SUPPORTING INFORMATION

STA-20: An ABC-6 Zeotype Structure Prepared by Co-Templating and Solved via a Hypothetical Structure Database and STEM-ADF Imaging

Alessandro Turrina,^{*,1,2} Raquel Garcia,² Abigail E. Watts,¹ Heather F. Greer,¹ Jonathan Bradley,³ Wuzong Zhou,¹ Paul A. Cox,⁴ Mervyn D. Shannon,² Alvaro Mayoral,⁵ John L. Casci² and Paul A. Wright^{*,1}

¹ EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, KY16 9ST, United Kingdom.

² Johnson Matthey Technology Centre, Chilton PO Box 1, Belasis Avenue, Billingham, TS23 1LB, United Kingdom.

³ Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading, RG4 9NH, United Kingdom.

⁴ School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom.

⁵ Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Mariano Esquillor, 50018 Zaragoza, Spain.

* Corresponding Authors. E-mail: alessandro.turrina@matthey.com; paw2@st-andrews.ac.uk.

Figure S1. SEM images of SAPO STA-20 synthesised with TrMA and diDABCO-C6.

Figure S2. PXRD patterns of the respective synthesis of STA-20 performed in the absence of (a) TrMA and (b) SiO₂.

Figure S3. Isotherms for the adsorption of N_2 at -196.15 °C on calcined SAPO STA-20.

Figure S4. Indexed laboratory X-ray powder diffraction pattern of as-prepared SAPO STA-20 using the algorithm DICVOL 06 within the program FullProf.

Figure S5. Associated electron diffraction patterns and STEM ADF images, with superposed figures of the STA-20 framework structure, taken down the [100] zone axis (above) and the [001] zone axis (below).

Figure S6. Solid-state NMR spectra of calcined, dehydrated SAPO STA-20, stabilised against water adsorption by hexane adsorption after calcination. (Top) ²⁷Al, (middle), ³¹P and (bottom) ²⁹Si.

Figure S7. ²⁷Al MAS NMR spectrum of as-prepared SAPO STA-20.

Figure S8. Minimum energy configurations of diDABCO-C6 in (left) AlPO₄ (SFW) and (right) AlPO₄ (STA-20). (Al light blue, P dark grey, O red, C black, N green, H light pink).

Figure S9. Energy-minimised configurations of diDABCO-C6 and TrMA included in the *sta-20* and *gme* cages (top) and TrMA molecule included into each *sta-20* cage along with the diDABCO-C6 molecule (bottom). (Al light blue, P dark grey, O red, C black, N green, H light pink).

Figure S10. Bridging hydroxyl O atom positions found to be occupied in the *can* cages of SAPO STA-20 viewed down the *a*-axis (left) and *c*-axis (right). (Al light blue, P dark grey, O red).

Run	Al	Si	ТВАОН	а	b	С	d	temp.	time	Stirring	product (topology
n°	source	source	source					(°C)	(days)	(rpm)	type)
1	Aldrich ¹	Aldrich ²	Aldrich ³	0.8	0.2	0.13	0.28	190	7	static	STA-18 + STA-20
2	Aldrich	Aldrich	Aldrich	0.7	0.3	0.52	0.0	190	7	static	STA-20 + SAPO-43
3	Aldrich	Aldrich	Aldrich	0.8	0.2	0.52	0.0	160	7	static	STA-20 + SAPO-43
											+ AlPO-21
4	Aldrich	Aldrich	Aldrich	0.8	0.2	0.42	0.08	160	7	static	STA-20 + SAPO-43
5	Aldrich	PX-30 ⁴	Aldrich	0.8	0.2	0.42	0.08	160	1	30	STA-20
6	Aldrich	PX-30	Aldrich	0.9	0.1	0.42	0.08	160	1	30	STA-20
7	Alfa ⁵	Cabosil ⁶	Aldrich	0.9	0.1	0.42	0.08	160	1	30	STA-20
		M5									
8	Alfa	PX-30	Aldrich	0.9	0.1	0.42	0.08	160	1	30	STA-20 + unckown
			-								impurity
9	Aldrich	Cabosil M5	Sachem ⁷	0.9	0.1	0.42	0.08	160	1	30	STA-20 + SAPO-43
10	Aldrich	PX-30	Sachem ⁷	09	0.1	0.42	0.08	160	1	30	STA-20 + SAPO-43
10	7 marion	174.50	Suchem	0.7	0.1	0.12	0.00	100	1	50	+ AIPO-21
11	Alfa	Cabosil	Sachem	09	0.1	0.42	0.08	160	1	30	STA-20
	7 1 11 u	M5	Suchem	0.9	0.1	0.12	0.00	100	1	50	5111 20
12	Alfa	PX-30	Sachem	0.9	0.1	0.42	0.08	160	1	30	STA-20 + AlPO-21
13	Alfa	Cabosil	Sachem	0.8	0.2	0.42	0.08	160	1	30	STA-20
		M5									
14	Alfa	PX-30	Sachem	0.8	0.2	0.42	0.08	160	1	30	STA-20
15	Alfa		Sachem	1.0	0.0	0.42	0.08	160	2	30	AIPO-21 + STA-20
16	Alfa	Cabosil	Sachem	0.9	0.1	0	0.28	160	1	30	SAPO-31
		M5									

Table S1. Syntheses from gel composition $1.0Al(OH)_3 \cdot a H_3PO_4 \cdot b SiO_2 \cdot 0.1$ (diDABCO-C6)Br₂ · c TrMA · d TBAOH · 40 H₂O with 2 wt. % of SAPO-56 seeds with respect to SiO₂ (when b = 0.2).

¹ Aluminum hydroxide, Sigma Aldrich.

² Silica (fumed), powder 0.007 μm, Sigma Aldrich.

- ³ Tetrabutylammonium hydroxide, 40 wt. % in H₂O, Sigma Aldrich.
- ⁴ Ludox PX-30 Colloidal Silica, 30 wt. % (aq.) Grace Davison.

⁵ Aluminium hydroxide, Alfa Aesar.

⁶ Fumed silica, Cabosil M5, > 99.8%, Cabot.

⁷ Tetrabutylammonium hydroxide, 55 wt. % in H₂O, Sachem.

Atom	x	V	Z	Occupancy	Uira	Multiplicity
All	0.33229(34)	0.4202(4)	0.11992(28)	1	0.02125(34)	12
Al2	0.2374(7)	0.9976(5)	0.20425(25)	1	0.02125(34)	12
A13	0.2375(7)	1.0057(6)	0.05597(24)	1	0.02125(34)	12
01	0.3252(6)	0.3566(5)	0.07025(19)	1	0.0342(10)	12
02	0.3053(5)	0.31873(35)	0.16132(15)	1	0.0342(10)	12
03	0.6694(6)	0.6486(6)	0.58589(24)	1	0.0342(10)	12
O4	0.6752(7)	0.6454(6)	0.66792(22)	1	0.0342(10)	12
05	0.2597(7)	0.2521(7)	-0.00021(13)	1	0.0342(10)	12
06	0.1071(4)	0.2054(5)	0.05884(23)	1	0.0342(10)	12
07	0.2215(4)	0.4603(5)	0.12329(33)	1	0.0342(10)	12
08	0.1070(4)	0.1985(6)	0.19534(31)	1	0.0342(10)	12
09	0.2531(6)	0.1387(6)	0.06785(23)	1	0.0342(10)	12
O10	0.2513(6)	0.1268(5)	0.19046(24)	1	0.0342(10)	12
011	0.46621(32)	0.5432(4)	0.1277625)	1	0.0342(10)	12
012	0.2815(7)	0.2868(6)	0.24262(13)	1	0.0342(10)	12
013	0.11174(9)	1.10762(9)	0.13067(24)	0.26	0.0218	12
P1	0.23786(33)	0.23759(34)	0.05077(15)	0.80	0.02125(34)	12
P2	0.23536(33)	0.23529(34)	0.19677(15)	0.80	0.02125(34)	12
P3	0.66706(33)	0.57509(34)	0.62467(15)	0.80	0.02125(34)	12
Si1	0.23786(33)	0.23759(34)	0.05077(15)	0.20	0.02125(34)	12
Si2	0.23536(33)	0.23529(34)	0.19677(15)	0.20	0.02125(34)	12
Si3	0.66706(33)	0.57509(34)	0.62467(15)	0.20	0.02125(34)	12
C1	0.6931	0.4535	0.1125	0.16	0.005	12
C2	0.6936	0.4477	0.1639	0.16	0.005	12
C3	0.5532	0.2392	0.1607	0.16	0.005	12
C4	0.5523	0.2468	0.1094	0.16	0.005	12
C5	0.7586	0.3132	0.1077	0.16	0.005	12
C6	0.7605	0.3079	0.1589	0.16	0.005	12
C7	0.6748	0.3214	0.2276	0.16	0.005	12
C8	0.5984	0.3595	0.2542	0.16	0.005	12
C9	0.5606	0.2951	0.2988	0.16	0.005	12
C10	0.6647	0.3339	0.3305	0.16	0.005	12
C11	0.6334	0.2413	0.3668	0.16	0.005	12
C12	0.7244	0.2892	0.4049	0.16	0.005	12
C13	0.6378	0.4	0.4389	0.16	0.005	12
C14	0.5974	0.4278	0.4833	0.16	0.005	12
C15	0.5532	0.241	0.5131	0.16	0.005	12
C16	0.59	0.2093	0.4688	0.16	0.005	12
C17	0.7841	0.3753	0.4778	0.16	0.005	12
C18	0.7462	0.4077	0.5217	0.16	0.005	12
C19	0.6659	0.2299	0.9839	0.48	0.005	12
C20	0.7532	0.3026	0.747	0.50	0.005	12
H1	0.7793	0.5249	0.1004	0.16	0.005	12
H2	0.6267	0.4761	0.101	0.16	0.005	12
H3	0.78	0.5167	0.1769	0.16	0.005	12
H4	0.6263	0.4676	0.1769	0.16	0.005	12
Н5	0.5331	0.1495	0.1708	0.16	0.005	12
H6	0.4813	0.2514	0.1736	0.16	0.005	12
H7	0.5308	0.1612	0.0943	0.16	0.005	12
H8	0.482	0.2647	0.0984	0.16	0.005	12
Н9	0.8457	0.3808	0.0948	0.16	0.005	12

Table S2. Atomic coordinates and thermal parameters for as-prepared and dehydrated SAPO STA-20.

H10	0.7416	0.2283	0.0932	0.16	0.005	12
H11	0.8496	0.3741	0.1691	0.16	0.005	12
H12	0.7455	0.2201	0.1691	0.16	0.005	12
H13	0.7673	0.3775	0.2391	0.16	0.005	12
H14	0.6509	0.23	0.237	0.16	0.005	12
H15	0.64772	0.45625	0.2597	0.16	0.005	12
H16	0.5175	0.3406	0.236	0.16	0.005	12
H17	0.4959	0.3144	0.3149	0.16	0.005	12
H18	0.5135	0.1982	0.2931	0.16	0.005	12
H19	0.6879	0.4209	0.3449	0.16	0.005	12
H20	0.7446	0.346	0.3131	0.16	0.005	12
H21	0.633	0.1637	0.3517	0.16	0.005	12
H22	0.5422	0.2077	0.3785	0.16	0.005	12
H23	0.8071	0.3673	0.393	0.16	0.005	12
H24	0.7514	0.2231	0.4119	0.16	0.005	12
H25	0.7071	0.4831	0.4236	0.16	0.005	12
H26	0.5621	0.3627	0.4156	0.16	0.005	12
H27	0.6438	0.5236	0.489	0.16	0.005	12
H28	0.5027	0.4005	0.482	0.16	0.005	12
H29	0.5677	0.1948	0.5412	0.16	0.005	12
H30	0.4579	0.2107	0.5128	0.16	0.005	12
H31	0.6215	0.1462	0.4752	0.16	0.005	12
H32	0.5107	0.1618	0.4477	0.16	0.005	12
H33	0.8576	0.4563	0.4628	0.16	0.005	12
H34	0.8204	0.3165	0.4851	0.16	0.005	12
H35	0.7975	0.5041	0.5268	0.16	0.005	12
H36	0.7653	0.3669	0.5505	0.16	0.005	12
H37	0.6577	0.2211	1.0205	0.48	0.005	12
H38	0.5921	0.1505	0.9686	0.48	0.005	12
H39	0.7482	0.2328	0.9736	0.48	0.005	12
H40	0.7528	0.2997	0.7839	0.5	0.005	12
H41	0.7341	0.2159	0.7341	0.5	0.005	12
H42	0.8425	0.3681	0.7355	0.5	0.005	12
N1	0.6675	0.34	0.0932	0.16	0.005	12
N2	0.6692	0.3297	0.1785	0.16	0.005	12
N3	0.6828	0.3175	0.4467	0.16	0.005	12
N4	0.6199	0.3689	0.5206	0.16	0.005	12
N5	0.6667	0.3333	0.9683	0.28	0.005	4
N6	0.6667	0.3333	0.7301	0.5	0.005	4

atom	x	У	Z	occupancy	Uiso	multiplicity
Al1	0.3319(4)	0.4190(4)	0.12439(20)	1	0.0058(5)	12
Al2	0.2361(4	1.0020(5)	0.19874(19)	1	0.0058(5)	12
Al3	0.2317(5)	0.9920(6)	0.05009(16)	1	0.0058(5)	12
01	0.3207(7)	0.3343(7)	0.17161(28)	1	0.0095(11)	12
O2	0.3185(7)	0.3409(7)	0.17161(28)	1	0.0095(11)	12
03	0.6770(6)	0.6414(5)	0.58240(20)	1	0.0095(11)	12
O4	0.6767(6)	0.6491(5)	0.66494(22)	1	0.0095(11)	12
05	0.2745(10)	0.2646(10)	0.00421(12)	1	0.0095(11)	12
O6	0.1139(4)	0.2003(5)	0.0593(4)	1	0.0095(11)	12
07	0.2213(4)	0.4542(6)	0.1231(4)	1	0.0095(11)	12
08	0.1088(4)	0.2002(5)	0.1936(4)	1	0.0095(11)	12
09	0.2504(7)	0.1260(6)	0.06391(32)	1	0.0095(11)	12
O10	0.2499(8)	0.1348(7)	0.1842(4)	1	0.0095(11)	12
011	0.4663(3)	0.5452(4)	0.12401(24	1	0.0095(11)	12
O12	0.2781(10)	0.2685(11)	0.24729(13)	1	0.0095(11)	12
P1	0.2386(3)	0.2303(3)	0.05157(14)	0.95	0.0058(5)	12
P2	0.2373(3)	0.2359(3)	0.20008(14)	0.95	0.0058(5)	12
P3	0.6670(3)	0.5735(3)	0.62448(14	0.95	0.0058(5)	12
Si1	0.2386(3)	0.2303(3)	0.05157(14)	0.05	0.0058(5)	12
Si2	0.2373(3)	0.2359(3)	0.20008(14)	0.05	0.0058(5)	12
Si3	0.6670(3)	0.5735(3)	0.62448(14)	0.05	0.0058(5)	12

 Table S3. Atomic coordinates and thermal parameters for calcined and dehydrated SAPO STA-20.

bond length / Å		bond angle / °	
Al1-O	1.729 (80)	O-All-O	108.4(4)
Al2-O	1.736(90)	O-Al2-O	108.7(5)
Al3-O	1.708(80)	O-Al3-O	111.8(5)
Al-O(Avg.)	1.724(80)	O-Al-O (Avg.)	109.6(5)
P1(Si1)-O	1.505(5)	O-P1(Si1)-O	110.3(4)
P2(Si2)-O	1.509(5)	O-P2(Si2)-O	110.2(4)
P3(Si3)-O	1.507(6)	O-P3(Si3)-O	111.1(4)
P(Si)-O(Avg.)	1.507(5)	O-P(Si)-O (Avg.)	110.5(4)
T-O(Avg.)	1.6155(40)	O-T-O (Avg.)	110.1(5)

Table S4. Selected bond lengths and angles for as-prepared and dehydrated SAPO STA-20.

Table S5. Selected bond lengths and angles for calcined and dehydrated SAPO STA-20.

bond length / Å		bond angle / °	
Al1-O	1.726(4)	O-All-O	109.5(3)
Al2-O	1.727(5)	O-Al2-O	109.5(3)
A13-O	1.722(6)	O-A13-O	109.5(4)
Al-O (Avg.)	1.725(5)	O-Al-O (Avg.)	109.5(3)
P1(Si1)-O	1.511(5)	O-P1(Si1)-O	109.5(4)
P2(Si2)-O	1.519(5)	O-P2(Si2)-O	109.4(4)
P3(Si3)-O	1.533(5)	O-P3(Si3)-O	109.9(4)
P(Si)-O (Avg.)	1.521(5)	O-P(Si)-O (Avg.)	109.6(4)
T-O (Avg.)	1.623(5)	O-T-O (Avg.)	109.5(4)