6). Due to the unavailability of viral stocks or plasmids containing 

genomic sequences for LENV, OYAV and Perdoes virus, an alternate approach to 

generating minigenome plasmids for these viruses was adopted. To facilitate this, the 3’ 

M UTR of LENV, OYAV or Perdoes virus were added to the 3’ end of a negative-sense 

oriented Renilla ORF by PCR amplification. As the 3’ UTRs of these viruses are 

considerably long, at least two PCR reactions were required in order to anneal all viral 

sequences. The successfully amplified PCR product was circularized and confirmed by 

sequencing. The resulting plasmid was then used as a template in order to insert the 5’ 

UTR sequences at the other end of Renilla ORF in a similar approach  (Figure 3.3.10). 

Oligonucleotides were based on sequences in GenBank (Figure 3.3.6.A; Table 2.6). 

These plasmid were designated as pTVT7LENMRen(-), pTVT7OYAMRen(-) and 

pTVT7PEDMRen(-).  

 

Minigenome assays for AKV, LENV, OYAV, Perdoes virus, as well as BUNV were 

carried out using the L and N proteins of OROV, SBV and BUN. BSR-T7/5 cells were 

transfected as previously described, and reporter activity detected at 24 h p.t. OYAV 

and Perdoes virus M-minigenomes were functional with OROV, SBV and BUN L-N 

(Figure 3.3.11), however reporter activity from AKV M-minigenome could only be 

detected with SBV L-N (Figure 3.3.11.B). The results also demonstrate that OROV and 

SBV L-N can transcribe and replicate BUNV M-minigenome (Figure 3.3.11.A and B), 

whilst BUNV L-N can transcribe and replicate OROV and SBV M-minigenomes 

(Figure 3.3.11.C). Interestingly, no reporter activity was detected from the LENV M-
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minigenome (Figure 3.3.11). The M UTRs of LENV varies from OROV and SBV at 

positions 8 and 9, as described above (Figure 3.3.6) and determining the activity of this 

promoter and its relationship to other orthobunyaviruses is beyond the scope of this 

study. 
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Figure 3.3 10. Schematic representation of cloning strategy used for LENV, OYAV 

and Perdoes virus M-minigenomes.  

Plasmid template contained Renilla luciferase gene in a negative-sense orientation. PCR 

reaction 1, linearised this plasmid annealing viral UTR sequences, which was then used 

as a template in PCR reaction 2. The ends of the linearised plasmid were then ligated 

and confirmed by sequencing. This circularised plasmid now containing the 3’ viral 

UTR sequences at the 5’ end of the complementary Renilla ORF was then used as a 

template in order to insert the 5’ viral UTR sequences, in a similar manner. P, promoter; 

Hep δ, hepatitis delta ribozyme; Term, T7 terminator; Rev, reverse primer; Fwd, 

forward primer; seq, sequence; P, phosphorylation.  

 

 

 

Renilla  

Hep δ  Term T7 P 

!!!!TACGACTCACTATAG TTACTGCTCGTTCTTC---- 

T7 P Renilla ORF 

       CACTATAG           TTACTGCT 
Rev Fwd 

PCR reaction 1: 

!!!!TACGACTCACTATAG 

T7 P 

            
Rev 

TTACTGCTCGTTCTTC---- 

Renilla ORF 

Fwd 
P P

PCR reaction 2: 

! ! ! !TACGACTCACTATAG 

T7 P 

TTACTGCTCGTTCTTC-- - - 

Renilla ORF 

Ligation: 

virus 3’ UTR 

 virus 3’ UTR  virus 3’ UTR 

 virus 3’ UTR  virus 3’ UTR 

virus 3’ UTR 

virus 3’ UTR 
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Figure 3.3 11. Simbu M-Minigenome comparison  

(A), (B) and (C) BSR-T7/5 cells (24-well plate) were transfected with pTM1-N and/or 

pTM1-L (250 ng) and M-minigenome (125 ng) plasmids. Firefly luciferase-expressing 

pTM1-FF-Luc (25 ng) served as a transfection control. Renilla and firefly luciferase 

were measured using a Dual-Luciferase Reporter Assay kit (Promega) 24 h.p.t. 

Luciferase values were normalized. Minigenome-activity expressed as fold-induction 

over background control (no pTM1-L). Error bars indicate SD (n = 3).  
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3.3.8 Discussion 

Segmented viruses carry the potential for genomic reassortment, an intriguing 

characteristic as this allows these viruses to generate new strains and new virus species. 

This phenomenon on occasions can result in acquisition of new or increased pathogenic 

characteristics, and hence understanding molecular determinants driving reassortment 

can be beneficial for predicting the emergence of a new virus. Additionally, the 

information gathered from studying reassortment may be applied to vaccine 

development. There are currently no vaccines available for any member of the 

Orthobunyavirus genus, and vaccines based on attenuated viruses carry the risk of 

reverting back to pathogenicity due to genetic exchange with naturally circulating wild-

type strains. Hence, understanding factors that drive reassortment will allow such 

vaccines to be implemented effectively. 

 

Using a minigenome system the current study focussed on SBV and OROV, two 

important Simbu viruses of veterinary and public health importance. As expected 

Renilla luciferase activity was detected when OROV L-N were used in combination 

with OROV M-minigenome, and similarly SBV L-N with SBV M-minigenome, 

demonstrating the specificity of the assay (Figure 3.3.2). Surprisingly, Renilla activity 

was also detected when SBV L-N were used with OROV M-minigenome, but not the 

contrary (Figure 3.3.2). To confirm the minigenome results a VLP assay was then 

carried out. Bunyavirus assembly and budding occurs via interactions between the Gn 

cytoplasmic tail (CT) and the RNP (Shi et al., 2007; Strandin et al., 2013), hence this 

forms another important restricting factor for the emergence of new reassortant viruses. 

The VLP data demonstrated that OROV glycoproteins and SBV-based RNPs are 

capable of forming infectious VLPs, whilst SBV glycoproteins were unable to form 

transmissible/entry-competent VLPs with OROV-based RNPs (Figure 3.3.5.A, 

OROVN+OROVL+SBVN). These results are important as (i) they can be taken as a 

confirmation that the minigenome assay results are valid (ii) supports the hypothesis 

that reassortant SBV-OROV viruses could potentially be generated, and (iii) indicates 

that the possible reassortant virus arising from a co-infection with OROV and SBV 

would comprise of OROV M segment and SBV S and L segments, and no other 

combination. The L and S segments encode the L and N proteins, and these function 
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together to replicate the viral genome and form RNPs (Elliott, 2014; Gerlach et al., 

2015; Iroegbu & Pringle, 1981). This reinforces the hypothesis that reassortant viruses 

containing an L and an S segment from different viruses are not viable, and reassortants 

are only possible between orthobunyavirus species encoding highly conserved L and N 

proteins which allow recognition of the genome segment UTR sequences.    

 

Interestingly, the results from this work also revealed that AKV M UTR was only 

functional with SBV L and N. AKV and SBV are both ruminant viruses and contain 

8A/A-9A/A “double-mismatch” at positions 8 and 9, in contrast to 8A/T-9C/A 

“pairing/mismatch” present in OROV, BUNV, OYAV and Perdoes virus. It is also 

interesting that the L and N proteins from SBV exhibited a broader range of UTR 

recognition by successfully transcribing and replicating AKV, OROV, BUNV, OYAV 

and Perdoes virus minigenome segments, unlike OROV or BUNV (Figure 3.3.2 and 

Figure 3.3.11). This indicates that even though closely related viruses may share a 

degree of conservation in their L and N proteins, it is the secondary structure of the M 

UTR that drives their interaction. This is further proved by the fact that the L and N 

proteins from the distantly related Bunyamwera serogroup BUNV can recognize 

OYAV, Perdoes virus and OROV M UTRs (Figure 3.3.11C). The terminal 11 

nucleotides of the SBV and AKV L segment UTRs are identical to the other viruses, 

and surprisingly unlike the M UTR it is functional with OROV and BUNV L and N. By 

mutating the 8th and 9th nucleotides of OROV M-minigenome (8A/T-9C/A) to mimic 

the residues of SBV M-UTR (8A/A-9A/A) OROV L-N proteins lost their ability to 

recognize and transcribe their own OROV M-promoter, whilst the efficiency of SBV L-

N also decreased (Figure 3.3.6B). This is interesting because the downstream sequences 

in the OROV M-minigenome were unchanged, proving that residues 8 and 9 are 

important for specific interaction between the viral polymerase and nucleocapsid, as 

previously seen (Dunn et al., 1995; Kohl et al., 2004a; Acrani et al., 2014). Further, 

changing SBV M-minigenome (8A/A-9A/A) to mimic OROV M-UTR (8A/T-9C/A), 

with the rationale that if positions 8 and 9 of the M UTRs are determinants for promoter 

activity, then maybe changing the SBV M-minigenome at these positions would allow 

OROV L-N proteins to transcribe and replicate this minigenome. However, this was not 

the case (Figure 3.3.6C; OROV N+L, 8T/A 9C/A), and interestingly reporter activity 
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also decreased with SBV L-N (Figure 3.3.6C, SBV N+L, 8T/A 9C/A). These results 

further indicate that although these two residues are essential for the UTR panhandle 

sequence to function as a promoter, sequences beyond these residues are specific for 

promoter activity. Previous work on BUNV has shown that mutant viruses lacking large 

portions of the UTR close to the coding-regions are highly attenuated due to diminished 

gene regulation (Lowen et al., 2005; Lowen & Elliott, 2005; Mazel-Sanchez & Elliott, 

2012). The difference between M UTR nucleotide positions 8 and 9 of the Clade A and 

Clade B Simbu viruses is intriguing, and it is tempting to speculate that these two 

residues may play a part in determining reassortment. The availability of complete 

orthobunyavirus sequences would be beneficial to allow a comprehensive analysis of 

this region and determine if there is any relevance towards the virus host species. 

 

During bunyavirus co-infections there are theoretically eight potential genome 

combinations: AAA, ABA, BAA, AAB, BBA, ABB, BAB, BBB (where AAA and 

BBB are parental viruses and the combination arranged as SML segments). The results 

from this study demonstrate that OROV L and N proteins are unable to use SBV M 

promoter, but they can use SBV L promoter. This would suggest that OROV L and N 

could replicate and transcribe SBV L -, but not SBV M -segment. However, this activity 

is inconsequential in the viral life-cycle as SBV L protein is functionally incompatible 

with OROV N protein, and thus any reassortant containing OROV M and S segment 

with SBV L would be non-viable. Therefore, while there is a degree of plasticity 

between different orthobunyavirus species in recognition of the L UTR, it plays no role 

in driving generation of novel species through genomic reassortment. This means that 

the sole determinant of whether two orthobunyavirus species are capable of generating a 

novel reassortant virus is based on recognition of the M UTRs in virus A by the L and N 

proteins of virus B. Using OROV and SBV as an example, it is likely that any 

reassortant progeny virions would contain SBV S - and L -segments with either SBV M 

- or OROV M - segment, since SBV L and N proteins can use both OROV and SBV 

promoters to replicate. However, if the reassortant contains OROV S and L segments, 

the only possible M segment in this case would be from OROV, because OROV cannot 

use SBV M UTR as a promoter. Based on these findings, out of the eight possible 

reassortants between OROV and SBV there may in fact be only one potential viable 
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progeny, i.e. a virus with S and L from OROV and M from SBV. All the other 

possibilities are lost, due to the compatibility restrictions between heterologous L and N 

proteins and the RNA-template. Therefore, even though OROV L and N can use SBV L 

UTR, this would not make a difference. These results imply that the number of possible 

reassortants in nature may not be as vast as thought, and that reassortment may in fact 

be restricted to the M segment alone.  

 

Both OROV and SBV are transmitted by Culicoides midges, which have a wide 

geographic distribution (Carpenter et al., 2013). The spread of SBV outside of Europe is 

a threat to the cattle farming industry, and in a setting such as Brazil, if geographic 

boundaries are broken, the possibility of OROV and SBV replicating in the same vector 

population could arise, with the risk of reassortment. Arboviral reassortants have been 

reported to arise in arthropod vectors, and it has been suggested that these insects could 

have played a major role in the evolution and emergence of RNA viruses (Dudas & 

Obbard, 2015; Li et al., 2015). The emergence of a new reassortant virus containing 

SBV L and S segments and OROV M segment could potentially be a cause for SBV 

spillover into the human population.  

 

In 1995 Dunn et al. demonstrated by a similar minigenome-based assay that BUNV and 

Batai virus proteins could interact with each other (Dunn et al., 1995). In 1997 a large 

outbreak of hemorrhagic fever was reported, a result of a reassortant called Ngari virus, 

a progeny of viruses BUNV and Batai (Briese et al., 2006). Minigenome and VLP 

based assays serve as important tools to study various aspects of the bunyavirus life 

cycle, without the need to rescue the virus. However, such work is only possible when 

complete and correct sequences are available. There are currently only a handful of 

complete 3’ and 5’ terminal sequences for bunyaviruses publically available and several 

others contain errors. This work reinforces the need to review these sequences prior to 

use in molecular virology assays, as discussed previously in Chapter 3, Section 2.  
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3.3.9 Summary 

1. OROV and SBV may be capable of reassortment, with a potential progeny 

consisting of OROV M segment and SBV L and S segments. 

2. Heterologous L and N proteins are unable to efficiently function together.  

3. The M UTR may be a contributing factor for genomic reassortment amongst 

orthobunyaviruses. 
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Chapter III. Results 
 
 

Section 4: Generation of recombinant Oropouche viruses 

lacking the non-structural proteins NSm or NSs 
 

3.4.1 Introduction and Aims 

The lack of a reverse genetics system for OROV has, until now, limited research on this 

virus at a molecular level, and hence the focus of my PhD has been on addressing this 

issue. Chapter 3, Section 2, of this thesis describes the establishment of a minigenome 

and VLP system for OROV. In this Section I report the recovery of infectious OROV, 

entirely from cDNA plasmids made in Section 2.  

 

To date, a number of bunyaviruses have been rescued and these include BUNV 

(Bridgen & Elliott, 1996), LACV (Blakqori & Weber, 2005), RVFV (Ikegami et al., 

2006), AKV (Ogawa et al., 2007), SBV (Elliott et al., 2013; Varela et al., 2013), 

SFTSV (Brennan et al., 2015), UUKV (Rezelj et al., 2015) and CCHFV (Bergeron et 

al., 2015). The work presented in this section is a step forward towards understanding 

another important yet neglected bunyavirus.  

 

3.4.2 Recovery of wild-type OROV strain BeAn 19991  

Chapter 3, Section 2 described the cloning of full-length antigenomic sense cDNA 

copies of OROV L, M and S segments into the T7 RNA polymerase-driven plasmid 

backbone pTVT7R(0,0) (Johnson et al., 2000). This plasmid contains a single G residue 

immediately downstream of the T7 promoter sequence to aid efficient transcription. 

cDNA copies of the virus genome segments were cloned into pTVT7R in the 

antigenomic sense. To recover infectious OROV BSR-T7/5 cells (Buchholz et al., 

1999) were transfected with 1 µg of the pTVTOROVL, pTVTOROVM and 

pTVTOROVS plasmid. Supernatant was harvested 7 days p.t. when CPE was visible 

and success of the rescue attempt was determined by titration of infectious virus by 
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plaque assay. The rescue of OROV was easily reproducible, yielding titres of 2.0×107, 

4.5×106 and 2.3×107 PFU/ml in three independent experiments. Control cells transfected 

with only pTVTOROVM and pTVTOROVS did not give rise to infectious virus. To 

test the authenticity of the recombinant OROV (rOROV), permissive Vero E6 cells 

were infected with the rescue supernatant (Figure 3.4.1.A) and cell extracts used for 

Western-blotting (Figure 3.4.1.B). Furthermore, rOROV infected Vero E6 cells were 

fixed and stained at 24 h p.i. using a polyclonal anti-OROV antibody (a kind gift from 

Professor Luiz Tadeu Moraes Figueiredo, University of Sao Paulo School, Brazil). 

Substantial amounts of cytoplasmic OROV protein were detectable in the infected cells 

(Figure 3.4.1.C) further confirming the successful recovery of infectious OROV.  

 

The growth kinetics and plaque phenotype of rOROV was similar to that of the 

authentic wild-type (wt) virus (Figure 3.4.2). All experiments from this point on were 

carried out with rOROV.  
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Figure 3.4. 1. Rescue of recombinant OROV strain BeAn19991.  

(A) Bright-field microscopy of cell monolayers (10X magnification). Top panels show 

BSR-T7/5 cells mock-transfected, or transfected with pTVTOROVM and 

pTVTOROVS (Control) or pTVTOROVL, pTVTOROVM and pTVTOROVS 

(Rescue). The bottom panel shows cells infected with either the Control or Rescue 

supernatants from the top panel. (B) Western-blotting. Cell extracts from rOROV-

infected or mock-infected Vero E6 cells at passage 1 and 2 were probed for viral 

proteins using polyclonal anti-OROV. (C) Immunofluorescent detection of OROV 

proteins. Vero E6 cells grown on glass cover slips were infected with either passage 1 

or 2 of rOROV. Control was from the rescue experiment that lacked the L segment. At 

24 h p.i cells were fixed and stained with polyclonal anti-OROV (green). Coverslips 

were mounted with Movial containing DAPI (Vector Laboratories).  
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Figure 3.4. 2. Growth comparison of recombinant OROV with the wild-type virus.  

(A) Growth properties of wild-type (wt) and recombinant (r) OROV in Vero E6 cells. 

Cells were infected at MOI 0.1. At indicated time points samples were harvested and 

titres determined by plaque assay on BHK-21 cells. Graph is a representative 

experiment. (B) Bright-field microscopy (10X magnification) of Vero E6 cell 

monolayers infected with OROV (only rOROV shown). (C) Western blot showing N 

protein synthesis from the growth curve (A). Tubulin was probed as a loading control. 

(D) Comparison of plaque phenotypes of wtOROV and rOROV. A plaque assay was 

carried out on BHK-21 cells and at 3 days p.i cells were fixed and stained with crystal 

violet.  
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3.4.3 Growth of recombinant OROV in mammalian cell lines  

The growth properties of rOROV were tested in Vero E6 cells at MOIs ranging from 

0.0001 to 1 PFU/cell. Previous work from our group has demonstrated that some 

viruses show a better fitness in certain cell types and at different MOIs possibly due to 

the efficiency at which defective-interfering particles are generated (Elliott et al., 2013; 

Brennan et al., 2014). rOROV grows to similar titres by 48 h p.i at all MOIs tested 

(Figure 3.4.3.A), and in  a wide range of cell-lines derived from several species (MOI 

0.001; Figure 3.4.3.B), similar to other bunyaviruses (Elliott et al., 2013; Brennan et al., 

2014). Lower titres were obtained in human cell-lines 2fTGH and HeLa compared to 

A549 cells, as well as in CPT-tert, QT-35 and MRK101 cell-lines, however due to the 

specific aims of the current study this was not investigated further. rOROV forms 

plaques on rodent, monkey, human and sheep cell-lines that were investigated (Figure 

3.4.3.C). At 3 days p.i in BHK-21 cells rOROV plaques were larger than in the other 

cell-lines, and on A549 cells the plaques were harder to visualise (Figure 3.4.3.C). 

Based on these results, BHK-21 cells were chosen for virus titration. rOROV also 

produces clear plaques on BHK-21 cells as early as 2 days p.i when titrated in a 12-well 

culture dish (Figure 3.4.3.D). Based on these findings of rOROV, Vero E6 and A549 

cell-lines were chosen for the purpose of initial characterisation of all recombinant 

viruses in this study. Vero E6 and BHK-21 cells both lack fully functional IFN systems 

(Desmyter et al., 1968; Emeny & Morgan, 1979; Chinsangaram et al., 1999), whilst 

A549 cells are IFN competent (Spann et al., 2004). 
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Figure 3.4. 3. Characterization of recombinant OROV.  

(A) Effect of different MOI on rOROV yields in Vero E6 cells. Infected cells were 

harvested 48 h p.i and titrated on BHK-21 cells. Graph is presented for a representative 

experiment. (B) Comparison of rOROV growth in various cell-lines. Indicated cells 

were infected at an MOI of 0.001 and at 48 h p.i supernatants were harvested and 

titrated on BHK-21 cells. Bars represent range from two experiments. (C) Comparison 

of rOROV plaque phenotypes on BHK-21, Vero E6, A549 and CPT-Tert cells. Infected 

cells were fixed and stained with crystal violet at 3 days p.i. (D) Comparison of rOROV 

plaques phenotypes on BHK-21 cells 2 or 3 days p.i. in 12-well plates. Cells are stained 

with crystal violet.  
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3.4.4 Generation of OROV mutants  

Generation of mutant NSm and NSs plasmids were in collaboration with Dr. Gustavo 

Olszanski Acrani, University of Sao Paulo.  

 
NSm deletion 

A mutant OROV lacking the entire NSm ORF from the M segment was generated. This 

was done by deleting the entire NSm coding region immediately after the first NSm 

transmembrane domain (TMD) and predicted cleavage site up to the third TMD, leaving 

the predicted cleavage site of the Gc protein intact (Figure 3.4.4.A). These sites were 

predicted using the TMHMM Server v. 2.0 and SignalP 4.1 Server algorithms 

(www.cbs.dtu.dk) based on work done by Dr. Xiaohong Shi (MRC-University of 

Glasgow, Centre for Virus Research) for the characterization of orthobunyavirus M 

segments (Xiaohong Shi and Richard M. Elliott, manuscript submitted). Primers 

delNSmOROVF/delNSmOROVR (Table 2.7) were designed to bind to positions 1475 – 

1498 and 1036 – 1013 of the M segment respectively. This allowed an excision PCR to 

be performed thereby deleting the entire NSm region, but leaving the first TMD site, so 

as not to alter the position of the Gc protein in the endoplasmic reticulum and Golgi, 

during folding. To rescue rOROVdelNSm virus BSR-T7/5 cells were transfected with 1 

µg of pTVTOROVL, pTVTOROVS and pTVTOROVdelNSm plasmids. At 7 days p.t 

when CPE was visible, infectious virus particles were recovered, titrated and sequenced 

(Source Bioscience) to confirm the mutation (Figure 3.4.4.B and C). 

 

NSs mutants  

The following step was the creation of the NSs mutant viruses. As NSs lies in an over-

lapping reading frame within the N ORF, the positions at which mutations could be 

introduced were limited. The NSs ORF of OROV has four in-frame methionines, 

therefore, in an attempt to abrogate NSs transcription the NSs start codon was left in 

place and instead a translational stop codon was inserted in-frame immediately after the 

second methionine at amino acid 17 (Figure.3.4.5.A; 2. rOROVdelNSs). At the nt level 

this is at position 115 and changes TGG (W) to TAG (stop), resulting in a 48 nt NSs 

ORF. The reason for this approach was because previous work done on BUNV revealed 

that when the start codon of NSs was removed the virus was still capable of producing 
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an NSs protein from a downstream methionine (van Knippenberg et al., 2010). The 

strategy used in this study for OROV is similar to the one used to create a SBV mutant 

lacking NSs (Elliott et al., 2013). In addition to this, a C-terminal truncated NSs was 

also engineered. This was generated by introducing a stop codon at nt position 313 

changing TTA (L) to TAA (stop). This results in a 246 nt NSs ORF and a protein 

sequence of 82 aa compared to wt NSs which is 92 aa (Figure.3.4.5.A; 1. 

rOROV246NSs).  Primers used in generating the plasmids are in Table 2.7. In order to 

rescue the NSs mutants (named, rOROVdelNSs and rOROV246NSs) BSR-T7/5 cells 

were transfected with 1 µg of pTVTOROVL, pTVTOROVM and 1.5 µg of the mutant 

S segment (pTVTOROVdelNSs or pTVTORO246NSs). At 7 days p.t CPE was visible, 

and infectious virus particles were recovered, titrated and sequenced (Source 

Bioscience) to confirm mutations, Figure 3.4.5.B.  

 

S-segment  mutant 

Chapter 3, Sections 1 and 2, report the isolation and sequencing of OROV clinical 

isolates that differ from the prototype strain (BeAn19991) in the S segment, as they lack 

11 nts at position 781 to 791 in the 3’ UTR. The encoded NSs ORF of these viruses also 

contain a tandem AUG translation start codon created by a C-U variation at position 

332, and a Gln to Arg change in the NSs ORF at position 89 (Figure.3.4.6.A). To test 

whether these variations altered the in vitro growth properties of the rescued virus, a 

cDNA plasmid (designated as pTVTOROV2080S) containing the S segment of clinical 

isolate BeH759025 (Chapter 3, Sections 1; GenBank accession number KP691614) was 

generated using the same cloning strategy as pTVTOROVS (Chapter 3, Section 2). In 

order to rescue this S-segment mutant (named rOROV2080S) BSR-T7/5 cells were 

transfected with plasmids pTVTOROVL, pTVTOROVM and pTVTOROV2080S (1 µg 

each). At 7 days p.t infectious when CPE was visible virus particles were recovered, 

titrated and the entire S segment sequenced (Source Bioscience), Figure 3.4.6.B.  

 

All mutant viruses in this study were passaged three times at low MOI in Vero E6 cells 

and sequenced. Introduced mutations were maintained confirming the stability of these 

viruses. Subsequent experiments utilised viruses from passage two.  
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Figure 3.4. 4. Creation of OROV mutant lacking NSm.   

(A) Schematic of the M segment showing Gn, NSm and Gc regions. The arrows depict 

where cleavage occurs. The patterned box indicates the signal peptide and the black 

boxes represent transmembrane domains. Nucleotides 1036 to 1475 were deleted in 

order to generate delNSm M segment. (B) RT-PCR of the M segments from rOROV 

and delNSm viruses grown in Vero E6 cells (passage 2). PCR products were separated 

on a 1% agarose gel. (C) Chromatograph showing the sequencing results from (B). The 

nts in black are from rOROV and in green is rOROVdelNSm. Numbers indicate nt 

position. A, Green; T, Red; G, Black; C, Blue.  
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Figure 3.4. 5. Creation of OROV NSs mutants.  

(A) S segment products N and NSs. NSs is coded from an overlapping reading frame 

with N. Schematic shows how NSs mutants differ from wt. rOROV246NSs has a stop 

codon (asterisk) placed at nt position 314 of S segment cDNA changing TTA to TAA 

thereby deleting the last nine amino acids. rOROVdelNSs has a stop codon at cDNA nt 

position 116 changing TGG to TAG so that a stop codon is generated immediately after 

the second start codon (methionine, M). Numbers are amino acid (aa) lengths. (B) 

Chromatograph of sequencing results for rOROVdelNSs and rOROV246NSs that were 

grown in Vero E6 cells (passage 2). The red boxes highlight where mutations were 

made. A, Green; T, Red; G, Black; C, Blue.  
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Figure 3.4. 6. Creation of OROV BeAn19991 S-segment mutant. 

(A) Schematic showing rOROV2080S S segment in comparison to wt/rOROV S 

segment. Numbers are nt positions. The grey and white boxes highlight the N and NSs 

OROF, respectively. The black box highlights the UTR regions. Arrows show where 

changes occur. First two positions generate a variation in the NSs ORF. (B) 

Chromatograph showing the NSs region of rOROV2080S. This virus was grown in 

Vero E6 cells (passage 2). A, Green; T, Red; G, Black; C, Blue.  
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3.4.5 Growth properties of recombinant viruses in mammalian cell-

lines and their effect on host-protein synthesis  

Growth kinetics of rOROV, rOROVdelNSm, rOROVdelNSs, rOROV246NSs and 

rOROV2080S were compared in Vero E6 cells at MOI 0.1. Viruses rOROV, 

rOROVdelNSm and rOROV2080S replicate with similar efficiency, however mutants 

rOROVdelNSs and rOROV246NSs appear attenuated and reach titres that are one log 

lower than rOROV (Figure 3.4.7.A). Western blotting analysis revealed higher amounts 

of N protein from rOROVdelNSs at earlier time-points, suggesting a possible increased 

efficiency of the virus to translate N (Figure 3.4.7.B). Plaque morphology of the 

recombinant viruses was then compared on BHK-21 cells. rOROV, rOROVdelNSm and 

rOROV2080S produce plaques with a round morphology and are clear and similar to 

each other. The plaques of viruses rOROVdelNSs and rOROV246NSs on the other 

hand are smaller with corrugated and ill defined borders (Figure 3.4.7.C).  

 

To investigate whether the recombinant viruses caused inhibition of host-cell protein 

synthesis Vero E6 cells were infected at MOI 3 and at 12, 24 and 48 h p.i cells were 

radiolabelled with [35S]methionine. Cell extracts were analysed by SDS-PAGE. 

rOROV, rOROVdelNSm, rOROV2080S, as well as the rOROVdelNSs and 

rOROV246NSs demonstrated an ability to cause a shut-off of host translation by 24 h 

p.i (Figure 3.4.8). It was also observed that the latter two viruses compared to the others 

produced noticeably more N protein at this time point (Figure 3.4.8). This result also 

confirmed that the mutant viruses rOROVdelNSm and rOROVdelNSs do not express 

NSm and NSs proteins respectively, and that the rOROV246NSs virus expresses a 

truncated version of NSs (Figure 3.4.8).  

 

As rOROV2080S behaves similar to rOROV and rOROV246NSs similar to 

rOROVdelNSs in terms of in vitro replication kinetics, only viruses rOROV, 

rOROVdelNSm and rOROVdelNSs were focussed on for growth comparison in IFN-

competent A549 cells. rOROV and rOROVdelNSm grew with similar kinetics reaching 

comparable titres, whereas rOROVdelNSs growth appeared more restrictive and at 48 h 

the viral titres were almost two logs lower than that of rOROV and rOROVdelNSm 

viruses (Figure 3.4.9.A). Western blot analysis of N expression showed lower amounts 
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of protein in the rOROVdelNSs-infected cells (Figure 3.4.9.B). Next, the growth of 

rOROV, rOROVdelNSm and rOROVdelNSs were compared in A549 cells to their 

growth in IFN-incompetent A549/V cells. These cells express the V protein of 

parainfluenza type-5 virus thereby blocking type I IFN signalling via STAT1 

degradation (Killip et al., 2013). Cells were infected at an MOI of 0.001 and titres 

measured at 48 h p.i. Cells were also infected with BUNV or a BUNV mutant lacking 

the NSs protein (rBUNVdelNSs2) for comparison (Bridgen et al., 2001; Hart et al., 

2009). All viruses grew to higher titres in the IFN-incompetent cell-line, similar to 

BUNV. rOROVdelNSs titres were over one log higher in A549/V cells compared to 

A549 cells, although this difference was not as high as with the rBUNVdelNSs2 virus 

(Figure 3.4.9.C). Western blot for N confirmed lower levels of expression in A549 cells 

infected with rOROVdelNSs and rBUNVdelNSs2, corresponding with the yield assay 

(Figure 3.4.9.D).  
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Figure 3.4. 7. Growth properties of recombinant viruses.  

(A) Cells were infected at an MOI of 0.1. Samples were harvested at indicated time points and titrated on BHK-21 cells. Representative 

experiment. (B) N production in recombinant viruses. Cell lysates from growth curve (A) were probed for OROV-N and Tubulin. (C) 

Plaque phenotype of recombinant viruses in BHK-21 cells. A plaque assay was carried out and at 3 days p.i cells were fixed and stained 

with crystal violet.  
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Figure 3.4. 8. Host-cell protein shut-off.  

Vero E6 cells were infected with recombinant viruses rOROV, rOROVdelNSm, 

rOROV2080S, rOROVdelNSs, rOROV246NSs or mock infected. Cells were infected at 

an MOI of 3 and incubated at 37 °C. At indicated time-points the cells were labelled 

with [35S]methionine for 2 h. Cells lysates were then separated by SDS-PAGE. Arrows 

indicate the position of viral proteins Gc, N, NSm and NSs.  
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Figure 3.4. 9. Growth properties of recombinant viruses in A549 cells.  

(A) Growth kinetics of rOROV, rOROVdelNSm and rOROVdelNSs in A549 cells at an 

MOI of 0.1. At indicated time-points samples were harvested and viral titres determined 

by plaque assay on BHK-21 cells. The graph presents results for one representative 

experiment. (B) Comparison of growth properties in A549 and A549/V cells. Cells were 

infected at an MOI of 0.001 with indicated viruses. 48 h p.i viral titres were determined 

by plaque assay. BUNV was used for comparison. Bars indicate SDs (n = 3; **, P< 0.01 

by Student’s t test). (C) Western-blot for cell lysates from growth curve (A). Lysates 

were separated by SDS-PAGE and probed for OROV N and Tubulin. (D) Western-blot 

analysis for (B). Cells lysates were probed for viral N protein. Tubulin was probed as 

loading control. 
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3.4.6 OROV NSs protein inhibits type I IFN production in A549 cells 

IFN production in A549 cells in response to infection with rOROV, rOROVdelNSm, 

rOROV2080S, rOROVdelNSs or rOROV246NSs viruses at MOI 1 was measured. For 

comparison cells were also infected with BUNV or rBUNVdelNSs2. At 24 h p.i UV-

inactivated virus (4 mins with occasional shaking, 8W, 254 nm) from the supernatant 

was used to treat A549/BVDV-NPro cells for 24 h. The amount of protection offered to 

these cells from encephalomyocarditis virus (EMCV) infection was then measured via 

observation of cytopathic effect (CPE). A549/BVDV-NPro cells cannot produce IFN as 

they express the IFN antagonist NPro protein from bovine viral diarrhea virus (BVDV), 

but are still capable of responding to exogenous IFN (Hale et al., 2009). As expected, 

no IFN was produced from mock or BUNV infected cells, and rBUNVdelNSs2-infected 

cells produced considerable amounts of IFN. Whilst rOROV, rOROVdelNSm and 

rOROV2080S induced small amounts of IFN, rOROVdelNSs induced high amounts 

(Figure 3.4.10.A and B). rOROV246NSs virus that lacks only nine aa at the NSs protein 

C-terminus, induced IFN to the same extent as rOROVdelNSs (Figure 3.4.10.A and B). 

Next, we used Western-blotting to probe the A549 cell extracts for STAT1, 

phosphorylated STAT1 (pSTAT1) and the Interferon Stimulated Gene (ISG) protein 

MxA. pSTAT1 and MxA expression were detected in cells infected with rOROVdelNSs 

and rOROV246NSs, but not in cells infected with, rOROV, rOROV2080S and 

rOROVdelNSm (Figure 3.4.10.C.), confirming that that OROV NSs is an IFN 

antagonist.  
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Figure 3.4. 10. Biological interferon production assay.  

A549 cells were infected at MOI 1 with BUNV, rBUNdelNSs2, rOROV, 

rOROVdelNSm, rOROV2080S, rOROVdelNSs, rOROV246NSs or mock infected. 

Supernatant was harvested at 24 h p.i and cell extracts separated by SDS-PAGE. (A) 

UV-inactivated supernatant was used to pre-treat A549-N pro cells prior to infection 

with EMCV. At 3 days p.i cells were fixed and stained with crystal violet. 

Representative experiment. (B) Graph calculated from (A) and represents relative IFN 

units (RIU) expressed as 2N where N is the number of 2-fold dilution that offered 

protection. (C) Cell extracts were probed for OROV N, STAT1, pSTAT1 and MxA. 

Tubulin was probed as a loading control.   
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3.4.7 Creation of an additional OROV delNSs mutant  

To generate an OROV mutant lacking the NSs ORF a stop codon was inserted 

immediately after the second in-frame methionine, with the reasoning that ribosomal 

translation would result in a highly truncated and non-functional peptide without further 

scanning to produce a protein from a downstream methionine. In addition to this 

however, another delNSs OROV was also generated. Here, NSs start codon and the 

second methionine were both mutated and a stop codon inserted at aa 17 (Figure 3.4.11; 

rOROVdelNSs2) (Table 2.7). This version of OROV delNSs (named rOROVdelNSs2) 

behaved similar to the original rOROVdelNSs in its growth kinetics and inability to 

antagonise the IFN system (Figure 3.4.11.B-F). However, at early time points the 

amount of N protein produced is similar to rOROV and not to rOROVdelNSs. 

Knippenberg et al. previously identified a spontaneous mutant from a stock of 

recombinant BUNV that was generated to lack the NSs protein. This spontaneous 

mutant appeared to have introduced a downstream start codon and produce an N-

terminally truncated form of NSs (van Knippenberg et al., 2010). If OROV were to 

produce such an N-terminal truncated NSs it could do so using the third in-frame 

methionine highlighted in Figure 3.4.11.A. Using SDS-PAGE (18% gel; data not 

shown) a band corresponding to this truncated NSs protein was not detectable, however 

it is possible that a potentially unstable protein is translated. This virus was not carried 

forward for further experimental analysis in this study.  
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Figure 3.4.11. 
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Figure 3.4. 11. Generation and characterization of rOROVdelNSs2 virus. 

(A) NSs protein sequence. The arrows show where changes were made to generate 

rOROVdelNSs2. A stop codon (asterisk) was also inserted after the second start codon 

(methionine, M). The box and question mark highlight a potential ORF that could be 

used. (B) Growth kinetics of rOROVdelNSs2 virus in comparison to rOROV and 

rOROVdelNSs. Vero E6 cells were infected at MOI 0.1. Samples were harvested at 

indicated time-points and viral titres determined by plaque assay. (C) N production for 

growth curve (B), where cell extracts were separated by SDS-PAGE and probed for 

OROV N and Tubulin. (D) Plaque phenotype in BHK-21 cells. Plaque assays were 

performed and 3 days p.i fixed and stained with crystal violet. (E). Host-protein shut-off 

in Vero E6 cells. Cells were infected at MOI 3 and at indicated time-points labelled for 

2 h with [35S]methionine. Proteins in cells lysates were separated by SDS-PAGE. Gc, 

N, NSm and NSs proteins are indicated using arrows. (F) Growth comparison in A549 

and A549/V cells. Cells were infected with rOROV, rOROV2080S, rOROV246NSs, 

rOROVdelNSs and rOROVdelNSs2 at MO1 0.001 and harvested at 3 days p.i. Bars 

indicate range from two experiments. (G) IFN bioassay. A549 cells were infected with 

indicated viruses at MOI 1 and harvested at 24 h p.i. UV-inactivated media was used to 

pre-treat A549-NPro in a serial-dilution manner before infecting them with EMCV. 

Graph represents relative IFN units (RIU) expressed as 2N where N is the number of 2-

fold dilution that offered protection.  
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3.4.8 OROV is less sensitive to IFN-α treatment than BUNV 

BUNV replication was previously shown to be highly sensitivity to IFN-α (Streitenfeld 

et al., 2003). To test if OROV was equally sensitive to INF-α treatment, Vero E6 cells 

(which cannot produce but can respond to IFN (Desmyter et al., 1968)) were treated 

with increasing doses of universal type-1 IFN-α (0, 10, 100, 1000 and 10,000U/ml), 

either pre (-24 or -2 h) or post (+2 or +24 h) infection. Cells were infected with BUNV 

or rOROV at MOI 0.01 and IFN-α was maintained in the media throughout the 

infection period. At 48 h p.i the amount of infectious virus in the culture media was 

determined by plaque assays. Whilst both viruses showed sensitivity to IFN-α, OROV 

was clearly less sensitive than BUNV (Figure 3.4.12.). For example, pre-treating cells 

with 10,000 units of IFN-α either 2 or 24 h p.i completely inhibited BUNV replication, 

as did treating cells with 1000 units at 24 h p.i. In contrast, there was only a 1 to 2 log 

reduction in the titres of OROV in cells pre-treated for 2 h with 10,000 units of IFN-α 

prior to infection, and a 3 log reduction in cells pre-treated for 24 h (Figure 3.4.12; 

rOROV). Whilst pre-treating cells with 1000 units of IFN-α for 24 h pre-infection 

completely inhibited BUNV (Figure 3.4.12; BUNV), there was only a 2 log reduction in 

cells infected with OROV (Figure 3.4.12; OROV). Repeating the experiment with 

rOROV using 10,000 U/ml of IFN-α and at MOIs 0.001 and 0.01 demonstrated that at 

24 or 48 h p.i at both MOIs rOROV replication was not completely inhibited, as 

observed with BUNV, with titres decreased by 2 to 3 logs compared to untreated cells 

(Figure 3.4.13). rBUNVdelNSs virus displayed similar levels of sensitivity to IFN-α as 

wt BUNV (Figure 3.4.12; rBUNVdelNSs), and this confirmed previous work 

(Streitenfeld et al., 2003; Carlton-Smith & Elliott, 2012). Addition of 1000 U/ml of 

IFN-β to cells 6 h or 12 h post-infection was previously shown to have no effect on 

BUNV or rBUNVdelNSs titres (Carlton-Smith & Elliott, 2012), however results from 

this study shown that 1000 U/ml of IFN-α 2 h post-infection and 10,000 U/ml 24 h 

post-infection appears to completely inhibit rBUNVdelNSs growth (Figure 3.4.12; 

rBUNVdelNSs). In contrast, rOROVdelNSs virus is not as sensitive as rBUNVdelNSs 

and is still capable of replicating even at high concentrations of IFN-α (Figure 3.4.12; 

rOROVdelNSs). As seen in Figure 3.4.7, rOROVdelNSs is attenuated compared to 

rOROV in Vero E6 cells and by addition of 10,000 IU/ml of IFN-α to these cells prior 
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to infection further decreases rOROVdelNSs growth by a log (Figure 3.4.12; 

rOROVdelNSs; -24h), demonstrating that rOROVdelNSs virus is sensitive to the effects 

of IFN-α similar to the wt virus. However, it appears that the inherent resistance of 

OROV to IFN-α means that even removing the IFN antagonist does not alter this 

resistance. Furthermore, these results also demonstrate that the increased resistance of 

OROV to IFN-α compared to BUNV is not due to expression of a functionally NSs 

protein. Viruses rOROVdelNSm, rOROV2080S and rOROV246NSs also demonstrate a 

similar sensitivity to IFN-α as rOROV (Figure 3.4.14.A). Next, pre-treated (1000 U/ml) 

Vero E6 cells were infected at an MOI of 1 with rOROV or rOROVdelNSs and at 

various time-points cell extracts were collected. These results further confirm that 

OROV is sensitive to IFN-α (Figure 3.4.14.B). The plaque morphology on pre-treated 

Vero E6 cells was also investigated for rOROV and rOROVdelNSs in comparison to 

BUNV. 1000 U/ml of IFN-α was maintained in the overlay during the infection period. 

No BUNV or rBUNVdelNSs plaques were observed when the plaques assays were 

performed in the presence of IFN-α. In contrast, rOROV and rOROVdelNSs plaques 

were observed in the presence of IFN-α, although they were considerably smaller than 

those on untreated cells (Figure 3.4.15). Taken together, these results demonstrate that 

although OROV is sensitive to IFN-α in a dose-dependent manner, it is significantly 

more resistant than BUNV to IFN-α. Furthermore, the NSs protein is not responsible for 

this increased resistance. 
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Figure 3.4. 12. Sensitivity of OROV to IFN-α treatment.  

Vero E6 cells were treated with an increasing concentration of IFN-α (0, 10, 100, 1000, 

10000) either before (-) or after (+) infection. Cells were infected with BUNV, 

rBUNVdelNSs2, rOROV or rOROVdelNSs at an MOI 0.01. 48 h p.i supernatant was 

harvested and viral titres determined by plaque assay on BHK-21 cells. Graph shows 

results of a representative experiment. 
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Figure 3.4. 13. Sensitivity of rOROV to IFN-α treatment pre-treatment. 

Vero E6 cells were pre-treated for 24 h with 10,000 U/ml of universal type-I IFN-α. 

Cells were infected with rOROV at an MOI of 0.001 or 0.01, and harvested either at 24 

h or 48 h p.i. Viral titres were determined by plaque assay on BHK-21 cells. Graph is a 

representative experiment.  
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Figure 3.4. 14. OROV recombinants and IFN-α.  

(A) Vero E6 cells were treated with 10,000 U/ml of IFN-α 24 h prior to infection with 

indicated viruses; at an MOI of 0.001. Samples were harvested at 48 h p.i and viral titres 

determined by plaque assay on BHK-21 cells. Bars represent range from two 

experiments. (B) N production in IFN-α treated cells. Vero E6 cells were pre-treated (+) 

24 h prior to infection with 1000 U/ml of IFN-α, or left untreated (-). Cells were 

infected with rOROV or delNSsOROV at MOI 1. At indicated time points lysates were 

extracted and a western blot performed. Samples were probed for OROV N, MxA and 

Tubulin. 

-      +       -      +       -      +       -      +   -       +      -      +      -      +       -      +  

 h  8 12 24  4  8 12 24  4 

 MxA 

 Tubulin 

 N 

 IFN α 

 rOROV  delNSsOROV 

B
U

N
V

de
lN

S
s2

rO
R

O
V

de
lN

S
s

de
lN

S
m

20
80

S

24
6N

S
s

0

1

2

3

4

5

6

7

8
Vi

ru
s 

Ti
te

r (
Lo

g 1
0 

PF
U

/m
l)

No IFN
10,000 IFN-α (U/ml)

Vero E6, moi: 0.001

OROVBUNV

B
U

N
V

de
lN

S
s2

rO
R

O
V

de
lN

S
s

de
lN

S
m

20
80

S

24
6N

S
s

0

1

2

3

4

5

6

7

8

Vi
ru

s 
Ti

te
r (

Lo
g 1

0 
PF

U
/m

l)

No IFN
10,000 IFN-α (U/ml)

Vero E6, moi: 0.001

OROVBUNV

A 

B 



   

	
 
 

203	

 
 

                         
 
Figure 3.4. 15. Plaque phenotype in IFN-α treated cells.  

Vero E6 cells were treated (1000 U/ml) or untreated (0 U/ml) with IFN-α 24 h prior to infection. A plaque assay for BUNV, 

BUNVdelNSs2, OROV or delNSsOROV viruses was performed. 4 days p.i cells were fixed and stained with crystal violet.  
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3.4.9 Replication of rOROV in ISG-expressing cell-lines 

Vero E6 derived cell-lines constitutively expressing ISGs of human (EDH4, HK2, 

IFITM3, ISG20, IRF1, NOS2A, SCO2) or macaque (ISG20, LGAS59, RHO3) origin 

along with an empty control vector (Empty) were supplied by Mr. Jungie Feng (MRC-

University of Glasgow, Centre for Virus Research) as part of a collaboration into 

investigating the effects of various ISGs on different bunyaviruses. To test OROV 

replication each cell-line was infected with rOROV at MOI 0.001 and at 48 h p.i 

samples were harvested and titres determined by plaque assay on BHK-21 cells. On 

control cells rOROV grew to a titre of 3.3 x106 PFU/ml (Figure 3.4.16.A; Empty), titres 

were over two logs lower in ISG20 expressing cells of human origin and two log lower 

in the ISG20 cell-line of macaque origin (Figure 3.4.16.A; ISG20Hs and ISG20Mm). 

EDH4 and IRF1 expressing cells demonstrated over one log reduction in viral titres 

(Figure 3.4.16.a; ED4Hs and IRF1Hs). Western-blotting for presence of N confirmed 

viral replication (Figure 3.4.16.B). Next, the plaque morphologies of rOROV on these 

ISG-expressing cell-lines were investigated. At 4 days p.i rOROV plaques on the 

control cells were clear, round and distinct (Figure 3.4.17; Empty). In comparison the 

ISG20 expressing cell-lines, in particular of human origin produced smaller, but clear 

plaques, whilst EHD4 and IFITM3 cells produced very indistinct rOROV plaques 

(Figure 3.4.17).  
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Figure 3.4. 16. OROV growth in ISG-expressing cell-lines.  

(A) Viral yield assay. ISG-expressing cell-lines were infected with rOROV at moi 

0.001. At 48 h p.i samples were harvested and titrated. Bars represent range from two 

repeats. (B) N production in samples from (A) Tubulin was probed as a loading control. 

Empty, control cells transduced with empty plasmid. Hs, Homo sapiens; Mm, Macaca 

mulatta.  
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Figure 3.4. 17. Plaque morphology of OROV on ISG-expressing cell-lines.  

A plaque assay was carried out on confluent monolayers of ISG-expressing cells, in 6-

well plates. 4 day p.i cells were fixed and stained with crystal violet.  
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3.4.10 Replication of recombinant viruses in mosquito cell-lines  

Lastly, growth kinetics of rOROV, delNSmOROV and delNSsOROV viruses in 

mosquito cell-lines U4.4 (Aedes albopictus) and Aag2 (Aedes aegypti) were compared. 

Interestingly, and unlike the situation in mammalian cells, delNSsOROV grows to 

similar levels as rOROV (Figure. 3.4.18).  

 
 
 
 

 
 
 

Figure 3.4. 18. Growth kinetics in mosquito cells.  

Cells were infected with rOROV, delNSmOROV or delNSsOROV at an MOI of 0.1. At 

indicated time-points samples were harvested and viral titres determined by plaque 

assay on BHK-21 cells. Presented graphs are representative experiments. Cell extracts 

were separated by SDS-PAGE and probed for viral N and Tubulin. (A). Replication in 

U4.4 cells. (B) Replication in Aag2 cells. (C) N production in U4.4 cells. (D) N 

production in Aag2 cells. 
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3.4.11 Discussion 

This study describes the successful recovery of OROV in cultured cells entirely from 

cloned cDNA. The rescued virus (rOROV) replicates similar to the authentic virus 

(wtOROV) reaching titres of 107 PFU/ml (Figure 3.4.2). Using this system, mutant 

viruses lacking either the NSm or the NSs protein were also generated. Only some 

bunyaviruses encode these proteins, and until now the exact role played by the NSm 

protein in orthobunyavirus infections remains unclear. Work on BUNV NSm 

demonstrated that the protein can localise to the Golgi efficiently on its own (Shi et al., 

2006) and may play a role in viral assembly (Shi et al., 2007). In RVFV, the NSm 

protein is important for infection in mosquitoes by allowing the virus to cross the 

midgut barrier (Crabtree et al., 2012; Kading et al., 2014). Similarly, in tospoviruses the 

NSm protein has been shown to be important for virus cell-to-cell spread (Kormelink et 

al., 1994; Storms et al., 1995; Soellick et al., 2000). Results from this study indicate 

that for OROV the NSm protein is dispensable for virus replication in cultured cells, as 

rOROVdelNSm grows and replicates similar to the rOROV virus (Figure 3.4.7.A, C; 

Figure 3.4.9; Figure 3.4.19). Chapter 3, Section 1, discussed the sequence similarity of 

the M segment genes between different OROV reassortants, and noted that the NSm 

region of the M polyprotein of all these viruses is highly conserved when compared to 

the Gn and Gc glycoproteins, which could indicate that this portion of the polyprotein is 

less prone to mutation due to a common, yet unknown, selective pressure. Future work 

could include performing mutations on the NSm coding sequence and monitor for 

effects on virus replication in more relevant primary cell-lines and in vivo models, such 

as insects. Similarly, the rOROV2080S mutant generated here would also require in 

vivo characterization in order to determine if the S segment difference observed 

between OROV isolates (Chapter 3, Section 1) offers any advantage over the prototype 

BeAn19991 S segment, as the current study was not sufficient to determine this.  

 

As with other NSs-encoding bunyaviruses OROV NSs protein is an IFN antagonist and 

by deleting the NSs ORF, OROV induces high levels of IFN and thus induces STAT1 

phosphorylation and MxA expression (Figure 3.4.10, rOROVdelNSs). Interestingly, the 

C-terminal truncated NSs mutant is also incapable of inhibiting type I IFN production 

(Figure 3.4.10, rOROV246NSs). Work on BUNV and RVFV has demonstrated that 
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NSs inhibits IFN-β activation downstream of transcriptional activation through 

disruption of the DNA-dependent RNA polymerase II (RNAPII) activity (Weber et al., 

2002; Kohl et al., 2003b; Billecocq et al., 2004). BUNV NSs interacts with subunit 

MED8 of the RNAPII regulatory module (Leonard et al., 2006) preventing Ser2 

phosphorylation of RNAP II CTD and hence prevents elongation and 3’-end processing 

of the nascent mRNA transcript (Robinson et al., 2012; Corden, 2013; Eick & Geyer, 

2013). This was initially thought to be due to an interaction of BUNV NSs C-terminus 

(aa 83 – 91) with MED8, however a BUNV NSs mutant lacking an N-terminus of 21 

amino acids is also unable to degrade RNAPII, indicating that both the C- and the N- 

terminus are important for BUNV NSs function (Thomas et al., 2004; Leonard et al., 

2006; van Knippenberg et al., 2010). The BUNV MED8 binding domain was mapped 

to a C-terminal amino acid motif ‘LPS’, which is conserved in orthobunyavirus NSs 

proteins (Leonard et al., 2006), and interestingly OROV C-terminal mutant 

rOROV246NSs also lacks a similar motif ‘LPC’ (Figure 3.4.19.A). This ‘LPC’ motif is 

conserved amongst only the Clade A viruses in the Simbu serogroup (Figure 3.4.19, B). 

Whether the inability of rOROV246NSs to inhibit IFN production is due to its lack of 

the MED8 binding domain will need to be investigated in follow-up studies. LACV and 

SBV NSs function as IFN antagonists by targeting RNAPII for degradation by the 

proteasome (Blakqori et al., 2007; Verbruggen et al., 2011; Barry et al., 2014). 

Mutations to the C-terminus of SBV NSs have also been shown to affect the protein’s 

ability to degrade RNAPII (Barry et al., 2014). In the phlebovirus RVFV the NSs 

protein interacts with subunits of the general transcription factor TFIIH, which also has 

a role in RNAPI transcription (Assfalg et al., 2012). SFTSV NSs forms viral inclusion 

bodies in the cytoplasm and uses these to capture kinases TBK1 and IKKε, and proteins 

STAT1 and STAT2 (Ning et al., 2014; Ning et al., 2015). Recently a study comparing 

6-week old C57BL/6 mice knockout mutants demonstrated that MAVS activation 

independent of MDA5 plays a crucial role in type 1 IFN signalling during OROV 

infection (Proenca-Modena et al., 2015a), it would be interesting to see how the 

rOROVdelNSs and rOROV246NSs mutants replicate it such in vivo systems.  

 

This study also demonstrates that OROV is sensitive to IFN-α, however to see maximal 

effects cells have to be treated for 24 h prior to infection (Figure 3.4.12, rOROV). 
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Addition of 10,000 U/ml of IFN-α 2 h prior to infection decreases OROV titres by 2 

logs in comparison to a 4-log decrease at 24 h. This is likely because priming cells 24 h 

prior to infection allows the cells sufficient time to mount a complete IFN response in 

comparison to what maybe seen at a 2 h priming period. In addition, results also show 

that addition of IFN-α to cells once OROV infection is established has no affect on 

virus yields (Figure 3.4.12, rOROV; +2h, +24h). In contrast to OROV, BUNV appears 

to be highly sensitive to IFN-α, with a complete inhibition of virus growth at 10,000 

U/ml of IFN-α either 24 h or 2 h pre-infection or 2 h post-infection (Figure 3.4.12 and 

Figure 3.4.15). These findings are consistent with previously published work 

demonstrating a resistance of OROV to the antiviral effects of IFN-α both in vivo and in 

vitro in comparison to other pathogenic orthobunyaviruses (Livonesi et al., 2007b). The 

reasons for the differences in relative sensitivity of OROV and BUNV to IFN-α will 

need to be investigated in follow-up studies, but may, for example, be due to the 

differential effects of certain ISGs on these viruses, or on the ability of OROV to more 

rapidly switch off host cell gene expression than BUNV. Also, OROV is a virus of 

primate origin and maybe better adapted to a primate system, and hence the effects seen 

maybe cell-specific. Whatever the reason, the increased resistance of OROV to IFN-α is 

not due to expression of the NSs protein (Figure 3.4.14; rOROVdelNSs). The NSs of 

OROV appears to be inhibitory to the IFN induction (Figure 3.4.10), however whether 

it also interacts with the signalling pathway is currently unknown. Additional roles for 

the bunyavirus NSs protein in the virus life-cycle are still being understood, and work in 

a minigenome system has shown that it may have a regulatory role on the viral 

polymerase (Weber et al., 2001; Elliott & Schmaljohn, 2013; Brennan et al., 2015). 

Interestingly both rOROVdelNSs and rOROV246NSs are attenuated in Vero E6 (Figure 

2.4.7.A) and in BHK-21 (Figure 2.4.7.C) cells, both of which are IFN deficient. 

Preliminary work with 246NSs (cloned into expression plasmid pTM1) demonstrates 

that this protein still retains the ability to decrease minigenome activity, whilst is unable 

to inhibit Renilla activity from a CMV polII-driven plasmid (Appendix; Supplementary 

Figure).  

 

In an attempt to identify NSs functional domains three additional OROV NSs mutant 

viruses were generated (Appendix; Supplementary Figure; 48NSs, 90NSs and 159NSs). 
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These viruses were attenuated in cell culture and were unable to inhibit IFN production, 

similar to rOROVdelNSs and rOROV246NSs (Figure 4.1.D). However, due to the 

unavailability of an OROV NSs antibody to confirm the expression of these NSs 

truncations, the viruses were not studied further. This is worth pursuing in the future. 

  

Work using ISG-expressing cell-lines generated by Mr. Junjie Feng (Figure 3.4.16; 

Figure 3.4.17) demonstrates that OROV is sensitive to the effects of certain ISGs. In 

particular human ISG20 decreases OROV titres over 2 logs and results in significant 

reduction in plaque size. It is interesting that OROV demonstrated an increased 

sensitivity towards human ISG20 in comparison to the macaque orthologue (Figure 

3.4.16; Figure 3.4.17; ISG20 Hs and ISG20 Mm). ISG20 (IFN-stimulated gene 20 KDa 

protein) which is a 3′ to 5′ exonuclease has previously been shown to possess antiviral 

properties against a number of RNA viruses (eg. Influenza virus, Vesicular stomatitis 

virus and EMCV; (Espert et al., 2003)). Human IRF1 was also shown to decrease 

OROV titres by almost 2 logs, however no reduction in plaque size was observed 

(Figure 3.4.16 and Figure 3.4.17; IRF1 Hs42). IRF-1 belongs to a family of IFN-

regulatory factors and recently published work using mice knockout mutants have 

demonstrated that IRF-3 and IRF-4 together possess a protective role against OROV 

infection (Proenca-Modena et al., 2015a), whilst IRF-5 indirectly inhibits OROV 

neuroinvasion (Proenca-Modena et al., 2015b).  

 

In conclusion, the work presented in this study has shown that we are able to generate 

infectious OROV entirely from cDNA. The OROV NSs protein similar to other 

bunyaviruses is an IFN antagonist, whilst the NSm protein appears to be non-essential 

for virus replication in cultured cells that were tested.  
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3.4.12 Summary 

 

1. OROV strain BeAn19991 has been successfully rescued entirely from cDNA 

copies of its genome. 

2. OROV mutants lacking either the NSm or the NSs proteins have been generated. 

3. OROV NSs protein is an IFN antagonist, and the C-terminal nine residues of the 

protein are important for functionality. 

4. Deletion of OROV NSm protein did not affect viral replication in mammalian or 

insect cell-lines that were tested. 

5. OROV displays a level of tolerance towards the effects of IFN-α in contrast to 

BUNV. 
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Figure 3.4. 19. NSs protein alignment.  

(A). Alignment of BUNV and OROV NSs proteins. The red box highlights the residues deleted in OROV C-terminal NSs mutant 

(246NSsOROV). The yellow highlight shows the ‘LPS’ motif that is conserved in orthobunyavirus NSs proteins as described in (Leonard 

et al., 2006) (B). Alignment of all Simbu serogroup virus NSs proteins. Amino acid residues LPC (highlighted in yellow) are conserved 

amongst all the Clade A Simbu viruses.  
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Chapter IV. General Discussion 
 

4.1. Fulfilment of project aims 

The aim of this PhD project was to establish a suite of reverse genetics tools for OROV 

in order to allow research on this virus at a molecular level. The project successfully 

fulfilled this aim with the establishment of both a minigenome and VLP assay (Chapter 

3, Section 2), which ultimately led to the successful recovery of infectious OROV 

(Chapter 3, Section 4).  

 

During attempts to establish OROV reverse genetics, the project encountered several 

hurdles resulting from inconsistencies and inaccuracies within the published genome 

sequences. Investigating these further revealed that the previously published reference 

OROV genome sequences in fact contained significant errors. Errors were located in the 

3’ and 5’ UTR regions of all three OROV genome segments, including the absence of a 

mismatch at nucleotide position 9 of the panhandle sequence in each segment as well as 

the absence of 204 nucleotides at the 3’ end of the S segment (Chapter 3, Section 2). 

These findings highlighted the importance of establishing protocols for viral genome 

sequencing that are not reliant on the use of consensus primers. Advances in deep 

sequencing technology will now allow more accurate determination of viral consensus 

sequences. However, many orthobunyaviral 3’ UTR regions are often poly-A rich and 

difficult to determine even with modern sequencing methodologies. Therefore, the use 

of dedicated techniques such as 3’ and 5’ RACE are generally required in order to 

confirm these terminal sequences, as evidenced by my work on the OROV S segment. 

Errors were also found in the published L and M ORFs and this was specific to OROV 

strain BeAn19991. All discrepancies obtained in this project were confirmed as accurate 

by functional assays, and hence the re-determined OROV genome sequences were 

submitted to GenBank (L, KP052850; M, KP052851 and S, KP052852). 

 

Results from this PhD project resulted in the need to re-evaluate OROV phylogeny. 

Previously published data suggested that OROV could be classified into 4 Genotypes 

based on full-length N ORF sequences. However, results from Chapter 3, Section 1 



    Chapter IV. General Discussion 

	
 
 

217	

revealed a high degree of nucleotide conservation in the N ORF throughout the 

available OROV sequences, meaning that classification based solely on this region 

would not accurately reveal the full diversity of circulating OROV strains. My research 

has reinforced the importance of using full-length genome sequencing to establish 

accurate and robust viral phylogenies, as well as to investigate the evolutionary 

trajectory of a virus. The project also identified a novel OROV reassortant, which we 

named Perdoes virus, after the municipality in Brazil from where it was isolated. 

Perdoes virus contains L and S segments of OROV, and an M segment of a yet 

unidentified Simbu virus. Identification of Perdoes virus was important as this 

suggested that OROV has a broader geographic distribution within Brazil than 

originally appreciated. Genome sequences for Perdoes virus and OROV clinical isolates 

that were sequenced during this work have been submitted to GenBank.  

 

The establishment of a successful and reproducible reverse genetic system for OROV 

during this PhD project has allowed for the generation of OROV mutant viruses lacking 

either the NSm or the NSs coding regions. Characterisation of the recombinant viruses 

carried out in vitro demonstrated that, as for other NSs-encoding bunyaviruses, the NSs 

protein of OROV is the main IFN antagonist. Additionally, my research further 

demonstrated the importance of the nine C-terminal amino acids of OROV NSs in the 

IFN antagonistic activity. In addition to this I also studied the sensitivity of OROV to 

IFN-α, in comparison to the family prototype BUNV. Here, I found that OROV was 

capable of replicating at high doses of IFN-α (10,000 U/ml), whilst BUNV was unable 

to do so. OROV NSs mutants also displayed the same level of sensitivity as OROV, 

further indicating that the NSs protein may not be responsible for this characteristic. 

The project also demonstrated that a mutant OROV lacking a complete NSm protein 

displayed in vitro properties similar to the wild-type virus, suggesting that the NSm 

protein is dispensible for virus replication in mammalian and mosquito cell-lines that 

were tested. 
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4.2. Worth of the project in a wider context and potential for 

future research 

This PhD project has highlighted the importance of obtaining an accurate consensus 

sequence for a virus population, particularly when that information is required for 

molecular biological analysis. Reverse genetics systems are powerful tools in virus 

research, but can be hindered without accurate genetic information. A number of 

bunyavirus sequences publically available are either incomplete or inaccurate, 

especially in the UTR sequences. Some viral sequences also contain host-cell sequences 

attached to the ends, a result of de novo assembly of deep sequencing data. One 

example of this is the published M segment sequence for LENV (GenBank accession 

no. HM627176). This sequence appears to contain non-viral nucleotides before the start 

of the actual virus 5’ UTR, and was identified during generation of a LENV 

minigenome in Chapter 3, Section 3. Therefore a careful review of sequences before 

being deposited into public databases and retracting or correcting sequences with errors 

would be beneficial to researchers who then use that information in downstream 

analysis.  

 

Work from this project has resulted in the first complete genome sequences for several 

OROV field isolate strains, and has highlighted the usefulness of obtaining complete 

genetic data. Often only partial genetic information is used in phylogenetic analysis, as 

has been the case with OROV, however as shown in this PhD, this results in loss of 

valuable information. The OROV field isolates that were obtained in 2009 and 2012 

revealed a loss of 11 residues in the S segment 3’ UTR when compared to strains 

BeAn19991 and TRVL-9760, isolated in 1960 and 1955 respectively. This loss of 

nucleotides is intriguing; unfortunately the significance of this finding could not be 

determined within the context of this PhD. It is however worth pursuing. Additionally, 

if isolates from various outbreaks and time-periods were to be re-sequenced completely, 

this may provide a more accurate description of the molecular epidemiology of OROV.  

 

OROV is a public health threat in Central and South America, where it causes periodic 

outbreaks of flu-like illness. In Brazil, the virus is the second most frequent cause of 
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arboviral febrile illness after dengue and given the current rates of urban expansion it is 

probable that more outbreaks of this emerging viral zoonosis will occur. Hence the 

information gathered from this study and the tools established will play a crucial role in 

further understanding the OROV infectious life-cycle. Initial follow-up studies from the 

work started in this PhD could involve further investigations into the roles played by 

OROV NSs. For example, due to project time constraints research into the OROV NSs 

mechanisms of action were not considered. Previous work on BUNV has shown that the 

NSs C-terminus interacts with MED8 subunit of the RNAPII regulatory module 

(Leonard et al., 2006) and it would therefore be interesting to determine if the same is 

true for OROV. Also, recently published work using knock out mouse models have 

identified different parts of the IFN pathway that are important for OROV disease 

progression (Proenca-Modena et al., 2015b; Proenca-Modena et al., 2015a). These in 

vivo systems can be used in conjunction with the recombinant delNSsOROV and 

246NSsOROV viruses to further study the role NSs plays during infection.  

 

Additional roles for NSs in virus replication could also be investigated. In an attempt to 

identify NSs functional domains, three OROV NSs mutant viruses were generated in 

this PhD (Chapter 3, Section 4; Appendix Supplementary Figure; 48NSs, 90NSs and 

159NSs). Unfortunately due to the lack of a NSs antibody the expression of these 

truncated NSs proteins could not be confirmed, and unlike the 246NSsOROV (Chapter 

3, Section 4, Figure 3.4.8) visible NSs bands were not observed via metabolic labelling. 

As an observation, the amount of N production in these three viruses was similar to the 

246NSsOROV virus and not the delNSsOROV virus (Chapter 3, Section 4, Figure 

3.4.7). It is probable that these viruses express unstable NSs proteins. Obtaining a NSs 

antibody could allow future characterization of these viruses, and would be beneficial to 

confirm NSs expression during transient transfection experiments, as well as to monitor 

cellular localisation of NSs. Attempts to express stable amounts of OROV NSs protein 

using a bacterial expression system, as well as in insect cells (Dr. Ping Li, MRC-

University of Glasgow) for antibody production were unsuccessful during this PhD.  

 

The NSs protein of Simbu viruses are highly conserved (Figure 3.4.19). Future projects 

investigating OROV NSs may benefit from generating an ambisense S segment similar 
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to the recently established BUNV system (van Knippenberg & Elliott, 2015), as this 

would allow point mutations and deletions of the protein to be studied in the context of 

OROV infection. As described for BUNV (Shi et al., 2010), and in collaboration with 

Dr. Gustavo Olszanski Acrani (University of Sao Paulo, Brazil) attempts were also 

made to generate OROV viruses that express fluorescent proteins. Although 

unsuccessful, the subsequent discovery that NSm protein is dispensable for in vitro 

replication of OROV means that replacing this region with a fluorescent tag should be 

considered. However, the role the NSm protein plays during in vivo infections is 

completely unknown. Furthermore, the NSm protein is highly conserved in viruses from 

the Oropouche species, which demonstrates positive selective pressure on this gene. 

Therefore further investigations into the functions of NSm are therefore likely to reveal 

important insights into the molecular pathogenesis and host range of OROV.  

 

Members of the species Oropouche virus display a broad phylogenetic diversity 

predominately due to the M segment. Viruses IQTV and MDDV, isolated in Peru and 

Venezuela, respectively, cause disease in humans (Aguilar et al., 2011; Ladner et al., 

2014), whilst Perdoes virus (Chapter 3, Section 1) and the more divergent JATV 

(Figueiredo & Da Rosa, 1988) isolated in Brazil, have only been found in non-human 

primates. The variations observed in the M segments of these viruses could have 

resulted from either genomic reassortment or extensive adaptation to different hosts and 

habitats. Using the OROV reverse genetics system established here it would now be 

possible to study in detail these differences in terms of pathogenesis, virulence outcome 

and host range of these viruses. This work would contribute to understanding the 

evolution of Clade A Simbu serogroup viruses within South America. It would also be 

interesting to compare these viruses in terms of their IFN sensitivity, as work from this 

PhD has shown that OROV NSs protein may not be solely responsible for host cell 

protein shut off and the relative resistance of OROV to IFN-α treatment. Additionally, 

questions regarding host-pathogen interactions and species-specific barriers can now be 

investigated. OROV is closely related to veterinary pathogen SBV, another Simbu 

virus, which is also spread by biting midges from the genus Culicoides. Using the 

previously described reverse genetics system for SBV (Elliott et al., 2013; Varela et al., 
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2013) and the newly established OROV rescue system we can begin to understand the 

basis for OROV pathogenicity in humans.  

 

In an attempt to shed light on orthobunyavirus reassortment Chapter 3, Section 3 

utilised the newly established OROV minigenome system to study protein-protein and 

protein-RNA interactions between OROV and SBV. Results from that analysis has led 

to the hypotheses that the M UTR of orthobunyaviruses may be a potential determinant 

contributing to reassortment. Time constraints prevented further work in this area, 

however this analysis has established that OROV and SBV possess the ability to 

reassort. Future work could involve investigating the M UTR of various 

orthobunyaviruses, and chimeras of various M UTRs should also be generated and 

tested for functionality with various N and L proteins. Potentially generating L protein 

chimeras between OROV and SBV may also prove informative. The difference between 

M UTR nucleotide positions 8 and 9 of the Clade A and Clade B Simbu viruses is 

intriguing, the availability of complete orthobunyavirus sequences would be beneficial 

to allow a comprehensive analysis of this region and to determine if there is any 

relevance towards the virus host species. 

 

Finally, the prevalence of OROV in Central and South America in unknown, and this is 

mainly due to the lack of a reliable diagnostics and the presence of other endemic viral 

infections such as dengue, chikungunya and Mayaro fevers that present similar signs 

and symptoms in patients ((Moreli & da Costa, 2013); personal communication, 

Professor Pedro Vasconcelos, Evandro Chagas Institute in Belem, Brazil). Developing 

an OROV VLP-based diagnostic tool similar to that described for CCHFV (Devignot et 

al., 2015) may be a way to solve this problem. In addition to this, improvements in 

patient data entry at reference laboratories will also contribute to a better understanding 

of OROV epidemiology within South America.  
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4.3. Conclusions 

The overall aims of this PhD project were fulfilled and the work presented will now 

enable us to study OROV in more detail in order to establish the molecular details 

involved in viral replication and pathogenesis, and potentially generate attenuated 

vaccine strains. The work presented here is an important move forward towards a better 

understanding of this important yet neglected human pathogen.  
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Chapter V. Appendices   
 
 
Supplementary Table 
 

Isolate Year Country 
(State) Host Accession Number (L, M, S) 

TRVL9760 1955 Trinidad Human N/A AF312381 AF164531 

BeAr19886 1960 Brazil (Para) Ochlerotat
us serratus HQ830408 HQ830373 HM470107 

BeAn19991 1960 Brazil (Para) Bradypus 
tridactylus KP052850 KP052851 KP052852 

BeH29086 1961 Brazil (Para) Human HQ830409 HQ830374 HM470108 
BeH29090 1961 Brazil (Para) Human HQ830410 HQ830375 HM470109 

BeAn84785 1965 Brazil Bradypus 
tridactylus KF697154 KF697155 KF697156 

BeH121923 1967 Brazil (Para) Human HQ830411 HQ830376 HM470110 

AR136921 1968 Brazil (Para) 
Culex 
quinquefas
cuatus 

HQ830412 HQ830377 HQ830443 

BeAn206119 1971 Brazil (Para) Bradypus 
tridactylus HQ830413 HQ830378 AY993909 

BeAn208402 1971 Brazil  
(Para) 

Bradypus 
tridactylus HQ830414 HQ830379 AY993910 

BeAn208819 1971 Brazil (Para) Bradypus 
tridactylus HQ830415 HQ830380 AY993911 

BeAn208823 1971 Brazil (Para) Bradypus 
tridactylus N/A N/A AY993912 

H244576 1973 N/A Human N/A N/A HQ830444 
AusCh16129 1974 Australia Mosquito KF697138 KF697137 AF362400 

PanAn48878 1975 Panama Bradypus 
variegatus KF697157 KF697159 KF697158 

H271078 1975 Brazil (Para) Human N/A N/A HQ830445 
BeAr271708 1975 Brazil Human N/A N/A HM470113 
BeH271815 1975 Brazil (Para) Human N/A N/A AF164533 
BeH355173 1978 Brazil (Para) Human HQ830416 HQ830381 HM470114 
BeH355186 1978 Brazil Human N/A N/A HM470115 
H356898 1978 Brazil (Para) Human N/A N/A HQ830447 
H366781 1979 N/A Human N/A N/A HQ830449 

AR366927 1979 Brazil (Para) Culicoides 
paraensis HQ830417 HQ830382 HQ830448 

BeH381114 1980 Brazil (Para) Human N/A N/A AF164535 
H384192 1980 N/A Human N/A N/A HQ830450 
H384193 1980 N/A Human N/A N/A HQ830451 
H385591 1980 N/A Human HQ830418 HQ830383 HQ830452 

H389865 1980 Brazil 
(Amazonas) Human HQ830419 HQ830384 HQ830453 

BeH390233 1980 Brazil 
(Amazonas) Human N/A N/A AF164536 

H390242 1980 Brazil 
(Amazonas) Human HQ830420 HQ830385 HQ830454 

BeAn423380 1984 Brazil Nasua JQ675603 JQ675602 JQ675601 



  Chapter V. Appendices  

	 225	

Isolate Year Country 
(State) Host Accession Number (L, M, S) 

nasua 

BeH472200 1988 Brazil 
(Maranhao) Human N/A N/A AF164537 

BeH472204 1988 Brazil 
(Maranhao) Human N/A N/A AF164538 

H472433 1988 Brazil 
(Maranhao) Human HQ830421 HQ830386 HQ830455 

H472435 1988 Brazil 
(Maranhao) Human HQ830422 HQ830387 HQ830456 

BeAr473358 1988 Brazil 
(Maranhao) 

Culicoides 
paraensis N/A N/A AF164539 

BeH475248 1988 Brazil (Para) Human N/A N/A AF164540 

GML444477 1989 Panama 
(Chame) Human N/A N/A AF164555 

GML444911 1989 Panama 
(Chame) Human N/A N/A AF164556 

GML445252 1989 Panama (San 
Miguelito) Human N/A N/A AF164557 

GML450093 1989 Panama 
(Chilibre) Human N/A N/A AF164558 

H498913 1990 Brazil 
(Rondonia) Human HQ830423 HQ830388 HQ830457 

BeH504514 1991 Brazil (Para) Human N/A N/A AF164541 

BeH505442 1991 Brazil 
(Rondonia) Human N/A N/A AF164542 

BeH505663 1991 Brazil 
(Rondonia) Human N/A N/A AF164543 

H505764 1991 Brazil 
(Rondonia) Human N/A N/A HQ830458 

H505768 1991 Brazil 
(Rondonia) Human HQ830424 HQ830389 HQ830459 

H505805 1991 Brazil 
(Rondonia) Human N/A N/A HQ830460 

IQT1690 1992 Peru 
(Iquitos) Human KC759125 KC759126 KC759127 

MD023 1993 Peru (Madre 
de Dios) Human N/A N/A AF164550 

DEI209 1993 Peru 
(Iquitos) Human N/A N/A AF164551 

BeH521086 1993 Brazil 
(Maranhao) Human HQ830425 HQ830390 AY704559 

H532314 1994 Brazil (Para) Human HQ830426 HQ830391 HQ830461 
H532422 1994 Brazil (Para) Human HQ830427 HQ830392 HQ830462 
H532490 1994 Brazil (Para) Human HQ830428 HQ830393 HQ830463 
H532500 1994 Brazil (Para) Human HQ830429 HQ830394 HQ830464 
BeH541140 1994 Brazil (Para) Human HQ830430 HQ830395 HM470126 
BeH541863 1996 Brazil (Para) Human N/A N/A AF164544 
BeH543033 1996 Brazil (Para) Human N/A N/A AF164545 

BeH543087 1996 Brazil 
(Acre) Human N/A N/A AF164547 

H543091 1996 Brazil 
(Acre) Human N/A N/A HQ830465 

H543100 1996 Brazil 
(Acre) Human HQ830431 HQ830396 HQ830466 
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Isolate Year Country 
(State) Host Accession Number (L, M, S) 

BeH543618 1996 Brazil (Para) Human N/A N/A AF164548 
H543629 1996 Brazil (Para) Human HQ830432 HQ830397 HQ830467 
BeH543638 1996 Brazil Human N/A N/A HM470128 
BeH543639 1996 Brazil Human N/A N/A HM470129 
BeH543733 1996 Brazil (Para) Human N/A N/A AY704560 
H543760 1996 Brazil (Para) Human HQ830433 HQ830398 HQ830470 
H543857 1996 Brazil (Para) Human HQ830434 HQ830399 HQ830471 
BeH543880 1996 Brazil Human N/A N/A HM470132 
BeH544552 1996 Brazil (Para) Human N/A N/A AF164546 

IQT4083 1997 Peru 
(Iquitos) Human N/A N/A AF164552 

IQT7085 1998 Peru 
(Iquitos) Human N/A N/A AF164554 

01-812-98 1998 Peru 
(Iquitos) Human N/A N/A AF164553 

IQT9924 1999 Peru Human KF697142 KF697143 KF697144 

BeAn622998 2000 
Brazil 
(Minas 
Gerais) 

Callitrhix 
penicillata HQ830436 HQ830401 AY117135 

BeH622544 2002 Brazil 
(Tocantins) Human N/A N/A EF467368 

PPS522H669
314 2003 Brazil (Para) Human HQ830435 HQ830400 EF467370 

PPS523H669
315 2003 Brazil (Para) Human HQ830437 HQ830402 EF467369 

BR/2004/Acre
27 2004 Brazil 

(Acre) Human N/A N/A EU561644 

PMOH68242
6 2004 Brazil (Para) Human HQ830438 HQ830403 EF467371 

PMOH68243
1 2004 Brazil (Para) Human HQ830439 HQ830404 EF467372 

AMLq13 2005 Brazil 
(Mananus) Human N/A N/A HM107840 

AMLq14 2006 Brazil 
(Manaus) Human N/A N/A HM107841 

BeH706890 2006 Brazil (Para) Human N/A N/A HM470133 
BeH706893 2006 Brazil (Para) Human N/A N/A HM470134 
BeH707157 2006 Brazil (Para) Human N/A N/A HM470136 
BeH707287 2006 Brazil (Para) Human HQ830441 HQ830406 HM470137 
H708139 2006 Brazil (Para) Human HQ830440 HQ830405 HQ830475 
H708717 2006 Brazil (Para) Human HQ830442 HQ830407 HQ830477 

AMLq16 2007 Brazil 
(Manaus) Human N/A N/A HM107842 

FMD1303 2007 Peru Human KF697147 KF697145 KF697146 

H75955 2009 Brazil 
(Amapa) Human N/A N/A HQ830483 

H758669 2009 Brazil 
(Amapa) Human N/A N/A HQ830479 

H758687 2009 Brazil 
(Amapa) Human N/A N/A HQ830478 

H759018 2009 Brazil 
(Amapa) Human N/A N/A HQ830486 

*BeH759021 2009 Brazil Human    
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Isolate Year Country 
(State) Host Accession Number (L, M, S) 

(Amapa) 

*BeH759022 2009 Brazil 
(Amapa) Human    

H759023 2009 Brazil 
(Amapa) Human N/A N/A HQ830487 

*BeH759024 2009 Brazil 
(Amapa) Human    

*BeH759025 2009 Brazil 
(Amapa) Human    

H759038 2009 Brazil 
(Amapa) Human N/A N/A HQ830484 

*BeH759040 2009 Brazil 
(Amapa) Human    

H759041 2009 Brazil 
(Amapa) Human N/A N/A HQ830488 

H759042 2009 Brazil 
(Amapa) Human N/A N/A HQ830489 

H759043 2009 Brazil 
(Amapa) Human N/A N/A HQ830490 

H759044 2009 Brazil 
(Amapa) Human N/A N/A HQ830491 

*BeH759146 2009 Brazil 
(Amapa) Human    

H759483 2009 Brazil 
(Amapa) Human N/A N/A HQ830492 

H759525 2009 Brazil 
(Amapa) Human N/A N/A HQ830480 

*BeH759529 2009 Brazil 
(Amapa) Human    

H759531 2009 Brazil 
(Amapa) Human N/A N/A HQ830482 

H759541 2009 Brazil 
(Amapa) Human N/A N/A HQ830481 

H759562 2009 Brazil 
(Amapa) Human N/A N/A HQ830485 

*BeH759620 2009 Brazil 
(Amapa) Human    

TVP19255 2010 Venezuela 
(Anzoategui) Cebus sp KJ866391 KJ866390 KJ866389 

*BeAN78972
6 2012 

Brazil 
(Minas 
Gerais) 

Callitrhix 
penicillata    

*BeAN79017
7 2012 

Brazil 
(Minas 
Gerais) 

Callitrhix 
penicillata    

BeH379693 N/A N/A Human N/A N/A AF164534 
GML444479 N/A Panama Human N/A N/A KC759130 
BeH543745 N/A Brazil (Para) Human N/A N/A AY704561 
BeH543790 N/A Brazil (Para) Human N/A N/A AY704567 
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Supplementary Figure. OROV NSs characterisation.  

(A) Minigenome assay. BSR-T7/5 cells were co-transfected with pTM1OROV-N (250 

ng), pTM1OROV-L (250 ng), pTM1-FF-luc (25 ng) and pTVT7OROVMRen(–) (125 

ng), along with indicated NSs-expressing plasmids (125 ng). Luciferase values were 

measured 24 h p.t using a Dual-luciferase Reporter Assay kit (Promega). Experiment 

was carried out in triplicate. (B) CMV-driven reporter gene expression. BSR-T7/5 were 

co-transfected with phRL-CMV (125 ng), pTM1-FF-luc (125 ng) along with indicated 

NSs-expressing plasmids (125 ng). Luciferase activity measured as in (A). Values are 

plotted as fold-induction over Control (No NSs), set at 100% activity. Experiment was 

carried out in triplicates. (C) Schematic of C-terminal NSs truncations that were 

generated. Black, wild-type. (D) Growth-kinetics of mutant NSs viruses in Vero E6 

cells. Cells were infected with indicated viruses at MOI 0.1 PFU/ml, and at indicated 

time-points harvested and titrated on BHK-21 cells. Graph is a representative 

experiment. 
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Oropouche virus (OROV) is a medically important orthobunyavirus, which causes frequent

outbreaks of a febrile illness in the northern parts of Brazil. However, despite being the cause of an

estimated half a million human infections since its first isolation in Trinidad in 1955, details of the

molecular biology of this tripartite, negative-sense RNA virus remain limited. We have determined

the complete nucleotide sequence of the Brazilian prototype strain of OROV, BeAn 19991, and

found a number of differences compared with sequences in the database. Most notable were that

the S segment contained an additional 204 nt at the 39 end and that there was a critical

nucleotide mismatch at position 9 within the base-paired terminal panhandle structure of each

genome segment. In addition, we obtained the complete sequence of the Trinidadian prototype

strain TRVL-9760 that showed similar characteristics to the BeAn 19991 strain. By using a T7

RNA polymerase-driven minigenome system, we demonstrated that cDNA clones of the BeAn

19991 L and S segments expressed functional proteins, and also that the newly determined

terminal untranslated sequences acted as functional promoters in the minigenome assay. By co-

transfecting a cDNA to the viral glycoproteins, virus-like particles were generated that packaged a

minigenome and were capable of infecting naive cells.

INTRODUCTION

Oropouche virus (OROV) is one of the most important
arboviruses in Brazil, after dengue virus and yellow fever
virus, and was first isolated in 1955 from a febrile patient in
Trinidad (Anderson et al., 1961). Subsequently, the virus
was isolated in Brazil in 1960 from the blood of a pale-
throated three-toed sloth, Bradypus tridactylus, at a forest

camp-site during construction of the Belém–Brasilia high-
way, just before the first documented epidemic in Brazil in
1961 (Pinheiro et al., 1962). It is estimated that half a million
OROV infections have occurred in .30 outbreaks since the
virus became recognized, but it is probable that the actual
numbers are much higher as cases may be masked by
other febrile illnesses, such as dengue or Mayaro fever,
and diseases caused by other orthobunyaviruses, such as
Guama virus, that are prevalent in the region (reviewed by
Vasconcelos et al., 2011). OROV has also been isolated from
various mosquito species (e.g. Coquillettidia venezuelensis
and Ochlerotatus serratus), but during epidemics OROV is
transmitted to humans by the biting midge Culicoides
paraensis (Pinheiro et al., 1981a, b, 1982).

3These authors contributed equally to this work.

4Present address: Institute of Aquaculture, Pathfoot Building, University
of Stirling, Stirling FK9 4LA, Scotland, UK.

The GenBank/EMBL/DDBJ accession numbers for the sequences of
the segments of OROV strains BeAn 19991 and TRVL-9760 are
KP052850–KP052852 and KP026179–KP026181, respectively.
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OROV belongs to the Simbu serogroup of the genus
Orthobunyavirus. The serogroup also includes a number of
veterinary pathogens such as Akabane, Aino, Shuni, Sabo
and Douglas viruses, as well the newly emerged Schmallenberg
virus (Afonso et al., 2014). OROV is currently the only
known human pathogen in the serogroup and recent phylo-
genetic analysis (Ladner et al., 2014b) places it in a clade
separate from the other members. Like all bunyaviruses, the
OROV genome consists of three segments of negative-sense
ssRNA designated large (L), medium (M) and small (S). The
L segment encodes the viral polymerase (L protein), and the
M segment encodes the glycoproteins Gn and Gc, along with
a non-structural protein called NSm. The S segment encodes
the viral nucleocapsid protein (N) and a second non-structural
protein (NSs) in overlapping reading frames, although both
proteins are translated from the same mRNA (Elliott, 2014;
Plyusnin & Elliott, 2011). The terminal sequences at the 39

and 59 ends of each segment are complementary, allowing
the formation of a panhandle structure that is crucial for
genome replication and transcription (Barr et al., 2003; Barr
& Wertz, 2004; Kohl et al., 2004).

The epidemiology and genetic variation of OROV has been
widely studied, and phylogenetic analysis of numerous
partial S segment sequences (mainly N ORF sequences),
together with more limited partial sequence data on the M
and L segments, suggested the existence of four genotypes
(reviewed by Vasconcelos et al., 2011). However, much less
is known about the general molecular biology of OROV or
virus–host interactions. To facilitate such investigations we
intended to develop a reverse genetics system for OROV, as
has been reported for other orthobunyaviruses (Elliott,
2012), including two Simbu group viruses: Akabane virus
(Ogawa et al., 2007) and Schmallenberg virus (Elliott et al.,
2013; Varela et al., 2013). When we produced cDNA clones
of the OROV genome segments, we noticed several discrep-
ancies between the viral sequences we obtained and the
sequences in the database, notably that the S segment
contained an additional 204 nt. The functionality of our
cDNA clones was confirmed by establishing minigenome
(Blakqori et al., 2003; Weber et al., 2002) and virus-like
particle (VLP) (Shi et al., 2007) systems. Our results
highlighted the importance of obtaining complete and correct
viral sequences, including direct confirmation of the genome
termini, in order to establish reverse genetic systems.

RESULTS

Cloning and sequence determination of the
genome of OROV strain BeAn 19991

Total RNA was extracted from BHK-21 cells infected with
OROV strain BeAn 19991 (prototype Brazilian strain
isolated from B. tridactylus) and reverse transcribed using
random primers. Segment-specific oligonucleotides, based
on available complete sequences in GenBank [L, accession
number NC_005776.1 (Aquino et al., 2003); M, NC_005775.1
(Wang et al., 2001); and S, NC_005777.1; V. H. Aquino and

others, unpublished], were used in PCR (Table 1). Full-length
cDNAs were cloned into the T7 RNA polymerase transcrip-
tion plasmid TVT7R(0,0) (Johnson et al., 2000); the inserts
included an extra G residue at their 59 ends for efficient T7
transcription and the cDNAs were cloned such that T7
polymerase would transcribe anti-genome-sense RNAs, as
described previously (Elliott et al., 2013). Descriptions of the
sequences in this paper are presented for the antigenome-
sense RNA, in the conventional 59A39 orientation.

The full-length L segment sequence that we obtained was
6852 nt in length, 6 nt longer than GenBank accession
number NC_005776.1. Alignment of our sequence with
that of GenBank accession number NC_005776.1 revealed
a number of differences in the regions from nt 2405 to
2450 and from nt 2592 to 2617, resulting in amino acid
changes in the region from aa 798 to 812 and from aa 860
to 867 (Fig. 1). We verified the sequence of this region by
reverse transcription (RT)-PCR amplification of a frag-
ment from nt 2130 to 2980 using specific primers and viral
RNA as template. Furthermore, alignment of our sequence
with partial sequences of the L segments of OROV strains
TRVL-9760, GML-444479 and IQT-1690 (GenBank acces-
sion numbers KC759122.1, KC759128.1 and KC759125.1,
respectively) revealed that, apart from a few variations at
the nucleotide level, the translated amino acid sequence for
this region was conserved (Fig. 1). Therefore, we consider
the published sequence for the BeAn 19991 L segment
contains some errors in this region. In addition, we noted
two other amino acid differences: L to F at position 415
and N to D at position 1021. Both of these have been
confirmed by independent sequence analysis of our stock
of virus, and the F residue at position 415 is also found in
the L protein of other strains of OROV (TRVL-9760,
GML-444479 and IQT-1690).

The terminal sequences of the L segment UTRs were
determined by a 39 RACE procedure on total infected cell
RNA, using oligonucleotides designed to anneal to either the
genomic or antigenomic strands. Position 9 of the 59 UTR was
determined as a C residue and the corresponding 29 position
in the 39 UTR was determined as an A residue, resulting in the
characteristic mismatch that has been observed in the pre-
dicted panhandle structure of other orthobunyavirus genome
segments (Kohl et al., 2004). This mismatch is not recorded in
the published sequence. Additionally, position 18 at the 59 end
was determined to be a U rather than a C residue, as in the
published sequence (Fig. 2).

The full-length M segment was determined to be 4385 nt in
length, in agreement with the published sequence. There
were a small number of nucleotide variations compared
with GenBank accession number NC_005775.1, six of which
resulted in amino acid differences: I274F, F587L, K614N,
D750G, K981Q and G982S. The sequences encoding these
residues were confirmed in independent cDNA clones of the
M segment cDNA and also by specific RT-PCR amplifica-
tion of appropriate regions of the viral RNA. Results from
RACE analysis revealed two single nucleotide differences in
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Table 1. Oligonucleotides used in this study

Oligonucleotide Sequence (5§A3§) Segment/gene Position

OROLFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTCCTATTCCG L 1–19

OROL1 GAAGTTAGTTAGATATGTCT L 3706–3687

OROLRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTCCTATTTAG L 6833–6852

OROL2 CCCTTGTGAACTCAATGGTA L 3537–3556

OROMFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTACCGGCAACAAACA M 1–25

OROMRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTACCGACAACAATTT M 4508–4484

OROSFg GGGGTACCCGTCTCATATAGAGTAGTGTGCTCCACAATTC S 1–20

OROSRg GCTCTAGACGTCTCTACCCAGTAGTGTGCTCCACTATAT S 754–735D

OROdelNSsF GAGTTCATTTTCAACGACGTACCACAACGGACTACATCTACATTTGATCCGGAGGCAGCATACGTAGCATTTGAAGC delNSs 51–127

OROdelNSsR GCTTCAAATGCTACGTATGCTGCCTCCGGATCAAATGTAGATGTAGTCCGTTGTGGTACGTCGTTGAAAATGAACTC delNSs 127–51

pTM1-OROVL-F AAAACACGATAATACCATGTCACAACTGTTGCTCAACCAATATCG L 44–72

pTM1-OROVL-R TTAATTAGGCCTCTCTTAGAAGTCAAATTTGGATTTGCCAGT L 6802–6776

pTM1-OROVM-F AACACGATAATACCATGGCGAATTTAATAATTATTTCAATGGTTC Glycoprotein 32–62

pTM1-OROVM-R TTAATTAGGCCTCTCCTACTTGATTTTCTGCTCCATGGCATATTCTATTTCATGTCTGATT Glycoprotein 4294–4249

pTM1-OROVS-F AAACACGATAATACCATGTCAGAGTTCATTTTCAACGATGTACCAC N 45–75

pTM1-OROVS-R TTAATTAGGCCTCTCCTATATGTCAATTCCGAATTGGCGCAAGAAGTCTCTTGCTGC N 740–699

OROVL_anti ACCTCTCCAAAAATCTCATT L 59 UTR 384–365

OROVL_gen GAACTAGACAATTGTATTCA L 39 UTR 6494–6513

OROVM_anti CTAATATCACATGCTGCTCTACATG M 59 UTR 396–372

OROVM_gen GCACATATCTGTGGGAGAGACAT M 39 UTR 3959–3981

OROSlig1 CTTGCGCCAATTCGGAATTGAC S UTR 713–734

OROSlig2 GGTACATCGTTGAAAATGAAC S UTR 73–53

*Viral sequences are shown in bold.

DBased on GenBank accession number NC_005777.1.
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the 59 UTR (C at position 9 and A at position 15) and one
difference at the 39 end (U at position 15) compared with the
database sequence. Thus, the predicted panhandle has a C/A
mismatch at position 9/–9 and a U/A pairing at position
15/–15 (Fig. 2).

The PCR to amplify the S segment surprisingly generated
two products of ~750 and 1000 bp (Fig. 3a). After cloning,
the sequences of both products were determined. The
nucleotide sequence of the smaller fragment was identical to
GenBank accession number NC_005777 (V. H. Aquino and
others, unpublished) that is described as ‘Oropouche virus
segment S, complete genome’, but no strain designation is
given. Saeed et al. (2000) reported the complete sequence of
the TRVL-9760 strain of OROV also to be 754 nt, although
GenBank accession number AF164531 only gives the coding
sequence for this strain. In addition, the sequence of the N
ORF of the BeAn 19991 was also reported by Saeed et al.
(2000) (GenBank accession number AF164532) and the
amino acid sequence was identical to that that we obtained.

The larger fragment contained an additional 204 nt after
the apparent consensus 39 terminal sequence in the
GenBank entry (Fig. 3b).

The DNA products were extracted from the gel and used as
templates in further PCR. The shorter template gave rise to
a single, similarly sized amplicon, whereas the longer
template again generated products ~750 and 1000 bp in
length (Fig. 3c). To investigate this observation further, we
amplified the S segment of a clinical isolate of OROV
(H759025 AMA2080; N. L. Tilston-Lunel, M. R. T. Nunes
& R. M. Elliott, unpublished) using the same primers and
PCR conditions that were used for BeAn 19991, and again
observed two amplified DNA fragments (data not shown).
The sequences of both of these amplicons largely matched
that of the BeAn 19991 products (data not shown).

Inspection of the ‘long’ sequence showed that nt 735–752
could allow annealing of the primer used in PCR (Fig. 3d).
Thus, binding of the primer to this internal sequence in the
S segment would result in a cDNA product with a terminus
matching that of the orthobunyavirus consensus sequence,
making it appear complete. Using 39 RACE and RNA
ligation methods, we confirmed that the OROV S segment
did indeed contain the additional 204 nt at the 39 end (data
not shown). Therefore, the full-length OROV S segment is
958 nt in length.
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Fig. 1. Alignment of part of the OROV L segment highlighting the differences between the published sequence for the BeAn
19991 strain (GenBank accession number NC_005776) and the sequence obtained in this study (new data), along with three
published OROV sequences from different genotypes GML-444479, IQT-1690 and TRVL-9760 (GenBank accession
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The corrected sequences of the OROV strain BeAn 19991
genome have been deposited in GenBank with accession
numbers KP052850 (L), KP052851 (M) and KP052852 (S).

Sequence determination of the OROV TRVL-9760
strain

Determination of the complete sequence of another strain
of OROV, the Trinidadian prototype TRVL-9760, was
carried out independently from that of the BeAn 19991
strain. Total RNA was extracted from infected murine type
I IFN receptor-deficient (IFNAR2/2) cells and reverse
transcribed using random hexamer primers. Sequences
comprising the L, M and S segment ORFs were amplified by
RT-PCR using specific oligonucleotides based on the available
sequences (GenBank accession numbers NC_005776.1, NC_
005775.1 and NC_005777.1, as described above). Whilst the

N ORF sequence was completely amplified in one step, the
L and the M segment ORF sequences were amplified as six
(L) or three (M) overlapping fragments. The resulting
cDNAs were inserted into the TA-vector pCRII and their
sequences were determined by Sanger sequencing. In com-
parison with the BeAn 19991 L ORF sequence (GenBank
accession number NC_005776.1), the TRVL-9760 L ORF
contained 151 nt exchanges, seven single nucleotide inser-
tions and one single nucleotide deletion. Whilst 134 of the
151 nt exchanges were silent, the nucleotide insertions and
deletions which were found from nt 2405 to 2446 and from
nt 2592 to 2617 led to several amino acid exchanges and the
insertion of two additional amino acids at aa 799 and 810
(Fig. 1). The majority of the amino acid substitutions caused
by single nucleotide exchanges were found in the N-terminal
half of the L ORF (A136T, M145V, N210S, N273D, Q308K,
S313N, I355V, F415L, D442N, T479A, I558M, T640A,

This study:
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L 

958 nt 

4385 nt 

6846 nt 

Fig. 2. Comparison of the published and the revised OROV BeAn 19991 UTR sequences shown as a panhandle structure
(antigenomic sense). The terminal 11 conserved residues are separated by a vertical line. Differences are highlighted in red.
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S921N, L974I and S1021N), whilst only three exchanges
were found in the C-terminal half (T1159I, E2056G and
R2241K). When compared with the BeAn 19991 M ORF
sequence (GenBank accession number NC_005775.1), the
TRVL-9760 M ORF showed 100 nt exchanges, with 15 of
them leading to amino acid substitutions (S12G, I13V,
L67P, A244V, I274F, T463I, A609T, K615N, V732L, D750G,
R801K, V846I, S849G, V1241I and M1363I). For the TRVL-
9760 N ORF, we detected 13 nt exchanges in comparison to
the BeAn 19991 N ORF sequence (GenBank accession
number NC_005777.1), but none of these exchanges led to
an amino acid substitution. Three of these nucleotide
exchanges also affected the overlapping NSs ORF and two
of them led to amino acid exchanges (K13R and N74S).

To determine the sequence of the complete L, M and S
segments, pyrosequencing was performed. OROV genomic
RNA isolated from supernatants of infected murine IFNAR2/2

cells was converted to dsDNA by whole-transcriptome amplifi-
cation, which served as starting material for a shotgun library
preparation. After pyrosequencing of the shotgun library, de
novo assembly with the obtained sequence reads was
performed which resulted in sequences for the OROV L,
M and S ORFs identical to those obtained by Sanger
sequencing. It was not, however, possible to determine the
sequences of the non-coding regions by de novo assembly.
Therefore, an additional reference mapping was performed
using the OROV genomic segment sequences from GenBank
as reference. With this approach we were able to map the
obtained sequence reads to the complete L and the M segment

sequences (GenBank accession numbers NC_005776.1 and
NC_005775.1). In the case of the S segment, however, it was
not possible to map the sequence reads to the 39 end of the S
segment sequence (GenBank accession number NC_005777.1),
but mapping was possible for the 59 non-coding end and the
N ORF. We therefore performed another round of reference
mapping using an S segment fragment comprising the 59

end and the N ORF of GenBank accession number
NC_005777.1 as reference sequence. Using this approach,
the reference mapping resulted in an S segment sequence
with an additional 204 nt at the 39 end.

The complete sequences of the OROV strain TRVL-9760
genome segments have been deposited in GenBank with
accession numbers KP026179 (L), KP026180 (M) and
KP026181 (S).

Establishment of an OROV minigenome system

Minigenome systems have been described for a number of
orthobunyaviruses, and comprise a negative-sense genome
analogue encoding a reporter gene that is packaged into
ribonucleoprotein complex, transcribed and replicated by
co-expressed viral N and L proteins, leading to measurable
reporter activity (Elliott, 2012). After confirmation of the
nucleotide sequences, the ORFs in each segment are
amplified by PCR and subcloned into the pTM1 expression
vector (Moss et al., 1990). Minigenome constructs are
created by replacing the viral ORF in each segment with the
sequence for Renilla luciferase and then inverting the insert
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Fig. 3. Analysis of the OROV S segment. (a) Agarose gel electrophoresis of the S segment RT-PCR product. (b) Schematic
drawing of the OROV S segment, comparing the published sequence of 754 bp (upper drawing) with the newly determined
958 bp sequence (lower drawing). Black boxes, N ORF; grey boxes, NSs ORF; hatched boxes, UTRs. The sequence is
presented in the antigenomic 59A39 sense. Numbers indicate nucleotide positions in the sequence. (c) Agarose gel
electrophoresis of reamplified DNA products using the 754 and 958 bp PCR products as template. (d) Diagram showing the
potential internal binding site (bold) in the OROV S segment. Numbers represent nucleotide positions. OROSRg primer
represents the primer sequence that was used in this paper to amplify the S segment.
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in plasmid TVT7R(0,0) (Johnson et al., 2000) so that T7
transcripts would be in the genomic sense (Weber et al.,
2001). We first used a minigenome based on the OROV M
segment, as studies with Bunyamwera virus (BUNV)
showed the M segment minigenome to be the most active
(Barr et al., 2003). However, initial attempts using the M
segment UTR sequences as reported in GenBank gave low
activity over background. When we subsequently obtained
the M segment terminal sequences by 39 RACE analysis and
redesigned the minigenome accordingly, with the C/A
mismatch at position 9/–9, high levels of luciferase activity
were observed, indicating that (i) both N- and L-expressing
constructs were functional and (ii) that the M segment
UTR sequences determined herein were active promoters.
The amounts of transfected N- and L-expressing plasmids
were titrated to determine the optimal amounts that gave
maximum luciferase activity (data not shown), and the
optimized amounts used in all further experiments.

The effects of nucleotide differences in the M segment UTR
on minigenome activity are compared in Fig. 4(a). The
minigenome with UTR sequences as previously published
(9C/G, 15C/G) showed low activity, whereas the minigenome
with UTR sequences as determined in our work (9C/A, 15U/
A) showed .2000-fold increased activity over background
(cells where no L-expressing plasmid was transfected).
However, it was not just the mismatch at position 9/–9 that
was critical for maximal activity, but also the base-pairing at
position 15/–15, as the minigenome with the position 9 C/A
mismatch but C/G at position 15/–15 showed only 500-fold
increase in activity. Introduction of the U/A pairing was not
able to rescue activity when position 9/–9 was C/G and other
nucleotide combinations at position 15 were less active than
U/A. Taken together, these results highlight the importance of
certain residues within the M segment promoter.

The minigenome assay was also used to compare the short
and long S segment UTR sequences (Fig. 4b). Minigenome
constructs contained the same 59 UTR and either the 14 nt
(as previously published) or 218 nt (as determined herein)
long 39 UTR. The minigenome with the short UTR was
inactive, whereas the minigenome with the 218 nt 39 UTR
showed robust luciferase activity. Lastly, we compared L
segment-derived minigenomes with either a C or U residue
at position 18 in the 59 UTR. Both minigenomes gave
similar high luciferase activity (Fig. 4c).

Together, these results confirmed that the N and L proteins
were functional in a minigenome assay, and also that the
UTR sequences as determined for the S, M and L segments
were functional promoters, and that a base mismatch at
position 9/–9 was critical for promoter activity.

VLP production assay

To investigate whether the glycoprotein gene was also
functional, a VLP assay was developed. In addition to the
M segment minigenome, N- and L-expressing plasmids,
cells were also transfected with a plasmid expressing the

glycoprotein precursor. Luciferase activity was measured in
these donor cells at 24 and 48 h post-transfection (Fig. 5a),
and it was noted that there was a significant increase in
luciferase activity in cells additionally transfected with the
glycoprotein cDNA at 48 h, suggesting spread of VLPs
within the culture. The supernatants from transfected cells
were harvested at 48 h post-transfection and transferred
onto naive BHK-21 cells; luciferase activity in these cells
was measured 24 h later. High levels of luciferase activity
were recorded in cells exposed to supernatants expressing
the glycoproteins (Fig. 5b, L+M) compared with those
exposed to supernatants from cells not transfected with the
glycoprotein cDNA (Fig. 5b, +L). This is a stringent assay
relying only on transcription of the packaged minigenome
in the VLP without the need for exogenously supplied viral
N and L proteins. Incubation of the supernatant with
antibodies to OROV before infection markedly reduced
luciferase expression, whereas incubation with an irrelevant
antiserum (anti-BUNV serum) had no effect (Fig. 5b).
Taken together, these results indicated that the OROV
glycoprotein gene cDNA was functional in this VLP assay.

DISCUSSION

A crucial step in developing reverse genetic systems for
RNA viruses is obtaining cDNA clones that are represent-
ative of the authentic viral genome sequence. As described
above, we found a number of sequence differences in our
clones derived from the BeAn 19991 strain compared with
sequences in the database, including an additional ~200 nt
at the 39 end of the S genome segment, an apparent frame
shift in the L segment coding sequence and a critical mis-
matched nucleotide pair in the terminal panhandle sequence
on each segment. These significant differences were con-
firmed when the complete sequence of the Trinidadian
prototype strain TRVL-9760 was also determined.

Early studies comparing orthobunyavirus genome sequences
indicated that the terminal 11 nt of each segment exhibited a
high degree of conservation, and hence consensus primers
based on sequences of Bunyamwera and California sero-
group viruses (Dunn et al., 1994; Elliott, 1989a, b; Elliott
et al., 1991) have traditionally been used to amplify
unknown bunyavirus genomes. However, the actual ter-
minal sequences for the majority of sequences currently
available in GenBank have not been verified directly, e.g. by
RACE techniques. With regard to the orthobunyavirus
‘consensus sequence’, there is a single nucleotide difference
between the 39 and 59 complementary ends such that, using
total infected cell RNA as template, mispriming by either
primer could occur or a single primer could bind to both
genomic and antigenomic RNAs. Indeed, a single primer
was used to amplify the OROV M segment (Aquino &
Figueiredo, 2004) or the S segments of a range of ortho-
bunyaviruses (Lambert & Lanciotti, 2008). The importance
of the terminal sequence has been investigated by mini-
genome assays for BUNV (Barr & Wertz, 2004; Barr et al.,
2003; Dunn et al., 1995; Kohl et al., 2003, 2004) and the
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mismatch at position 9/–9 was shown to be crucial for
promoter activity (Barr & Wertz, 2005). As more diverse
orthobunyavirus genomes have been sequenced, particularly
using next-generation sequencing methods (deep sequencing)
that are not reliant on specific primers to amplify cDNA, it has
become clear that there is more variation in the ‘bunyavirus
consensus’ than observed between Bunyamwera and California
serogroup viruses (e.g. Ladner et al., 2014b), highlighting
the requirement for direct determination of the terminal
sequences. In a similar vein, as the genomes of more members
of the genus Phlebovirus (another genus in the family
Bunyaviridae) have been sequenced, it is apparent that the
termini also diverge from the ‘phlebovirus consensus’ (Dilcher
et al., 2012a; Elliott & Brennan, 2014; Matsuno et al.,
2013).

A recent paper (Ladner et al., 2014a) suggested the
standards that should be applied to viral genome sequence
determination and we strongly support the recommenda-
tions proposed therein.

Saeed et al. (2000) reported the first nucleocapsid gene
sequences of 28 strains of OROV, including the prototypic
Trinidadian OROV isolate TRVL-9760 and the Brazilian
isolate BeAn 19991. They determined the complete S
segment to be 754 bases and noted the unusually short
length of the 39 UTR, just 14 bases after the translational
stop codon, compared with other orthobunyavirus S
segments. They employed various experimental procedures
to verify the 39 UTR, including chemical denaturation of the
purified viral RNA with methylmercury hydroxide before
RT-PCR (in case there was a secondary structure that
impeded reverse transcription), and a 59 RACE procedure
using both purified viral RNA and total cellular RNA as
starting material (Saeed et al., 2000). All approaches yielded
that same short 39 UTR. Our results indicate that the true
length of the S segment is actually 958 nt, which was verified
by independent experimental analyses, including deep
sequencing of the TRVL-9760 strain. Examination of the
correct sequence reveals an internal region highly similar to
the terminal sequence that could hybridize with the primer
and in our studies resulted in two PCR products. The
functionality of the longer 39 UTR determined in this study
was demonstrated in the minigenome assay.

We further confirmed that the sequences of the BeAn
19991 N and L proteins were functional in driving reporter
gene expression from minigenomes, and similarly that the
determined UTR sequence for all three segments could be
used to construct functional minigenomes. Lastly, by co-
transfecting a cDNA that expressed the glycoprotein gene,
we produced VLPs that were capable of packaging a
minigenome and infecting naive cells. Taken together,
these data provide strong evidence that the cDNA clones
reported in this paper are fully functional and pave the way
to establishing a virus rescue system. The availability of
such a system will play a crucial role in understanding the
molecular biology of this important yet poorly character-
ized emerging viral zoonosis.

METHODS

Cells and virus. Vero-E6 and murine IFNAR2/2 cells were grown in
Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with
10 % FCS. BHK-21 cells were grown in Glasgow minimal essential
medium (GMEM; Invitrogen) supplemented with 10 % newborn calf
serum and 10 % tryptose phosphate broth (TPB; Invitrogen). BSR-
T7/5 cells, which stably express T7 RNA polymerase (Buchholz et al.,
1999), were grown in GMEM supplemented with 10 % FCS, 10 %
TPB and 1 mg G418 ml21 (Geneticin; Invitrogen).

OROV strain BeAn 19991 was kindly donated by Professor Luiz
Tadeu Moraes Figueiredo (University of Sao Paulo School of
Medicine, Ribeirão Preto, Brazil) and strain TRVL-9760 was kindly
provided by Dr Robert Shope (University of Texas Medical Branch,
Galveston, TX, USA). A sample of total infected cell RNA obtained
from strain H759025 AMA2080 was provided by Dr Pedro
Vasconcelos (Department of Arboviruses and Hemorrhagic Fevers,
Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil).

All experiments with infectious viruses were conducted under Con-
tainment Level 3 laboratory conditions.

Cloning of OROV cDNA. OROV was grown in BHK-21 cells at
37 uC, and after 30 h both cells and supernatant were harvested, and
RNA extracted using TRIzol reagent (Invitrogen). cDNAs to each
segment were synthesized separately, using segment-specific primers
for the L and M segments (OROLFg and OROMFg, Table 1), and
random primers (Promega) for the S segment, together with Moloney
murine leukemia virus (MMLV) reverse transcriptase (Promega).
Each cDNA preparation was used in a segment-specific PCR using the
appropriate primer pairs (OROMFg/OROMRg for the M segment
and OROSFg/OROSRg for the S segment; Table 1) and KOD Hot
Start DNA polymerase (Merck), according to the manufacturer’s
protocol. The full-length PCR products were cloned into pGEM-T
Easy (Promega). After selection of positive clones, the inserts were
excised by digestion with BsmBI and ligated into BbsI-linearized
plasmid TVT7R(0,0) (Johnson et al., 2000). The L segment cDNA was
amplified in two fragments using primer pairs (OROFLg/OROL1 and
OROL2/OROLRg; Table 1). The first primer pair amplified nt 1–3706
and the second pair amplified nt 3537–6852, resulting in two PCR
products with a 170 bp overlapping region containing a unique BsgI
restriction site (nt 3590 in the full-length segment). PCR products
were purified from an agarose gel and then cloned into pGEM-T Easy.
The inserts were excised by digestion with restriction enzymes BsgI
and BsmBI, and the full-length L segment was assembled by ligating
both fragments with BbsI-linearized TVT7R(0,0). The cDNA inserts
included an extra G residue at their 59 ends for efficient T7
transcription and the inserts were cloned such that T7 polymerase
would transcribe antigenome-sense RNAs. The plasmids were desig-
nated pTVTOROVL, pTVTOROVM and pTVTOROVS.

Construction of protein-expressing and minigenome-expres-

sing plasmids. The complete ORFs in the L and M segments were
amplified by PCR using specific primers (pTM1 series in Table 1) and
the pTVT7 transcription plasmids as templates, and subcloned into
expression vector pTM1 (Moss et al., 1990), under the control of the
T7 promoter and encephalomyocarditis virus internal ribosome entry
site sequence. The constructs were designated pTM1OROV-L and
pTM1OROV-M. To generate a plasmid expressing only the N
protein, we introduced three point mutations (T68C, T113C and
G116A) into pTVTOROVS using primers OROdelNSsF and
OROdelNSsR (Table 1), by QuikChange site-directed mutagenesis
(Stratagene), prior to PCR amplification of the N ORF. These
mutations changed the first and second methionine codons in the NSs
ORF into threonine codons, and introduced an in-frame translation
stop codon at codon 17; the coding sequence of the overlapping N
ORF was unaffected. This plasmid was designated pTM1OROV-N.
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The minigenome plasmids were created in three steps. First, the

sequence encoding the coding sequence in each pTVT7 clone was

deleted by excision PCR, leaving the UTRs intact. These linearized

DNAs were then used in an In-Fusion reaction (In-Fusion HD

Cloning; Clontech) with PCR-amplified DNA of the Renilla luciferase

gene. The amplified luciferase gene contained 15 nt extensions

homologous to the OROV L, M or S segment UTR sequences in

the linearized pTVT7 construct. The UTR–luciferase–UTR sequence

was then amplified by PCR using primers containing 15 nt extensions

homologous to the T7 terminator (59 end) and T7 promoter (39 end).

This amplified products were combined with TVT7R(0,0) DNA in an

In-Fusion reaction to generate minigenome-expressing plasmids

such that in T7 transcripts the Renilla luciferase was in the negative

sense. These constructs were designated pTVT7OROVSRen(–),

pTVT7OROVMRen(–) and pTVT7OROVLRen(–).

Sequencing OROV BeAn 19991 5§ and 3§ termini. As total

infected cell RNA contains both genomic and antigenomic segments,

39 RACE analysis was capable of generating both the 59 and 39

terminal sequences using strand-specific primers. Briefly, RNA was

polyadenylated (Ambion) for 1 h at 37 uC and then purified using an

RNeasy Mini kit (Qiagen). The polyadenylated RNA was then used in

a reverse transcription reaction with MMLV reverse transcriptase

(Promega) and oligo-d(T) primer, followed by PCR using 39 PCR

anchor primer (Roche) and the appropriate segment specific primer

(OROVL_anti/OROVL_gen for the L segment and OROVM_anti/

OROVM_gen for the M segment; Table 1) with KOD Hot Start DNA

polymerase (Merck). Amplified products were purified on an agarose

gel and their nucleotide sequence determined.

To confirm the S segment terminal sequences, total infected cell RNA

was first denatured at 90 uC for 3 min and then ligated using T4 RNA

ligase (New England Biolabs) for 2 h at 37 uC. The reaction was heat

inactivated at 65 uC and purified using an RNeasy Mini kit (Qiagen).

cDNA was synthesized using MMLV reverse transcriptase (Promega)

and oligonucleotide OROSlig1 (Table 1). PCR was then performed

with KOD Hot Start DNA polymerase (Merck) and primers

OROSlig1 and OROSlig2 (Table 1). The PCR product was purified

on an agarose gel and its nucleotide sequence determined.

Pyrosequencing of the OROV TRVL-9760 strain. OROV TRVL-

9760 was grown in IFNAR2/2 cells at 37 uC and supernatant was

harvested after 48 h. (Preliminary results showed that IFNAR2/2 cells

gave the highest amounts of genomic RNA in the extracted

supernatant compared with Vero-E6 or BHK-21 cells; unpublished

observations.) For removal of cell debris, the supernatant was

centrifuged at 700 g for 10 min and at 2800 g for 5 min, followed

by filtration through a 0.2 mm sterile filter. To enrich viral particles,

20 ml cleared supernatant was mixed with 1.48 ml 5 M NaCl and

10.8 ml 30 % PEG8000 in NTE (100 mM NaCl; 10 mM Tris, pH 6.5;

1 mM EDTA), incubated on a shaker for 30 min at 4 uC, and

subsequently centrifuged at 6000 g for 60 min at 4 uC. The virus

pellet was resuspended in 500 ml PBS. RNA extraction was performed

using PeqGold Trifast (Peqlab). To be able to cover the 39 terminal

parts of the OROV genome segments, 500 ng self-complementary

FLAC (full-length amplification of cDNAs) adapters were ligated to

500 ng purified viral RNA as described previously (Dilcher et al.,

2012b). To achieve coverage of the 59 terminal parts, a 59 RACE RNA

adaptor (Ambion) was ligated to the viral RNA after the removal of

two phosphate groups via RNA 59-polyphosphatase. To remove

unligated adapters, a subsequent purification step was performed

using a CleanAll DNA/RNA Clean-Up and Concentration kit

(Norgen Biotek). The concentration of the adaptor-ligated and

purified ssRNA was determined by Qant-iT RiboGreen assay

(Invitrogen). Then, 60 ng adaptor-ligated viral RNA was amplified

and converted to dsDNA using a TransPlex Whole Transciptome

Amplification kit (WTA2; Sigma-Aldrich). The newly synthesized

dsDNA was purified using a QIAquick PCR Purification kit (Qiagen),
and DNA fragments ,350 bp were removed using Ampure-XP beads
(Agencourt). A sample of 300 ng whole-genome amplified dsDNA
was used for Titanium Shotgun Rapid Library Preparation and
pyrosequencing on a Genome Sequencer FLX (Roche) as described in
the FLX Titanium Protocol (Roche), but omitting the ‘DNA
fragmentation by nebulization’ step. Assembly of the sequenced
OROV genome segments was done by means of the Genome Sequencer
FLX System software package version 2.3 (GS De novo Assembler, GS
Reference Mapper) in combination with the commercially available
SeqMan Pro version 10.1.1 (DNASTAR, Lasergene).

Minigenome and VLP assays. Subconfluent monolayers of BSR-
T7/5 cells were transfected with 1 mg each pTM1OROV-L and
pTM1OROV-N, 0.5 mg minigenome-expressing plasmid, and 100 ng
pTM1-FF-Luc (Weber et al., 2001). At 24 h post-transfection, Renilla
and firefly luciferase activities were measured using a Dual-Luciferase
Reporter Assay kit (Promega).

To generate VLPs, the M segment minigenome transfection mix was
supplemented with 0.5 mg pTM1OROV-M. At 24 and 48 h post-
transfection, supernatants were harvested, clarified by centrifugation
(4000 r.p.m. for 5 min at 4 uC), digested with benzonase and used to
infect BHK-21 cells. Renilla activity was measured after 24 h using a
Renilla Reporter Assay kit (Promega). To neutralize the VLPs,
samples were incubated with hyperimmune mouse ascetic fluid to
OROV or with anti-BUNV rabbit antiserum for 1 h at room
temperature before infecting BHK-21 cells.
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Oropouche virus (OROV) is a public health threat in South America, and in particular in northern

Brazil, causing frequent outbreaks of febrile illness. Using a combination of deep sequencing and

Sanger sequencing approaches, we determined the complete genome sequences of eight clinical

isolates that were obtained from patient sera during an Oropouche fever outbreak in Amapa state,

northern Brazil, in 2009. We also report the complete genome sequences of two OROV

reassortants isolatd from two marmosets in Minas Gerais state, south-east Brazil, in 2012 that

contained a novel M genome segment. Interestingly, all 10 isolates possessed a 947 nt S

segment that lacked 11 residues in the S-segment 39 UTR compared with the recently

redetermined Brazilian prototype OROV strain BeAn19991. OROV maybe circulating more

widely in Brazil and in the non-human primate population than previously appreciated, and the

identification of yet another reassortant highlights the importance of bunyavirus surveillance in

South America.

INTRODUCTION

Oropouche virus (OROV) is a midge-borne orthobunya-
virus that causes a febrile illness in humans throughout
northern South America. The virus is endemic to Brazil
and to date all major outbreaks have been limited to the
northern region of the country. The largest known OROV
outbreak was recorded in 1980 in the state of Para with an
estimated 100 000 cases (Anderson et al., 1961; Borborema
et al., 1982; Dixon et al., 1981; LeDuc et al., 1981; Pinheiro
et al., 1976; Pinheiro, 1962; Vasconcelos et al., 1989). Due
to the similarity of signs and symptoms to other endemic
viral diseases such as dengue, chikungunya and Mayaro
fevers and the lack of a differential surveillance system, the

burden of OROV on the Brazilian public health system

and economy remains unclear. In an urban environment,

the midge Culicoides paraensis transmits OROV among

humans (Pinheiro et al., 1981, 1982; Roberts et al., 1977),

whilst in the tropical forest the virus has been isolated from

the pale-throated three-toed sloth (Bradypus tridactylus)

and the black-tufted marmoset (Callithrix penicillata),

although the vectors are largely unknown (Nunes et al.,

2005a; Pinheiro et al., 1976).

OROV belongs to the genus Orthobunyavirus, the largest of
the five genera in the family Bunyaviridae, which contains
several other important human and veterinary pathogens
such as La Crosse, Akabane, Cache Valley and Schmallen-
berg viruses (Elliott, 2014). OROV is classified in the
Simbu serogroup and, like all bunyaviruses, contains a
tripartite negative-sense RNA genome. The large (L)
segment encodes the viral polymerase, the medium (M)

The GenBank/EMBL/DDBJ accession numbers for the sequences
reported in this paper are KP691603–KP691632.

Four supplementary tables are available with the online Supplementary
Material.
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segment encodes the viral glycoproteins Gn and Gc, and a
nonstructural protein, NSm, and the small (S) segment
codes for the viral nucleocapsid protein (N) and a second
non-structural protein (NSs) from overlapping ORFs
(Elliott, 2014; Elliott & Blakqori, 2011). Recently, we
reported the complete genome sequence for the prototype
Brazilian OROV strain BeAn19991 (GenBank accession
numbers KP052850–KP052852). Our analysis corrected
several errors in the previously published OROV genome
sequences, most notably that the S segment was 958 nt and
not the originally published 754 nt (Acrani et al., 2014).

Here, we report the complete genome sequences of eight
clinical isolates of OROV and two primate-derived OROV
reassortants. The M segment of the reassortant virus was a
unique Simbu sequence that fell in the same clade as the
Jatobal virus (JATV) M segment. All 10 isolates contained S
segments that were 11 nt shorter than the BeAn19991
strain. To our knowledge, this is the first report of
complete genome sequences for OROV field isolates, and
we discuss the importance of this in terms of understand-
ing the evolutionary history of the virus.

RESULTS

Complete genome sequence of OROV clinical
isolates

OROV isolates BeH759021, BeH759022, BeH759024,
BeH759025, BeH759040, BeH759146, BeH759529 and
BeH759620 represent a small portion of OROV samples
that were obtained from febrile humans between June and
August 2009 in the town of Mazagão, Amapa state, Brazil
(Table 1, Fig. 1). The mean age of the patients was 26.5 years
and all had presented a similar clinical picture characterized
by fever, headache, arthralgia, myalgia and ocular pain.
Genome sequences for these isolates were generated by de
novo assembly of 1 058 075 trimmed and filtered sequence
reads obtained using a Roche 454 sequencer.

The mean S-segment contig length was 867 bases, and by
mapping the sequence reads to reference strain BeAn19991 S
segment (GenBank accession no. KP052852), we obtained
complete S-segment sequences of 947 bases. All S segments
were therefore 11 nt shorter than that of the redetermined
BeAn19991 strain (Acrani et al., 2014). Ligation of extracted
RNA (see Methods) followed by Sanger sequencing was used
to confirm the UTR sequences. This revealed that all these
isolates lacked nt 781–791 in the S segment of BeAn19991.
Additional differences were observed at positions G750A,
A754G, C771T, T820C and T888C, resulting in 92.6 % 39

UTR similarity with BeAn19991 (Fig. 2a). However, despite
these differences, promoter activity was similar to that of
BeAn19991 (Fig. 2b) when tested in a minigenome assay
(Acrani et al., 2014). At the nucleotide level, the N-coding
region of these isolates was 95 % similar to that of BeAn19991,
but there was 100 % conservation of the translated protein
sequence. Unlike in BeAn19991, the NSs-coding region
contains tandem AUG translational start codons (a feature T
a
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of many other orthobunyaviruses; Dunn et al., 1994), caused
by C/U variation at nt 56. The NSs ORFs of the human
isolates also had a difference at position 332 (AAG), resulting
in a GlnAArg change in the NSs protein at position 89.

The amino acid sequences of the M- and L-segment-encoded
proteins of the human isolates were 98.5 and 98.0 % similar
to the M- and L-segment proteins of BeAn19991, respect-
ively. We were unable to obtain the terminal sequences of the
M and L segments from the deep sequencing data, and
therefore 39 rapid amplification of cDNA ends (RACE)
analysis was used. The clinical isolates displayed 99 %
similarity among each other across the complete L and M
segments, but all had identical UTR sequences that showed
90 and 96 % similarity to the L- and M-segment UTRs,
respectively, of BeAn19991 (Fig. 2c).

Complete sequence of a novel Simbu virus M
segment

The sequences of BeAn789726 and BeAn790177, isolates
from two black-tufted marmosets (Callithrix penicillata),
were obtained using deep sequencing and 39 RACE analysis.

The L and S segments showed 99 and 100 % similarity,
respectively, to those of the eight clinical isolates. Unex-
pectedly, the M segment showed only about 56 % similarity at
the nucleotide level to other OROV M-segment sequences
(about 48 % at the amino acid level). There was, however, a
higher similarity with JATV M segment, strain BeAn423380
(GenBank accession no. AFI24667; 71.6 % at the nucleotide
level and 76.5 % at the amino acid level). Alignment of
the UTR sequences in Fig. 2(c) shows the 11 nt terminal
consensus sequence with the conserved C/A mismatch at
position 9/29. This novel M segment was 4418 nt and
encoded a 1417 aa polyprotein. Between BeAn790177 and
BeAn789726, we observed two nucleotide differences, a silent
mutation at position 1676 (U in An790177, C in An789726),
and a second at position 1856 (G in An790177, U in
An789726) that caused an amino acid change in the translated
protein sequence of K or N at position 611 in the polyprotein.

Phylogenetic analysis

To determine the phylogenetic relationship of the newly
sequenced isolates within the Simbu serogroup, we compared
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Mazagao, 2009 (clinical isolates)

Perdoes, 2012 (primate isolates)

Fig. 1. Location of samples sequenced in this study. The map also shows Iquitos and Madre de Dios in Peru where OROV M
segment reassortants were isolated, and Tucuruı́, a municipality in Para, Brazil, where JATV was isolated. AC, Acre; AM, Amazonas;
AP, Amapa; BA, Bahia; CE, Ceara; GO, Goias; MA, Maranhao; MG, Minas Gerais; MS, Mato Grosso do Sul; MT, Mato Grosso; PA,
Para; PI, Piaui; PR, Parana; RO, Rondonia; RR, Roraima; SC, Santa Catarina; SP, Sao Paulo; RS, Rio Grande do Sul; TO, Tocantins.
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all available Simbu serogroup virus sequences of the three
structural genes, L, M polyprotein and N (Table S1, available
in the online Supplementary Material). The eight Amapa
state clinical isolates cluster as OROV strains for all L, M
polyprotein and N genes (Fig. 3). Pairwise comparisons of
the polymerase amino acid sequence for all 10 isolates

revealed a pairwise p-distance of 2 % towards BeAn19991,
but the closest relationship was with Iquitos virus (IQTV)
L protein (Fig. 4a). The glycoprotein precursor of the
eight clinical isolates had a pairwise p-distance value of
1 % towards BeAn19991 (Fig. 4a); however, with samples
BeAn790177 and BeAn789726, the glycoprotein gene
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clustered in a clade close to JATV (Fig. 3b) with an amino
acid pairwise p-distance value of 21 % compared with 48–
49 % with IQTV, OROV and Madre de Dios virus (MDDV)
(Fig. 4a). A pairwise sliding-window analysis (Fig. 4b) of
BeAn790177, IQTV (strain IQT9924), MDDV (strain FMD1303)
and JATV (strain BeAn423380) was performed to analyse
the level of similarity in the M polyprotein in comparison
with OROV (strain BeAn19991). The highest level of
similarity between OROV and BeAn790177 occurred
between amino acid positions 1141 and 1341.

Genetic relationships among members of the
species Oropouche virus

OROV showed two clearly identifiable clades for the L and

M genes supported by high bootstrap and posterior proba-

bilities (Fig. 5a, b). The trees were topologically different,

especially with respect to the M gene of isolates BeAn790177

and BeAn789726, which clustered with high support with

JATV (BeAn423380) (Fig. 5b). Interestingly, the Amapa clinical

isolates in the L-gene tree clustered with IQTV (IQT9924)
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BeH_543790
BeH_543639
BeH_543629
BeH_543880

BeH_543760
BeAr473358

BeH541863
BeH475248
BeH472200
BeH544552
BeH472204

PanAn48878
Be_An_84785

H543760

BeH504514
BeH355186

AMLq16
AMLq13

H271078

BeH543087

H244576
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AR366927
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H759529
H759146
H759024
An790177
An789726
H759025
H759022
H759021
H759040

84/0/9

81/0/9

*/1

MD023

99

95/1
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93/0.99

*/1

72/0.8

*/1

88

94/1

Fig. 5. Phylogenetic trees of viruses comprising members of the species Oropouche virus. (a) Maximum-likelihood phylogeny of the L gene with bootstrap support/Bayesian
posterior probability shown on the branch. (b) Maximum-likelihood phylogeny of the M polyprotein gene with bootstrap support/Bayesian posterior probability shown on the
branch. (c) Maximum-likelihood phylogeny of the N gene with bootstrap supports/Bayesian posterior probability shown on the branch. In (a)–(c), * represents 100 % bootstrap
support. Isolates sequenced in this paper are highlighted in red. Full details of the strains used in this analysis are presented in Table S2. Bars, number of nucleotide
substitutions per site. Clades A–D are indicated.
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Table 2. Summary of RDP analysis to determine potential reassortant isolates

Reassort-

ment

event

number

Breakpoint positions Reassortment

sequence(s)

Minor

parental

sequence(s)

Major

parental

sequence(s)

Detection method

In

alignment

In

reassortment

sequence

Begin End Begin End RDP GENECONV Bootscan Maxchi Chimaera SiSscan 3Seq

1 1 7481 1 7452 BeAn790177,

BeAn789726

H759620,

TVP-19255,

H759040

FMD_1303,

BeH759024,

BeAn19991,

BeH759146,

BeH759021,

BeH759025,

BeH759529,

BeH759022

BeAn423380 NS 5.47E230 NS 9.21E291 7.86E267 3.35E213 5.74E227

2 7443 1 7416 1 IQT9924 Unknown

(BeAn19991)

BeH759022,

BeH759040,

BeH759024,

BeH759146,

BeH759021,

BeH759025,

BeH759529,

BeH759620

4.84E213 2.40E213 4.13E212 2.43E254 1.09E244 2.51E210 8.81E220

3 7368 52 7341 52 BeH759024,

BeH759040,

BeH759146,

BeH759021,

BeH759025,

BeH759529,

BeH759022,

BeH759620

BeAn19991 IQT1690 2.31E257 1.15E254 2.79E258 6.96E226 7.96E225 5.79E243 4.92E248
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Table 2. cont.

Reassort-

ment

event

number

Breakpoint positions Reassortment

sequence(s)

Minor

parental

sequence(s)

Major

parental

sequence(s)

Detection method

In

alignment

In

reassortment

sequence

Begin End Begin End RDP GENECONV Bootscan Maxchi Chimaera SiSscan 3Seq

4 7469 6833 1361 728 BeH472433,

BeH355173,

BeAn_208402,

PPS_522_H_669314,

BeH543760,

BeAn19991,

BeH498913,

BeAR366927,

PPS_523_Be

H_669315,

BeH708139,

BeH_521086,

BeH543100,

BeH472435,

BeH543629,

BeAn_208819,

BeH707287,

BeH708717,

BeAr19886,

BeAn626990,

PMO Be H682426,

BeAR136921,

PMO BeH682431

BeH390242,

BeH389865

IQT1690,

BeAn789726,

IQT9924,

BeAn790177

2.18E208 3.79E208 9.52E212 1.98E212 1.33E207 3.99E216 1.56E211

NS, Not significant.
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and the Peruvian OROV isolate (IQT1690) with high
bootstrap support and posterior probability (100 and 1,
respectively) (Fig. 5a). The N-gene phylogeny on the other
hand was less resolved, with most isolates belonging to a
single clade and all being closely related (Fig. 5c). Using a
dataset of concatenated genes for each isolate, analysis with
the Recombination Detection Program (RDP) recognized
four reassortment events with breakpoints close to the gene

boundaries, with 33 isolates identified as reassortants (Table
2). Three of these reassortment events were well supported
by the gene phylogenies and formed three different mosaic
patterns: (i) IQT1690, BeH759021, BeH759022, BeH759024,
BeH759025, BeH759040, BeH759146, BeH759529 and
BeH759620; (ii) IQT9924; and (iii) BeAn790177 and
BeAn789726. These isolates represented inter-clade reassor-
tants (Fig. 6). The fourth reassortment event (Table 2)

BeAn423380
A A A

B B B

B B B
C D D

C B D

C D D

C D D

C D D

C D D

C D D

C D D

C D D

C D D

C A D

C A D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D

D D D
D D D

D D D

TVP-19255

FMD_1303

IQT1690

IQT9924

BeH707287

H708717

PPS_523_H_669315

PPS_522_H_669314

H708139

BeH121923

H385591

PMOH_682431

PMOH_682426

H532422

H532314

H498913

H472433

H390242

BeH355173

BeAn_208402

H505768

BeH_521086

AR136921

AR366927

BeAn_626990

BeAn19991

BeAn_206119

BeAn_208819

BeH29090

BeAr19886

H472435

H532490

BeH541140

H543760

BeH29086
PanAn48878

Be_An_84785

H389865

H543100

H543629

H532500

H759146

H759620

H759025

H759040

H759024

H759021

H759529

H759022

An789726

An790177

Fig. 6. Reassortment among viruses compris-
ing the species Oropouche virus. Maximum-
likelihood phylogeny of the L segment with
each isolate annotated with their clade assign-
ment (A–D) according to the L-, M- and S-
segment phylogenies. The different patterns
represent the different interclade reassort-
ments: pattern 1, C-D-D; pattern 2, C-B-D;
pattern 3, C-A-D; pattern 4, D. Isolates
sequenced in this paper are highlighted in red.

Oropouche virus sequences

http://vir.sgmjournals.org 1645



suggested an intra-clade (D) reassortment, for which there
was less phylogenetic support.

DISCUSSION

OROV causes a febrile illness in the South American human
population, with more than half a million cases reported in
Brazil in the last 59 years, and although the annual OROV
incidence in the country is unknown, sporadic cases are
constantly being picked up, making it a major public health
problem. Recently, we corrected the complete genome of
the Brazilian prototypic OROV reference strain BeAn19991
(Acrani et al., 2014), a strain that was isolated originally
from a pale-throated three-toed sloth (Bradypus tridactylus)
in 1960 (Pinheiro et al., 1981). In this study, we have described
the complete genomic sequences for 10 field samples isolated
more recently in Brazil (eight from humans and two from
non-human primates), revealing new phylogenetic informa-
tion on OROV. Phylogenetic analysis of the N gene of
several OROV isolates carried out by Saeed et al. (2000),
and subsequently by several other groups, classified OROV
into four genotypes (Aguilar et al., 2011; Azevedo et al.,
2007; Nunes et al., 2005a, b; Vasconcelos et al., 2009, 2011).
However, the bootstrap values for this classification into four
distinct genotypes did not give strong support, prompting us
to reanalyse all available OROV sequences in GenBank, along
with our newly sequenced field isolates. Our analysis revealed
that the N-gene tree lacks structure and that the previously
classified genotypes are not clearly distinguishable. The N
gene is more conserved compared with the L and M genes
where it is possible to distinguish two clades.

Vasconcelos et al. (2011) analysed the genetic evolution
and dispersal of OROV in South America using samples
from 1961 to 2009, the first study aimed at understanding
the molecular epidemiology of this human pathogen.
However, the results have to be treated with caution as the
authors utilized only partial genetic information from each
gene and not complete sequences. In the current analyses,
complete sequences were analysed. We observed that the S
segment 39 UTR of the field isolates differed from that of
BeAn19991 quite significantly (Fig. 2a; residues 781–791
were missing) in both the human and primate virus
samples, which were isolated in different geographical
regions and at different times (Table 1). For the M-segment
UTRs, we noted that the field isolates differed from
BeAn19991 at positions G4299A, T4319C and T4343C,
whilst for the L segment the differences were observed at
G20A, C6809T and A6810G. These findings highlight the
need to consider UTR sequences, in addition to coding
sequences, when trying to understand the evolutionary
history of a virus. Advances in nucleotide sequencing
technology mean that full-genome determination is now
feasible on a routine basis. The loss of 11 residues in the S
segment is intriguing, although it appeared to have no
effect on the UTR function when analysed using our
minigenome system (Acrani et al., 2014) (Fig. 2b). Previous
work, however, has demonstrated that internal deletions in

the S-segment UTRs of Bunyamwera virus (BUNV) do not
affect virus viability but do interfere with replication
causing growth attenuation in cell culture (Lowen &
Elliott, 2005). Similar results have also been shown for the
BUNV M- and L-segment UTRs (Mazel-Sanchez & Elliott,
2012). The apparent natural deletion of these 11 residues
could be important for virus replication efficiency and
virus fitness, both in vitro and in vivo, and are worth
pursuing further.

Another interesting finding was the identification of a novel
Simbu serogroup virus M segment, in samples BeAn790177
and BeAn789726, obtained from the primate Callithrix
penicillata. These viruses were isolated in Minas Gerais state,
south-east Brazil, 7 years after OROV was first described in
this area (Nunes et al., 2005a). Interestingly, the OROV
isolate (BeAn626990, GenBank accession no. AY117135)
described by Nunes et al. (2005a) was also isolated from
Callithrix penicillata. The S segment of BeAn626990 had a
92 % pairwise sequence identity to the S segments of
BeAn790177 and BeAn789726, and clustered separately in
the phylogenetic tree (Fig. 5c). L and M sequence infor-
mation for sample BeAn626990 is currently unavailable,
but this virus was identified as OROV based on complement
fixation tests that measure antibody responses against the N
protein, similar to the way in which the viruses in this study
were initially identified as OROV isolates. The fact that
OROV has been detected in the area twice is of concern, as it
would suggest that the virus is stably circulating in the
marmoset population in a region where currently OROV or
other Simbu virus outbreaks have not been reported. For
epidemiological and phylogenetic research purposes, sequen-
cing of all three segments is crucial so that reassortants such as
this are detected. Genetic reassortment is common among
segmented viruses such as bunyaviruses (Briese et al., 2013).
IQTV and MDDV, both isolated from febrile patients in
Peru in 1999 and 2007, respectively, contain L and S
segments highly similar to those of OROV, but with M
segments that cluster further away from OROV in a sister
clade (Aguilar et al., 2011; Briese et al., 2013; Ladner et al.,
2014). The L and S segments of the primate-derived virus in
this report revealed a similar level of nucleotide identity to
that of OROV and IQTV, whilst the M segment was unique
and clustered close to JATV. JATV was originally isolated
in 1985 from a ring-tailed coati (Nasua nasua) in Para,
Brazil (Figueiredo & Da Rosa, 1988). In 2001, the S and M
segments of JATV were sequenced, classifying this virus as a
potential OROV reassortant based on the fact that its N and
NSs proteins encoded by the S segment were highly similar
to OROV isolates from Peru and that its M segment was
unique (Saeed et al., 2001). Recent deep sequencing on the
same JATV virus stock now suggests that the S, M and L
segments of JATV are more divergent from OROV than
initially thought (Ladner et al., 2014). Based on our genetic
analysis of the BeAn790177 and BeAn789726 M segments
and the significant distance to OROV, IQTV, MDDV and
JATV, we propose naming this isolate Perdões virus, after
the municipality in which it was isolated.

N. L. Tilston-Lunel and others

1646 Journal of General Virology 96



In this study, we classified the viruses currently comprising
the species Oropouche virus into clades A, B and D. IQTV
fell into its own clade C for the L gene; however, it
clustered in clades B and D for the M and N genes,
respectively (Fig. 6). In a recent analysis of the species
Manzanilla and Oropouche virus, Ladner et al. (2014)
suggested that Manzanilla and Utinga viruses could be
thought of as distinct strains of a single virus owing to the
level of genetic similarity among current members. The
authors suggest that this may not be applicable to the
species Oropouche virus due to the level of M segment
differences (Table S3). However, it is possible that these
viruses also represent different strains of the same virus but
with a higher degree of M-segment divergence. Unlike the
L- and S-segment-encoded proteins that function together
in RNA synthesis and hence potentially co-evolve together,
the M segment codes for the Gc and Gn envelope
glycoproteins that are entry binding proteins as well as
being major antigenic targets. Selective pressure to produce
viable virus in different host species and in different
geographical settings could potentially result in higher
levels of variation in the M segment. If this were true, we
would assume that the non-structural NSm ORF would
remain more conserved, and would expect a higher level of
variation in the Gn and Gc proteins. It is also interesting
to note that most bunyavirus reassortants tend to contain
M segments from as-yet-unknown donors (Briese et al.,
2013). Pairwise, sliding-window distance analysis of OROV
(BeAn19991) and the possible reassortants IQTV, MDDV,
JATV and Perdões virus (BeAn790177) indicated an almost
equidistant position between IQTV and MDDV, and
between the more distant JATV and BeAn790177, with
the lowest similarity scores in the N terminus of Gn protein
(positions 1–200, Fig. 4b). The similarity pattern for the
NSm and Gc ORFs was constant, maintaining the distance
between IQTV/MDDV and JATV/An790177 almost unchanged
until residue 950, where a sudden variation of sequence
divergence could suggest possible recombination. From
residues 950 to 1200, we observed a higher degree of
variation within a single viral genome for each virus, with a
higher percentage of divergence when compared with the
rest of the protein. However, this was the region with the
highest degree of similarity among all four viral sequences
(except OROV), in contrast to what is observed in the rest of
the protein, which could suggest that this particular region is
subjected to more selective pressure and prone to a higher
degree of conservation. It could also suggest that at some
point during evolution they all shared the same sequence
with a common ancestor, and the distribution to different
geographical regions, such as Brazil (Pará, Amazonas, Acre,
Rondônia, Amapá Maranhão, Tocantins, Minas Gerais),
Peru and Venezuela, to different hosts (humans, Bradypus
trydactulus, Callithrix sp. and wild birds) and to different
invertebrate vectors (Culicoides paraensis, Culex quinquefas-
ciatus, Coquillettidia venezuelensis and Ochlerotatus serratus)
allowed a higher degree of variation through natural
selection in the whole M segment, but not in this region,
nor in the S and L segments (Baisley et al., 1998; Nunes et al.,

2005a; Pinheiro et al., 1982; Vasconcelos et al., 2009). This
analysis of the amino acid sequences could suggest that these
five viruses are all variants of a single species, contrary to the
proposal of Ladner et al. (2014) based on the nucleotide
sequence. It is interesting that the two viruses closer to
OROV (IQTV and MDDV) are human isolates, whilst the
ones more distant in this analysis were isolated from animals
(JATV and An790177), potentially explaining the different
selective pressure and the degree of similarity among these
viruses. Whatever the case, OROV, at least for now, is more
successful as a human pathogen, and further surveillance of
orthobunyaviruses in South America could potentially shed
more light on the evolution of the species Oropouche virus.

METHODS

Cells and virus. Vero-E6 cells were grown in Dulbecco’s modified

Eagle’s medium supplemented with 10 % FCS. BSR-T7/5 cells that

stably express bacteriophage T7 RNA polymerase (Buchholz et al.,
1999) were supplied by K. K. Conzelmann (Max von Pettenkofer-

Institute, Munich, Germany) and were grown in Glasgow minimal
essential medium supplemented with 10 % tryptose phosphate broth,

10 % FCS and 1 mg G418 ml21. Samples used in this study were

obtained from the World Health Organization Reference Centre for
Arboviruses at the Department of Arbovirology and Hemorrhagic

Fevers, Instituto Evandro Chagas (Ananindeua, Brazil). The eight
clinical strains of OROV were obtained originally from human

patients in 2009 in the municipality of Mazagao, Amapa state,

northern Brazil, and had previously been passaged three times in
Vero-E6 cells. Viral isolates PR4843 BeAN790177 and PR4837

BeAN789726 were isolated from liver samples collected from two
separate Callithrix penicillata found dead in the municipality of

Perdões, Minas Gerais state, in 2012. A suspension of monkey

viscera prepared with PBS (pH 7.4) and antibiotics (penicillin and
streptomycin) was used to inject suckling mice (Mus musculus) via

the intracranial route. Animals were observed daily and collected
immediately when disease was evident. A suspension of mouse brain

in PBS was then used to infect Vero-E6 cells and virus was harvested

72 h post-infection. Table 1 and Fig. 1 describe the viral isolates used
in the study and the geographical locations.

All experiments with infectious viruses were conducted under Biosafety
Level 3 conditions.

RNA extraction, and genome sequencing and assembling.
Virus was harvested and filtered through a 0.2 mm sterile filter and

concentrated using polyethylene glycol 8000. The virus aggregate was

resuspended in 500 ml PBS and treated with 25 U ml21 Benzonase
(Novagen) for 30 min at 37 uC. RNA was extracted using TRIzol

reagent (Invitrogen) according to the manufacturer’s protocol and
quantified on a Qubit 2.0 Fluorometer (Invitrogen). The genomes

were obtained using the following basic steps: (i) cDNA synthesis

using random primers (cDNA Synthesis kit; Roche Life Science); (ii)
library preparation (second-strand cDNA synthesis and emulsion

PCR); and (iii) nucleotide sequencing using both GS FLX 454 (Roche
Life Science) and Ion Torrent (Life Technologies) as described

previously (Margulies et al., 2005; Rothberg et al., 2011). The SSF

(Standard Flowgram Format) files generated by the GS FLX 454 and
Ion Torrent machines containing the sequencing trace data were

transferred onto a Linux-based computer for analysis. De novo DNA
sequence assemblers Newbler v.2.6 (GS Assembler, 454 sequencing,

Roche) and Celera were used to assemble reads. Adaptors were first

trimmed from generated reads and then assembled to generate
contigs. These contigs were then compared against sequences in

Oropouche virus sequences
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GenBank by performing a BLASTX search. Using the top hit generated

by BLASTX as a reference sequence, reads were assembled against this to

generate more contigs using GS Reference Mapper Software (Roche).

Parameters were left at default. Sequences were evaluated for

homopolymers before attempting to fill gaps in the genome by the

mapping reference method in CLC Genomics Workbench 6 (CLC

bio). Scaffold sequences from a consensus of reads and contigs were

generated and evaluated before generating the final genome sequence.

Sanger sequencing. Sufficient reads could not be generated to

complete the L and M segments of samples BeH759024, BeH759529,

BeH759620 and BeH759146, and so the incomplete regions were

sequenced via Sanger sequencing. Briefly, reverse transcription-PCR

was performed using 10 ml TRIzol-extracted RNA and segment-

specific forward or reverse primers, with Moloney murine leukemia

virus (M-MLV) reverse transcriptase (Promega). PCR was carried out

using KOD Hot Start DNA polymerase (Merck) and the amplified

products were purified from agarose gel using a gel extraction kit

(Wizard kit; Promega), following the manufacturer’s protocol. Entire

M segments were amplified using previously described primers

OROVMFg and OROVMRg (Acrani et al., 2014) and products were

directly sequenced (Table S4). The L segments were amplified as two

separate fragments as described previously for BeAN19991 (Acrani

et al., 2014) [primers OROVLFg and Ama3082LR (this study),

Ama2930LF (this study) and OROVLRg]. Products were cloned

separately into the pGEM-T Easy cloning vector and nucleotide

sequences were determined using the T7 F and SP6 primers in the first

genome walking reaction (Table S4).

Sequencing the viral 5§ and 3§ termini. As described previously

(Acrani et al., 2014), total cellular RNA from cells infected with the

virus was extracted using TRIzol reagent (Invitrogen) at 48 h post-

infection. Both the genomic and anti-genomic 39 ends were obtained

by RACE analysis. RNA was polyadenylated (Ambion) for 1 h at

37 uC and then purified using an RNeasy mini kit (Qiagen). Twelve

microlitres of this polyadenylated RNA was then used in a reverse

transcription reaction with M-MLV reverse transcriptase (Promega)

and Oligo d(T)-Anchor primer (Table S4), followed by a PCR using a

PCR Anchor primer and a segment-specific primer (Table S4) with

KOD Hot Start DNA polymerase (Merck). Amplified products were

gel extracted and purified using a gel extraction kit (Promega Wizard

kit), followed by Sanger sequencing.

RNA ligation was carried out by denaturing the RNA at 90 uC for

3 min, and the 39 and 59 ends were then ligated using T4 RNA ligase

(New England Biolabs) for 2 h at 37 uC. The reaction was heat

inactivated at 65 uC and purified using an RNeasy Mini kit (Qiagen).

cDNA was synthesized using M-MVL reverse transcriptase (Promega)

and primer OROSlig1 (Table S4). PCR was performed using KOD

Hot Start DNA polymerase (Merck) and primers OROSlig1 and

OROSlig2 (Table S4). The PCR products were gel purified and their

nucleotide sequences determined.

Minigenome assay. The OROV minigenome assay was performed

as described previously (Acrani et al., 2014). In brief, subconfluent

monolayers of BSR-T7/5 cells in 24-well plates were transfected with

250 ng expression plasmids pTM1OROV-L and pTM1OROV-N,

125 ng S-segment-based minigenome plasmid and 25 ng pTM1-FF-

Luc (Weber et al., 2001). At 24 h post-transfection, Renilla and firefly

luciferase activities were measured using a Dual-Luciferase Reporter

Assay kit (Promega).

Phylogenetic analysis. Phylogenetic analysis of the 10 isolate

sequences was first conducted with available Simbu serogroup viruses

(Table S1). The L-, M- and S-segment coding regions were aligned

using the MUSCLE algorithm in MEGA6.06 (Tamura et al., 2013). A

model test was then performed on this alignment, and the best DNA

substitution model was used to generate the phylogenetic trees for the

L, glycoprotein and N ORFs using a maximum-likelihood method in

MEGA6.06 (Tamura et al., 2013), with 1000 bootstrap replicates. Final

trees were recreated using FigTree v.1.4.2. Furthermore, a separate

analysis of all 10 isolates along with all OROV isolates was conducted.

For this, all OROV sequences were downloaded from GenBank and

compiled to include a single sequence for each isolate. Each gene

segment was aligned according to the protein alignment using CLUSTAL

Omega (Sievers et al., 2011) and PAL2NAL (Suyama et al., 2006). Phylo-

genetic analyses were reconstructed using the general time reversible

(GTR)+GAMMA+I substitution model as selected by the Bayesian

Information Criterion (BIC) in jModeltest (Darriba et al., 2012).

Maximum-likelihood phylogenies were generated in Phyml (Guindon

et al., 2010) using 1000 bootstrap replicates and Bayesian tree recon-

struction was carried out using MrBayes (Ronquist & Huelsenbeck,

2003) across four chains for 2 million generations sampling every 100

generations, and stationarity was determined from examination of the

log likelihoods and the convergence diagnostics. Trees recovered prior

to stationarity being reached were discarded, and Bayesian posterior

probabilities of each bipartition, representing the percentage of times

each node was recovered, were calculated from a 50 % majority rule

consensus of the remaining trees.

Reassortant and genetic divergence analysis. To examine

reassortment, all genes were concatenated for isolates that had

complete genomes and the concatenated alignment was analysed in

RDP3 (Martin et al., 2010) using the various built-in recombination

analysis methods. Genetic distances were calculated at the amino acid

level using a pairwise p-distance method with complete deletion in

MEGA6.06 (Tamura et al., 2013). A pairwise sliding-window analysis

for the M segment at the amino acid level was performed using

SimPlot v.3.5.1 (Lole et al., 1999). Using a 200 bp window, 20 bp

step, Kimura (two-parameter) and 1000 bootstrap replications,

results were plotted in Prism 6.2.
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ABSTRACT

Oropouche virus (OROV) is a midge-borne human pathogen with a geographic distribution in South America. OROV was first
isolated in 1955, and since then, it has been known to cause recurring outbreaks of a dengue-like illness in the Amazonian re-
gions of Brazil. OROV, however, remains one of the most poorly understood emerging viral zoonoses. Here we describe the suc-
cessful recovery of infectious OROV entirely from cDNA copies of its genome and generation of OROV mutant viruses lacking
either the NSm or the NSs coding region. Characterization of the recombinant viruses carried out in vitro demonstrated that the
NSs protein of OROV is an interferon (IFN) antagonist as in other NSs-encoding bunyaviruses. Additionally, we demonstrate
the importance of the nine C-terminal amino acids of OROV NSs in IFN antagonistic activity. OROV was also found to be sensi-
tive to IFN-� when cells were pretreated; however, the virus was still capable of replicating at doses as high as 10,000 U/ml of
IFN-�, in contrast to the family prototype BUNV. We found that OROV lacking the NSm protein displayed characteristics simi-
lar to those of the wild-type virus, suggesting that the NSm protein is dispensable for virus replication in the mammalian and
mosquito cell lines that were tested.

IMPORTANCE

Oropouche virus (OROV) is a public health threat in Central and South America, where it causes periodic outbreaks of dengue-
like illness. In Brazil, OROV is the second most frequent cause of arboviral febrile illness after dengue virus, and with the current
rates of urban expansion, more cases of this emerging viral zoonosis could occur. To better understand the molecular biology of
OROV, we have successfully rescued the virus along with mutants. We have established that the C terminus of the NSs protein is
important in interferon antagonism and that the NSm protein is dispensable for virus replication in cell culture. The tools de-
scribed in this paper are important in terms of understanding this important yet neglected human pathogen.

Bunyaviruses form a large group of single-stranded negative-
sense RNA viruses consisting of important human and veter-

inary pathogens, such as the recently emerged severe fever with
thrombocytopenia syndrome virus (SFTSV) and Schmallenberg
virus (SBV). The family is divided into genera Hantavirus,
Nairovirus, Phlebovirus, Tospovirus, and the largest genus Or-
thobunyavirus, to which Oropouche virus (OROV) belongs (1, 2).
OROV causes an acute febrile illness in humans, with signs and
symptoms of fever, headache, malaise, myalgia, arthralgia, photo-
phobia, nausea, vomiting, dizziness, and in some cases encephali-
tis and meningitis. Symptoms last between 2 and 7 days, with
some patients reporting a recurrence of these symptoms (3–10).
OROV is transmitted among humans via the biting midge Culi-
coides paraensis and is maintained in the wild by circulating in
nonhuman primates, such as the pale-throated three-toed sloth
(Bradypus tridactylus) and the black-tufted marmoset (Callithrix
penicillata), though the vectors remain largely unknown (3–5, 10–
12). Laboratory experiments and epidemiological surveys have
reported that mosquitoes Aedes serratus, Aedes scapularis, Aedes
albopictus, Culex fatigans, Culex quiquefaciatus, Coquilettidia ven-
ezuelensis, and Psorophora ferox are susceptible to OROV infection
(13–16). Neutralizing antibodies against OROV have also been
detected in both wild and domestic birds (10, 14, 15), leading to
speculation that birds could be carriers of the virus (A. Barrett,
University of Texas Medical Branch, personal communication).

Oropouche fever (OROF) outbreaks have mainly been re-
ported in Brazil’s Amazonian cities. OROV, however, was first

recorded in Trinidad in 1955 (13). In Brazil, the virus was isolated
in 1960 from a dead sloth found near one of the Belem-Brasilia
highway construction sites. The following year (1961), in Belem,
11,000 people were reported ill in what became the first OROF
outbreak (17). Between 1961 and 2009, over 30 OROF outbreaks
were recorded, with an estimated 500,000 cases (13, 17, 18). Out-
side of Brazil, OROF was reported for the first time in Panama in
1989 and Peru in 1992. The geographic distribution of OROV
today includes Brazil, Panama, Peru, and Argentina. Serological
evidence suggests that the virus may also be circulating in Ecuador
and Bolivia and in nonhuman primates in Colombia (7, 18–23).
However, without a differential surveillance system to distinguish
infections with similar clinical symptoms, such as OROV and den-
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gue, chikungunya, and Mayaro fevers, the exact epidemiology of
OROV in Central and South America remains unclear. OROV
reassortant viruses have also been isolated in Peru and Venezuela
and outside the epidemic zone within Brazil (24–26).

The lack of a reverse genetics system has, until now, limited
research on OROV at a molecular level. In order to address this
issue, we previously reported the establishment of a minigenome
and virus-like particle production assay for OROV (27). In the
present paper, we report the recovery of infectious OROV entirely
from cDNA plasmids. Like all bunyaviruses, OROV contains a
tripartite RNA genome with a large (L) segment that encodes the
viral RNA-dependent RNA polymerase, a medium (M) segment
that encodes the viral glycoproteins Gn and Gc, and a small (S)
segment that encodes the nucleocapsid (N) protein. OROV also
encodes two nonstructural proteins, NSm, which is a cotransla-
tionally cleaved product formed along with Gn and Gc from the M
segment, and NSs, which is encoded from a downstream AUG site
on the same mRNA transcript as the N protein. The rescue system
described in this paper is based on a T7 RNA polymerase-driven
plasmid system (28). Using this, we have successfully recovered
wild-type OROV, along with mutant viruses lacking the NSm or
NSs protein. We report here the characterization of these recom-
binant viruses in cultured cells, as a way to contribute to the un-
derstanding of this important yet poorly understood emerging
viral zoonosis.

MATERIALS AND METHODS
Cells and viruses. A549 (human alveolar adenocarcinoma epithelial
cells), A549/BVDV-NPro (A549 cells that express bovine viral diarrhea
virus NPro protein), A549/V (derived from A549 and expressing simian
virus 5 V protein), CPT-Tert (sheep choroid plexus cells), DF-1 (chicken
embryo fibroblasts), HeLa (human cervical adenocarcinoma epithelial
cells), LLC-MK2 (Macaca mulatta kidney epithelial cells), MDCK (canine
kidney epithelial cells), MRK101 (gray red-backed vole kidney cells),
QT-35 (Japanese quail fibrosarcoma cells), Vero-E6 (African green mon-
key kidney cells), and 2fTGH (human epithelial fibrosarcoma cells) cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen)
supplemented with 10% fetal bovine serum (FBS). BHK-21 (baby ham-
ster kidney fibroblasts) cells were grown in Glasgow minimal essential
medium (GMEM; Invitrogen) supplemented with 10% newborn calf se-
rum (NCS) and 10% tryptose phosphate broth (TPB; Invitrogen). BSR-
T7/5 cells, which stably express T7 RNA polymerase (29), were grown in
GMEM supplemented with 10% FBS, 10% TPB, and 1 mg/ml of G418
(Geneticin; Invitrogen). All mammalian cell lines were grown at 37°C
with 5% CO2.

Mosquito U4.4 cells (Aedes albopictus neonatal larvae cells) were
grown in Leibovitz 15 medium (Gibco) supplemented with 10% FBS and
10% TPB, while Aag-2 cells (derived from Aedes aegypti neonatal larvae)

were grown in Schneider’s Drosophila medium with L-glutamine (Gibco)
supplemented with 10% FBS. Both cell lines were maintained at 28°C.

OROV strain BeAn19991 was kindly donated by Luiz Tadeu Moraes
Figueiredo (University of São Paulo School of Medicine, Ribeirao Preto,
Brazil). OROV isolate BeH759025 was kindly provided by Pedro Vascon-
celos (Department of Arboviruses and Hemorrhagic Fevers, Evandro
Chagas Institute, Ministry of Health, Ananindeua, Brazil).

All experiments with infectious viruses were conducted under bio-
safety level 3 (BSL3) conditions.

Plasmids. Plasmids pTVTOROVL, pTVTOROVM, and
pTVTOROVS used for OROV rescue have previously been described
(27). pTVTOROVdelNSm was created from pTVTOROVM by excision
PCR using 5=-phosphorylated primers to delete nucleotides (nt) 1039 to
1476 of the M segment, hence removing the entire NSm open reading
frame (ORF) after the first transmembrane domain up to the third trans-
membrane domain while maintaining the predicted cleavage site that re-
sides between NSm and Gc. pTVTOROVdelNSs and pTVTOROV246NSs
were generated by QuikChange site-directed mutagenesis on
pTVTOROVS to insert stop codons at specific regions in order to gen-
erate viruses with truncated NSs proteins. These plasmids contain
mutations at cDNA nt position 116 for pTVTOROVdelNSs and
313 for pTVTOROV246NSs. The N ORF remains unchanged.
pTVTOROV2080S was generated by amplifying the full-length S segment
of clinical isolate BeH759025 (24). Primers and cloning strategy were the
same as for pTVTOROVS (27). All PCRs were carried out using KOD Hot
Start DNA polymerase (Merck). Products were gel purified (Promega)
and, where needed, ligated using T4 DNA ligase (Promega), as per the
manufacturer’s protocol. Plasmids were confirmed by nucleotide se-
quencing (Source Bioscience). Primers used are listed in Table 1.

Generation of recombinant OROV from cDNA. Recombinant
OROVs were generated by transfecting BSR-T7/5 cells (1.5 � 105 cells/ml)
with 1 �g of pTVTOROVL, pTVTOROVM (or pTVTOROVdelNSm),
and pTVTOROVS (or pTVTOROV2080S) using 3 �l of transfection
reagent TransIT-LT1 (Mirus Bio LLC) per �g of DNA. By replacing
the wild-type (wt) S segment (pTVTOROVS) with 1.5 �g of
pTVTOROVdelNSs or pTVTORO246NSs, mutant NSs viruses were
generated. Supernatants were harvested 7 days posttransfection (p.t.).
Rescue outcome was assessed by plaque assay on BHK-21 cells. All
recovered viruses were grown in Vero E6 cells, and genome segments
were amplified by reverse transcription-PCR (RT-PCR) for sequence
determination (Sanger sequencing).

Plaque assay. Viruses were titrated on BHK-21 cells seeded at a density
of 3 � 105 per ml in a 12-well plate, while virus phenotype assays (with
various cells) were carried out in 6-well plates. Cell monolayers were in-
fected with either 150 �l (12-well plate) or 200 �l (6-well plate) of virus
diluted in phosphate-buffered saline (PBS)–2% NCS. Cells were then
overlaid using 0.6% Avicell (FMC) in 2� minimum essential medium
(MEM)–2% NCS. Three days postinfection (p.i.), cells were fixed with 4%
formaldehyde and stained using crystal violet to visualize plaques.

TABLE 1 Oligonucleotides used in this study

Primer Sequence (5=¡3=) Plasmid

delNSmOROVR TCCTGCAATTGGTGAGATGAATTC pTVTOROVdelNSm
delNSmOROVF GATGAAGATTGCTTATCTAAAGAT pTVTOROVdelNSm
OROV48NSsF CAGCATATGTAGCATTTGAAGCTAGATACG pTVTOROV48delNSs
OROV48NSsR CGTATCTAGCTTCAAATGCTACATATGCTG pTVTOROV48delNSs
OROV246NSsF CGGACAACGGTCTAACCCTGCACCGTCTGT pTVTOROV246NSs
OROV246NSsR ACAGACGGTGCAGGGTTAGACCGTTGTCCG pTVTOROV246NSs
OROVdelNSs2F GAGTTCATTTTCAACGACGTACCACAACGGACTACATCTACATTTGATCCGGAGGCAG

CATACGTAGCATTTGAAGC
pTVTOROVdelNSs2

OROVdelNSs2R GCTTCAAATGCTACGTATGCTGCCTCCGGATCAAATGTAGATGTAGTCCGTTGTGGTA
CGTCGTTGAAAATGAACTC

pTVTOROVdelNSs2

Oropouche Virus Rescue
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Virus propagation. Working stocks of recombinant and wt viruses
were grown in Vero E6 cells at a multiplicity of infection (MOI) of 0.001.
Cells were maintained at 37°C and 5% CO2 until visible cytopathic effect
(CPE) was observed. Virus-containing supernatant was clarified by low-
speed centrifugation, and aliquots were stored at �80°C. Recombinant
viruses used were at passage 2. All the introduced mutations were con-
firmed by amplifying the segment in question by RT-PCR, followed by
Sanger sequencing with primers covering the region of interest.

RT-PCR. Virion RNA of each passaged virus was extracted using the
RNeasy minikit (Qiagen) as per the manufacturer’s protocol. RT-PCR
was then carried out using segment-specific forward or reverse primers
(27), with Moloney murine leukemia virus (MMLV) reverse transcriptase
(Promega). PCR was carried out using KOD Hot Start DNA polymerase
(Merck), and the amplified products were agarose gel purified (Promega),
as per the manufacturer’s protocol. Specific regions of each segment were
then sequenced via Sanger sequencing (Source Bioscience).

Viral infection. Cells were infected with viruses at the desired MOI for
1 h at 37°C. The cell monolayer was washed three times using PBS, and
then complete growth medium was added. At desired time points, virus
was harvested or cell lysates were collected. Viral titers were determined by
plaque assay on BHK-21 cells for 3 days.

Western blotting. Cell lysates were prepared in lysis buffer (100 mM
Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 200 mM dithiothreitol [DTT],
0.2% bromophenol blue, and 25 U/ml of Benzonase; Novagen), and pro-
teins were then separated on a 4 to 12% gradient NuPAGE bis-Tris gel
(Invitrogen) at 180 V for 50 min. Proteins were transferred to a nitrocel-
lulose membrane (Amersham), and a semidry transfer was performed
using the Trans-Blot Turbo transfer system (Bio-Rad) at 10 V for 50 min.
Membranes were then blocked for 1 h in 5% milk–PBS 0.1% (vol/vol)
Tween 20 and incubated in primary antibody overnight at 4°C. Secondary
antibody was added for 1 h at 37°C. Proteins were then visualized using
SuperSignal WestPico chemiluminescent substrate (Pierce), followed by
exposure on a Bio-Rad ChemiDoc imager. Primary antibodies included
BUNV anti-N-Rb (1:5,000) (30), anti-MxA (1:500, catalogue no. sc-
50509; Santa Cruz Biotech), anti-pSTAT1 (1:750, catalogue no. 9167S;
Cell Signaling), anti-STAT1 (1:750, catalogue no. 9172; Cell Signaling),
and antitubulin monoclonal antibody (1:5,000, catalogue no. T5168,
Sigma). OROV anti-N polyclonal rabbit antibody (1:1,000; GenScript)
was a kind gift from Massimo Palmarini (MRC-University of Glasgow
Centre for Virus Research). Horseradish peroxidase (HRP)-coupled sec-
ondary anti-rabbit (catalogue no. A0545; Sigma) and anti-mouse (cata-
logue no. A4416; Sigma) antibodies were used at 1:5,000.

Metabolic radiolabeling. Vero E6 cells were grown in 12-well plates
and infected at an MOI for 3 of each virus, and at the desired time points,
supernatant was removed and cells were starved in methionine- and cys-
teine-free DMEM at 37°C for 30 min. Cells were then washed and labeled
with 10 �Ci per well of EasyTag EXPRESS35S mixed in methionine- and
cysteine-free DMEM for 2 h at 37°C. Cell were then lysed in 150 �l of lysis
buffer (100 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 200 mM DTT,
0.2% bromophenol blue, and 25 U/ml of Benzonase; Novagen), and pro-
teins were separated by SDS-PAGE. Gels were fixed and dried, and then
labeled proteins were visualized by phosphorimaging (Storm840 phos-
phorimager; Molecular Dynamics).

Biological IFN production assay. A549 cells were grown in 12-well
plates and infected at an MOI of 1 for each virus. Twenty-four hours
postinfection, supernatant was harvested and treated with UV light (8 W,
254 nm, and 2-cm distance) for 4 min with shaking after 2 min to inacti-
vate any virus. Cells were lysed in 150 �l of lysis buffer (100 mM Tris-HCl
[pH 6.8], 4% SDS, 20% glycerol, 200 mM DTT, 0.2% bromophenol blue,
and 25 U/ml of Benzonase; Novagen) to check viral N and STAT1 protein
levels. Phosphorylated STAT1 and MxA production in each sample was
also probed. A549/BVDV-NPro cells grown in a 96-well plate were then
treated with the UV-inactivated supernatant for 24 h. These cells were
then infected with interferon (IFN)-sensitive encephalomyocarditis virus

(EMCV; 0.05 PFU/cell) and incubated for 3 days at 37°C. Cells were fixed
in 4% formaldehyde and stained with crystal violet to visualize CPE.

IFN-� sensitivity assay. Vero E6 cells at 1.5 � 105/ml were treated
either pre- or post-viral infection with various concentrations of universal
type 1 IFN-� (catalogue no. 11200, lot no. 5283; Stratech Scientific). Cells
were infected with virus at the desired MOI in PBS–2% FBS for 1 h at
37°C. Cells were washed three times in PBS before medium was replaced
with medium with or without IFN-�. Cells were incubated at 37°C for 48
h before harvesting and determination of virus yield by plaque assay on
BHK-21 cells. For plaque assays, confluent Vero E6 cells were pretreated
with IFN-� for 24 h before the virus was titrated. At 4 days p.i., cells were
fixed in 4% formaldehyde and stained with crystal violet. IFN-� was
maintained in the medium and Avicell overlay for the duration of infec-
tion.

RESULTS
Recovery of wild-type OROV strain BeAn19991. OROV is a neg-
ative-sense virus, and previously (27), we described the cloning of
full-length antigenomic sense cDNA copies of its L, M, and S seg-
ments into the T7 RNA polymerase-driven plasmid backbone
pTVT7R (0, 0) (31). This plasmid contains a single G residue
immediately downstream of the T7 promoter sequence to aid ef-
ficient transcription. cDNA copies of OROV genome segments
were cloned into pTVT7R in the antigenomic sense (Fig. 1A). To
recover infectious OROV, BSR-T7/5 cells (29) were trans-
fected with 1 �g of the pTVTOROVL, pTVTOROVM, and
pTVTOROVS plasmids. Supernatant was harvested 7 days p.t.
once CPE was visible, and success of the rescue attempt was deter-
mined by titration of infectious virus by plaque assay. The rescue
of OROV was easily reproducible, yielding titers of 2.0 � 107,
4.5 � 106, and 2.3 � 107 PFU/ml in three independent experi-
ments. As a control, BSR-T7/5 cells transfected with only
pTVTOROVM and pTVTOROVS did not give rise to infectious
virus. To test the authenticity of the recombinant OROV
(rOROV), permissive Vero E6 cells were infected with the rescue
supernatant and cell extracts were used for Western blotting (data
not shown). Furthermore, rOROV-infected Vero E6 cells were
fixed and stained at 24 h p.i. using a polyclonal anti-OROV anti-
body (a kind gift from Luiz Tadeu Moraes Figueiredo, University
of São Paulo School of Medicine, Brazil). Substantial amounts of
cytoplasmic OROV protein were detectable in the infected cells
(data not shown), further confirming the successful recovery of
infectious OROV.

The growth kinetics and plaque phenotype of rOROV were
similar to those of the authentic wt virus (Fig. 1B to D). All exper-
iments from this point on were carried out with rOROV.

Growth of recombinant OROV in mammalian cell lines. The
growth properties of rOROV were tested in Vero E6 cells at MOIs
ranging from 0.0001 to 1 PFU/cell. Previous work from our group
has demonstrated that some viruses show a better fitness in certain
cell types and at different MOIs, possibly due to the efficiency at
which defective interfering particles are generated (32, 33).
rOROV grew to similar titers by 48 h p.i. at all MOIs tested (Fig.
1E) and in a wide range of cell lines derived from several species
(MOI, 0.001) (Fig. 1F), similar to other bunyaviruses (32, 33).
Lower titers were obtained in human cell lines 2fTGH and HeLa
than in A549 cells. Lower virus titers were also obtained from
CPT-tert, QT-35, and MRK101 cells; however, due to the specific
aims of the current study, these observations were not investigated
further. rOROV formed plaques on the rodent, monkey, human,
and sheep cell lines that were investigated (Fig. 1G). At 3 days p.i.
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in BHK-21 cells, rOROV plaques were larger than in the other cell
lines, and on A549 cells, the plaques were harder to visualize (Fig.
1G). Based on these results, BHK-21 cells were chosen for virus
titration, while Vero E6 and A549 cells were chosen for the pur-
pose of initial characterization of all recombinant viruses in this
study. Vero E6 and BHK-21 cells both lack fully functional IFN
systems (34–36), while A549 cells are IFN competent (37).

Generation of OROV mutants. Using our newly established
OROV rescue system, we generated OROV mutant viruses as de-
scribed below.

(i) NSm deletion. A mutant OROV lacking the entire NSm
ORF from the M segment was generated. This was done by delet-
ing the entire NSm coding region immediately after the first NSm
transmembrane domain (TMD) and predicted cleavage site up to
the third TMD, leaving the predicted cleavage site of the Gc pro-
tein intact (Fig. 2A). These sites were predicted using the
TMHMM Server v. 2.0 and SignalP 4.1 Server algorithms (http:
//www.cbs.dtu.dk) based on work done by Xiaohong Shi (MRC-

University of Glasgow, Centre for Virus Research) for the charac-
terization of orthobunyavirus M segments (X. Shi and R. M.
Elliott, submitted for publication). Primers delNSmOROVF and
delNSmOROVR (Table 1) were designed to bind to positions
1475 to 1498 and 1036 to 1013 of the M segment, respectively. This
allowed an excision PCR to be performed, thereby deleting the
entire NSm region but leaving the first TMD site, so as not to alter
the position of the Gc protein in the endoplasmic reticulum and
Golgi, during folding. To rescue rOROVdelNSm virus, BSR-T7/5
cells were transfected with 1 �g of pTVTOROVL, pTVTOROVS,
and pTVTOROVdelNSm plasmids. At 7 days p.t., infectious virus
particles were recovered, titrated, and sequenced (Source Biosci-
ence) to confirm the mutation.

(ii) NSs mutants. The following step was the creation of the
NSs mutant viruses. As NSs lies in an overlapping reading frame
within the N ORF, the positions at which mutations could be
introduced were limited. The NSs ORF of OROV has four in-
frame methionines; therefore, in an attempt to abrogate NSs tran-

FIG 1 Characterization of recombinant OROV. (A) RT-PCR products derived from the L, M, and S segments of OROV strain BeAN19991. Amplified products
were separated on a 1% agarose gel along with a 1-kb marker (Promega). Products were cloned into plasmids containing a T7-RNA polymerase promoter and
a hepatitis delta ribozyme as shown in the schematic at the bottom. (B) Growth properties of wild-type (wt) and recombinant (r) OROV in Vero E6 cells. Cells
were infected at an MOI of 0.1. At indicated time points samples were harvested and titers determined by plaque assay on BHK-21 cells. The graph shows results
of a representative experiment. (C) Western blot showing N protein synthesis from the growth curve (A). Tubulin was probed as a loading control. (D)
Comparison of plaque phenotypes of wtOROV and rOROV. A plaque assay was carried out on BHK-21 cells, and at 3 days p.i., cells were fixed and stained with
crystal violet. (E) Effects of different MOIs on rOROV yields in Vero E6 cells. Infected cells were harvested 48 h p.i. and titrated on BHK-21 cells. A graph is
presented for a representative experiment. (F) Comparison of rOROV growth in various cell lines. Indicated cells were infected at an MOI of 0.001 and at 48 h
p.i. harvested and titrated on BHK-21 cells. Bars represent ranges from two experiments. (G) Comparison of rOROV plaque phenotypes on BHK-21, Vero E6,
A549, and CPT-Tert cells. Infected cells were fixed and stained with crystal violet at 3 days p.i.
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scription, the NSs start codon was left in place and instead a trans-
lational stop codon was inserted in frame immediately after the
second methionine at position 17 (Fig. 2B, 2. rOROVdelNSs). At
the nucleotide level, this is at position 115 and changes TGG (W)
to TAG (stop), resulting in a 48-nt NSs ORF. The reason for this
approach was that previous work done on BUNV revealed that
when the start codon of NSs was removed, the virus was still ca-
pable of producing an NSs protein from a downstream methio-
nine (38). The strategy used in this study for OROV is similar to
the one used to create an SBV mutant lacking NSs (32). In addi-
tion to this, a C-terminally truncated NSs was also engineered.
This was generated by introducing a stop codon at nt position 313,
changing TTA (L) to TAA (stop). This resulted in a 246-nt NSs
ORF and a protein sequence of 82 amino acids (aa), compared to
92 aa for wt NSs (Fig. 2B, 1. rOROV246NSs). Primers used in

generating the plasmids are in Table 1. In order to rescue the
NSs mutants (named rOROVdelNSs and rOROV246NSs),
BSR-T7/5 cells were transfected with 1 �g of pTVTOROVL
and pTVTOROVM and 1.5 �g of the mutant S segment
(pTVTOROVdelNSs or pTVTORO246NSs). At 7 days p.t., infec-
tious virus particles were recovered and titrated and the entire NSs
ORF was sequenced (Source Bioscience) to confirm mutations.

(iii) S-segment mutant. In a previous work (24), we reported
the isolation and sequencing of OROV clinical isolates that differ
from the prototype strain (BeAn19991) in the S segment, as they
lack 11 nt at position 781 to 791 in the 3= untranslated region
(UTR). The NSs ORFs of these viruses also contain a tandem AUG
translation start codon created by a C-U variation at position 332
and a Gln-to-Arg change in the NSs ORF at position 89 (Fig. 2C,
rOROV2080S). To test whether these variations altered the in vitro

FIG 2 Creation of OROV mutant viruses. (A) Schematic of the M segment showing Gn, NSm, and Gc regions. The arrows depict where cleavage occurs. The
patterned box indicates the signal peptide, and the black boxes represent transmembrane domains. Nucleotides 1036 to 1475 were deleted in order to generate delNSm
M segment. (B) S segment products N and NSs. NSs is coded from an overlapping reading frame with N. Schematic shows how NSs mutants differ from the wt.
rOROV246NSs has a stop codon (asterisk) placed at nucleotide (nt) position 314 of S segment cDNA, changing TTA to TAA and thereby deleting the last 8 aa.
rOROVdelNSs has a stop codon at cDNA nt position 116, changing TGG to TAG so that a stop codon is generated immediately after the second start codon (methionine
[M]). Numbers are amino acid lengths. (C) rOROV2080S S segment in comparison to wtOROV and rOROV S segment. Numbers are nucleotide positions. Arrows show
where changes occur. First two positions generate a variation in the NSs OROF. Black highlights the UTRs. (D) Growth properties of recombinant viruses in Vero E6 cells.
Cells were infected at an MOI of 0.1. Samples were harvested at the indicated time points and titrated on BHK-21 cells. The graph shows results of a representative
experiment. (E) Plaque phenotype of recombinant viruses in BHK-21 cells. A plaque assay was carried out, and at 3 days p.i., cells were fixed and stained with crystal violet.
(F) N production in recombinant viruses. Cell lysates from the growth curve (D) were probed for OROV-N and tubulin.
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growth properties of the rescued virus, a cDNA plasmid (desig-
nated pTVTOROV2080S) containing the S segment of clinical
isolate BeH759025 (GenBank accession number KP691614
[24]) was generated using the same cloning strategy as for
pTVTOROVS (27). In order to rescue this S-segment mutant
(named rOROV2080S), BSR-T7/5 cells were transfected with
plasmids pTVTOROVL, pTVTOROVM, and pTVTOROV2080S
(1 �g each). At 7 days p.t., infectious virus particles were recovered
and titrated and the entire S segment was sequenced (Source Bio-
science).

All mutant viruses in this study were passaged three times at a
low MOI in Vero E6 cells and sequenced. Introduced mutations
were maintained, confirming the stability of these viruses. Subse-
quent experiments utilized viruses from passage two.

Growth properties of recombinant viruses in mammalian cell
lines and their effect on host protein synthesis. Growth kinetics of
rOROV, rOROVdelNSm, rOROVdelNSs, rOROV246NSs, and
rOROV2080S were compared in Vero E6 cells at an MOI of 0.1.
rOROV, rOROVdelNSm, and rOROV2080S replicate with
similar efficiencies; however, mutants rOROVdelNSs and
rOROV246NSs appeared attenuated and reached titers that were 1
log lower than that of rOROV (Fig. 2D). Western blotting revealed
larger amounts of N protein from rOROVdelNSs at earlier time
points, suggesting a possibly increased efficiency of the virus in
translating N (Fig. 2F). Plaque morphologies of the recombinant
viruses were then compared on BHK-21 cells. rOROV, rORO-
VdelNSm, and rOROV2080S produced plaques with a round
morphology and were clear and similar to each other. The plaques
of viruses rOROVdelNSs and rOROV246NSs, on the other hand,
were smaller, with corrugated and ill-defined borders (Fig. 2E).

To investigate whether the recombinant viruses caused inhibi-
tion of host cell protein synthesis, Vero E6 cells were infected at an
MOI of 3, and at 12, 24, and 48 h p.i., cells were radiolabeled with
[35S]methionine. Cell extracts were analyzed by SDS-PAGE.
rOROV, rOROVdelNSm, and rOROV2080S, as well as the
rOROVdelNSs and rOROV246NSs, demonstrated an ability to
cause host translation shutoff by 24 h p.i. (Fig. 3). It was also

observed that the last two viruses produced noticeably more N
protein at this time point than did the other viruses. This result
also confirmed that the mutant viruses rOROVdelNSm and
rOROVdelNSs do not express NSm and NSs proteins, respec-
tively, and that the rOROV246NSs virus expresses a truncated
version of NSs (Fig. 3).

As rOROV2080S behaves similarly to rOROV and
rOROV246NSs behaves similarly to rOROVdelNSs in terms of in
vitro replication kinetics, only rOROV, rOROVdelNSm, and
rOROVdelNSs were focused on for growth comparison in IFN-
competent A549 cells. rOROV and rOROVdelNSm grew with
similar kinetics and reached comparable titers, whereas
rOROVdelNSs growth appeared more restrictive and at 48 h the
viral titers were almost 2 logs lower than those of rOROV and
rOROVdelNSm (Fig. 4A). Western blot analysis of N expression
showed smaller amounts of protein in the rOROVdelNSs-infected
cells (Fig. 4B). Next, the growth of rOROV, rOROVdelNSm, and
rOROVdelNSs in A549 cells was compared to their growth in
IFN-incompetent A549/V cells. These cells express the V protein
of parainfluenza type 5 virus, thereby blocking type I IFN signaling
via STAT1 degradation (39). Cells were infected at an MOI of
0.001, and titers were measured at 48 h p.i. Cells were also in-
fected with BUNV or a BUNV mutant lacking the NSs protein
(rBUNVdelNSs2) for comparison (40, 41). All viruses grew to
higher titers in the IFN-incompetent cell line, similar to BUNV.
rOROVdelNSs titers were over 1 log higher in A549/V cells than in
A549 cells, although this difference was not as high as with
rBUNVdelNSs2 (Fig. 4C). Western blotting for N confirmed
lower levels of expression in A549 cells infected with
rOROVdelNSs and rBUNVdelNSs2, corresponding with the yield
assay (Fig. 4D).

OROV NSs protein inhibits type I IFN production in A549
cells. We measured IFN production in A549 cells in response
to infection with rOROV, rOROVdelNSm, rOROV2080S,
rOROVdelNSs, or rOROV246NSs at an MOI of 1. For compari-
son, we also infected cells with BUNV or rBUNVdelNSs2. At 24 h
p.i., the medium from infected monolayers was collected, infec-

FIG 3 Host cell protein shutoff. Vero E6 cells were infected with rOROV, rOROVdelNSm, rOROV2080S, rOROVdelNSs, or rOROV246NSs or mock infected.
Cells were infected at an MOI of 3 and incubated at 37°C. At the indicated time points, the cells were labeled with [35S]methionine for 2 h. Cells lysates were then
separated by SDS-PAGE. Arrows indicate the position of viral proteins Gc, N, NSm, and NSs.
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tious virus was inactivated by UV treatment, and the amount of
IFN present was measured in a biological protection assay as de-
scribed previously (42). As expected, no IFN was produced from
mock- or BUNV-infected cells, and rBUNVdelNSs2-infected cells
produced considerable amounts of IFN. While rOROV,
rOROVdelNSm, and rOROV2080S induced small amounts
of IFN, rOROVdelNSs induced large amounts (Fig. 5A).
rOROV246NSs, which lacks only 9 aa at the NSs protein C termi-
nus, induced IFN to the same extent as rOROVdelNSs (Fig. 5A
and B). Next, we used Western blotting to probe the A549 cell
extracts for STAT1, phosphorylated STAT1 (pSTAT1), and the
interferon-stimulated gene (ISG) protein MxA. pSTAT1 and MxA
expression was detected in cells infected with rOROVdelNSs
or rOROV246NSs but not in cells infected with rOROV,
rOROV2080S, or rOROVdelNSm (Fig. 5C), confirming that
OROV NSs is an IFN antagonist.

OROV is less sensitive to IFN-� treatment than BUNV.
BUNV replication was previously shown to be highly sensitive to
IFN-� (43). To test if OROV was equally sensitive, Vero E6 cells
(which cannot produce but can respond to IFN [36]) were treated
with increasing doses of universal type 1 IFN-� (0, 10, 100, 1,000,
and 10,000 U/ml), either preinfection (� 24 or � 2 h) or postin-
fection (� 2 or � 24 h). Cells were infected with BUNV or OROV
at an MOI of 0.01, and IFN-� was maintained in the medium
throughout the infection period. At 48 h p.i., the amount of infec-
tious virus in the culture medium was estimated by plaque assays.
While both viruses showed sensitivity to IFN, OROV was clearly
less sensitive than BUNV (Fig. 6A). For example, pretreating cells
with 10,000 U of IFN-� either 2 or 24 h preinfection completely
inhibited BUNV replication, as did treating cells with 10,000 U at
2 h p.i. In contrast, there was only a 1- to 2-log reduction in the
titers of OROV in cells pretreated for 2 h with 10,000 U of IFN-�
prior to infection and a 3-log reduction in cells pretreated for 24 h.

Furthermore, while pretreating cells with 1,000 U of IFN-� for 24
h preinfection completely inhibited BUNV, there was only a 2-log
reduction in cells infected with OROV (Fig. 6A). We have re-
peated the experiment with rOROV using 10,000 U/ml of IFN and
at MOIs of 0.001 and 0.01. At 24 or 48 h p.i. at both MOIs, rOROV
replication was not completely inhibited, as observed with BUNV,
with titers decreased by 2 to 3 logs compared to the values for
untreated cells (data not shown). Viruses rOROVdelNSm,
rOROV2080S, rOROVdelNSs, and rOROV246NSs demonstrate a
sensitivity to IFN-� similar to that of rOROV (Fig. 6B), indicating
that the increased resistance of OROV to IFN-� compared to that
of BUNV is not due to expression of a functional NSs protein.
Next, we investigated the plaque morphology on pretreated Vero
E6 cells for rOROV and rOROVdelNSs in comparison to BUNV
and rBUNVdelNSs2. A 1,000-U/ml concentration of IFN-� was
maintained in the overlay during the infection period. No BUNV
or rBUNVdelNSs plaques were observed when the plaque assays
were performed in the presence of IFN-�. In contrast, rOROV and
rOROVdelNSs plaques were observed in the presence of IFN-�,
although they were considerably smaller than those on untreated
cells (Fig. 6D). Taken together, these results demonstrate that in
the tested cells and with the MOI of virus used, OROV is sensitive
to IFN-� in a dose-dependent manner; however, it is significantly
more resistant than BUNV. Furthermore, the NSs protein is not
responsible for this increased resistance.

Replication of recombinant viruses in mosquito cell lines.
We have also compared the growth kinetics of rOROV,
rOROVdelNSm and rOROVdelNSs in mosquito cell lines U4.4
(Aedes albopictus) and Aag2 (Aedes aegypti). Interestingly, and un-
like the situation in mammalian cells, rOROVdelNSs grows to
similar levels as rOROV (Fig. 7). In both U4.4 and Aag2, it appears
that rOROVdelNSm grows to slightly higher titers than the other

FIG 4 Growth properties of recombinant viruses in A549 cells. (A) Growth kinetics of rOROV, rOROVdelNSm, and rOROVdelNSs in A549 cells at an MOI of
0.1. At the indicated time points, samples were harvested and viral titers determined by plaque assay on BHK-21 cells. The graph presents results for one
representative experiment. (B) Western blot for cell lysates from growth curve (A). Lysates were separated by SDS-PAGE and probed for OROV N and tubulin.
(C) Comparison of growth properties in A549 and A549/V cells. Cells were infected at an MOI of 0.001 with the indicated viruses. Forty-eight hours p.i., viral
titers were determined by plaque assay. BUNV was used for comparison. Bars indicate SDs (n � 3; **, P � 0.01 by Student’s t test). (D) Western blot analysis for
panel C. Cells lysates were probed for viral N protein. Tubulin was probed as a loading control.
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viruses. Investigating this further was beyond the scope of the
current study.

DISCUSSION

In this paper, we describe the successful recovery of OROV in
cultured cells entirely from cloned cDNAs. OROV is a midge-
borne orthobunyavirus that causes a febrile illness in the South
American human population. The virus has caused over half a
million infections, and though not fatal, its dengue-like symptoms
can persist for weeks and in a few cases can progress into more
severe symptoms, such as meningitis and encephalitis (18).
OROV is closely related to SBV, another Simbu virus also spread
by biting midges from the genus Culicoides. SBV causes severe fetal
malformations in ruminants in Europe but has not been known to
infect humans. Using the previously described reverse genetics
system for SBV (32, 44) and our newly established OROV rescue
system, we can begin to understand the basis for pathogenicity in
humans and study reasons for such a species barrier. In addition to
this, we can also begin to study the M-segment variations that are
found among Oropouche species. OROV M-segment reassortants
Iquitos and Madre de Dios viruses can cause disease in humans
(25, 26), while Perdoes virus and the more divergent Jatobal virus
have only been isolated from nonhuman primates (Callithrix
penicillata) and the South American coati (Nasua nasua), respec-
tively (24, 45). It is interesting that members of the Oropouche
species display a broad phylogenetic diversity predominately due

to the M segment. The variations observed in the M segments of
these viruses could have resulted from either genomic reassort-
ment or extensive adaptation to different hosts and habitats. Us-
ing the OROV reverse genetics system established in this study, it
would now be possible to study in detail these differences in terms
of pathogenesis, virulence outcome, and host range of these vi-
ruses. This work would contribute to understanding the evolution
of clade A Simbu serogroup viruses within South America.

The recombinant OROV (rOROV) that we have generated
replicates similarly to the authentic virus (wild-type OROV
[wtOROV]), reaching titers of 107 PFU/ml (Fig. 1B). Using this
system, mutant viruses lacking either the NSm or the NSs protein
were also generated. Only some bunyaviruses encode these pro-
teins, and the exact role played by the NSm protein in orthobun-
yavirus infections remains unclear. Work on BUNV NSm demon-
strated that the protein can localize to the Golgi efficiently on its
own (46) and may play a role in viral assembly (47). In Rift Valley
fever virus (RVFV), the NSm protein is important for infection in
mosquitoes by allowing the virus to cross the midgut barrier (48,
49). Similarly, in tospoviruses, the NSm protein has been shown to
be important for virus cell-to-cell spread (50–52). Results from
our work indicate that for OROV, the NSm protein is dispensable
for virus replication in cultured cells, as rOROVdelNSm grows
and replicates similarly to rOROV (Fig. 2D and E, 4, and 7). We
have previously (24) discussed the sequence similarity of the M-
segment genes between different OROV reassortants and noted

FIG 5 Biological interferon production assay. A549 cells were infected at an MOI of 1 with BUNV, rBUNdelNSs2, rOROV, rOROVdelNSm, rOROV2080S,
rOROVdelNSs, or rOROV246NSs or mock infected. Supernatant was harvested at 24 h p.i., and cell extracts were separated by SDS-PAGE. (A) UV-inactivated
supernatant was used to pretreat A549-N pro cells prior to infection with EMCV. At 3 days p.i., cells were fixed and stained with crystal violet. (B) Graph
calculated from panel A, presenting relative IFN units expressed as 2N where N is the number of 2-fold dilutions that offered protection. (C) Cells extracts were
probed for OROV N, STAT1, pSTAT1, and MxA. Tubulin was probed as a loading control.
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that the NSm region of the M polyprotein of all these viruses is
highly conserved compared to the Gn and Gc glycoproteins,
which could indicate that this portion of the polyprotein is less
prone to mutation due to a common, yet unknown, selective pres-
sure. Future work could include performing mutations on the
NSm coding sequence and monitor for effects on virus replication
in more relevant primary cell lines and in vivo models, such as
insects. Similarly, the rOROV2080S mutant generated in this
study would also require in vivo characterization in order to de-
termine if the S-segment difference observed between OROV iso-
lates offers any advantage over the prototype BeAn19991 S seg-
ment, as the current study was not sufficient to determine this.

As with other NSs-encoding bunyaviruses, OROV NSs protein
is an IFN antagonist, and by deleting the NSs ORF, OROV induces
high levels of IFN and thus induces STAT1 phosphorylation and
MxA expression (Fig. 5, rOROVdelNSs). Interestingly, the C-ter-
minally truncated NSs mutant was also incapable of inhibiting
type I IFN production (Fig. 5, rOROV246NSs). Work on BUNV
and RVFV has demonstrated that NSs inhibits IFN-	 activation
downstream of transcriptional activation through disruption of
DNA-dependent RNA polymerase II (RNAPII) activity (53–55).
BUNV NSs interacts with subunit MED8 of the RNAPII regula-
tory module (56), preventing Ser2 phosphorylation and hence
preventing elongation and 3=-end processing of the nascent
mRNA transcript (57–59). This was initially thought to be due to
an interaction of BUNV NSs C terminus (aa 83 to 91) with MED8;

however, a BUNV NSs mutant lacking an N terminus of 21 amino
acids is also unable to degrade RNAPII, indicating that both the C
and the N termini are important for BUNV NSs function (38, 56,
60). The BUNV MED8 binding domain was mapped to a C-ter-
minal amino acid motif LPS, which is conserved in orthobunya-
virus NSs proteins (56); interestingly, OROV C-terminal mutant
rOROV246NSs also lacks a similar motif, LPC (see Fig. S1A in the
supplemental material). This LPC motif is conserved among only
the clade A viruses in the Simbu serogroup (see Fig. S1B). Whether
the inability of rOROV246NSs to inhibit IFN production is due to
its lack of the MED8 binding domain will be investigated in fol-
low-up studies. La Crosse virus (LACV) and SBV NSs function as
IFN antagonists by targeting RNAPII for degradation by the pro-
teasome (61–63). Mutations to the C terminus of SBV NSs have
also been shown to affect the protein’s ability to degrade RNAPII
(63). In the phlebovirus RVFV, the NSs protein interacts with
subunits of the general transcription factor TFIIH, which also has
a role in RNAPI transcription (64). SFTSV NSs forms viral inclu-
sion bodies in the cytoplasm and uses these to capture kinases
TBK1 and IKKε and proteins STAT1 and STAT2 (65, 66). Re-
cently, a study comparing 6-week-old C57BL/6 mouse knockout
mutants demonstrated that mitochondrial antiviral-signaling
protein (MAVS) activation plays a crucial role in type 1 IFN sig-
naling during OROV infection (67); it would be interesting to see
how the rOROVdelNSs and rOROV246NSs mutants replicate in
such in vivo systems. Interestingly, both rOROVdelNSs and

FIG 6 Sensitivity of OROV to IFN-� treatment. (A) IFN-� sensitivity test. Vero E6 cells were treated with increasing concentrations of IFN-� (0, 10, 100, 1,000,
and 10,000) either before (�) or after (�) infection. Cells were infected with BUNV or rOROV at an MOI of 0.01. Forty-eight hours p.i., supernatant was
harvested and viral titers were determined by plaque assay on BHK-21 cells. Graphs show results of a representative experiment. (B) Vero E6 cells were treated
with 10,000 U/ml of IFN-� 24 h prior to infection with indicated viruses at an MOI of 0.001. Samples were harvested at 48 h p.i., and viral titers were determined
by plaque assay on BHK-21 cells. Bars represent ranges from two experiments. (C) Vero E6 cells were treated (1,000 U/ml) or not (0 U/ml) with IFN-� 24 h prior
to infection. A plaque assay for BUNV, rBUNVdelNSs2, OROV, or rOROVdelNSs was performed. Four days p.i., cells were fixed and stained with crystal violet.
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rOROV246NSs are attenuated in Vero E6 (Fig. 2D) and in
BHK-21 (Fig. 2E) cells, both of which lack fully functional IFN
systems, and from radiolabeling experiments, we know that
rOROVdelNSs is capable of causing translational shutoff in Vero
E6 cells (Fig. 3). Using the OROV reverse genetics system, we can
now begin to study protein-protein interactions and investigate
the role of the NSs protein further.

This study also showed that while OROV is sensitive to IFN-�,
to see maximal effects, cells have to be treated for 24 h prior to
infection (Fig. 6A, rOROV). In contrast, BUNV is highly sensitive
to IFN-� (Fig. 6A). These findings are consistent with previously
published work demonstrating a resistance of OROV to the anti-
viral effects of IFN-� both in vivo and in vitro in comparison to
other pathogenic orthobunyaviruses (68). The reasons for the dif-
ferences in relative sensitivity of OROV and BUNV to IFN-� are
under investigation, but the differences may, for example, be due
to the differential effects of certain ISGs on these viruses or on the
ability of OROV to more rapidly switch off host cell gene expres-
sion than BUNV. Whatever the reason, the increased resistance of
OROV to IFN-� is not due to expression of the NSs protein, as
rOROVdelNSs shows a sensitivity to IFN-� similar to that of
OROV.

In conclusion, our present work has shown that we are able to
generate infectious OROV entirely from cDNA and that similar to
the case with other bunyaviruses, OROV NSs is an IFN antagonist.
We have also demonstrated that the NSm protein appears to be
nonessential for virus replication in the cultured cells that were
tested. The work we have presented here will now enable us to
study OROV in more detail in order to establish the molecular
details involved in viral replication and pathogenesis, and poten-
tially to generate attenuated vaccine strains. The work we present
here is an important move forward toward understanding this
important yet neglected human pathogen.
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