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PREFACE

to the Second Edition 1990

Many branches of algebra are linked by the theory of modules. Since the notion of a
module is obtained essentially by a modest generalisation of that of a vector space,
it is not surprising that it plays an important role in the theory of linear algebra.
Modules are also of great importance in the higher reaches of group theory and ring
theory, and are fundamental to the study of advanced topics such as homological
algebra, category theory, and algebraic topology. The aim of this text is to develop
the basic properties of modules and to show their importance, mainly in the theory
of linear algebra.

The first eleven sections can easily be used as a self-contained course for first
year honours students. Here we cover all the basic material on modules and vector
spaces required for embarkation on advanced courses. Concerning the prerequisite
algebraic background for this, we mention that any standard course on groups, rings,
and fields will suffice. Although we have kept the discussion as self-contained as pos-
sible, there are places where references to standard results are unavoidable; readers
who are unfamiliar with such results should consult a standard text on abstract alge-
bra. The remainder of the text can be used, with a few omissions to suit any particular
instructor’s objectives, as an advanced course. In this, we develop the foundations of
multilinear and exterior algebra. In particular, we show how exterior powers lead to
determinants. In this edition we include also some results of a ring-theoretic nature
that are directly related to modules and linear algebra. In particular, we establish the
celebrated Wedderburn-Artin Theorem that every simple ring is isomorphic to the
ring of endomorphisms of a finite-dimensional module over a division ring. Finally,
we discuss in detail the structure of finitely generated modules over a principal ideal
domain, and apply the fundamental structure theorems to obtain, on the one hand,
the structure of all finitely generated abelian groups and, on the other, important
decomposition theorems for vector spaces which lead naturally to various canonical
forms for matrices.

At the end of each section we have supplied a number of exercises. These provide
ample opportunity to consolidate the results in the body of the text, and we include
lots of hints to help the reader gain the satisfaction of solving problems.

Although this second edition is algebraically larger than the first edition, it is
geometrically smaller. The reason is simple: the first edition was produced at a time
when rampant inflation had caused typesetting to become very expensive and, re-
grettably, publishers were choosing to produce texts from camera-ready material
(the synonym of the day for typescript). Nowadays, texts are still produced from
camera-ready material but there is an enormous difference in the quality. The inter-
vening years have seen the march of technology: typesetting by computer has arrived
and, more importantly, can be done by the authors themselves. This is the case with
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PREFACE iii

the present edition. It was set entirely by the author, without scissors, paste, or any
cartographic assistance, using the mathematical typesetting system TgX developed
by Professor Donald Knuth, and the document preparation system ElX developed
by Dr Leslie Lamport. To be more precise, it was set on a Macintosh II computer us-
ing the package MacTgX developed by FTL systems Inc. of Toronto. We record here
our gratitude to Lian Zerafa, President of FTL, for making this wonderful system
available.

St Andrews
August 1989 T.S.B.

Added January 2018

The advance of technology has brought us into the era of electronic books, thus
making it possible to resurrect many fine texts that have long been out of print and
therefore difficult and expensive to obtain. What is reproduced here is basically the
same as the 1990 printed second edition. However, set on my iMac using TeXShop
with the package [charter]mathdesign, it takes up fewer pages. In preparing this
digital edition I have taken care of typographical errors that were present in the
printed second edition. I record here my grateful thanks to those who have been
kind enough to communicate them to me. The main difference between this edition
and the 1990 printed second edition is of course that this one is free to download!
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1

MODULES; VECTOR SPACES; ALGEBRAS

In this text our objective will be to develop the foundations of that branch of math-
ematics called linear algebra. From the various elementary courses that he has fol-
lowed, the reader will recognise this as essentially the study of vector spaces and
linear transformations, notions that have applications in several different areas of
mathematics.

In most elementary introductions to linear algebra the notion of a determinant
is defined for square matrices, and it is assumed that the elements of the matrices
in question lie in some field (usually the field R of real numbers). But, come the
consideration of eigenvalues (or latent roots), the matrix whose determinant has to
be found is of the form

X;1—A Xy X1n
Xo1  Xpp—A Xon
X Xpg  eer Xpp—A

and therefore has its entries in a polynomial ring. This prompts the question of
whether the various properties of determinants should not really be developed in
a more general setting, and leads to the wider question of whether the scalars in
the definition of a vector space should not be restricted to lie in a field but should
more generally belong to a ring (which, as in the case of a polynomial ring, may be
required at some stage to be commutative).

It turns out that the modest generalisation so suggested is of enormous impor-
tance and leads to what is arguably the most important structure in the whole of
algebra, namely that of a module. The importance of this notion lies in a greatly ex-
tended domain of application, including the higher reaches of group theory and ring
theory, and such areas as homological algebra, category theory, algebraic topology,
etc..

Before giving a formal definition of a module, we ask the reader to recall the
following elementary notions. If E is a non-empty set then an internal law of compo-
sition on E is a mapping f : E x E — E. Given (x,y) € E x E it is common practice
to write f(x,y) as x + y, or xy, except when it might cause confusion to use such
additive or multiplicative notations, in which case notations such as x x y, x o y,
X @y, etc., are useful. A set on which there is defined an internal law of composi-
tion that is associative is called a semigroup. By a group we mean a semigroup with
an identity element in which every element has an inverse. By an abelian group we
mean a group in which the law of composition is commutative. By a ring we mean
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a set E endowed with two internal laws of composition, these being traditionally
denoted by (x,y) — x + y and (x, y) — xy, such that

(1) E is an abelian group under addition;
(2) E is a semigroup under multiplication;
B) (Vx,y,2€E) x(y+2)=xy+xz, (y+2)x=yx+2zx.

A ring R is said to be unitary if it has a multiplicative identity element, such an
element being written 1. By an integral domain we mean a unitary ring in which
the non-zero elements form a (cancellative) semigroup under multiplication. By a
division ring we mean a unitary ring in which the non-zero elements form a group
under multiplication. A ring is commutative if the multiplication is commutative. By
a field we mean a commutative division ring.

In what follows we shall have occasion to consider mappings of the form f :
F x E — E where F and E are non-empty sets. Such a mapping will be denoted by
(A,x) — Ax and called a left action on E by elements of F. Although here Ax is
simply the juxtaposition of A € F and x € E with A written on the left, it is often
often called left multiplication of elements of E by elements of F. In this context the
elements of F are often called scalars. In a similar way we can define a right action
on E by elements of F to be a mapping f : E x F — E described by (x,A) — xA.

o It should be noted that a particular case of an external law is obtained by
taking F = E in which case we obtain a mapping f : E x E — E which is an
internal law of composition on E.

Definition 1.1 Let R be a unitary ring. By an R-module, or a module over R, we shall
mean an additive abelian group M together with a left action R x M — M, described
by (A, x) — Ax, such that

(1) (VAeR)(Vx,yeM) Alx+y)=Ax+Ay;
2) (VA,ueR)(VxeM) (A+u)x=Ax+ux;
3 (VAueR)(YxeM) Alux)=(Au)x;

4) (VxeM) I1zx=x.

A module over a field F is called an F-vector space.

e An R-module, as we have defined it, is often called a left R-module. The reason
for this is that the scalars are written on the left. By writing xA instead of Ax
throughout and altering (3) and (4) of the definition to

3) (VxeM)(VA,ueR) (xA)u=x(Au);
@) (VxeM) xlz=x,

we obtain what is called a right R-module, the external law in this case being a
right action on M. In what follows we shall make the convention that the term
R-module will always mean a left R-module, and whenever we have occasion
to talk about a right R-module we shall use that adjective.

e Some authors prefer not to include the identity element 1; in the above defi-
nition. What we have called an R-module they would call a unitary R-module.
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If M is an R-module then we shall denote the additive identity of M by 0,,, and
that of R by 0g. The following elementary properties will be used without reference
in what follows.

Theorem 1.1 Let M be an R-module. Then

(1) (YA€R) A0y = 0y;

(2) (Vx € M) Ogx = 0yy;

(B) (YA eR)(Vx € M) A(—x)=—(Ax)=(—A)x.

Moreover, when R is a division ring,

(4) Ax =0, implies that A = O or x = 0.
Proof (1) We have A0, = A(0y, +0,,) = A0, +A0,, whence it follows that A0, =
OM-
(2) 0gx = (0g + 0g)x = Ogx + Ogx whence Ogx = 0.
(3) By (1), we have 0); = A0;; = A[x + (—x)] = Ax + A(—x) whence A(—x) =
—Ax; and, by (2), we have 0,; = Ogx = [A+(—A)]x = Ax +(—A)x whence (—A)x =
—Ax.

(4) Suppose now that R is a division ring and that Ax = 0,, with A # Oz. Then

using the fact that A has a multiplicative inverse we have x = 1zx = (A 'A)x =
l_l(lx)=l_10M ZOM o}

Example 1.1 Every unitary ring R is an R-module; the action R x R — R is the mul-
tiplication in R. Likewise, any field F is an F-vector space.

Example 1.2 Every additive abelian group M can be considered as a Z-module;
here the action Z x M — M is given by (m, x) — mx where

X+x+--+x ifm>0;
—_—

_ m
mx = 0 if m=0;

—|m|x ifm<o0.
Example 1.3 The field C of complex numbers can be considered as an R-vector
space; the action R x C — C is described by
(AL x+iy)— Alx+iy)=Ax+iAy.

More generally, if R is a unitary ring and S is a subring of R that contains 1; then R
can be considered as an S-module; here the action is (s, 1) — sr.

Example 1.4 If R is a unitary ring and n is a positive integer consider the abelian
group R" of all n-tuples of elements of R under the component-wise addition

(xl;'~"xn)+(y19'~~)yn) =(X1 +y1a~~':xn+yn)~
Define a left action R x R" — R" in the obvious way, namely by
r(X1,ee,Xy) =(rxq,...,7x,).

Then R" becomes an R-module. Similarly, if F is a field then F" is an F-vector space.
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Example 1.5 Let R be a unitary ring and let RY denote the set of all mappings f :
N — R (i.e. the set of all sequences of elements of R). Endow RY with the obvious
addition, namely for f, g € RN define f + g by the prescription

(f +8)n) = f(n) + g(n).
Clearly, RY forms an abelian group under this law of composition. Now define an
action R x RY — RN by (r, f) — rf where rf €RN is given by the prescription

(rf)n)=rfn).

This then makes R into an R-module.
Each of the above examples can be made into a right module in the obvious way.

Definition 1.2 Let R be a commutative unitary ring. By an R-algebra we shall mean
an R-module A together with an internal law of composition A x A — A, described by
(x,y) — xy and called multiplication, which is distributive over addition and such
that

(VA €R)(Vx,y €A) Axy)=(Ax)y =x(Ay).

By imposing conditions on the multiplication in the above definition we obtain
various types of algebra. For example, if the multiplication is associative then A is
called an associative algebra (note that in this case A is a ring under its internal laws
of addition and multiplication); if the multiplication is commutative then A is called
a commutative algebra; if there is a multiplicative identity element in A then A is said
to be unitary. A unitary associative algebra in which every non-zero element has an
inverse is called a division algebra.

Example 1.6 C is a division algebra over R.

Example 1.7 Let R be a commutative unitary ring and consider the R-module R" of
Example 1.5. Given f, g € RY, define the product map f g : N — R by the prescription

(Fe)n) = if(i)g(n—i).

It is readily verified that the law of composition described by (f,g) — fg makes
RN into an R-algebra. This R-algebra is called the algebra of formal power series with
coefficients in R.
The reason for this traditional terminology is as follows. Let t € RY be given by
1 ifn=1;
t(n) = { 0 otherwise.

Then for every positive integer m the m-fold composite map

t"=toto-- ot
m
is given by
1 ifn=m;
m — >
t (”)_{o otherwise.
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Consider now (without worrying how to imagine the sum of an infinite number of
elements of RY or even questioning the lack of any notion of convergence) the formal
power series associated with f € RY given by
B =f0)°+fF(D" +f (e +--+ f(m)t" +--- =3 f(DL
>0
where t° = idy, the identity map on R. Since, as is readily seen,
(VneN)  d(n)=f(n),
it is often said that f can be represented symbolically by the above formal power

series.

Example 1.8 If R is a unitary ring then the set Mat,,,(R) of n x n matrices over R
is a unitary associative R-algebra.

EXERCISES

1.1 Let M be an abelian group and let End M be the set of all endomorphisms on M, i.e. the
set of all group morphisms f : M — M. Show that End M is an abelian group under
the law of composition (f, g) — f + g where

(VxeM) (f+g)x)=f(x)+g(x).
Show also that

(a) (End M, +,0) is a unitary ring;

(b) M is an End M-module under the action EndM x M — M given by (f,m) —
f-m=f(m);

(¢) ifRisaunitaryring and u : R — End M is a ring morphism such that u(1;) = id,,,
then M is an R-module under the action R x M — M given by (A,m) — Am =

[u(A)](m).

1.2 Let R be a unitary ring and M an abelian group. Prove that M is an R-module if and
only if there is a 1-preserving ring morphism f : R —» End M.

[Hint. = : For every r € R define f, : M — M by f.(m) = rm. Show that f, € End M
and let f be given by r — f,.

< : Use Exercise 1.1(c).]

1.3 Let G be a finite abelian group with |G| = m. Show that if n, t € Z then
n=t(mod m)= (Vg €G) ng=tg.

Deduce that G is a Z/mZ-module under the action Z/mZ x G — G which is defined by
(n+ mZ, g) — ng. Conclude that every finite abelian group whose order is a prime p
can be regarded as a vector space over a field of p elements.

1.4 Let S be a non-empty set and R a unitary ring. If F is the set of all mappings f : S — R
such that f(s) = 0 for almost all s € S, i.e. all but a finite number of s € S, show that F
is an R-module under the addition defined by (f + g)(s) = f(s) + g(s) and the action
defined by (Af)(s) = Af (s).
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1.6

1.7

1.8

Module Theory

If R is a commutative unitary ring show that the set P,(R) of all polynomials over R
of degree less than or equal to n is an R-module. Show also that the set P(R) of all
polynomials over R is a unitary associative R-algebra.

If A is a unitary ring define its centre to be
CenA={x€A; (Vy €A) xy =yx}.

Show that CenA is a unitary ring. If R is a commutative unitary ring, prove that A is
a unitary associative R-algebra if and only if there is a 1-preserving ring morphism
¥ : R — CenA.

[Hint. = : Denoting the action of R on A by (r,a) — r - a, define & by 3(r) =r - 1,.

< : Define an action by (r,a) — r-a =9(r)a.]

Let S and R be unitary rings and let f : S — R be a 1-preserving ring morphism. If M is
an R-module prove that M can be regarded as an S-module under the action SxM — M
given by (s, x) — f(s)x.

Show that if V is a vector space over a field F then the set T of linear transformations
f 1V > V is a unitary associative F-algebra. If F[X] denotes the ring of polynomials
over F and a is a fixed element of T, show that V can be made into an F[X ]-module
by the action F[X] x V — V defined by

(p,x) = pox =[p(a)](x).
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SUBMODULES; INTERSECTIONS AND SUMS

If S is a non-empty subset of an additive group G then S is said to be a stable subset
of G, or to be closed under the operation of G, if

(Vx,y€S) x+ye€Ss.

Equivalently, S is a stable subset of G if the restriction to S x S of the law of composi-
tion on G induces a law of composition on S, these laws being denoted by the same
symbol + without confusion. In this case it is clear that S is a semigroup. By a sub-
group of G we mean a non-empty subset that is stable and which is also a group with
respect to the induced law of composition. The reader will recall that a non-empty
subset H of a group G is a subgroup of G if and only if

(Vx,y€eH) x—ye€H.

Definition 2.1 By a submodule of an R-module M we mean a subgroup N of M that
is stable under the action of R on M, in the sense that if x € N and A € R then
Ax €EN.

It is clear that a non-empty subset N of an R-module M is a submodule of M if
and only if
(Vx,y e N)(VA€R) x—y €N and Ax €N. 2.1

These conditions can be combined into the single condition
(Vx,y e N)(VA,u €R) Ax+uy €N. (2.2)

To see this, observe that if (2.1) holds then Ax € N and —uy € N, whence Ax+uy =
Ax—(—uy) € N. Conversely, if (2.2) holds then taking A = 1 and u = —15 we obtain
x —y € N; and taking u = 0 we obtain Ax € N.

The notion of a subspace of a vector space is defined similarly. Likewise, we say
that a non-empty subset B of an R-algebra A is a subalgebra of A if

(Vx,y € B)(VA€R) xX—Yy€EB, xy €B, Ax €B.

Example 2.1 Let R be a unitary ring considered as an R-module (Example 1.1). The
submodules of R are precisely the left ideals of R. Likewise, if we consider R as a
right R-module the its submodules are precisely its right ideals.
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o Although we agree to omit the adjective ‘left’ when talking about modules, it
is essential (except in the case where R is commutative) to retain this adjective
when referring to left ideals as submodules of R.

Example 2.2 Borrowing some notions from analysis, let C be the set of continuous
functions f : [a, b] — R. Clearly, C can be given the structure of an R-vector space
(essentially as in Example 1.5). The subset D that consists of the differentiable func-
tions on [a, b] is then a subspace of C; for, if f, g € D then, as is shown in analysis,
(VA,ueR) Af +ug €D.

Example 2.3 If G is an abelian group then the submodules of the Z-module G are
simply the subgroups of G.

Example 2.4 The vector space C of Example 2.2 becomes an R-algebra when we
define a multiplication on C by (f, g) — f g where

(Vx €la,b])  (fg)(x)=f(x)g(x).
It is readily verified that the subspace D is a subalgebra of C.

Our first result is a simple but important one.

Theorem 2.1 The intersection of any family of submodules of an R-module M is a
submodule of M.

Proof Suppose that (M;);c; is a family of submodules of M. Then we observe first

that () M; # @ since every submodule, being a subgroup, contains the identity ele-
iel

ment 0. Now, since each M; is a submodule, we have

x,y €(\1M; = (Vi€l) x,y €M
i€l

= (Viel) x—yeM,
= x—ye( M

i€l

and
xe(\M,AeR = (Vi€l) AxeM; = Ax €[ |M,.
iel iel
Consequently, (1| M; is a submodule of M. |

iel

The above result leads to the following observation. Suppose that S is a subset
(possibly empty) of an R-module M and consider the collection of all the submod-
ules of M that contain S. By Theorem 2.1, the intersection of this collection is a
submodule of M, and it clearly contains S. It is thus the smallest submodule of M to
contain S. We call this the submodule generated by S and denote it by (S). We shall
now give an explicit description of this submodule. For this purpose we require the
following notion.
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Definition 2.2 Let M be an R-module and let S be a non-empty subset of M. Then
Xx € M is a linear combination of elements of S if there exist elements x;,...,x, in S
and scalars A4,...,A, in R such that

X = Zlixi =llx1+~~-+lnxn.
i=1
We denote the set of all linear combinations of elements of S by LC(S).

Theorem 2.2 Let S be a subset of the R-module M. Then

({0} ifS=0;
(S>_{LC(S) if S #4.

Proof It is clear that if S = @ then the smallest submodule that contains S is the
smallest submodule of M, namely the zero submodule {0}. Suppose then that S # @.
It is clear that LC(S) is a submodule of M. Moreover, S € LC(S) since for every x € S
we have x = 1zx € LC(S). As (S) is, by definition, the smallest submodule to contain
S, we therefore have (S) € LC(S). On the other hand, every linear combination of
elements of S clearly belongs to every submodule that contains S and so we have
the reverse inclusion LC(S) C (S), whence the result follows. ]

Definition 2.3 We say that an R-module M is generated by the subset S, or that S is
a set of generators of M, when (S) = M. By a finitely generated R-module we mean
an R-module which has a finite set of generators.

One of the main theorems that we shall eventually establish concerns the struc-
ture of finitely generated R-modules where R is a particularly important type of ring
(in fact, a principal ideal domain). As we shall see in due course, this structure the-
orem has far-reaching consequences.

Suppose now that (M;);¢; is a family of submodules of an R-module M and con-

sider the submodule of M that is generated by _J M;. This is the smallest submodule
i€l

of M that contains every M;. By abuse of language it is often referred to as the sub-

module generated by the family (M;);c;. It can be characterised in the following way.

Theorem 2.3 Let (M;);c; be a family of submodules of an R-module M. If P*(I) de-
notes the set of all non-empty finite subsets of I then the submodule generated by | J M;
iel
consists of all finite sums of the form . m; where J € P*(I) and m; € M;.
jeJ
Proof A linear combination of elements of | JM; is precisely a sum of the form
iel

>, m; for some J € P*(I). ol
jeJ

Because of Theorem 2.3, we call the submodule generated by the family (M;);¢;

the sum of the family and denote it by >, M;. In the case where the index set I is
iel
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n
finite, say I = {1,...,n}, we often write Y, M; as >. M; or as M; +- - -+ M,,. With this
iel i=1
notation we have the following immediate consequences of the above.

Corollary 1 [Commutativity of . ]
If o : 1 — 1 is a bijection then Y, M; = >, M. o

i€l i€l
Corollary 2 [Associativity of >’ ]
If (I1)kea is a family of non-empty subsets of I with I = | J I then

Su=3(sm)

iel keA i€l

Proof A typical element of the right-hand side is Z(Z mi) where J;, € P*(I}.)

and J € P*(A). By associativity of addition in M this kceaJnlleajek written as Y, m; where

K = |J Jx € P*(I). Thus the right-hand side is contained in the left—hl:Ed side. As

for t}];gjconverse inclusion, a typical element of the left-hand side is > m; where
ies

J € P*(I). Now J =J NI = | J(J NI}) so if we define J, = J NI, we have J; € P*(I})
keA

and, by the associativity of addition in M, >, m; = . ( > ml-) where B € P*(A).

ieJ keB i€,
Consequently the left-hand side is contained in the right-hand side. |
Corollary 3 (Yiel) > M;=M;+ > M,
iel A
Proof Take A= {1,2}, I; ={i} and I, =1\ I; in the above. O

e Note that | JM; # >, M; in general, for | JM; need not be a submodule. For
i€l i€l i€l
example, take I = {1,2} and let M;, M, be the subspaces of the vector space
R? given by M; = {(x,0) ; x € R} and M, = {(0,y) ; y € R}. We have
M, + M, = R? whereas M; UM, C R

Suppose now that M is an R-module and that A, B are submodules of M. We
know that A+ B is the smallest submodule of M that contains both A and B, and that
AN B is the largest submodule contained in both A and B. The set of submodules of
M, ordered by set inclusion, is therefore such that every two-element subset {A, B}
has a supremum (namely A+ B) and an infimum (namely AN B). Put another way,
the set of submodules of M, ordered by set inclusion, forms a lattice. An important
property of this lattice is that it is modular, by which we mean the following.
Theorem 2.4 [Modular law] If M is an R-module and if A, B, C are submodules of
M with C C A then

AN(B+C)=(ANnB)+C.
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Proof Since C € Awe have A+C = A. Now (ANB)+C C A+C and (ANB)+C C B+C
and so we have

(ANB)+CCA+C)N(B+C)=ANn(B+C).

To obtain the reverse inclusion, let a € AN (B + C). Then a € A and there exist b €
B,c € C such that a = b + ¢. Since C € A we have ¢ € A and therefore b =a—c € A.

Consequently be AnNBandsoa=b+ce(ANnB)+C. o]
EXERCISES

2.1 Determine all the subspaces of the R-vector space R2. Give a geometric interpretation
of these subspaces. Do the same for R>.

2.2 Let M be an R-module. If S is a non-empty subset of M, define the annihilator of S in
R by

AnngS={A€R; (Vx €S) Ax =0}.

Show that Anng S is a left ideal of R and that it is a two-sided ideal whenever S is a
submodule of M.

2.3 Describe the kernel of the ring morphism u of Exercise 1.1.

2.4 Prove that the ring of endomorphisms of the abelian group Z is isomorphic to the ring
Z, and that the ring of endomorphisms of the abelian group Q is isomorphic to the field
Q.
[Hint. Use Exercises 1.1 and 2.3; note that if f € EndZ then f = u[f(1)].]

2.5 Let M be an R-module. If r,s € R show that

r—seAnng M = (Yx € M) rx =sx.

Deduce that M can be considered as an R/Anng M-module. Show that the annihilator
of M in R/Anng M is zero.

2.6 LetR be a commutative unitary ring and let M be an R-module. Forevery r € RletrM =
{rx; x e M} and M, = {x € M ; rx = 0}. Show that rM and M, are submodules of
M. In the case where R = Z and M = Z/nZ, suppose that n = rs where r and s are
mutually prime. Show that rM = M;.
[Hint. Use the fact that there exist a, b € Z such that ra +sb = 1.]

2.7 Let (M;);¢; be a family of submodules of an R-module M. Suppose that, for every finite
subset J of I, there exists k € I such that (Vj € J) M; C M,. Show that [ JM; and ) M;

iel ier

coincide. Show that in particular this arises when I = N and the M; form an ascending
chain My CM; SM, C---.

2.8 An R-module M is said to be simple if it has no submodules other than M and {0}.

Prove that M is simple if and only if M is generated by every non-zero x € M.
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2.9

2.10

2.11

2.12

Module Theory

If R is a unitary ring prove that R is a simple R-module if and only if R is a division ring.

[Hint. Observe that, for x # 0, the set Rx = {rx ; r € R} is a non-zero submodule,
whence it must coincide with R and so contains 15.]

Find subspaces A, B, C of R? such that
(ANB)+(ANC)CcAN(B+C).
If M is an R-module and A, B, C are submodules of M such that
ACB, A+C=B+C, ANC=BnC,

prove that A= B.
[Hint. A=A+ (ANC)="--; use the modular law.]

Let V be a vector space over a field F and let a : V — V be a linear transformation on
V. Consider V as an F[X]-module under the action defined via a as in Exercise 1.8.
Let W be an F[X]-submodule of V. Prove that W is a subspace of V that satisfies the
property

xXEW=a(x)eW.
Conversely, show that every subspace W of V that satisfies this property is an F[X]-
submodule of V.



3

MORPHISMS; EXACT SEQUENCES

The reader will recall that in the theory of groups, for example, an important part
is played by the structure-preserving mappings or morphisms. Precisely, if G and H
are groups whose laws of composition are each denoted by + for convenience then
a mapping f : G — H is called a morphism (or homomorphism) if

(Vx,y€G) fx+y)=f0)+f(y)

Such a mapping sends G onto a subgroup of H, namely the subgroup
Imf ={f(x); x €G}.

For such a mapping f we have, with 0; and 0y denoting respectively the identity
elements of G and H,

(@) f(0g)=0g;

B) (Vx€G) f(=x)=—f(x).
In fact, f(0g5) = f(0g + 0g) = f(05) + f (05) whence, by cancellation, f(05;) = Og;
and f (x) + f(—x) = f[x + (=x)] = f(0g) = Oy so that f(—x) =—f(x).

We shall now define the notion of a morphism from one R-module to another.

This will obviously be an extension of the notion of a group morphism, so that (a)
and () above will hold.

Definition 3.1 If M and N are R-modules then a mapping f : M — N is called an
R-morphism if

M (Vx,yeM) flx+y)=f(x)+f(¥);

(2) (VxeM)(VA€ER) f(Ax)= Af(x).

When R is a field an R-morphism is traditionally called a linear transformation.

it is surjective; and an R-isomorphism if it is bijective. An R-morphism f : M — M is
often called an R-endomorphism on M.

Example 3.1 If M and N are abelian groups considered as Z-modules then a Z-
morphism f : M — N is simply a group morphism. For, by induction, we have
(VYneN) f(nx)=nf(x) and consequently (Yn € Z) f(nx)=nf(x).

Example 3.2 If M is an R-module and n is a positive integer then fori = 1,...,n
the mapping pr; : M" — M described by

pri(xy,...,x,) =X;

is an R-epimorphism, called the i-th projection of M" onto M.
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An important property of an R-morphism f : M — N is that it induces mappings
between the lattices of submodules. In fact if we define, for every submodule X of
M,

fFE)={f(x); x ex}

and, for every submodule Y of N,
fF)={xeM; f(x)eY}

then we have the following result.

Theorem 3.1 Let M and N be R-modules and f : M — N an R-morphism. Then for
every submodule X of M the set f ~(X) is a submodule of N, and for every submodule
Y of N the set f ~(Y) is a submodule of M.

Proof We note first that f ~(X) # @ since X contains 0,, and so f ~(X) contains
f(0y) = 0y. If now y,z € f~(X) then there exist a, b € X such that y = f(a),z =
f(b) whence, since X is a submodule of M,

y—z=f(a)—f(b)=f(a—b) € f~(X).
Also, for every A € R we have, again since X is a submodule,

Ay = Af(a) = f(Aa) € f~(X).

Thus f ~(X) is a submodule of N.

Suppose now that Y is a submodule of N. Then f < (Y) # @ since it clearly con-
tains 0,,. If now a, b € f ~(Y) we have f(a), f(b) € Y whence, since Y is a submod-
ule of N, f(a—b) = f(a)—f(b) € Y and so a—b € f(Y). Also, if A € R then
f(Aa) =Af(a) €Y so that Aa € f ~(Y). Thus f ~(Y) is a submodule of M. |

If L(M) denotes the lattice of submodules of M then the previous result shows
that we can define mappings f~ : L(M) — L(N) and f~ : L(N) — L(M), described
respectivelyby X — f~(X)and Y — f“(Y). A simple consequence of the definitions
is that each of these induced mappings is inclusion-preserving in the sense that if
X,,X, are submodules of M such that X; € X, then f ~(X;) € f7(X,); and if Y;, Y,
are submodules of N such that ¥; €Y, then f(Y;) € f~(Ya).

For an R-morphism f : M — N the submodule f (M) of N is called the image
of f and is written Im f; and the submodule f {0y} of M is called the kernel of f
and is written Ker f .

o In the case of vector spaces and linear transformations the terms range R(f)
and null-space N(f) are sometimes used instead of image and kernel respec-
tively.

It is clear that a necessary and sufficient condition for an R-morphism to be an
epimorphism is that Im f be as large as possible, namely Im f = N. Likewise, a
necessary and sufficient condition for f to be a monomorphism is that Ker f be as
small as possible, namely Ker f = {0,,}. In fact, if Ker f = {0);} and x,y € M are
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such that f(x) = f(y) then f(x—y) = f(x)—f(y) = 0y, gives x—y € Ker f = {0y}
and so x = y; conversely, if f is injective and x € Ker f then f(x) = 0y = f(0y,)
gives x = 0,, so that Ker f = {0,,}. Note that no use is made here of the left action;
the results are purely group-theoretic.

Theorem 3.2 Let f : M — N be an R-morphism. If A is a submodule of M and B is a
submodule of N then

(1) fPANf=(B)]=f"(A)NB;

(2) fTB+fAl=f"(B)+A
Proof (1) Observe first that if y € f 7(B) then f(y) € B and therefore we have
that f ~[f “(B)] C B. The fact that f — is inclusion-preserving now implies that the
left-hand side is contained in the right-hand side. To obtain the reverse inclusion,
suppose that y € f ”(A)NB. Then y = f(a) and y € B. Since then f (a) € B we have
acf (B)andy € f7[ANf(B)].

(2) Since for a € A we have f(a) € f ~(A) we see that A € f[f ~(A)]. The
fact that f ~ is inclusion-preserving now implies that the left-hand side contains the
right-hand side. For the reverse inclusion, let x € f“[B + f "(A)]. Then f(x) €
B + f(A) and so there exist a € A and b € B such that f(x) = b+ f(a). Then
fx—a)=f(x)—f(aA)=beBandsox—aec f~(B)whencex € f(B)+A. @O
Corollary 1 If Ais a submodule of M and B is a submodule of N then

(3) fTIfTB)=BNImf;

(4) fIf7A)]=A+Kerf.

Proof For (3), take A= M in (1); and for (4) take B = {0y} in (2). =

Just as with group morphisms, we can compose R-morphisms in the appropriate

situation to form new R-morphisms. The basic facts concerning this are the following,
which we shall use in the sequel without reference:

(@ iff:M—Nandg:N — P are R-morphisms then sois go f.

() iff:M—>Nandg:N — P are R-epimorphisms then sois go f.
(c) iff:M—Nandg:N — P are R-monomorphisms thensois go f.
(d) if gof is an epimorphism then so is g.

(e) if gof is a monomorphism then sois f.

Concerning composite morphisms we now consider some so-called ‘diagram-
completing’ problems. Suppose that we are given a diagram of R-modules and R-
morphisms of the form

A——sc

)

We pose the question: under what conditions does there exist an R-morphism h :
B — C such that ho f = g? We can also formulate the ‘dual’ problem, obtained
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essentially by reversing all the arrows. Specifically, given a diagram of R-modules
and R-morphisms of the form
Cc

|

B——A

f
under what conditions does there exist an R-morphism h : C — B such that f oh = g?
Let us first consider these problems when A, B, C are simply sets and f, g are
simply mappings.
Theorem 3.3 (a) If A,B,C are non-empty setsand f : A— B, g : A — C are
mappings then the following statements are equivalent :

(1) there exists a mapping h : B — C such that ho f = g;
(2) (Vx,yed) fl)=f)=g(x)=g(y).
(b) If A B,C are non-empty sets and f : B — A, g : C — A are mappings then
the following statements are equivalent :

(8) there exists a mapping h : C — B such that f oh = g;
(4) ImgCImf.

Proof (1) = (2):If h: B — C exists such that ho f = g and if x, y € A are such

that f (x) = f(y) then clearly we have g(x) = h[f (x)]=h[f(¥)]=g(¥).
(2) = (1) : Consider the subset G of Im f x C given by

G={(r,2); Ax€A) y=f(x), z=g(x)}.

We note that G # @; for, given any x € A we have (f (x), g(x)) € G. Now given any
y € Imf there is a unique z € C such that (y,z) € G. In fact, if y = f(x) choose
z = g(x) to see that such an element 2 exists. To see that such an element z is unique,
suppose that (y,z) € G and (y,%’) € G; then by the definition of G we have

(Ax,x'€d)  y=f)=f(), z=g(x), z'=g()

whence, by (2), g(x) = g(x”) and consequently z = z’. We can therefore define a
mapping t : Im f — C by the prescription

(Vxed)  t[f(x)]=g(x).
We now construct a mapping h : B — C by the prescription

_[ ty) ifyelmf;
h(y) = {any c € C otherwise.

Then for every x € Awe have h[f(x)]=t[f(x)]=g(x)sothatho f =g.
As for the dual problem, we now establish the equivalence of (3) and (4).
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(83)=(4) : If h: C — B exists such that f o h = g then for every x € C we have
gx)=f[h(x)]€Imf and soImg CImf.

(4) = (3) : If (4) holds then for every x € C there exists y € B such that g(x) =
f(¥). Given any x € C, label (courtesy of the axiom of choice) as y, any element of B
such that g(x) = f(y,). We can thus define a mapping h : C — B by the prescription
h(x) = y,. Then the equalities f [h(x)]= f(y,) = g(x) give f och = g. o]

Corollary 1 (a) If A B are non-empty sets and f : A — B is a mapping then the
following statements are equivalent :

(a) f is injective;

(B) there exists g : B — Asuch that go f =idy;

(y) f is left cancellable, in the sense that for every non-empty set C and all
mappings h,k : C — A,

foh=fok=>h=k.

(b) If A B are non-empty sets and f : A — B is a mapping then the following
statements are equivalent :
(a’) f is surjective;
(B’) there exists g : B— Asuch that f o g = idg;
(v") f is right cancellable, in the sense that for every non-empty set C and all
mappings h,k : B — C,

hof =kof =>h=k.

Proof (a) < () : This follows immediately from (1) < (2) on taking C = A and
g =1id,.

(B)= (y) : If f oh = f ok then composing each side on the left with g and using
the fact that g o f =id, we obtain h = k.

() = (a) : Suppose that f is not injective. Then for some x, y € Awith x # y we
have f(x) = f(¥). Let C be any non-empty set and let h, k : C — A be the ‘constant’
mappings given by

(VeeC) h(c)=x, k(c)=y.

Then clearly h # k and

(VeeC) flh()]=f(x)=f(y)=flk(c)]

so that f oh = f ok. Thus if (a) does not hold then neither does (), and consequently
(1= (@)

As for the dual situation, we now establish the equivalence of (), (8’), (v").

(a’) © (B) : This is immediate from (3) < (4).

(B )= () :If hof = ko f then composing each side on the right with g and
using the fact that f o g =id; we obtain h = k.
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(v") = (') : If B is a singleton then f is automatically surjective and there is
nothing to prove. Suppose then that B contains at least two distinct elements p,q.
Let h,k : B— B be given by

x ifxelmf;
p otherwise,

x ifxelmf;
g otherwise.

o = ke =
Then for every y € A we have h[f(y)] = f(y) = k[f(y)] and so ho f = ko f.
Applying (y’) we deduce that h = k. Now if Imf # B we must have Imf C B
whence there exists x € B with x & Im f. For such an element x we have h(x) =p
and k(x) = q whence, since h = k, we obtain the contradiction p = q. We conclude
therefore that Im f = B so that f is surjective. o]

One is tempted to conjecture that Theorem 3.3 and its Corollary can be made
into module-theoretic results by replacing ‘non-empty set’ by ‘R-module’ and ‘map-
ping’ by ‘R-morphism’ throughout. However, as the following examples show, such
a conjecture is in general false.

Example 3.3 Consider the diagram of Z-modules and Z-morphisms

idy,
L—7L
XZJ
Z

in which idy is the identity morphism and x2 is the Z-morphism described by n —
2n. Although, by Theorem 3.3(a), there is a mapping h : Z — Z such that ho (x2) =
idy, no such Z-morphism can exist. For, suppose that h were such a Z-morphism.
Then for every n € Z we would have 2h(n) = h(2n) = n. In particular, we would
have 2h(1) = 1; and this is impossible since the equation 2x = 1 has no solution in
Z.

Example 3.4 For a given prime p, consider the subgroup Q, of Q that is given by
Q,={x€Q; FkezZ)3neN) x=k/p"}.

Observe that Z is a subgroup of Q, so we can form the quotient group Q,/Z. Con-
sider now the diagram of Z-modules and Z-morphisms

Q,/Z
id

QP/Zpr/Z

where id is the identity morphism and f is the Z-morphism described by x — px.
Since for all k and n we have
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kK o [k
E-'-Z_p p”+1+Z

we see that Im f = Q,/Z = Imid. By Theorem 3.3(b) there is therefore a mapping
h:Q,/Z— Q,/Z such that f o h = id. However, no such Z-morphism can exist. For,
suppose that h were such a Z-morphism. Then we would have

prz=1[n(G+2)]=p[n(;+2)]
=h[p(%+Z)]=h(1+Z)=O+Z

which contradicts the fact that x + Z = 0+ Z if and only if x € Z.

Despite the above examples, there are certain situations in which, given some
extra conditions, we do have module-theoretic analogues of Theorem 3.3. The fol-
lowing two results indicate such situations; we shall see others later.

Theorem 3.4 Consider the diagram

A;C

)

of R-modules and R-morphisms in which f is an R-epimorphism. The following condi-
tions are equivalent :

(1) there is a unique R-morphism h : B — C such that ho f = g;
(2) Kerf CKerg.

Moreover, such an R-morphism h is a monomorphism if and only if Ker f =Ker g.

Proof (1) = (2) : Suppose that (1) holds. If x € Kerf then g(x) = h[f(x)] =
h(0) = 0 whence (2) follows.
(2) = (1) : Suppose now that Ker f C Ker g. Given x,y € A we have

f)=fQ) = fx—y)=fx)—f(y)=0g
—> x—y€Kerf CKerg
= g(x)—g(y)=g(x—y)=0¢
= g(x)=g(y).

By Theorem 3.3(a) we can therefore define a mapping h : B — C such that hof = g.
Since f is surjective by hypothesis, it follows by the Corollary to Theorem 3.3 that
f is right cancellable and so h is unique. It remains to show that h is in fact an
R-morphism. Since f is surjective, this follows from the equalities

hLf () + fF()]=hlf (x+y)]=glx+y)=g(x)+g(y) =hlf ()] +h[f(¥)];
h[Af (x)] = hlf(Ax)] = g(Ax) = Ag(x) = Ah[f (x)].
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Finally we observe that if h is injective then since g(x) = h[f(x)] we have
x € Kerg = f(x) € Kerh = {03} = x €Kerf,

and so Kerg C Ker f whence we have equality by (2). Conversely, suppose that
Kerg = Ker f and let x € Kerh. Since f is surjective we have x = f(y) for some
y € Aand so O = h(x) = h[f(y)] = g(y) and consequently y € Kerg = Ker f
whence x = f(y) = 0z and h is injective. |

Theorem 3.5 Consider the diagram

C

Jg
Bf)A
of R-modules and R-morphisms in which f is an R-monomorphism. The following con-

ditions are equivalent :
(1) there is a unique R-morphism h : C — B such that f oh = g;
(2) ImgCImf.

Moreover, such an R-morphism h is an epimorphism if and only if Img =Im f.

Proof (1)= (2):If (1) holds then, for everyc € C, g(x) = f[h(x)] € Im f, whence
(2) holds.

(2) = (1) : If (2) holds then by Theorem 3.3(b) there is a mapping h : C — B
such that f oh = g. Since f is injective by hypothesis, it follows by the Corollary to
Theorem 3.3 that that f is left cancellable and so h is unique. Now for all ¢,d € C
and A € R we have the equalities

flh(c+d)]=g(c+d) = g(c) +g(d) = f[h(c)] + f[h(d)] = f[h(c) + h(d)];

fIh(Ae)] = g(ac) = Ag(c) = Af[A()] = F[AR()].
Since f is injective we deduce that h(c+d) = h(c)+h(d) and h(Ac) = Ah(c), so that
h is indeed an R-morphism.

Finally, we observe that if h is surjective then for every b € B there exists ¢ € C
such that b = h(c), whence f(b) = f[h(c)] = g(c) and consequently Im f € Img,
whence we have equality by (2). Conversely, if Im f = Im g then for every b € B
there exists ¢ € C such that f(b) = g(c) = f[h(c)] whence b = h(c), since f is
injective. Consequently, h is surjective. ol

In the discussion to follow we shall on several occasions be faced with the prob-
lem of finding a morphism that will ‘complete’ a given diagram in an agreeable way,
just as we were able in Theorems 3.4 and 3.5 to find morphisms that ‘completed’ the
triangles there in such a way that, loosely speaking, following the arrows, all paths
with the same departure set and same arrival set are equal. To be somewhat more
precise, we introduce the following concept.
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Definition 3.2 Given a diagram of sets and mappings, we say that the diagram is
commutative if all composite mappings from any given departure set to any given
arrival set are equal.

By way of illustration, we note that the triangle

A—2 ¢

74

B

is commutative if and only if ho f = g. Also, the diagram
a—L ,p ¢
A B Cc

f/ g

is commutative if and only if f’oa = o f and g’ o3 =y o g; i.e. if and only if each
of its squares is commutative.

The notion of a commutative diagram will appear many times in the discussion
to follow. Linked with this is another important concept which we now introduce.

Definition 3.3 By a sequence of R-modules and R-morphisms we shall mean a dia-
gram of the form

M4 M; M

Such a sequence is said to be exact at M; if Im f;_; = Ker f;, and to be exact if it is
exact at each M;.

The above sequence is therefore exact if, at each stage, the image of the input
morphism coincides with the kernel of the output morphism.

Simple examples of exact sequences are given in the following result, in which
all zero modules are written 0.

Theorem 3.6 If f : M — N is an R-morphism and if 0 - M,N — 0 denote the
inclusion map and the zero map respectively then f is

(1) a monomorphism if and only if 0 —— M LN is exact :
(2) an epimorphism if and only if M L>N —— 0 is exact :

(3) an isomorphism if and only if 0 M ! N 0 is exact.

Proof This is immediate from the definitions. o
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Example 3.5 If f : A— B is a morphism of abelian groups then we have the exact
sequence

0 Ker f ———A A/Ker f ———0

in which ¢ is the inclusion map and f is the natural epimorphism. Likewise, we have
the exact sequence

0 Im f B B/Imf ——0.

As we shall see in due course, exact sequences of the form

00— M — s m—% s 0

are of especial importance. They are called short exact sequences.

e Note that in an exact sequence the composite of two successive morphisms is
the zero morphism. The converse of this is not true in general, for f og =0 is
equivalent to Im g C Ker f. Sequences in which f; o f;_; = 0 for every index i
are called semi-exact.

By way of illustrating the foregoing notions we shall derive a useful property of
the kernel of an R-morphism. This follows from the following result.

Theorem 3.7 Given the diagram of R-modules and R-morphisms

in which the row is exact and g o % = 0, there is a unique R-morphism h : A — X such
that the completed diagram is commutative.

Proof Since g o = 0 and since the row is exact we have
Imd CKerG =Imf.

Since, by Theorem 3.6(1), f is a monomorphism, the result is an immediate conse-
quence of Theorem 3.5. |

Theorem 3.8 Let f : M — N be an R-morphism. If v : Ker f — M is the inclusion
map then

(1) for=0;

(2) if P is an R-module and if g : P — M is an R-morphism such that f og =0
then there is a unique R-morphism ¢ : P — Ker f such that the following diagram is
commutative :
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P
/ J
g
Ker f M N
L
Proof (1) is obvious, and (2) is an immediate consequence of Theorem 3.7. =

e It can be shown (see Exercise 3.5 for the details) that the pair (Ker f,t) is
characterised by the properties of Theorem 3.8. Note that this characterisation
involves only morphisms, and not elements of the modules in question.

In order to give the reader a deeper appreciation of commutative diagrams, we
end the present section by illustrating the technique which is often referred to as
‘diagram chasing’.

Theorem 3.9 [The four lemma] Suppose that the diagram of R-modules and R-
morphisms

At g% o " ,p
A B’ c’ D’
f/ g/ h/

is commutative and has exact rows. Then the following hold :
(1) if a,y are epimorphisms and & is a monomorphism then f3 is an epimorphism ;
(2) if a is an epimorphism and 3,5 are monomorphisms then y is a monomor-
phism.

Proof (1) : Let b’ € B’. Since y is surjective there exists ¢ € C such that g’(b’) =
y(c). By the commutativity of the right-hand square we then have

§[h(c)]=hTr(0)]=h"Tg' (6] =0,

since h’ o g’ = 0. Thus h(c) € Ker§ = 0 and so h(c) = 0, giving ¢ € Kerh =Img so
that ¢ = g(b) for some b € B. Then, by the commutativity of the middle square,

g'(b)=7y(c) =r[g(b)] = ¢'[B(b)].

Consequently b’ — 3(b) € Kerg’ =Im f’ so that b’ — (b) = f’(a’) for some a’ € A’.
Since a is surjective there exists a € A such that a’ = a(a) and so, by the commuta-
tivity of the left-hand square, b’ — 3(b) = f'[a(a)] = B[f (a)]. We thus have

b'=p(b)+BLf(@]=Blb+f(a)] €Imp.

Consequently, 8 is surjective.

(2) : Let c € Kery. Then 6[h(c)] = h'[y(c)] = h'(0) = 0 and so h(c) € Ker6 = 0.
Thus ¢ € Kerh = Im g so that ¢ = g(b) for some b € B. Now 0 = y(c) = y[g(b)] =
g’[B(b)] so B(b) € Kerg’ =Im f’ whence f(b) = f'(a’) for some a’ €A’. Now a’ =
a(a) for some a € A, so (b) = f'[a(a)] = B[f(a)]. Since B is a monomorphism,
we deduce that b = f(a) whence ¢ = g(b) = g[f(a)] =0 since f o g =0. |



24 Module Theory

Theorem 3.10 [The five lemma] Suppose that the diagram of R-modules and R-
morphisms

A B Cc D E
lal Jaz J “ J - J«as
A B’ c’ D’ E’

is commutative with exact rows. If a, a,, &4, Qs are isomorphisms then so is as.

Proof Applying Theorem 3.9(1) to the right-hand three squares we see that a4 is
an epimorphism; and applying Theorem 3.9(2) to the left-hand three squares we
see that a3 is a monomorphism. Thus as is an isomorphism. |

Corollary 1 Suppose that the diagram of R-modules and R-morphisms

0 A B C 0
0 A B’ c’ 0

is commutative with exact rows. If a and y are isomorphsims then so is f3.
Proof Take A=A’ =E =E’ =0 in the above. ]
EXERCISES

3.1 Let R be a commutative unitary ring. Prove that a mapping f : Rx R — R is an R-
morphism if and only if there exist a, 8 € R such that

(Vx,y €R) f(x,y)=ax+py.

3.2 Let M and N be R-modules. Prove that if M is simple (Exercise 2.8) then every non-
zero R-morphism f : M — N is a monomorphism; and that if N is simple then every
non-zero R-morphism f : M — N is an epimorphism. Deduce that if M is a simple
R-module then the ring (Endz M, +, 0) of R-morphisms g : M — M is a division ring.

33 If f : M — N is an R-morphism prove that f~ o f~ o f7 = f~ and that similarly
frof o f ="

3.4 If A and B are submodules of an R-module M, establish a short exact sequence

0 ANB— s AXB—" S A+B 0.

[Hint. Observe that the ‘obvious’ definitions of ¢ and 7, namely #(x) = (x,x) and
n(x,y) = x +y, do not work; try w(x,y)=x—y.]

3.5 Let f : M — N be an R-morphism and suppose that there is given an R-module X
together with an R-monomorphism j : X — M such that

(1) foj=0;
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(2) for every R-module P and every R-morphism g : P — M such that f o g = 0 there

is a unique R-morphism 4 : P — X such that

p
1? j,
g
X M N
J f

is commutative.
Prove that there is a unique R-isomorphism & : Ker f — X such that

X%M

1A

Ker f

is commutative, ¢ being the inclusion map.

[Hint. Take P =Ker f and g = to obtain the existence of an R-morphism &. Now take
P =X and g = j in Theorem 3.8 to obtain &’ say. Show, using the Corollary to Theorem

3.3, that £ 0 &’ and &’ o £ are identity morphisms. ]
3.6 Given the diagram of R-modules and R-morphisms
x—I y—*f 4z 0
jﬁ
A

in which the row is exact and ¢ o f = 0, prove that there is a unique R-morphism

h:Z — Asuchthatho g =1.

3.7 Consider the diagram of R-modules and R-morphisms

0
A,
0 A A A 0
0" T
4
0

If this diagram is commutative with the row and column exact, prove that a and 3 are

zero morphisms, and that f and g are isomorphisms.
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3.8 The diagram of R-modules and R-morphisms

3.9

3.10

is given to be commutative with a, 3,y isomorphisms. Prove that the top row is exact
if and only if the bottom row is exact.

Suppose that the diagram of R-modules and R-morphisms

is commutative and has exact rows. Prove that

(1)if a,y, f’ are monomorphisms then so is f3;
Y

(2)if a,y, g are epimorphisms then so is f3.

[The 3 x 3lemma] Consider the diagram of R-modules and R-morphisms

0 0 0

0 A A 0
f’ f 7

0 B—* g P g 0
14 g g’

0———C’ C C'—0

0 0 0

Given that the diagram is commutative, that all three columns are exact, and that the
top two rows are exact, prove that there exist unique R-morphisms a” : ¢’ — C and
B” : C — C” such that the resulting bottom row is exact and the completed diagram is
commutative.

[Hint. Observe that goao f’ =0 so that Kerg’ = Im f’ C Ker g o a. Use Theorem 3.4
to produce a”. Argue similarly to produce ”. Now chase!]
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3.11 A short exact sequence of the form

(f,E,g) = 0—A—HE—%.B 0

is called an extension of A by B. Given any R-modules A and B, show that at least one
extension of A by B exists.

Two extensions (f;, E;, g;) and (f,, E,, g,) of Aby B are said to be equivalent if there
is an R-morphism h : E; — E, such that ho f; = f, and g, o h = g,. Prove that such an
R-morphism h is an isomorphism.

Show that there are extensions

0—Zy—Zy X ZLy— Z,—0,

0—17, Zg Z, 0

of Z, by Z, that are not equivalent.



4

QUOTIENT MODULES; ISOMORPHISM THEOREMS

We shall now consider an important way of constructing new modules from old
ones. This arises from the following problem. Suppose that M is an R-module and
that E is an equivalence relation on M. For each x € M we denote the class of x
modulo E by [x]g. Precisely when can we define laws of composition on the set
M /E of equivalence classes in such a way that M /E becomes an R-module with the
reasonable requirement that the natural surjection fj; : M — M /E given by x — [x]g
be an epimorphism? This very important question is settled in the following result.

Theorem 4.1 Let M be an R-module and let E be an equivalence relation on M. Then
the following statements are equivalent :

(1) there is a unique addition ([x]1g,[y]1g) — [x1g + [y ] and a unique R-action
(A, [x]g) = A[x]g such that M /E is an R-module and the natural surjection fiy is an
R-epimorphism, i.e. the following identities hold :

(Vx,y e M)(VAE€R) [x]p+[yle=[x+ylg, Alx]p=[Ax]g;

(2) E is compatible with the structure of M, in the sense that
x=a(E), y=b(E) = x+y =a+ b(E),
x=a(E), AR = Ax = Aa(E);
(3) there is a submodule My of M such that

x=y(E) & x—y € M.
Proof (1)< (2): This is immediate on applying Theorem 3.3 to the diagram
MxM—S—M/E
f J internal law

M/E x M/E

where f is given by (x,y) — ([x]g, [y]g) and g is given by (x,y) — [x + y ]z, and
to the diagram

Rx M—2—M/E

f’J action
RxM/E
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where f’ is given by (A,x) — (A,x/E) and g’ is given by (A,x) — [Ax];z. The
uniqueness of the laws of composition so obtained follows from the fact that both
vertical maps are surjective and so are right cancellable.

(2) = (3) : Suppose that E is compatible with the structure of M. Then [0]g,
the class of 0 modulo E, is a submodule of M. In fact, if x = 0(E) and y = 0(E)
then, by the compatibility, x —y = 0—0 = 0(E) and if x = 0(E) and A € R then
Ax = A0 = O(E). Moreover, we have

x=y(E) = x—y=y—y=0(E);
x—y=0E) = x=(x—y)+y=0+y=y(E),?

so that x = y(E) © x—y € [0];.

(8) = (2) : Suppose that My, is a submodule of M such that x = y(E) is equiv-
alent to x —y € Mg. Then from x = a(E) and y = b(E) we have x —a € My and
y — b € Mg so that, M being a submodule, x + y —(a + b) € My whence x +y =
a+b(E). Similarly, from x = a(E) we have, for every A € R, Ax—Aa = A(x—a) € My
so that Ax = Aa(E). Thus E is compatible with the structure of M. |

Definition 4.1 When the situation described in Theorem 4.1 holds we call M /E the
quotient module of M by the compatible equivalence relation E.

Identifying equivalence relations on M that yield the same quotient set, we now
observe that there is a bijection from the set of compatible equivalences on M to the
set of submodules of M. This is given as follows : for every compatible equivalence
relation E on M define #(E) to be the submodule [0];. That ¢ is surjective follows
from the fact that if N is a submodule of M then the relation F given by

x=y(F) < x—yeN

is (as is readily seen) a compatible equivalence relation on M with x = O(F) equiva-
lent to x € N, so that #(F) =[0]r = N. That 1 is also injective results from the fact
that if E, F are compatible equivalence relations on M such that #(E) = #(F) then
[0]; = [0]r and so, by Theorem 4.1(3), x = y(E) is equivalent to x = y(F), whence
E = F by the agreed identification.

Because of this bijection, it is standard practice to write M /N for the quotient
module M /E where N is the submodule that corresponds to E (namely N = [0]g).
This abuse of notation yields a corresponding abuse of language : we call M /N the
quotient module of M by the submodule N. In this case the equivalence class of x will
be written [x]y. Note that, as in the case of quotient groups, [x]y coincides with
the coset x + N ={x+n; ne€ N}, for

yelxly = [yly=[xly &= y—xeN < (dIneN)y—x=n.

We now consider the question of how to identify the submodules of a quotient
module.

Theorem 4.2 [Correspondence theorem] If N is a submodule of an R-module M
then there is an inclusion-preserving bijection from the set of submodules of M /N to
the set of submodules of M that contain N.
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Proof Suppose that A is a submodule of M that contains N. Then the set A/N =
{laly ; a € A} is clearly a submodule of M /N. Consider the mapping ¥ from the set
of all such submodules A to the set of submodules of M /N described by #(A) = A/N.
Since ¥ so defined is the restriction (to the set of submodules that contain N) of h;,
it is clear that ¥ is inclusion preserving.

We observe from the Corollary to Theorem 3.2 that if N € A then

b [9A)] =ty [y (A)]=A+Kerly =A+N =A.

Consequently, if #(A) = #(B) then A= B and so ¥ is injective.
We now observe that if P is any submodule of M /N then, again by the Corollary
to Theorem 3.2,

Wy (P)] =1y [y (P)]=PNImly =PNM/N = P.

Consequently ¥ is also surjective. O

Corollary 1 Every submodule of M /N is of the form A/N where A is a submodule of
M that contains N. O

We now consider certain induced morphisms from one quotient module to an-
other, and in so doing establish some fundamental isomorphisms.

Theorem 4.3 Let M and N be R-modules and let f : M — N be an R-morphism. If
A and B are submodules of M and N respectively then the following statements are
equivalent :

(1) f7A)<B;
(2) there is a unique R-morphism f, : M /A — N /B such that the diagram

f

M——N

l |

M /Af)N /B

is commutative.
Moreover, when such an R-morphism f, exists, it is

(a) a monomorphism if and only if A= f ~(B);
(b) an epimorphism if and only if B+1Imf = N.

Proof Applying Theorem 3.4 to the diagram

M—>=" ,n/B

y

M/A
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we see that (2) holds if and only if Kerlj, € Ker(fjz o f). Now clearly
x €Kerfly & [x],=[0], < x €A,
and similarly
x €Ker(fpof) & [f(x)]z=[0]3 < f(x)€B.

Thus we see that (2) holds if and only if x € A implies f (x) € B, which is (1).
As for the last statements, we observe that f ~(A) C B is equivalent to A € f ~(B)
and that therefore

Ker f, ={[xla; f(x)€B}={lx]s; x € fT(B)} =f"(B)/A,

so that f, is injective if and only if A= f “(B).
Finally, Im f, = {[f (x)]z ; x € M} and so f, is surjective if and only if

(VneN)(3x e M) [n]z = [f(x)]z,
which is equivalent to the condition
(YneN)(@xeM) n—f(x)eB,

which is clearly equivalent to N =B +Imf. |

If f : M — N is an R-morphism then we shall denote by f* : M — Imf the
R-morphism given by the same prescription as f, namely f*(x) = f(x). Note that
although f and f* have the same effect on x € M we distinguish between them
since they have different arrival sets; f* is surjective whereas f need not be.

Theorem 4.4 [First isomorphism theorem] Let f : M — N be an R-morphism.
Then there is a unique R-isomorphism { : M /Ker f — Im f such that the diagram

+

M———Imf

| A~

M/Ker f
is commutative.

Proof Applying Theorem 4.3 in the case where N = Im f,B = {Oy} and A = Ker f
we obtain the existence of a unique R-morphism { : M/Kerf — Imf such that
{oli=f". Since f™ is surjective, so is {. Moreover, Ker f = f {0} = f ~(B) and so
¢ is also injective. Thus ¢ is an isomorphism. |

Corollary 1 If f : M — N is an R-morphism then there is an inclusion-preserving
bijection from the set of submodules of Im f to the set of submodules of M that contain
Kerf.
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Proof This is immediate by Theorem 4.2. |

Corollary 2 [Canonical decomposition] Every R-morphism can be expressed as the
composite of an epimorphism, an isomorphism and a monomorphism.

Proof With the above notation, the diagram

f

M————N
M/Kerf—gﬂmf

is commutative, ¢ being the natural inclusion. It follows that f =t o of. |

o Although the above decomposition is called canonical (or natural), it is by no
means unique; but if

M A B N

is another such decomposition of f then necessarily A ~ M/Kerf and B ~
Im f (see Exercise 4.6).

Theorem 4.5 [Second isomorphism theorem] If M is an R-module and if N, P are
submodules of M such that P C N then N /P is a submodule of M /P and there is a
unique R-isomorphism h : M/N — (M /P)/(N/P) such that the following diagram is
commutative: h

M—" sM/P

y I

M/NT(M/P)/(N/P)

Proof We know by the Corollary to Theorem 4.2 that N /P is a submodule of M /P.
Since 1j,’(N) = {[n]p ; n € N} = N/P, we can apply Theorem 4.3 to the above
diagram to obtain the existence of a unique R-morphism h : M/N — (M /P)/(N/P)
making the diagram commutative. Now since, by the commutativity, h o fjy is an
epimorphism, so is h. To show that h is also a monomorphism, it suffices to note that
i, (N/P) =N and appeal to Theorem 4.3 again. |

The third isomorphism theorem that we shall establish is a consequence of the
following.

Given an R-module M and a submodule A of M, it is clear that we have an exact
sequence

ta fla

0—A—> M M/A—0

in which ¢, is the natural inclusion and f, is the natural surjection. This therefore
generalises to arbitrary R-modules the situation in Example 3.3, in which the abelian
groups are considered as Z-modules.
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Theorem 4.6 If A and B are submodules of an R-module M then there is the commu-
tative diagram with exact rows and columns

0 0 0
0 ANB B B/(ANB)———0
0 A M M/A 0
0———A/(ANB) M/B M/(A+B)———0
0 0 0

Proof Letu,:A— M be the natural inclusion. Then t,”(ANB) € B and so we can
apply Theorem 4.3 to obtain the commutative diagram

At M

|k

ta)s

Considering likewise the natural inclusion vz : B — M, we obtain a similar commu-
tative diagram. These diagrams can be joined together and extended to form all but
the bottom right-hand corner of the big diagram, namely

Lol
R
.—)I—)I—).—).
.—)I—).

We can now complete the bottom right-hand corner by defining {z : M/A —
M/(A+B)and {,: M/B — M /(A+ B) by the prescriptions

Cp([xla) = Ixlasp, Callxlp) = [xIasp-
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It is clear that {5, {4 are R-morphisms which make the completed diagram commu-
tative. We now show that the bottom row

0——A/(ANB) 22 M /B M /(A+ B)— 0

is exact. By symmetry, the right-hand column will also be exact. Now, since {, is
clearly surjective and (t4), is injective by Theorem 4.3, it suffices to prove that
Im(t,), = Ker{,. For this purpose, we note that Im(t,), = {[x]z ; x € A} and
Ker{, = {[x]s ; x € A+ B}. Observing that

x€A+B=(JacA)(TIbeB)x=a+b=[x]g=[a+blz=[als,
we obtain Ker {4 € Im(t,),; and observing that
x€eA=(dac€A)x=a= (VbeB)[x]g=[alg=[a+bls,
we obtain the reverse inclusion. |

Corollary 1 [Third isomorphism theorem] If A and B are submodules of an R-
module M then
A/(ANB)~(A+B)/B.

Proof Since A and B are submodules of A+ B we can apply the above in the case
where M = A+ B. The bottom row of the diagram becomes

0——A/(ANB)—(A+B)/B——(A+B)/(A+B)——0.

Since (A + B)/(A+ B) is a zero module, the exactness of this row together with
Theorem 3.6(3) gives the required isomorphism. o]

The last of the isomorphism theorems that we shall require is the following, in
which the diagram is a Hasse diagram. The interpretation of this is that an ascending
line segment from A to B indicates that A is a submodule of B.

Theorem 4.7 [The butterfly of Zassenhaus] Let M be an R-module and suppose
that N, P, N’, P’ are submodules of M such that N C P and N’ C P’. Then relative to
the Hasse diagram

in which the unlabeled submodule is (N NP’)+(N’NP), the following quotient modules
are isomorphic :

N+(PmP’)~ Pnp’ NN’+(PmP’)

N+({PnNN) (NNP)+(N'nP) N'+(NnP’)’
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Proof Since PN N’ C P NP’ we have
(PNPY+N+(PNN)Y=(PNnP)+N
and, by the modular law (Theorem 2.4),
(PNPYN[N+(PNN)]=(PNP'NnN)+(PNN)=(P'NN)+(PNN’).

Applying the third isomorphism theorem withA=P NP’ and B=N + (P NN’), we
obtain an isomorphism
Pnp’ ~N+(PmP’)
(NNP)+(N'NP)  N+(PNN’)

The second isomorphism shown follows by symmetry. |

We end this section with some remarks concerning R-algebras. We have defined
a subalgebra of an R-algebra A to be a submodule that is also an R-algebra with
respect to the multiplication in A.

Definition 4.2 By an ideal of an R-algebra A we mean a subalgebra X of A such that
AX C X and XA C X, where AX = {ax ; a € A, x € X} and similarly for XA. By an
R-algebra morphism from an R-algebra A to an R-algebra B we mean an R-morphism
f :A— B that is also a morphism with respect to the semigroup structure; in other
words if, for all x,y € Aand all A €R,

fe+y)=f)+ (), fFAx)=Af(x), flxy)=f(x)f(¥).

Note that if f : A— B is an R-algebra isomorphism then so is f ! : B — A. This
is readily seen on replacing x, y in the above equalities by f~*(x), f ~(y).

We leave the reader the task of showing that Theorem 4.1 has an analogue in
terms of R-algebras in which the réle of the associated submodule is assumed by
an associated ideal. This analogue leads to the notion of the quotient algebra of an
R-algebra A by an ideal X. Somewhat later, we shall require the following result
concerning R-algebras.

Theorem 4.8 Let A be an R-algebra and M an R-module. Suppose that there is an
R-isomorphism f : A— M. Then there is a unique multiplication on M such that M is
an R-algebra with f an R-algebra isomorphism.

Proof Define a multiplication on M by
e, y) = x-y=fIf 7 f ]
Then since A is an R-algebra and f, f ! are R-morphisms it is readily seen that
(VAeR)(Vx,y eM) Alx-y)=(Ax)-y=x-(Ay).
Thus M is an R-algebra. Since, from the above definition,
FE) O =FLFEU O] = fxy)

we see that f is an R-algebra isomorphism.
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That the multiplication is unique follows from the fact that if (x,y) — xx y is a
law of composition on M such that f is an R-algebra isomorphism then, since !
is also an R-algebra isomorphism, we deduce from f~!(x x y) = f~}(x)f ~*(y) that

xxy=fIF710eAf )] oj
EXERCISES
4.1 An R-module is said to be cyclic if it is generated by a singleton subset. Let M = Rx be a

4.2

4.3

4.4

cyclic R-module. Recalling that the annihilator of x is the submodule Anng{x} ={A €
R; Ax =0}, prove that M ~ R/Anng{x}.

Deduce that if R is a principal ideal domain, i.e. a commutative integral domain
in which every ideal is generated by a singleton subset, and if x € M is such that
Anng(x) = p*R for some p € R (see Exercise 2.2) then the only submodules of M are
those in the chain

O=p"Mcp*'Mc.--cpMcp’™ =M.
[Hint. Use the correspondence theorem. ]
Let A, B be submodules of an R-module M. Establish an exact sequence of the form
0—— M/(ANB)—— M/Ax M/B——> M /(A+B)——0.

Deduce that

(A+B)/(ANB)~(A+B)/Ax(A+B)/B~B/(ANB) xA/(ANB).

Let R be a commutative unitary ring. Show that if I and J are ideals of R then there is
an exact sequence

0 InJ R R/IxR/J—>R/(I+J)——0.

Let f : M — N be an R-morphism. By a cokernel of f we mean a pair (P, ) consisting
of an R-module P together with an R-epimorphism 7t : N — P such that

(D) mof =0;

(2) for every R-module X and every R-morphism g : N — X such that g o f = 0 there
is a unique R-morphism 4 : P — X such that the diagram

is commutative.
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Prove that (N/Im f, ) is a cokernel of f.

Show also, in a manner dual to that of Exercise 3.5, that cokernels are unique to
within R-isomorphism.

[The snake diagram] Suppose that the diagram of modules and morphisms

A B Cc 0

u v/

is commutative and has exact rows. Show that this can be extended to a diagram

0 0 0
Kera 4 Ker 8 i Kery
i Jj k
A ‘ B ! c 0
a Jil Y
0 A Y B NG
p q r
A'/Im aLB’/ Imﬁ;c’/ Imy

which is also commutative and has exact rows and columns. Show also that there is a
‘connecting morphism’ ¢ : Kery — A’/ Im a such that

Keroa — s Ker I§; i Kery

/
A’/ImaLB’/Im[jLC’/Imy

is exact.

[Hint. To construct ¥ : given x € Kery let y € B be such that v(y) = k(x). Show
that B(y) € Kerv’ so that there exists a unique a’ € A’ such that u’(a’) = (y). Show
that the prescription #(x) = p(a’) is well defined (i.e. independent of y) and does the
trick.]

Let f : M — N be an R-morphism and suppose that f can be expressed as the composite
map
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B Y

M—5A—5B—H5N

where «a is an epimorphism, f is an isomorphism, and y is a monomorphism. Prove
that A~ M/Kerf and B~Imf.

[Hint. Use Theorems 3.4 and 3.5.]
If R is a commutative integral domain and x is a non-zero element of R let Rx" =

{yx™; y €R}. Show that Rx" is a submodule of R for every positive integer n and that
there is a descending chain of R-modules

RDRx2Rx?2---DRx"!'DRx"2D---

in which Rx""!/Rx™ ~ R/Rx for every n.

[Hint. Consider 1 : R — Rx"/Rx"*! given by #(r) = rx" +Rx"*!. Show that Ker = Rx
and use the first isomorphism theorem.]

Given the diagram A—5B LN C of R-modules and R-morphisms, show that there is
an exact sequence

Kera — Ker(foa) = Kerf3 »B/Ima — C/Im(B oa) — C/Imp.
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CHAIN CONDITIONS; JORDAN-HOLDER TOWERS

Definition 5.1 An R-module M is said to be noetherian, or to satisfy the ascending
chain condition on submodules, if for every ascending chain

Mo S My EMp S EM; S Mg &

of submodules, there is a natural number n such that (Yk > n) M), = M,,.

e Roughly speaking, this says that after a certain point the increasing sequence
(M;);cn becomes stationary.

Definition 5.2 We say that an R-module M satisfies the maximum condition if every
non-empty collection of submodules of M has a maximal member relative to the
ordering of set inclusion.

Our immediate task now is to show that the above two definitions are equivalent.
Theorem 5.1 For an R-module M the following statements are equivalent :

(1) M is noetherian ;
(2) M satisfies the maximum condition ;
(3) every submodule of M is finitely generated.

Proof (1) = (2): Let C be a non-empty collection of submodules of M and choose
M, € C. If M, is not maximal in C then there exists M; € C with My, C M;. If M, is
not maximal in C then there exists M, € C such that M, C M; C M,. This argument
yields an ascending chain of submodules of M. By (1) there exists a natural number
n such that (Vk > n) M; = M,,. The chain therefore becomes stationary at M,, which
is then maximal in C.

(2) = (3) : Let N be a submodule of M. The collection F of all submodules of N
that are finitely generated is not empty since it clearly contains the zero submodule
of M which is generated by @ (Theorem 2.2). By (2) there is therefore a maximal
element, N* say, in F. Now for any x € N the submodule N*+Rx of N generated by
N* U {x} is finitely generated and so belongs to F. But N* € N* + Rx and so, since
N* is maximal in F, we have N* = N* + Rx, whence Rx C N* and so x € N*. Thus
we see that N € N* whence we have N = N* (since N* is a submodule of N), and
consequently N is finitely generated.

(3)=>(1):Let My € M; € M, C--- be an ascending chain of submodules of M.
We note first that

2 M =M.

i€eN ieEN
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In fact, if x € Y. M; then we have x = Y. m; where I is a finite subset of N and
ieN iel
m; € M, for every i € I. If now j denotes the greatest element of I then since M; € M;
for every i € I we clearly have x € M; C | J M;. Thus we see that >, M; C | M;,
ieEN ieN ieN

with the reverse inclusion obvious.

Now by the hypothesis Y. M; is finitely generated, say by {x;,..., X, }; and since

ieN
each x; € >} M; = | J M; we have x; € M; for some j. There being only finitely many
ieN ieN

X;, there is therefore a natural number n (namely, the largest such j encountered)
such that x; € M, for i = 1,...,r. Since the set {x;,...,x,} generates >. M, it

ieN

follows that Y M; C M,,. Again since Y, M; = | J M; we deduce that >, M; = M,
ieN ieN ieN ieN

whence it follows that the given chain terminates and we have (1). ]

We can of course define the dual concepts of descending chain condition on sub-
modules and minimum condition in the obvious way. We say that M is artinian if it
satisfies the descending chain condition on submodules. The analogue of Theorem
5.1 is the following.

Theorem 5.2 For every R-module M the following statements are equivalent:
(1) M is artinian ;

(2) M satisfies the minimum condition.

Proof (1)=>(2): This is similar to (1) = (2) in Theorem 5.1.
(2) = (1) : If M does not satisfy the descending chain condition on submodules
then M must have an infinite descending chain of submodules

MODMlDMzD"'DMiDMH_lD... .

Clearly, the collection C of all the M; in this chain has no minimal element and so
M cannot satisfy the minimum condition. o]

Chain conditions have hereditary properties, as we shall now see.
Theorem 5.3 If an R-module M satisfies either chain condition then every submodule

and every quotient module of M satisfies the same chain condition.

Proof The statement concerning submodules is obvious since every submodule of
a submodule of M is also a submodule of M. As for quotient modules, the result is
an immediate consequence of the correspondence theorem (Theorem 4.2). o]

The converse of Theorem 5.3 also holds. In fact, there is a much stronger result :

Theorem 5.4 5.4 If M is an R-module and if N is a submodule of M such that N and
M /N satisfy the same chain condition then M also satisfies that chain condition.

Proof We give a proof for the case of the ascending chain condition; that for the
descending chain condition is similar.



Chain conditions; Jordan-Hoélder towers 41
Suppose that
MyCM;C---CM;CM; ;S
is an ascending chain of submodules of M. Then
MoﬂNngﬂNg'“gMiﬁNgMH_lﬂNg'“
is an ascending chain of submodules of N and, by Theorem 3.1,
iy (Mo) Sty (M) € -+ S i (M) Sty (Mg S+

is an ascending chain of submodules of M /N. Since, by hypothesis, N is noetherian
there is a positve integer n such that

(Vk=n) M;NnN=M,NN;
and since M /N is also noetherian there is a positive integer m such that
(Vk=m) b1y (M) =ty (My,).
Now let p = max{n, m}; then we have
(Vk=p) Mi2M,; M NN =M,NN; i/ (M) =l (M,).

Suppose that t is any integer greater than or equal to p. Since i,/ (M,) = 7 (M,),
given any y € M, there exists x € M, such that y + N = x + N, so that y —x € N.
But since M,, € M, we have x € M, and so y —x € M,. Thus

y—x€M,NN=M,NN CM,

and so y —x =z € M, whence y = x +z € M,,. It follows that M, € M,,, whence
M, = M,,. Thus M is noetherian. o]

A natural question arises at this stage, namely whether we can find a character-
isation of R-modules which satisfy both chain conditions. This we now proceed to
do. For this purpose we require some additional terminology.

Definition 5.3 An R-module M is said to be simple if the only submodules of M are
{0} and M.

We note by the following result that every simple R-module is finitely generated.
Theorem 5.5 If M is an R-module then M is simple if and only if

M =Rx ={rx; r €R}

for every non-zero x € M.

Proof = :If M is simple then x = 1x € Rx # {0} for every x # 0; and since Rx is
a submodule of M we have Rx = M.

& : If Rx = M for every non-zero x € R, let N # {0} be be a submodule of M.
Given n € N with n # 0 we have M = Rx € N whence M = N and M is simple. @&
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Example 5.1 If V is a vector space over a field F then for every non-zero x € F the
subspace F, = {Ax ; A € F} is simple. In particular, the F-vector space F is simple.

The following result deals with how morphisms are affected when there are no
proper submodules.

Theorem 5.6 Let M,N be R-modules and let f : M — N be a non-gero R-morphism.
Then

(1) if M is simple, f is a monomorphism;

(2) if N is simple, f is an epimorphism.
Proof (1) Ker f is a submodule of M so, since f is not the zero morphism, we must
have Ker f = {0} whence f is a monomorphism.

(2) Im f is a submodule of N so, since f is not the zero morphism, we must have
Im f = N whence f is an epimorphism. |

Corollary 1 [Schur] If M is a simple R-module then the ring EndgM of R-morphisms
f : M — M is a division ring.

Proof By (1) and (2) above, every non-zero f € EndyM is an R-isomorphism and
so is an invertible element in the ring. O

Definition 5.4 If M is an R-module then by a tower of submodules of M we shall
mean a finite decreasing chain of submodules

M=M,>M, DM, >:-->M, ={0}.
If we have two towers of submodules of M, say
T, : M=My>DM,>DM,D>--->M,={0};
T2 : M:NoDNIDNzD"‘DNtZ{O},
then we say that T, is a refinement of T; if for j =1,...,r there exists i € {1,...,t}
such that N; = M;; in other words, if every module in the chain T; appears in the

chain T,. We say that the towers T; and T, are equivalent if t = r and there is a
permutation o on {1,...,r} such that N;/N;;; =~ My(;)/Mg(i)41-

Theorem 5.7 [Schreier’s refinement theorem] If M is an R-module and if Ty, T, are
towers of submodules of M then there are refinements S; of T; and S, of T, that are
equivalent.

Proof Given the towers
T, : M=MyDM;DMy,D:--D>M,={0};
Tz N M:N()DNl:)NzD"':)NtZ{O},
define (fori=1,...rand j=1,...,t)
M;; = M; +(M;_1 NN;);
Nj,i = NJ+(N]_1DMI)
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Suppose, without loss of generality, that t < r. Then, defining M;;, = M;, for k =
t+1,...,r we have the descending chains

My =Mig2M;y 22 M = =M, =M; =M1
“.Nj—lzNj, QNj,l 2 ................ QNj,r =Nj:Nj+l,0“‘

which are refinements of T;, T, respectively. Let us now consider the quotient mod-
ules formed by consecutive entries M; j_; 2 M, ; and N;;_; 2 N; ; in these chains. It
is immediate from the Zassenhaus butterfly (Theorem 4.7 with N =M; c M;_; =P
and N'=N; C N;_; = P') that fori,j =1,...,r we have

M;j1/M;j = Nj1/Nj.

Consequently we see that M; ;_; = M, ; if and only if N;;_; = N; ;. We conclude that
on deleting from the above chains all entries that are equal to their predecessor we
obtain refinements S; of T; and S, of T, that are equivalent. |

Definition 5.5 By a Jordan-Hélder tower of submodules of an R-module M we shall
mean a tower
M=M,>M;, DM, >:--D>M, ={0}.

in which every quotient module M;/M;_, is simple.

The importance of the concept of a Jordan-Holder tower lies in the observation
that the inclusion-preserving bijection from the set of submodules P of M such that
M; 2 P 2 M, to the set of submodules of M;/M;,; shows immediately that if T
is a Jordan-Hoélder tower then T has no proper refinement; in other words, if T’ is a
refinement of T then necessarily the entries of T’ are precisely those of T. This leads
to the following result.

Theorem 5.8 If M is an R-module and

T, : M= My>M,D>M,>->M,=1{0},
T, : M =Nyd>N,DN,>---DN,={0},

are Jordan-Holder towers of submodules of M then t = r and T;, T, are equivalent.

Proof By Schreier’s refinement theorem, T; and T, admit equivalent refinements
S, and S, respectively. But since T; and T, are Jordan-Holder towers their only
refinements are themselves. o]

This result shows in particular that the number of non-zero submodules that appear
in any Jordan-Holder tower is independent of the choice of the tower. This number is
called the height of the tower. By abuse of language we also call it the height of the
module M and denote it by h(M).

e Most authors use the term composition series instead of Jordan-Holder tower,
in which case they use the term length instead of height.
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Theorem 5.9 An R-module M has a Jordan-Hélder tower of submodules if and only
if it is both artinian and noetherian. In this case every tower of submodules has a
refinement which is a Jordan-Holder tower:

Proof Suppose first that M has a Jordan-Holder tower and let h be its height. We
prove that M satisfies both chain conditions by induction on h. Clearly, if h = 0 then
M = {0} and there is nothing to prove. Assume, therefore, that the result is true for
all R-modules having Jordan-Holder towers of height less than n (where n > 1). Let
M be an R-module having a Jordan-Hoélder tower of height n, say

M=My>M;>M,D---D>M,_; DM, ={0}.
Then we observe that
M/M,_y = My/M,_y > My/My_y D>+ > M,y /M,_, = {0}

is a Jordan-Holder tower for M /M, _; of height n — 1. In fact, it is clear that the
inclusions in this second tower are strict; and by the second isomorphism theorem
(Theorem 4.5) we have, fori=1,...,n—1,

(M;/My—1)/ (M 41/ My—q) = M; /M4

amd so each quotient module is simple since M;/M;,, is simple. By the induc-
tion hypothesis, therefore, M /M,,_, satisfies both chain conditions. However, since
M,_, = M,_;/{0} = M,_, /M, we see that M,,_, is simple and hence trivially satis-
fies both chain conditions. It is now immediate by Theorem 5.4 that M satisfies both
chain conditions. This then shows that the result holds for all modules of height n
and completes the induction.

Conversely, suppose that M satisfies both chain conditions. Let C be the collection
of all the submodules of M that have Jordan-Holder towers. Then C # @ since every
descending chain of non-zero submodules M, > M; > M, O ... terminates at M, say
which must be simple and so has a Jordan-Ho6lder tower of height 1. We now note
that C has a maximal element, M* say; for otherwise the ascending chain condition
would be violated. We now show that M* = M, whence M will have a Jordan-Holder
tower. Suppose, by way of obtaining a contradiction, that M* # M. Then M/M"* is
not a zero module and so, since M /M™* inherits the descending chain condition from
M, it follows that M /M* has simple submodules. There therefore exists M** such
that M* ¢ M** € M with M**/M™* a simple module. Now M** has a Jordan-Holder
tower (since M* does, and M*™/M™* is simple) and so we have M** € C, which
contradicts the maximality of M* in C. This contradiction shows that we must have
M = M*, whence M has a Jordan-Holder tower.

As for the final statement, let T be a tower of submodules of M and let J be a
Jordan-Holder tower of submodules of M. By Schreier’s refinement theorem (Theo-
rem 5.7) there are refinements T, of T and J, of J that are equivalent. But since J
is a Jordan-Holder tower J, coincides with J. Thus T, is also a Jordan-Holder tower.
Consequently, T has the Jordan-Holder refinement Tj,. |

Definition 5.6 We say that an R-module is of finite height if it is both artinian and
noetherian.
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EXERCISES

5.1

5.2

5.3

5.4

5.5

5.6

If A is a commutative integral domain prove that the following statements are equiva-
lent

(a) Ais a principal ideal domain;
(b) as an A-module, A is noetherian and the sum of two principal ideals of A is a
principal ideal.

[Hint. (2) = (1) : If I is an ideal of A then, as an A-module, I is finitely generated, say

by {x1,...,X,}; observe that I = > Ax;.]
iz

Let M be an R-module of finite height. If N is a submodule of M prove that there is a
Jordan-Holder tower

M=M,>DM;DM,>--->M,_, DM, ={0}.
with, for some index k, M;, = N.
[Hint. Use Theorem 5.9; consider a tower of submodules of N.]

Let M and N be R-modules of finite height. Prove that if there is a non-zero R-morphism
f M — N then there are Jordan-Hoélder towers

M=My>M, DM, D--->M,_, DM, = {0},
N=Ny,D>N;DN,>:--DN,_; DN, ={0},

with the property that, for some i and j,
M;/M;yy 2 N;/Njy,.
[Hint. Use Exercise 5.2; consider a Jordan-Ho6lder tower through Ker f.]
If M is an R-module of finite height and if N is a submodule of M prove that
h(N)+h(M/N) =h(M).

[Hint. Use Exercise 5.2.]
Deduce that N = M if and only if h(N) = h(M).

If M and N are R-modules with M of finite height and if f : M — N is an R-morphism,
prove that Im f and Ker f are of finite height with

h(Im f)+ h(Ker f) = h(M).

Let M,,..., M, be R-modules of finite height. Prove that if there is an exact sequence

0 M, f M, fa .”fn—l M, 0

then 3 (=1)*h(M,) = 0.
k=1
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5.7

5.8

5.9

Module Theory

[Hint. Use Theorem 3.6 (the case n = 2) and induction. For the inductive step use the
sequences

0— M, M, oM, ,——>K——0,
n—1

0——K— M, M, ——0

inwhich K =Ker f,_, =Imf, ,, m = f', and i is the natural inclusion.]

Deduce that if M and N are submodules of finite height of an R-module P then M +N
is of finite height with

h(M +N)+h(M NN)=h(M x N) =h(M) + h(N).
[Hint. Apply the above to the exact sequence
0—MNN—MXN—>M+N—0
of Exercise 3.4.]
Show also that P/(M N N) is of finite height with

h[P/(MNN)]+h[P/(M+N)]=h(P/M)+h(P/N).
[Hint. Use the exact sequence of Exercise 4.3.]

Let M be an R-module of finite height. If f : M — M is an R-morphism, prove that f is
injective if and only if f is surjective.

[Hint. Note that for every positive integer n the R-morphism f" is injective/surjective
whenever f is injective/surjective. Consider the chains

OCKerf CKerf2C---CKerf"CKerf™!C...;
M2Imf 2Imf22---2Imf" 2Imf™' 2--- ]

Let M and N be noetherian R-modules and let P be an R-module such that there is a

short exact sequence

0—sM—sp—5N—0.

If A is a submodule of P show that ANIm f is finitely generated, say by {x;,...,x,}.
Now show that there exist y;,...,y, € Asuch that {y,,...,¥,,X;,...,X,} generates A.
Deduce that P is also noetherian.

Determine which of the chain conditions, if any, are satisfied in each of the following
modules :

(1) Z as a Z-module;

(2) Z,, as a Z-module;

3) Z,, as a Z,-module;

(4) Q as a Q-module;

(5) Q as aZ-module;

(6) Q[X] as a Q-module;

(7) Q[X] as a Q[X]-module;

(8) Q[X]/M as a Q[X]-module, where M is a proper submodule.
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5.10 LetF be afield and let M, be the ring of nxn matricesover F.Fori =1,...,nletE; € M,
be the matrix whose (i, 1)-th entry is 1 and all other entries are 0. Fori = 1,...,n define

B; =M, (E, +---+E,).

Prove that
M,=B,D>B, ;D:--DB; DB,={0}

is a Jordan-Holder tower for the M,,-module M,,.

5.11 For a given prime p let

k
QP={er; (Ak e Z)(IneN) xzﬁ}.

Show that the Z-module Q,/Z is artinian but not noetherian.

[Hint. Let H be a non-zero subgroup of Q,/Z. Let t be the smallest positive integer
such that, for some k relatively prime to p, k/p* + Z ¢ H. Show that H coincides with

S._1/Z where
1 2 =11
Stlz{o’ 1’ 1)"')p 1 }']
pt ptT P
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PRODUCTS AND COPRODUCTS

We turn our attention now to another important way of constructing new modules
from old ones. For this purpose, we begin with a very simple case of what we shall
consider in general.

If A and B are R-modules then the cartesian product set A x B can be made into
an R-module in the obvious component-wise manner, namely by defining (a;, b;) +
(ay, by) = (a;+ay, by +by) and A(a;,a,) = (Aay, Aay). Associated with this cartesian
product module AxB are the natural epimorphisms pr, : AxB — Aand pr; : AXB — B
given by prs(a,b) = a and pryz(a,b) = b. Now there is an interesting ‘element-
free’ characterisation of such a cartesian product module, namely that if X is any
R-module and f; : X — A and f, : X — B are R-morphisms then there is a unique
R-morphism ¢ : X — A x B such that the diagrams

X X

9 D)
/ Jfl / sz
AX B——A AXxB—— B

Pry Py

are commutative. In fact, 4 is given by #(x) = (( f1(x), fz(x)).
Our immediate objective is to generalise this to an arbitrary collection of R-
modules. For this purpose, we introduce the following notion.

Definition 6.1 Let (M;);c; be a family of R-modules. By a product of this family we
shall mean an R-module P together with a family (f;);c; of R-morphisms f; : P — M;
such that, for every R-module M and every family (g;);; of R-morphisms g; : M —
M;, there is a unique R-morphism h : M — P such that every diagram

/]

P—— M,

fi
is commutative. We denote such a product module by (P, ( fi)ie1)~

Theorem 6.1 If (P,(f,);c;) is a product of the family (M;);c; of R-modules then each
fi is an epimorphism.

Proof Given i € I, take M = M;, g; = idy, and g; the zero map for j # i in the
above definition. Then f; o h = id,, whence f; is an epimorphism. o]
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Theorem 6.2 [Uniqueness] Let (P, (fl-)l-el) be a product of the family (M;);e; of

R-modules. Then (P’, (ff )iel) is also a product of this family if and only if there is a
unique R-isomorphism h : P’ — P such that (Yi €1) fioh = f/.

Proof Suppose that (P’, ( fi/)iel) is also a product. Then there exist unique mor-
phisms h: P’ — P and k : P — P’ such that, for every i € I, the diagrams

P’ P
/ in/ / J{fl
P— M, P'Y—sM;
fi £

are commutative. Since then f; oh ok = f/ o k = f;, the diagram

P
hok l
fi
PL— M,

fi

is commutative for every i € I. But, from the definition of product, only one R-
morphism exists making this last diagram commutative for every i € I; and clearly
idp does just that. We deduce, therefore, that h o k = idp. In a similar way we can
show that k o h = idp,, whence we see that h is an isomorphism with h™* = k.

Suppose, conversely, that that the condition holds. Then since f; = f/ o h~! for
every i € I, we can use the fact that (P, ( fi)iel) is a product to produce a unique
R-morphism 4 : M — P such that the diagram

M
L
&i
p P’ M

is commutative. Consider now h™* o : M — P’. We have f/ o (h™' o #) = g;, and if
t : M — P’ is any R-morphism such that f/ o t = g; then the equalities

gi=fi/°t=fi/°h_1°h°t

together with the uniqueness property of ¥ give ho t = whence t = h™! o . This
then shows that (P’, (fi/)iel) is also a product of (M;);¢;. ol

We shall now settle the question concerning the existence of products. For this
purpose, we ask the reader to recall that if (E;);¢; is a family of sets indexed by I then

the cartesian product set 'XI E is defined to be the set of all mappings f : I — | J E;
1€ i€l
such that f (i) € E; for each i € I. Following standard practice, we write f (i) as x;
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and denote f by (x;);¢;, SO that ‘XI E; consists of those families (x;);c; of elements of
1€

|J E; such that x; € E; for every i € I.

iel
Given a family (M;);¢; of R-modules, the cartesian product set 'XI M; can be given
1€
the structure of an R-module in an obvious way, namely by defining laws of compo-
sition by
(Mier + (Nier = (M + )i, AMy)ier = (Amy)ie

We shall denote the R-module so formed also by ‘Xz M; without confusion and shall
e
call it the cartesian product module (or direct product) of the family (M;),c;. For every
Jj € I the j-th canonical projection pr; : _XI M; — M; is defined by the prescription
1€
prj((mi)iel) =m;. It is clear that each pr; is an R-epimorphism.

Theorem 6.3 [Existence] ('Xz M;, (pri)iel) is a product of the family (M;);¢;.
1€

Proof Let M be an arbitrary R-module and let (g;);c; be a family of R-morphisms
with g; : M — M; for each i € I. Define a mapping h: M — ‘XI M; as follows : for
I£S]
every x € M let the i-th component of h(x) be given by (h(x))l. = g;(x); in other
words, h(x) = (gl-(x))i ;- It is then readily verified that h is an R-morphism and is
such that pr; oh = g; for every i € I. That h is unique follows from the fact that
ifk: M — 'XI M; is also an R-morphism such that pr; o k = g; for every i € I then
e

clearly
(VieD(vxeM)  (k(x)), = g(x)=(h(x),
whence we see that k = h. O
Corollary 1 [Commutativity of X] If o : I — I is a bijection then there is an R-
isomorphism
i>e<l M; = i>e<l Mo o)-
Proof It is clear that ('XI My, (prg(i))iel) is also a product of (M;);c; whence the
1€
result follows by Theorem 6.2. |
Corollary 2 [Associativity of X] If {I; ; k € A} is a partition of I then there is an
R-isomorphism
X, M = k>€<A(ieXIk M;).

i€l

Proof Let M be an arbitrary R-module. Given any M; let k € A be such that i € I.
Then in the diagram
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M

|
hy 8i

(X M) X M; M;

keA i€l Pry i€l pr;

there is a unique R-morphism hy : M — )(I M; such that pr;ohy = g; forevery i € I,
i€l

and a unique R-morphism f : M — k>e<A(XI Ml-) such that pri o f = h; for every k € A.
i€l

It follows that f satisfies the property

(Vie,l)(VkeA) priopriof =g;.

Suppose now that f': M — k)éA(XI Mi) is also an R-morphism satisfying this prop-
i€l

erty. Given x € M, let f(x) = (x)xea Where x; = (m;);, for every k € A, and let
f'(x) = (x;)xea Where x; = (m});;_for every k € A. Then we have

{gi(X) = (pr; o pri)[f (x)] = pr;(x) = my,
gi(x) = (pr; o pr)[f'(x)] = pr;(x;) = m},

whence it follows that f’(x) = f (x) and consequently that f’ = f. This then shows

that k>e<A(i2<Ik M;) together with the family (pr; o prk)ielk’keA is a product of (M;);e;.

The required isomorphism now follows by Theorem 6.2. |

The above results show that, to within R-isomorphism, there is a unique product
of the family (M;);c;. As a model of this we can choose the cartesian product module

X M; together with the canonical projections.

i€l n

In the case where I is finite, say I = {1,...,n}, we often write ‘XI M, as ‘Xl M, or
1 1=

€
as M; x --- x M, the elements of which are the n-tuples (m;,...,m,) with m; € M;
fori=1,...,n. Note that Corollary 6.2 above implies in particular that

i>€<IMi = M; x jiiMj’
and that Corollary 6.1 implies in particular that M x N ~ N x M. Thus, for example,
we have
3
M, x (My x M3) ~ izl M; ~ (M; x M,) x M.

We shall now consider the question that is dual to the above, namely that which
is obtained by reversing all the arrows.

Definition 6.2 Let (M;);<; be a family of R-modules. By a coproduct of this family we
shall mean an R-module C together with a family (f;);c; of R-morphisms f; : M; = C
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such that, for every R-module M and every family (g;);c; of R-morphisms g; : M; —

M, there is a unique R-morphism h : C — M such that every diagram

M—2 M

1%

C
is commutative. We denote such a coproduct by (C ,( fi)iel)-

Theorem 6.4 If (C, (fi)iel) is a coproduct of the family (M;);c; of R-modules then
each f; is a monomorphism.

Proof Giveni € I, take M = M;, g; = idy;, and g; the zero map for j # i in the
above definition. Then it follows from ho f; = id, that each f; is a monomorphism.
o]

Theorem 6.5 [Uniqueness] Let (C, (fl-)iE,) be a coproduct of the family (M;);c; of

R-modules. Then (C’, (fi’)iel) is also a coproduct of (M;);¢; if and only if there is an
R-isomorphism h : C — C’ such that (Vi € I) ho f; = f/.

1

Proof This is exactly the dual of the proof of Theorem 6.2; we leave the details to
the reader. |

As to the existence of coproducts, consider the subset of the cartesian product

module X M; that consists of those families (m;)c; of elements of | J M; which are
i€l
such that m; = 0 for ‘almost all’ i € I; i.e. m; = 0 for all but finitely many m;.
It is clear that this subset of X M; is a submodule of )( M;. We call it the external
direct sum of the family (M; )le, and denote it by EBM For every j € I we denote
i€l
by in; : M; — €D M; the mapping given by the prescription in;(x) = (x;);c;, where
i€l
x; =0 fori# jand x; = x. It is readily seen that in; is an R-monomorphism; we
call it the j-th canonical injection of M; into P M;.
iel

Theorem 6.6 [Existence] (69 M;, (ini)iel) is a coproduct of the family (M;);c;-
iel

Proof Let M be an arbitrary R-module and let (g;);c; be a family of R-morphisms
with g; : M; — M for everyi € I. Define a mapping h : @ M; — M by the prescription

i€l

h((mi)iel) = Z g:(m;).

i€l

Note immediately that h is well defined since for every family (m;);c; all but a finite
number of the m; are zero. It is readily verified that h is an R-morphism. Moreover,
for every x € M; we have h[in;(x)] = g;(x) and so hoin; = g; foreveryi €.
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To show that h is unique, suppose that k : @ M; — M is also an R-morphism
iel
such that koin; = g; for all i € I. Then for all (m;);c; € € M; we have, recalling that
i€l
all sums involved are well defined,

k((m)ier) = Yk oin))(m;) = X gi(m;) = h((my)ier ),
iel iel

and consequently k = h. o]

Corollary 1 [Commutativity of @] If o : I — I is a bijection then there is an R-
isomorphism

D M; = D Mo ().
i€l i€l
Proof It is clear that (@ Mg i), (ina(i))ia) is also a coproduct of (M;);c; whence
iel

the result follows from Theorem 6.5. =

Corollary 2 [Associativity of @] If {I; ; k € A} is a partition of I then there is an
R-isomorphism

DM, ~D(D M,).

iel keA i€l

Proof Let M be an arbitrary R-module. Given any M; let k € A be such that i € I.
Then in the diagram

ink

d(dMm)

keA i€l

there is a unique R-morphism h;, : € M; — M such that h; oin; = g; for every i € I,
i€l
and a unique R-morphism f such that f oin, = hy for every k € A.
It follows that f satisfies the property

(Viel,)(Yk€A)  foingoin, =g;.

Suppose now that f’ : @(@ Ml-) — M is also an R-morphism that satisfies this
keA i€l
property. Let prj.B : @ M; — M; be the restriction to (P M; of pr; : ‘XI M; — M;. Then,
i€l il 1€
observing that Z;(inj o prj.B) is the identity map on GEBI M;, we have
je j
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£ = 3 5(f oing oin; o pif o pr?)

keAiel,

= 3 2(gioprf opr})

keAiel,

= 3 S(f oingoin o pr®opr?)

keAiel,

This then shows that @ (@ M;) together with the family (iny o ini)ielk rea 1S @ CO-
keA i€l} ’

product of the family (M;),;. The required isomorphism now follows by Theorem
6.5. |

The above results show that, to within R-isomorphism, there is a unique coprod-
uct of the family (M;);¢; of R-modules. As a model of this we can choose the external
direct sum € M; together with the canonical injections.

iel

n
In the case where [ is finite, say I = {1,...,n}, we often write @ M; as € M; or
iel i=1
as M, @ - -- ® M, the elements of which are the n-tuples (m;,...,m,) with m; € M;
fori=1,...,n.

o Thus we see that when the index set I is finite, the modules € M; and 'XI M;
i€l AS
coincide.
Note also that Corollary 6.4 above implies in particular that

DOM; ~M,; &P M,,
iel i

and that Corollary 6.3 implies in particular that M; & M, ~ M, & M;. Thus, for
3

example, we have M; & (M, ® M3) ~ P M,; ~ (M; & M,) & M.
i=1

o The reader will find it instructive to verify Theorem 6.6 in the case where
I={1,2}.

The following is a useful characterisation of coproducts.

Theorem 6.7 An R-module M and a family (i;);e; of R-morphismsi; : M; —> M forma
coproduct of (M), if and only if there is a family (7;);; of R-morphisms 7t; : M — M;
such that

o [idy ifk =],
M “k“f_{ 0 ifk#j:

(2) (Ym e M) m;(m) =0 for all but finitely many j € I and

2o m;)(m) =m.

jeI
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Proof Suppose first that (M , (i) je,) is a coproduct of (M;);¢;. Then by Theorems

6.5 and 6.6 there is an R-isomorphism f : @ M; — M such that, for every j € I, the
jeI
diagram

DM,
is commutative. For every j € I define 7t; : M — M; by
my=pryof

where prj?a denotes the restriction to JEEBIM ; of the j-th projection pr; : j>e<I M; — M;.
Then for all k, j € I we have
o . o |idy,  ifk=7;
nkolj—pr;"of oi; —pr?omj —{ O] ik .

Moreover, for every m € M, the equality 7;(m) = prj,"[f’l(m)] shows that 7t;(m) is
zero for all but a finite number of j € I. Finally,

Z;(ij om;)(m) = Z;(f oin;o prj.B of_l)(m)
i€ je
= (7 o Xtinoprf) o £ 1))
je
=nm,

since Z(inj o pr?) is the identity map on P M;.
jel JjelI
Suppose, conversely, that (1) and (2) hold. Then, by (2), the prescription

(YmeM)  g(m)= 3(in; o m;)(m)

jel

yields an R-morphism g : M — P M;. By Theorem 6.6, there is an R-morphism

J€EI

h: JGEBIMj — M such that hoin; =i; for eyeryj € I. The diagram
i

J
o —

M~ M
ian %

now gives, for every m € M,



56 Module Theory

hlg(m)]= 2 (hoin; o m;)(m) = 3,(ij o m;)(m) = m

JEI JEI
and so h o g is the identity map on M. Now given x € EB M; we also have, using the
j
fact that Z(inj o pr;'?)(x) =X,

jeI
g[h(x)] = Z;(injOT[j)[h(x)]
j€

= > >(inj o mj o hoiny o pr¥)(x)

jel kel

= > >(injo mj 0 o prl)(x)

jelkel

> (in; o pr®)(x) by (1)

jel

= X.

Thus g o h is the identity map on P M;. It follows that g, h are mutually inverse R-
jel

isomorphisms. Appealing now to Theorem 6.5 we see that (M ,(1)je ,) is a coproduct

of (M j ) jel- o]

e Note that when the index set I is finite, say I = {1,...,n}, condition (2) of

Theorem 6.7 simplifies to >, (i; o 7;) = idy,.
=1

e There is, of course, a characterisation of products that is dual to that in Theo-
rem 6.7; see Exercise 6.9.

We now turn our attention to a family (M;);c; where each M; is a submodule of
a given R-module M. For every j € I let; : M; — M be the natural inclusion and let
h: @ M; — M be the unique R-morphism such that the diagram
i€l
'
M———M

1

D M;

i€l

is commutative for every j € I. From the proof of Theorem 6.6, we know that h is

given by
h((m)jer) = 2 15(m)) = 2im;.

jel jel

Thus we see that Imh is the submodule Y. M;. Put another way, we have the exact
sequence <!
h
DM, M—"— M/ 3 M;———0.

i€l i€l
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Definition 6.3 If M is an R-module and (M;);¢; is a family of submodules of M then
we shall say that M is the internal direct sum of the family (M;);; if the mapping
h: @ M; — M described above is an isomorphism.
iel
e Since, by the above definition, internal direct sums (when they exist) are iso-
morphic to external direct sums, we shall adopt the practice of denoting in-
ternal direct sums also by the symbol €. We shall also omit the adjectives
‘internal’ and ‘external’ as applied to direct sums since the context will always
make it clear which one is involved.

Theorem 6.8 An R-module M is the direct sum of a family (M;);c; of submodules if

and only if every x € M can be written in a unique way as x = Y, m; where m; € M;
iel

for every i € I with almost all m; = 0.

Proof The mapping h described above is surjective if and only if M = Imh = > M;,
iel

which is equivalent to saying that every x € M can be expressed in the form x =

> m; where m; € M; for every i € I and almost all m; = 0. Also, since we have

i€l

>m; = h((mi)iel), we see that h is injective if and only if such expressions are

iel

unique. O

Theorem 6.9 Let (M;);c; be a family of submodules of an R-module M. Then the fol-
lowing statements are equivalent :

(1) D) M; is the direct sum of (M;);er;

iel
(2) if >.m; =0 with m; € M; for every i €I then m; = 0 for every i € I;
iel
(3) (Viel) M;n > M; = {0}.
J#i

Proof (1)= (2): By Theorem 6.8, the only way O can be expressed as a sum is the
trivial way.

(2)= (3) : Let x € M; N X, M;, say x = m; = », m;. Then m; + > ,(—m;) =0

J#i J#i J#i

whence, by (2), m; =0 and so x = 0.

(3)= (1) : Suppose that Y. m; = >’ n; with m;,n; € M; for each i. Then we have

iel iel
m; —n; = »,(n; —m;) where the left-hand side belongs to M; and the right-hand
J#i
side belongs to ), M;. By (3) we deduce that m; —n; = 0, whence (1) follows by
J#i

Theorem 6.8. o
Corollary 1 If A, B are submodules of M then M = A® B if and only if M = A+ B and
ANB ={0}. o]

Definition 6.4 We shall say that submodules A, B of an R-module M are supplemen-
tary if M = A® B. A submodule N of M is called a direct summand of M if there is a
submodule P of M such that N and P are supplementary.
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o It should be noted that an arbitrary submodule of an R-module M need not
have a supplement. For example, let p,q € Z \ {0,1} and consider the sub-
modules pZ,qZ of Z. We have pZ N qZ # {0}. Since all the submodules of Z
are of the form nZ for some n € Z, it follows that pZ (with p # 0,1) has no
supplement in Z.

e Note also that supplements need not be unique. For example, consider the
R-vector space R? and the subspaces

X={(x,0); xeR}, Y={(0,y); y€R}, D={(r,r); r €R}.
It is clear that every (x, y) € R? can be expressed as

(e, y)=(x,x)+(0,y —x)=(y,¥) +(x—,0)
whence we see by Corollary 6.5 that R2=D &Y =D & X.

However, as our next result shows, any two supplements of a submodule are
isomorphic.

Theorem 6.10 If M;, M, are supplementary submodules of M. Then M, ~ M /M;.

Proof Since M = M; ® M, the canonical projection pr, : M — M,, described by
pry(m; +m,) = my, is clearly surjective with Ker pr, = M;. Thus, by the first isomor-
phism, theorem we have M, = Impr, ~ M /Kerpr, = M /M;. ]

The notion of a direct summand is intimately related to a particular type of short
exact sequence. We shall now describe this connection.

Definition 6.5 An exact sequence of the form N —,P——0issaid to split if there

is an R-morphism 7 : P — N such that g o = = idp; and 0—>ML>N is said to
split if there is an R-morphism p : N — M such that p o f = id,,. Such R-morphisms
7, o will be called splitting morphisms.

e Note that in the above definition g is an epimorphism so there always exists
a mapping © : P — N such that g o m = idp; and since f is a monomorphism
there always exists a mapping p : N — M such that p o f =1id,,.

Definition 6.6 We shall say that a short exact sequence

0o— sM—1 N— % p )

splits on the right whenever N £ ,p—0 splits; and that it splits on the left when-

ever 0—— M 2, N splits.
Theorem 6.11 For a short exact sequence

o— M—1 N5 p 10

the following statements are equivalent :
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(1) the sequence splits on the right;
(2) the sequence splits on the left;
(3) Im f =Kerg is a direct summand of N.

Proof (1) = (3): Suppose that 7 : P — N is a right-hand splitting morphism and
consider Kerg NIm . If x € Kerg NIm 7 then g(x) = 0, and x = n(p) for some
p € P whence

0p =g(x)=gln(p)]=p

and consequently x = n(p) = ©(0p) = Oy. Thus we see that Kerg NImn = {0}.
Moreover, for every n € N we have

g(n—(mog)n))=g(n)—(gomog)(n)=_gn)—g(n)=0,

and so n— (7 o g)(n) € Ker g. Observing that every n € N can be written

n=(nog)(n)+n—(mwog)n),

we see that N = Im« + Ker g. It follows by Corollary 1 of Theorem 6.9 that N =
Imm ®Kerg.

(83) = (1) : Suppose that N = Ker g ® A for some submodule A of N. Then every
n € N can be written uniquely as n = y + a where y € Kerg and a € A. Consider
the restriction g, of g to A. Since g(n) = g(a) and g is surjective, we see that g,
is surjective. It is also injective since if a € Ker g, then 0 = g,(a) = g(a) and so
a € KergNA={0}. Thus g, : A— P is an R-isomorphism. Since then g, o g;l =idp
we see that g;l induces a right-hand splitting morphism.

(2) = (3) : Suppose that p : N — M is a left-hand splitting morphism. If x €
Im f NKerp then x = f(m) for some m € M and p(x) = 0,,. Thus 0,; = p(x) =
plf(m)] = m and so x = f(m) = f(0,) = Oy whence Im f NKerp = {0}. Since
every n € N can be written n = (f op)(n)+n—(f op)(n) where n—(f op)(n) € Ker p,
we deduce that N =Im f & Ker p.

(8)=(2):If N =Imf ®B then every n € N can be written uniquelyasn = x+b
where x € Im f and b € B. Since f is a monomorphism there is precisely one m € M
such that f(m) = x so we can write this element as f ~!(x) without confusion. Now
define p : N — M by setting p(n) = p(x +a) = f'(x). Then for all m € M we
have p[f(m)] = f![f(m)] = m, so that p o f =id,, and p is a left-hand splitting
morphism. o]

e Note from the above result that if the short exact sequence

o— sM—1 N—% p 10

splits and if p, 7 are splitting morphisms then we have
Kerg@Imn=N=Imf &Kerp.

Since 7 and f are monomorphisms we have Im7 ~ P and Im f ~ M, so
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N~Kerg®P=Imf®P~M@®P.

Note also, conversely, that

0 M— MeP P 0

is split exact where i : M — M & P is the canonical injection m — (m,0) and
¥ : M @ P — P is the projection (m, p) — p.

Definition 6.7 Let N and P be supplementary submodules of an R-module M, so
that every x € M can be written uniquely in the form x = n + p where n € N and
p € P. By the projection on N parallel to P we shall mean the mappingp : M —» M
described by p(x) = n. An R-morphism f : M — N is called a projection if there exist
supplementary submodules N, P of M such that f is the projection on N parallel to
p.

Theorem 6.12 If M; and M, are supplementary submodules of an R-module M and
if f is the projection on M, parallel to M, then

(1) My =Imf ={xeM; f(x)=x};

(2) M, =Kerf;

() fof=f.
Proof (1) It is clear that M; = Imf 2 {x € M ; f(x) = x}. If now m; € M,
then its unique representation as a sum is m; = m; + 0 whence f(m;) = m; and
consequently m; € {x e M ; f(x) = x}.

(2) Let x € M have the unique representation x = m; + m, where m; € M; and
m, € M,. Then since f (x) = m; we have

f(x)=0 < m; =0 < x=m, €M,.
(3) For every x € M we have f(x) € M; and so, by (1), we have that f[f(x)] =
f (). o]
Definition 6.8 A morphism f : M — M such that fof = f will be called idempotent.

By Theorem 6.12(3), projections are idempotent. In fact, as we shall now show,
the converse is also true.

Theorem 6.13 An R-morphism f : M — M is a projection if and only if it is idem-
potent, in which case M = Im f @ Ker f and f is the projection on Im f parallel to
Ker f.

Proof Suppose that f is idempotent. If x € Im f NKer f then x = f(y) for some
y€M and f(x)=0, so

x=f)=fIf]=fx)=0.
Moreover, for every x € M,
fFlx=f(x))=f)—fIf(x)]=0,

and so x — f (x) € Ker f . Then from the identity x = f (x)+x — f (x) we deduce that
M=Imf ®&Kerf.
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Suppose now that m = x + y where x € Im f and y € Ker f. Then x = f(z) for
some z € M and f(y) =0, so that

fm)=f(x+y)=f(x)+0=f[f(2)]=f(z) =x.
In other words, f is the projection on Im f parallel to Ker f .

As observed above, the converse is clear by Theorem 6.12(3). o]

Corollary 1 If f : M — M is a projection then so is idy; —f, in which case Im f =
Ker(idy, —f).
Proof Writing f o f as f2, we deduce from f2 = f that

(dy—f)Y =idy—f —f + f2=idy —f.
Moreover, by Theorem 6.12(1),
xelmf < x=f(x) < (idy—f)(x)=0

and so Im f = Ker(idy, —f ). |

We shall now show how the decomposition of an R-module into a finite direct
sum of submodules can be expressed in terms of projections. As we shall see in due
course, this result opens the door to a deep study of linear transformations and their
representation by matrices.

Theorem 6.14 An R-module M is the direct sum of submodules M, ..., M, if and only
if there are non-gero R-morphisms py,...,p, : M — M (necessarily projections) such
that

(1) ipi = idy;
(2) (i #j) p;i op;=0.

n
Proof Suppose first that M = @ M;. Then for each i we have M = M; @ Y. M;. Let
i=1 i
p; be the projection on M; parallel to . M;. Then, for x € M and i # j,
J#i
pilp;(x)] € p;”(Imp;) = p;”(M;) by Theorem 6.12
< p(XM)
J#
= p;"(Kerp;) by Theorem 6.12
= {0}
and so p; o p; = 0 for i # j. Also, since every x € M can be written uniquely as
n
x = Y. x; where x; € M; fori =1,...,n, and since p;(x) = x; for each i, we observe

i=1
that
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X =

L=

X; = ipi(x) = (ipi)(x):

n
whence we deduce that ), p; =id,,.

i=1

Conversely, suppose that p,..., p, satisfy (1) and (2). Then we note that

n n
p; =picidy =pi°(2pj) = Z(Pi °Pj) =Di°p;
i=1 i=1

so that each p; is idempotent and hence a projection. By (1) we have

x = idy (x) = (ipi)(x) - ipi(x) c 21 Imp,

n
whence M = > Imp;.

i=1

Moreover, if x € Imp; N, Imp; then x = p;(x) and x = }; x; where p;(x;) = x;

J# J#

for every j # i. Consequently, by (2),

x=p:()=pi(Xx;) =p:(2p;(x}))) = X:(pi o p;)(x;) = 0.
j#i j# j#

n

It follows that M = @ Im P;. ]

i=1

EXERCISES

6.1

6.2

6.3

Let M be an R-module and let M, ..., M, be submodules of M such that M = & M.
i=1

n
For k =1,...,n let Ny be a submodule of M, and let N = >_ N;. Prove that
i=1

(1) N=®N;
(2) M/N ~ @ M,/N..
i=1

Let M be an R-module of finite height. Prove that for every R-morphism f : M — N
there exists n € N such that M =Im f" @ Ker f".

[Hint. The ascending chain {0} C Ker f C Ker f2 C ... terminates after p steps, and the
descending chain M 2 Imf 2 Imf2 D ... after q steps; consider n = max{p,q}.]

If M and N are R-modules let Morz(M, N) be the set of R-morphisms f : M — N. Show
that Morg (M, N) is an abelian group which is an R-module whenever R is commutative.
Suppose that R is commutative and that A,,...,A, are submodules of M such that
n
M = @A;. For j = 1,...,n let L; be the set of R-morphisms g : M — N such that
i=1

%Aj C Ker g. Prove that each L; is an R-module and that L; ~ Morg(A;,N).
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6.5

6.6
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[Hint. Observe that there is an R-isomorphism ¥; : A; — M/ A;. Now form the dia-
i£j
gram M !

in which f, is given by Theorem 3.4. Examine the mapping f + f, o ¥;.]

If M is an R-module and (N;);; is a family of R-modules, establish the following iso-
morphisms of abelian groups :

(a) MorR(@Ni,M) & ‘XI Morg(N;, M);
i€l 1€
(b) Morg(M, i>€<I N;) ~ i>€<1 Morgz (M, N;).
[Hint. (a) : Given f : N, > M let 9(f) = (f Oini)iel;
i€l

(b) : Given f : M — i>e<INi let £(f) = (pr; Of)iel']
Deduce that
Mor M;, X N; )~ Morg(M;,N:).
R(g ”j>E<I ]) (i,j)>e<l><J R( i ])
Establish an abelian group isomorphism Mor,(Z, Z) ~ Z. Deduce that, for all positive
integers n and m,
Mor,(Z",Z™) ~ 7.
A submodule M of i)€<I M, is said to be a subdirect product of the family (M, ), if, for every
i €1, the restriction pr}’ : M — M; of the canonical projection pr; is an R-epimorphism.

If N is an R-module and there is a family (f;),; of R-epimorphisms f; : N — M, such
that (| Ker f; = {0}, prove that N is isomorphic to a subdirect product of (M),

iel
Show that Z is isomorphic to a subdirect product of (Z/nZ),.
An R-morphism f : M — N is said to be regular if there is an R-morphism g : N — M
such that f o go f = f. Prove that f : M — N is regular if and only if
(1) Kerf is a direct summand of M;
(2) Imf is a direct summand of N.

[Hint. Use the canonical sequences

iy i1

Ker f M M/ Ker f

51]‘ JC
ip 2

Im f N N/Imf

and Theorem 6.11.]
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6.7

6.8

6.9

6.10

6.11

6.12

Module Theory
Let (M;),e; and (N;),; be families of R-modules. If, for every i € I, f; : M; — N, is an
R-morphism define the direct sum of the family (f;);c; to be the R-morphism f : M, —
iel
P N; given byf((mi)iel) = (fi(mi))ier Prove that
iel

(1) Kerf =@DKerf;
iel
(2) Imf =@Imf;.

i€l

If (L;);e; is also a family of R-modules and g; : L; — M; is an R-morphism for every
i €1, let g be he direct sum of the family (g;);;. Prove that

g f
DL, DM, DN,
i€l i€l i€l
is an exact sequence if and only if, for every i € I,
L gi M. fi N

L L

is an exact sequence.

An R-module M is said to be indecomposable if its only direct summands are {0} and
M. Show that the Z-module Q,/Z is indecomposable.

Prove that an R-module M together with a family (7;);; of R-morphisms with 7; :
M — M; is a product of the family (M;);; if and only if there is a family (i;);¢; of
R-morphisms i; : M; — M such that

C o (idy, ifk=j,
L= ]
(1) 7o { 0 ifk#j;
(2) for every (x;);e; € _XI M; there is a unique x € M such that 7;(x) = x; for every
je

jel.

If M is an R-module and f : M — M is an R-morphism prove that the following state-
ments are equivalent :

(1) M=Imf +Kerf;
(2) Imf =Im(f o ).
If M is an R-module and p,q : M — M are projections prove that
(1) Imp=Imgqifandonlyifpeg=qandqop =p;
(2) Kerp=Kerqgifandonlyifpog=pandqop=gq.

Let V be a vector space and let p,q be projections. Prove that p + g is a projection if
and only if poq = qop = 0, in which case p +q is the projection on Im p +Im q parallel
to Kerp NKerq.
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6.13 The diagram of R-modules and R-morphisms

fi 8i hi fir1 i+l
s oA B; G A Bin Cip— -

1 1

lai lﬁf JYi jam Jﬁm 1Yf+l

/ / ! / / !
—A—B,——C; ” A8 —— 0
i & i i+1 8it1

is given to be commutative with exact rows. If each vy; is an isomorphism, establish the
exact sequence

cov—Llog’
; B hjoy;"og;

Appg =

where ¢; is given by
pila) = (ai(ai):fi(ai))
and ¥, is given by
ﬁi(al{: b)) = fil(al{) —B:(b;).
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FREE MODULES; BASES

Definition 7.1 Let R be a unitary ring and let S be a non-empty set. By a free R-
module on S we shall mean an R-module F together with a mapping f : S — F
such that, for every R-module M and every mapping g : S — M, there is a unique
R-morphism h : F — M such that the diagram

s— oM

%

F

is commutative. We denote such an R-module by (F, f).

o Roughly speaking, a free module F on S allows us to ‘trade in’ a mapping from
S for an R-morphism from F.

Theorem 7.1 If (F, f) is a free module on S then f is injective and Im f generates F.

Proof To show that f is injective, let x,y € S be such that x # y; we have to
show that f(x) # f(y). For this purpose, let M be an R-module having more than
one element (e.g. R itself will do) and choose any mapping g : S — M such that
g(x) # g(y). Let h : F — M be the unique R-morphism such that ho f = g. Then
since A f (x)] = g(x) # g(y) = h[f (y)] we must have f (x) # f ().

To show that Im f generates F, let A be the submodule of F that is generated by
Im f and consider the diagram

in which ¢ is the inclusion map from Im f to A, t, is that from Ato F, and f* :S —
Im f is given by f*(x) = f(x) for every x €S. Since F is free on S there is a unique
R-morphism h : F — A such that ho f = (o f*. The mapping k : F — F given by
k =, 0h is then an R-morphism such that ko f = 4,010 f*. But since F is freeon S
there can be only one R-morphism & : F — F such that %o f = 40t0f™; and clearly
¥ = idy does just that. We must therefore have 1, o h = k = idp, from which we see
that 4 is surjective. We conclude that A= F and hence that Im f generates F. @1
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Theorem 7.2 [Uniqueness] Let (F,f) be a free R-module on the non-empty set S.
Then (F’, f') is also a free R-module on S if and only if there is a unique R-morphism
j:F—>F suchthatjof =f".

Proof Suppose first that (F’, f) is also free on S. Then there are R-morphisms j :
F — F’ and k : F’ — F such that the diagrams
f! f

S——F’ S——>F

VAV

F F’
are commutative. Then since kojo f = ko f’ = f we have the commutative diagram

f

S———>F

I

F

But, again since F is free on S, only one morphism can complete this diagram in
a commutative manner; and clearly id; does just that. We conclude, therefore, that
ko j =idg. In a similar manner we can show that jok = id;. It follows that j, k are
mutually inverse R-isomorphisms.

Suppose, conversely, that the condition is satisfied. Then since f = j~'of’ we can
use the fact that (F, f) is free on S to build, for any R-module M and any mapping
g :S — M, the diagram g

S——M

N

F ——=
=

in which ho j~t o f’=ho f = g. That (F/, f') is also free on S will follow if we can
show that if t : F/ — M is an R-morphism such that t o f' = g then t = ho j~!. Now
to f’ = g is equivalent to t o j o f = g which, by the uniqueness of h, is equivalent
to t oh = j, which in turn is equivalent to t =ho j 1. |

We shall now settle the question concerning the existence of free modules.
Theorem 7.3 [Existence] For every non-empty set S and every unitary ring R there

is a free R-module on S.

Proof Consider the set F of mappings # : S — R which are such that 9(s) = 0
for ‘almost all’ s € S, i.e. all but a finite number of s € S. It is readily seen that F,
equipped with the laws of composition given by

(Vs€8)  (9+)s)=10(s)+L(s);
(VAER)(Vs€S) (AD)(s) = Ad(s),
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is an R-module. Now define a mapping f : S — F by assigning to s € S the mapping
f(s):S — R given by
1 ift=s;

OO {O oz

We shall show that (F, f) is a free R-module on S.
For this purpose, suppose that M is an R-module and that g : S — M is a mapping.
Define a mapping h : F — M by the prescription
h(9) = 2. 9(s)g(s).
SES
Note that each such sum is well defined since there is at most a finite number of
terms different from zero. It is clear that h is an R-morphism. Moreover, since

(Vs€8)  hIf(s)]= 2If()I(e)- g(t) = g(s),
tes
we have ho f = g. To establish the uniqueness of h, we note first that for all % € F
and all t € S we have

B(t) =0(£)- 1g = 2, 9() - [f (5)1(1) = (X 0(s)f (D) (8)

s€S s€S

and so

(VO eF) G =D 9(s)f (s).

seS

Thus, if k' : F — M is also an R-morphism such that h’o f = g, then for all € F we
have

W(®) =2 9 [f ()] = 2 9(s)g(s) = h(D).

SES sES

Hence h’ = h as required. ol

The above results show that, to within R-isomorphism, there is a unique free
R-module on a non-empty set S. As a model of this, we may choose the R-module
constructed in the above proof. We shall refer to this particular R-module by calling
it henceforth the free R-module on S.

Definition 7.2 We shall say that an R-module M is free if there is a free R-module
(F, f) on some non-empty set S such that M is isomorphic to F.

Our immediate aim is to determine a simple criterion for an R-module to be free.
For this purpose, we require the following notion.

Definition 7.3 A non-empty subset S of an R-module M is said to be linearly inde-
pendent (or free) if, for every finite sequence x,..., x, of distinct elements of S,

Z),ixiZOM = Alz“'ZAHZOR.

i=1

Put another way, S is linearly independent if the only way of expressing 0 as a linear
combination of distinct elements of S is the trivial way (in which all the coefficients
are zero).
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e Note that no linearly independent subset of an R-module M can contain the
zero element of M; for we can fabricate the equality

1ROM +ORX1 + .- +0Rxn = OM

thus expressing 0, s a linear combination of {0, x;,...,x,} in which not all
the coefficients are zero.

e Note also that in a vector space V every singleton subset {x} with x # 0y is
linearly independent; for if we had Ax = 0 with A # O then it would follow
that

x=2""x=21"Tt0=0,
a contradiction. In contrast, if we consider a unitary ring R as an R-module
then, if R has zero divisors, singleton subsets need not be linearly independent.

Definition 7.4 By a basis of an R-module M we shall mean a linearly independent
subset of M that generates M.

Theorem 7.4 A non-empty subset S of an R-module M is a basis of M if and only
if every element of M can be expressed in a unique way as a linear combination of
elements of S.

Proof IfS is a basis of M then, since S generates M, every x € M can be expressed
as a linear combination of elements of S. Suppose now that

n m
x =2 Aix; = Z“j.yj
i=1 j=1
where x,..., x, are distinct elements of S and y;, ..., y,, are distinct elements of S.
Then we can form the equation

The linear independence of S now shows that for distinct x;, y; we have 4; = u; =0,
and when x; = y; we have A; = u;. Consequently x has a unique expression as a
linear combination of elements of S.

Suppose, conversely, that this condition holds. Then clearly S generates M. Also,
0 can be expressed uniquely as a linear combination of elements of S, so that S is
linearly independent. Thus S is a basis. |

||Ms

‘u])y] _O

e Observe from the above proof that in order to show that x has a unique ex-
pression as a linear combination of elements of S, there is no loss in generality
in assuming that m = n and y; = Xx;.

Example 7.1 If M is an R-module and n is a positive integer then the R-module R"
has the basis {eq,...,e,} where

e;=(0,...,0,1,...,0).
——
i—1
We call this the natural basis of R™.
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Example 7.2 Consider the differential equation D?f +2Df + f = 0. The reader will
know that, loosely speaking, the general solution is f : x — (A + Bx)e ™ where
A, B are arbitrary constants. To be somewhat more precise, the solution space is the
subspace LC{f;, f5} of the vector space V of twice-differentiable functions f : R —» R
where f;(x) = e and f,(x) = xe™™. Since {fi, f,} is linearly independent (write
A fi + Ay f5 = 0 and differentiate), it therefore forms a basis for the solution space.
Note that, in contrast, V does not have a finite basis.

Theorem 7.5 Let (F, f) be the free R-module on S. Then Im f is a basis of F.

Proof Recall that (F, f) is the R-module constructed in the proof of Theorem 7.3.
That Im f generates F is immediate from Theorem 7.1. Observe that, from the proof
of Theorem 7.3, we have

(V8eF)  9=>9(s)f(s).

SES

Suppose now that we have

2 aif (x) = 25 Bif (x;)
i=1 i=1
where f(x;),...,f(x,,) are distinct elements of Im f. Let #,{ : S — R be given by
the prescriptions
[0 i (Vi) x #xg;
B(x) = {ai if (i) x = x;.

[0 if(Vi)x #x;;
¢(x)= {ﬁi i (3i) x = x;.
It is clear that ¥, { € F. Moreover,

m

¥=200)f(s) = 2 aif (x;);

SES i=1

(=S L)) = iﬂif(xi);

Consequently, & = { and hence a; = f3;. It now follows by Theorem 7.4 that Im f is
a basis of F. |

Corollary 1 If (M, &) is a free R-module on S then Im a is a basis of M.

Proof Let (F, f) be the free R-module on S. Then by Theorem 7.2 there is a unique
R-isomorphism such that the diagram
s—2 M

fl/

is commutative. Since then ¥~ (Im f ) = Im a, we deduce from the fact that isomor-
phisms clearly carry bases to bases that Im a is a basis of M. O
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We can now establish a simple criterion for a module to be free.
Theorem 7.6 An R-module is free if and only if it has a basis.

Proof If M is a free R-module then M is isomorphic to the free R-module on some
non-empty set. Since isomorphisms carry bases to bases, it follows that M has a
basis.

Conversely, suppose that S is a basis of M and let (F, f) be the free R-module
on S. Then if vg : S — M is the natural inclusion there is a unique R-morphism
h: F — M such that ho f = 5. We shall show that h is an isomorphism, whence the
result will follow.

Now Imh is a submodule of M that contains S and so, since S generates M,
we must have Imh = M. Consequently, h is surjective. Also, we know (from the
proof of Theorem 7.3 on taking g = t5) that h(%) = > 9(s)s where #(x) = 0 for

=N
all but a finite number of elements x;,..., x, of S. If now ¥ € Kerh then we obtain
n
0 = Y ¥(x;)x; from which we deduce, since {x;,...,x,} is linearly independent,
i=1
that #(x;) = O for every x;. This then implies that # = 0 and consequently h is also
injective. O

Corollary 1 A free R-module is isomorphic to a direct sum of copies of R. More precisely,
if {a; ; i €1} is a basis of M then M = @ Ra; where Ra; ~R for every i € I.

iel
Proof By Theorems 6.8 and 7.4, we have M = @ Rq;; and since each singleton
iel
{a;} is linearly independent, the R-morphism f; : R — Ra; given by f;(r) = ra; is an
R-isomorphism. |
The following important properties relate bases to R-morphisms.

Theorem 7.7 Let M be a free R-module and let A = {a; ; i € I} be a basis of M. If
N is an R-module and if (b;);c; is a family of elements of N then there is a unique
R-morphism f : M — N such that

(Viel) f(a)=Db;.

Proof Since every element of M can be expressed uniquely as a linear combination
of elements of A, we can define a mapping f : M — N by the prescription

f(iliai) = glibi-

It is readily verified thatf is an R-morphism and that f(a;) = b; for every i € I.
Suppose now that g : M — N is also an R-morphism such that g(a;) = b; for every
n

i €I. Given x € M with say x = >_ A;q;, we have
i=1

g(x)= g(ikiai) = ilig(ai) = ilibi = f(x)

and so g = f, whence the uniqueness of f follows. |
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Corollary 1 Let B be a non-empty subset of an R-module M and let vz : B — M be the
natural inclusion. Then B is a basis of M if and only if (M, vg) is a free R-module on B.

Proof The necessity follows immediately from Theorem 7.7; and the sufficiency
follows from the Corollary to Theorem 7.5. |

Corollary 2 If M and N are free R-modules and if f : M — N is an R-morphism then
f is an isomorphism if and only if, whenever {a; ; i € I} is a basis of M, {f (a;) ; i € I}
is a basis of N.

Proof It is enough to establish the sufficiency; and for this it is enough to observe
from the proof of Theorem 7.7 that if if {b; ; i € I} is a basis then f is an isomor-
phism. o]

Corollary 3 Let f : M — N be an R-morphism. If M is free then f is completely
determined by f ~(B) for any basis B of M.

Proof This is immediate from Corollary 1; for by that result the restriction of f to
B extends to a unique R-morphism from M to N, namely f itself. |

Corollary 4 Let f,g : M — N be R-morphisms. If M is free and if f (x) = g(x) for all
X in some basis B of M then f = g.

Proof The restriction of f — g to B is the zero map and so, by Corollary 3, f — g is
the zero map from M to N. |

Concerning direct sums of free modules, the above results yield the following.

Theorem 7.8 Let M be an R-module and let (M, ),¢; be a family of submodules of M
such that M = @ M;. If B, is a basis of M, for every A €I then | J B, is a basis of M.
A€l A€l

Proof Given B, consider the diagram

BA Ja U Bl 4 N
Ael

iAJ Ji
in,

M}L ? @ MAZM
pr, A€l

in which i, j,,i are the natural inclusions, and g : | J B, — N is a mapping to an
A€l
arbitrary R-module N.

Since B, is a basis of M, we have, by Corollary 1 of Theorem 7.7, that (M,, i;) is
free on B, . There is therefore a unique R-morphism 4, : M, — N such that &, oi, =
g © j,. We now define a mapping ¢ : €@ M, — N by the prescription

A€l

() =2 (9, 0pry) ).

uel

[Recall that pr;‘j( y) = 0 for all but a finite number of u € I so that { is well defined. ]
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For every x € B, we then have

(Coioj)(x) = Zl(ﬁu opr® oio j;)(x)
ue
= Zl(ﬁuoprﬁoinaou)(x)
ue

= (9 013)(x)
= (g0 ja)(x).

Since the j, are natural inclusions and since {B; ; A €I} is a partition of | J B, [for

A€l
if A, u € I and A # u then necessarily B, "B, € M, NM,, = {0} by Theorem 6.9 and,
since {0} is not independent, B, N B, = (], it follows that { oi = g. The result will
now follow from Corollary 1 of Theorem 7.7 if we can show that ¢ is unique with
respect to this property.

For this purpose, suppose that k : @ M, — N is also an R-morphism such that
A€l
koi=g. Then for every A € I we have koioj, = goj, whence koin, oiy =goj,

and so k oin; = ¥, by the uniqueness of ,. Then for every y € @ M, we have
A€l

k(y)= Zl(k oiny, o prf)(y) = Zz(ﬂ“ opr2)(y) = ¢(y)
ue ue

andso k=_. o

So far in this section we have restricted our attention to a non-empty set S.
A free module on such a set is clearly never a zero module. Henceforth we shall
make the convention that the empty subset of an R-module M will be considered as a
linearly independent subset of M. This is not unreasonable since the condition that
defined linear independence may be regarded as being satisfied ‘vacuously’ by @
simply because it has no elements.

e The courtesy of regarding @ as linearly independent yields the advantage of
having @ as a basis for every zero module (recall Theorem 2.2), so that we can
also regard a zero module as being free.

We shall now derive the important result that every vector space has a basis. In
fact, for future purposes we shall establish this in a more general setting.

To be more precise, whereas a vector space is properly defined as an F-module
where F a field we shall now consider the more general concept of an R-module
where R is a division ring. Since a field is precisely a commutative division ring, it is
convenient to introduce the following terminology.

Definition 7.5 By a A-vector space we shall mean a A-module where A is a division
ring.

The more general result that every A-vector space has a basis is a consequence
of the following extremely important result, the proof of which uses Zorn’s axiom.
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Theorem 7.9 Let V be a A-vector space. If I is a linearly independent subset of V
and if G is a set of generators of V with I C G, then there is a basis B of V such that
ICBCG.

Proof Let % be the collection of all linearly independent subsets A of V such that
I € AC G.We note that 6 # @ since it clearly contains I. Let T = {A; ; j € J} be

a totally ordered subset of ¢ and let D = UAJ». Clearly, we have I € D C G. We
jeJ

shall show that D is linearly independent whence it will follow that D € € and is

the supremum of T, so that ¢ is inductively ordered. For this purpose, let x,..., X,
n

be distinct elements of D and suppose that Y. A;x; = 0. Since every x; belongs to
i=1

some A; and since T is totally ordered, there exists Ay € T such that xy,...,x, €A;.

Since Ay, is linearly independent we deduce that A; =--- = A, = 0 whence D is also

linearly independent and consequently ¥ is inductively ordered.

It follows by Zorn’s axiom that ¥ has a maximal element, B say. Now B is linearly
independent (since it belongs to %) ; we shall show that it is also a set of generators of
V whence it will be a basis with the required property. For this purpose, let W be the

n
subspace generated by B and let x € V. Since G generates V we have x = Y. A;g; for
i=1
some A;,...,A, €F and g3,...,8, € G. Now if x € W there exists some g; such that
g; &€ W (for otherwise every g; would be in W and so x, being a linear combination
of these elements, would also be in W, contradicting the hypothesis) whence BU{g;}

n
is a linearly independent subset of G (for, if Z Aib;+ug; = 0 with every b; € B and

u#0then g; =—u I(ZA b;) € W, a contradiction, so that u = 0 and ZA b;=0

whence also every A; = O) Since g; ¢ B, this contradicts the max1mahty of Bin %.
We conclude from thls that we must have x € W, whence W = V and consequently
Bis a basis of V with I CB C G. o]

Corollary 1 Every A-vector space has a basis.
Proof Take I =0 and G =V in Theorem 7.9. o

Corollary 2 Every linearly independent subset I of a A-vector space V can be extended
to a basis of V.

Proof Take G =V in Theorem 7.9. O
The previous result leads to the following property of bases.

Theorem 7.10 If B is a basis of a free R-module M then B is both a minimal generating
subset and a maximal linearly independent subset of M.
In the case where V is a A-vector space, the following are equivalent:
(1) Bis a basis of V;
(2) B is a minimal generating subset;
(3) B is a maximal linearly independent subset.
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Proof Suppose that B is not a minimal set of generators of M. Then there exists a
set G of generators with G C B and, for some x € B\ G, the set B\ {x} generates M.
n

For such an element x we have x = . A;x; where x;,...,x, are distinct elements
i=1

of B\ {x}. This can be written in the form 1zx + Z( Ai)x; = 0 and contradicts the
i=1
linear independence of B. Thus we deduce that B is a minimal generating subset.

Suppose now that y € M \ B. Then there exist distinct elements X1,.-.,X, Of

B and ry,...,1, € R such that y = er whence 1zy + Z( ri)x; = 0 which
i=1
shows that BU {y} is not linearly independent. Thus B is also a maximal linearly

independent subset.

To show that (1), (2), (3) are equivalent in the case of a vector space V, it suffices
to show that (2) = (1) and (3) = (1).

(2) = (1) : By Theorem 7.9 there is a basis B* of V such that § € B* C B. Since
B* is also a generating subset, the minimality of B yields B* = B whence B is a basis.

(83) = (1) : By Corollary 2 of Theorem 7.9 there is a basis B* such that B C B*.
Since B is also linearly independent the maximality of B yields B = B* whence B is
a basis. o

e Note that the implications (2) = (1) and (3) = (1) do not hold in general for
R-modules. For example, if n is a positive integer then in the Z-module Z/nZ
the set {1+nZ} is a minimal generating subset but is not linearly independent
(for we have n(1 + nZ) = 0 + nZ with n # 0) and so is not a basis. In fact
the Z-module Z/nZ has no basis. Likewise, in the Z-module Q every element
t with t # 0 and t # 1/k where k # 0 is such that {t} is a maximal linearly
independent subset but is not a generating subset and so is not a basis. In fact
the Z-module Q has no basis.

We shall now establish a striking result concerning the cardinality of bases in
a A-vector space. In the proof of this, the properties of infinite cardinals play an
important role.

Theorem 7.11 All bases of a A-vector space are equipotent.

Proof Suppose first that the A-vector space V has an infinite basis B. Then we have
V = P Ax where Ax = {Ax ; A € A} is the subspace generated by {x}. Now the

X€B

mapping ¥ : A — Ax given by #(1) = Ax is an isomorphism (recall Theorems 5.5
and 5.6), and so we have that V = @) V; where Card I = Card B and V; ~ A for every

i€l
i € I. Suppose now that B is any basis of V. For every y € B” let J, denote the
(finite) set of indices i € I such that the component of y in V; is non-zero. Since B*
is a basis, we have [ = U J,,. Now if Card B* were finite we would have
YEB*

CardB=CardI < ). CardJ, < CardB" - max{CardJ, ; y € B"}
Y€EB*
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and Card B would be finite, contradicting the hypothesis. We thus see that Card B*
is infinite. We now have

CardB < ) CardJ, < CardB" - X, < (CardB*)* = Card B".
YEB*

Likewise, Card B* < Card B. It therefore follows by the Schroder-Bernstein Theorem
that B* is equipotent to B.

Suppose now that V has a finite basis. Then the above argument shows that all
bases of V are finite. If B = {x;,...,x,} is a basis of V then, since each Ax; is a
simple A-module and since for k =1,...,n we have

k k=1 k=1 k=1
@1 Axi/ G}l Ax; = (Axk ® G}l Axi)/ @1 Ax; ~ Axy,
i= i= i= i=

we see that ) 5
n
{0cAx,cPhAx;,cPAx;C---CPAx; =V
i=1 i=1 i=1
is a Jordan-Holder tower for V of height n, the number of elements in the basis B.
The invariance of the height of such a tower now implies that all bases of V have
the same number of elements. |

o The result of Theorem 7.11 is not true in general for free R-modules. Indeed,
as we shall now show, if the ground ring R is ‘bad’ enough then it is possible
for a free R-module to have bases of different cardinalities. Suppose that R
is a unitary ring and consider the R-module S¢(R) that consists of all finite
sequences of elements of R, i.e. all mappings f : N — R such that f (i) = 0 for
all but finitely many i € N. As an R-module, S;(R) is free; its natural basis is
{e; ; i € N} where

1 ifn=i;

0 otherwise.

e;(n) = {

Consider now the ring EndS;(R) of group morphisms f : S;(R) — S;(R).
Regarding End S;(R) an an End S;(R)-module (in which the action is compo-
sition of mappings), we see that the singleton {id} is a basis for this module.
However, consider now f, g € End S¢(R) given by

e, ifi=2n; [0 ifi=2n;
f(ei)_{o ifi=2n+1, g(ei))_{en ifi=2n+1.

Note that we have defined f, g only on the natural basis of S (R); this is suffi-
cient to describe f, g completely (Corollary 3 of Theorem 7.7). As can now be
readily verified, every € End S;(R) can be expressed uniquely in the form

P=aof +fog.

In fact, a,3 € EndS;(R) are given by a(e;) = ¥(ey) and fB(e;) = F(eyi41)-
Consequently we see that {f, g} is also a basis for this module.
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e Despite the above, it should be noted that if M and N are R-modules each
having a basis of n elements then M and N are R-isomorphic. In fact they are
each isomorphic to the R-module R". For example, if {a;,...,a,} is a basis of

n
M then f : M — R given byf(z Aiai) =(A4,...,A,) is an R-isomorphism. In
i=1

particular, therefore, from the previous remark, if we denote the ring End S+ (R)
by A then the A-modules A and A? are A-isomorphic!

Concerning equipotent bases, Theorem 7.11 can be extended as follows to free R-
modules where R is a commutative unitary ring. In the proof of this we shall make use
of a result in ring theory known as Krull’s Theorem, namely that every commutative
unitary ring has a maximal ideal.

Theorem 7.12 Let R be a commutative unitary ring. If M is a free R-module then all
bases of M are equipotent.

Proof Let I be a maximal ideal of R. Then the quotient ring R/I is a field. Consider
the subset IM of M consisting of all finite sums of the form >} 4;x; where A; € I and

i
Xx; € M; in other words, IM is the set of all linear combinations of elements of M
with coefficients in the maximal ideal I. It is clear that IM is a submodule of M, so
we can form the quotient module M /IM. Observing that

r—tel = (VxeM)rx—tx=(r—t)xeIM
= (VxeM)rx+IM =tx+1IM,
x—yeIM = (VteR)tx—ty=t(x—y)eIM
= (VteR)tx+IM =ty +IM,

and consequently that

retell b IM=ty+IM
x—y€IM X =t ’

we can define an action of R/I on M /IM by the prescription
(r+D-(x+IM)=rx+1IM.

Clearly, this makes M /IM into a vector space over the field R/I.

Suppose now that {x; ; j € J} is a basis of M. Then the mapping described
by x; — x; + IM is injective. For, suppose that x; + IM = x; + IM with x; # x;.
Then x; — x; € IM, which is impossible since I, being a maximal ideal of R, does
not contain 1. We therefore deduce, on passing to quotients, that (x; +IM);e; is a
family of distinct elements of M /IM that generates M /IM. Now, all sums indicated

being well defined, we have
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2+ D +IM)=0+IM = Xrjx; €IM
J J
j j
= (Vj) rj=t;€l
= (Vj) r;+I=0+1I

and so we see that {x; + IM ; j € J} is indeed a basis of the R/I-vector space
M /IM. Since this basis is equipotent to the basis {x; ; j € J}, the result follows
from Theorem 7.11. |

Because of the above results we can introduce the following terminology.

Definition 7.6 If R is a commutative unitary ring, or a division ring, and if M is a
free R-module then by the dimension of M over R we shall mean the cardinality of
any basis of M. We denote this by dim M. In the case where dim M is finite we shall
say that M is finite-dimensional.

EXERCISES

7.1

7.2

7.3

7.4

7.5

Let f : M — M be an R-morphism. Show that if f is a monomorphism then f is not a left
zero divisor in the ring Endy M. If M is free, establish the converse : that if f € EndzM
is not a left zero divisor then f is a monomorphism.

[Hint. Let {m; ; i € I} be a basis of M and suppose that Ker f # {0}. Let (n;),; be a
family of non-zero elements of Ker f and let g : M — M be the unique R-morphism
such that g(m;) = n; for every i € I (Theorem 7.7). Observe that Img € Ker f.]

Let p be a prime. Show that the Z-module Q,/Z is not free.

[Hint. Show that the endomorphism on Q,/Z described by x ~— px is neither a left
zero divisor nor a monomorphism and use Exercise 7.1.]

Let f : M — M be an R-morphism. Show that if f is an epimorphism then f is not a
right zero divisor in the ring EndyM. Give an example of a free Z-module M and an
f € End;M such that f is neither a right zero divisor nor an epimorphism.

[Hint. Try multiplication by 2 on Z.]

Let F be a field and let ¢ € F[X] be of degree n. Show that if (q) denotes the ideal
of F[X] generated by q then F[X]/(q) can be made into a vector space over F. If
f: F[X]— F[X]/{q) is the natural epimorphism, show that {§(X°),1(X1),...,i(X""1)}
is a basis for F[X]/{(q).

By a net over the interval [0, 1] of R we mean a finite sequence (a;)o<;<n41 Such that
O=aqy<aq;<--<a,<da,,=1.

By a step function on [0, 1[ we mean a mapping f : [0, 1[— R for which there exists a
net (a;)o<i<ns1 OVer [0, 1] and a finite sequence (b;)<;<, of elements of R such that

(i=0,...,n)(Vx €[a;,a;1[) f(x)=b,.



7.6

7.7

Free modules; bases 79

Show that the set E of step functions on [0, 1[ is an R-vector space and that a basis of
E is the set {e, ; k € R} of functions e, : [0, 1[— R given by

=10 if0<x<k;
G@WUI=11 ifk<x<1.

By a piecewise linear function on [0, 1[ we mean a mapping f : [0, 1[— R for which
there exists a net (a;)y<;<n+1 and finite sequences (b;)o<i<n, (¢;)o<i<n Of elements of R
such that

(i=0,...,n)(Vx €[a;,a;,[) f(xX)=bix+c;.
Show that the set F of piecewise linear functions on [0, 1[ is an R-vector space and

that a basis of F is the set {f; ; k € R} of functions f; : [0, 1[— R given by

0 if0<x<k;
fk(x)_{x—k ifk<x<lI

If G is the subset of F consisting of those piecewise linear functions g that are con-
tinuous with g(0) = 0, show that G and E are subspaces of F such that F =G ® E.

Show finally that the assignment f — f*, where

f*(X)=J f(o)dt,
0

defines an isomorphism from E onto G.
[Hint. Draw pictures!]

For every positive integer n let E, be the set of functions f : R — R given by a prescrip-
tion of the form

F(x)=a,+ . (axcos kx + bysin kx)
=1

where a,, a;, b, € R for k =1,...,n. Show that E, is a subspace of the R-vector space
Map(R, R) of all mappings from R to itself. Prove that if f € E, is the zero function
then all the coefficients a;, b; are zero.

[Hint. Use induction; consider D*f + n*f where D denotes the differentiation map.]

Deduce that the 2n + 1 functions
x—1, x—coskx, x —sinkx (k=1,...,n)
constitute a basis for E,,.

Let R be a commutative unitary ring and let I be an ideal of R. Prove that every linearly
independent subset of the R-module I has at most one element.
[Hint. xy —yx =0.]

Deduce that if I is finitely generated, but not principal (i.e. not generated by a single-
ton), then I has no basis.



80

7.8

7.9

7.10

7.11

7.12

7.13

7.14
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Let R be a commutative unitary ring with the property that every ideal of R is a free
R-module. Prove that R is a principal ideal domain.

[Hint. Use Exercise 7.7.]
Given p,q € C with g # 0, let S be the set of sequences a = (a;);cy Of complex numbers

such that
(Vn € N) Apyg T PAyyr +qa, = 0.

Show that S is a subspace of the vector space C~. Show also that § ~ C2.

[Hint. Consider f : S — C? given by f(a) = (ay,a;).]

Given a, f € R with a # 3, show that the set of rational functions of the form

Qo+ ayx + -+ a, g x 1

(x—a) (x =B

X —

is an R-vector space of dimension r +s.

Let C,[X] be the C-vector space of dimension n+ 1 of complex polynomials of degree
less than or equal to n. If Py, ..., P, € C[X] are such that deg P, = i for every i, prove
that {P,,...,P,} is a basis of C,[X].

[Hint. Show by induction that X* is a linear combination of P,,...,P,.]

Suppose now that P,,...,P, are given by
P(X)=X% (1<k<n) PX)=XX—-1)---(X —k+1).

Show that there is a unique C-morphism f : C,[X] — C,[X] such that f(X*) = P, for
every k, and that f is a bijection.

[Hint. If P(X) = 2 a, X* define f(P) = Z a.P,.]

i=0 i=0

Let V be a finite-dimensional vector space over a field F. Prove that V has precisely
one basis if and only if either V = {0}, or F ~ Z/2Z and dimV = 1.

[Hint. If V has at least two elements then every singleton {x} with x # 0 can be
extended to a basis. Deduce that V is finite and, by considering the sum of all the
non-zero elements, show that V has at most one non-zero element. ]

Let V be the R-vector space generated by the six functions

x =1, x, x2, e, xe*, x2e*.
Let W be the subspace generated by the first five of these functions. Describe the in-
duced map D, : V/W — V/W (Theorem 4.3) where D denotes the differentiation

map.

Let F be a field of p elements and let V be a vector space of dimension n over F. Show
that V has p" elements. Deduce that V has p"—1 linearly independent singleton subsets.
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Use induction to show that if 1 < m < n then the number of linearly independent

subsets of V consisting of m elements is

1 m—1
— [1"—p").

m! t=0

Hence determine the number of bases of V.

Let R and S be unitary rings and let f : S — R be a 1-preserving ring morphism. If
M is an R-module let M) denote M regarded as an S-module (as in Exercise 1.7). If
{r; ; i €I} is a set of generators (respectively, a linearly independent subset) of Mg,
and if {m; ; j € J} is a set of generators (respectively, a linearly independent subset)
of M, prove that {r;m; ; (i,j) € I x J} is a set of generators (rspectively, a linearly
independent subset) of M.

Give an example to show that a submodule of a free module need not be free.

[Hint. Let R = Z x Z; consider the R-module R and the submodule Z x {0}.]
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GROUPS OF MORPHISMS; PROJECTIVE MODULES

If M and N are R-modules then the set of R-morphisms f : M — N will be denoted
by Morg(M,N).

e Since the term R-homomorphism is often used instead of R-morphism, the set
Morg(M, N) is often denoted by Homgz(M, N).

It is clear that Morz (M, N) forms an abelian group under the addition (f,g) — f +g
where

(VxeM)  (f+8)x)=f(x)+g(x).
One is tempted to say that ‘obviously’ Morg(M,N) forms an R-module under the
action (A, f) — Af where
(VxeM)  (Af)(x)=Af(x).

However, this is not the case; for in general we have

(Af)rm) = Af (rm) = Arf(m) # rAf(m) = r(Af)(m).

Nevertheless, it is obvious from this that Morg(M, N) does form an R-module when
R is commutative (for then Ar =rA).

Theorem 8.1 If (N;),¢; is a family of R-modules then for every R-module M there are
abelian group isomorphisms

(a) Morg(€ED N, M) = X Morg(N;, M);
iel i€l

(b) Morg(M, X N;) > X Morg(M,N,).
i€l i€l

Proof (a) Let ¥ € MorR(@ N;,M ) — ')(I Morg(N;, M) be given by the prescription
il 1€
V(f) = (f oin;);e;. It is clear that 4 is an abelian group morphism. To show that ¥ is
surjective, let (g;)ie; € _XI Morg(N;, M). Then there is an R-morphism { : @N; - M
L& i€l
such that every diagram
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is commutative. Since then #({) = ({ o in;);c; = (g;);c; We see that 4 is surjective.
To show that 4 is also injective, let a@ € Ker®{. Then 0 = #(a) = (a o in;);¢; and so
every diagram

N——M

Wi

DN,
i€l
is commutative, in which 0 is the zero morphism. Now since (G} N;, (ini)ia) is a
iel
coproduct of (N;);c; and since the zero morphism from € N; to M also makes each
iel
such diagram commutative, we deduce that a = 0, whence ¥ is also injective.
(b) This is dual to the proof of (a), and we leave the details to the reader. It
suffices to replace @ by X, reverse the arrows, and define #(f) = (pr; o f)ig;. O

Corollary 1 IfRis commutative then the above Z-isomorphisms are R-isomorphisms.:

Corollary 2 If I = {1,...,n}, then there are Z-isomorphisms
n n n n
Morg( €D N;, M) = € Morg(N;, M), Morg(M,DN;) = B Morg(M,N,). @
i=1 i=1 i=1 i=1

We shall now focus our attention on natural ways of defining Z-morphisms be-
tween Z-modules of the form Morz(M,N).

Suppose that A, B are R-modules and that f € Morg(A, B). If M is any R-module
then we can define a mapping

MorR(M,A)% Morg(M, B)

by the assignment
G — fu(§)=f o7

M

[N
b

A——B

It is clear that f, so defined is a Z-morphism; we say that it is induced by f.
Likewise, we can define a Z-morphism

Morg(A, M) PR Morg(B, M)

by the assignment

fr@)=bof 1.
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M

FZV%’

A——B

We also say that f* is induced by f.

o A useful mnemonic in distinguishing between f, and f* is that lower star in-
dicates composition on the left by f (unless, of course, you write mappings on
the right, in which case forget it!).

Theorem 8.2 Given R-morphisms A ! B C we have
(1) (gofl.=g.°fs;
(2)(gof) =freog"
If also h € Morg(A,B) and k € Morg(B, C) then
) (f +h).=fi+h;
4 (g+k)y =g +k"
Proof (1) This is immediate on considering the composite assignment
T—f()=fod—g(fod)=gof ot
(2) This is immediate on condidering the composite assignment
Gofog=g'(ttof)e—bof =f"()—1.
(3) and (4) follow respectively from the fact that (f + h) o ¥ = (f o}) + (ho )
and do(g+k)=(Fog)+ (Fok). |

e Property (1) of Theorem 8.2 is often referred to by saying that the assign-
ment f — f, is covariant, and property (2) is referred to by saying that the
assignment f — f* is contravariant.

Our main interest in the induced Z-morphisms f, and f* is in order to examine
what happens to short exact sequences of R-modules when we form the morphism
groups of the terms in the sequence from, and to, some given R-module. More ex-
plicitly, we have the following results, in which we write 0,5 for the zero morphism
from A to B.

Theorem 8.3 Consider a short exact sequence

N VR N W SNV 0

of R-modules and R-morphisms. If M is an arbitrary R-module then each of the induced
sequences of Z-modules and Z-morphisms

(D) O%MorR(M,A’)#MorR(M,A)LMorR(M,A”);

2) Morg (A, M) «—— Morg(A, M) «—*— Morg(A”, M) ———0

is exact.
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Proof We shall show that (1) is exact. A similar argument will establish the exact-
ness of (2).
We have to show that
(a) f, is a monomorphism;
(b) Imf, CKerg,;
(c) Kerg, CImf,.
(a) : Given ¥ € Ker f, we have 0y, = f,(#) = f o whence # = 0,4 since f is a
monomorphism and so is left cancellable.
(b) : If ¥ € Im f, then there exists % € Morg(M,A”) such that ¢ = f, (%) = f o®.
Consequently
g.(0) = g.[f.(8)] = (g o f).(F) = Oppar

since, by the exactness of the given sequence, g o f = 044,. Thus ¥ € Ker g, and we
have established (b).
(c) : If 0 € Ker g, then for every x € M we have

gl9(m)] = [g.(9)](m) = Opar

and so 9(m) € Kerg = Im f. Thus there exists x’ € A’ such that 9(m) = f(x’); and
since f is a monomorphism such an element x’ is unique. We can therefore define
a mapping % : M — A’ by setting ¢'(m) = x’. Clearly, 4’ is an R-morphism and
¥ =f o = f,(¢') € Imf,. Thus we see that Kerg, C Im f,. o]

e It is important to note that the induced sequences of Theorem 8.3 are not
short exact in general, for the induced Z-morphisms g, and f* need not be
surjective. For example, consider the short exact sequence of Z-modules and
Z-morphisms

0 z Q Q/z 0.

The induced Z-morphism

Mor,(Z/27,Q) LN Mor,(Z/27,Q/Z)
cannot be surjective since
Mor,(Z/27,Q) = 0 # Mor,(Z/2Z,Q/Z).
In fact, given ¢ € Mor,(Z/27Z,Q) let x = #(1 + 2Z). We have
2x = 28(1 +2Z) = 9(2 + 22) = 9(0 + 2Z) =0,

whence x = 0 and consequently # = 0. On the other hand, the mapping
described by
0+2Z—0+2Z, 1+2Z— 3+7Z

is a non-zero element of Mor,(Z/2Z,Q/Z).
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In a similar way, the induced Z-morphism

Mor(Z, Z) «——— Mor,(Q, Z)
cannot be surjective since
Mor,(Q,Z) = 0 # Mor,(Z,Z).

In fact, given ¥ € Mor,(Q, Z) suppose that #(1) # 0. Then for every non-
zero r € Z we have #(1) = rd(1/r), whence r divides #(1). However, by the
fundamental theorem of arithmetic, #(1) has only finitely many divisors. We
deduce, therefore, that we must have #(1) = 0. For all non-zero p,q € Z we
then have

0=po() =po(3) = pao( ) =as(5),

whence ¥(p/q) = 0 and so ¥ is the zero map. On the other hand, id, is clearly
a non-zero element of Mor,(Z,Z). Indeed, the groups Mor,(Z,Z) and Z are
isomorphic; see Exercise 2.4.

Despite the above remark, we have the following situation.
Theorem 8.4 Suppose that

00— sa—L 4 & Lu 0

is a split short exact sequence of R-modules and R-morphisms. Then for every R-module
M there are induced split exact sequences of Z-modules and Z-morphisms

00— Morg(M,A) LN Morg(M,A) S N Morg(M,A”)———0;
0 Morp(A', M) - Morp(A, M)« Morg(A”, M) ——0.

Proof We shall establish the first sequence, the second being similar. To show that
(1) is exact, it suffices by Theorem 8.3 to show, using the fact that the original short
exact sequence splits, that g, is surjective. Suppose then that 4" € Morg(M,A”) and
let g be a splitting morphism associated with g. Consider the mapping ¢ = g o 9”.
Clearly, ¥ € Morg(M,A) and g,(%) = go® = gogo®’ =" and so g, is indeed
surjective. That (1) now splits follows from the fact that go'g = id,; for, by Theorem
8.2(1), we have g, og, = (g 0g), = (idy/), = id where this last identity map is that
on Morg(M,A”). ]

The above discussion leads in a natural way to the following notion.

Definition 8.1 An R-module M is said to be projective if, for every short exact se-

quence

0— A — 1 a8 0

of R-modules and R-morphisms, the induced Z-morphism

Morg(M,A) —=—s Morg(M,A”)

is surjective.
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We now derive an alternative characterisation of projective modules.

Theorem 8.5 An R-module P is projective if and only if every diagram of R-modules
and R-morphisms of the form

p
/ﬁ//

A A 0 (exact)

can be extended to a commutative diagram
p

’ J
9

A A 0 (exact)
g

Proof Clearly, P is projective if and only if for every epimorphism g the induced
morphism g, is surjective; in other words, if and only if for every ¢ € Morg(BA")
there exists ¥ € Morg(P,A) such that ¢’ = g,(%) = g o 0. ]

o Roughly speaking, Theorem 8.5 says that P is projective if morphisms from
P can be ‘lifted’ through epimorphisms. The morphism ¥ that completes the
above diagram is called a projective lifting of ¢”.

e Projective liftings are not unique in general.

e The characterisation in Theorem 8.5 is often taken as a definition of a projec-
tive module.

As for examples of projective modules, an abundance is provided by the following
result.

Theorem 8.6 Every free module is projective.

Proof Suppose that M is a free R-module and consider the diagram
M

|

A B 0 (exact)
g

We have to establish the existence of an R-morphism 4 : M — A such that go# = f.
For this purpose, let S be a basis of M. Then, since g is surjective, for every x € S
there exists a € A such that f(x) = g(a). For each x € S choose once and for all an
element a, € A such that f(x) = g(a,). We can then define a mapping { : S —» A
by the prescription {(x) = a,. Since M is free on S, we can extend ¢ to a unique R-
morphism 4 : M — Asuch that #ovg = { where 15 : S — M is the natural inclusion. If
fs ' S — B denotes the restriction of f to S, we then have gotoig = gol = fg = f oig
whence we see that the R-morphisms g o and f coincide on the basis S. Applying
Corollary 4 of Theorem 7.7, we deduce that g o % = f and consequently that M is
projective. O
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e The converse of Theorem 8.6 is not true; see Exercise 8.2 for an example of
a projective module that is not free. Thus the class of projective modules is
larger than the class of free modules.

Our objective now is to obtain further useful characterisations of projective mod-
ules. For this purpose, we require the following result.

Theorem 8.7 Every module is isomorphic to a quotient module of a free module.

Proof Let M be an R-module and let S be a set of generators of M (e.g. the set M
itself will do). Let F be a free R-module on S. Then the natural inclusion ¢ : S — M
extends to a unique R-morphism h : F — M. Since S = ¢~(S) € h~(F) and since
S generates M, it follows that h”(F) = M. Thus h is an epimorphism and so M =
Imh ~ F/Kerh. |

Corollary 1 Every finitely-generated module is isomorphic to a quotient module of a
free module having a finite basis. o]
Theorem 8.8 For an R-module P the following are equivalent :

(1) P is projective;

(2) every exact sequence M —— P —— 0 splits;

(8) P is a direct summand of a free R-module.

lidp

M P 0 (exact)

T

Proof (1) = (2): Consider the diagram

Since P is projective there is an R-morphism f : P — M such that mwo f =idp; in
other words, M —— P —— 0 splits.
(2) = (3) : Let F be a free R-module with the set P as a basis and form the exact

sequence
T

F p 0

where 7t is an extension of id, and so is an epimorphism. By the hypothesis, the
short exact sequence

L T

0 Kerm F p 0

splits on the right. As we saw in Section 6, we then have F ~ Ker = @ P. This direct
sum module is therefore free and has P as a direct summand.
(83) = (1) : Consider the diagram
p
Ju
B

b

0 (exact)
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By hypothesis, there exists an R-module Q and a free R-module F such that F = P®Q.
Define u’ : F — B by the prescription

(Vx=p+qeF) p'(x)=ulp).

It is readily seen that u’ is an R-morphism. Now F, being free, is projective by Theo-
rem 8.6 and so u’ can be lifted to an R-morphism u” : F — Asuch that wou” = u’. It
then follows that the restriction u}, of u” to P is an R-morphism such that mouy = u,
and hence that P is projective. O

By applying the above results in the particular case of a vector space, we can ob-
tain several fundamental properties of subspaces and linear transformations. First
we make the observation that since a vector space V has a basis (Corollary 1 to
Theorem 7.9), it is free (Theorem 7.6), whence it is projective (Theorem 8.6). Con-
sequently, by Theorem 8.8, we can assert that

every short exact sequence of vector spaces splits.

This simple observation yields the following results.

Theorem 8.9 Every subspace of a vector space is a direct summand.

Proof The canonical short exact sequence

lw fw

0 w 1% V/W 0

splits and so, by Theorem 6.11, Kerfly, = W is a direct summand of V. |
Corollary 1 If W is a subspace of V then

dimV =dimW +dimV /W.
Proof There exists a subspace W’ such that V. = W & W’. By Theorem 7.8 we have
dimV = dim W + dim W’; and by Theorem 6.10 we have dim W/ =dimV/W. @&

Corollary 2 If V and W are vector spaces and f : V — W is a linear transformation
then
dimV =dimIm f + dimKer f.

Proof This follows from Corollary 1 and the first isomorphism theorem on taking
W =Kerf. |

e dimIm f is often callled the rank of f and dimKer f is often called the nullity
of f. Then Corollary 2 above can be expressed in the form :

rank + nullity = dimension of departure space.

This is sometimes also referred to as the dimension theorem .

Corollary 3 If W is a subspace of V then dim W < dim V. Moreover; if V is of finite
dimension then dim W = dim V implies that W = V.
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Proof The first statement is clear. As for the second, if dim V is finite then, by
Corollary 1, dim V = dim W implies that dim V /W = 0, whence W =V since the
only vector spaces of dimension O are the zero spaces. o]

o The second part of Corollary 3 is not true when V is of infinite dimension,
for infinite cardinals are not cancellable under addition. Likewise it does not
hold in general for modules; for example, the free Z-module Z has dimension
1 (since {1} is a basis) as does every submodule tZ with t # 0,1 (since {t} is
a basis).

Corollary 4 If V and W are finite-dimensional vector spaces with dimV = dim W
and if f : V. — W is a linear transformation then the following are equivalent :

(1) f is injective;

(2) f is surjective;

(3) f is bijective.

Proof This is immediate from Corollaries 2 and 3; for f is injective if and only if
dimKer f = 0, which is the case if and only if dim W = dim V = dimIm f, which is
equivalent to W =Imf, i.e. to f being surjective. O

Using exact sequence, we can generalise Corollary 1 above as follows.
Theorem 8.10 For an exact sequence

0 VL S S S 0

of vector spaces and linear transformations we have

k odd k even

If, moreover, every V; is of finite dimension then

(—1)"dim V; = 0.

n
=0

1

Proof Clearly, dim V, = dimIm f; and dim V,, = dimIm f,,_,. Moreover, for 0 < k <
n—2 we have, by Corollary 2 of Theorem 8.9,

dim Vi,; = dimIm f;,; +dimKer f;_;
= dimIm fi,; + dimIm f;.

Thus, on summing separately the dimensions of the odd-numbered spaces and those
of the even-numbered spaces in the sequence, we see that

n
> dim Vi, = > dimImf, = > dimV,.
k odd k=0 k even

The second statement is an obvious consequence of the first. |
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Corollary 1 If A, B are subspaces of a vector space V then
dim(A + B) + dim(AN B) = dim(A x B) = dim A+ dim B.

Proof Consider the exact sequence

0 A—" saxBp—" B 0

where ¥ is given by a — (a,0) and =« is given by (a, b) — b. Applying the above
results, we obtain dim(A x B) = dim A + dim B. Consider now the sequence

0 ANB—* S AxB—" a+B 0

where a is given by x — (x, x) and f is given by (a, b) — a — b. It is clear that a is
a monomorphism and that 8 is an epimorphism. Moreover, Ker 3 = Im a and so the
sequence is exact. Consequently, dim(A x B) = dim(AN B) + dim(A + B). |

Corollary 2 If V,W,X are finite-dimensional vector spaces and if f : V — W and
g : W — X are linear transformations then

dimIm(g o f) = dimIm f —dim(Im f NKer g)
= dim(Im f + Kerg) —dimKerg.

Proof By Corollary 1, we have

dim(Im f + Ker g) + dim(Im f NKer g) = dimIm f + dimKer g.
Rearranging this, we obtain

dimIm f —dim(Im f NKer g) = dim(Im f + Ker g) —dimKer g.

We now show that the left-hand side coincides with dimIm(g o f). For this purpose,
we note that if g; denotes the restriction of g to the subspace Im f then

Kergy =Imf NKerg and dimImg; =dimIm(go f).

Hence dimIm(go f)=dimImf —dimKerg; = dimIm f —dim(Imf NKerg). ©

Theorem 8.11 If V and W are finite-dimensional vector spaces and if f : V — W is
a linear transformation then, for every subspace V' of V,

dim f (V') = dim V' —dim(Ker f N V"),
and, for every subspace W’ of W,

dim f~(W’) =dim(Im f NW’) + dimKer f.
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Proof The first statement is immediate from Corollary 2 of Theorem 8.9 on observ-
ing that if f’ is the restriction of f to V/ thenIm f’ = f (V') and Ker f' =Ker f NV".

Now by the Corollary to Theorem 3.2 we see that Im f "W’ = f [ f ~(W')] and
so, by the first statement,

dim(Im f NW’) = dim f ~(W’) — dim(Ker f N f~(W")).
The second statement now follows from the fact that f ~ is inclusion-preserving, so

that Ker f = f< {0} C f—(W’). o]

We end the present section by returning to the problem of the commutative com-
pletion of certain triangles in the presence of projective modules.

Theorem 8.12 Let P be a projective module and suppose that the diagram

X Y Z
a B

is such that the row is exact and f3 o = 0. Then there is an R-morphism { : P — X
such that ao { =.

Proof Since f o =0 we have Im¥ C Ker f = Im a. Applying the projectivity of P
to the diagram

in which 9%, a* are given by p — ¥(p),x — a(x) we obtain the existence of an
R-morphism { : P — X such that a* o { = #". Since then

(Vy €P) all(N]=a"[{(]=7"(y)=9(y),

we have a0 { = 1. |

Theorem 8.13 Consider the diagram

C

|

B——A

f
of R-modules and R-morphisms. Suppose that C is projective. Then the following are
equivalent :
(1) there is an R-morphism h : C — B such that f oh = g;
(2) Img CImf.
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Proof (1)= (2): asin Theorem 3.5.
(2) = (1) : Consider the diagram

Cc
|
A

B A/ Im
- , /Im f
in which the row is exact. If (2) holds then Img C Im f = Kerl so that o g =0 and
(1) follows by Theorem 8.12. =
Theorem 8.14 Consider the diagram
A— ¢
|
B

of vector spaces and linear transformations. The following are equivalent :

(1) there is a linear transformation h : B — C such that ho f = g;

(2) Kerf CKerg.
Proof (1)= (2): asin Theorem 3.4.

(2) = (1) : If (2) holds then by Theorem 3.4 there is a linear transformation
R : Imf — C such that h’[f(x)] = g(x) for all x € A. Let {f(e;) ; i € I} be
a basis of the subspace Im f of B. By Theorem 7.9 we can extend this to a basis
{f(e)); i€ltuU{x;; j€J} of B. Choosing a family (c;);c; of elements of C, we can
define a linear transformation h : B — C by the prescription

(Viel) hlf(e)l=2g(e), (VjeJ) h(x))=c;.
Then clearly h is such that ho f = g. |

o Note that Theorem 8.14 does not hold in general for modules. The reason for
this is essentially that if N is a submodule of a module M such that N has
a basis then we cannot in general extend this to a basis of M. For example,
{2} is a basis of the submodule 2Z of the free Z-module Z, but this cannot be
extended to a basis of Z.

EXERCISES

8.1 Let m and n be integers, each greater than 1. Show that the prescription #(x + mZ) =
nx + nmZ describes a Z-morphism ¢ : Z/mZ — Z/nmZ. Prove that the Z-module
Mor,(Z/mZ,7Z/nmZ) is generated by {#} and deduce that

Mor,(Z/mZ,Z/nmZ) ~ Z/mZ.

[Hint. Show that Ann, (%) = mZ and use Exercise 4.1.]
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8.2

8.3

8.4

8.5

Module Theory

Let R be a commutative unitary ring and let I be an ideal of R. If M is an R-module
define
M, ={x €M ; I C Anng(x)}.

Prove that M, is an R-module and that the assignment f — f(1 + I) defines an R-
isomorphism
& : Morg(R/I,M) — M,.

Hence establish a Z-isomorphism
Mor,(Z/nZ,Q/Z) ~ Z/nZ.
[Hint. Consider { : Z — (Q/Z),, given by {(m) = = + Z.]

If (P,),e; is a family of R-modules each of which is projective prove that € P, is pro-
a€l

jective. Conversely, prove that if € P, is projective then so is each P,.
a€l

[Hint. Working with the diagram
P

J in,

@ P(Z

a€l

A B 0 (exact)
g

determine the appropriate fill-in maps. ]

If p is a prime, establish a short exact sequence

0 Z./pZ 7./p*Z. Z./pZ 0

that does not split. Deduce that a submodule of a projective module need not be pro-
jective.

Let n be an integer greater than 1. For every divisor r of n consider the ideal r(Z/nZ)
of the ring Z/nZ. Show how to construct an exact sequence

0—> %(Z/nZ)—>Z/nZ—> r(Z/nZ)——0.

Prove that the following are equivalent :

(a) the above short exact sequence splits;
(b) heff{r,n/r}=1;
(¢) the Z/nZ-module r(Z/nZ) is projective.
Hence give an example of a projective module that is not free.

[Hint. Consider Z/2Z as a Z/6Z-module.]
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8.6 Suppose that in the diagram of R-modules and R-morphisms

B
lids
B

the rows are exact and P; is projective. Prove that there exist R-morphisms f3 : P, — P,
and a : K; — K, such that the completed diagram is commutative.

[Hint. Use the projectivity of P; to construct 3. As for a, observe that go f oi = 0; use
Theorem 3.7.]

Consider now the sequence
?
0——K,— P, ®K,—— P,——0

in which ¢ is given by #(k) = (i(k), a(k)) and 7 is given by n(p;, k;) = B(p1) —j(ky).
Show that this sequence is exact. Deduce that if P, is also projective then P, ® K, ~
P, ®K,.

8.7 Show that every diagram of R-modules and R-morphisms of the form
P/ P//

J jﬁ

0 E’ E E” 0
f g

in which the row is exact and P’, P” are projective can be extended to a commutative
diagram

i i

0 P’ P pP” 0

Ll
0 E’ E E” 0
f g
in which the top row is exact and P is also projective.
[Hint. Take P = P’ @ P”. Let f3 be a projective lifting of § and let j:P—Pbea
left-hand splitting morphism; consider the mapping y = (f ca o j) = (B o ).]

8.8 Let the diagram of R-modules and R-morphisms

A
B

be such that both rows are exact and each P, is projective. Prove that for every positive
integer n there is an R-morphism k, : P, — Q,, such that h, ok, =k,_; 0 g,.

Qs Q, Q

h3 hy hy

[Hint. Use Theorem 8.5 and induction. ]
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8.9

8.10

8.11

Module Theory

Let R be a commutative unitary ring. Let X and Y be R-modules with X projective. If
A, B are submodules of X, Y respectively show that the set

Aup={f €Morg(X,Y); f~(A) C B}
is a submodule of the R-module Mory(X,Y). Show also that there is an R-isomorphism

Morg(X /A, Y /B) =~ AA,B/AX,B'

If M and N are R-modules consider the set P(M, N) of those R-morphisms f : M - N
that ‘factor through projectives’ in the sense that there is a commutative diagram

4.

M——N

in which P is projective. Show that P(M, N) forms a subgroup of the group Moryz(M, N).

[Hint. If f factors through P and g factors through Q show that f — g factors through
PaQ.]

If [M,N] denotes the corresponding quotient group, prove that for every exact se-
quence

0— N~ NN —0

there is an induced exact sequence of Z-modules and Z-morphisms
[M,N'] > [M,N]—5[M,N"].
[Hint. The sequence

Mory(M,N’) T) Morg(M,N)—— Morz(M,N")
* 8x

is exact. If a € P(M,N’) observe that f,(a) € P(M, N) and use Theorem 4.3 to produce
f’; similarly for g’.]
An exact sequence of the form

P, fn P frm1 fi P, 0

is said to split if there exist R-morphisms g; : P, = P;,; such that

(@) frogo=idp;
® (Vi=1)giifi + fis18 =idpys-

Prove by induction that if each P; is projective then the above sequence splits.
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8.12 Let A, be the ring of lower triangular n x n matrices X = [x;;] over a field F (so that
x;;=0ifi <j). Let A=[a;;] and B = [b;;] in A, be given respectively by

1 ifi=j+1; 1 ifi=j=1;
aij= ij = .
0 otherwise.

0 otherwise,

fe,={XeA,; (i=1,...,n) x; =0} prove that

0 A,B A

n

S}

n 0’

n

where f is the natural inclusion and g is given by g(X) = XA, is a split exact sequence
of A,-modules. Deduce that ©, is a projective A,-module.

8.13 Let V and W be finite-dimensional vector spaces over a field F. If f : V — W is a linear
transformation let the rank of f be written p(f ). Prove that, for every A € F,

p(f) ifAF#O;

puf):{ 0 ifa=o.

Prove also that if g : V — W is also linear then

le(f)=p@l<p(f+8)<p(f)+p(g).
[Hint. Establish the right-hand inequality from Im(f + g) € Imf + Img. As for the
left-hand inequality, write f = (f + g)—g and apply the right-hand inequality together
with the first part of the question.]

8.14 Let V, W, X be finite-dimensional vector spaces over a field F and let f : V — W and
g : W — X be linear transformations. Prove that

p(f)+p(g)—dim W < p(g o f) <min{p(f),p(g)}

[Hint. For the left-hand inequality consider the restriction of g to Im f; and for the
right-hand inequality use Corollary 2 of Theorem 8.11.]
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DUALITY ; TRANSPOSITION

In the previous section we noted that if M and N are R-modules then the abelian
group Morg(M, N) is not in general an R-module. Let us now examine the particular
case where N = R. Noting that expressions of the form r f (m)A are meaningful for
r,A € R and f € Morg(M,R), we can give Morg(M,R) the structure of a right R-
module as follows : for every f € Morg(M,R) and every A € Rlet fA: M — R be
given by the prescription (f A)(m) = f (m)A. Then by virtue of the equalities

(fA)(rm) = f(rm)A =rf(m)A = r(f A)(m),

the group morphism f A is indeed an R-morphism and so is in Morg(M, R).

Definition 9.1 If M is an R-module then the dual of M is the right R-module M¢ =
Morg(M,R). The elements of the dual module M¢ are called linear forms (or linear
functionals) on M.

It is clear that in an analogous way we can start withn a right R-module N and
form its dual, which will be a left R-module . In particular, if M is an R-module then
we can form the dual of the right R-module M, thus obtaining the (left) R-module
(M®)?. We shall denote this by M?¢ and call it the bidual of M.

e Similarly, we can give Morg(R, M) the structure of a left R-module, but this
turns out to be isomorphic to M; see Exercise 9.1.

Example 9.1 As in the remark following Theorem 8.3 we have Q¢ = 0, (Z/2Z)? =0
and Z¢ ~ Z. More generally, it can likewise be shown that (Z/nZ)? = 0 as a Z-
module. In contrast, note that (Z/nZ)? ~ Z/nZ as Z/nZ-modules; for the Z/nZ-
module Z/nZ is free, of dimension 1, and it is readily seen that the assignment
f = f(1+ nZz) yields a Z/nZ-isomorphism from (Z/nZ)? to Z/nZ.

If M is an R-module and M? is its dual then in what follows we shall write a
typical element of M 4 a5 x? (remember that it is an R-morphism). We shall also
use the following notation : given x € M and y? € M9 we denote by (x, y?) the
element y?(x) of R. With this notation we see immediately that, for all x, y € M, all
x?, y? € M4, and all A € R, we have the identities :

(@) (x +y,x9) = (x,x%) + (y,x%);
(B) (o, x? +y%) = {x, x¥) + {x, y9);
(1) (Ax, x9) = A, x%);

(8) {x, xIA) = (x, x?)A.
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Theorem 9.1 9.1 Let M be a free R-module with basis {e; ; i € I}. For every i €1 let
ef : M — R be the (unique) R-morphism such that

0 ifj#i;
e?(ef)={1 ifj=i.

Then {ef ; i €I} is a linearly independent subset of M¢.
Proof It is clear that ef € M¢ for every i € I and that ef = e}i if and only if i = j.

t
Now if >’ e?A; = 0in M? then for j =1,...,n we have
=1 t ¢ ¢
Or = (2 efA:)(e) = X(ef A)(e)) = X e (e)Ai = 2,
i=1 i=1

i=

whence {ef ; 1 € I} is linearly independent. |

Corollary 1 If x = ). x;e; then ef(x) = Xx; for each i.
i=1

2
n n
Proof ed(x)=e(X xje;) = xjed(e;) =x;. o]
Jj=1 j=1

e Because of Corollary 1, the R-morphisms ef are often called the coordinate
forms associated with the elements e;.

Corollary 2 If I is finite, say I = {1,...,n}, then {ef,...,eg} is a basis of M¢.

n
Proof Given f € M? and x = Y. x;e; € M we have, using Corollary 1,
i=1

(ieff(ei))(x) = 26?(){)}‘(@) = Zn: xf(e)) = f(x)

i=1

n
and consequently f = >’ eflf (e;), which shows that {ef, . eff} generates M9, Since
i=1
this set is linearly independent, it therefore forms a basis of M¢. |

Definition 9.2 If M is a free R-module and if B = {e,...,e,} is a finite basis of M
then by the basis dual to B we shall mean the basis {e‘f, e, eg} of M4,

Let us now return to the identities (a) to (&) above. It is clear from () and (&)
that, for every x € M, the mapping x4 : M4 — R given by the prescription

xdd(xd) — <X, Xd>

is a linear form on the right R-module M¢ and so is an element of the bidual module
M4 (hence our choice of the notation x%¢). Consider now the mapping dd,, : M —
M given by x — x%4. It is quickly verified using () and (y) that this is an R-
morphism. We call it the canonical R-morphism from M to M99,



100 Module Theory

e The various notational conventions described above may be summarised in
the identities
x(x?) = (x, x%) = x(x)
where x € M, x4 € M? and x4 € M.

In general, the canonical R-morphism dd,; need not be either injective or surjec-
tive. However, we do have the following important result.

Theorem 9.2 If M is a free R-module then the canonical morphism dd,; : M — M %
is a monomorphism. Moreover, if M has a finite basis then dd,, is an isomorphism.

Proof Let{e;; i €I} be abasis of M and let {e? ; i € I} be the set of corresponding
coordinate forms. Suppose that x € Kerdd,, and that x = > x;e; where J is some
ieJ
finite subset of I. Then since x%¢ is the zero element of M we have x%(y?) =0
for all y¢ € M. In particular, for every i € J we have, by Corollary 1 of Theorem
9.1, 0=x%(ed) = (x,e) = e?(x) = x;. It follows that x = 0 and hence that dy; is
a monomorphism.
Suppose now that I is finite, say I = {1,...,n}. Since

1 ifi=j;
0 ifi#j,
we see that the efd are the coordinate forms associated with the e? and so, by Corol-
lary 2 of Theorem 9.1, {e‘fd,...,egd} is the basis of M4 that is dual to the basis

{e‘li,...,eg} of M. It now follows by Corollary 2 to Theorem 7.7 that dd,, is an
R-isomorphism. o]

e;id(ej) = <eise;'1> = e;‘i(ei) = {

o In the case where M is a free R-module having a finite basis we shall hence-
forth agree to identify M and M99, We can do so, of course, only because of
the isomorphism dd,; which, from the above, is canonical in the sense that
it is independent of any choice of bases. However, we shall not identify M
and M? in this case, despite the fact that for any (finite) basis of M the cor-
responding dual basis has the same cardinality so that M and M? are also
isomorphic (by the Corollary 2 to Theorem 7.7). In fact, M and M¢ are not
canonically isomorphic. What we mean here by a canonical isomorphism is
an R-isomorphism ¢ : M — M9 which is such that, for all x,y € M and all
R-isomorphisms f : M — M, {x,{(y)) = (f (x), L[ f(¥)]). We refer the reader
to Exercise 9.8 for specific details.

Definition 9.3 Let M and N be R-modules. By the transpose of an R-morphism f :
M — N we shall mean the induced R-morphism

M9 = Morg(M,R) «———Morg(N,R) = N¢

given by the assignment
ylof e——y.

We shall denote the transpose of f by f*.
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e Itis clear from the definition that f* is a Z-morphism. That it is an R-morphism
follows from the equalities [f{(y?A)](x) = (YA f ()] = ¥[f()IA =
[ o £HENIA =y o HHAx) = [f (yDAI(x).

e In terms of the notation introduced previously, we have, for all x € M and all
ylenNd,

(f(x),y%) = (x, f1(y D).

In fact, the left-hand side is yI[f(x)] = (¥ o f)(x) = [f (y?)](x) which is
the right-hand side.

The principal properties of transposition are as follows.
Theorem 9.3 (1) For every R-module M, (id,;)" = idq;

(2)If f,g € Morg(M,N) then (f +g)' = f'+ g%;

(3)If f € Morg(M,N) and g € Morg(N,P) then (go f)' = ffogt.
Proof (1) is obvious from the definition of transpose; and (2), (3) are special cases
of Theorem 8.2(4),(2). =
Corollary 1 If f : M — N is an R-isomorphism then so is f : N¢ — M?; moreover,
in this case, (f£)™' = (f 1)~
Proof This is immediate from (1) and (3). ]

We can, of course, apply the previous definition to the R-morphism f! : N¢ —
M¢?, thereby obtaining its transpose, namely (f )¢ : M4 — N9 given by # — §o f*.
We call ()" the bitranspose of f and shall denote it henceforth by f**.

The connection between bitransposes and biduals can be summarised as follows.

Theorem 9.4 For every R-morphism f : M — N there is the commutative diagram

f

M ——>N

ddMJ JddN

Mdd ENdd
ftt

Proof For every x € M we have (ddy o f)(x) = [f(x)]¢% and (f!* o dd,,)(x) =
ftt(xm), Moreover, for all x € M and all y¢ € N4,

[F )1 (y D) = (F(x), y%) = (x, F Ly D);
[F )]y = (x % 0 £y = (x, £ (D)),
whence the result follows. =

e Note that if M and N are free R-modules each having a finite basis and if
f : M — N is an R-morphism then, on identifying M?¢ with M and N9 with
N, we obtain from Theorem 9.4 the equality f* = f. These identifications
also happily reduce notational complexities to a reasonable level!
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By way of applying Theorem 9.4, we can obtain the following generalisation of
Theorem 9.2.

Theorem 9.5 If P is a projective module then the canonical morphism ddp is a mono-
morphism; moreover; if P is finitely generated then ddp is an isomorphism.

Proof If P is projective then, by Theorem 8.7, P is a direct summand of a free
module F. Let tp : P — F be the natural inclusion. Then by Theorem 9.4 we have
the commutative diagram

Since ddy is injective by Theorem 9.2, we deduce that ¢} o dd, is injective whence
so is ddp.

Suppose now that P is also finitely generated. Then by the Corollary to Theorem
8.7 there is a free R-module F with a finite basis and an R-epimorphism 7 : F — P.
Since P is projective, Theorem 8.8 yields the split short exact sequence

T

0 Kerm——F P 0

in which ¢ is the natural inclusion. Applying Theorem 8.4(2) twice (with M = R)
and Theorem 9.4, we obtain the commutative diagram

L T

0 K F p 0
Jdd,( Jdd; Jdd,,
0 Kdd pdd pdd 0
L[t n[t

in which K = Kern and each row is split exact. Since ddy is an isomorphism by
Theorem 9.2, we deduce that dd, o 7t is surjective, whence so is ddp. It now follows
from the first part of the theorem that dd, is an isomorphism. |

We now consider further relations between a module and its dual.
Definition 9.4 If M is an R-module then x € M is said to be annihilated by x¢ € M?
if x4(x) = (x,x?) =0.

It is clear from the equalities () and (y) immediately preceding Theorem 9.1

that for every non-empty subset E on M the set of elements of M¢ that annihilate
every element of E forms a submodule of M¢. We denote this submodule of M¢ by

EP={x{eM?; (Vx €E) (x,x!) =0}
and call this the submodule of M¢ that annihilates E. In particular, we obviously have
{017 = M4 and M = {0,,4}.

The connection between duality, transposition and annihilation can now be sum-
marised as follows, in which we denote by L(M) the lattice of submodules of M.
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Theorem 9.6 For every R-morphism f : M — N there is the commutative diagram

L(M)————L(M?%)

fﬂl J(ft)“

L(N)TL(Nd)

Proof What we have to show is that, for every submodule A of M,
[Fm@AI7 =) @).
This follows immediately from the observation that
yielf?A]°7 <= (Vxef(A4)0=(x,y

= (YaeA)0=(f(a),y!) =(a,f'(y")

= f'y)ea

= yle(fH @M. o
Corollary 1 If f : M — N is an R-morphism then (Im f)” = Ker f*.
Proof It suffices to take A= M in the above. ol
Corollary 2 IfAis a submodule of M then (M /A) ~ A",

Proof Consider the natural short exact squence

O——A— M — my/aA 0.

By Theorem 8.3 we have the induced short exact sequence

Al it (A —o.

By Corollary 1 and the exactness, (M /A)? ~Imp’ = Kert’ = (Im¢)” = A". ]

We now turn our attention again to finite-dimensional vector spaces and derive
some further properties of the dimension function.

Theorem 9.7 IfV is a finite-dimensional vector space and if W is a subspace of V then
dimW" =dimV —dimW.

Moreover, if we identify V with its bidual then (WE)E = W.

Proof If W =V then the result is clear. Suppose then that W c V. Let dimV =n
and note that by Corollary 3 of Theorem 8.9 we have dimW = m where m < n.
Let {ay,...,a,,} be a basis of W and extend this to a basis {ay, ..., qQn, Ams1s--->an}
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of V. Let {a‘f, . ..,ag} be the basis of V¢ that is dual to this basis of V. If now x =

n
> afl; € WO then for j=1,...,m we have
=1

=

O=<aj,xd>= (a],a?)AIZXJ
i=1

d

S PR aﬁ} is a basis for W and hence that

It follows immediately that {a
dimW" =n—m=dimV —dimW.

As for the second statement, consider the subspace (W™)" of V44 = V. By def-
inition, every element of W is annihilated by every element of W™ and so we have
W C (WP)". On the other hand, by the first part of the theorem,

dim(W®)® = ddim V¢ —dimW® = n— (n—m) = m = dimW.
We conclude from Corollary 3 of Theorem 8.9 that (WE)E = w. ]

Corollary 1 The assignment W — WU yields a bijection from the set of m-dimensional
subspaces of V to the set of m — n-dimensional subspaces of V4. ol

Theorem 9.8 Let V and W be finite-dimensional vector spaces over the same field F.
If f : V —> W is a linear transformation then

(1) (Imf)" =Ker f*;

(2) (Kerf)” =Imf";

(3)dimIm f =dimImf*;

(4) dimKer f = dimKer f*.
Proof (1) follows from Corollary 1 of Theorem 9.6; and (2) follows from (1), The-
orem 9.7 and the remark preceding Theorem 9.5. As for (3) and (4), we observe
that, by (1) and (2),

dimImf* = n—dimKer f*

n—dim(Im f )"
=n—(n—dimImf)
dimIm f
n—dimKer f,
from which both (3) and (4) follow. =

We shall see the importance of Theorem 9.8 in the next section.

EXERCISES

9.1 Let M be an R-module. For every R-morphism f : R — M and every A € R let Af :
R — M be given by the prescription (Af)(r) = f(rA). Show that Af € Morg(R, M) and
deduce that Morg(R, M) is an R-module. Show also that 1 : Morg(R, M) — M given by
B(f) = f(1g) is an R-isomorphism.
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Let R,[X] denote the (n + 1)-dimensional vector space of pokynomials over R of de-
gree less than or equal to n. If t,,...,t,,; are n+ 1 distinct real numbers and if for
i=1,...,n+1 the mappings {,, : R,[X] — R are the corresponding substitution mor-
phisms, given by {, (p) = p(t;) for each i, prove that

B={{,;i=1,...,n+1}

is a basis for the dual space (R[x])¢. Determine a basis of R,,[X ] of which B is the dual.

[Hint. Consider the Lagrange polynomials

i

X —t;
ot
wherei,j=1,...,n+1.]

Let R be a commutative unitary ring regarded as an R-module. Let m and n be positive
integers. Given fi,..., f,, € (R")¢, define f : R* — R™ by the prescription

FO)= (A, ().

Show that f € Morgz(R",R™) and that every element of Morgz(R",R™) is of this form for
some fi,...,f, € (R

[Hint. Consider f; =pr; o f.]

If (M;);¢; is a family of R-modules prove that (163 Ml-)d ~ i>e<1 Mf’.

[Hint. Use Theorem 8.1(a).]

Prove that an R-morphism is surjective if and only if its transpose is injective.

Let V be a finite-dimensional vector space and let (V;),; be a family of subspaces of V.
Prove that o o

Uv) =nve (Ov) =2v™

i€l i€l i€l i€l

[Hint. Observe first that X C Y implies Y™ C X".]
If V is a finite-dimensional vector space and W is a subspace of V prove that V¢ /WP ~
we.
[Hint. Show that f — g € W if and only if the restrictions of f, g to W coincide.]
In this exercise we indicate a proof of the fact that if V is a vector space of dimension
n > 1 over a field F then there is no canonical isomorphism ¢ : V — V¢ except when

n=2and F ~ Z/2Z. By such an isomorphism { we mean one such that, forall x,y € V
and all isomorphisms f : V -V,

() (x5, () = (f (), LLFONID)-

If { is such an isomorphism show that for y # 0 the subspace Ker{(y) = {¢(y)}" is
of dimension n— 1.
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Suppose first that n > 3. If there exists ¢ # 0 such that t € Ker {(¢t) let {¢,x1,..., X5}
be a basis of Ker {(t), extended to a basis {t, x1,...,X,_5,2} of V.Let f : V — V be the
(unique) linear transformation such that

fO)=t fx))=2 f@)=x, flx)=x#1).

Show that f is an isomorphism that does not satisfy (x). [Take x = x;,y = t.] If, on
the other hand, for every ¢t # 0 we have t ¢ Ker{(t), let {x,,...,x,_1} be a basis of
Ker{(t) so that {x,,...,x,, t} is a basis of V. Show that

{31 + x5, x5+ t,x5,..., X1, t + X1}

is also a basis of V. Show also that x, € Ker{(x;). [Assume the contrary and use
Theorem 7.10.] Now show that if f : V — V is the (unique) linear transformation such
that

fla)=x1+x,, fOR)=x+t, f()=t+xy, f(x)=x(#1,2)

then f is an isomorphism that does not satisfy (x). [Take x = x;, y = t.] Conclude that
we must have n = 2.

Suppose now that |F| > 3 and let A € F be such that A # 0, 1. If there exists ¢ # 0 such
that t € Ker {(t) observe that {t} is a basis of Ker {(t) and extend this to a basis {t,z}
of V.If f : V — V is the (unique) linear transformation such that f(t) = t, f (z) = Az,
show that f is an isomorphism that does not satisfy (x). [Take x = z,y = t.] If, on
the other hand, for all ¢t # 0 we have t ¢ Ker{(t) let {z} be a basis of Ker{(t) so
that {z,t} is a basis of V. If f : V — V is the (unique) linear transformation such that
f(2) = Az,f(t) = t, show that f is an isomorphism that does not satisfy (x). [Take
x =y =z.] Conclude that we must have |F| = 2.

Now examine the F-vector space F? where F ~ Z/2Z.

[Hint. Observe that the dual of F? is the set of linear transformations f : F x F — F.
Since |F?| = 4 there are 2* = 16 laws of composition on F. Only four of these can be
linear transformations from F x F to F; and each is determined by its action on the
natural basis of F2. Compute (F2)! and determine a canonical isomorphism from F?
onto (F?)?.]

Let E and F be vector spaces over a field K and letu : E — F be a linear transformation.
If V is a subspace of E prove that

[u” (D] = @)~ (FH/IVE N W) (FD]

[Hint. Consider the mapping @ : (u*)~(F?) — [u~(V)]¢ described by sending f¢ ou to
the restriction of f¢ to u™(V).]
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MATRICES; LINEAR EQUATIONS

In this section we introduce the notion of a matrix and illustrate the importance of
some of the previous results in the study of linear equations. The reader will un-
doubtedly be familiar with several aspects of this, in perhaps a less general setting,
and for this reason we shall be as brief as possible.

Definition 10.1 Let S be a non-empty set. By an m x n matrix over S we shall mean

amapping f : [1,m] x [1,n] — S. We shall write the element f (i, j) of S as x;; and
denote such a mapping by the array

X11 X172 -+ X1p
le x22 D) xzn

Xm1Xm2 -+ Xmn

which consists of m rows and n columns, the entry x;; appearing at the intersection
of the i-th row and the j-th column. We shall often abbreviate this to [x;; ], xn-

It is clear from the definition of equality for mappings that we have [x;;],x, =
[Yijlpxq if and only if m = p,n = q and x;; = y;; for all i, j.

We shall denote the set of m x n matrices over a unitary ring R by Mat,,,(R).
Clearly, it form an R-module under the component-wise definitions

[xij]mxn + [yij]mxn = [xij +yij]m><n; A'[xij]rnxn = [Axij]mxn‘

Definition 10.2 Let R be a unitary ring and let M be a free R-module of dimension
n. By an ordered basis of M we shall mean a sequence (a;);<;<, of elements of M
such that the set {a;,...,a,} is a basis of M. We shall often write an ordered basis
as simply (a;),-

o Note that every basis of n elements gives rise to n! distinct ordered bases since

there are n! bijections on a set of n elements.

Suppose now that R is a unitary ring and that M, N are free R-modules of dimen-
sions m, n respectively. Suppose further that (a;),,, (b;), are given ordered bases of
M, N and that f : M — N is an R-morphism. Then we know by Theorem 7.7 and its
Corollary 3 that f is entirely determined by the mn scalars x;; such that

(j=1,...,m) f(aj):;Xijbi:)fljbl+“'+xnjbn.
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The nxm matrix X = [X; ]« (note the reversal!) is called the matrix of f relative to
the ordered bases (a;),, and (b;),. We shall denote it by Mat[ f, (b;),, (a;),,] or simply
Mat f if there is no confusion over the ordered bases.

e Note again that it is an n x m matrix that represents an R-morphism from an
m-dimensional module to an n-dimensional module. This conventional twist
is deliberate and the reason for it will soon be clear.

Theorem 10.1 Let R be a unitary ring and let M,N be free R-modules of dimensions
m, n referred respectively to ordered bases (a;),, (b;),- Then the mapping

¥ : Morg(M,N) — Mat,,,,(R)
given by 9(f) = Mat[ f, (b;),, (a;),,] is an R-isomorphism.

Proof It suffices to note that if A= Mat f and B = Mat g then A+ B = Mat(f + g),
and AA = Mat(Af). O

Definition 10.3 If X = [x;;],x, and Y = [y;;],«, are matrices over a unitary ring R
then we define the product XY to be the m x p matrix [2;;],,x, given by

Zij = > XikYkj-
k=1
The reason for this (at first sight rather strange) definition is made clear by the
following result.

Theorem 10.2 Let R be a unitary ring and let M, N, P be free R-modules of dimensions
m, n, p respectively. If (a;)p, (b;)n,(c;), are fixed ordered bases of M,N, P respectively
and if f € Morg(M,N), g € Morg(N, P) then

Mat[g Of, (Ci)p’ (ai)m] = Mat[g: (Ci)p:(bi)n]Mat[f; (bi)n: (ai)m]-
Proof Let Matf = [x;;],xm and Matg =[y;;],«,- Then for j =1,...,m we have
n n p n
(g Of)(aj) = g(Z xijbi) = Z xijg(bi) = kZ (Z xij.yki)ck
i=1 i=1 =1"i=1
from which the result follows. o

e In a more succinct way, the equality of Theorem 10.2 can be written in the
form Mat(g o f) = Mat g Mat f . It is precisely to have the product in this order
that the above twist is adopted.

Corollary 1 Matrix multiplication as defined above is associative.
Proof It suffices to observe that composition of morphisms is associative. |

Corollary 2 If (a;), is an ordered basis of an n-dimensional module over a unitary
ring R then the mapping

¥ : Morg(M, M) — Mat,,,(R)

given by 9(f) = Mat[ f, (a;),, (a;),] is a ring isomorphism.
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Proof It suffices to note that Mat,,,(R) is an R-algebra, the identity element of
which is the diagonal matrix

100...0
010...0
;—|oo0o1..0
n
000 1
i.e. that given by I,, = [6;;],x, where
1 ifi=j;
5ij= e ]
0 ifi#j,
and that Mat[id,;, (a;),, (a;),] =1. o]

Corollary 3 Mat[f,(a;),,(a;),] is an invertible element in the ring Mat,,,(R) if and
only if f is an R-isomorphism. |
The importance of invertible matrices is illustrated in the following result. This

tells us how the matrix representing an R-morphism changes when we switch refer-
ence to a new ordered basis.

Theorem 10.3 Let R be a unitary ring and let M, N be free R-modules of dimensions
m, n respectively.

(1) Let (a;), (a;),, be ordered bases of M and let (b;),,(b!), be ordered bases of
N. Given f € Morg(M,N), suppose that Mat([ f, (b;),,, (a;)m] =A. Then

Mat[f, (b)), (a))] = Q ‘AP

where P = Mat[idy;, (a;),,, (a;)m] and Q = Mat[idy, (b;),, (b})n].

(2 Conversely, if (a;),, and (b;), are ordered bases of M and N respectively and if
A, B are n x m matrices over R such that, for some invertible m x m matrix P and some
invertible n x n matrix Q, B = Q ‘AP then there is an R-morphism f : M — N and
ordered bases (a;),,,(b;), of M,N respectively such that A= Mat[f,(b;),,(a;),,] and
B =Mat[f, (b)), (a))n ]

Proof (1) Let M;(q;),, denote that M is referred to the ordered basis (q;),, and
consider the diagram

fiA
M;(a;)y———N; (b)),
id,;;P [ idN;Q] JidN;Q-1
M; (al{)mT)N; (b)n

in which, for example, f ;A indicates that A is the matrix of f relative to the ordered
bases (a;),,, (b;),- Note by Theorem 10.2 that Q = Mat[idy, (b;),, (b), ] is invertible
with Q! = Mat[id,,, (b)), (b;),]. Again by Theorem 10.2, we have
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QAP

Mat[idy, (b)), (b, IMat(f, (b;)s, (a;) Mat[idy, (a;)m, (@) ]
Mat[idN7 (bl/)ny (bi)n]Mat[f: (bi)n7 (al/)m]
Mat[f, (bl/)n; (al{)m];

so that the unknown ? in the diagram is indeed Q'AP.
(2) Let P = [pij]mxm and Q = [qij]nxn and define

m n
’_ /7 _
aj_zpijai’ b; = 2. ijbi-
i=1 i=1

Since P is invertible there is an R-isomorphism g with P = Mat[ g, (a;),, (a;),,] and
since a; = g(a;) for each i we see that (a!),, is an ordered basis of M (for iso-
morphisms carry bases to bases). It is now clear that P = Mat[id),, (a;),,(a}), ]
Similarly we see that Q = Mat[idy, (b;),.(b}),]. Now by Theorem 10.1 there exists
f € Morg(M,N) such that A = Mat[f,(b;),,(a;),]. Let C = Mat[f, (b)), (a;),];
then by part (1) we have C = Q AP = B. |

Definition 10.4 If (a;),, and (a;),, are given ordered bases of M then the matrix
Mat[idy,, (a;), (a;)p,] is called the transition matrix (or matrix which represents the
change of basis) from (a;),, to (a}),,.

It is immediate from the previous result that two m x n matrices A, B represent
the same R-morphism with respect to possibly different ordered bases if and only if
there are invertible matrices P,Q (namely, transition matrices) with P of size m x m
and Q of size n x n such that B = Q AP. We describe this situation by saying that A
and B are equivalent. It is clear that the relation of being equivalent is an equivalence
relation on the set Mat,,,,,,(R). An important problem from both the theoretical and
practical points of view is that of locating a particularly simple representative, or
canonical form, in each equivalence class. In order to tackle this problem, we require
the following notions.

Definition 10.5 By the transpose of an n x m matrix A = [a;; ],x,, we mean the mxn
matrix A° = [a;; ]un-
The reason for this choice of terminology is clear from the following result.

Theorem 10.4 Let R be a unitary ring and let M,N be free R-modules of dimensions
m, n respectively. If f : M — N is an R-morphism and (a;),, (b;), are ordered bases of
M, N with Matlf, (b)), (@) ] = A then Mat[f*, (a9),,, (6),] = A

Proof Let Mat[f",(af),,(b?),]=1[b;;lnxn. Then we have

(f(ay), b?) = < t:Zlanbn b?) = t:Zlan'U’n b;i) = aji;

from which the result follows. ]
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Suppose now that f : [1,m] x [1,n] — S is an m x n matrix. Then for every
p € [1,n] the restriction f, : [1,m] x {p} — S is an m x 1 matrix which we shall call
the p-th column matrix of f. The p-th row matrix of f is defined similarly. The p-th
column and p-th row matrices of a matrix A = [a;;],,«, that represents f are then

Definition 10.6 By the column rank of an m x n matrix A over a unitary ring R we
shall mean the dimension of the submodule of Mat,,,;(R) generated by the columns
of A. Similarly, the row rank of A is the dimension of the submodule generated by
the rows of A.

For the rest of this section we restrict our attention again to vector spaces, though
the results that follow do not depend on commutativity.

Theorem 10.5 Let V and W be vector spaces of dimensions m,n respectively over a
field F. Let f : V — W be a linear transformation and let A be the matrix of f relative
to fixed ordered bases (a;),, (b;), respectively. Then the following coincide:

(1) the column rank of A;
(2) dimIm f;

(3) the row rank of A;
(4) dimIm f*.

Proof LetA=[a;;],xm and recall that

) (G=1,....,m) f(a;)=2,a;b;.
i=1

Now the mapping ¥ : Mat,,,;(F) — W given by

X1
X2 n
'l? . = inbl
. i=1
le

is clearly an isomorphism which, by virtue of (), takes the j-th column matrix of A
onto f (a;) and hence maps the subspace of Mat,,.; (F) generated by the columns ma-
trices of A onto Im f . Thus we see that the column rank of A coincides with dimIm f.
Likewise we can show that the column rank of A" is dimIm f £. Now since the column
rank of A’ is clearly the same as the row rank of A, the result follows by Theorem
9.8(3). |
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Corollary 1 If g : V — W is also a linear transformation and if the matrix of g relative
to (a;),,, (b;), is B then the following statements are equivalent :

(1) the subspace of Mat,(F) generated by the column matrices of A coincides with
the subspace generated by the column matrices of B;

(2) Imf =Img.

Proof It suffices to recall that 1} in the above proof is an isomorphism that maps the
column space of A onto Im f . |

e Because of the equivalence of (1) and (3) in Theorem 10.5, we shall talk simply
of the rank of a matrix over a field when referring to either the row rank or
the column rank.

e In view of the definition of row and column rank, the result of Theorem 10.5 is
really quite remarkable; for there is no obvious reason why we should expect
the row rank of a matrix to coincide with the column rank. Indeed, the result
holds only because the corresponding result for linear transformations [ Theo-
rem 9.8(3)] is a very natural one. In contrast, we note that Theorem 10.5, and
hence Theorem 9.8, does not hold in general for R-modules; for an illustration
of this we refer the reader to Exercise 10.7.

It is clear that, relative to the equivalence relation described above, the only
matrix that is equivalent to the m x n zero matrix is the m x n zero matrix. As for the
other equivalence classes, we shall now locate a particularly simple representative
of each.

Theorem 10.6 Let A be a non-zero m x n matrix over a field F. If A is of rank r then
A is equivalent to a matrix of the form

|: I, Orxnr :|

Omfrxr Omfrxnfr

Proof Let V andW be vector spaces over F of dimensions n and m respectively.
Let (a;)n, (b;),, be ordered bases of V,W and let f : V — W be a linear transfor-
mation such that A = Mat[f, (b;),, (a;),]. By Corollary 2 of Theorem 8.9 we have
dimKer f = n—r, so there is an ordered basis a = (a;), of V such that {a; ,,...,a}
is a basis of Ker f. Since {f(a}),...,f(a;)} is then a basis of Im f, we can extend

this to a basis
{f(a),....f(a),b,,,....,b }

of W. Let B = (3;),, be the ordered basis given by ; = f(a) fori =1,...,r and
Bryi = b, fori=1,...,m—r.Then itis readily seen that the matrix of f relative to
the ordered bases a, f is of the stated form, and this is equivalent to A by Theorem

10.3. O

Corollary 1 Two m x n matrices over a field are equivalent if and only if they have the
same rank. ol
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Corollary 2 If A is an n x n matrix over a field then the following statements are
equivalent :

(1) Ais invertible;
(2) Ais of rank n;
(3) Ais equivalent to the identity matrix I,.

Proof This is immediate from Corollary 4 of Theorem 8.9. |

e The matrix exhibited in Theorem 10.6 is called the canonical matrix of rank r,
or the canonical form of A under the relation of equivalence.

We now consider a particularly important application of matrices, namely to the
solution of systems of linear equations over a field.

Consider the following system of ‘m equations in n unknowns’ :

a1 Xq + aA19Xo + -+ alnxn = bl
as1Xq + A9 Xo + -0 + AonX, = b2
A1 X1 + QaXxy + -+ + appX, = by,

The m x n matrix A = [a;;],x, is called the coefficient matrix of the system. By
abuse of language we shall henceforth refer to such a system by means of its matrix
representation

X1 by

X2 b,
A =1 .

le bm

which we shall abbreviate for convenience to A[x;], = [b;],,. In this way we can
represent the given system by a single matrix equation. The m x (n + 1) matrix
whose first n column matrices are those of A and whose (n + 1)-th column matrix is
[b;], is called the augmented matrix of the system.

Theorem 10.7 The system of equations A[x;],, = [b;],, over a field F has a solution if
and only if the coefficient matrix and the augmented matrix have the same rank.

Proof Fori =1,...,n let the i-th column matrix of A be A;. Then the system can

n
be written in the form Y A;x; = [b;],,. It follows that a solution exists if and only if
i=1
[b;],, belongs to the subspace of Mat,,,;(F) generated by the column matrices of A,
which is the case if and only if the (column) rank of A is the (column) rank of the

augmented matrix. |

If f is a linear transformation then related to the equation f(x) = y there is
the equation f (x) = 0. The latter is called the associated homogeneous equation. The
importance of this stems from the following result.



114 Module Theory

Theorem 10.8 If x, is a solution of the linear equation f(x) = y then the solution
set of this equation is the set of elements of the form x, + z where 2 is a solution of the
associated homogeneous equation.

Proof This is immediate from the observation that

f(xX)=y=f(x) < f(x—x0)=0. =

e If V and W are vector spaces and if f : V — W is linear then clearly the solu-
tions of the equation f (x) = O constitute the subspace Ker f . We can therefore
rephrase Theorem 10.8 in the form : the solution set of f (x) = y is either empty
or is a coset of the solution space of f(x)=0.

Theorem 10.9 Let A be an m x n matrix over a field F. Then the solution space of
Alx;], =[0],, is of dimension n — rankA.

Proof Let f, : Mat,,;(F) — Mat,,,;(F) be the linear transformation which given
by fA([xi]n) = A[x;],. Then it is readily verified that, relative to the natural ordered
bases of Mat,,,.; (F) and Mat,,,; (F), the matrix of f, is precisely A. The solution space
of A[x;], = [0],, is now Ker f, and its dimension is n—dimIm f, which, by Theorem
10.5, is n —rankA. =

In the elementary solution of linear equations, as is often illustrated by means
of worked examples in introductory courses on linear algebra, there are three basic
operations involved, namely

1. interchanging two equations;

2. multiplying an equation by a non-zero scalar;

3. forming a new equation by adding to one a multiple of another.
The same operations can be performed on the rows of the coefficient matrix of the
system and are called elementary row operations . When the coefficients are elements
of a given field, these operations are ‘reversible’ in the sense that we can always per-
form the ‘inverse’ operation and obtain the system we started off with. Consequently,
these operations do not alter the solution set of the system.
Definition 10.7 By an elementary matrix of size m x m over a field we shall mean a
matrix that has been obtained from the identity matrix I,, by applying to it a single
elementary row operation.

The importance of elementary matrices stems from the following result.

Theorem 10.10 Let A and B be m x n matrices over a field F. If B is obtained from A
by means of a single elementary row operation then B = PA where P is the elementary
matrix obtained by applying the same elementary row operation to I,,.

Proof We shall make use of the Kronecker symbol 6;; given by
1 ifi=j;
51‘ i= P .
0 ifi#j.
Recall that I, = [8;;]nxm-
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Suppose first that P = [p;;] is obtained from I,, by interchanging the i-th and
j-th rows of I,,, (with, of course, i # j). Then the r-th row of P is given by

6, ifr=j;
(t=1,...,m) pre=1 90 ifr=i;
0 ,.otherwise.

Consequently,
m Qs ifr= j;
[PA],s = Z DreQes =\ Qs ifr=i;
t=1

a otherwise.

rs

Thus we see that PA is the matrix obtained from A by interchanging the i-th and j-th
rows of A.

Suppose now that P is obtained from I,, by multiplying the i-th row of I,, by A.
Then the r-th row of P is given by

Ad;, ifr=i;

6, otherwise.

(t=1,...,m) Pn:{

Consequently,
u Aa; ifr=i;
PA],, = A =
[PA] tzzlpm ts { a,, otherwise,

whence we see that PA is obtained from A by multiplying the i-th row of A by A.

Finally, suppose that P is obtained from I,, by adding A times the i-th row to the
j-th row (with i # j). Then, if Elxj denotes the m x m matrix that has A in the (i, j)-th
position and 0 elsewhere, we have

Ay ifr #1i;

PA]., =[A+E}A] =
[ ]rs [ ij ]rs {ais+kajs ifr=i.

So PA is obtained from A by adding A times the i-th row of A to the j-th row of A. @

Since to every elementary row operation there corresponds a unique ‘inverse’
operation that restores the status quo, it is clear the every elementary matrix is in-
vertible.

We shall now introduce a second equivalence relation on the set of m x n matrices
over a field.

Definition 10.8 We say that two m x n matrices over a field are row equivalent if
one can be obtained from the other by means of a finite sequence of elementary row
operations

Clearly, this concept of row equivalence defines an equivalence relation on the
set Mat,,,,(F). It can be variously characterised as follows.
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Theorem 10.11 Let A and B be m x n matrices over a field F. Then the following
statements are equivalent :

(1) A and B are row equivalent;
(Z)A[xi]n = [0]m ifand Only lfB[xi]n = [O]m;
(3) there is an invertible matrix P such that B = PA;

(4) the subspace of Mat;,,(F) generated by the row matrices of A coincides with
that generated by the row matrices of B.

Proof (1) < (2): Row operations do not alter solution sets.

(1) = (8) : This is clear from Theorem 10.10 and the fact that every product of
invertible matrices is invertible.

(3) = (2) : Suppose that B = PA where P is invertible. Then AX = 0 implies
BX = PAX = PO = 0, and the converse implication follows similarly using the fact
that A=P'B.

(4) & (2) : Clearly, (4) holds if and only if the subspace of Mat,,,; (F) generated
by the column matrices of A* coincides with the subspace generated by the column
matrices of B. Now if f,, fz : Mat,,(F) — Mat,,,,(F) are given by fA([xi]n) =
A[x;], and fB([xi]n) = B[ x;], then the matrices of f,, f relative to the natural bases
are A, B respectively. Taking dual spaces and transposes in the Corollary of Theorem
10.5, we thus see that (4) holds if and only if Im f,; = Im f; which, by Theorem
9.8(2), is equivalent to (Ker f4)” = (Ker f5)" which, by Theorem 9.7, is equivalent
to Ker f, = Ker fz which is equivalent to (2). |

Corollary 1 Row-equivalent matrices are equivalent. O
Corollary 2 If A is an n x n matrix over a field F then the following statements are
equivalent :

(1) Ais row-equivalent to I,;

(2) Alx;],, =[0], has a unique solution, namely [0],;

(3) Ais invertible;

(4) Ais a product of elementary matrices. O

It is clear from the above that the only m x n matrix that is row-equivalent to the

zero m x n matrix is the zero m x n matrix. As for the other equivalence classes, we
shall now locate a particularly simple representative, or canonical form, in each.

Definition 10.9 By a row-echelon (or stairstep) matrix we shall mean a matrix of

the form
0 ... Of~x

in which all the entries ‘under the stairs’ are zero, all the ‘corner entries’ (those
marked *) are non-zero, and all other entries are arbitrary.
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e Note that the ‘stairstep’ descends one row at a time and that a ‘step’ may tra-
verse several columns.

By a Hermite matrix we shall mean a row-echelon matrix in which every corner
entry is 1 and every entry lying above a corner entry is 0.

Thus a Hermite matrix is of the typical form

Theorem 10.12 Every non-zgero m x n matrix A over a field F is row-equivalent to a
unique m x n Hermite matrix.

Proof Reading from the left, the first non-zero column of A contains at least one
non-zero entry. A suitable permutation of the rows yields a row-equivalent matrix of

the form

O ) 0 bll blz .o blp
0 .« O b21 b22 .. b2p
0 ... 0 byy bpy .. by,

in which b;; # 0. Now for i = 2,...,m subtract from the i-th row b;; b1_11

first row. This yields a row-equivalent matrix of the form

O oo O bll b12 .o blp
0...0 0 cp ... ¢y

times the

0...0 0 cpyg-ov Coyp

in which we see the beginning of the stairstep. We now repeat the process using the
(m—1)x(p—1) matrix C' = [¢; ;] Itis clear that, continuing in this way, we eventually
obtain a row-echelon matrix Z which, by its construction, is row-equivalent to A.
Since every corner entry of Z is non-zero we can multiply every non-zero row of Z
by the inverse of the corner entry in that row. This produces a row-echelon matrix
Z' every corner entry of which is 1. We now subtract suitable multiples of every non-
zero row from those rows lying above it to reduce to zero the entries lying above the
corner entries. This then produces a Hermite matrix that is row-equivalent to A.

To establish the uniqueness of this Hermite matrix, it is clearly sufficient to show
that if A, B are m x n Hermite matrices that are row-equivalent then A = B. This we
proceed to do by induction on the number of columns.
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It is clear that the only m x 1 Hermite matrixis [1 0 ... 0], so the result is trivial
in the case where n = 1. Suppose, by way of induction, that all row-equivalent
Hermite matrices of size m x (n — 1) are identical and let A, B be row-equivalent
Hermite matrices of size m x n. By Theorem 10.11 there is an invertible matrix P
such that B = PA. Let A", B* be the m x (n — 1) matrices consisting of the first
n— 1 columns of A, B. Then clearly Bt = PA* and so A*,B* are row-equivalent, by
Theorem 10.11 again. By the induction hypothesis, therefore, we have A* = B*. The
result will now follow if we can show that the n-th columns of A and B coincide. For
this purpose, we note that since A, B are row-equivalent they have the same rank,
namely the number of corner entries. If rankA = rankB = r then we have either
rankA* = r or rankA* = r —1. In the latter case the n-th columns of A and B consist
of a corner entry 1 in the r-th row and zero entries elsewhere, whence these columns
are equal. In the former case, let i € [1,r]. Then by Theorem 10.11 we have

r

(*) [bi1 .- byl =kZ Akl - agnl
=1

In particular, for the matrix A*(= B*) we have
r
[ai - apal= kZ Aelagy - @il
=1

whence, since the first r rows matrices of A* form a linearly independent subset of
Mat; ,(,—1)(F), we obtain A; = 1 and A, = 0 for k # i. It now follows from (x) that

[biy ... bipl=la; ... a;,]

whence b;, = a;,. Thus the n-th columns of A, B coincide. |

Interesting points about about the above proof are firstly the uniqueness of the
Hermite form, and secondly that the proof describes a systematic procedure for solv-
ing systems of linear equations. By way of illustration, consider the following system
whose coefficient matrix is in Maty, 4(R) :

x +y + 2z + t
x +Ay + z + t
x + y + Az + (B=-A)t
2x + 2y + 2z + At

Il
oo A A

Applying the procedure for reducing the augmented matrix ro row-echelon form, we
obtain the matrix
1 1 1 1 4
0 A-1 0 0 0
0 0 A—-1 2—-2|2
0 0 0 A—2|-2

Now if A # 1,2 the rank of the coefficient matrix is clearly 4, as is that of the aug-
mented matrix, and so a solution exists by Theorem 10.7; moreover, in this case a
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solution is unique, for the coefficient matrix is of rank 4 and so the solution space
of the associated homogeneous system is of dimension 4 —4 = 0 (Theorem 10.9)
whence the uniqueness follows by Theorem 10.8. To determine the solution in this
case, we transform the above matrix to the unique associated Hermite matrix, ob-
taining

10004+ﬁ
0100 O
H=10010] o
000 1| 3%

The unique solution of the corresponding system of equations may now be read off,
namely
2 2
x=4+m, y=0, z=0, tz—m.
Consider now the case A = 2. Here the matrix Z becomes

11114
01 00]O0
0010]|2
000 O0|—2
In this case the rank of the coefficient matrix is 3 whereas that of the augmented

matrix is 4. In this case, therefore, the solution set is empty.
Finally, consider the case where A = 1. Here the matrix Z becomes

111 114
000 OfO
000 1]2 ’
000 —1|-2
the corresponding Hermite matrix being

111 0|2

000 1|2

0 00O0]O

0 00O0]|O

Here the coefficient matrix and the augmented matrix are each of rank 2, so a so-
lution exists. The dimension of the solution space of the associated homogeneous
system is 4 —2 = 2 and, using Theorem 10.8, we see that (x, y, 2, t) is a solution of
the given system (when A = 1) if and only if there exist a, 3 € R such that

(X;y,z; t) = (2: 0: 07 2) + a(_l: 1: 07 O) + ﬂ(_l) O; 1: 0)

We close this section with a brief mention of another equivalence relation, this
time on the set of n x n matrices over a field F. Suppose that V is a vector space
of dimension n over F and that f : V — V is linear. Under what conditions do two
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n x n matrices A, B represent f relative to different ordered bases? It is clear from
Theorem 10.3 that this is the case if and only if there is an invertible n x n matrix
P such that B = P7AP. When this is so, we shall say that A and B are similar.
Similar matrices are evidently equivalent. The relation of being similar is clearly
an equivalence relation on the set of n x n matrices over F. Again an important
problem from both the theoretical and practical points of view is that of locating a
particularly simple representative, or canonical form, in each equivalence class. In
the exercises for this section we indicate some of these canonical forms. In general,
however, we require high-powered techniques to tackle this problem and we shall
do so for particular types of matrices in the final section, by which time we shall
have all the necessary machinery at our disposal.

EXERCISES

10.1 Let V be a finite-dimensional vector space over a field F. A linear transformation f :
V — V is said to be symmetric if f = f*, and skew-symmetric if f = —f*. Show that
the set of symmetric transformations forms a subspace of Mor(V, V) as does the set of
skew-symmetric transformations. If F is not of characteristic 2, show that Mor(V, V)
is the direct sum of these subspaces. Express this result in terms of matrices.

10.2 Define elementary column operations on a matrix in a similar way to elementary row
operations. Call matrices A, B column-equivalent if one can be obtained from the other
by a finite sequence of column operations. Prove that A, are column-equivalent if and
only if there is an invertible matrix Q such that A = BQ. Deduce that A, B are equivalent
if and only if one can be obtained from the other by a finite sequence of row and column
operations.

10.3 For the real matrix

1 23 =2
2-21 3
3 04 1

compute the canonical matrix N that is equivalent to A. Compute also invertible matri-
ces P,Q such that N = PAQ.

10.4 Prove that an n x n matrix over a field is invertible if and only if ithe corresponding
Hermite matrix is I,,. Use this fact to obtain a practical method of determining whether
or not a given n x n matrix A has an inverse and, when it does, of computing A™!.

a b
k([ 2] iaben)

is a subfield of the ring Mat,,,(Z;). Show that the multiplicative group of non-zero
elements of K is cyclic, of order 8, and generated by the element

7]

10.5 Show that the set
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10.7

10.8

10.9

Matrices; linear equations 121

n m
Let A,...,A, and B, ...,B, be R-modules. For every R-morphism f : (DA, — D B;
i=1 =1
define
— A
fy=prof oin

where pr? and inf are the obvious natural morphisms. If M is the set of m x n matrices
[7;;] where each ;; € Mory(A;, B;), show that the mapping

¢: MorR(éalAi,jéBj) - M

described by {(f) = [f;;] is an abelian group isomorphism, so that f is uniquely deter-
mined by the m x n matrix [f;;]. Show also that the composite R-morphism

m g p
DB; D Cx
is represented by the matrix product [g;;1[fj;].

Hence establish, for every R-module A, a ring isomorphism

Morg(A",A") ~ Mat,,,,[ Morg(A,A)].

Consider the matrix
123
A= [ 032 ]

whose entries are in the ring Z,,. Show that the row rank of A is 2 whereas the column
rank of Ais 1.

If A,B € Mat,,,(F) are similar, prove that so also are A™ and B™ for every positive
integer m.

Let V be a vector space of dimension n over a field F that is not of characteristic 2.
Suppose that f : V — V is a linear transformation such that f2 = id, . Prove that

V =Im(id, +f) ® Im(id, —f).

Deduce that an n x n matrix A over F is such that A2 = I, if and only if A is similar to a
matrix of the form

| 0 .

0|—1Ip

Suppose now that F is of characteristic 2 and that f2 =id, . If g = id,, +f show that

[Hint. Use Theorem 7.8.]

x €Kerg < x=f(x).

Show also that g2 = 0.
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Deduce that an n x n matrix A over F is such that A2 = I if and only if A is similar to
a matrix of the form

Infzp

[«
= =

O
_

1
L 0 1.

[Hint. Let f represent A relative to some fixed ordered basis of V and let g be as above.
Observe that Im g C Kerg. Let {g(c;),...,8(c,)} be a basis of Im g. Extend this to a
basis {b;, ..., b,_5,,8(c1),...,8(c,)} of Ker g. Show that

{bl) (R bn72pi g(cl)’ €15 g(C2)7 Co5-- .,g(Cp), Cp}

is a basis of V. Compute the matrix of f relative to this ordered basis. ]

10.10 Let V be a vector space of dimension n over a field F and let f : V — V be a linear
transformation such that f2 = 0. Show that if Im f is of dimension r then 2r < n.
Suppose now that W is a subspace of V such that V = Ker f & W. Show that W is of
dimension r and that if {w,...,w,} is a basis of W then {f (w;),..., f(w,)} is a linearly
independent subset of Ker f. Deduce that n — 2r elements x,, ..., X,_,, can be chosen
in Ker f such that

{Wh"':erf(wl)""’f(wr)’xlf'"»xn—Zr}

is a basis of V. Deduce that a non-zero matrix A over F is such that A% = 0 if and only
if A is similar to a matrix of the form

10.11 Let V be a vector space of dimension n over a field F. A linear transformation f :
V — V (respectively, an n x n matrix A over F) is said to be nilpotent of index p if
there is an integer p > 1 such that fP~! # 0 and f? = 0 (respectively, A’”~! # 0 and
AP = 0). Show that if f is nilpotent of index p and if x # 0 is such that fP~!(x) # 0
then {x, f (x),...,fP '(x)} is a linearly independent subset of V. Hence show that f is
nilpotent of index n if and only if there is an ordered basis (a;), of V such that

Mat[f, (a,)n, (a)),] = [T(:’%]'

Deduce that an n x n matrix A over F is nilpotent of index n if and only if A is similar
to the above matrix.
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10.12 Let V be a finite-dimensional vector space over R and let f : V — V be a linear trans-

10.13

formation such that f2 = —id, . Extend the action R x V — V to an action C x V — V
by defining, for all x € V and all a +if3 € C,

(a+if)x =ax—Bf(x).

Show that in this way V becomes a vector space over C. Use the identity
Z(A[ —iu v, = Z AV + Z pef (ve)
=1 =1 =1

to show that if {v,...,v,} is a linearly independent subset of the C-vector space V
then {vy,...,v,, f(v1),...,f(v,)} is a linearly independent subset of the R-vector space
V. Deduce that the dimension of V as a C-vector space is finite, n say, and that as an
R-vector space V has a basis of the form

{Vh s ’me(vl): . .,f(Vn)},

so that the dimension of V as an R-vector space is 2n. If (q;),, is the ordered basis of
V given by a; =v; and a,,,; = f(v;) fori =1,...,n show that

Mat[f(ai)Zm (ai)Zn] = |: IO _OIn ]

Deduce that a 2n x 2n matrix A over R is such that A> = —I,,, if and only if A is similar
to the above matrix.

Let V be a vector space of dimension 4 over R. Let {b,, b,, b3, b,} be a basis of V and,
writing each x € V as x = x;b; + x,b, + x3b3 + x,b,, let
Vi={xeV; x3=x,and x4, =x;};
V,={x€V; x3=—x, and x, = —x; }.
Show that

(1) v, and V, are subspaces of V;
(2) {b, + b4, by + b3} is a basis of V; and {b; — b,, b, — b3} is a basis of V,;
B)Yv=v,eV,;

(4) with respect to the ordered bases B = (b;)1<i<s and C = (c¢;)1<j<4 Where ¢; =
by + by, ¢y = by + by, 3 = by —ba, ., = by, — by,

10 0 1

. 1101 1 0
Mat[ldV,C,B]—E 01 -1 0
10 0 —1

A 4 x 4 matrix M = [m;;] over R is called centro-symmetric if

@,j=1,...,4) m;; = Ms_j5_j-
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10.14

10.15

10.16

Module Theory

If M is centro-symmetric, prove that M is similar to a matrix of the form

Show that when a, b, ¢, d are positive real numbers the following system of equations
has no solution :

xX+y+z+t=a

xX—y—2z +t=5»
—x—-—y+z +t =c
—3x +y—32—-7t =d.

If a, B,y € R show that the system of equations

2x + y + Z = —6f
ax +3y + 22 = 2B
2x + y + (y+1)z = 4

has a unique solution except when y = 0 and y = 6. If y = 0 show that there is only
one value of 8 for which a solution exists and find the solution set in this case. Discuss
the situation when y = 6.

Given the real matrices

32 -15 0 3
A=|1-1 2 2|, B=|0-1
05 7 # 0 6

prove that the matrix equation AX = B has a solution if and only if % = —1. Find the
solution set in this case.
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INNER PRODUCT SPACES

In our discussion of vector spaces the ground field F has been arbitrary and its prop-
erties have played no significant role. In the present section we shall restrict F to be
R or C, the results obtained depending heavily on the properties of these fields.

Definition 11.1 Let V be a vector space over C. By an inner product on V we shall
mean a mapping V x V — C, described by (x,y) — (x|y), such that, @ denoting
the complex conjugate of a € C, the following identities hold :

(1) (e+x"|y) = {xly)+{x"|y);
(2) (xly+y)={xly)+{xly);
(3) {ax|y)=alx|y);

@) (rlx)={xly);

(5) (x|x) = 0 with equality if and only if x = 0.

By a complex inner product space we mean a C-vector space V together with
an inner product on V. By a real inner product space we mean an R-vector space
together with an inner product (this being defined as in the above, but with the bars
denoting complex conjugates omitted). By an inner product space we shall mean
either a complex inner product space or a real inner product space.

e The notation {x|y) is not to be confused with the notation {x,y) used in
Section 9. We shall see the relationship between these notations later.

Note from the above definition that we have
(VxeV) (x|0)=0=(0]x).

In fact, this follows from (1), (2), (3) on taking x’ = —x and y’ = —y.
Note also that we have
(xlay)=alx|y).
In fact, this follows from (3) and (4).
Finally, note that in a complex inner product space V we have (x| x) € R for all

x € V. This is immediate from (4).

Example 11.1 C"isacomplex inner product space under the standard inner product
defined by

M=

(21,5 2) | (W, .oo,wy)) = Doz w;.

i=1
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Example 11.2 R" is a real inner product space under the standard inner product
defined by

n
(Gers s ) (s e Y = 20 %35
i=1
In the cases where n = 2,3 this inner product is often called the dot product, a

terminology that is popular when dealing with the geometric applications of vectors.

Example 11.3 Let a,b € R be such that a < b and let V be the R-vector space of
continuous functions f : [a, b] — R. Define a mapping V xV — R by the prescription

b
(f,8) = (flg) =J. f(x)g(x)dx.

Then this defines an inner product on V.

Definition 11.2 Let V be an inner product space. For every x € V we define the
norm of x to be the non-negative real number

[lx|| = v/ {x [ x).
Given x, y € V we define the distance between x and y to be

d(x,y)=llx—=yll.
It is clear from the above that ||x|| = 0 if and only if x =0

e In the real inner product space R?, for x = (xy,x,) we have ||x|* = x? + x3
so that ||x|| is the distance from x to the origin. Likewise, for x = (x;, x,) and
y = (y1,¥2) we have ||x — y||? = (x; — y1)? + (x5 — ¥,)?, whence we see the
connection between the concept of distance and the theorem of Pythagoras.

Concerning norms, the following result is fundamental.

Theorem 11.1 Let V be an inner product space. Then, for all x,y € V and every scalar
A, we have

(1) [Ax| = 1Al xl;

(2) [Cauchy-Schwartz inequality] [{x|y)| < ||x|||l¥]l;

(3) [Triangle inequality] |[lx + y || < |lx||+ [l¥]l.
Proof (1) ||Ax|[> = (Ax|Ax) = AA(x|x) = |A]||x|]%

(2) The result is trivial if x = 0. Suppose then that x # 0 so that ||x|| # O. Let

Z2=y— (ny|‘)|c2) x; then noting that (z|x) = 0 we have

o<lzl? = (y— 4
<y|y> ”,Jrf}<x| )

[{x 1 y)P

= Iy =

from which (2) follows.
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(3) Using (2), we have
llx+ylP=(c+ylx+y) = (x[x)+{x|y)+{yIx)+(y|y)

= [IxIP? + (x [y} + (e ly) + Iy 2
= [IxI* +2Re{x | y) +lyII?
< I+ 21 [ )+ 112

< I+ 20y 11+ [y 112

= (llxll+llyID?
from which (3) follows. o]

Definition 11.3 Let V be an inner product space. Then x,y € V are said to be
orthogonal if {x | x) = 0. A non-empty subset S of V is called an orthogonal subset of
V if, for all x,y € S with x # y, x and y are orthogonal. An orthogonal subset S in
which ||x|| = 1 for every x is called an orthonormal subset.

e In the real inner product space R?, if x = (x;,x,) and y = (y;,y,) then
(x|y) = 0 if and only if x;y; + x5y, = 0. Geometrically, this is equivalent
to saying that the lines joining x and y to the origin are mutually perpen-
dicular. In a general inner product space it is often convenient to think of an
orthonormal set as a set of mutually perpendicular vectors each of length 1.

Example 11.4 Relative to the standard inner products, the natural bases of R" and
C" are orthonormal sets.

An important property of orthonormal subsets is the following.
Theorem 11.2 Orthonormal subsets are linearly independent.
Proof Let S be an orthonormal subset of the inner product space V. Suppose that
n

X1,...,X, are distinct elements of S and A4, ..., A, are scalars such that >} A;x; =0.
i=1
Then for each i we have

n

A =M1 =2 {x; | x;) = Z A (g [ ;)

= 0. |

Theorem 11.3 If V is an inner product space and if {ej,...,e,} is an orthonormal
subset of V then

[Bessel’s inequality] (VxeV) D |{xle)* < llx|%
i=1

Moreover, if W is the subspace generated by {e;, ..., e,} then the following are equiv-
alent :
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(1) xew,;
(2) Z (x e = llx|1?;

3) x=3 (xledes;

(4) (VyeV) {xly)= D {xle) {ex|y)

k=1
n

Proof For Bessel’s inequality let z = x — . (x| ex)e, and observe that

k=1
n

0<(zlz) = (x|x)— > (x|ep)(xlex) = llx||*— Z|X|€k
=1

(2) = (3) is now immediate.
n

(3)=(4): If x = D (x|e)e then for all y € V we have

k=1
(xly)={ 2 (xlede|y) = 2<x|ek> (el ¥)-

k=1

(4) = (2): This follows on taking y = x.
(3) = (1): This is obvious.

(1)=(3): If x = >, Arer then for j=1,...,n we hav
k=1

ijgllk(ek|ej)=<gl)gkek &) = (xley). o

Definition 11.4 An orthonormal basis is an orthonormal subset that is a basis.

We know that every vector space has a basis. We shall now show that every
finite-dimensional inner product space has an orthonormal basis. In so doing, we
shall obtain a practical procedure for constructing such a basis.

Theorem 11.4 Let V be an inner product space and for every x € V let x* = x [||x||.
If {x4,...,x,} is a linearly independent subset of V, define recursively

— *,
Y1 —Xl,

Y2 = (Xz - <x2|y1)y1)*;

k=1

ye= (0= X (alydy)

i=1
Then {y1,..., Y} is orthonormal and generates the same subspace as {x1,...,X;}.
Proof It is readily seen that y; # O for every i and that y; is a linear combination
of x1,...,x;. It is also clear that x; is a linear combination of y,,...,y; for every i.
Thus {x;,...,x;} and {yy,...,¥i} generate the same subspace. It now suffices to
prove that {y;,..., i} is an orthogonal subset of V; and this we do by induction.
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For k = 1 the result is trivial. Suppose by way of induction that {y,,...,y,_1} is
orthogonal where t > 1. Then, writing

t—1

Ay =X — Z(xt | yi)yi
i=1

t—1

xt_z<xt|yi>yi’ =0

i=1

we see that

and so, for j < t,
t—1

a(ycly;) = (xtly,-)—;(xtlyi) (vily;)

= {(x, |J’j) —{x, |}’j)

= 0.
As a, # 0 we deduce that (y, |y;) =0 for j < t. Thus {y;,...,y,} is orthogonal. @@
Corollary 1 Every finite-dimensional inner product space has an orthonormal basis.
Proof Simply apply Theorem 11.4 to a basis. o

e The construction of {yy,...,¥;} from {xi,...,x;} in Theorem 11.4 is often
called the Gram-Schmidt orthonormalisation process.

Theorem 11.5 IfV is an inner product space and {e, ..., e,} is an orthonormal basis
of V then

n

(W (VxeV) x= 3 (x|ee

k=1

@ (YxeV) [xIP =ki x len)
=1

n

B)(VxeV) (x|y)= D {xlex) {exly).

k=1
Proof Since V is generated by the orthonormal subset {e,...,e,}, the result is
immediate from Theorem 11.3. |

o The identity (1) of Theorem 11.5 is often referred to as the Fourier expansion
of x relative to the orthonormal basis {e;,...,e,}, the scalars (x|e;) being
called the Fourier coefficients of x. The identity (3) is called Parseval’s identity.

Just as a linearly independent subset of a vector space can be extended to form a
basis, so can an orthonormal subset (which by Theorem 11.2 is linearly independent)
be extended to form an orthonormal basis. This is the content of the following result.

Theorem 11.6 Let V be an inner product space of dimension n. If {xy,...,x;} is an
orthonormal subset of V then there exist x;,1,...,Xx, €V such that

{31, e, X, X1+ - > X}

is an orthonormal basis of V.
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Proof Let W be the subspace generated by {x1,..., x;}. By Theorem 11.2, this set
is a basis for W and so can be extended to form a basis

{361, oo X Xgeq1s o - -5 X}

of V. Applying the Gram-Schmidt orthonormalisation process to this basis we ob-
tain an orthonormal basis of V. The theorem now follows on noting that, since
{x1,...,x;} is orthonormal to start with, the first k terms of the new basis are pre-
cisely x,,. .., x;; for, referring to the formulae of Theorem 11.4, we have

* .
Y1 =X, =Xy;

* *
Y2 = (xz —{x, |x1)x1) =X, = Xo;

k=1

}’kZ(Xk—Z(XUXi)Xi) =X = X o

i=1
An isomorphism from one vector space to another carries bases to bases. The cor-
responding situation for inner product spaces is described as follows.
Definition 11.5 Let V and W be inner product spaces over the same field. Then

f :V — W is an inner product isomorphism if it is a vector space isomorphism that
preserves inner products, in the sense that

(Vx,yeV)  (fFIF() = (x]y).

Theorem 11.7 Let V and W be finite-dimensional inner product spaces over the same
field. Let {eq,...,e,} be an orthonormal basis of V. Then f : V — W is an inner product
isomorphism if and only if {f (e;), ..., f(e,)} is an orthonormal basis of W.

Proof =: If f is an inner product isomorphism then clearly {f (e;),...,f(e,)} is a
basis of W. It is also orthonormal since

1 ifi=j;
0 ifi#j.
&: Suppose that {f(e1),...,f(e,)} is an orthonormal basis of W. Then f carries

a basis to a basis and so is a vector space isomorphism. Now for all x € V we have,
using the Fourier expansion of x relative to {e;,...,e,},

(f(e) |f(€j)) = (e |ej> = {

(FEIf(e) = ((z<x|e Jer)| £e)
(§x|e OIC)
= S (xle). (e £ ;)

x|e;)

—
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and similarly (f (e;) | f (x)) = (e;| x). It now follows by Parseval’s identity applied to
both V and W that

(fOIFO) =

M=

(FOf () (Fe)fF ()

i=1

I
M=

{xle;) (ejly)

Il
—

ly)

I
=

and consequently f is an inner product isomorphism. |

We now pass to the consideration of the dual of an inner product space. For this
purpose, we require the following notion.

Definition 11.6 LetV and W be F-vector spaces where F is either R or C. A mapping
f 1V — W is called a conjugate transformation if

(Vx,y eVIVAEF)  flx+y)=f()+f(¥), f(Ax)=2f(x).
If, furthermore, f is a bijection then we say that it is a conjugate isomorphism.

e Note that when F = R a conjugate transformation is just an ordinary linear
transformation.

Theorem 11.8 Let V be a finite-dimensional inner product space. Then there is a con-
jugate isomorphism 9y : V — V4. This is given by ¥, (x) = x¢ where

(VxeVv) x4(x) = (x| xd).

Proof It is clear that for every y € V the assignment x — (x|y) is linear and so
defines an element of V¢. We shall write this element of V¢ as y9, so that we have
¥%4(x) = (x| y). Recalling the notation (x,y) introduced in Section 9, we therefore
have the identities
(xly)=yx) = (x,y%).
Consider now the mapping ¥, : V — V¢ given by #,(x) = x?. For all x, y,z € V we
have .
(x,(y +2)%) = (x|y +2)

= (x]y)+ {x|x)

= (x, ) +(x,2%)

= (x,y! +29),
from which we deduce that (y +2)? = y¢ +z¢ and hence that ¢, (y +2) =%, (x) +
By (2). Likewise,

(x, A = (x| Ay) = x| x) = Alx, y9) = (x, Ay?),

so that (Ay)? = 2y? and consequently Hy(Ay) = Xﬁv(y). Thus we see that ¥y is a
conjugate transformation.
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That 9y, is injective follows from the fact that
x €Kertty, = (x|x) = (x,x%) = (x,0) =0
== x=0.
To show that 9, is also surjective, let f € V<. Let {e;,...,e,} be an orthonormal
n

basis of V and let x = D f(e;)e;. Then for j =1,...,n we have
i=1

xd(ej) =(ej|x) = <e]~

3. Fleder) = 32 Flelesle) = £y

Since x? and f thus coincide on the basis {e,,...,e,} we conclude that f = x¢
By (x), so that &, is surjective.

ool

o Note from the above that we have the identity

(Vx,yeV)  (x|y)={(x,0(y)).

Since ¥y is a bijection, we also have the following identity (obtained by writing
#,'(y) in place of y) :

(Vx,y V)  (x|9,'(y) = (x,y).

The above result gives rise to the important notion of the adjoint of a linear
transformation which we shall now describe.

Theorem 11.9 Let V and W be finite-dimensional inner product spaces over the same
field. If f : V — W is a linear transformation then there is a unique linear transforma-
tion f* : W — V such that

(VxeV)(Vyew)  (f(x)]y)=(x[f ).

Proof Using the above notations we have

FEIy)={f(),¥%) = (x,F (D)
= (x|9,'"f DD
= (x| (0" o f 0By )(Y)).
It follows immediately that f* = 1?;1 o f o, is the only linear transformation with
the stated property. o]

o Note that f* can be alternatively characterised as the unique linear transfor-
mation from W to V such that the diagram

,
w———wd

f:l Jfr

V—yd
oy

is commutative.
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Definition 11.7 The linear transformation f* of Theorem 11.9 is called the adjoint
of f.
Immediate properties of adjoints are listed in the following result.

Theorem 11.10 Let V, W, X be finite-dimensional inner product spaces over the same
field. Let f,g:V — W and h : W — X be linear transformations. Then

M +g)y=,"+g";
) (Af) =2f";
(3)(hof) =f"oh’;
@D =T
Proof (1) isimmediate from f* =@, o fo®, and the fact that (f +g)" = f'+g".
(2) since {(Af)(x)|y) = A(f (x)|y) = A(x | £*(¥)) = (x |2f* (), we have, by
the uniqueness of adjoints, (Af )" = Af ™.

(3) Since (h[f(x)]1y) = (f(x)|h*(¥)) = (x| f*[I*(¥)]) we have, again by the
uniqueness of adjoints, (ho f)* = f*oh*.
(4) Taking complex conjugates in Theorem 11.9, we obtain

(Vyew)(VxeV)  (f'x)={y|f(x)).

It follows by the uniqueness of adjoints that (f*)* = f. |

Theorem 11.11 Let V,W be inner product spaces over the same field and suppose that
dimV = dimW. Then if f : V — W is a linear transformation the following are
equivalent :

(1) f is an inner product isomorphism;
(2) f is a vector space isomorphism with f ! = f*;
(3) fof" =idw;
(4) f* o f =idy.
Proof (1)=>(2):If (1) holds then f~! exists and

(FONy) = FIF DI = fF )

It follows by the uniqueness of adjoints that f* = f 1.

(2) = (3),(4) : these are obvious.

(3),(4) = (1) : If, for example, (4) holds then f is injective whence it is bijective
(by Corollary 4 of Theorem 8.9) and so f ! = f*. Then

FOIFON) = I IO ={xly)

and so f is an inner product isomorphism. |

Definition 11.8 Let V be an inner product space. For every non-empty subset E of
V we define the orthogonal complement of E in V to be the set

Et={yeV; (¥x€E)(x|y)=0}.
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It is clear that E* is a subspace of V. The significance of this subspace is illustrated
in the following result.

Theorem 11.12 Let V be an inner product space. If W is a finite-dimensional subspace
of V then
V=wew'.
Proof Let {ej,...,e,} be an orthonormal basis of W, noting that this exists since
m
W is of finite dimension. Given x € V, let x’ = Y. (x |e;)e; and define x” = x — x’.
i=1
Then x’ € W and for j =1, ..., m we have

(X”|€j>=<x_x/|ej) xlej>_<x/|ej)
x| ej) - Z;(X le;) (e; | ej)
= (xlej>_<x|ej>

= 0.

=
=

It follows from this that x”” € W+. Consequently x = x’ + x” € W + W' and so
V =W + W=, Now if x € W N W+ then (x| x) = 0 whence ||x|| = 0 and so x = 0.
Thus we have V=W @ W+, O

Corollary 1 If V is a finite-dimensional inner product space and W is a subspace of V
thenW = W+ and

dimW+' = dimW —dimW.
Proof Since V.= W & W it is clear from Theorem 7.8 that dimV = dimW —
dimW+. 1t is also clear that W € W+, Since

dimw*t =dimV —dimW+* =dimV — (dimV —dimW) = dim W,
it follows by Corollary 3 of Theorem 8.9 that Wt =Ww. o

We end the present section by considering how the matrices of f and f* are
related.

Definition 11.9 If A = [a;;],,x, is an m x n matrix over C then by its adjoint (or
conjugate transpose) we mean the n x m matrix A the (i, j)-th entry of which is @j;.

Theorem 11.13 Let V and W be finite-dimensional inner product spaces over the same
field. Let (d;),,, (e;),, be ordered orthonormal bases of V, W respectively. If f : V — W is
a linear transformation with Mat[ f, (e;)m, (d;),] = A then Mat[f*, (d;),, (e;)m] = A"

m

Proof For j=1,...,nwehave f(d;) = >,(f(d;)|e;)e; and so if A= [a;;] we have

i=1

a;; = (f(d;)|e;). Since likewise f*(e;) = izzni(f*(ej) |d;)d; and since

a;; = (f(d;j)]e;) = {e; | f(d;)) = (f*(e;) | d)),

it follows that the matrix representing f* is A*. O
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Definition 11.10 If V is a finite-dimensional inner product space and f : V — V is
a linear transformation then we say that f is self-adjoint if f = f*. Likewise, an n x n
matrix A will be called self-adjoint if A= A*.

o In the case where the ground field is C the term hermitian is often used instead
of self-adjoint; and when the ground field is R the term symmetric is often used.

Definition 11.11 If V is a finite-dimensional inner product space then an inner
product isomorphism f : V — V is called a unitary transformation. An n X n matrix
A is unitary if, relative to some ordered orthonormal basis, it represents a unitary
transformation.

e When the ground field is R the term orthogonal is often used instead of unitary.

e Note by Theorem 11.11 that f : V — V is unitary if and only if f~ exists and
is f*; and that A is unitary if and only if A™! exists and is A*. In particular, when
the ground field is R, A is orthogonal if and only if A™! exists and is A’.

If V is an inner product space of dimension n let (d;), and (e;), be ordered
orthonormal bases of V. If U is an n x n matrix over the ground field of V then it is
clear that U is unitary if and only if, relative to (d;),, and (e;),, U represents a unitary
transformation (inner product isomorphism) f : V — V. It is readily seen that if A, B
are n x n matrices over the ground field of V then A, B represent the same linear
transformation with respect to different ordered orthonormal bases of V if and only
if there is a unitary matrix U such that B = U*AU = U 'AU. We describe this by
saying that A and B are unitarily similar. When the ground field is R, in which case
we have B = U'AU = U™'AU, we often use the term orthogonally similar.

It is clear that the relation of being unitarily (respectively, orthogonally) similar
is an equivalence relation on the set of n x n matrices over C (respectively, R). Just
as with ordinary similarity, the problem of locating canonical forms is important. We
shall consider this in the final section.

EXERCISES

11.1 If V is a real inner product space prove that
(Vx,yev)  llx+yllP =IxI? +llyl* +2{x] y)
and interpret this geometrically when V = R?,
11.2 If V is an inner product space, establish the parallelogram identity
(Vx,yeVv)  llx+yIP+1lx = ylI* = 2llxII* +2[lylI*
and interpret it geometrically when V = R

11.3 Write down the Cauchy-Schwartz inequality for the inner product spaces of Examples
11.1,11.2, 11.3.

11.4 Show that equality holds in the Cauchy-Schwartz inequality if and only if {x,y} is
linearly dependent.
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11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

Module Theory

Let x, y be non-zero elements of the real inner product space R®. If & is the angle x0y,
prove that

(x1y)

costt = ———.
[ ]x1]

Show that, in the real inner product space R2, Parseval’s identity reduces to

cos(%, —,) = cos ¥, cos ¥, + sin¥;sind,.

Show that V = Mat,,,(C) is an inner product space under the definition (A|B) =
n
tr(AB*) where trA = )’ q;; is the trace of A. Interpret the Cauchy-Schwartz inequality

i=1
in this inner product space. Show further that if E, ; € V is the nxn matrix whose (p, q)-
th entry is 1 and all other entries are O then {Ep’q ; p,q=1,...,n} is an orthonormal
basis of V.

Use the Gram-Schmidt orthonormalisation process to construct an orthonormal basis
for the subspace of R* generated by

{(1,1,0,1),(1,—-2,0,0),(1,0,—1,2)}.

Consider the inner product space of Example 11.3 with a = 0, b = 1. Find an orthonor-
mal basis for the subspace generated by {f;, f,} where f; : x — 1and f, : x — x.

Let V be the complex inner product space of Exercise 11.7. For every M € V let f,, :
V — V be given by f},(A) = MA. Show that the adjoint of f;, is f«-

Let V be a finite-dimensional inner product space. If f : V — V is linear, prove that f
is self-adjoint if and only if (f (x)|x) is real for all x € V.

Let V and W be finite-dimensional inner product spaces over the same field and suppose
that dimV =dimW. If f : V — W is linear, prove that the following are equivalent :
(1) f is an inner product isomorphism;
(2) f preserves inner products [{f (x)|f(¥)) = (x|y)];
(3) f preserves norms [||f (x)Il = |lx|l];

(4) f preserves distances [d(f(x),f(y)) =d(x,y)].

Let V and W be subspaces of a finite-dimensional inner product space. Prove that
wvaw)yr=vt+wt w+w)t=vinwt

If V is a finite-dimensional inner product space and f : V — V is a linear transforma-
tion, prove that

Imf* =(Kerf)*, Kerf*=(Imf)".



11.15

11.16

11.17

11.18
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Let V be a complex inner product space. For all x,y €V let f, , : V — V be given by

foy(@) = (z]y)x.
Prove that f, , is linear and that
@ (Vx,y,z€V) fo,of,. =yIPfizs
(b) the adjoint of f, , is f, ..
If V is an inner product space then a linear transformation f : V — V is said to be

normal if f o f* = f* o f. Prove that if x # 0 and y # O then the linear transformation
fx,y of Exercise 11.5 is

(a) normal if and only if there exists A € C such that x = Ay;
(b) self-adjoint if and only if there exists A € R such that x = Ay.

Let V be a real inner product space and let W be a finite-dimensional subspace of
V. Given x € V, let x = x; + x, where x;, € W and x, € W'. Show that ||x|> =
1,112 + ||x,||>. Show also that if y € W then

llx = yI* = 1l —x, [ + [lxy — ¥ 1.

Deduce that x, is the element of W that is ‘nearest’ to x.

[Hint. Observe that if y € W then ||x — y||> > ||x — x;||2.]

attains its small-

n
If {e;,...,e,} is an orthonormal subset of V prove that Hx— > A
i=1
est value when A, = (x|e;) fori=1,...,n.

Let V be the real vector space of continuous functions f : [—m, 7] — R. Show that V
is an inner product space with respect to the definition

T
(flg)=%j F)glx)dx.
-
Prove that
B={x— %, x—sinnx, x—cosnx;n=1,2,3,...}

2

is an orthonormal subset of V.

If W, is the subspace of dimension 2n + 1 generated by

{x»—>‘/i§, x = sinkx, x —coskx; k=1,...,n},

prove that the element f, of W, that is nearest a given element f of V is given by
n
fa(x) = 2ao+ Y. (a; coskx + by sinkx)
k=1
where

aozivf f(x)dx, ak=%J. f(x)coskxdx, bk=%f f(x)sinkxdx.
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INJECTIVE MODULES

In this Chapter our principal concern will be the relationship between modules and
rings. Our motivation lies in questions such as: do rings R exist with the property
that every R-module is projective? If so, what do they look like?

Before considering such questions, we deal with the notion that is dual to that
of a projective module.

Definition 12.1 An R-module M is said to be injective if, for every short exact se-

quence

NV N N SNV 0

of R-modules and R-morphisms, the induced Z-morphism

Morg(A’, M) L Morg(A, M)

is surjective.

The following characterisation of injective modules is dual to that for projective
modules.

Theorem 12.1 An R-module I is injective if and only if every diagram of the form
f

0 Al A (exact)
d
I
can be extended to a commutative diagram
0 A—L . (exact)
ﬁ'J /

Proof I isinjective if and only if, for every monomorphism f the induced morphism
f* is surjective; in other words, if and only if for every ¢ € Morg(4’,I) there exists
& € Morg(4,I) such that & = f*(§) =0 o f. ]

We shall now find some examples of injective modules and derive a character-
isation that is dual to Theorem 8.8. We warn the reader, however, that the proofs
involved are somewhat harder.

We first establish the following useful result.
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Theorem 12.2 An R-module I is injective if and only if, for every left ideal L of R and
every R-morphism f : L — I, there is an R-morphism 4 : R — I such that the diagram

L— R

/| /
1
is commutative, where v is the natural inclusion.

Proof Necessity follows immediately from the definition of an injective module. To
establish sufficiency, suppose that we have the situation

ta

0 A B (exact)

|
I
where, for convenience and without loss of generality, we assume that A is a sub-
module of B with v, the natural inclusion. Let F be the set of all pairs (4’, f') where
A’ is a submodule of BwithAC A’ CB and f’: A’ — I extends f, in the sense that
f’oj = f where j : A— A’ is the natural inclusion. It is clear that (4, f) € F, so
that F # 0. Now order F by writing (4, f) < (A”, f”) if and only if A’ C A” and f”
extends f’. It is readily seen that F is inductively ordered, so we can apply Zorn’s
axiom and thereby choose a maximal element (A, f,) in F. Now if A; = B it is clear
that there is nothing more to prove : I will be injective by Theorem 12.1. We shall
now show that in fact A, = B.

Suppose, by way of obtaining a contradiction, that Ay # B and let x € B\ A,. If
welet L = {r €R; rx € Ay} then it is readily seen that L is a left ideal of R. Now let
h: L — I be given by h(r) = f,(rx). Then clearly h is an R-morphism and, by the
hypothesis, there is an R-morphism ¢t : R — I that extends h. Let A; = Ay + Rx and
define f; : A; — I by the prescription

filag +rx) = folag) + re(1).

[Note that f is well-defined; for if ay + rx = aj + r’x then we have (r —r')x =
al —a, € Ay and so, applying fo,

0
folag—ag) = fol(r = )x]=h(r—r") = t(r—r") = (r —r)t(1),

whence fo(ag) +r't(1) = fo(ap) + rt(1).] Now it is clear that f; is an R-morphism
and, on taking r = 0 in its definition, we have f;(ay) = fy(ay) for every a, € Ay,
so that f; extends f,. The pair (A;, f;) therefore belongs to F, contradicting the
maximality of (Ag, fo)- This contradiction shows that Ay = B as asserted. |

Corollary 1 An R-module I is injective if and only if, for every left ideal L of R, the
induced Z-morphism

Morg(L, I) «———Morg(R, I)

is surjective. o
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We shall now determine precisely when a Z-module is injective.

Definition 12.2 An additive abelian group A is said to be divisible if, for every posi-
tive integer m, we have mA = A; in other words, if for every x € A and every positive
integer m there exists x” € A such that x = mx’.

Example 12.1 The group Q/Z is divisible. In fact, given any positive integer m we
have ¢ +Z =m(% + 7).

Theorem 12.3 A Z-module is injective if and only if it is divisible.

Proof =: Suppose that the Z-module A is injective. Let a € A and let m be a pos-
itive integer. Define f : mZ — A by the prescription f(mz) = za. Clearly, f is a
Z-morphism. By Theorem 12.2, there exists b € A such that f(x) = xb for every
x € mZ. In particular (taking z = 1 in the above) we have a = f (m) = mb. Thus we
see that A is divisible.

&: Suppose that the Z-module A is divisible and let L be a left ideal of Z with
f : L — AaZ-morphism. Then L is necessarily of the form mZ for some non-negative
m € Z. If m # 0 then, since A is divisible, there exists a € A such that f(m) = ma;
and if m = 0 (in which case L = {0}) we have f(m) = f(0) = 0 = m0. Thus, in
either case, there exists a € A such that f (m) = ma. For every x € L we then have,
for some z € Z, f(x) = f(mz) = zf (m) = zma = xa. The Z-morphism t, : Z - A
given by t,(r) = ra therefore extends f and so A is injective by Theorem 12.2. @&

It is immediate from Theorem 12.3 and Example 12.1 that the Z-module Q/Z is
injective. This module will play an important réle in what follows and we note the
following properties that it enjoys:

(@) if C is a non-zero cyclic group then Mor,(C,Q/Z) # 0.
In fact, suppose that C is generated by {x}. We can define a non-zero Z-morphism

f :C — Q/Z as follows : if C is infinite then we let f(x) be any non-zero element
of Q/Z, and if C is finite, say with x of order m, then we define f(x) = % + Z.

(B) if G is a non-gero abelian group then for every non-zero x € G there is a
Z-morphism g : G — Q/Z such that g(x) # 0.
In fact, if C is the subgroup generated by {x} then, as we have just seen, there is
a Z-morphism f : C — Q/Z with f(x) # o; and since Q/Z is injective f can be
extended to a Z-morphism g : G — Q/Z.

(y) if G is a non-zero abelian group and if H is a proper subgroup of G then for
every a € G \ H there is a Z-morphism h : G — Q/Z such that h~(H) = {0} and
h(a) #0.

In fact, by () there is a Z-morphism g : G/H — Q/Z such that g(a+H) # 0+ Z so
it suffices to consider h = g o ff;.

We have seen earlier (Theorem 8.7) that for every R-module M there is a free,
hence projective, R-module P and an R-epimorphism f : P — M. Our aim now
is to establish the dual of this, namely that there is an injective R-module I and
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an R-monomorphism g : M — I; in other words, that every R-module M can be
‘embedded’ in an injective R-module 1.

For this purpose, we require the assistance of a particular right R-module that is
associated with M.

Definition 12.3 Given an R-module M, the character group M of M is defined by
M™* =Mor,(M,Q/Z).

We can make M7 into a right R-module by defining an action M* xR — M™ as
follows : with every f € M™ and every r € R associate the mapping fr : M — Q/Z
given by the prescription (f r)(x) = f (rx). It is readily seen that every f r so defined
is a Z-morphism and that M* thus has the structure of a right R-module.

We call this right R-module the character module of M and denote it also by M*.

We can, of course, repeat the above process on M* and form its character module,
which we denote by M**. Note that M** so constructed is a left R-module, the action
being (r, f*) — rf " where (rf ")(g) = f*(gr).

Consider now the mapping ), : M — M** defined as follows : for every x € M
let t);(x) : M™ — Q/Z be given by

[ear (GO](f) = f ().

It is clear that (), so defined is a Z-morphism. That it is an R-morphism follows from
the identities

[rin (DU = Ly (I ) = (Fr)() = f (rx) = [ep (rx)1(f).

We now show that t;, is in fact an R-monomorphism. Suppose, by way of obtaining
a contradiction, that x € M \ {0} is such that t,,(x) is the zero of M**. Then for
every f € M* we have f(x) = [1,,(x)](f) = 0. But, by the observation (3) above,
there exists f € M™* such that f (x) # 0. This contradiction shows that Kert,, = {0}
and so ), is a monomorphism which we shall call the canonical R-monomorphism
from M to M*+.

Using the above notion of character module we can establish the following im-
portant result, which serves the purpose of providing an abundance of examples of
injective modules.

Theorem 12.4 If F is a free R-module then its character module F* is injective.

Proof Suppose that we have a diagram

0 A LA (exact)

!

F+

Using the fact that Q/Z is injective, we can construct the diagram
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F

Mor,(F*,Q/Z)=F**

|

Mory(A, Q/ Z)i—*>MorZ(A’, Q/Z)———0 (exact)

At An*

in which 9* is the R-morphism induced by 4, and i* is that induced by i. Now since F
is free it is projective and so there is an R-morphism ¢ : F — A" in the above diagram
such that i* o { = " o 1. We now let {* : A** — F* be the R-morphism induced by
¢ and consider the diagram

0 A A

F+ ¢ A++

Our objective now is to show that this diagram is commutative; the R-morphism
{* o1, will then be a completing morphism for the original diagram and F* will be
injective as required.

To show that this latter diagram is commutative, we have to show that, for every
x €A,

(§7 oty 0i)(x) = B(x).

Now each side of this equality is an element of F*, so let t be an element of F. Then
we have

[("ota0i)(x)](t) = [(taoi)(x)o](t) [definition of {*]
= [(La 0 D)(x)][E(1)]
= [Z()][i(x)] [definition of ¢,]
= [Z(t)oi](x)
= [ O()](x)
= [(9" o p)(£)](x)
= [tp(t) o F](x) [definition of 9*]
= [t (O)][F9(x)]
= [F(x)](t) [definition of t5]

from which the required equality follows immediately. o]
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Corollary 1 Every R-module can be embedded in an injective R-module.

Proof We begin by observing that by Theorem 8.7 (for right modules) there is an
exact sequence

F M* 0

where F is a free right R-module. Then by Theorem 8.3 there is the induced exact
sequence

Mor,(F,Q/Z) — Mor,(M™*,Q/Z) «———O.

F+ M++

Thus 7t* oty : M — FT is a monomorphism. Since the (left) R-module F™ is injective,
the result follows. o]

We can now establish the analogue of Theorem 8.8.

Theorem 12.5 For an R-module I the following are equivalent :
(1) I is injective;
(2) every exact sequence 0—— [ —— X splits;

(3) if a:1— X is a monomorphism then Ima is a direct summand of X.
Proof (1)=> (2): If I is injective then for every diagram

i

0 I X (exact)

id,

—~—

there is an R-morphism f : X — I such that f oi = id;. Such an R-morphism f is
then a splitting morphism.

(2) = (3): Let X be an R-module and a : I — X an R-monomorphism. By the
hypothesis, the short exact sequence

0 I X X/Ima————0

splits. It follows by Theorem 6.11 that Im a is a direct summand of X.

(83) = (1): By Theorem 12.4 there is an injective module Q and a monomor-
phism a : I — Q. By the hypothesis, Im a is a direct summand of Q, sayQ = Ima®J.
We show that Im «a is injective.
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For this purpose, consider the diagram

0 X Y

|

Ima

il’ll J ]prl

Q=Ima&J

Since Q is injective, there is an R-morphism f : Y — Q such that f oi = in; oJ. Then
pr;of : Y — Ima is such that
pryofoi=proin; 0¥ =id,, 00 =1.
This we see that Im a is injective. It now follows by Theorem 12.1 and the fact that
Ima ~ I that [ is also injective. O
We end our discussion of injective modules with the following connection be-
tween character modules and short exact sequences.

Theorem 12.6 A sequence of R-modules and R-morphisms

0 A—t p—L ¢ 0
is short exact if and only if the corresponding sequence of character modules
0 Ate—L pre P o+ 0

is short exact.

Proof The necessity follows from the fact that Q/Z is injective. As for sufficiency,
it is enough to show that the sequence

M—' N—% p

is exact whenever the corresponding sequence of character modules

M+ f N+ g P+

is exact. Suppose then that Im g* = Ker f *. Given m € M, suppose that f (m) ¢ Ker g,
so that (g o f)(m) # 0. By the observation () following Theorem 12.3, there exists
a € P* such that a[(g o f)(m)] # 0. But we have aogo f = f*[g*(a)] = 0 since the
character sequence is exact. This contradiction shows that Im f C Ker g. To obtain
the reverse inclusion suppose, again by way of obtaining a contradiction, that there
exists n € N such that n € Kerg and n ¢ Im f. By the observation (y) following
Theorem 12.3, there exists 3 € Nt such that 7 (Im f) = {0} and (n) # 0. Now
B7(Imf)=Im(B o f)=Imf*(B), so we obtain f*(f) = 0 whence 8 € Kerf* =
Img* and thus 3 = g*(t) = t o g for some t € P". In particular, (n) = t[g(n)] =0
since n € Ker g. This contradiction yields the reverse inclusion Kerg C Im f. O
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EXERCISES

12.1

12.2

12.3

12.4

12.5

Consider the diagram of R-modules and R-morphisms

00— A —F A% L 0

!

Q

in which the row is exact and « is a monomorphism. Show that this diagram can be
extended to a commutative diagram

Q—@Q/Im(ao f) ———0

Use this result to prove that an R-module P is projective if and only if, given the diagram

p
|
Q/

! 0

Q
m
in which Q is injective and the row is exact, there is an R-morphism ¥ : P — Q such
that mo® = (.

If (M;),e; is a family of injective modules prove that 'XI M, is injective.
1€

Let R be a commutative integral domain and let Q be its field of quotients. Prove that
Q is an injective R-module.

[Hint. If L is an ideal of R let f : L — Q be an R-morphism. Show that if a,b € L \ {0}
then f(a)/a = f(b)/b. Deduce that the assignment r — rf(a)/a extends f.]

An R-module N is said to be an extension of an R-module M if there is a monomorphism
f M — N. Such an extension is an essential extension if every non-zero submodule of
N has a non-zero intersection with Im f. If N is an essential extension of M and if I is
an injective module containing M, prove that the inclusion ¢ : M — I can be extended
to a monomorphism from N to I.

Prove that an R-module M is injective if and only if it has no essential extension.

[Hint. = : Suppose that N is an essential extension of M. Then, by Theorem 12.5(3),
M is a direct summand of N.

< : Let I be an injective module that contains M and let M’ be a submodule of I that
is maximal with respect to M N M’ = {0}. Prove that I /M’ is an essential extension of
(MeM)/M' ~M.]
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SIMPLE AND SEMISIMPLE MODULES

In Section 5, in connection with Jordan-Holder towers, we met with the notion of a
simple module. We shall now consider this notion more closely. As we shall see, it
turns out to be one of the basic ‘building blocks’ .

We recall that an R-module M is simple if it has no submodules other than M
itself and the zero submodule. Equivalently, by Theorem 5.5, M is simple if and only
if is generated by each of its non-zero elements.

Example 13.1 Consider a unitary ring R as an R-module. Then every minimal left
ideal of R, when such exists, is a simple submodule of R.

e Note that not all modules contain simple submodules. For example, the Z-
module Z has no simple submodules since the ring Z has no minimal (left)
ideals.

Example 13.2 The R-module R is simple if and only if R is a division ring. In fact,
if R is simple then R = Rx for every x # 0. In particular, 1; = x’x for some x’, i.e. x
has a left inverse x’. Similarly, x” has a left inverse x”. Then x” = x"1; = x"x'x =
1zx = x and consequently x’ is a two-sided inverse of x. Thus R is a division ring.
Conversely, if R is a division ring and L is a left ideal of R then for every x € L \ {0}

we have 1 = x"!x € L whence L = R. Thus the R-module R is simple.

Example 13.3 If L is a left ideal of R then R/L is simple if and only if L is maximal.
Indeed, all simple modules arise in this way. For, if M is simple then M = Rx for every
x #0in M, and f : R > M given by f(r) = rx is an epimorphism, whence M =~
R/Ker f. The fact that M is simple then implies, by the correspondence theorem,
that Ker f is a maximal left ideal of R.

A further example is provided by the following result.
Theorem 13.1 Let V be a non-gero finite-dimensional A-vector space. Then V is a
simple End , V-module.

Proof Define an action End,V xV — V by (f,v)— f -v = f(v). Then it is readily
seen that V is an End, V-module.

Now let x be any non-zero element of V. Since A is a division ring the set {x} is
linearly independent and so can be extended to a basis {x, x1,...,x,_;} of V. Given
any y €V, consider the mapping f, : V — V given by

fldox +dyxy +- -+ dypgX,1) = doy.

Clearly, f, is a A-morphism. Moreover, y = f),(x) = f, - x and so it follows that
V =End,V - x and therefore, by Theorem 5.5, V is a simple End , V-module. |
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By way of considering simple modules as building blocks, we now consider mod-
ules that are sums of simple modules.

Theorem 13.2 For an R-module M the following are equivalent :
(1) M is a sum of a family of simple modules;
(2) M is a direct sum of a family of simple modules;
(3) every submodule of M is a direct summand.

Proof (1)= (2),(3): We shall prove that if (M;);; is a family of simple submodules
of M such that M = > M; then for every submodule N of M there is a subset J of I

icl
such that M =N & @ M;.
iel
If N = M then clearly J = @ suffices. Suppose then that N C M, so that for some
k € I we have M, ¢ N. Since M, is simple we deduce that N N M, = {0} and so the
sum N + M, is direct. Now let € be the set of those subsets H of I for which the

sum N + . M; is direct. We have just shown that 6 # 0. We now show that € is

ieH
inductively ordered. For this purpose let T be a totally ordered subset of ¢ and let
K* = U{K ; K € T}; we claim that K* € 6. To see this, we observe thatif x € Y. M;

ieK*
then x =m; +---+ x; . Since each i; belongs to some subset I; of T, and since T
is totally ordered, all the sets I, ..., I, are contained in one of them, say I,,. Then,
since I, €%,
NN Y M;SNn > M;={0}
ieK* i€l,

whence the sum N + >_ M; is direct. This shows that K* € €, and so % is induc-

tively ordered. It follolevlgby Zorn’s axiom that 6 has maximal elements. Let J be a
maximal element of ¥. We show that N & 69 M; = M. Suppose, by way of obtaining
a contradiction, that N & i@é%Mi C M. Thelgeflor some j € I we have M; Z N & gMi
and, since M; is simple, we deduce that M; N (N ® iEBMi) = {0}, whence the sum
M;+N o %Mi is direct. But then J U {j} belongs to ¢, and this contradicts the
maximality of J. Hence we have M =N & @ M;.

(2) = (1): This is clear. <

(3) = (1): Suppose now that (3) holds. Then we observe that

(a) if N is a submodule of M then every submodule of N is a direct summand of N.

In fact, let P be a submodule of N. Since P is also a submodule of M there is, by (3),
a submodule Q of M such that M = P & Q. Then

the last equality following by the modular law.
(b) every non-zero submodule of M has a simple submodule.
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In fact, if N is a non-zero submodule of M and x is a non-zero element of N, con-
sider the submodule Rx. We show that Rx has a simple submodule, whence so does
N. For this purpose, let & be the set of submodules of Rx that do not contain x.
Clearly, the zero submodule belongs to & and so & # (. Moreover, & is inductively
ordered; for if & is a totally ordered subset of & then the sum of all the submodules
of Rx contained in & is also a submodule which clearly does not contain x. We can
therefore apply Zorn’s axiom to obtain a maximal element L of &. Then by (a) we
deduce the existence of a submodule P of Rx such that Rx = L & P. We claim that
P is simple. In fact, L is a maximal submodule of Rx and so Rx/L is simple; and
Rx/L=(L®P)/L~P.

To conclude the proof of (3) = (1), we proceed as follows. Let 3; be the sum of
all the simple submodules of M. Then M = % & Q for some submodule Q of M. If
Q # {0} then by (b) it contains simple submodules; and this is impossible since all
the simple submodules of M are contained in ¥ with ¥ N Q = {0}. We deduce that
Q = {0} whence M = X. |

Definition 13.1 An R-module M that satisfies any of the equivalent properties of
Theorem 13.2 is said to be semisimple.

Theorem 13.3 Every submodule and every quotient module of a semisimple module is
semisimple.

Proof Let M be semisimple, let N be a submodule of M and let P be a submodule
of N. By Theorem 13.2 there is a submodule Q of M such that M = P & Q. Then
N=NNM=NNn{Pa&Q) =Pa&(NnNQ) by Theorem 2.4 and so P is a direct
summand of N. By Theorem 13.2 again, N is therefore semisimple.

Suppose now that M is the sum of the family (M;);<; of simple submodules and
let N be a submodule of M. Consider the natural epimorphism by : M — M /N. By
Theorem 5.6(1), for each index i, the submodule fj,; (M;) of M /N is either zero or is
simple. Let J be the set of indices i for which [,/ (M;) is non-zero. Then

MIN =Tmby =t (XM;) = 257 (M)

ieJ

and so M /N is semisimple by Theorem 13.2. |

Definition 13.2 A unitary ring R will be called semisimple if R, considered as an
R-module, is semisimple.

e The reader should note that the term ‘semisimple ring’ is used in differing
senses in the literature.

o Note that here we do not use the term left semisimple for a ring that is a
semisimple module. The reason for this is that a left semisimple ring is also
right semisimple; see Exercise 13.12.

We are now in a position to answer the question concerning which rings R have
the property that every R-module is projective. In fact, we obtain a lot more.
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Theorem 13.4 For a unitary ring R the following are equivalent :

(1) R is semisimple;

(2) every non-gero R-module is semisimple;

(3) every R-module is projective;

(4) every R-module is injective.
Proof (1)= (2): IfRis semisimple then it is clear that every free R-module, being
a direct sum of copies of R (Corollary to Theorem 7.6), is semisimple. Since every
module is isomorphic to a quotient module of a free module (Theorem 8.7), it follows
from Theorem 13.3 that every non-zero R-module M is also semisimple.

(2) = (1): This is clear.

(2) = (3): Let M be an R-module and consider a short exact sequence

0 A B M 0.

By (2), B is semisimple and so every submodule of B is a direct summand. The above
sequence therefore splits and consequently M is projective.

(8) = (2): Let N be a submodule of M. By (3), M/N is projective and so the
short exact sequence

0 N M M/N 0

splits. Then N is a direct summand of M and consequently M is semisimple.
(2) & (4): This is dual to the proof of (2) < (3) by virtue of Theorem 12.5.

As to the structure of semisimple rings, we shall use the following result.

Theorem 13.5 If M is a semisimple R-module then the following are equivalent:
(1) M is both noetherian and artinian;
(2) M is finitely generated.

Proof (1)= (2): If (1) holds then, by Theorem 5.9, M has a Jordan-Hoélder tower
of submodules. If M = @ N; where each N; is simple then necessarily I is finite,
iel
n
say I = {1,...,n}. Since N; = Rx; for some non-zero x; it follows that M = €p Rx;
i=1
whence (2) follows.

n
(2) = (1): Let M = €D N; where each N; is simple and suppose that M = | Rx;.
i€l j=1
n
For j =1,...,n there is a finite subset I; of I such that X € @Ni. Thus if [* = Ullj
i€l; j=
we have M € @ N; € M and from the resulting equality we see that M is a finite
iel*
k
direct sum of simple submodules, say M = € N;. Thus M has a Jordan-Hoélder tower
i=1

{O}CNl CN1®N2C"‘CN1$"‘$NI(=M,

whence (1) follows. o
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Corollary 1 A unitary ring R is semisimple if and only if it is a finite direct sum of
minimal left ideals.

Proof It suffices to note that R is generated by {1,}. o]

n
We thus see that if R is semisimple then R = @ L; where each L; is a minimal

i=1
left ideal. Let us now group together those minimal left ideals that are isomorphic.
More precisely, if we define

Lij~L,

then we can write

R=DL =

i
1 t

P-
P=

R,.
1

In order to investigate these R, we use the following observation.

Theorem 13.6 If L is a minimal left ideal of R and M is a simple R-module then either
L~M or LM = {0}.

Proof LM is a submodule of M so either LM = M or LM = {0}. If LM = M let
Xx € M be such that Lx # {0}. Then since M is simple we have Lx = M and the
mapping ¥ : L — M given by #(a) = ax is an isomorphism by Theorem 5.6. |

Corollary 1 If L;, L; are non-isomorphic minimal left ideals of R then L;L; = {0}. ©

It follows immediately from this that, with the above notation, we have
RR;={0} (i#)).
Consequently, each R; being a left ideal, we see that

whence R;R = R; and therefore each R; is also a right ideal of R.

m
Now if R* denotes the additive group of R and R} that of R; we have R = @ R}
=1

m
. + . . . _ n
Since every x € R™ can be written uniquely in the form x = 21 x, where x, € R} we
t=
deduce from

m m m m
Xy = (Z xi)(Z J/i) = XYt XY= D XY,
t=1 t=1 t=1 i t=1
that the mapping f : é R; — R given by
t=1

flxqg,..,x,)= §:1Xi

is a ring isomorphism. Thus we have established the following result.
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Theorem 13.7 If R is a semisimple ring then R has finitely many minimal two-sided
m
ideals Ry,...,R,, and R= @O R,. o]

t=1

Corollary 1 The identity elements eq,...,e, of Rq,...,R,, form an orthogonal set of
idempotents in the sense that e; + - +e,, = 1 and e;e; = 0 for i # j.

Proof We can write 1 =e; +---+e,, wheree; €R,; fori =1,...,m. For any x €R
m
write x = D x; where x; € R; for i = 1,...,m. Then for each j we have, since

i=1
R]Rl = {O} forj # i,

Xj=x;lg=xje; + - +xje, = Xxje;

and similarly e;x; = x;. Thus e; is the identity element of R;. o]
The above results concerning the ideals R; lead us to consider the following notion.

Definition 13.3 A ring R is said to be simple if it is semisimple and the only two-
sided ideals of R are R itself and the zero ideal.

With this terminology we can rephrase Theorem 13.7 as
A semisimple ring is a finite direct sum of simple rings.

Our interest in simple rings is highlighted by the following result.

Theorem 13.8 Let A be a division ring and let V be a finite-dimensional A-vector
space. Then the ring End AV is simple.

Proof We have shown in Theorem 13.1 that V is a simple End,V-module. Let
{by,...,b,} be a basis for V over A and consider the mapping f : End,V — V"
given by

f(@ = (alby),...,alb,)).

Clearly, f is an End,V-morphism. Now a € Ker f if and only if a(b;) = 0 for each
basis vector b;. Hence Ker f = {0} and f is injective. That f is also surjective follows
from the fact that for any z = (24,...,2,) € V" the mapping f, : V — V given by

ﬁz(é; xibi) = éxizi

is a A-endomorphism on V with f(f3,) = (ﬁz(bl), cees ﬁz(bn)) =(21,...,%,). Thuswe
see that f is an End, V-isomorphism. Consequently End,V is a semisimple End, V-
module, i.e. the ring End,V is semisimple. To show that it is simple, it therefore
suffices to show that it has no two-sided ideals other than itself and the zero ideal.
This we shall do using matrices, using the fact that if the dimension of V is n then the
rings End,V and M = Mat,,,(A) are isomorphic (Corollary 2 to Theorem 10.2).
Suppose that J is a two-sided ideal of M with J # {0}. Let A= [a;;] € J be such
that a,; # 0. Let B = diag{a_},..., ar_sl} and let E;; denote the matrix which has 1

rs 2"
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in the (i, j)-th position and O elsewhere. Then since J is a two-sided ideal we have
E,.BAE, € J where BA has a 1 in the (r,s)-th position. Observing that E,.X retains
the r-th row of X and reduces all other rows to zero, and that XE, retains the s-th
column of X and reduces all other columns to zero, we deduce that E, . BAE,, = E,
and hence that E,; € J for all r,s. Consequently,

In=E11+"'+Enn EJ
and hence J is the whole of M. |
Our objective now is to prove that every simple ring arises as the endomorphism

ring of a finite-dimensional vector space over a division ring. For this purpose, we
consider the following notion.

Definition 13.4 If M is an R-module and S is a subset of End; M then the centraliser
of S is the set C(S) of those Z-endomorphisms on M that commute with every Z-
endomorphism in S.

It is readily verified that C(S) is a subring of End, M.

Example 13.4 Let M be an R-module and for each a € R consider the homothety
h, € End;M given by h,(m) = am. Let Hg(M)) be the ring of homotheties on M.
Then we have ¢ € C(HR(M)) if and only if

(VaeR)(Vx € M) p(ax) = (¢ ohy)(x) = (hy © p)(x) = ap(x),
which is the case if and only if ¢ € EndzM. Thus we have C(HR(M )) = Endy M.
Definition 13.5 The bicentraliser of S is defined to be B(S) =C (C (s )).

For each S we clearly have S C B(S).

By abuse of language, we now define the centraliser of an R-module M to be
C(M) = C(Hg(M)) = Endy M; then B(M) = B(Hg(M)) = C(EndyM).

Theorem 13.9 B(R) = Hg(R) ~R.

Proof On the one hand we have Hgz(R) € B(HR(R)) = B(R).

Suppose now that ¢ € B(R) =C (EndR(R)). For each a € R the right translation
Pq : R — R defined by p,(x) = xa is in Endgz(R) and so commutes with ¢, so
that ¢(xa) = ¢(x)a. For every t € R we then have p(t) = ¢(1xt) = @(1x)t and
consequently ¢ = hy;,) € Hr(R). Hence Hg(R) = B(R).

That Hi(R) ~ R follows from the fact that the mapping h : R — Hg(R) given by
h(r) = h, is a ring isomorphism. |

Theorem 13.10 Let (M;);<; be a family of R-modules each of which is isomorphic to
a given R-module M. Then
B(@I M;) =~ B(M).
1€

Proof For each k €I let a; : M — M, be an isomorphism and define 1, = in; o a;
and ¢, = a;l o pr;.. Note that we then have ¢, o 1, = id and that >,(n; © ;) =

kel
> (iny o pr;) =id.
kel
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Let k be a fixed index in I. Define f : B(@ Ml») — End;M by f () = proBong. It
iel
is clear that f is a ring morphism. Now if € Endz M we have 1), ooy, € Endz P M;

i€l
and so commutes with 3. Consequently,

f(B)od® = profonod
= grofomodopon
promotoprofon
= Toprofon
= 9o f(B)
and so we have that f(f8) € C(EndRM) = B(M). Thus we see that Im f € B(M).

In fact, as we shall now show, Im f = B(M). For this purpose, let § € B(M) and
consider the mapping g5 : @ M; — €@ M; given by
iel

i€l

g5(x) =2 i(m; 05 0 ¢;)(x).

iel

It is clear that g5 € End, €D M;. In fact we claim that g5 € B(G} Mi). To see this, let
iel iel

y € Endy @Ml-. Then for all i, j € I we have p; oy on; € EndgM and so commutes

el
with &. Tflus, forall x e M,
(g5010om;))(x) = Di(n;080¢;0yon;)(x)
iel
= D(niop;oyon;o08)(x)
iel

= (yon;08)(x),
whereas
(rogs0m)(x) = y(g(m 050 0m;)(x)) = (yom;08)(x).

We therefore have gs oy on; =yogson;. If now y € O M, then

i€l

(gso)()=2.(gs0r0omoe)(y)=Dyogsomiop)(y)=(rogs)y),

i€l i€l

whence gs oy =y o0 g5 and so g5 € B(@ Mi). That Im f = B(M) now follows from
iel

the observation that f(gs) = ¢x 0 gs ° N = .

To complete the proof, it suffices to show that f is injective. Suppose then that

p €Kerf, so that ;0 8 on; = 0. Now for each index i we have 1, o¢; € Endg P M;
iel

and so M, o @; o B = B o1y o p; whence, composing on the left with ¢, we obtain

p;off =0 foreachiel.Hence 3 =0and f is injective. |

The above results combine in the following celebrated description of simple rings.
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Theorem 13.11 [Wedderburn-Artin] Every simple ring is isomorphic to the ring of
endomorphisms of a finite-dimensional A-vector space.

Proof Let R be a simple ring. Then R is semisimple and has no two-sided ideals
other than R itself and {0}. It follows that R is a finite direct sum of miminal left
ideals all of which are isomorphic. Let V be one of these minimal left ideals. Since V
is simple as an R-module, EndpV is a division ring (Corollary to Theorem 5.6), and
V is a vector space over this division ring under the action EndyV x V — V given by
V)= frv=£0).

By Theorems 13.9 and 13.10, R ~ B(R) ~ B(V). Now B(V) = C(EndRV) and so

aeB(V)(:>(\7’f€EndRV) aof =foa

< (Vf €EndgV)(Yv €V) a(f -v)=alf (V)] = fla()]=f-a(v)
—ac EndEndeV.

Thus we see that R ~ End,V where A = EndpV.

To show that V is finite-dimensional, let A= End,V, let S(V) be the set of sub-
spaces of V, and let PL(A) be the set of principal left ideals of A. For each X € S(V) let
gX)={reA | AX =0}. Given X € S(V),let T € S(V) be such that V =X & T and
let 7w be the projection onto T parallel to X. Then 7 € g(X) and so An; C g(X).
Suppose now that A € g(X) and, fory € V,let y =x+t where x e X and t € T.
Then Ay = At = Am;y and so A = A, € Any. Hence g(X) = Any € PL(A) so that
g :S(V) — PL(A) and is clearly order-reversing.

Consider now the order-reversing mapping h : PL(A) — S(V) given by h(I) =
{xev \ Ix = 0}. For every X € S(V) we have X C hg(X). Conversely, if y =x+t €
hg(X) = h(Ary) then 0 = Ampy = At whence t = 0 and y € X. Thus hg = idg(y,
and consequently g is injective.

Suppose now that AA € PL(A). Let X = h(AA) = Ker A and let T be such that
V =X & T. Then the restriction A|; of A to T is injective, whence there exists ¢ € A
such that 97|, is the identity on T, namely the restriction of 7t to T. It follows
that 9A(x + t) = GA(t) = t = 7y (x + t) whence 34 = m; and so A, C AA. Since
Any = g(X) = gh(AL) 2 AA it follows that AA = Am; = g(X). Consequently, g
is also surjective. Thus g is an order-reversing bijection from S(V') to PL(A) whose
inverse is h, also an order-reversing bijection.

Since the isomorphic minimal left ideals V;, ..., V, of R are clearly principal, we
may apply the order-reversing bijection h to the chain in PL(A) that corresponds to
the chain {0} cV; cVi®V,C.-- CV;®---®V, =R in the R-module R to thereby
obtain a Jordan-Holder tower of height n in the vector space V which is then of finite
dimension. |

Corollary 1 A ring R is semisimple if and only if there are finitely many division rings
Ai,..., A, and positive integers n,...,n,, such that

m
R =~ (P Mat, ., A;. g
i=1
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EXERCISES

13.1

13.2

13.3

13.4

13.5

Prove that for every R-module M the ring R/AnnyM is isomorphic to the ring Hz(M)
of homotheties on M.

Let M be an R-module such that, for every x # 0 in M, the submodule Rx is simple.
Prove that either M is simple or the ring Hz(M) of homotheties on M is a division ring.

[Hint. If M is not simple then Rx # M for some x # 0. Prove that if y ¢ Rx then
Anng(x + y) = Anng(x) + Anng(y) and deduce that Anng(M) = Anng(x). Now use
Exercise 13.1.]

Let R be a unitary ring. Prove that a left ideal I of R is a direct summand of R if and
only if I is generated by an idempotent.

[Hint. = : If R=1@®J write 1; =i+ j where i € [ and j € J. Show that I = Ri with
2

i“=1i.
< : If I = Rx with x? = x show that R=Rx ® R(1; — x).]
Deduce that a minimal left ideal I of R is a direct summand of R if and only if I # {0}.

[Hint. < : Show that there exists x € I with Ix # {0} and R =1 & Anng(x).]

If M is an R-module, prove that the following are equivalent :

(1) M is semisimple and of finite height;
(2) M is noetherian and every maximal submodule is a direct summand;
(8) M is artinian and every simple submodule is a direct summand.

[Hint. (2) = (1) : Show that M has simple (= quotient by maximal) submodules and
look at the sum of all the simple submodules.

(8) = (1) : If S is a simple submodule and M = S & T, show that T is maximal.
Now show that the intersection of all the maximal submodules of M is {0}. Let P
be a minimal element in the set of finite intersections of maximal submodules. Show
that P is contained in every maximal submodule N of M (consider N N P). Deduce

k
that there exist maximal submodules N, ..., N, such that ﬂ N; = {0}. Now produce a
i=1

k
monomorphism f : M — _X]M/Nl-.]
A

[Chinese remainder theorem ]
Let R be a unitary ring and suppose that I,,..., I, are two-sided ideals of R such that,

k

for each j, R is generated by {I;, () 1.}. Prove that the mapping f : R — ~X1R/I ; given
t#j =

by f(x)=(x+1,...,x +I) is an R-epimorphism.

[Hint. Show that for k = 2 the problem reduces to a solution of the simultaneous
congruences x = ry(I;),x = ry(I,). Since R is generated by {I;,I,} write r; = ry; +
I'12, Ty = TI'yy + Iy (135 € I;) and consider r;, + ;. Now use induction. ]
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13.6

13.7

13.8

13.9

13.10

13.11

13.12

Module Theory

Let R be a simple ring. Show that R has a finite number of maximal ideals I, ..., I, and
n
that R~ X R/I;.
Jj=i
[Hint. LetIy,...,I; be the maximal ideals which are such that (I, ¢ I;. Construct f
t#j
k k
as in Exercise 13.5. Show that, fork+1<p <n, [ ]I, € I, whence (I, ={0}and f is
t=1 t=1

k
injective. Finally, observe that 1X1R/ I, has precisely k maximal ideals, whence k = n.]

An R-module is said to be faithful if AnngM = {0}. A ring R is said to be quasi-simple if
its only two-sided ideals are {0} and R. Prove that a unitary ring is quasi-simple if and
only if every simple R-module is faithful.

[Hint. Let I be a maximal ideal and J a maximal left ideal containing I. Show that
AnngR/J conntains I.]

Let M be an R-module and let x € M be such that Anng(x) is the intersection of a
finite number of maximal left ideals I5,...,I,. By showing that Rx is isomorphic to a

n
submodule of .Xl R/I;, prove that Rx is semisimple.
JA

Deduce that an R-module M is semisimple if and only if, for every x # 0 in M,
Anng(x) is the intersection of a finite number of maximal left ideals.

An R-module is said to be isotypic of type T if it is the direct sum of a family of simple
submodules each of which is isomorphic to the simple R-module T. Prove that if M is
a semisimple R-module then there is a unique family (M, ),; of submodules (called the
isotypic components of M) such that, for some family (T;),c; of simple R-modules,

(1) (Vi € I) M, is isotypic of type T;;
(2) T; £ T, for i # j;
(3) every simple submodule of M is contained in precisely one M;;

4HM=0DM,.
iel
Let N be a submodule of a semisimple R-module M. Prove that N is a sum of isotypic
components of M if and only if N is stable under every endomorphism f of M, in the
sense that f ”(N) € N.

Let R be a semisimple ring. Prove that the isotypic components of the R-module R are
the minimal ideals of R.

[Hint. Use Exercise 13.10 to show that the left ideals that can be expressed as sums of
isotypic components are the two-sided ideals. ]

If V is a finite-dimensional A-vector space prove that the rings End,V and End,, V¢ are
isomorphic.

[Hint. Associate with each a € End,V the mapping 9(a) : V¢ — V¢ which is defined
by [F(a)](ED)=¢&"0a.]
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THE JACOBSON RADICAL

Definition 14.1 If M is an R-module then the Jacobson radical Rad;M of M is the
intersection of all the maximal submodules of M. If M has no maximal submodules
then we define Rad; M to be M.

A useful simple characterisation of the Jacobson radical is the following.
Theorem 14.1 Rad;M = ("\Ker f where each f is an R-morphism from M to a simple
f
R-module.

Proof Letf : M — S be an R-morphism where S is simple. Then by Theorem 5.6(2)
either f =0 or f is an epimorphism. Now in the former case Ker f = M; and in the
latter S = Im f ~ M/Ker f in which case the simplicity of S implies that Ker f is a
maximal submodule. Conversely, every maximal submodule is such a kernel. |

Immediate properties of the Jacobson radical are given in the following results.
Theorem 14.2 If f € Morg(M,N) then f ~”(Rad;M) € Rad,N.

Proof LetS be asimple R-module and g € Morg(N,S). Then gof € Morg(M,S) and
so, by Theorem 14.1, (g o f)~(Rad;M) = {0}. It follows that f 7(Rad;M) C Kerg
whence, by Theorem 14.1 again, f ”(Rad;M) € Rad;N. |
Theorem 14.3 If N is a submodule of M then

(1) Rad,N C Rad, M;

(2) (N +Rad;M)/N CRad;(M/N);

(3) if N CRad;M then (Rad;M)/N =Rad;(M/N).

Proof (1) Apply Theorem 14.2 to the natural monomorphism ty : N — M.
(2) Apply Theorem 14.2 to the natural epimorphism fy : M — M /N to obtain

(N +Rad;M)/N =4,/ (N +Rad;M) = fj,/(Rad;M) C Rad;(M/N).

(8) There is a bijection between the maximal submodules of M /N and the max-
imal submodules of M that contain N, i.e. the maximal submodules of M since
N CRad; M. oj

Corollary 1 The Jacobson radical of M is the smallest submodule N of M with the
property that Rad;M /N = {0}.
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Proof First we note that, taking N = Rad;M in Theorem 14.3(3),
Rad;(M/Rad;M) = Rad,;M/Rad,;M = {0}.

Suppose now that N is a submodule of M such that Rad;M /N = {0}. Then by
Theorem 14.3(2) we have N +Rad;M = N whence Rad;M C N. =
Theorem 14.4 For every family (M;);¢; of R-modules
(1) Rad,( X M;) € X Rad,;M;;
i€l i€l

(2) Rad, (B M;) = @Rad, M,.
iel iel

Proof (1) Let N; be a maximal submodule of M;. Then N; x é}M}- is a maximal
Jj#i
submodule of ‘XI M;. Hence
1€

RadJ [>€<[ Mi g O(RadJMl X ]él M]) = i>€<] RadJMl'.

(2) Similarly, if N; is a maximal submodule of M; then N; ® P M; is a maximal
J#i
submodule of @ M; and
iel
Rad; @ M; € @GRad;M;.

i€l i€l

On the other hand, by Theorem 14.3(1), Rad;M; C Rad; P M;, whence we have
iel

equality. O

We can use Theorem 14.4 to investigate those R-modules for which the Jacobson
radical is as small as possible.

Theorem 14.5 An R-module M has zero Jacobson radical if and only if M is isomor-
phic to a submodule of a cartesian product of simple modules.

Proof If M is simple then clearly Rad;M = {0}. Consequently, for a family (M;);¢;
of simple modules we have, by Theorem 14.4(1),

RadJ >< Mi c X RadJMl' = {0}
i€l i€l
Thus, if M is a submodule of _XI M; we have, by Theorem 14.3(1), Rad;M = {0}.
1€

Conversely, suppose that Rad;M = {0}. Let (N;);c; be the family of maximal
submodules of M. Then each quotient module M/N; is simple. Define f : M —
AXIM/Ni by f(x) = (hi(x))iel' Then f is an R-morphism with
1€

Ker f = () Kerf; =(|N; =Rad;M =0.

iel iel
Thus f is a monomorphism and M ~Imf. |

Corollary 1 Every simple and every semisimple module has zero Jacobson radical.

Proof Direct sums are submodules of cartesian products. O
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If M is a finitely generated non-zero module then every submodule N of M is
contained in a maximal submodule. This can readily be seen by showing that the
set of submodules that contain N is inductively ordered and so we can apply Zorn’s
axiom to produce a maximal such submodule. It follows that Rad;M is properly
contained in M.

Theorem 14.6 [Nakayama] If M is a finitely generated module and N is a submod-
ule of M such that N + Rad;M = M then necessarily N = M.

Proof Suppose, by way of obtaining a contradiction, that N € M. Then since M /N
is non-zero and also finitely generated we have, from the above observation, that
Rad;M /N c M/N. But since by hypothesis N + Rad;M = M we have, by Theorem
14.3(2), the contradiction M /N = Rad; M /N. o]

Corollary 1 If M =Rx then y € Rad;M if and only if M =R(x +ry) for every r €R.
Proof =: If y € Rad;M then for every z € M = Rx we have
g2=Ax =A(x+ry)—Ary €eR(x +ry)+Rad;M

whence M = R(x +ry)+Rad;M. It follows by Theorem 14.6 that R(x + ry) = M.
<: If y ¢ Rad; M then there is a maximal submodule N such that y ¢ N. Then
N+Ry =M =Rx sothat x +ry €N for every r eRwhence R(x +ry)#M. 0O

We now consider the Jacobson radical of a unitary ring R. This is defined as
the Jacobson radical of the R-module R and therefore is the intersection of all the
maximal left ideals of R. Since R is finitely generated, namely by {13}, it follows that
Rad,R CR.

We can characterise Rad;R in a manner similar to Theorem 14.1.

Theorem 14.7 IfRis a unitary ring then Rad;R is the intersection of the annihilators
of all the simple R-modules, and therefore is a two-sided ideal of R.

Proof IfS is a simple R-module and x is a non-zero element of S then the mapping
P, : R— S given by p,(r) = rx is a non-zero R-morphism. By Theorem 5.6(2) we
have Imp, =S and so

R/Anng(x)=R/Kerp, ~Imp, =S.

Since S is simple, Anng(x) is then a maximal left ideal of R. Thus, on the one hand,
Rad,R C () Anng(x) = AnngS. On the other hand, suppose that r € AnngS for every

X€S
simple R-module S and let L be a maximal left ideal of R. Since the R-module R/L

is simple we have in particular that r € AnngR/I andsor +L =r(1z+L)=0+L
whence r € L. Thus we conclude that Rad;R = AnngS.

Now for every R-module S, if r € R annihilates S then r annihilates Ax for every
x € S and so rA annihilates S. Thus the left ideal AnngS is also a right ideal. It
follows that Rad;R is a two-sided ideal of R. |

Theorem 14.8 If R is a unitary ring and x € R then the following are equivalent :
(1) x €Rad;R;
(2) (Vr €R) 13 —rx has a left inverse in R.
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Proof This is immediate from the Corollary to Theorem 14.6 since the R-module R
is generated by {1z}, and {1z — rx} generates R if and only if 1; = A(1; —rx) for
some A €R. o]

Corollary 1 Rad,R is the biggest two-sided ideal I of R such that 1z—x has a two-sided
inverse for all x € I.

Proof If x € Rad;R then 1z — x has a left inverse by Theorem 14.8. Let y € R be
such that y(1z — x) = 1z. Then 1, — y = —yx € Rad,R and so, by Theorem 14.8
again, there exists z € R such that 1z = 2[1; — (1 — ¥)] = zy. Hence y has both a
left and a right inverse. Now z =21 =2y (1 —x) = 13 — X, and so y is also a right
inverse of 15 —x.

Suppose now that I is a two-sided ideal of R such that 1z — x is invertible for all
x € 1. Then clearly 1z —rx is invertible for all r € R and so x € Rad;R. |

For a unitary ring R we define the opposite ring R°P to be the ring obtained by
defining on the abelian group of R the multiplication (x, y) — yx. We then have
Corollary 2 Rad;R = Rad,;R°P.

Proof This is immediate from Corollary 1. |
Corollary 3 Rad,R is also the intersection of all the maximal right ideals of R.

Proof This follows immediately from Corollary 2 since a right ideal of R is a left
ideal of R°P. =

We now investigate the connection between semisimplicity and the Jacobson
radical.
Theorem 14.9 If M is an R-module then the following are equivalent:

(1) M is semisimple and of finite length;

(2) M is artinian and has zero Jacobson radical.
Proof (1)=>(2): This is immediate from the Corollary to Theorem 14.5.

(2) = (1): Let P be a minimal element in the set of all finite intersections of

maximal submodules of M. For every maximal submodule N of M we have NNP C P
whence NNP =P and so P C N. Since Rad;M = {0} it follows that P = {0}. Thus
n

there is a finite family (N;); <;<, of maximal submodules of M such that (| N; = {0}.
i=1

n
Then f : M — ‘XlM/Nl- given by f(x) = (ni(x))l. is an R-morphism with Ker f =
i2
() N; = {0} and so is injective. Since 'X1 M /N; is semisimple and of finite length, so
i2

i=1
is every submodule by Theorem 13.3, whence so is M. O

Corollary 1 A unitary ring is semisimple if and only if it is artinian and has zero
Jacobson radical.

Proof If R is semisimple then the R-module R, being generated by {13}, has finite
length by Theorem 13.5. o
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Corollary 2 The quotient of an artinian module by its Jacobson radical is a semisimple
module of finite length.

Proof The quotient is artinian, and has zero Jacobson radical since, by Theorem
14.3(3),
Rad,(M/Rad;M) = Rad,;M/Rad,;M = {0}. o]

Corollary 3 3 The quotient of an artinian ring by its Jacobson radical is a semisimple
ring. O

In order to characterise the Jacobson radical of an artinian ring, we consider the
following notions. For this, we recall that the product of two ideals I,J of a ring R is
the set IJ of all finite sums of the form Y q; b; where q; €1,b; € J.

<o

Definition 14.2 If R is a ring then a € R is said to be nilpotent if a" = 0 for some
positive integer n. An ideal I is called a nil ideal if every element of I is nilpotent,
and a nilpotent ideal if I" = {0} for some positive integer n.

Suppose now that I is a nilpotent ideal with, say, I" = {0}. Given any r € [ we
have r" € I"" = {0} and so r is nilpotent. Thus we see that every nilpotent ideal is a
nil ideal.

Theorem 14.10 Every nil ideal of R is contained in Rad;R.

Proof Let N be a nil left ideal and let x € N. For every r € R we have rx € N and
so rx is nilpotent, say (rx)" = 0. Since then

1x=[1g+rx+(rx)?+--+ (rx)"1](1g —rx)
we see that 1z — rx has a left inverse. It follows by Theorem 14.8 that x € Rad,R.
Similarly we can show that every nil right ideal is contained in Rad;R. O

Theorem 14.11 The Jacobson radical of an artinian ring R is the biggest nilpotent
two-sided ideal of R.

Proof By Theorem 14.10 and the observation preceding it, Rad;R contains all the
nilpotent two-sided ideals of R. It therefore suffices to show that Rad;R is nilpotent.
For this purpose, let Rad;R =I.

Since I is a two-sided ideal of R we have I? C RI C I, and this gives rise to a
descending chain of ideals

[21?2---21P2 [P D,

Since R is artinian, there is a positive integer n such that " = "' = ...  LetK = I";
we shall prove that K = {0} whence the result will follow.

Suppose, by way of obtaining a contradiction, that K # {0}. Since K> = K # 0
the set E of left ideals J of R with J € K and KJ # {0} is not empty. Since R satisfies
the minimum condition on left ideals, E has a minimal element J,. Then KJ, # {0}
and so there exists x, € J, such that Kx, # {0}. Now Kx, is also a left ideal of R
and is such that Kx, C J,. Since K?x, = Kx, # {0} we see that Kx, € E. Since J, is
minimal in E, we deduce that Kx, = J, and so, for some k € K, we have kx, = x,.
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But k € Rad,R and so 1; — k is invertible; so from (15 — k)x, = {0} we deduce that
X = 0, which contradicts the fact that Kx, # {0}. We therefore deduce that K = {0}
whence I = Rad;R is nilpotent. |

Corollary 1 In an artinian ring every nil ideal is nilpotent.

Proof IfN isnil then by Theorem 14.10 we have N € Rad;R. But by Theorem 14.11
we have (RadJR)n = {0} for some positive integer n. Hence N" = {0} and so N is
nilpotent. O

We end our discussion of artinian rings with the following remarkable result.
Theorem 14.12 [Hopkins] Every artinian ring is noetherian.

Proof Suppose that R is artinian and let Rad;R = I. Since, by Theorem 14.11, R is
nilpotent there is a positive integer n such that

RDOIDI?>--->I"={0}.
We consider two cases:

(1) n =1, in which case I = {0} : in this case R is semisimple by Corollary 1 of
Theorem 14.9. Thus R is also noetherian, by the Corollary to Theorem 13.5.

(2) n # 1, in which case I # {0} : in this case we shall establish, for each t, a
chain

I'=K,>---2K, =I""
of left ideals such that K; / K;,, is simple for j =0,...,m,—1. It will then follow that
R has a Jordan-Holder tower and so is noetherian.

Now R/I is an artinian ring with zero Jacobson radical, and so is semisimple.
Every non-zero R/I-module is therefore semisimple. Now every R-module M can be
regarded as an R/AnngM-module; to see this, observe that an action R/AnngM x
M — M is defined by (r + AnngM, m) — rm. Thus, since each quotient module

It/I**! has annihilator I, it can be regarded as an R/I-module, and as such is simple.
We therefore have

It/I[’-I-l — @Jk/1t+1
k

where each Jj is a left ideal of R such that I'*! C J, C I*, and since R is artinian this
direct sum is finite. Hence I'/I**! has a Jordan-Holder tower

If/It+1 =Ki0/1f+1 S5.ee D Kir_/lt+1 — {0}.
The left ideals K; then give the chain
I'=K, >---DK; =I"
0 t

in which each quotient K; / K, is simple. |
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EXERCISES

14.1

14.2

14.3

14.4

14.5

14.6

14.7

Let p be a fixed prime and let S be the set of all sequences (a,),>; with a, € Z, for
each n. Show that S is a ring under the laws given by (a,) + (b,) = (a, + b,) and
(a,)(b,) = (a,b,). Now let R be the subset of S consisting of those sequences which
become zero after a certain point. Show that R is a two-sided ideal of S. Let I be the
set of sequences in R of the form (pt;,...,pt,,0,0,...) where each t; € Z,:. Show that
I is a two-sided nil ideal of R that is not nilpotent.

Let R be a principal ideal domain. Prove that

(1) R has zero Jacobson radical if and only if either R is a field or the set of maximal
ideals of R is infinite;

(2) a quotient ring R/Rx has zero Jacobson radical if and only if x has no prime factors
of multiplicity greater than 1.

Determine the Jacobson radical of each of the following rings :
(1) z/4z;
(2) z/6Z;
(3) Z/pqZ (p,q distinct primes);
(4) Z/p*q®Z (p,q distinct primes, a, 8 > 1).

Prove that the ring F[X ] of polynomials over a field F has zero Jacobson radical.

Determine the Jacobson radical of the ring of upper triangular n x n matrices over a
field.

Let R be a unitary ring. Define a law of composition ® on R by (x,y) — x @y =
X + y —xy. Show that (R, ®) is a semigroup with an identity.

We say that x € R is left quasi-regular if x has a left inverse with respect to ®. A left
ideal L of R is called left quasi-regular if every element of L is left quasi-regular. Show
that x is left quasi-regular if and only if 1; — x has a left inverse in R and deduce that

Rad,R={x €R; (Vr €R) rx is left quasi-regular}.

If P is a left quasi-regular left ideal of R and M is a simple R-module, prove (via a
contradiction) that PM = {0}. Deduce that Rad,R is a left quasi-regular left ideal of R
that contains every left quasi-regular left ideal of R.

Let S be the ring of rationals of the form m/n with n odd. Determine the (left) quasi-
regular elements of S and show that Rad;S = (2).

Consider the ring of all 2 x 2 upper triangular matrices

ab
0c
in the cases (1)a€Z and b,c € Q; (2) a € Q and b, c € R. Show that in case (1) the

ring is right noetherian but not left noetherian, and in case (2) it is right artinian but
not left artinian.
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TENSOR PRODUCTS; FLAT MODULES; REGULAR RINGS

We shall now develop more machinery, thereby laying a foundation for a study of
what is often called multilinear algebra. Whilst this term will take on a more sig-
nificant meaning in the next section, we begin with the following type of mapping
which involves a mixture of left and right modules.

Definition 15.1 Let M be a right R-module and N a left R-module. If G is a Z-module
then a mapping f : M x N — G is said to be balanced if

(Ymy,my € M)(Vn €N) f(my +my,n) = f(my,n) + f(my,n);
(Yme M)(Vny,n, €N) f(m,ny +ny) = f(m,ny) + f(m, ny);
(VmeM)(YneN)VAe€R) f(mA,n)=f(m,An).

Example 15.1 IfRis a commutative ring and M is a left R-module then the mapping
f :M?x M — R given by f(m?,n) = m4(n) = (n,m?) is balanced.

Given a balanced mapping f : M x N — G, we shall now consider how to con-
struct a Z-module T with the property that, roughly speaking, f can be ‘lifted’ to a
Z-morphism h : T — G. This construction, together with a similar one that we shall
meet with later, gives rise to another important way of constructing new modules
from old. Such a ‘trading in’ of a balanced map for a Z-morphism is, as we shall see,
a useful device.

Definition 15.2 If M is a right R-module and N is a left R-module. then by a tensor

product of M and N we shall mean a Z-module T together with a balanced mapping

f M x N — T such that, for every Z-module G and every balanced mapping g :

M x N — G, there is a unique Z-morphism h : T — G such that the diagram
MxN——G

1

is commutative. We denote such a tensor product by (T, f).

Theorem 15.1 If (T, f) is a tensor product of the right R-module M and the left R-
module N then Im f generates T.

Proof This is essentially as that of the second part of Theorem 7.1. |

o In contrast to the first part of Theorem 7.1, note that if (T, f ) is a tensor product
of M and N then f is not injective. In fact, since f is balanced we have the
identity f (mA,n) = f(m, An). On taking A = 0, we obtain f(0,n) = f(m,0)
forallme M and alln e N.
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Theorem 15.2 [Uniqueness] Let (T,f) be a tensor product of M and N. Then
(T, f') is also a tensor product of M and N if and only if there is a Z-isomorphism
j:T—> T suchthatjof =f'.

Proof This is essentially as that of Theorem 7.2. o]

We shall now settle the question of the existence of tensor products. For this
purpose, let M be a right R-module and let N be a left R-module. Let (F,i) be the
free Z-module on M x N and let H be the subgroup of F that is generated by the
elements of the following types:

i(my + my,n) —i(my,n) —i(my, n);
i(m: n; + n2) - l(m’ nl) - l(m: le);
i(mA,n)—i(m, An).

We shall denote the quotient group F/H by M ®; N and the mapping 5 o i by ®;.

Theorem 15.3 [Existence] If M is a right R-module and N is a left R-module then
(M ®; N, ®g) is a tensor product of M and N.

Proof Let G be a Z-module and g : M x N — G a balanced mapping. If (F, 1) is the
free Z-module on M x N we shall first show how to obtain Z-morphisms j,h such
that the following diagram is commutative:

MxN—2G

| 7

F

y

M &y N
In fact, the existence of a unique Z-morphism j : F — G such that joi = g results
from the fact that (F, i) is free on M x N. It now follows easily from the definition of H
and the fact that g is balanced that H € Ker j. Applying Theorem 3.3, we deduce the
existence of a unique Z-morphism h : F/H — G such that h o fj; = j. The resulting
commutative diagram yields ho ®; =holjyoi=joi=g.

We now have to establish the uniqueness of h with respect to this property. For
this purpose, suppose that k : M ®; N — G is also a Z-morphism such that ko®, = g.
Then we have k o ljj; oi = g and so, by the uniqueness of j, we deduce that ko fj; =
j = holy. Since i is surjective, hence right cancellable, it follows that k =h. @&

By the above results there is, to within abelian group isomorphism, a unique
tensor product of M and N. By the tensor product of M and N we shall mean M ®; N
as constructed above. The mapping ®; will be called the associated tensor map.
Given (m,n) € M x N we shall write ®z(m,n) as m ®, n and, by abuse of language,
call this the tensor product of the elements m and n. When no confusion can arise over
R, we shall often omit the subscript R in the symbol ®.
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e It is clear from the above that in M ® N we have the identities

(mi+my)®n=m;®n+m,Qn;
m® (n; +n,)=me®n; + me n,;
mA®n=m® An.

It is immediate from these identities that
0®n=0=m®0
and that, by induction for N then extended to Z,
(VkeZ) km®n=k(m®n)=m®kn.

In what follows these identities will be used without further reference.

o Note that since Im ® generates M ®N, every element of M ®N can be expressed
t

as a linear combination Y. p;(m; ® n;) where each p; € Z. It follows by the
i=1
preceding remark that every element of M ® N can be written in the form

t
>'(a; ® b;) with a; € M and b; € N for every i. However, it should be noted
i=1
that, despite the notation, not every element of M ® N is of the form m ® n with
meMandneN.

It is important to note that M ®; N as defined above is an abelian group and is
not in general an R-module. In certain circumstances, however, we can give M ®; N
the structure of a left R-module or that of a right R-module. To see this, we require
the following notion.

Definition 15.3 Let R and S be unitary rings. By an (R, S)-bimodule we shall mean
a module M which is both a left R-module and a right S-module, the actions being
linked by the identity

(Yme M)(VYr eR)(Vs€S) (rm)s = r(ms).

Example 15.2 Every unitary ring R is an (R, R)-bimodule.
Example 15.3 If M is a right R-module then M is a (Z,R)-bimodule.

Example 15.4 If R is a commutative unitary ring then every left R-module M can
be given the structure of an (R, R)-bimodule. In fact, it is clear that we can define an
action M xR — M by (m,s) — m-s = sm and thereby make M into a right R-module.
The multiplication in R being commutative, we also have

(rm)-s=s(rm)=(sr)m=(rs)m=r(sm)=r(m-s).

e When the ground ring R is commutative we shall take it as understood that
each left (respectively right) R-module is endowed with the (R, R)-bimodule
structure described in Example 15.4.
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Theorem 15.4 If M is an (R, S)-bimodule and N is a left R-module then Morg(M,N)
is a left S-module relative to the action (s, f) — sf where (sf)(m) = f(ms) for all
meM.

Proof This requires simply a routine verification of the identities s(f +g) =sf +sg,
(s+s)f =sf+s'f, s'(sf)=(s's)f and 14f = f, each of which follows easily from
the definition of sf. |

Theorem 15.5 Let M be an (R,S)-bimodule and N a left S-module. Then M Q¢ N is
a left R-module relative to the action defined by

(", ;(mi ®s ni)) — ;(rmi ®s 1;).

Proof Given r € R consider the mapping ¥, : M x N — M ®¢ N described by
¥,.(m,n) = rm &g n. It is readily verified that ¥, is a balanced mapping and so there
exists a unique Z-morphism f, : M ®; N — M ®¢ N such that

(YmeM)(VYneN) fr(m®gn) =rmegn.

t
Since every element of M ®; N can be written as Y. (m; ® n;) we can define an
i=1
action R x (M ®; N) — M ® N by the prescription

(r, ;(mi ®s ni)) — fr(Zi(mi ®g ni)) = ;(rmi ®s 1;).

It is now readily verified that M ®¢ N is a left R-module. |

e There is, of course, a result that is dual to Theorem 15.5, namely that if M
is a right R-module and N is an (R, S)-bimodule then M ®y N can be given the
structure of a right S-module.

By way of applying Theorems 15.4 and 15.5, we now establish the following
result which shows how tensor products may be used to simplify certain morphism
groups.

Theorem 15.6 Let M be a left R-module, N an (S, R)-bimodule and P a left S-module.
Then there is a Z-isomorphism

Morg (M, Morg(N, P)) ~ Morg(N ®; M, P).

Proof We note first that, by Theorem 15.4, Morg(N, P) is a left R-module and that,
by Theorem 15.5, N ®; M is a left S-module.

Given an R-morphism f : M — Morg(N, P), consider the mapping ay : N x M —
P given by a;(n,m) = [f (m)](n). It is readily verified that a; is a balanced mapping
and so there is a unique Z-morphism ¥; : N ® M — P such that

(VneN)(VmeM)  F(n®m)=[f(m)](n).

Now ¥, is an S-morphism; for, by the action defined in Theorem 15.5,
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9:[s(n @ m)] = (sn ® m) = [£ (m)](sn) = s - [f (m))(n) = 50 (n ® m)

and N ®; M is generated by the elements of the form n®z m. We can therefore define
a mapping
9 : Morg(M, Morg(N, P)) — Morg(N ®; M, P)

by the prescription #(f) = ;. It is clear that ¥ is a Z-morphism. Our objective is to
show that it is a Z-isomorphism.

For this purpose, let g : N ®; M — P be an S-morphism and define a mapping
B : M — Morg(N, P) by assigning to every m € M the S-morphism ,(m) : N — P
given by [B,(m)](n) = g(n ® m). That each f,(m) is an S-morphism follows by
Theorem 15.5. We can now define a mapping

B : Morg(N ®; M, P) — Morg(M, Morg(N, P))

by the prescription $(g) = f3,. Clearly,  is a Z-morphism. We shall show that ¢ and
p are mutually inverse Z-isomorphisms whence the result will follow.

Since (B o H)(f) = ﬁﬁf with [ﬂﬁf(m)](n) =8¢ (ne®m) = [f(m)](n), we see that
Bs, = f and so fp o ¥ is the appropriate identity map. Likewise, (% o )(g) = T,
with ﬁﬁg(n ®m) = [B,(m)](n) = g(n ® m) and so ﬁﬁg and g coincide on a set of
generators of N ® M. It follows that ﬁﬂg = g whence ¥ o 3 is the appropriate identity
map. Thus ¥ and f are mutually inverse Z-isomorphisms. |

Corollary 1 If M is a left R-module and N is a right R-module then
Morg(M,N*) ~ (N @ M)*.
Proof Take S =Z and P = Q/Z in the above and use Example 15.3. |
A less involved consequence of Theorem 15.5 is the following.
Theorem 15.7 If M is a left R-module then there is a unique R-isomorphism
9:ROM - M
such that (r ® m) =rm.

Proof By Theorem 15.5, R® M is a left R-module. The mapping f : Rx M — M
given by f(r,m) = rm is clearly balanced. There is therefore a unique Z-morphism
¥ :R®M — M such that ¥ o ® = f. This Z-morphism ¥ is in fact an R-morphism.
For, given r,s € R and m € M we have, relative to the action defined in Theorem
15.5,

Hs(rem)]=9(sr®@m)=srm=s(r @m),

from which it follows that #(tn) = t#(n) for all t € R and all n € R® M, since every
such n is a linear combination of elements of the form r ® m.

To show that 7 is an R-isomorphism, we shall construct an inverse for 4. For this
purpose, consider the R-morphism & : M — R® M given by £(m) = 1z ® m. For every
m € M we have
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(Fo&)(m)=10(1g@m)=m
and so ¥ o £ = id),. On the other hand, for every r € R and every m € M we have
(EoN(rem)=E(rm)=1@rm=r®m

and so, since R® M is generated by the elements of the form r ® m, we see that £ o
is the identity map on R® M. Thus  and & are mutually inverse R-isomorphisms. [

Corollary 1 R®@R~R. O
There is, of course, a dual result to the above, namely:
Theorem 15.8 If M is a right R-module then there is a unique R-isomorphism
d4:M®R—-M
such that #(m®r)=mr. |

We shall now investigate how tensor products behave with respect to exact se-
quences. For this purpose, we require the following notions. Given morphisms f :
M; — M, and g : N; — N,, consider the diagram

]
M, x N,————M, ® N,

fXgJ

Mz X NZT)MZ ®NZ
2

in which f x g is the cartesian product morphism given by

(f x g)my,ny) = (f(m1)7g(n1))'

It is readily seen that ®, o (f x g) is a balanced mapping and so there is a unique Z-
morphism h : M; ®N; — M,®N, that completes the above diagram in a commutative
manner. We call this Z-morphism the tensor product of f and g and denote itby f ® g.

o Although the notation f ® g for the tensor product of the R-morphisms f and g
is quite standard, it really constitutes an indefensible abuse; for if f : M — N
and g : P — Q are R-morphisms then, by our previously agreed conventions,
f ® g ought to denote an element of

Morg(M, N) ®; Morg(P,Q).

Since we shall rarely require this latter (and proper) interpretation of f ® g,
we shall adhere to the standard practice of using f ® g for the tensor product
of f and g as defined above. The reader should remain fully aware of this
convention.

The principal properties of the tensor product of R-morphisms are summarised
in the following result.
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Theorem 15.9 If M is a right R-module and N is a left R-module then

Moreover, given the diagram M Lo L m of right R-modules and the diagram

NN 5N of left R-modules, we have
(flefle(g'og)=(f'®g)o(f®2).

Proof It suffices to consider the diagrams

MxN—2" SM®N

id,, xidy l JidMM

MXNTM@N

MxN —2 s M®N
fxg feg
M xN —2 M &N’

/

f'xg’ f'eg
M// % N// S M// ®N//

and observe that each is commutative. The result therefore follows by the definition
of the tensor product of two morphisms. |

We shall use the following notation. If f : A — B is an R-morphism then for any
given R-module M the induced Z-morphism idy; ® f : M ® A — M ® B will be denoted
by ®f and the induced Z-morphism f ®id,; : A® M — B® M will be denoted by f®.
This notation will be used only when there is no confusion over the R-module M.

Theorem 15.10 Let M be a right R-module and let

ANy W NV 0

be an exact sequence of left R-modules and R-morphisms. Then there is the induced exact
sequence of Z-modules and Z-morphisms

? ®
MeA—) S MeA— s MeA' — 0.

Proof Since g o f = 0 we deduce from Theorem 15.9 that ®g o ®f = 0 so that
Im®f CKer®g.Nowlet: M®A— (M ®A)/Im®f be the natural Z-morphism. By
Theorem 3.3, there is a unique Z-morphism ¢ : (M ® A)/Im®f — M ® A” such that
Polj = ®g. Again by Theorem 3.3, to show that Im®f = Ker ®g it suffices to show that
¥ is injective; and for this it suffices to find a Z-morphism & : M®A” — (M®A)/Im®f
such that & o ¥ is the identity map on (M ® A)/Im®f.
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We construct such a Z-morphism & as follows. Given a, b € A we have
gla)=g(b) > a—beKerg=Imf
= (da’€A)a—b=f(d)
=> (VmeM)m®a—m®b=m® f(a’) € Im®f.

Since g is surjective, it follows that we can define a mapping
a:MxA"—>(M®A)/Im®f

by the prescription
a(ma)=mea+Im®f
where a € Ais such that g(a) = a”. It is readily verified that a is a balanced mapping
and so there is a unique Z-morphism
E:MeA - (M®A)/Im®f

such that £ o ® = a. Now for every m € M and every a € A we have

(Eot)(mea+Im®f) = E[°g(m®a)]

= &[m® g(a)]

= (§o®)(m, g(a))
a(m, g(a))

=m®a+Im®f.

Thus & o ¢ coincides with the identity map on a set of generators of (M ® A)/Im®f
whence we have that & o is the identity map.

To complete the proof, it remains to show that ®g is surjective. Now, given a”’ €
A" there exists a € A such that g(a) = a” whence, for every m € M,

mead’ =megla)=®g(me®a) €Im®g.

Since then Im®g contains a set of generators of M ® A”, we conclude that Im®g =
M ®A” and so ®g is surjective. =

There is of course a dual to Theorem 15.10 which we state without proof.
Theorem 15.11 Let M be a left R-module and let

Ny SNV 0

be an exact sequence of right R-modules and R-morphisms. Then there is the induced
exact sequence of Z-modules and Z-morphisms

AoM—" sAeM—" A& M— 0. o]
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e By Theorems 15.10 and 15.11 we see that «tensoring by M» preserves a certain
amount of exactness. We note here, however, that it does not go as far as
preserving short exact sequences in general. For example, consider the short
exact sequence

0 Z yA Z/2Z 0

in which f is given by f (n) = 2n. Consider now the induced exact sequence

L)20® L— 7,20, 0 T— s 7,/ 27.© ) 27— .
Since
®f(n+2Z®m)=n+2Z® f(m) = n+2Z ® 2m
=2(n+2Z)® m
=0+2Z®m
=0,

it follows that ®f is the zero map. Its kernel is therefore Z/27Z ® Z which,
by Theorem 15.8, is Z-isomorphic to Z/2Z and so cannot be a zero module.
Thus ®f is not a monomorphism and the induced sequence is not short exact.
Despite this, however, we do have the following preservation of split exact
sequences.

Theorem 15.12 Let M be a right R-module and let

0 A—T A% u 0
be a split short exact sequence of left R-modules and R-morphisms. Then there is the
induced split short exact sequence

® ®
0o S MeA— S MeA— sMeA— 0

of Z-modules and Z-morphisms.

Proof By virtue of Theorem 15.10 it suffices to shoe, using the fact that the given
sequence splits, that ®f is injective. For this purpose, let f° be a splitting morphism
for f and define a mapping a : M x A —» M ® A’ by a(m,a) = m ® f°a). It is
readily verified that a is a balanced mapping and so there is a unique Z-morphism
9:M®A— M®A such that 9 (m®a) =m® f°a) for allm € M and all a € A.
Now given any m € M and any a’ € A’ we have

(Bo®f)me@ad)=9%me f(d))=me f°[f(d)]=med
and so, since M ® A’ is generated by the elements of the form m®a’, we deduce that
& o ®f is the identity map on M ® A, whence ®f is injective. &
There is, of course, a dual result to Theorem 15.12.

Before proceeding to discuss those R-modules M which, when tensored into a
short exact sequence, induce a short exact sequence, we derive some useful conse-
quences of Theorems 15.10 and 15.11.
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Theorem 15.13 Let F'—*>E—E" 0 be an exact sequence of right R-modules
5
and let F' — > F F” 0 be an exact sequence of left R-modules. Then there is
a short exact sequence
i 5
0—— Im(id; ®y) + Im(a ® id;) - EeF—2 g eF" — 0

of Z-modules and Z-morphisms, in which i is the natural inclusion.

Proof Consider the diagram

E'Q®F E®F' E'"®F'
idp ®y idy®y idgr ®y
Fof—2Y  por L%  pror 0
id ®5 id;®6 w idgr®5
E'®F” E®F” E"®F” 0
a®idgn peidp
0 0 0

By Theorems 15.10 and 15.11, both rows and all three columns are exact; moreover,
by Theorem 15.9, the diagram is commutative. The result will follow, therefore, if
we can show via a diagram chase that

Ker(f8 ® 6) = Im(id; ®y) + Im(a ® idg).

Now by the exactness of the middle column we see that (8 ® §) o (id; ®y) = 0; and
likewise, by the exactness of the top row, that (f ® §) o (a ® id;) = 0. It follows that

Im(id; ®y) + Im(a ® id;) € Ker(f ® &).
To obtain the reverse inclusion, let z € Ker( ® §); then
(id; ®56)(2) € Ker(f ® idp,) = Im(a ® idg~)

and so there exists x € E’ ® F” such that (id; ®5)(z) = (¢ ® idg.)(x). Since idg ®5
is surjective there then exists y € E’ ® F such that

(idg ®6)(2) = (a @ idp.)[(idg ®5)(¥)]-
Now let 2’ =z — (a ®id;)(y). Then 2z’ € Ker(id; ®5) = Im(id; ®y) and so
z2=2"+(a®id;)(y) € Im(id; ®y) + Im(a ® idy),
whence the reverse inclusion follows. o}

Corollary 1 If, in the above, E' and F’ are submodules of E and F respectively and if
g, Lpr are the corresponding natural inclusions, then there is a Z-isomorphism

E/E'® F/F' ~(E®F)/(Im(idg ®p) + Im(1p ® idy)).
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Proof It suffices to apply the above to the canonical exact sequences in which E” =
E/E'and F" =F/F’. ]

Corollary 2 Let I be a right ideal of R and let M be a left R-module. Then there is a
Z-isomorphism
R/I®M ~M/IM.

Proof Taking E=R,E'=1,F = M,F’ = {0} in Corollary 1, we obtain
R/I®M ~(R® M)/Im(t; ® id,,).

The result now follows by Theorem 15.7. O

e Note that the isomorphism of Corollary 2 can be described by the assignment
(r+I)®M —rm/IM.

We now give consideration to those modules which, on tensoring into a short
exact sequence, induce a short exact sequence. More explicitly, recalling Theorem
15.10, we introduce the following notion.

Definition 15.4 A right R-module M is said to be flat if, for every monomorphism
f :A— A’ of left R-modules, the induced Z-morphism

®
M®A’—f>M®A

is a monomorphism. Flat left modules are defined similarly.

An immediate example of a flat module is provided by the following.
Theorem 15.14 The right (respectively left ) R-module R is flat.

Proof From the proof of Theorem 15.7 there is an isomorphism &, : A — R®A given
by a — 1 ® a. For any R-morphism f : A" — A we therefore have the commutative
diagram

f

A— A

J

R ®A/®—f)R ®A

which yields ®f = &,0f o 5;,1. Thus we see that ®f is a monomorphism whenever
f is a monomorphism. Consequently, R is flat. |

In order to obtain an abundant supply of flat modules, we shall now investigate
how tensor products behave in relation to direct sums.

Theorem 15.15 If (M;);c; is a family of left R-modules and if M is a right R-module
then (M ® P M;, (idy, ®ini)iel) is a coproduct of the family (M ® M;);¢;-
iel
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Proof We shall use the fact that the natural epimorphisms pr? and the natural

monomorphisms in; satisfy the properties given in Theorem 6.7.
For every j € I consider the Z-morphisms

a; =idM®pr;?3 :M®%Ml~ - M®M;;
B; =idy ®in; : M ® M; —>M®i€€BIMi.

It is immediate from Theorem 15.9 that
aof;= {idMo®Mj ii ;j

Now if m € M and (m;);; € @ M; then from
i€l

a](m ® (mi)iel) =m® Pr;ﬁ((mi)iel)

and the fact that prj?((mi)ie,) is zero for all but finitely many j € I, we see that
aj(m ® (mi)iel) is zero for all but finitely many j € I. Moreover,

Z(ﬂj o aj)(m ® (mi)iel) =me® Z;(inj ° pr?)((mi)iel) =m® (m;)ier-
je

jeI
The result now follows on appealing to Theorem 6.7. o]

Corollary 1 If (M;);¢; is a family of left R-modules and M is a right R-module then
there is a Z-isomorphism

M@PM;, ~PM e M,).

iel iel

Proof This is immediate by Theorem 6.5. O

Theorem 15.16 If (M;),c; is a family of left R-modules then @ M,; is flat if and only
iel

if every M; is flat.

Proof Let f : M’ — M be a monomorphism of right R-modules and consider the
diagram

M @M, MePM,;
163 Y f ®idg % J
/ o \
jel jeI
in which idg denotes the identity map on (P M;, id; denotes the identity map on M;,
J€EI

the non-horizontal and non-vertical maps are the obvious monomorphisms, a and
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p are the unique isomorphisms that make the left and right triangles commutative
(Theorems 15.15 and 6.5), and ¢ is the unique morphism that makes the lower
trapezium commutative (definition of coproduct). We leave the reader to check that
a is such that

a(m'® (mj)jel) =(m' ®m;)ie,
that 3 satisfies a similar identity, that

'ﬁ((m/ ® m])]el) = (m ® mj)jel,
and that the entire diagram is commutative. Now since a and f3 are isomorphisms
we see that f ® idg is injective if and only if ¥ is injective; and clearly ¥ is injective
if and only if every f ® id; is injective. It therefore follows that P M; is flat if and

iel

only if every M; is flat. |
Corollary 1 Every projective module is flat.
Proof Suppose that P is a projective R-module. By Theorem 8.8, P is a direct sum-
mand of a free R-module F. By the Corollary to Theorem 7.6, F is isomorphic to a

direct sum of copies of R and so, by Theorems 15.14 and 15.16, F is flat. By Theorem
15.16 again, it follows that P is flat. |

We now consider the following interesting connection between flat modules and
injective modules.

Theorem 15.17 A right R-module M is flat if and only if its character module M™ is
injective.
Proof =: Suppose that M is flat and let f : A — A be a monomorphism of left
R-modules. Then we have the exact sequence
®
0— > MeA— > MeA
Since the Z-module Q/Z is injective, we can construct the diagram

Cfy

0e——(MA) (M eA)*

A B
Morg (4, M+)<TMorR(A, M)
in which the top row is exact and #,,7, are the isomorphisms of the Corollary to
Theorem 15.6. We note in fact from the proof of Theorem 15.6 that, for example,
¥, is such that
[0:(f)I(m ® a’) = [f (a")](m).

We now verify that the above diagram is commutative. Given a € Morg(4, M), we
have on the one hand

(0 0 f)a) = [f ()] =D (aof")

where
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() [(aof)lmed)=[(aof)(a)](m).

On the other hand,
[(®f) o B,](a) = (®f ) [F(a)]

where

) CH)o(a)](mea) =8, (a)[me f(a)]=[(ao f)(a)](m).

The commutativity now follows from () and (**). It follows by this commutativity
that f* is an epimorphism, whence we see that M is injective.

<: Conversely, suppose that M7 is injective. Then we can construct a diagram
similar to the above in which f* is an epimorphism. The commutativity of such a
diagram shows that (®f)* is also an epimorphism whence, by Theorem 12.6, we
have the exact sequence

®
0— > MQA SCAEN M®A.
Consequently, M is flat. O
The above result gives the following criterion for flatness.

Theorem 15.18 A right R-module is flat if and only if, for every left ideal I of R, the
induced sequence

0 M®I M®R

is exact, where t : I — R is the natural inclusion.

Proof Since the necessity is clear from the definition of flatness, we need establish
only sufficiency.

Suppose then that every induced sequence of the above form is exact. Then, just
as in the proof of the necessity in Theorem 15.17, we can show that every sequence

0 Morg(I, M) ———Morg(R,M*)

is exact. By the Corollary to Theorem 12.2, it follows that M* is injective and so, by
Theorem 15.17, M is flat. o}

If I is a left ideal of R then for every right R-module M the map a: M x I — MI
given by a(m,r) = mr is clearly balanced and so there is a unique Z-morphism
¥, : M ® I - MI such that 0;(m ® r) = mr. It is clear that ¥, is an epimorphism.

The above result therefore yields the following
Corollary 1 A right R-module M is flat if and only if, for every left ideal I of R, the
map O, is a Z-isomorphism.

Proof For every left ideal I and natural inclusion ¢; : I — R consider the diagram



178 Module Theory

®
M®——>M®R

MI—— MR
j

in which ¥ is the isomorphism of Theorem 15.8 and j is the natural inclusion. This

diagram is clearly commutative and so ®t = 9! o j o ;. Since 1, is an epimorphism

and 9! oj is a monomorphism, we deduce from Theorem 3.4 that Ker#; = Ker ®¢. It

follows that every ¥, is a Z-isomorphism if and only if every ®¢ is a Z-monomorphism,

which is the case if and only if M is flat. O

e Note that in the above Corollary we can restrict I to be a finitely generated left
ideal. In fact, if for every such ideal I the morphism U, is injective then so is
the correspondmg morphism ¥; for every left ideal J of R. To see this, suppose

that Z(m ® a;) € Ker?,, i.e. that Zma = 0. Then Z(m ® a;) € Kert,
i=1 i=1 11

where [ = ZRa is finitely generated. By hypothesis, Z(m ®q;) =0 as an
i=1
element of M ® I and hence of M ® J.

Yet another useful criterion for flatness is given in the following result.

Theorem 15.19 Let M be a right R-module, F a free right R-module, and = : F - M
an R-epimorphism. Then M is flat if and only if, for every (finitely generated) left ideal
I of R,

FInKern = (Kerm)I.

Proof We have the exact sequence

0 Kerm———F M 0

in which F, being free and therefore projective, is flat by the Corollary to Theo-
rem 15.6. For every left ideal I of R we then have the commutative diagram of
Z-morphisms

Kern®l —2 sFel—2 Mol 0
KernNFl ———— FI MI 0
< Ty

in which the rows are exact, and both a and y are of the form x ® i — xi with y an
epimorphism. Moreover, M is flat if and only if y is a monomorphism.

Now a simple diagram chase (which we leave as an exercise to the reader) shows
that if y is a monomorphism then « is an epimorphism; and the converse is a con-
sequence of the Four Lemma (Theorem 3.9). Thus M is flat if and only if a is an
epimorphism. The result then follows from the fact that Im a = (Ker 7)I. |
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We can apply the above result to determine precisely which Z-modules are flat.
For this purpose, we require the following notion.

Definition 15.5 A Z-module M is said to be torsion-free if
(VxeM)(Vnez) nx =0=—x=0.
Example 15.5 The Z-module Z is torsion-free; but the Z-modules Z/nZ are not
torsion-free when n # 0.
Theorem 15.20 A Z-module is flat if and only if it is torsion-free.

Proof Let M be a Z-module and ©w : F — M an epimorphism with F a free Z-
module. By Theorem 15.19 and the fact that every ideal of Z is of the form nZ for
some n € Z, we see that M is flat if and only if

(Vnez) F(nZ)nKern C (Ker )nZ;
in other words, if and only if

(VneZ)Vf €F) nf eKerm = f € Kerm.
On passing to quotients, we see that this is equivalent to
(VYnez)(VmeM ~F/Kerm) nm=0=—n=0,
which is precisely the condition that M be torsion-free. O
e We shall consider later the notion of a torsion-free module over a more general

ring, when we shall generalise Theorem 15.20.

e By Theorem 15.20 we can assert that the Z-module Q, for example, is flat.
Although @ is an injective Z-module (see Exercise 12.3 for the details), it is
not a projective Z-module (this will be established later). Thus the class of flat
modules is wider than that of projective modules.

e Later, we shall be concerned with a particular type of module for which the

notions of free, projective, and flat coincide.

Do there exist rings R such that every R-module is flat? We shall answer this
question in the affirmative, and for this we consider the following type of ring.
Definition 15.6 A unitary ring R is said to be regular (or to be a von Neumann ring)
if for every a € R there exists x € R such that axa = a.

Example 15.6 IfR is a unitary ring then the set of idempotents of R forms a regular
ring under the multiplication of R and the addition x®y = x+y —xy.
Theorem 15.21 If R is a unitary ring the the following are equivalent :
(1) Ris a regular ring;
(2) every principal left ideal of R is generated by an idempotent;
(3) for every principal left ideal Ra of R there exists b € R such that R = Ra ® Rb;
(4) every principal left ideal of R is a direct summand of R,
(5) similar statements concerning right ideals.
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Proof We give a proof for left ideals; the symmetry of (1) shows that we can replace
‘left’ by ‘right’ throughout.

(1) = (2): Given a € R let x € R be such that a = axa. Then xa = xaxa =
(xa)?. Moreover, it is clear that Rxa € Ra and Ra = Raxa C Rxa, so that Ra = Raxa
from which (2) follows.

(2) = (3): Let e € R be an idempotent such that Ra = Re. Since 1; = e+ (1 —e)
we see that R = Re+R(1z—e). Moreover, if x € ReNR(1y—e) then x = ye = z(1z—e)
for some y,z € R whence

x=ye=ye?=z(1g—e)e =z(e—e>) =20 =0.

Thus we see that R=Re @ R(1 —e).

(3) = (4): This is trivial.

(4) = (1): Given any a € R, there exists by the hypothesis a left ideal J such that
R=Ra®J.Then 1z = xa+b where x € Rand b € J, and consequently a = axa+ab.
Since then

ab=a—axa € RanJ = {0},

we conclude that a = axa. =

Corollary 1 If R is a regular ring then every finitely generated left/right ideal of R is
principal.

Proof Suppose that the left ideal I is generated by {xy, ..., x,}. Then by Theorem
15.21(2) there exist idempotents ey, ..., e, such that

I=Rx;+--+Rx,=Re;+---+Re,.

We show by induction that Re; + - - - + Re,, is principal. The result is trivial for n = 1.
It holds for n = 2 as follows. First we observe that

are; +aze, = (a7 + azey)e; +ay(e; —ejeq),

from which we deduce that Re; + Re; = Re; + R(e, — eye;). Now since R is regular
there exists x € R such that (e, —eje;)x(e;—eze;) = ey —eyeq, and e = x(e;—eyeq) is
idempotent. Moreover, we see that Re; +Re, = Re; +Re;, with eJe; = x(ey—eqe;)e; =
0. But since

aje; +aze; = (aje; +aze;)(e; +e; —eqe)),

we also have Re; +Re; = R(e; +e; —e;e;) where e; +e; —e;e; is idempotent. Hence
we have Re; +Re, = Re; where e; = e, +e; —e; e;. The inductive step readily follows
from this observation. |

Corollary 2 A unitary ring is regular if and only if every finitely generated left/right
ideal of R is a direct summand of R. |

Example 15.7 If D is a division ring and V is a vector space over D then the ring
End,V is regular. To see this, it suffices to show that every principal right ideal of
End,V is generated by an idempotent. Given f € End,V, let p project onto Im f.
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Then p is an idempotent and V =Imp @ Kerp with Imp =Im f. Let (f(vi))iel be a
basis of Im p and define g € End,,V by
g(x)=0  if x eKerp =Kerf;
glf(v)l=v; foralliel.

Then for x € Kerp we have (f o g)(x) =0=p(x); and foralli €1,
(fef (v)]I=Ffv)=(pof)vy).

Thus we have f o g = p. But the restriction of p to Imp =Im f is the identity map,
and therefore we have f = p o f. These observations show that the right ideals of
End,V generated by f and by p coincide. Consequently, the ring End,,V is regular
by Theorem 15.21.

Theorem 15.22 For a unitary ring R the following are equivalent :

(1) Ris regular;

(2) every left R-module is flat;

(3) every right R-module is flat.
Proof Since the concept of regularity is symmetric, it suffices to establish the equiv-
alence of (1) and (3).

(1) = (3): Suppose that R is regular and let M be a right R-module. By Corollary
1 of Theorem 15.21, every finitely generated right ideal of R is principal and so, in
the notation of Theorem 15.19, it suffices to show that for every r € R we have
FrnKern C (Kerm)r. But if x € Fr NnKer 7t then we have x = fr where f € Kern
and so, by the regularity of R,

x=fr=frr'r=xr'r € (Kerm)r.

(8) = (1): Ifr €R then by (3) the right R-module R/rR is flat. By Theorem 15.19
with F =R and 7 =1l,z, we see that for every left ideal A of R we have ANrR =rA.
In particular, taking A = Rr we obtain r € Rr N rR = rRr whence r = rr’r for some
" €R. o]

Finally, we have the following connection with semisimplicity.

Theorem 15.23 For a unitary ring R the following are equivalent :
(1) R is semisimple;

(2) R is noetherian and regular.

Proof If R is semisimple then it is clearly noetherian. Since every left ideal of R is
a direct summand, so in particular is every finitely generated left ideal whence R is
also regular.

Conversely, if R is noetherian then every left ideal is finitely generated, and if R
is regular then every left ideal is principal and a direct summand of R. Hence R is
semisimple. O
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EXERCISES

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

Let R be a unitary ring. If I is a right ideal of R and if M is a left R-module prove that
there is a Z-isomorphism
f:M®R/I > M/IM

such that f(m ®(r +I)) =rm+IM. Deduce that if L is a left ideal of R then, as abelian
groups,
R/L®R/I ~R/(I+L).

[Hint. Use Corollary 1 of Theorem 15.13.]

Let G be an additive abelian group. For every positive integer n let nG = {ng ; g € G}.
Establish a Z-module isomorphism

Z/nZ ®, G ~ G/nG.
[Hint. Use Corollary 2 of Theorem 15.13.]

Prove that Z/nZ ®, Q = {0}.

If (M;);; is a family of right R-modules and if (N;);c; is a family of left R-modules,
establish a Z-isomorphism

DOM; ® ON; ~P(M; ®N;).

iel jeJ (%))
Given a short exact sequence

0 M’ M M” 0

of R-modules and R-morphisms in which M’ and M” are flat, prove that M is flat.
[Hint. Use the Corollary to Theorem 15.18.]

Prove that a regular ring has zero Jacobson radical.
Prove that the centre of a regular ring is regular.
Prove that a regular ring with no zero divisors is a division ring.

Suppose that R is a unitary ring with no non-zero nilpotent elements. Prove that every
idempotent of R is in the centre of R.

[Hint. For an idempotent e consider [(1; —e)ae]* and [ea(1; —e)]>.]

If R is regular, deduce that every left ideal of R is two-sided.

Prove that in a regular ring the intersection of two principal left ideals is a principal
left ideal.

[Hint. Observe that if e is an idempotent then so is 1;—e, and that Re = Anng(1z—e)R.]
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We shall now concentrate on tensor products in the case where the ground ring R is
commutative. In this case all the morphism groups in question may be regarded as
R-modules and we can generalise the notion of tensor product to an arbitrary family
of R-modules. The motivation for this is as follows.

Definition 16.1 Let M,N, P be R-modules. A mapping f : M x N — P is said to be
bilinear if the following identities hold:

f(m+m',n) = f(m,n)+ f(m’,n);
f(m,n+n")=f(m,n)+ f(m,n’);
f(Am,n) = Af(m,n) = f(m,An).
Example 16.1 If R is a commutative unitary ring and M is an R-module then the

mapping f : M? x M — R given by f(x%,x) = x¢(x) = (x,x9) is bilinear. This
follows from identities (a) to (&) of Section 9 and the fact that R is commutative.

Theorem 16.1 Let R be a commutative unitary ring. If M and N are R-modules then
M ®x N is an R-module in which Am ®g n = A(m ®g n) = m ®; An, and ®y, is bilinear.

Proof Both M and N are (R,R)-bimodules and so M ®; N is an R-module by The-
orem 15.5 and the subsequent remark; in fact the action in question is given by

t t t
A(Z;xi ®rYi)= Zi)\xi ®rY: = Zixi ®r Ay;.
i= 1= =

It is readily verified that ®j is bilinear. o]

Theorem 16.2 Let R be a commutative unitary ring and let M and N be R-modules.
Then the R-module M ®g N satisfies the following property : if P is an R-module and if
g : M x N — P is a bilinear mapping there is a unique R-morphism h : M @y N — P

such that the diagram g
MxN — P

[

M &y N
is commutative.
Proof We know that there is a unique Z-morphism h : M ®; N — P such that

h o ®; = g. It therefore suffices to show that h is an R-morphism; and this follows
from the equalities
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h[A(x® y)]=h(Ax ® y) = g(Ax,y) = Ag(x,y) = Ah(x ® y)
and the fact that M ®; N is generated by Im ®j. |

o Aswe shall soon see, when R is commmutative the R-module M ®; N is charac-
terised by the property given in Theorem 16.2. In fact, the results of Theorems
16.1 and 16.2 give rise to the following general situation.

Definition 16.2 LetR be a commutative unitary ring and let (M;);<; be a family of R-
modules. If N is an R-module then a mapping f : _)(I M, — N is said to be multilinear
e
if, whenever (x;)ics, (Vi)ier» (2i)ier € 'XI M; are such that, for some k, 2, = x; + Y
e

and z; = x; = y; for i # k, then

F(Gier) = F(Dier) + F (i );
and whenever (x;);cr, (¥i)ier € AXIML» are such that, for some k € I y;, = Ax; and
1€

y; = x; for i #k, then
f((yi)iel) = Af((xi)iel)-

e In the case where I = {1,...,n} we shall use the term n-linear instead of
multilinear; and in particular when n = 2,3 we shall use the terms bilinear;
trilinear.

Motivated by the desire to ‘trade in’ multilinear mappings for R-morphisms, we
now introduce the following concept.

Definition 16.3 LetR be a commutative unitary ring and let (M;);<; be a family of R-

modules. Then by a tensor product of the family (M;);c; we shall mean an R-module

T together with a multilinear mapping f : ‘XI M; — T such that, for every R-module
1€

N and every multilinear mapping g : ‘XI M; — N, there is a unique R-morphism
1€
h: T — N such that the diagram

X M——N
i€l

Iy
T
is commutative. We denote such a tensor product by (T, f).

Theorem 16.3 If (T, f) is a tensor product of the family (M;);c; of R-modules then
Im f generates T.

Proof This is as in the second part of Theorem 7.1. |

Theorem 16.4 [Uniqueness] Let (T, f) be a tensor product of the family (M;);c; of
R-modules. Then (T, f') is also a tensor product of this family if and only if there is a
unique R-isomorphism j : T — T’ such that jo f = f'.

Proof This is similar to that of Theorem 7.2. o}
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e Because of this uniqueness up to isomorphism, we see that when R is com-
mutative M ®; N is characterised by the property stated in Theorem 16.2. In
other words, we can assert by these results the existence of tensor products
when the cardinality of I is 2.

To settle the question concerning the existence of tensor products for an arbitrary
family (M;);c; of R-modules, let (F, i) be the free R-module on _XI M; and let G be the
e
submodule of F generated by the elements of either of the forms
(1) i(x;)jer +i(y;)jer—i(2;);er Where, for some k € I, 2, = x+y; and, for j # k,
2 =X =Yjs
(2) i(x;)jer —Ai(yj)je; where, for some k € I, x; = Ay, and, for j #k, x; = y;.
We denote the quotient module F/G by @ M; and the composite map f; o i by
iel
®y (or simply ® if no confusion can arise).

Theorem 16.5 [Existence] IfRisacommutative unitary ring and (M;);¢; is a family
of R-modules then (® M;, ®R) is a tensor product of the family.
iel

Proof This follows the same lines as that of Theorem 15.3 with all Z-morphisms
becoming R-morphisms; we leave the details to the reader. o]

e By the above results, tensor products exist and are unique up to isomorphism.
By the tensor product of the family (M;);c; we shall mean the R-module &) M;

iel
constructed above, together with the mapping ® which we shall call the asso-
ciated tensor map . As noted previously, ® is not injective.

n
e Whenever I = {1,...,n} we shall use the notation Q@ M; or M; ® --- ® M,,.
i=1
n
Also, given (mq,...,m,) € 'XlMi we shall write ®(m4,...,m,) in the form
i2
m; ® --- ® m, and, by abuse of language, call this the tensor product of the
elements mq,...,m, .

n
e Care should be taken to note that (X) M; is generated by the elements of the
i=1
form m; ®---®m,, and, despite the notation, not every element of M; ®---® M,
is of this form.

We shall now establish some properties of tensor products in the case where R is
commutative.

Theorem 16.6 [Commutativity of ®] If R is a commutative unitary ring and M,N
are R-modules then there is a unique R-isomorphism ¢ : M @ N — N ® M such that

(Vme M)(VneN) d(me®n)=n®m.

Proof The mapping f : M x N — N®M given by f (m,n) = n®m is clearly bilinear.
There is therefore a unique R-morphism 4 : M ® N - N ® M such that o ® = f,
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i.e. such that 9(m ® n) = n ® m. In a similar way we have a unique R-morphism
{:N®M — M QN such that {(n ® m) = m ® n. We thus have

({o)(m®n)=m®n, (Fo)(n®@m)=nem.

Since M ® N is generatde by the set of elements of the form m ® n, we deduce that
{ o¥ = idy ey, and likewise that ¥ o { = idygy- It follows that 9, are mutually
inverse R-isomorphisms. O

Theorem 16.7 [Associativity of ®] If R is a commutative unitary ring and M,N, P
are R-modules then there is a unique R-isomorphism 4 : M@ N®P - (M ®N)® P
such that

(YmeM)(YneN)(VpeP) H(men®p)=(mMen)®p.
Likewise, there is a unique R-isomorphism { : M @ N ® P —» M ® (N ® P) such that
(YmeM)(YneN)(VpeP) {(me®n®p)=me®(n®p).
Proof The mapping f : M xN x P — (M ® N) ® P given by
f(m,n,p)=(men)®p

is trilinear and so there is a unique R-morphism 4 : M @ N® P - (M ® N) ® P such
that 3(m®n ® p) = (m ® n) ® p. We show that ¢ is an R-isomorphism by producing
an inverse for 7.

For every p € P the mapping f, : M X N > M ® N ® P given by

fy(m,n)=menep

is bilinear and so there is a unique R-morphism g, : M ® N - M ® N ® P such that
g,(m®n)=m®n®p. The mapping g : (M®N)xP - M®N ®P given by g(t,p) =
g,(t) is now bilinear and so there is a unique R-morphism h : (M®N)®P — M®N ®P
such that h(t ® p) = g(t, p). We deduce that

h[((m®n)®p]=g(m®n,p)=g,(m@®n)=menep.

Since then
(ho®)(m@®n®p)=men®p, (Boh)[(men)®p]l=(men)®p,

it follows that h o} and idy;eyep coincide on a set of generators of M ® N ® P, and
likewise that ¥ o h and id(yen)ep coincide on a set of generators of (M ® N) ® P. It
follows that # and h are mutually inverse R-isomorphisms.

The second part of the theorem is established similarly. o]

e We have already used several times the fact that Im® generates M ® N, so

k
that every t € M ® N can be written in the form t = > A;(m; ® n;) where
i=1
m; € M,n; €N and A; R fori=1,...,k. Since ® is bilinear, it follows that
k
every t € M®N can be written in the form t = . a;®b; where a; € M, b; € N.
i=1
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e It should be noted that some collapsing can occur with tensor products. For
example, Z/27 ® 7./3Z is generated by the elements of the form x ® y where
x € Z/27Z and y € Z/37Z. But

x®y=3(x®y)—2(x®y)=(x®3y)—(2x®y)=(x®0)—(0® y)=0.

Thus we see that Z/2Z ® Z/3Z = {0}.

The reader will have no difficulty in extending the Z-isomorphism of Theorem
15.15 to an R-isomorphism in the case where R is commutative. Using this, we can
now establish the following result.

Theorem 16.8 If M and N are free R-modules over a commutative unitary ring R then
so also is M ® N. If {m; ; i €I} is a basis of M and {n; ; j € J} is a basis of N then
{m;®n;; (i,j) €I xJ}isabasisof M®N.

Proof Given j € J, consider the mapping f : M x Rn; — M given by f(m,rn;) =
rm. Clearly, f is bilinear and so there is a unique R-morphism ¢ : M ® Rn; —» M
such that ## o ® = f. Consider now the R-morphism { : M — M ® Rn; given by
¢(m) =m®n;. We have

(fot)mern;)=C(rm)=rm®n; =m®rn;

and so, since M ® Rn; is generated by the elements of the form m ® rn;, we deduce
that ¢ o9 is the identity map on M ® Rn;. On the other hand, we also have

(90 )(m)=O(men,)=m

and so ¥ o { = id;,. Thus 4, are mutually inverse R-isomorphisms. Since an R-
isomorphism carries bases to bases, we deduce that {m; ® n; ; i € I} is a basis of
M ® Rn;. Now by the analogue of Theorem 15.15 and the fact that we are dealing
with internal direct sums we have
M®N =M ®DRn; = (M ®Rn;).
jeJ jeJ
The result now follows by Theorem 7.8. |

It is clear that, the ground ring R being commutative, if M,N, P are R-modules
then the set Bilz(M x N, P) of bilinear mappings f : M x N — P forms an R-module.
The most basic property that relates R-morphisms, bilinear mappings, and tensor
products is then the following.

Theorem 16.9 If R is a commutative unitary ring and M,N,P are R-modules then
there are R-isomorphisms

MorR(M,MorR(N,P)) ~ Bilzg(M x N, P) ~ Morg(M ® N, P).

Proof For every a € Bilz(M x N, P) and every m € M let a,,, : N — P be given by
a,(n) = a(m,n). It is clear that a € Morg(N, P). Now let ¢, : M — Morg(N, P) be
given by ¢,(m) = a,,. Then it is clear that ¥, € MorR(M , Morz(N ,P)) and that the
assignment a — ¥, yields an R-morphism
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9 : Bilg(M x N, P) — Morg(M, Morg(N, P)).

Now let f € MorR(M,MorR(N,P)) and let {¢ : M x N — P be the bilinear mapping
given by {¢(m,n) =[f(m)](n). Then the assignment f — { yields an R-morphism

¢ : Morg(Morg(N, P)) — Bilg(M x N, P).

We leave to the reader the easy task of showing that  and { are mutually inverse
R-isomorphisms.
Consider now the mapping

& : Bilgy(M x N, P) — Morg(M ® N, P)

given by §(f) = f, where f, : M ® N — P is the unique R-morphism such that
f.o® = f. It is readily verified that £ is an R-morphism, and that f, = g, gives
f = g, so that £ is injective. To see that & is also surjective, it suffices to observe that
if g € Morg(M ® N, P) then g o ® € Bilz(M x N, P) with (go®), = g. |

We shall now investigate how tensor products behave in relation to duality. As
we are restricting our attention to a commutative ground ring R, we may take P =R
in Theorem 16.9 and obtain R-isomorphisms

Morg(M,N%) ~ Bil(M x N,R) ~ (M ® N)‘.
It is clear that we can interchange M and N in this to obtain an R-isomorphism
Morz(N, M%) ~ (M ® N)°.
We also have the following result.

Theorem 16.10 Let R be a commutative unitary ring. If M and N are R-modules then
there is a unique R-morphism

Ty : MY ®N — Morg(M,N)

such that Oy y(m* ®n) : x — (x,m%)n.
Moreover, ¥, y is a monomorphism whenever N is projective, and is an isomor-
phism whenever M or N is projective and finitely generated.

Proof Given m? € M? and n € N, let fmin : M — N be the R-morphism given
by finan(x) = (x,m%)n. Then it is readily seen that the mapping f : M x N —
Morg(M,N) given by f(m?,n) = fmd n is bilinear. The first statement now follows by
the definition of tensor product.

Suppose now that N is projective. Then by Theorem 8.8 there is a free R-module
F of which N is a direct summand, say F = N & P. Since P is then also projective,
the canonical short exact sequence

0 N—'"F P 0

splits. Given any R-module M we can now construct the diagram
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MigN——  sMiQF

LY J JﬂM,F

Morg(M,N)————Morg(M, F)
[N

in which, by Theorem 8.4 and the analogue of Theorem 15.12, ®i and i, are injective.
Moreover, this diagram is commutative; for, as is readily seen, we have fq ;) =
i0 fna - We show first that ¥y, r is a monomorphism (so that the result holds for free
R-modules); that ), y is a monomorphism will then follow from the commutativity
of the diagram. Suppose then that {b; ; i € I} is a basis of F. Then every t € MY ® F
can be written as a finite sum

t=>(ml®b).

i€l

Now 1y ¢(t) is the morphism from M to F described by

x — > (x,md)b;.

i€l

Thus if 9 z(t) is the zero morphism then (x, ml?i) =0 forall x € M and all mf e M4,
whence m¢ = 0 for all m¢ € M?, and hence t = 0. Consequently, ¥, ; is injective.

Suppose now that N is projective and finitely generated. Then by the remark
following Theorem 8.7 there is a finite-dimensional R-module F and an epimorphism
7 : F — N. We therefore have the commutative diagram

Mi@F——"  sMIQN

Lives J JﬂM,N

Morg(M, F)————Morg(M,N)
Ty

in which both horizontal maps are epimorphisms. It is clear from this that 4y, y is
surjective whenever ),  is surjective. It therefore suffices to prove that ), ; is an
isomorphism; in other words, that the result holds for finite-dimensional R-modules.
We achieve this by induction on the dimension of F. Suppose first that dimF = 1.
Then there is an R-isomorphism a : R — F, namely that given by r — rb where {b}
is a basis of F, and we have the commutative diagram

Mi®@R——= sMIQF

ﬁM,RJ JﬁM,F

M? =Morg(M,R)————Morg(M, F)
a,

in which ®a and a, are R-isomorphisms. Now it is readily seen that ), z coincides
with the R-isomorphism m? ® r — m?r of Theorem 15.8. Consequently, we see that
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Uy r is also an R-isomorphism. Suppose now, by way of induction, that the result
holds for all free R-modules of dimension at most n — 1 where n > 2 and leg F be

a free R-module of dimension n. If {b,,...,b,} is a basis of F, so that F = @D Rb;,
i=1

n
consider the submodules A = @ Rb; and B = Rb;. Since there is an R-isomorphism

i=2
¢ : F/A — B, we have the split short exact sequence
0 A—L % B 0

where f is the natural inclusion and g = ¥ o fj,. Moreover, A and B are free, of
dimensions n — 1 and 1 respectively. The commutative diagram

00— MI®A ! Mi®F g M?®B— 50

JﬁMA JﬁM,F JﬁM,B

0—>MorR(M,A)TMorR(M, F)————Morg(M,B)—0
X g

then has exact rows so, by the induction hypothesis, ¥, 4, ¥ 5 are isomorphisms. It
follows by the Corollary to Theorem 3.10 that #), r is also an isomorphism.

Suppose now that M is projective and finitely generated. Then on the one hand
there is a free R-module F, of which M is a direct summand, and a commutative
diagram

FlgN—2 Mie®N

Ty J Jﬁm,w

MorR(F,N)f—>M0rR(M,N)

in which both horizontal maps are epimorphisms.

On the other hand, there is a finite-dimensional R-module (which we shall also
denote by F without confusion) and an epimorphism 7 : F — M that gives rise to a
commutative diagram

(n*)®

MigN———  SFigN

TN V]v J'OF,N

Morg(M,N)————Morg(F,N)
-

in which both horizontal maps are monomorphisms.

It follows immediately from these diagrams that if 9 is an isomorphism then so
is 0y . It therefore suffices to show that ¥y is an isomorphism; in other words, that
the result holds for free R-modules of finite dimension. Suppose then that {b, ..., b,}
is a basis of F and let {b‘li, ey bf} be the corresponding dual basis. To show that
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Vpy + F 4 ® N — Mory(F,N) is an R-isomorphism, it suffices to produce an inverse
for it. For this purpose, consider the R-morphism y : Morg(F,N) — F¢ ® N given by

r(f)= Z(bd ® f (b))

t
Given x = lejbj € F, we have
J:

[ (b @ £ (b)) ](x) = {x, b9 F (b,) = <ix1b,,bd>f(bi)

= Z b]rb? f(bz)

= x;f (b))
= f(x;b;)
and so
t d t
D[ 0nn (b ® £ (0))](x) = X F(xiby) = £ ().
i=1 i=1
Consequently, we have
t
(Ben o V)(F) = 2 Oen (b ® F (b)) = f
i=1
and so Uy oy is the identity map on Morg(F,N). Also, given any n € N and md e

t
> Ajb? € F?, we have
j=1

(YOﬁF,N)(md(gn):Y(fmd,n) (bd bnm )Tl)

(bd®zx (b;, b4)n)

[ Jj
= j}(bf®xin)
i=1
(2[1 Abd)en
i=1

=mi®n.

Since f¢®N is generated by the elements of the form m? ®n, we deduce that yolry
is the identity on M ® N. Thus Upy and y are mutually inverse R-isomorphisms. &

Corollary 1 Let R be a commutative unitary ring. If M and N are R-modules, at least
one of which is projective and finitely generated, then

(MeN) ~M{eN.

Proof This is immediate from Theorem 16.10 and the isomorphisms that immedi-
ately precede it. o
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We shall now describe an important application of Theorem 16.10. Let R be a
commutative unitary ring and let F be a free R-module of finite dimension. By The-
orem 16.10, there is an R-isomorphism

g : F1® F — Morg(F, F).

In the proof of that theorem we constructed an inverse for ¥y in terms of a given
basis of F. The uniqueness of ¥ implies that the R-isomorphism 1‘} » isindependent
of this choice of basis. We can therefore call ¥ the canonical R- 1somorphlsm from
FY®F to Morg(F, F).

Observing that the mapping from F? x F to R described by (x¢,x) — (x,x%)
is bilinear, and therefore induces a unique R-morphism a; : F¢ ® F — R such that
ap (x4 ® x) = (x,x9), we consider the following notion.

Definition 16.4 If F is a free R-module of finite dimension then the R-morphism
ap o @y} : Morg(F,F) >R

is called the trace form on Morg(F, F) and is denoted by tr; (or simply tr if no con-
fusion can arise).
For every f € Morg(F,F) we call tr f the trace of f.

For a given f € Morg(F, F) the trace of f has a convenient interpretation in terms
of matrices. We shall now describe this. For this purpose, suppose that {b,, ..., b,} is
a basis of F and that {bf, cees bg} is the corresponding dual basis. Suppose also that

Mat[f’ (bi)m(bi)n] = [aij]nxn'
Then, using the formula for y = 15‘ rr givenin the proof of Theorem 16.10, we have

trf = (ap o 971)(f) = 1Otp(bd ® f(by)

|
=
<
~~
S
v

b))

Because of this, we define the trace of an n x n matrix A over a commutative
unitary ring R to be the sum of the diagonal entries of A. Bearing in mind that 1?
independent of the choice of basis, we therefore deduce immediately the folowmg
facts :

(1) the trace of an R-morphism f is the trace of any matrix that represents f;

(2) similar matrices have the same trace.
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e The converse of (2) is not true. For example, in Mat,,,(R) the zero matrix and

the matrix
10
0—1

have the same trace but are not similar.

We also have the following result concerning trace forms.

Theorem 16.11 Let R be a commutative unitary ring and let F be a free R-module of
finite dimension. Then

(Vf,geMorR(F,F)) tr(f og) =tr(gof).

Moreover; if T is any linear form on Morg(F, F) such that T(f o g) = 1(g o f) for all
f,g € Morg(F, F) then T = Atr for a unique A €R.

Proof To show that tr(f o g) = tr(g o f) it suffices to show that if A, B are matrices
that represent f, g with respect to some fixed ordered bases then AB and BA have
the same trace; and, R being commutative, this follows from

n n n n
tr(AB) = X3( X aijbji) = 2(X bjiaij) = tr(BA).
i=1 j=1 j=1i=1

As for the second statement, it again suffices to establish a similar result for matrices.
Suppose then that 7 : Mat,,,(R) — R is such that 7(AB) = 7(BA) for all A,B €
Mat,,,(R). The result is trivial for n = 1 so we shall assume that n > 2. Let E;;
denote the n x n matrix that has 1 in the (i, j)-th position and O elsewhere. Then it
is readily seen that

E. E, =

Eiq lfp =j§
1j=pq —

0 ifp#j.

Taking A= E,;, B = Ej;, with i # k we obtain 7(E;) = 0; and taking A = E;
with i # j we obtain 7(E;;) = 7(E;;). Observing that {E;
for Mat,,,,(R), we have

n
T(A) = T(Z aijEij) = ZaijT(Eij) =2 Z a;;
Lj i.j i=1

j» B=Eji

i 1,j=1,...,n} is a basis

where A = 7(E;) = 7(E;;) for all i and j. |

We end the present section by considering the concept of the tensor algebra of
an R-module. Here we shall be primarily interested in existence and uniqueness; the
importance of such a concept will emerge in the discussion in the next section.

Definition 16.5 Let R be a commutative unitary ring. If M is an R-module then by a
tensor algebra over M we shall mean an associative unitary R-algebra T together with
an R-morphism f : M — T such that, for every associative unitary R-algebra X and
every R-morphism g : M — X, there is a unique 1-preserving R-algebra morphism
h: T — X such that the diagram
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M—=2 x

T
is commutative. We denote such a tensor algebra by (T, f).

We recall from Section 4 that a subalgebra of an R-algebra A is a submodule of
A that is also an R-algebra with respect to the multiplication of A. We say that an
R-algebra A is generated by a subset S of A if A is the smallest subalgebra of A that
contains S, i.e. the intersection of all the subalgebras that contain S.

Theorem 16.12 Let R be a commutative unitary ring. If M is an R-module and (T, f)
is a tensor algebra over M then Im f U {1} generates T.

Proof This is similar to that of Theorem 7.1. ]

Theorem 16.13 [Uniqueness] Let (T, f) be a tensor algebra over the R-module

M. Then (T’, f’) is also a tensor algebra over M if and only if there is an R-algebra

isomorphism j : T — T’ such that jo f = f’.

Proof This is similar to that of Theorem 7.2. |
We shall now settle the question concerning the existence of tensor algebras. For

this purpose, let R be a commutative unitary ring and M an R-module. Suppose that
(M;)1<i<n is a finite family of R-modules each of which is isomorphic to M. Then we

n
shall call Q) M; the n-th tensor power of M and denote it henceforth by ®" M. For
i=1
convenience, we also define ®°M to be R.

With this notation, consider the R-module
QM= D (®"M).
neN

For every j € N we shall identify ®’ M with the submodule inj_’((g)j M ) of Q M,
thereby regarding the above direct sum as an internal direct sum of submodules.

We shall now define a multiplication on (X) M such that it becomes an associative
unitary R-algebra. For this purpose, we note that the R-module Q) M is generated
by the set consisting of 1z € ®° M and the elements x, ® --- ® x,, € @" M for each
n = 1. We can define products for these generators by setting

{lR(x1®-~-®xn)=x1®-~-®xn =(x;® - ®x,)1g;
(1®®x)()1® ®Yp)=X8 X, @y ® - ® ypp.
Now, given x € Q"M and y € @™ M expressed as linear combinations of genera-
tors, say x = ZA x; and y = Z,ujyj where each x; € @" M and each y; € @™ M,
we define the product xy by
Xy = ZAinxiyj'
ij

It is clear that this definition of xy is, by the above, independent of the linear
combinations representing x and y. Now every z € (Y M can be expressed uniquely
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in the form z = > m; where m; € ®i M for each i with all but finitely many m;
i

equal to zero.

Given in this way z = >.m; and 2’ = > m;., we now define the product zz’ by
- ,

2z’ = imim;..
L.j

It is now readily verified that the multiplication so defined makes X M into an
associative algebra over R with identity element 1.

o It is important to note from the above definition of multiplication in ) M that
for all i, j € N we have

R'M-® MR M.
n

In particular, if m;,...,m, € M = @' M then [] m; € Q" M.
j=1
Theorem 16.14 [Existence] If R is a commutative unitary ring and if M is an
R-module then (Q) M, ,,) is a tensor algebra over M.

Proof Let N be an associative unitary algebra and g : M — N an R-morphism.
Define a family (g;);e; of R-morphisms g; : ®iM — N as follows. For i = 0 let
go : R = N be the unique R-morphism such that g,(1z) = 1y (recall that {1} is
a basis for R). For i > 1 let Xi M denote the cartesian product of i copies of the
R-module M and let g : X'M — N be the mapping described by

i
gl{(ml" ")mi) = l_[ g(m])
j=1

It is clear that each g is i-linear and so yields a unique R-morphism g; : ®i M—>N
such that

gi(my®---em)= zl:lg(mj)-
iz

Now by the definition of X M there is a unique R-morphism h : M — N such that
every diagram

RIM—E N

T

QM =GB(Q'M)
1EN

is commutative. The diagram corresponding to i = 0 yields h(1z) = 1y, so that h
is 1-preserving; and that corresponding to i = 1 yields hoy = g; = g. That h is
an R-algebra morphism follows immediately from the definition of multiplication in
Q@ M, the definition of g;, and the commutativity of each of the above diagrams.

Suppose now that t : @ M — N is a 1-preserving R-algebra morphism such that
t oty = g. We show that t = h by showing that t o in; = g; for every i € N and
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appealing to the uniqueness of h with respect to this property. For this purpose, we
note that if m,,...,m; € M then in @ M we have the equality

j=1 j=1
In fact, the k-th component of the right-hand side is given by
oo ® m; ifk=i;
(in(@m;)) = {=1 ~
=t 0 ifk#i,
that of 1),(m;) is given by

( ( )) _[m; ifk=1;

W T 0 itk £1,

and the equality follows from the remark preceding the theorem and the definition
of multiplication in Q) M. Using this equality, we see that

g(m, @ - ®m) = ﬁlg(m,-) - ﬁlaow)(mj)
j= j=

= t(ﬁlLM(mj))
i
= (toin;)(m; ® --- @ m;).

Consequently toin; and g; coincide on a set of generators of ®' M, whence it follows
that t oin; = g;. Since this holds for every i > 1, it remains to show that t oiny, = g;
and this follows from the fact that t is 1-preserving, so that these morphisms coincide
on the basis {1z} of R. o]

The above results establish the existence and, up to isomorphism, the uniqueness
of a tensor algebra over a given R-module M. By the tensor algebra over M we shall
mean that constructed in Theorem 16.14.

EXERCISES
16.1 Deduce from Theorem 16.10 the existence of a natural R-morphism
a:M®N — Morg(M%,N)
that is injective whenever M and N are projective.
[Hint. Use Theorem 9.5.]
16.2 Let R be a commutative unitary ring and let M;, M, be R-modules of finite dimension.
Givenm{ € M{ and m¢ € M{, show that there is a unique R-morphism f : M; ® M, — R

such that f(m;,m,) = m‘f(ml)mg(mz). Hence show that the assignment mf ® mg — f
yields an R-isomorphism

M{ ® M{ ~ (M, ® M,)".



16.3

16.4

16.5

16.6

16.7

16.8

16.9
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Identifying M¢ ® Mg and (M, ® M,)? under the isomorphism of the previous exercise,
establish the identity

(m; ® my, m’i ® mg) = (my, mf) (m,, m§>~

Let M,, M, be finite-dimensional R-modules where R is a commutative unitary ring. If
f1 € Morg(M,, M;) and f, € Morg(M,, M,) prove that

tr(f; ® fo) =trfytrfo.

Let M;, M,, N;, N, be finite-dimensional R-modules where R is a commutative unitary
ring. If f; € Morg(M,,N;) and f, € Morg(M,, N,) prove that

(fl ®f2)t :flt ®f2t'

Let R be a commutative unitary ring and let M be an R-module of finite dimension n.
Show that the trace form tr : Morg(M, M) — R is surjective. Show also that Kertr is a
direct summand of Morz(M, M) and that it is of dimension n® — 1.

[Hint. Use matrices; consider the submodule of Mat,,,(R) that is generated by the set
{Ej; i#jU{E; —Epp; 2<i<n}]

Let R be a commutative unitary ring. If M and N are projective R-modules prove that
so alsois M ® N.

[Hint. Use Theorems 8.8, 15.9 and 16.8.]

Let R be a commutative integral domain. If M and N are free R-modules and if m €
M,n € N are such that m ® n = 0, prove that either m =0 or n =0.

[Hint. Use Theorem 16.8.]

Let R be a commutative unitary ring and let M be an R-module of finite dimension. If

{m; ; i € I} is a basis of M and if, for all i,i’ € I, the R-morphism f;;; : M — M is
defined by

= {7y 55
prove that {f;  ; i,i’ €I} is a basis of End; M.
Deduce that there is a unique R-isomorphism
¢ : EndgM ® EndyN — Endz(M ® N)
such that 9(f ® g) =f ®z g.
[Note : here f ® g denotes a generator of EndyM ® EndyN!]

Identifying EndgzM ® EndyN and Endz(M ® N) for all such R-modules M and N,
deduce that

®EndzM = @ Endx(®" M).

neN
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EXTERIOR ALGEBRAS; DETERMINANTS

We shall now turn our attention to that part of linear algebra that is often called
exterior algebra. Since we shall be dealing with expressions of the form

Xg(1) ®---® X5 (n)

where o is a permutation (=bijection) on {1,...,n}, we begin by mentioning some
properties of permutations. We shall denote by P, the group of permutations on
{1,...,n}. The basic properties that we shall require are the following :

(1) If n = 2 then every o € P, is a composite of transpositions;
(2) (Vo € P,) €y05 = €5€5 Where €, denotes the signum of .
For the convenience of the reader, we give brief proofs of these results.

e (1) f € P, is called a transposition of there exist i,j € {1,...,n} such that
i#j, f(Q)=j, f(j)=1iand f(x)=x for all x # i, j. Roughly speaking then,
a transposition swaps two elements and leaves the others fixed. We establish
the first result by induction on the number t of elements that are not fixed by
0. Clearly, the result holds when t = 2. Suppose, by way of induction, that the
result holds for t = m — 1 with 2 < m < n. Let A be the subset of {1,...,n}
consisting of those elements that are not fixed by o and let |A| = m. Then
given i € A we have o (i) € A; for otherwise o[o(i)] = o(i) and consequently
o (i) =i, a contradiction. Now let 7 be the transposition such that 7(i) = o (i)
and 7[o(i)] = i. Then the set of elements not fixed under 7 oo is A\ {i} which
is of cardinal m — 1. Thus, by the induction hypothesis, T o o is a composite
of transpositions, say T oo = 7, o--- o 7. It follows that so also is o, for then
0'=T_10T10"'0Tk.

e (2) For every o € P, the signum of o is defined to be

eo =[1lo()—o @]/ T1G-1.

i<j i<j

It is readily seen that if T € P, is a transposition then €, = —1. Suppose now
that T swaps a and b with, say, a < b. Then clearly if i < j we have

1(j)<7(i)) = i=a,j=b.
Equivalently, if i < j we have

7(i)<1(j) & (i#a or j#Db).
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Consequently, for every o € P,,,

[1[(c o 1)(j)— (o 0 T)(D)]
i<j
=[ooT)(B)—(cot)(a) ] [(ooT)(j)—(ooT)()]
T()<7(j)

=[o(@—o®)] [] [o()—0c@)]

=W)<30)
i<j

=—[1lc()—o@]

i<j

and so it follows that €., = —€, = €,€.. A simple induction now shows that
if T4,..., Ty are transpositions then

€gorjomor, = €g€r, "t Ex, -

Using (1) we now see that €,,5 = €,€4 for all o, ¥ € P,,.

o Note that, by (1) and (2), €, is either 1 or —1 for every o € P,. We say that
o is an even permutation if €, = 1 and an odd permutation if €, = —1. It is
clear from (2) that the even permutations form a subgroup A, of P,,. Since, by
(2), o — €, describes a morphism with kernel A,, we see that A,, is a normal
subgroup of P,. This is called the alternating subgroup of P,; it can be shown
that |A,| = %n!.

If M and N are R-modules then for every o € P, and every n-linear mapping
:X"M — N we shall denote by o f : X" M — N the n-linear mapping given by

(Of)xq,-e05x,) = f(xo(l)J e ’xa(n))-

If g : @"M — N is the unique R-morphism such that g o ® = f, we shall denote by
og:®"M — N the unique R-morphism such that og o ® = o f. We therefore have

(1) (081 ® - ®x,) = g(Xo) ® -+ ® Xg(n)-

Given o € P,, consider now the mapping from X" M to ®" M described by

(Xl,. ..,Xn) — XU—l(l) ®--- ®x0_1(n)'

This mapping is clearly n-linear and consequently there is a unique R-morphism
o : Q"M — Q" M such that

(2) O'*(Xl®“'®Xn)=Xa—1(1)®"'®xa—1(n).
e The reason for o' appearing here will become clear in a moment. Note in
particular that if T is the transposition described by i «— j then

T(X1®  ®X;® " ®X;® - ®X;) =X ® - ®X;® - ®X; ®"*+®X,.
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With the above notation, it is clear from (1) and (2) that

o lg=goo".

Theorem 17.1 (V#,0 €P,) (Bo0) =0"00".

Proof This follows from the equalities

(Poo™)(x1®-®x,) = ﬁ*(x(,_l(l) ®:-- ®x(,_1(n))

=9 (y;®--®y,) wherey; =x,(
= Y1) @ ® Y1)
= xa—l[ﬁ—l(l)] ®---® Xg-1 [9-1(n)]

= X(00)1(1) ® " ** ® X(g00)1(n)
= (ﬁOO')*(x1®'”®Xn)' &

Let us now consider the submodule A(®" M) of ®" M that is generated by the
elements of the form m; ® - -- ® m,, where m; = m; for some i, j with i # j; in other
words, the submodule generated by the elements x such that 7*(x) = x for some
transposition 7. An important property of this submodule is the following.

Theorem 17.2 For every o € P, and every x € Q" M,
x—€,0"(x) €A(Q"M).

Proof Suppose first that 7 is a transposition. To show that the result holds for T we
have to show that, for every x € @" M,

x+T*(x)GA(®”M).
Suppose then that T swaps i and j with i < j. We have
x+77(x)
=@ ®x;® ®X;® - ®X,)+(X;® - ®X;® - ®X;®" - ®Xy)

=@ ®(x;+x)® - ®(x; +x))® - ®x,) —
(X1 ® - ®x; @ ®x; @ ®X,)— (X1 ® - ®X;® - ®X;® - ®X,)

cA(®"M)

Now since every o € P, is a composite of transpositions, we can proceed to
establish the result by induction. Suppose then that the result holds for all composites
¥ of m transpositions where m > 1. We shall show that it is also true for o = 7 o ¥
where 7 is a transposition. By the hypothesis we have, for every x € ®" M,

x — €50 (x) € A(Q" M).

Since A(®" M ) is clearly stable under v* we deduce that
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T (x)—es(T 0 T)(x) GA(®” M).
Now by the first part of the proof we have
x—e.7(x) €A(Q" M).
Since A(®" M ) is a submodule, it follows that
X—€,0"(x)=x—€,05(T oq?)*(x)eA(@” M). =

Definition 17.1 An n-linear mapping f : X"M — N is said to be alternating if
f(xy,...,x,) = 0 whenever x; = x; for some i, j with i # j; and an R-morphism
g:®"M — N is said to be alternating if the corresponding n-linear mapping

(xlﬁ'-wxn)'_)g(xl ®"'®xn)
is alternating.
Example 17.1 The maping f : Z? x Z* — Z given by
£((m,n),(p,q)) = mq—np

is bilinear and alternating.

Example 17.2 It is clear that an R-morphism g : ®" M — N is alternating if and
only if A(®” M ) C Ker g. In particular, therefore, the natural map

QM- QM[A(R"M)

is alternating.

Theorem 17.3 If f : ®" M — N is an alternating R-morphism then
(VoeP,) of=¢,f.

Proof For every x € ®" M and every o € P, we have, by Theorem 17.2,

f(x - ega*(x)) =0.
The result now follows from the fact that
(Tf)x1® - ®x,)=f(X5(1)® "+ ® Xg(n))
=flec0"(xo1)® ** ® Xp(n))]
Zf[eo(xl ®---® xn)]
=(ef)(x1®-- ®x,). o

We shall see the significance of Theorem 17.3 in due course. For the present, we
proceed to consider the following notion.
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Definition 17.2 Let R be a commutative unitary ring, let M be an R-module, and
let n be an integer with n > 2. By an n-th exterior power of M we shall mean an
R-module P together with an n-linear alternating mapping f : X" M — P such that,
for every R-module N and every n-linear alternating mapping g : X" M — N, there
is a unique R-morphism h : P — N such that the diagram

Y M—2 N

| A

p

is commutative.
The following two results are immediate.
Theorem 17.4 If (B, f) is an n-th exterior power of M then Im f generates P. |

Theorem 17.5 [Uniqueness] Let (B, f) b an n-th exterior power of M. Then (P’, f')
is also an n-th exterior power of M if and only if there is a unique R-isomorphism
j:P— P suchthat jof =f’. ol

As to the existence of n-th exterior powers, consider the quotient module
AN'M=Q"M[AQ"M).
We denote the composite R-morphism

®

Q"M i /\n M
by A. It is clear that A is n-linear and alternating, and that the R-morphism f is
alternating (Example 17.2).

X"M

Theorem 17.6 [Existence] Let R be a commutative unitary ring, let M be an R-
module, and let n be an integer with n > 2. Then ( /\n M, /\) is an n-th exterior power
of M.

Proof Consider the diagram

M /n

N'M

in which N is an arbitrary R-module and g is an n-linear alternating map. By the
definition of Q" M there is a unique R-morphism t : ®" M — N such that to® = g,
Since g is alternating, it is clear that
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Kert 2 A(®" M) = Ker}

and so, by Theorem 3.4, there is a unique R-morphism h : /\"M — N such that
hof = t. It follows that

hoA=hofjo®@=to®=g.

To show that h is unique with respect to this property, suppose that k : /\n M — N is
also an R-morphism such that ko A = g. Then kofjo® = g and so, by the uniqueness
of t, we have kolj = t = hof]. Since { is surjective, hence right cancellable, we deduce
that k = h. ol

o The above results show that there is, to within R-isomorphism, a unique n-th
exterior power of M. We shall call /\HM the n-th exterior power of M. For
every (xi,...,x,) € X" M we write A(xq,...,X,) as x; A--- A x, and call this
the exterior product of the elements x1,...,X,.

e Note that Im A generates /\n M and that, despite the notation, not every ele-
ment of \" M is of the form x; A-- A x,.

We shall now use exterior powers to construct the exterior algebra of a given
R-module M. For this purpose, we shall agree to define /\O M =R and /\1 M =M.

Definition 17.3 Let R be a commutative unitary ring and let M be an R-module. By
an exterior algebra of M we mean an associative unitary R-algebra A together with
an R-morphism f : M — A such that

(D) (VxeM) [f(x)P=0;

(2) for every associative unitary R-algebra X and every R-morphism g : M — X
such that [g(x)]? = 0 for every x € M, there is a unique 1-preserving R-algebra
morphism h : X — A such that the diagram

M—=2 x

1A

A
is commutative.
The following results are immediate.

Theorem 17.7 If (A, f) is an exterior algebra of the R-module M then Im f U {1,}
generates A. o

Theorem 17.8 [Uniqueness] Let (A, f) be an exterior algebra of the R-module M.
Then (A, f) is also an exterior algebra of M if and only if there is a unique R-algebra
isomorphism j : A— A’ such that jo f = f'. ol
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In order to construct an exterior algebra of M we shall use the tensor algebra
& M. We recall that

QM =D(R M).

ieN
Now @A(@ M ) is a submodule of @ M. It is in fact an ideal of the R-algebra

KR M; thlS follows from the definition of multiplication in ) M and the fact that if
X1® -®x, GA(® M) with say x; = x; for some j # k, then forall y; ®---® y, €
X?P M we have both

X ®®x, 8y 8 -8y, cAR M)
and
Y18 ®y,®x;8 - ®x, €A(RM).
We can therefore form the quotient algebra
QM| DAR' M).
ieN
Consider now the R-morphism
QM = e]law(@) M)—>@(® M[A(®' M)) = 5%1/\11\4
€ 1€
described by
(xi)ien — (hi(xi))ieN’
where f; : ®iM - /\iM is the natural epimorphism. It is clear that # is an R-
epimorphism with Ker? = @A(@l M ) We therefore have an R-isomorphism
ieN
i f i
QM| QA M)—— SN\ M.
ieEN ieN
Appealing to Theorem 4.8, we see that there is then a unique multiplication on

) /\ M such that @ /\ M is an R-algebra (which is then associative and unitary)
ieN
with f an R- algebra 1somorphlsm

For peace of mind, we shall make the following identifications and conventions.
We shall henceforth agree to identify the R-algebras Q) M / EBA(@i M)and P \'M
ieN ieN

and denote each by simply /\M . We also identify each /\j M with the submodule
inj_’( N M) of \ M, thereby regarding /\ M as an internal direct sum of the sub-
modules /\j M. In this way, /\ M is generated by 1; € /\OM and the elements
X1 AN AX, € /\rM. Now since in this R-algebra x; A --- A x, is the equivalence
class of x; ® --- ® x, modulo the ideal EBA(@‘ M ), we see that the multiplication
ieN

in /\ M is inherited from that of ¥ M in such a way that

(A AX )L A AY) =X A AX A YL A A Y

1RO A AX ) =3 A Ax, =0 A A ) 1R,
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e Note from the above that A\’ M - A\’M € \* .

Theorem 17.9 [Existence] Let R be a commutative unitary ring and let M be an
R-module. Then ( /\ M, LM) is an exterior algebra of M.

Proof Givenx €M = /\1 M we have
x®x cA(®*M)C PAR' M)
ieN

and so, on passing to quotients, we obtain x> = x A x = 0 for all x € M; in other
words, [t,(x)]* = 0 in the R-algebra /\ M.

Suppose now that N is an associative unitary R-algebra and that g : M — N is
an R-morphism such that [g(x)]*> = 0 for every x € M. Define a family (g;);c; of
R-morphisms g; : /\l M — N as follows. For i > 1 let g/ : X'M — N be the mapping
described by

(Mg, ..., mg) > f[lg(mj).
L

Since [g(m]»)]2 = 0 for every m;, we see that each g is i-linear and alternating. For
every i > 1 there is therefore a unique R-morphism g; : /\l M — N such that

gi(myA--Amy) = lLllg(mj).
=

Now by the definition of /\ M there is a unique R-morphism h : /\ M — N such that
the diagram

NM—E N

AM=BN\' M
ieN
is commutative. The rest of the proof is now an exact replica of the corresponding
part of the proof of Theorem 16.14 with ® replaced at each stage by A. We leave the
details to the reader. O

The above results show that, to within isomorphism, there is a unique exterior
algebra over a given R-module M. We shall call that constructed in Theorem 17.9
the exterior algebra over M.

We have seen in the above that x Ax =0 forallx e M = /\1 M. We also have
the following property in /\ M.

Theorem 17.10 For every x; A---AX, € /\n M and every o € P,,
Xo) N AXom) = €5(X1 A AXy).

Proof This is immediate from Theorem 15.3 since fj : ®"M — /\"M is an alter-
nating R-morphism (see Example 17.2). O



206 Module Theory

Corollary 1 Ifx € A’ M and y € A\*M then y Ax = (—1)P4(x A y).

Proof Letx =x;A---AXx,and y = y; A--+AY,. For convenience, we shall write y;
as x,,; fori =1,...,q. Also, without loss of generality, we shall assume that g < p.
Consider the permutation on {1,...,p + q} described by

1 2 ... q gq+1 ... p p+1 ... p+g
p+1 p+2 ... p+q 1 ... p—qp—q+1l ... p

Alternatively, o can be described by the prescription

n+p ifn<gq;

n—q ifn>q.
Fori=1,...,p consider also the transpositions described by

Tip P Pptqeid
Tig:ptq—1ei

Tig:P+t1lei
It is readily seen that

T ...oTleoT °"‘°Tp71,1°"'°’51,q°"’071,1°a:id’

pq ° p—1lg

from which we deduce that (—1)P%e, = 1 and consequently that e, = (—1)P4. By
Theorem 17.10 (with n = p + q) we then have

YAX = Xpu A AXpig AXT A A X,
= Xom A Ao NXo@r) N AXo(prg)
= €o(X1 A AXg AXgyr Atos AXpig)
= (DM(xAy). oj
Corollary 2 Ifx,y € \" M then y Ax = (—1)"(x A y).
Proof Take q = p in Corollary 1 and observe that p? has the same parity as p. [

We shall now apply the above results to a study of /\r M in the case where M is
free and of finite dimension.

Theorem 17.11 Let R be a commutative unitary ring and let M be a free R-module of
finite dimension. Then for r =0, ..., n the r-th exterior power /\r M is free with

dim \"M = (“)

-
.
Moreover, forr >n, \"M =0.
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Proof If r = O then /\OM = R is free of dimension 1. Thus the result holds for
r = 0. We shall now show that it holds for r = n. For this purpose, let {b,,...,b,} be
a basis of M. Then by Theorem 16.8 and induction, Q" M is of dimension n" with
basis

{b,® --®b; ;i;€{l,...,n}}.

Now all of these basis vectors belong to A(®" M ) except those of the form b,(;) ®
-+ ® by for every o € P,. Moreover, by Theorem 17.10,

o(n)
bo‘(l) VARERWA bo‘(n) = Eo.(bl JAREREWAN bn)

It follows, therefore, that the singleton {b; A --- A b,} is a basis of /\nM and so
dim \"M =1.

Suppose now that 1 < r < n. Since /\rM is generated by exterior products of
r elements of M, it is generated by exterior products of r of the basis elements. We
thus see by Theorem 17.10 that /\r M is generated by the set of elements of the form

by A---Ab; where 1<i;<---<i.<n.
For convenience, we shall denote a typical element of this form by b; where
i: {1,...,r} > {1,...,n}is an increasing mapping, in the sense that if j < k then
i; = i(j) <i(k) = ix. Our aim is to show that these elements constitute a linearly
independent set.
For this purpose, suppose that »;A;b; = 0 in /\rM where the sum is over all

such increasing sequences i of r elements of {1,...,n}, and suppose that Ay # O.
The n —r indices that do not belong to Imk may be arranged in increasing order,
say

Ky <. <kl_.

Let by denote the corresponding element by A -+ A by of A" M. It is clear by
Theorem 17.10 that
by bk = by Aby = (£)(by A-+-ADby).
On the other hand, if i # k then b; and b have at least one X; in common, whence
bk/ bi = bk/ A bi = 0,
by Theorem 17.10 and the fact that x; A x; = 0. We therefore deduce that, in /\ M,
0= by A0 =by A D Ax(by A by) = Ax(F)(by A--- A by).

Since {b; A--- A b,} is a basis of /\" M, we have by A--- A b, # 0, and consequently
we have the contradiction Ay = 0.

We thus see that the elements b; constitute a linearly independent set. Since this
is also a generating set for /\r M, it is therefore a basis. The result now follows from
the fact that there are ('rl) subsets of {1,...,n} that consist of precisely r elements.

Consider now the case where r > n. Since /\r M is generated by products of r
of the n basis elements, it follows from the fact that r > n that every such product
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must contain a repeated factor, whence it must be zero since x A x = O for every
x € M. Thus we see that when r > n = dim M we have /\r M = {0}. |

Corollary 1 If R is a commutative unitary ring and if M is a free R-module of dimen-
sion n then /\M is free and of dimension 2".

n
Proof This is immediate from Theorem 7.8 and the fact that . () = 2". o]
r=0

Corollary 2 If M is of dimension n then for every r such that 0 < r < n the R-modules
N\ M and \"" M are isomorphic. o

Our next task will be to illustrate the importance of Theorem 17.11. In fact,
we shall show that it surprisingly leads in a very natural way to the notion of the
determinant of an R-morphism (and hence that of a square matrix). For this purpose,
we require the following notion.

Let R be a commutative unitary ring and let M, N be R-modules. If f : M — N is
an R-morphism then the assignment

(xl""’xp)Hf(xl)/\"'/\f(xp)

yields a p-linear alternating mapping from X M to /\P N. There is therefore a unique
R-morphism, which we shall denote by

/\pf . /\PM R /\pN
such that

(A" )G A Axp) = Flx) A A f(xy).
We call /\p f the p-th exterior power of the R-morphism f.

e Note that here we perpetrate an abuse of notation that is similar to that in the
useof f ® g.

Theorem 17.12 Iff : M — N and g : N — P are R-morphisms then, for every positive
integer p,

N'gof)=(N"g)o (A" f)

Proof It is clear that

(A" &)e(A"F): N"M — \"P

is an R-morphism. Since

[(A"&)o (A" £l A Axy) = (A" &)Lf (x) Ao A f ()]
= (8o f)x) A+ A(g o f)xp),

it follows by the uniqueness that (/\” g) o (/\” f) coincides with A\’(g o f). o]
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Definition 17.4 If M is an R-module and f : M — M is an endomorphism on M
then we say that f is a homothety if there exists r € R such that f (x) = rx for every
x€M.

Example 17.3 If R is commutative then every R-endomorphism f : R — R is a ho-
mothety. In fact, we have

(VreR)  f(r)=f(gr)=f(1g)r

Suppose now that, R being commutative, M is a free R-module of dimension
n. Then, by Theorem 17.11, /\"M is free and of dimension 1. It is therefore R-
isomorphictoR. If f : M — M is an R-endomorphism, it follows by this isomorphism
and Example 17.3 that the R-endomorphism

A F AT o AT

is a homothety. Describing this homothety by the assignment x — Ax, we define the
determinant of f to be the scalar A. We shall write the determinant of f as det f.
It is clear from the definition of /\n f that, for all x4,...,x, € M,

O A Af ) = (det £ A Axy).
It is also clear that det id;; = 1. We also have the following result.

Theorem 17.13 If f,g : M — M are R-morphisms where M is free and of finite
dimension, then

det(g o f) = (detg)(detf).

Proof Let dimM = n; then the result is an immediate consequence of Theorem
17.12 (with p = n). =

To see that the above notion of a determinant yields (in a simple way, moreover)
the corresponding familiar notion and properties of determinants, suppose that R is
a commutative unitary ring and let A be an n x n matrix over R. Let {e; ; 1 <i < n}
be the natural ordered basis of the R-module Mat,;(R) and let

fA : Matnxl(R) - Matnxl(R)

be the R-morphism such that A is the matrix of f, relative to the natural ordered
basis. Then we define the determinant of the n x n matrix A to be det f,. We thus
have

fa(er) A fu(e,) = (detA)(e; A--- Aey).

Example 17.4 Consider the case n = 2. Given the matrix

a;; a
A= [ 11 12]
Ay Aoo

the associated R-morphism f, is given by
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ai
faley) = |:a21 ] =api€; +azey;

(&)
faley) = [a ] = dyp€1 + dxaes.
22
Since e; Ae; = 0 = e, A e, and since, by Theorem 17.10, e, Ae; = —(e; A ey), we
deduce that
fale) A fa(ey) = (ar1€1 + azi€3) A(agp€q +axe;)
= (ay1a — as asz)(e; A ey),

whence we see that detA = a;;a55 — ay1a13-

Theorem 17.14 If A and B are n x n matrices over the commutative unitary ring R
then

det (AB) = detA detB.

Proof This is immediate from the definition of the determinant of a matrix and
Theorem 17.13. o]

Corollary 1 If Ais an invertible n X n matrix over a commutative unitary ring R then
detA is an invertible element of R, and

(detA)™ =detA™.

Proof Simply take B =A™! in Corollary 1 and use the fact that the determinant of
the n x n identity matrix is 1. |

Corollary 2 Similar matrices have the same determinant.

Proof If A and B are similar n x n matrices then there is an invertible n x n matrix
P such that B = PAP™!. By Theorem 17.14 and the fact that R is commutative, we
see that det B = detA. =

In Example 17.4 above we obtained a formula for detA when A is of size 2 x 2.
In the general n x n case we have

faler) A--- A faley,)
ay A1n
/\ cee /\

(detA)(e; A...e,)

an1 Ann
n n
= 2,an1€ A A D aine;
i=1 i=1

= D o)1 Gomal(€o@y A Aoy

O€EP,

> €505(1)1" " Aomn(€1 A - Ae€y)

O€EP,

whence we have the general formula
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detA= >’ €50c(1),1 """ Ao(n),n-

o€P,

We also note from the above string of equalities that if A has two identical columns
then detA = 0; and that if B is obtained from A by interchanging two columns then
det B = —detA.

If now o, € P, then for every index i there is a unique index j such that

Ao(i),i = Ao[8()1,90)
and so, since R is commutative, we have
Ao(1),1" " do(n),n = Do[9(1)1,8(1) """ do[8(n)]8(n)-

Taking in particular = 0! and using the fact that e, = €, we deduce that

detA= Z €5a1,6(1) """ An,o(n)-

OEP,

Comparing this with the previous expression for detA, we deduce immediately that

detA = detA".

It follows that if A has two identical rows then detA = 0; and that if B is obtained from
A by interchanging two rows then detB = —detA.

Suppose now that A is an n x n matrix over R. In what follows we shall denote
by A;; the (n —1) x (n — 1) matrix obtained from A by deleting the i-th row and the
j-th column of A. Denoting by {e,,...,e,} the natural basis of Mat,(R), we let

fij : D Rey — D Rey
KA KA

be the R-morphism whose matrix, relative to the ordered bases (€ )iz, (€ )iz iS A;j.
Then we have

(detA)(e; A---Ae,)
= fale) A+ A fale,)
= fA(el)/\"‘/\Zaijej/\"‘/\fA(en)
j

= Z(fA(el) A-eeAagze; Ao A faley))
j

= Z(Zaltet/\---/\ai]-ej/\---AZame[)
it t

- Z(Z altet AREE /\aijej JARERWAN Z antet)
Jot#j t#]

= Z((_l)l_laijej Afije) A Afij(ei ) Afijleg ) Aeee /\fij(en))
j

= Z((_l)iilaijej A (detAij)(el A A ej71 N ej+1 A A en)
j

= Z(—l)i+jaijdetAij(e1 JARERWAN en),
j

from which we deduce that
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(l = 1,,n) detAZ Z(_1)1+]al]detAl]
j
This is called the Laplace expansion of detA by the i-th row of A. Note from the
above that this is independent of the row chosen.
Since detA = detA" we deduce that also

(_] = 1, ooy n) detA = Z(_l)l+"a]ldetAJl = Z(_l)i+jaijdetAij,
L J

which is called the Laplace expansion of detA by the j-th column of A.
We call (—1)"*/detA,; the cofactor of the element a;;. The adjugate of Ais defined
to be the n x n matrix AdjA given by

With this terminology, we have the following result.

Theorem 17.15 If Ais an n X n matrix over a commutative unitary ring R then
A-AdjA = (detA)I,.

Proof The (i, j)-th element of A- AdjA is given by
detA if j=i;
0 ifj#i,
for, when j # i, the sum represents the determinant of an n x n matrix whose i-th

row and j-th row are equal, whence it is 0. Thus A-Adj A is the diagonal matrix every
diagonal entry of which is detA. |

[A-AdjA; = 3! 0y (1) dety = {

Corollary 1 An n x n matrix A is invertible if and only if detA = 0, in which case

1
A= —_ AdjA.
detA !

Proof This is immediate from the above and Corollary 1 of Theorem 17.14. |
We end our discussion of determinants with the following useful result.

Theorem 17.16 Let A be an n x n matrix over a commutative unitary ring R and
suppose that A has the partitioned form

X\|Z
A= [ 517
where X is of size p X p, Y is of size (n—p) x (n—p), and the matrix in the south-west

corner is a gero matrix. Then

detA=detX -det?.
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Proof 1If (e;)<;<, is the natural ordered basis of Mat,,;(R), we let
p p
fx : DRe; > DRe;
i=1 i=1
be the R-morphism whose matrix relative to the ordered basis (e;);<;<, is X and

n n
fr: @ Re;— D Re,

i=p+1 i=p+1

the R-morphism whose matrix relative to the ordered basis (e;),<;<, is Y. Then we
have

(detA)(e; A---Aey,)
= fale) A+ A fale,)
= Zaliei/\"'/\zaniei

= DX A A D X8 A D, i€ /\"'/\Zaniei
L

i<p i<p i

= fx(e1)/\"'/\fx(ep)/\zap+1,iei /\"'/\Zaniei
1 1

= (detX)(e1 Ao AepyADapy € A A Zaniei)
L 1

= (detX)(el JARRRWA ep A Z ap+1)iei JARERWAN Z am»el-)

i>p i>p
= (detX)(er A+ Aey Afy(epun) Ao A fy(en))
= (detX)(e; A+~ Ae, A(detY)(epyq Ao Aey))
= (detX)(detY)(e; A---Ae,),
whence the result follows. |

We conclude this section with some results on exterior algebras that will be useful
to us later.

Theorem 17.17 Let R be a commutative unitary ring and let f : M — N be an R-
epimorphism. If f" : /\M - /\N is the unique R-algebra morphism such that the
diagram

M ! N
LMj’ }’LN

is commutative then Ker f" is the ideal of /\ M that is generated by Ker f.

Proof Given any positive integer n, consider the following diagram in which the
notation is as follows:

I denotes the ideal of /\M generated by Ker f;



214 Module Theory

L=In\"M;
the unmarked arrows are the natural ones;
X" f is the cartesian product morphism, given by

(an)(xb oo ’xn) = (f(x1)7 s ’f(xn));
4, is the unique R-morphism that makes the top rectangle commutative (defini-
tion of /\" M);
t is the unique R-algebra morphism that makes the parallelogram commutative
(definition of /\ M);
a, is the unique R-morphism that makes the diamond commutative (Theorem
4.3).

Ignore for the moment the three arrows g, g,, h,.

N
XHM f XnN

l

/\JM —— A\'N
LT\
N'M/1, AM——— AN

Ny

AM/I
We show first that in fact t = f”. For this purpose, we note that since

AM=@ N\'M

neN

it follows from the defining property of direct sums that the R-morphism t is the
same for every n. In particular, taking n = 1 and recalling that /\1 M = M, we see
that ¢, = f and consequently that t = f.

We now establish the existence of a unique R-morphism
g:\M/I- AN

such that the diagram A
g /\ M f /\ N

| A
A\M/I

is commutative. Since clearly (f ")~ (Ker f) = {0} it follows that (f*)~(I) = {0} and
so I C Ker f”. The existence and uniqueness of g now follow by Theorem 3.4. Now,



Exterior algebras; determinants 215

also by Theorem 3.4, we have that I = Ker f” if and only if g is injective. The result
will follow, therefore, if we can show that g is injective.

For this purpose, some preliminaries are required. Note first that since I C Ker f*,
and since t = f" implies that

97 (Ker fAn \"M) = {0},
we have 9 °(I,) = {0} and so, by Theorem 3.4, there is a unique R-morphism
g :N\N'M/I, - \"N
such that the diagram

/\n M 1?n /\n N

ul /
A" M/,
is commutative. We now construct an R-morphism
h,: N"N—> N\"M/I,
such that g, oh,, is the identity map on /\n M /I, whence it will follow immediately
that each g, is injective.

For every x € N denote by f*(x) any y € M such that f(y) = x (recall that f is
surjective by hypothesis). Then the reader will readily verify that the assignment

(xlr' ":Xn) g (f*(xl)/\ e /\f*(xn))/ln

yields an n-linear alternating mapping from X" N to /\n M/I,. To see that it is well
defined, observe that if x; = x/ for i = 1,...,n and if y;,y; € M are such that
f(yi) = x; and f(}’i/) = X{ then f(y; _}’i/) =X; _X{ = 0 so that f(y;) =f(yl-/) and
consequently

FrOAA- Ay =FODA - AfOR)=FODA A=A Ay,
thus showing that
A AY) = A Ay) € N'MNKerfA CI,.
There is therefore a unique R-morphism
h,: \"N - \"M/I,
such that

Ra(oey AsoAx) = (FrGe) A AF () e

It is now readily seen that h, o g, coincides with the identity map on a set of gener-
ators of /\n M /I, whence h, o g, is the identity map and so g, is injective.
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We shall now show that g is injective. For this purpose, we observe that every
element of I is a sum of elements of the form a A x A b where x € Ker f and a,b €
/\M.Since A\M =@ \"M, itis clear that I = @ (I n \" M). The R-morphism

neN

neN

:AN'M—- PN M/,

neN neN
given by the prescription
g((xi)ieN) =(x; +I)ien

is clearly surjective with kernel € I,,. Thus we have
neN

AM/I=DN\N"M[ DI~ D \"M/I,
neN neN neN

and consequently ( AM/I, (an)neN) is a coproduct of the family ( /\n M/I ”)neN' Writ-
ingA, = \"M/I, and B, = /\" N, we therefore have a family of commutative dia-
grams

0 A, B,
1’: J'if
An—) @ Bn
neN & neN

. . . . sies . . A :B
in which the top row is split exact (a splitting morphism being h,,), and i/, i’ are the

natural inclusions. By the definition of & B, there is a unique R-morphism
neN

h: @B, — DA,

neN neN

such that ho i = i% o h,, for every n € N. Consequently,
(VneN) hogoit=hoilog, =iloh,0g, =i
For every x € P A, we then have
neN
(hog)(x) = (hogo X (it opr®))(x)
neN

= (Z(hog oi‘:oprs))(x)

neN

2. (i3 o pr)(x)

neN

:x’

and so h o g is the identity map on € A,. Thus g is injective as required. |
neN

e Note that since f is surjective in the above, so also are ¥, and f”. It follows

that g,, and g are also surjective, whence they are R-isomorphisms; moreover,

so is h, with h,, = g;l.
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Theorem 17.18 Let R be a commutative unitary ring and let I, ..., I, be ideals of R.
Forevery p € {1,...,n} let S, denote the collection of all subsets of {1, ..., n} consisting

of p elements and for every J € S, let I; = > I. Then
keJ

/\P(](QER/I,() ~ J@pR/IJ.
Proof Let M be a free R-module of dimension n and let {e; ; 1 < r < n} be a
basis of M. Let f : M — é R/I, be the R-epimorphism such that f(e;) = 1+ I, for
k=1,...,n, and let =

n
A AM - /\(kEER/Ik)
be the induced epimorphism. Since f is described by
Alel +"‘+Anen — (2'1 +Il:""}'n +In)

n
it is clear that Ker f = € I e;. By Theorem 17.17, Ker f* is the ideal of /\ M that is
k=1

n
generated by @ I,e,. Every element of Ker f” is therefore a sum of elements of the
k=1

form aAxAb wherea,b € \ M and x = Z xye with x; € I for each k. Since /\ M

is free and of finite dimension (by Corollary 1 of Theorem 17.11), we can express
a,b in terms of the natural basis of /\ M. It follows that every element of Ker f"
can be expressed uniquely as a sum of elements of the form a(e; A--- A, ) where

m
a € 3, I, We thus see that
j=1

Kerf"= @ Ise;
Jes,

where {e; ; J €S,} denotes the natural basis of /\p M

Consider now the complex diagram in the proof of Theorem 17.17. In this, take
n
N=®@R/L;, N’M= @ Re;, I =Kerf".
k=1 JES,

Then since h,, is an isomorphism (see the remark following Theorem 17.17), we
have

/\P(SER/I,() zJ@PReJ/(J@pReJ mJ@pIJeJ).

Applying the third isomorphism theorem (Corollary to Theorem 4.6) to the right-
hand side, we see that this becomes

(@ Re; + EB IJeJ)/JEE% Lye;

Jes,

S% RCJ/ D Le,.

JES, JES,

2
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Now the mapping
: D Re; — D (Re;/1se))
Jes,

JES,

given by
1?( > reJ) = > (re;+1e;)

Jes, Jes,

is clearly an R-epimorphism with Ker¢ = € I,e;. By the first isomorphism theorem
J€S,

(Theorem 4.4), the above quotient of direct sums is therefore

~ @D (Re; /I ep).

Jes,

Now the mapping {; : Re; — R/I; given by {;(re;) = r+I; is also an R-epimorphism
with Ker{; = I;e;. We therefore deduce, again by the first isomorphism theorem,
that the above direct sum is

~ P R/I,.

Jes,

In conclusion, therefore, we see that

n
o
N(DR/L)~ @ R/,
k=1 JES,
EXERCISES
In each of the following exercises, R is a given commutative unitary ring and M is an
R-module.

17.1 If n > 2 consider the alternator

1
a,=— > €0 :Q"M—->Q"M,

n! sep,
Prove that Kera,, CA(®" M).
[Hint. For every x € ®" M consider a,(x)— x and use Theorem 17.2.]

Show also that
(V¢epr,) a, o =eza,

and deduce that if R is not of characteristic 2 then Kera, = A((X)” M )

[Hint. Take 1 to be a transposition. ]

Show further that a,, is idempotent and deduce that
Q"M =A(®"M)®Ima,.

[Hint. Use Exercise 6.11.]



17.2

17.3

17.4

17.5

17.6
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Ifn>2letS (®" M ) be the submodule of Y™ M generated by the set of elements of

the form x —7*(x) where x € ®" M and 7 € P, is a transposition. Show that S(®" M)
is #*-stable for every transposition 4 € P,.

[Hint. Use the equality
ﬁ*(x - T*(x)) = (x - 'r*(x)) — (x —ﬁ*(x)) + (T*(x) — (o ’r)*(x)).]
Deduce that
(Yx e ®"M)(Yo €P,) x—o*(x) € S(Q"M).
[Hint. Argue by induction as in Theorem 17.2.]
Consider now the symmetriser

[)’n:l o Q"M - Q"M.

n! OEP,
Show that Ker 8, € S(®" M).
[Hint. For every x € ®" M consider f3,(x) —x.]

Show also that, for every x € ®" M and every transposition T € P,,
Bulx—7"(x)]=0

and deduce that S(®" M ) C Ker 3,. Show finally that f3, is idempotent and deduce
that

Q"M =5(®"M)e®Im},.
Let I(® M) be the ideal of Q) M that is generated by {x ® x ; x € M}. Show that the
quotient algebra @ M / I (® M ) is isomorphic to /\ M.
Let N be a submodule of M and let A be the submodule of /\n M that is generated by
{x; A= Ax,; (3D) x; N}
Show that the assignment
(my,....,my)—»m +NA---Am,+N
defines an n-linear alternating mapping. Using Theorem 3.4, produce an R-morphism
a: \"M/A— N\'(M/N).
Now show that the assignment
(x¢;+N,...,x, +N) = (A Ax)+ A
defines an n-linear alternating mapping. Hence produce an R-morphism

B:N\'M/N)— N\"M/A.

Show that @ and 8 are mutually inverse R-isomorphisms.
Show that the Z-module /\2 Q is zero.

Let V be a vector space of dimension n over a field F. Show that x;, ..., x,, are linearly
independent in V if and only if x; A--- Ax, #O0.
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17.7

17.8

17.9

17.10

17.11

Module Theory

Let M be a free R-module of dimension n. Identifying (®P M )d with ®® M? for every
p €N (see Exercises 16.2 and 16.3), prove that

Poagd o (AP p7)d
N M= (A" M)
under the R-isomorphism which to every x{ A---Ax{ in /\" M assigns the element f

of ( N M )d such that
Fla A Ax,)= det[(xl-,x}j)],
where the right-hand side is the determinant of the n x n matrix whose (i, j)-th entry

is (xl-,xj‘.i).

[Hint. Using Exercise 16.3, write det[ (x;, x}‘.i)] in terms of the alternator a, on ®” m®.]

Identifying \" M¢ with (A" M )d under the isomorphism of the previous exercise, ob-

serve that we have
(e A Axp, T A A x}‘f) = det[(xi,xj)].

Use this identity to prove that if M, N are free R-modules of finite dimensions then, for
every R-morphism f : M — N,

(A" F) =N £

Show that /\Zk M is a commutative subalgebra of /A M.
keN

Let A be an R-algebra. An R-morphism f : A — A is called a derivation if

(Ya,b€A)  f(ab)=f(a)b+af(b).

[The terminology comes from the standard example of the differentiation map D :
R[X] - R[X].]

Prove that for every R-morphism f : M — M there is a unique derivation Df : /\ M —
/\ M such that the diagram

f

M———M

M——>A\M
A Py A
is commutative.

[Hint. Consider the family (,),oy of mappings ¥, : XM — AP M given by P =0,
pJp P
%, =f and, for p > 2,

P
ﬁp(xl,...,xp)=;(xl/\-~~/\f(xi)/\~-/\xp).

Show that each #, (p = 2) is p-linear and alternating. Now construct Df in the obvious
way from (¥,),en-]

If M is a cyclic R-module prove that /\ M=Re® M.
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17.12 If x € Mat,;(R) prove that
det(I, +xx')=1+x'x.

17.13 [Pivotal condensation] Let A = [a;;] € Mat,,,(R) and suppose that a,, # 0. Let
B =[b;;] € Mat,_1yx(,—1)(R) be defined as follows:

ajj Qig . ) )
det| 4 , if1<i<p-—-1, 1<j<q-—1;
L pJ |
a;, a. ]
det|[ o | fl1<i<p—1, g+1<j<n
pq |“pi
bij: _ -
d apj . . . .
et if p+1<i<n, 1<j<q—1;
Ldij Qiq |
- .
detpj if p+1<i<n, q+1<j<n
L aiq alj_

Prove that 1
detA= —— detB.
n—2
P4
[B is called the matrix obtained from A by pivotal condensation using a,, as pivot. This
is a particularly useful result for computing determinants of matrices having integer
entries, calculations being made easier by choosing a 1 as a pivot whenever possible.]

17.14 If A and B are square matrices of the same order prove that

A B
det[ B A ] = det(A+ B)det(A— B).

17.15 Given a matrix M of the form

R S

where PQ,R, S are square matrices of the same order with P invertible, find a matrix
N of the form

39

A O
n=[5 ¢
such that )
I P~'Q
NM_[O S—RP‘lQ]'

Hence show that if PR = RP then detM = det(PS — RQ), and that if PQ = QP then
det M = det(SP —RQ).
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MODULES OVER A PRINCIPAL IDEAL DOMAIN;
FINITELY GENERATED ABELIAN GROUPS

We shall now turn our attention to modules over a particular type of ring, namely a
principal ideal domain. Our aim will be to establish a structure theorem for finitely
generated modules over such a ring. At the end of this section we shall apply this
structure theorem to obtain a description of all finitely generated abelian groups
(and hence all finite abelian groups). In the section that follows, we shall apply the
structure theorem to obtain some vector space decomposition theorems that lead to
a fundamental study of canonical forms for matrices.

Definition 18.1 An R-module M is said to be cyclic if it is generated by a singleton
subset; in other words, if there exists x € M such that M = Rx.

Example 18.1 Every simple R-module is cyclic. This follows immediately from The-
orem 5.5.

Example 18.2 Let I be an ideal of R. Then the R-module R/T is cyclic, for it is gen-
erated by 1+ 1.

Definition 18.2 By a principal ideal domain we shall mean a commutative integral
domain every ideal I of which is principal in the sense that I = Ra for some a € R;
in other words, every ideal is a cyclic R-module.

Theorem 18.1 A commutative unitary ring R is a principal ideal domain if and only
if, whenever M is a cyclic R-module, every submodule of M is cyclic.

Proof Suppose that R is a principal ideal domain and that M = Rx is a cyclic R-
module. If N is a submodule of M then the mapping ¢ : R — M given by #(r) = rx
is clearly an R-epimorphism and so, by Theorem 3.1, 3 (N) is a submodule of R
whence 3 (N) = Ra for some a € R. Now since ¥ is surjective we have, by the
Corollary to Theorem 3.2,

N =907[0"(N)] =197 (Ra) = R¥(a) =Rax,

whence we see that N is cyclic.
The converse is clear from the fact that R itself is a cyclic R-module, being gen-
erated by {1z}. o]

Definition 18.3 For every non-empty subset X of an R-module M we define the
annihilator of X in R by

AnngX ={reR; (VxeX)rx =0}
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In the case where X = {x} we write AnngX as Anngx and, by abuse of language,
call this the annihilator of x in R. We say that x is a torsion element of M when
Anngx # {0}; and that x is torsion-free when Anngx = {0}. We say that M is a
torsion module if every element of M is a torsion element; and that M is a torsion-
free module if every non-zero element of M is torsion-free.

Example 18.3 If V is a vector space over a field F then V is torsion-free. In fact, if
A € Anngx then from Ax = 0 we deduce, since A ! exists, that x = A !1Ax = 1710 =
0.

Example 18.4 The R-module R is torsion-free if and only if R is an integral domain.
In fact, Anngx = O for every non-zero x € R if and only if R has no zero divisors.

Example 18.5 Every finite abelian group G is a torsion Z-module. In fact, every
element x of G is of finite order and so there is a positive integer n such that nx =0
whence Annyx # {0}.

We begin our discussion of modules over a principal ideal domain by considering
torsion-free modules. The first result that we establish is the following generalisation
of Theorem 15.20.

Theorem 18.2 IfR is a principal ideal domain then an R-module M is flat if and only
if it is torsion-free.

Proof Let F be a free R-module and n : F — M an epimorphism. Then, by the
left/right analogue of Theorem 15.19, M is flat if and only if
(Yae€R) Ra-FNKerm CRa-Kerm;
in other words, if and only if
(YaeR)(Vx €F) ax € Kert = ax € a(Ker ).
Since R has no zero divisors, we see that this is equivalent to the condition

(YaeR)(Vx €F) ax €Kerm = x € Ker.

On passing to quotients modulo Ker 7, we see that this condition is equivalent to the
condition
(VaeR)(VYx €M ~F/Kerm) am=0=>m=0,

which is precisely the condition that M be torsion-free. o]

Since every free module is projective (Theorem 8.6) and every projective module
is flat (Corollary to Theorem 15.16), it follows from the above result that every free
module over a principal ideal domain is torsion-free. Our objective now is to establish
the converse of this for finitely generated modules. For this purpose, we require the
following result.

Theorem 18.3 Let R be a principal ideal domain and let M be a free R-module. Then
every submodule N of M is free with dimN < dim M.
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Proof Let {x;; i €I} be a basis of M. Then for every subset J of I we can define a
submodule N; of N by
N; =N N @Rx;.
jeJ

Let I' denote the set of all pairs (J,B;) where J C I and B, is a basis for N; with
1B;| < .

We note first that T' # . In fact, consider a singleton subset {i} of I. Here we
have

N{l} =N ﬂRXi.

Now {r € R; rx; € N} is clearly an ideal of R and so is generated by a singleton
subset, {r;} say, of R. If r; = O then clearly N;; = {0} and @ is a basis for N;; with

0=10| < {i}| =1.

On the other hand, if r; # 0 then Ny;; = Rr;x; # {0} and B, = {r;x;} is a basis of
Ny; with |B;| = 1 = |{i}|. Thus we see that T # 0.
Let us now order I by setting

(J,B,)C (K,By) < J CK, B, CBg.

We show as follows that I' is inductively ordered.
Let {(J4,B,, ) ; a € A} be a totally ordered subset of ' and let J* = J J, and
a€cA

B =J B, . Then we observe that (J*,B*) € T. In fact, since {J, ; a € A} is totally

a€cA
ordered so also is { D Rx; ; a € A} and hence so is {N,_; a € A}. Now for a totally

jel,
ordered set {X, ; a €A} of submodules it is readily seen that | J X, is an R-module,
acA
whence it coincides with ! X,,. We therefore have
acA
SN, =UN, = U(Nn®Ry))
a€cA a€A a€cA Jj€J,
=Nnl{J @ Rx;
acAjel,
acAjEl,
jeJ*

Now, since B, is a basis for N, for every a € A, we see that B* is a linearly inde-

pendent subset of | J N 5, = Ny To see that B* is in fact a basis of Nj., we observe
a€cA
that if x € N;. then x € N; for some a € A whence x € LC(B,) € LC(B*). Thus

N;. CLC(B*), whence we have equality. To show that (J*,B*) € T it remains to show
that [B*| < |J*|; and this is clear from the fact that, for every a €A, [B; | < |J,].

We can now apply Zorn’s axiom to the inductively ordered set I' to deduce that
I contains a maximal element, say (K, Bg ). Our objective now is to show that K =1.
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Suppose, by way of obtaining a contradiction, that K C I and let j € I \ K. Defin-
ing L = KU {j}, we have Ny C N;. If N, = N, then clearly (L, By ) €T, contradicting
the maximality of (K, Bg). Thus we have Ny C N; and so, for every y € N; \ Ng,
there exists a non-zero a € R such that y —ax; € Ni. It follows that

I(N,)={a€R; (Jy €N,) y —ax; € N}
is a non-zero ideal of R, whence it is of the form Ra; for some non-zero a; € R. Since
a; € I(N,) there exists y; € N, such that y; —a;x; € Ny. We shall show that B, U{y, }
is a basis for N;.

Given y € Ny, there exists r € R such that y —rx; € Ni. Since r € I(N,) we have
r =sa; for some s €RR. Then y —sy; € Ny and so

¥ € LC(Ng U {y,}) = LC(Bx U {y1}),

and consequently By U {y;} generates N;. This set is also linearly independent; for
Y1 —a;x; € LC(Bg) with a; # 0, so that no non-zero multiple of y; can belong to
LC(Bg). Thus we see that B, U {y;} is a basis of N;.

Now since |Bg| < |K]| it is clear that |Bx U {y;}| < |L| so that (L,Bx U{y;}) €T,
contradicting the maximality of (K, Bx).

The sum-total of these observations is that K = I.

It now follows that

Ny=N;=Nn@Rx;=NNM =N

iel
and so By is a basis of N. Thus N is free with dimN = |Bg| < |I| = dim M. |
Corollary 1 The flat Z-module Q is not projective.

Proof If Q were projective it would be a direct summand of a free Z-module and
so, by the above result, Q would be free; and this is not the case (see the remark
that follows Theorem 7.10). =

Theorem 18.4 Let R be a principal ideal domain. Then every finitely generated torsion-
free R-module M is free and of finite dimension.

Proof Let G ={xy,...,x,} be a set of generators of M and let H = {y;,...,y,} be
a maximal linearly independent subset of G. For each x; € G\ H, it follows from the
fact that {x;} UH is not linearly independent that there exist a;, ;,...,, €R, not
all of which are zero, such that

ajxj+ Py + -+ By, =0.

Moreover, a; # 0 since otherwise H is not linearly independent. We thus have

n
ax; € G}lRyi.
i=
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It now follows that there exist non-zero a,..., a,, € R such that

n
G=1,...,m) ajxjegalRyi.

m n
Now let r = [ ] a;. Then clearly r # 0 and rM C @ Ry;. The mapping
j=1 i=1

n
¥ : M — PRy;
i=1

given by #(m) = rm is then an R-monomorphism with Im ¢ a submodule of the free
n
R-module @Ryi. By Theorem 18.3, Im is free and of dimension less than or equal

i=1
to n, whence so also is M. =

Corollary 1 For a finitely generated module over a principal ideal domain, the condi-
tions of being free, projective, flat, torsion-free are equivalent. o]

e Note that the restriction that M be finitely generated is essential in Theorem
18.4. For example, Q is a non-finitely generated torsion-free Z-module that is
not free.

Theorem 18.5 Let R be a principal ideal domain. Then an R-module is finitely gener-
ated if and only if it is noetherian.

Proof <« : By Theorem 5.1, every noetherian module is finitely generated.

= : Suppose that M is a finitely generated R-module, R being a principal ideal
domain. In order to prove that M is noetherian, we note first that R itself is noethe-
rian; this follows by Theorem 5.1 and the fact that every ideal of R is generated by
a singleton.

We establish the result by induction on the number of generators of M. If M is
cyclic, say M = Rx, then f : R — M given by f(r) = rx is an R-epimorphism and so

M ~R/Ker f =R/Anng(x).

It follows from this that M is noetherian; for, by Theorem 5.3, every quotient mod-
ule of a noetherian module is noetherian. Suppose, by way of induction, that the
result holds for all R-modules with less than or equal to k generators. Let M have
k + 1 generators x,...,X;4; and consider the submodule N that is generated by
{x1,...,x;}. By the induction hypothesis, N is noetherian; and so also is M /N since
it is generated by {x;,; + N}. It now follows by Theorem 5.4 that M is noetherian.[

Corollary 1 If R is a principal ideal domain then every submodule of a finitely gener-
ated R-module is finitely generated. O

For every non-zero module M over a principal ideal domain R we shall denote
by T(M) the subset of M consisting of the torsion elements of M. It is readily seen
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that T(M) is a submodule of M. In fact, if x,y € T(M) then rx = 0 =sy for some
non-zero r,s € R whence, since R is commutative,

rs(x—y)=rsx—rsy=rsx—sry=0—0=0
with rs # 0, and so x —y € T(M); and for every p € R we have
rpx =prx=p0=0

so that px € T(M). We call T(M) the torsion submodule of M.

We shall now show that, in the case where M is finitely generated, T(M) is a
direct summand of M.

Theorem 18.6 Let M be a non-zero finitely generated module over a principal ideal
domain R. Then M /T (M) is free, and there is a free submodule F of M such that

M=T(M)®F.

Moreover, the dimension of such a submodule F is uniquely determined.

Proof We note first that M /T (M) is torsion-free. In fact, if a € R is such that a # 0
and a(x + T(M)) =0+ T(M) then ax € T(M) and so bax = 0 for some non-zero
b € R whence, since ba # 0, we have x € T(M) and so x + T(M) =0+ T(M).
Since M is finitely generated, it is clear that so also is every quotient module of
M; and in particular so is M /T (M).
It now follows by Theorem 18.4 that M /T (M) is free and of finite dimension.
Since in particular M /T (M) is projective, the natural short exact sequence

0 T(M)— s M —— s M/T(M)———0

splits and so we have that
M=T(M)®F

where F is a submodule of M that is isomorphic to M /T (M), whence it is free; in
fact, F = Im# where 1 is a splitting morphism associated with f.
The final statement is now clear from the fact that dimF =dimM/T(M). &

e The dimension of the free R-module F in the above decomposition is often
called the rank of M.

Since we know, by the Corollary to Theorem 7.6, that every free R-module is
isomorphic to a direct sum of copies of R, we shall now concentrate on torsion R-
modules. Once we know their structure, we can use Theorem 18.6 to determine that
of all finitely generated modules over a principal ideal domain. Theorem 18.6 repre-
sents the first blow struck in this direction; we shall require two others to complete
our task.

In order to carry out this investigation, we mention some basic facts concerning
principal ideal domains. The reader who is unfamiliar with these should consult a
standard algebra text.
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e Every principal ideal domain R is a unique factorisation domain. Every a € R
that is neither zero nor a unit can be expressed in the form

t
a
a—ul_[pl.‘
i=1

where u is a unit and p,,..., p, are non-associated primes in R with each a; a
positive integer. Such a decomposition is unique to within association.
e Ifa;,...,a, € R then d € R is a greatest common divisor of a,,...,a, if and
only if
n
Rd = Y Ra;.
i=1
In particular, a,...,a, are relatively prime, in the sense that 1; is a greatest
common divisor of ay,...,a, if and only if there exist x, ..., x, € R such that

a;x; +---+a,x, = 1;.

Suppose now that M is an R-module. Given x € M and r € R, we shall say that
x is annihilated by r if r € Anngx. We shall denote by M(r) the set of elements x in
M that are annihilated by r. It is clear that M(r) forms a submodule of M for every
r €R.

Suppose now that r,s € R are such that r|s (i.e. s = tr for some t € R). Then
clearly we have M(r) € M(s). In particular, for every r € R we have the ascending
chain

M@F)CSMEFHC---CcME)SMEr™)C...

of submodules of M. It is clear that

M, =JM@E")
n>1
is also a submodule of M, and consists of those elements of M that are annihilated
by some power of r. Moreover, for every submodule N of M we have

N, =NNM,.

Definition 18.4 Let R be a principal ideal domain and let p € R be prime. An R-
module M is said to be a p-module (or to be p-primary) if M = M,,.

e Note that since M is a p-module if and only if, for every x € M, there is an
integer n = 1 such that p"x = 0, every p-module is a torsion module.

Example 18.6 If p € R is prime and n = 1 then R/Rp" is a cyclic p-module.

Theorem 18.7 IfR is a principal ideal domain and a,,...,a, € R are pairwise prime
then, for every torsion R-module M,

n

M([1a)= Gj M(a,).

i=1
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Proof There being nothing to prove when n = 1, consider the case n = 2. There
exist x1, X5 € R such that a;x; +a,x, = 1. For every y € M(a;a,) we therefore have

Y =a1x1y +apXpy
with a;x;y € M(a,) since aya,x;y = x;a;a,y = x;0 = 0; and likewise a,x,y €
M(a;). Thus we see that M (a;a,) = M(a;)+ M(a,). Now if 2 € M(a;)NM(a,) then
2= a1X12 + AyX9Z = X1012 + X9092 = x10 + x,0=0.
Consequently we have M(a,a,) = M(a;) ® M(a,). X
-

The result is now immediate by induction; for a, and [ | q; are relatively prime,
i=1

o) thatM(]llai)zM(ﬁai)éBM(an). ]
i=1 i=1

n

Corollary 1 Let a € R have the prime factorisation a = u| | pf"' where u is a unit.
i=1

Then fori=1,...,n we have

[M(a)],, = M(P?i)

Proof For each i, p?" is relatively prime to [ | p;.xj and so, by the above, we have
J#i

M@ =m(p)em(ITr})
Using the fact that M(p;) € M, we have, using the modular law (Theorem 2.4),
[M(a)],, = M(a)n M, =[M(p{) ® (]E[ipf‘ om,
=M, n M(}l__[#pfj)] +M(pf").

We shall now show that
a
M, nM(Tp;") = {0},
J#
whence the result will follow.
It is readily seen that, for every positive integer f3, pf is relatively prime to [ | p;xj
J#i

and so there exist r, t € R such that

B %4 _
rp; +tl_[_pj1 =1
J#i
For every y € M, N M (]_[ p;xj ) we then have, using a sufficiently large 3,
J#

y=1y=rply +t[]p]'y =ro+t0=0.
j#
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We are now ready to strike the second blow.

Theorem 18.8 Let R be a principal ideal domain and let M be a non-zero finitely
generated torsion R-module. Then there are primes py, ..., P, € R, determined uniquely
to within association, such that M,, # {0} for each i and

n
M=@M,,.
i=1

Proof Consider AnnyM. This is an ideal of R. It is not the whole of R since M is
non-zero; and it is not zero since if {x;,..., x,} is a set of generators of M then there
are non-zero elements ry, ..., r, of R such that r;x; = 0 for each i and consequently

n
r =[] r; is a non-zero element of AnngM. We thus have AnngM = Rg where g is
i=1
neither zero nor a unit. Let

m
g=u gpf‘ "
be a factorisation of g. Since M = M(g) it follows from Theorem 18.7 that
M=M(g)= énalM(pf‘i).
By the Corollary to Theorem 18.7 we deduce that, for every i,
M,, =[M()],, = M(p")-

m
We thus have M = D M,, .

i=1
We now observe that each M), is non-zero. In fact, suppose that we had M, b, = {0}
for some j. Then we would have

M =@M, =DM(p{)=M([1p{")

i#j i#j i#j
from which it would follow that [ | pia" € AnnzM = Rg whence g, and in particular
i#j
pj, would divide I p?", a contradiction.

i

That each M, ]is finitely generated follows immediately from the Corollary to
Theorem 18.5.

As for uniqueness, suppose that M, # {0} where q is a prime. Let x be a non-zero
element of M, so that Anngx = Rd for some d € R with d not a unit (for otherwise
Anngx = R and we have the contradiction x = 0). Now this ideal Rd clearly contains
qP for some 8 > 0 and also contains g. Thus d|q” and so d = q" where 1 <y < .
Since d|g we deduce that q|g. Thus q is an associate of a unique prime divisor p; of
g; in other words, we have M, = M,, . ol

The above result reduces our problem to a study of non-zero finitely generated
p-modules over a principal ideal domain. In order to tackle this, we require some
preliminary results.
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Theorem 18.9 Let R be a principal ideal domain, let M be a free R-module, and let
N be a non-zero submodule of M. Let f € M¢ be such that f (N) is maximal in the
subset {07 (N) ; & € M} of ideals of R. Then there exists d € R and x € M such that
d#0, f(x)=1and

(1) M=Rx®Kerf;

(2) N=Rdx & (N nKerf).
Proof We note first that R is noetherian and therefore satisfies the maximum con-
dition on ideals (Theorem 5.1); such a choice of f € M is therefore possible.

Since f~(N) is a principal ideal of R, there exists d € R such that f7(N) =
Rd. We note first that d # 0; for otherwise we would have f~(N) = {0} and the
maximality of f ~(N) would then imply that §~(N) = {0} for every % € M¢, which
is nonsense. [For example, if {e; ; i €I} is a basis of M and x is a non-zero element
of N then for some coordinate form e;.i on M we have ef(x) # 0; see the Corollary
of Theorem 9.1.]

Now let y € N be such that f (y) = d. Then we note that there exists x € M such
that y = dx. [In fact, for every g € M? we have g(y) € Rd. For, the ideal Rd +Rg(y)
is principal, say Rd + Rg(y) = Ra, so that rd +sg(y) = a for some r,s € R, whence

(rf+s))=rf(y)+sg(y)=rd+sg(y)=a,
giving a € (rf +sg)”(N) and therefore
Rd CRaC(rf +sg)”(N).
The maximality of Rd = f ~(N) now yields Rd = Ra whence we obtain
g(y) €Rg(y) SRd.

It follows from this observation that the coordinates of y relative to any basis of M
all belong to Rd (see Corollary 1 to Theorem 9.1) whence y = dx for some x € M.]
Furthermore, since d = f(y) = f(dx) = df (x) and d # 0, we have f(x) = 1.

We now establish (1). Since f(x) =1 we have Rx NKer f = {0}; for f(rx)=0
implies that r =r1 =rf(x) = f(rx) = 0. Also, given m € M, we have

FIm—fm)x]= f(m)— f(m)f (x) = f(m)— f(m) = 0

and so m— f(m)x € Ker f, showing that M = Rx + Ker f whence (1) follows.
As for (2), we note that

Rdx NN NKerf CRxNKerf ={0}.
Moreover, if n € N then f(n) = rd for some r €R, so that
fn—rdx)=f(n)—rdf(x)=rd—rd=0

whence
n=rdx+(n—rdx)€Rdx + (N nKerf).

Thus we have N C Rdx + (N NKer f); and since the reverse inclusion is obvious, (2)
follows. =
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Corollary 1 For all g € M we have g~ (N) C f~(N); in other words, f (N is the
biggest element of the subset {87(N) ; ¢ € M4} of ideals of R.

Proof We note first that, for every g € M¢,
g (NNKerf)C f7(N).

In fact, suppose that that g7 (N NKerf) € f~(N). Since M = Rx & Ker f we can
define h € M9 by the following prescription : given z = z; + 2, with z; € Rx and
2, € Ker f, let h(z) = f(z;) + f (2,). Then from

N =Rdx & (N NnKerf)

we have
h7(N) = h”(Rdx)+h~(N NnKerf)

= f7?(Rdx)+ g~ (N NnKerf)
= f?(N)+ g~ (NnKerf)
> fT(N),

which contradicts the maximality of f 7 (N).
It follows immediately from this that

g7(N) = g7(Rdx)+ g~ (NnKerf)
Rg(dx)+f(N)

=Rg(y)+f7(N)

C Rd+f7(N)

= f7(N). =
Theorem 18.10 Let R be a principal ideal domain. If M is a free R-module and N is a

submodule of M of finite dimension n then there is a basis B of M, a subset {x,...,x,}
of B, and non-gero elements d,,...,d, of R such that

(1) {dyxy,...,d,x,} is a basis of N;
(2) (l = 1,...,n) di+1|di'

Moreover, the principal ideals Rd;, . . . ,Rd,, are uniquely determined by these conditions.

N

Proof We proceed by induction. If n = 0 then N = {0} and @ is a basis for N. There
is therefore nothing to prove in this case. Suppose then that the result holds for
submodules of dimension n — 1 and let N be of dimension n. By Theorem 18.9 and
its Corollary, there exist d,, € R and x,, € M such that

d,#0, f(x,)=1, M=Rx,®Kerf, N=Rd,x,® (N NnKerf),

where f € MY is such that f?(N) = Rd, is the biggest element of the subset
{87(N) ; % € M?} of ideals of R.
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Since f(x,) =1 and d,, # 0, we see that {d,x,} is linearly independent and so,
by Theorem 7.8 applied to the direct sum

Rd,x, ® (N NKerf),

we see that the submodule N NKer f of Ker f has dimension n— 1. By the induction
hypothesis, there is therefore a basis B; of Ker f, a subset {x,...,x,_;} of By, and
non-zero elements d;,...,d,_; of R such that {d;x,...,d,_1x,_;} is a basis of N N
Ker f with d;,|d; for 1 < i < n—2. The direct sum decomposition M = Rx, ® Ker f
now shows that B = {x,} U B; is a basis of M; and N = Rd,;x, ® (N NKer f) shows
that {d,x,...,d,—1X,—1,d,X,} is a basis of N. We have to show that d,|d,,_;.

For this purpose, define ¢ € M? by

1 if z2=x,_;

(=)= {o if z€B\ {x,1}).

Then we have Rd,_; =37 (N) C f”(N)=Rd, and so d,|d,_;.
As for the last statement, we note from (2) that the ideals Rd; form the ascending
chain
{0} cRd; €Rd, €---CRd, CR.

If now any d; is a unit then so is every d; with j > i. Suppose then that d, ..., d; are
the non-units in the list of d;, so that we have the chain

{0} cRd; CSRd, €--- CRd; CR.
Clearly, we have
é R/Rd; = éR/Rdi. (18.1)
i= i=
Moreover, since the assignment

(rixq,...,ryx,) — (ry +Rdq,...,r, +Rd,)

defines an R-epimorphism ¢ : @ Rx; — € R/Rd; with kernel € Rd;x;, we have
i=1 i=1 i=1

@ Rx;/N = DRx;| D Rd,x; ~ DR/Rd,. (18.2)
i=1 i=1 i=1 i=1

To establish uniqueness, we shall invoke Theorem 17.18. By that result, for g =

k
1,...,k the g-th exterior power of @ R/Rd,; is such that
i=1

k
/\q(@lR/Rdi) o~ JG? R/I; (18.3)

where S, denotes the collection of all subsets of {1,..., k} that consist of q elements
and, for J €S, I; = > Rd;.

ieJ
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Now in the case under consideration, the ideals in question form an ascending
chain. For every J € S, we therefore have I; = Rd,(;, where q(J) denotes the greatest

integer in J. Since q(J) = g with q(J) = q only when J = {1,...,q}, it follows that

(q:]_,...,k) qu: ﬂqu(J)zmIJ
Jes, Jes,

We therefore conclude from (18.1),(18.2), (18.3) that, for each q,

Rd,= () I, = Anng @ R/I,
Jes,

Jes,
ar
= Anng A\ (ealR/Rdi)
i=
q n
— Anng A\ (@lei IN),
i=
which establishes the required uniqueness. |

We are now ready to strike the third blow.

Theorem 18.11 Let M, be a non-zero finitely generated p-module over a principal
ideal domain R with p a prime in R. Then M, is a coproduct of a finite number of
uniquely determined non-zero cyclic p-modules.

More precisely, there are uniquely determined ideals Rp*',...,Rp* of R such that

{0} cRp™ CRp™ C---CRp* CR

and an isomorphism

k
M, = @ R/Rp*.
=
Proof Let F be a free R-module of dimension n such that there is an epimorphism
7 : F — M,. By Theorem 18.3, Ker 7t is free and of dimension m where m < n. By
Theorem 18.10, there is a basis B = {x,...,x,} of F, a subset {xy,...,x,} of B, and
di,...,d, €R such that
(1) {dyx4,...,d,,x,,} is a basis of Ker r;
(2) (i=1,...,m—1)d;4ld;.
We note from (1) that, for each i,

Rd; = Anng7t(x;).

In fact, if r € Anngn(x;) then ©(rx;) = rn(x;) = 0 gives rx; € Ker m whence, by
(1), there exists A; € R such that rx; = A;d;x;. It follows that r = A,d; € Rd; and so
Anng7t(x;) € Rd;. On the other hand, d;7(x;) = n(d;x;) = 0 so d; € Anngn(x;) and
we have the reverse inclusion.

We also note that some of the d; may be units; this will happen when x; € Ker 7,
for then Rd; = Anng{0} =R.
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We note further that if d; is not a unit then Rd; = Rp% for some a; > 1. For,
since M, is a p-module, Anng7(x;) contains a power of p, say pPi, whence RpPi C
Anng7t(x;) and consequently Anng7t(x;) = Rp® where a; < f8;; and a; > 1 since
otherwise a; = 0 and Rd; = Anng7t(x;) = R which contradicts the assumption that
d; is not a unit.

We shall now show that in fact m = n. Suppose, by way of obtaining a contradic-
tion, that m < n and let @™ ™ R denote a direct sum of n —m copies of R. Consider
the R-morphism

3

P-=

T in - R/Rdl D @n_mR
1

1 i

given by the prescription

V(rix1, s TpXy) =1 +Rdy, ..., 1y + R, Tt - -5 Th)-

This is clearly an R-epimorphism with kernel € Rd;x; = Ker 7. Consequently,
i=1

m
R/Rd; ® @" ™R~F/Kerm ~M,.
=1

1

But M, is a p-module and so is a torsion module; and in the above isomorphisms the

m

module on the left has torsion submodule € R/Rd;. This contradiction shows that
i=1

we must have m = n.

Since m = n, we deduce from the above that

M, ~ @R/Rdi.

i=

On deleting any units in the list d;, ..., d, we obtain a chain of ideals
{0} cRd, CRd, C---CRd, CR
with R/Rd; # {0} fori =1,...,k and

n k k
M, ~ _@IR/Rdi = _@IR/Rdi = _G}lR/Rp“f.
i= i= i=
The uniqueness statement is immediate from Theorem 18.10. |

Combining Theorems 18.6, 18.8 and 18.11, we can now state the fundamental
structure theorem for finitely generated modules over a principal ideal domain.

Theorem 18.12 Every non-gero finitely generated module M over a principal ideal
domain R is a coproduct of a finite number of cyclic modules :

n ki B
M~@ DR/Rp,” & @"R.
i=1j=1

Moreover, such a direct sum representation is unique in the sense that the number m

(the rank of M) of torsion-free cyclic modules (copies of R) is the same for all such rep-
. . a;; . Cqe . .

resentations, and the cyclic p;-modules R/Rp, " are determined to within isomorphism.
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Proof Let T be the torsion submodule of M. Then by Theorem 18.6 we have
M~To@"R

where m is the torsion-free rank of M. Now let g be a generator of Anny T with a

n n
prime factorisation g = u[ | p?". Then, by Theorem 18.8, T = (P T, where each
i=1 i=1

ki §
T,, is a p;-module. By Theorem 18.11, we have T}, ~ 691 R/Rp?” whence the result,
=
together with the various uniqueness properties, follows. |

Our objective now is to show that the above result allows no further refinement
of the direct summands involved. For this purpose, consider the following notion.

Definition 18.5 An R-module is said to be indecomposable if it cannot be expressed
as a direct sum of two non-zero submodules.

For a principal ideal domain R the finitely generated R-modules that are inde-
composable are completely determined by the following result.

Theorem 18.13 A non-zero finitely generated module M over a principal ideal do-
main R is indecomposable if and only if M is either a torsion-free cyclic module (hence
isomorphic to R) or a cyclic p-module (hence isomorphic to R/Rp™ for some prime p
and some n > 0).

Proof The necessity follows immediately from Theorem18.12.

As for sufficiency, suppose that M is cyclic and that M = N @ Q. If m generates
M, let n € N and q € Q be such that m = n + q. Since M = Rm there exist a, 3 €R
such that n = am and g = Bm. Consequently we have afim € N N Q = {0} and so
afm=0.

Suppose first that M is torsion-free. In this case a8 = 0 so either a =0 or = 0.
If a =0thenn=0and m =q € Q whence M = Q; and if 8 = 0 then g = 0 and
m =n € N whence M = N. Thus M is indecomposable.

Suppose now that M is a p-module. In this case Anngm = Rp" for some r >
1. Since affm = 0 we therefore have p”|af. Thus there exist s,t € N such that
s+t =r,p’la, and p'|B. Let o, B’ be such that a = p*a’ and § = p‘B’, and let
a =r —min{s, t}. Then we have

p*m=p*(n+q)=p*(am+ pm)=p(p°a’'m+p‘p'm)=0;
fora+s>randa+t>r sothat
pa+s,pa+t = Rpr — Anan‘

We thus have p® € Anngm = Rp’. It follows from the definition of a that min{s, t} =
0. Thus either s = 0 in which case t =r, fm=0,g=0and m=ne&€B;ort =0
in which case s = r, am = 0, n = 0 and m = ¢ € Q. Thus in this case M is again
indecomposable. o
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It is clear from Theorem 18.13 that no further refinement of the direct sum de-
composition of Theorem 18.12 is possible. An important consequence of this is the
following cancellation property.

Theorem 18.14 Suppose that M, N, P are finitely generated modules over a principal

ideal domain R. Then
Me&N~M®&P — N~P

Proof It clearly suffices to consider only the case where M is indecomposable. Ex-
pressing M @ N and M & P as coproducts of indecomposables as in Theorem 18.12,
we obtain the result from the uniqueness up to isomorphism of the summands. ©

o It should be noted that Theorem 18.14 does not hold when M is not finitely
generated. For example, consider the mapping

VEVAN- YAV
described by (f, m) — ¥ ,, where
m if n=0;
f(n—1) ifn#0.

Put less formally, 7 ,, is the sequence whose first term is m and whose other
terms are those of f. We leave to the reader the task of showing that ¥ is
a Z-isomorphism. We therefore have Z" @ Z ~ ZN ~ 7ZN @ {0}, and so the
cancellation property of Theorem 18.14 fails for M = Z.

ﬂf,m(n) = {

Suppose now that M is a finitely generated torsion module over a principal ideal
domain R. By the structure theorem we have

o

i

n a;;
M~ @ DR/Rp;".
i=1j=1

The unique ideals Rpll.l” appearing in this decomposition are called the elementary
divisor ideals associated with M. Our aim now is to rearrange the above direct sum in
a way that is essentially the same as inverting the order of summation. In so doing,
we shall bring to light other important ideals of R.

For this, we require the following properties of a principal ideal domain R.

e If a,b € R let d be a greatest common divisor of a,b and let m be a least
common multiple of a, b. Then md and ab are associates. In particular, if a and
b are relatively prime then ab is a least common multiple. A simple inductive

n

proof shows that if ay,...,a, are pairwise prime then [ | q; is a least common

i=1
multiple of a4, ..., a,. Since m is a least common multiple of a, b if and only if
Rm = Ra NRbD, it follows that if a,, ..., a, are pairwise prime then

n n

R(]_[ al-) = DlRai.

i=1 i
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e We also have, for a and b relatively prime,
R/(RanRb) ~R/Ra x R/Rb.
In fact, consider the R-morphism f : R — R/Ra x R/Rb given by
f(r)=(r+Ra,r +RD).

It is clear that Ker f = RaNRb. Now since a, b are relatively prime, there exist
X,y € R such that xa + yb = 1. Consequently,

f(txa+syb) = (txa+syb+Ra,txa+syb+Rb)
= (syb+Ra,txa+Rb)
= (s—sxa+Ra,t—tyb+Rb)
= (s+Ra,t+Rb),

and so f is surjective. It follows that R/(Ra NRb) = R/Kerf ~R/Ra x R/Rb.
A simple inductive proof now shows that if a,,..., a, are pairwise prime then

n
R/ Ra; ~ ETBR/Rai.
i=1 i=1

Let us now return to our consideration of the elementary divisor ideals of a given
torsion R-module M.
By Theorem 18.11 we have the chains

{0} CRpy" CRpy™ C---CRp,™ CR;
{0} CRpy* CRpJ* C--- CRp,™ CR;
{0} C Rpgnl g Rpth g oo g Rpg”kn CR.

Let t = max{k; ; 1 < i < n} and for each i define a;; = 0 for j = k; +1,...,¢t.
[This is simply a convenient device whereby the above array may be regarded as
having n rows and t columns of ideals Rp?” some of which are equal to R.] Now, for
j=1,...,t define

In other words, g; is formed by taking the product of the entries in the j-th column

of the array. Since for each j the elements p?” s p:”j are pairwise prime, their
product g; is a least common multiple and so

R, =R([1p;") = (R0
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The various inclusions in the above array now show that we have the chain
{0} CRq; SRq; S---SRq, CR.

Now since p‘lx” ,...,pn" are pairwise prime, it follows from the second of the above
observations concerning principal ideal domains that

n L n L
(j=1,...,t) R/Rg;=R[(\Rp;" ~ g;lR/Rpj‘w,
i=1 1=

We therefore see, by Theorem 18.12 and the associativity and commutativity of co-
products, that

t
j=
These observations lead to the following result which can be regarded as a gen-

eralisation of Theorem 18.11.

Theorem 18.15 Let M be a finitely generated torsion module over a principal ideal
domain R. Then there are uniquely determined ideals Rqy, ...,Rq, of R such that

{0} c AnnytM =Rq, CRq, C---SRg, CR
and an isomorphism

t

1

Proof In view of the preceding observations and the fact that
t t
AnngM = Anng @ R/Rq; = (| Rq; =Rq;,
i=1 i=1

it suffices to establish uniqueness.
Suppose then that Ray,...,Ra,, are ideals of R such that
{0} CRa; CRa, C--- CRa, CR

m

m
and M ~ @ R/Ra;. Then AnnyM = (| Ra; = Ra, and so Ra; = Rq;. We thus have
i=1 i=1

t m
R/Rq; ® DR/Rq; ¥ M ~R/Rq; ® (DR/Ra;.
i=2 i=2
It follows by Theorem 18.14 that

t m
G}ZR/qu ~ @zR/Rai.
i= i=

t
Now the annihilator of the module on the left is (| Rq; = Rq,, whereas that of the
i=2

m
module on the right is (") Ra; = Ra,. Consequently Ra, = Rq, and we can repeat the
i=2
above argument. The outcome is that m =t and Ra; =Rq; fori =1,...,t and this
establishes the uniqueness. O
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Definition 18.6 The uniquely determined ideals Rqy, .. .,Rq, in Theorem 18.15 are
called the invariant factor ideals associated with M.

We shall now rephrase some of the above results in terms of submodules. If R is
a principal ideal domain and M is an R-module then a finite sequence (M;);<;<, of
submodules of M is called a normal sequence for M if each M; is a non-zero cyclic

submodule such that M = @ M; and
i=1

AnngM; € AnngM, C --- C AnngM,,.

If M is finitely generated then it follows from the above results that there is a normal
sequence for M that is unique in the sense that the elements of any such sequence are
determined to within R-isomorphism. In fact, let M = T(M) & F where T(M) is the
torsion submodule of M and F is free (see Theorem 18.6). If {a,...,qa,} is a basis
of F and if

t
¥ : T(M) — @ R/Rg;
i=1
is an R-isomorphism (Theorem 18.15), then fori =1, ..., t we see that
¥ (R/Rq;) = M;

is a non-zero cyclic submodule of T(M) with AnnzM; = Rq;, from which it follows
that (M;);«;<; is a normal sequence for T(M) and hence that

Ra,,...,Ra,,M;,...,M,

is a normal sequence for M. The uniqueness up to isomorphism of these submodules
is assured by the previous results.

We end this section by considering the particular case where the principal ideal
domain in question is Z.

Now it is clear that an abelian group is a torsion Z-module when every element
is of finite order (Example 18.5), and is a torsion-free Z-module when every non-
zero element is of infinite order. The general structure theorem therefore yields the
following particular case.

Theorem 18.16 Every finitely generated abelian group G is a coproduct of a finite
number of cyclic groups :

n ki
GE @ @Z/ZPU‘U ® @mZ

i=1j=1

Moreover, such a direct sum decomposition is unique in the sense that the number m
(the rank of G) of torsion-free cyclic groups (copies of Z) is the same for all such de-
compositions, and the cyclic p;-groups Z/ prl,v,v are unique to within isomorphism. [
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Corollary 1 Every finite abelian group G is a coproduct of a finite number of uniquely
determined cyclic groups :
no ki B
G~@DZ/Zp,". oj
i=1j=1

Of course, every finitely generated abelian group also has a normal sequence
(Gi)1<i<n of subgroups of which it is the direct sum. Note that in this particular case,
if Ann, G, = Zq, then qy is precisely the order of G.

Recalling how the elementary divisor ideals were obtained, we can also establish
the following result.

m
Theorem 18.17 Let n be a positive integer with the prime factorisation n = [ | pfx".

i=1
For each of the exponents a;, let S(a;) denote the set of all decreasing chains of integers

B = Bip = -+ = Bin, > 0 such that Z Bi; = a;. Then the number of pairwise non-
j=1

m
isomorphic abelian groups of order n is [ [ |S(a;)!.
i=1

m
Proof Every element of ‘XIS(ai) gives rise to an abelian group of order n, namely
2

EBEBZ/ZP

i=1j=

Moreover, by the preceding results and the various uniqueness properties, every
abelian group of order n is isomorphic to such a coproduct; and distinct elements of
m

2(1 S(a;) yield non-isomorphic groups. x|

EXERCISES

18.1 If R is a commutative unitary ring and N is a cyclic R-module prove that a mapping
f :N — N is an R-morphism if and only if f is a homothety.

18.2 Let M be a finitely generated module over a principal ideal domain R and let the fi-
nite sequence (Ra;);<;<, of cyclic modules be a normal sequence for M. Given i,j €
{1,...,t} with i < j, prove that there is a unique R-morphism f;; : Ra; — Ra; such that
fij(ai) =4aj.

[Hint. Let a; : R — Ra; be the epimorphism r — ra;. Let {; : R/Annga; — Ra; be
the isomorphism induced by ; and let f : R/Annga; — R/Annga; be the morphism
induced by idg. Consider f;; = ;o f o {;1.]

Deduce that there is a unique R-morphism a;; : M — M such that

(@)= a; ifk=i;
AR N

[Hint. Try aij = in]‘ ofij opri']
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18.4

18.5
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Hence show that the ring (MorR(M M), +, 0) is commutative if and only if M is cyclic.
[Hint. = : Show that t > 2 is impossible by considering (a;, o a,;)(a).

< : Use Exerise 18.1.]

Let M be a finitely generated p-module over a principal ideal domain R so that, by
k k

Theorem 18.11, M ~ @ R/Rp%. Prove that M(p) ~ @ Rp%~'/Rp% ~ B*R/Rp and
=1 =1

deduce that M(p) is a vector space of dimension k over the field R/Rp. Observing
that every submodule of M is also a finitely generated p-module, deduce that if H is a

h
submodule of M then H ~ O R/Rpfi where h< k and f; < a; for j=1,...,h.
=1

[Hint. Observe that H(p) is also a vector space over R/Rp, of dimension h. Suppose, by
way of obtaining a contradiction, that there is a smallest j such that a; < 3;. Consider

j—1
M}fﬁl = {p%x ; x € M} and H = {p%x ; x € H}; show that M’ ~ ORp% /Rp%“, a
i=1
direct sum of j — 1 non-zero cyclic modules, and likewise for H'.]
If M is a non-zero torsion module over a principal ideal domain R, prove that M is
cyclic if and only if there are pairwise non-associated primes p;, ..., p; € R and positive

k
integers ay, ..., a; such that M ~ O R/Rp;".
i=1

1

Let G be an abelian group of order p™ where p is a prime, and let its chain of elementary
divisor ideals be
me C Zpaz c...C Zpak.

Show that G is generated by {g,..., g} where the order of g; is p%.
[Hint. Use Theorem18.11.]

Forr =0,...,n define G, = {x € G ; p"x = 0}. Show that G, is a subgroup of G and
that it is generated by {p“*~"g4,...,p% " g;, gis1,---, &} Where i is the integer such
that a;,; < r < a;, with the convention that a; =n and a,,; =0.

k
[Hint. Show that Zlmjgj € G, if and only if p%~"|m; for j =1,...,1.]
iz

Deduce that the order of G, is p""*+1*"*% Hence show that the number of elements
of order p" in G is p"eisi+Hak — pUr—Ditajiat+-+ak where i, j are given by a,,, <7 <

anda;; <r—1<a;.

[Hint. x € G has order p” when x € G, and x ¢ G,_;.]

Conclude that the number of elements of order p in G is p* — 1.

Determine the number of pairwise non-isomorphic abelian groups of order

(a)1,000; (b)1,001; (c)1,000,000.
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VECTOR SPACE DECOMPOSITION THEOREMS;
CANONICAL FORMS UNDER SIMILARITY

In the previous section we saw how the structure theorem for finitely generated
modules over a principal ideal domain could be applied to obtain the structure of
all finitely generated abelian groups. We shall now show how this structure theorem
can be applied to study of the decomposition of a vector space modulo a given linear
transformation, and to the problem of determining canonical forms for matrices.

We begin by describing a generalisation of Theorem 10.6.
Theorem 19.1 Let R be a principal ideal domain and let M,N be free R-modules of
dimensions m,n respectively. If f : M — N is an R-morphism then there are bases
{ai,...,a,} of M and {b4,...,b,} of N, and non-gero elements d, ..., d, of R, unique
to within association, such that d;,|d; and
0 ifr+1<i<m.

(i=1,...,m) f(al-)z{

Proof By Theorem 18.3,Imf is free of dimension r < n. By Theorem 18.10, there
is a basis B of N, a subset by,...,b,} of B, and non-zero elements d;,...,d, of R,
unique to within association, such that
(1) {d;by,...,d.b,} is a basis of Im f;
(2) dipld;.
Let a;,...,a, € M be such that f(a;) = d;b; for each i. Then {a; ; 1 <i < r}is
r

linearly independent; for if >_ A;a; = 0 then
i=1

0=1(Frie) = K 2uf@) = T A,

whence A;d; = 0 for each i, and consequently every A; = 0 since d; # 0. Let M’ =
LC{a; ; 1 < i < r} and note that, since the restriction of f to M’ carries a basis
of M’ to a basis of Im f, we have M’ ~ Im f ~ M/Ker f. Since Im f is free, hence
projective, the canonical exact sequence

0 Ker f M M/Ker f —0

splits, and consequently we have

M=Kerf ®M'.

{a; ; 1 <i < m} and the result follows. O

Now let {q; ; r+ 1 < i < m} be a basis of Kerf; then clearly a basis of M is
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Corollary 1 If Ais a non-zero n x m matrix over a principal ideal domain R then A is
equivalent to an n x m matrix of the form

X0
00
where X is the diagonal matrix
d

d

-
where each d; # 0 and d;,,|d;. Moreover, dy,...,d, are unique to within association.[d

e The non-zero ideals Rd;,...,Rd, of R are called the invariant factor ideals of
the matrix A or of the R-morphism f. Using this terminology, we have the
following criterion for matrices to be equivalent.

Corollary 2 IfR is a principal ideal domain and if A, B are n x m matrices over R then
A and B are equivalent if and only if they have the same invariant factor ideals. ol

We now turn our attention to what is by far the most surprising application of
the structure theorem of the previous section, namely to a study of what some au-
thors call ‘the theory of a single linear transformation’. More precisely, we shall be
concerned with the decomposition of a finite-dimensional vector space as a direct
sum of particular subspaces related to a given linear transformation. The results we
shall obtain may be interpreted in terms of matrices and lead naturally to a study of
canonical forms.

Our immediate aim, therefore, is to express a vector space over a field F in some
way as a module over a principal ideal domain. We shall in fact be concerned with
the ring F[X] of polynomials with coefficients in F. It is well known that F[X] is
a euclidean domain and so is a principal ideal domain. As we shall see, the key to
the entire theory will be the simple, yet very profound, observation that relative to
a given non-gero linear transformation f : V — V, a vector space V can be given the
structure of a finitely generated torsion F[X]-module. Before proceeding to establish
this, we require some additional notation.

If A is a unitary associative algebra over a commutative unitary ring R then for
every a € A we shall denote by R[a] the subalgebra of A that is generated by {1z, a}.
It is clear that the elements of R[a] are those of the form

ro+ra+---+ra"
where each r; € R. Given
p=ro+rX+--+r,X"eR[X]

and a € A, we define
play=ry+ria+---+r,a"
and say that p(a) is obtained from p by substituting a for X in p.
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Theorem 19.2 Let A be a unitary associative R-algebra over a commutative unitary
ring R. Given a € A, the mapping {, : R[X] — R[a] described by {,(p) = p(a) is an
R-algebra epimorphism.

n m n+m , k
Proof Letp= > a;X'andq= >, f3;X'. Then we have pq = Y. (Z ajljk_j)Xk and
s0 =0 i=1 k=0 "j=0
nt+m , k )
Lpa) = 3, (20 o; By )a* = p(a)q(a).
=0 j=

Likewise we can show that

Ca(pt+q)=p(a)+q(a), . (Ap)=Ap(a).

Since {,(X) = a and {,(X°) = 1,, it follows that {, is an R-algebra morphism.
Moreover, Im {, is a subalgebra of R[a] containing both a and 1, and so Im{, = R[a]
whence {, is an epimorphism. O

e The R-algebra morphism {, is called the substitution morphism associated with
a €A

Throughout what follows we shall be concerned with the case where A is the
unitary associative algebra Mor(V, V) where V is a finite-dimensional vector space
over a field F.

Suppose then that V is a non-zero vector space over a field F and let f : V -V
be a non-zero linear transformation. Let V; denote the algebraic structure (V, +, ()
where + denotes the usual addition on V and -4 : F[X] x V — V is the action given
by

(p,x) = p -y x=[p(fII(x).

It is readily verified that V; is an F[X ]-module. Now the module obtained from V; by
restricting the action -, to the subset F x V of F[X ] x V is simply the F-vector space
V; for, the elements of F regarded as elements of F[X ] are the constant polynomials.
It follows that if B is a basis of V then B is a set of generators of V;; for, every linear
combination with coefficients in F is a linear combination with coefficients in F[X].
In particular, if V is a vector space of finite dimension over F then V; is a finitely
generated F[X ]-module.

We now consider some elementary properties of the F[X ]-module V.

Definition 19.1 If M,N are R-modules then f € Morgz(M, M) and g € Morg(N,N)
are said to be similar if there is an R-isomorphism ¢ : M — N such that the diagram

M———M

is commutative.



246 Module Theory

Theorem 19.3 Let V and W be non-zero finite-dimensional vector spaces over a field
Fandlet f :V —V,g: W — W be linear transformations. Then f and g are similar
if and only if the F[X ]-modules V;, W, are isomorphic.

Proof = : Suppose that f, g are similar and let ¢ : V — W be an F-isomorphism
such that § o f = g o¥. Then if, for some n > 1, we have # o f" = g" o ¥ it follows
that

'ﬁofn+1="(?ofnof :g"oﬁof:g”ogoq?:g”“oﬁ_

Thus we see by induction that
(Vn=1) Poft=g"od.

To show that ¥ is an isomorphism from V; onto W,, it suffices to show that ¥ is
F[X]-linear. This we can establish using the above observation and the fact that, for
m

anyZaiXiEF[X], m m
i=0 ﬁ(é})alxi yx) = ‘?(;aifi(x))

m

IACHRIE)
S (gt 0 9)(x)

i=0

Z(:)aiXi - 0(x).

< : Conversely, suppose that ¥ : V; — W, is an F[X ]-isomorphism. Then
(VxeV)(VAE€F) F(Ax) = 9(AX° FX)= Ax° g T(x) = A¥(x),
so that ¢ is an F-isomorphism from V onto W. Moreover,
(VxeVv)  FfO)]=0X ;x) =X, 9(x) = g[V(x)]

and so o f = g o. Hence f and g are similar. O

Definition 19.2 Let M be an R-module and let f : M — M be an R-morphism. Then
a submodule N of M is said to be f-stable, or invariant under f, if f (N) C N.

Theorem 19.4 Let V be a non-gero vector space over a field F and let f : V — V be a
linear transformation. Then a subset M of V is a submodule of the F[X ]-module V; if
and only if M is an f -stable subspace of V.

Proof = : Suppose that M is a submodule of V;. Since F € F[X] it is clear that M
is a subspace of V. Now for every x € M we have

f(x)ZXfXEM

and so M is f-stable.
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& : Suppose conversely that M is an f -stable subspace of V. Then clearly, for
every x € M and every positive integer k, a simple inductive argument yields f*(x) €
n

M. It follows that, for every p = D, akX" € F[X] and every x € M,
k=0 n n
prrx=0pAHI) = (X af)x) =Y fFx)em,
k=0

k=0
whence M is a submodule of V;. O
Theorem 19.5 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Then the finitely generated F[X ]-module V;
is a torsion module.

Proof Suppose, by way of obtaining a contradiction, that V; is not a torsion F[X ]-
module. Then by the fundamental structure theorem (Theorem 18.12) we see that Vi
contains a submodule W that is F[X ]-isomorphic to F[X ]. Since W is then a subspace
of V that is F-isomorphic to the F-vector space F[X ], we obtain a contradiction to
the finite dimensionality of V on noting that F[X ] is an infinite-dimensional F-space.

o}

Since, as we have just seen, V; is a torsion F [X]-module, we can consider the
annihilator of V; in F[X], namely the principal ideal

{p e F[X]; (Vx V) [p(f)]l(x) =0}
of F[X]. The unique monic generator g of this ideal is called the minimum polynomial
of f.

o The reason for the terminology minimum polynomial is that g is the monic
polynomial of least degree such that g(f) is the zero of Morg(V, V). Roughly
speaking, g is the monic polynomial of least degree that is satisfied by f, in
the sense that g(f) = 0.

e That f is thus a root of a polynomial equation is really quite remarkable.
Equally remarkable, of course, is the fact that if V is of dimension n then every
n X n matrix that represents f is also a root of a polynomial equation.

We shall now translate some of the results of the previous section into the lan-
guage of the present section. With the above dictionary of terms, the reader will
have no trouble in verifying that Theorem 18.8 applied to V; yields the following
fundamental result.

Theorem 19.6 [Primary Decomposition Theorem]  Let V be a non-zero finite-

dimensional vector space over a field F and let f : V — V be a linear transforma-
n

tion with minimum polynomial g = [] pf‘" where pq,...,p, are distinct irreducible
i=1

polynomials and a, ..., a, are positive integers. Fori =1,...,n let

M, ={xeV; Fk=1)[p:(f)](x)=0}.
Then every M, is an F-stable subspace of V, p?" is the minimum polynomial of the

n
F-morphism induced on M,, by f, and V.= P M,,..
i=1
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o Note that since pf‘" is the minimum polynomial of the F-morphism induced by
f on M, , we have x € Kerpf‘i for every x € M,, whence M, = Kerpf‘i. We
call M, the i-th primary component of M.

Definition 19.3 We shall say that a linear transformation f : V — V is cyclic if the
F[X]-module V} is cyclic.

With this terminology, the reader can easily verify that Theorem 18.15 yields the
following fundamental result.

Theorem 19.7 [Rational Decomposition Theorem] Let V be a non-gero finite-
dimensional vector space over a field F and let f : V — V be a linear transformation.
Then there is a unique sequence (f;);<;<, of monic polynomials over F such that

(i:]-;""n_]-) fi+1|fi’

n

and a sequence (Wy)i<k<n Of f-stable subspaces of V such that V. = @ W, and, for
k=1

every k, the F-morphism induced by f on W, is cyclic with minimum polynomial fi.

Moreover, the minimum polynomial of f is f;. O

Definition 19.4 In the case where V; is a cyclic F[X ]-module, generated by {c} say,
we shall call such an element ¢ of V' a ¢yclic vector for f.

o If ¢ is a cyclic vector for f then we have

Vi={psc;peF[X]}; V={[p(fllc); peF[f]}

Our objective now is to use the above two decomposition theorems to obtain
canonical forms under similarity for square matrices over a field. Their description
hinges on the following basic result.

Theorem 19.8 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a cyclic linear transformation with cyclic vector c. Then the mapping

G F[f]1-V
given by 0.(p) = [p(f)](c) is an F-isomorphism. Moreover, if
g=ag+a X+ +a,  XTH+X"

is the minimum polynomial of f then degg = dimV, and {c, f (¢c), f2(c), ..., f" 1(c)}
is a basis of V. Furthermore, the matrix of f relative to the ordered basis (a;), where
a;=f"c)is

000 0 —ay
100 0 —a,
010 0 —a,
001 0 —a,

000 ... 1 —a,,; |
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Proof Since c is a cyclic vector for f, itis clear that . is an F-epimorphism. Suppose
now that p € Ker f,. Then

0=[p(f)llc)=p+c
and so, since

AnnF[X]Vf = AnnF[X](c) = F[X]g,

we see that p = qg for some q € F[X]. Applying the substitution morphism {;, we
deduce that, in F[f],

p(f)=q(f)g(f)=q(f)0=0.

Thus Ker#, = {0} and so ¥, is an F-isomorphism.
Since the F[X ]-module V; is generated by {c}, every x € V; can be written in
m

the form x = p -, ¢ for some p = > B X' € F[X]. Then every x € V can be written
i=0

x=(Z A0 =2 s

as

and so {fi(c) ; i € N} generates V. But [g(f)](c) = 0 and so we deduce that V is
generated by
{e, (), f2(c)sn s fPHE}
where n = degg.
n—1

Suppose now that Y. A,f(c) = 0. Then clearly we have [h(f)](c) = 0 where h =

i=0
n—1 n—1
> A;X". Suppose that A,,_; # O andleth; = 3, A;A_' X' Then clearly [h;(f)1(c) =
i=0 i=0
0, which contradicts the fact that g is the monic polynomial of least degree such

that [g(f)](c) = 0. We thus have A,_; = 0, and clearly a repetition of this argument
shows that every A; = 0. This then shows that {c, f(c),..., f" *(c)} is linearly inde-
pendent, whence it is a basis for V, the dimension of which is then n = deg g. The
final statement is clear. O

Definition 19.5 The matrix which is displayed in Theorem 19.8 is called the com-
panion matrix of the monic polynomial

ag+a X+ +a, X"+ X"

o Note that when V is of dimension 1 the minimum polynomial of f has degree
1, say g = ay + X. In this case g(f) = a,idy +f and so

0 =[g(f)](c) = apc + f(c).

Since {c} is a basis of V, it follows that the companion matrix of f in this case
is the 1 x 1 matrix [—ag].

The converse of Theorem 19.8 is the following.
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Theorem 19.9 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Suppose that there is an ordered basis (a;),,
of V relative to which the matrix of f is of the form

000 0 —ay
100 0 —a,
010 0 —a,
001 0 —a,
(000 ... 1 —a,,; |

Then a; is a cyclic vector for f, and the minimum polynomial of f is
g=ap+ o X+ + o, X"+ X"

Proof Itis clear that f*"!(a;) = a, for k = 1,...,n. Thus the f-stable subspace gen-
erated by {a;} contains the basis {a, ..., a,} and so coincides with V. Consequently,
a, is a cyclic vector for f. Now

n—1

n—1
fMa) = fIf" Na)]=f(a,) = Z(:)_aiaHl = Z(:)_aifl(al),
and so we see that [g(f)](a;) = 0. Since {a;} generates V;, it follows that g(f) = 0.
But q; is a cyclic vector for f and so, by Theorem 19.8, the degree of the minimum
polynomial of f is the dimension of V. The minimum polynomial of f therefore has
the same degree as the monic polynomial g and, since it divides g, must coincide
with g. o]

Using the above results, we can translate directly in terms of matrices the rational
decomposition theorem and derive some useful consequences.

n
For this purpose, we make the simple observation that, if V = @ M; where each
i=1
M; is an f-stable subspace of V and if B; is an ordered basis of M; for each i, then

n
the matrix of f relative to the basis | J B; (ordered in the obvious way) is of the form
i=1

Ay

[A,

in which A; is the matrix relative to B; of the F-morphism induced on M; by f.
It follows from the rational decomposition theorem that we therefore have the
following result.

Theorem 19.10 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Then there is a unique sequence (f;);<i<n of
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monic polynomials over F such that f;,,|f;, and such that there is an ordered basis of
V with respect to which the matrix of f is of the form

[f:]

[f]

(fnl

in which [ f;] denotes the companion matrix of f;. |

Definition 19.6 The monic polynomials f; of Theorems 19.7 and 19.10 are called
the invariant factors of f. A matrix of the form exhibited in Theorem 19.10 (in which
fir1lfi for each i) will be called a rational (invariant factor) canonical matrix

e Arational (invariant factor) canonical matrix is often described as a direct sum
of the companion matrices associated with the invariant factors.

Corollary 1 If V is a non-gero finite-dimensional vector space over a field F and if
f 1V > V is a linear transformation then there is a unique rational (invariant factor)
canonical matrix of f.

Proof Suppose that

[g1]

firm

is also a rational (invariant factor) canonical matrix of f. Fori = 1,...,m let V; be
the f -stable subspace of V associated with the companion matrix [g;]. Since g;,1/g;
with Anngy(V;); = F[X]g;, it is clear that (V;);<;<, is a normal sequence for V;. By
Theorem 19.9, g; is the minimum polynomial of the F-morphism induced on V; by
f. The result now follows by the uniqueness up to F-isomorphism of the subspaces
in a normal sequence. ]

Corollary 2 Two F-morphisms f,g : V — V are similar if and only if they have the
same invariant factors.

Proof By Theorem 19.3, f and g are similar if and only if the F[X ]-modules V; and
V, are isomorphic. Now by the uniqueness of normal sequences it is clear that V;
and V, are isomorphic if and only if, in these normal sequences, corresponding terms
are isomorphic; and this is the case if and only if f and g have the same invariant
factors. |

e Because of the above result, we can define the invariant factors of a square
matrix A over F to be the invariant factors of any F-morphism f : V — V that
is represented by A relative to some ordered basis. Then Corollary 2 may be
rephrased as follows.
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Corollary 3 Two n x n matrices over a field F are similar if and only if they have the
same invariant factors. o

Corollary 4 If f4,..., f, € F[X] are the invariant factors of a square matrix A over a
field F then these are also the invariant factors of A when A is considered as a matrix
over any field K with F C K.

Proof To say that fi,..., f, are the invariant factors of A over F is equivalent to
saying that there is an invertible matrix P over F such that PAP™! is a direct sum
of companion matrices associated with the f;. The result therefore follows from the
fact that the elements of P and the coefficients of the f; belong to every extension
field K. |

Corollary 5 Let F and K be fields with F C K, and let A, B be n x n matrices over F.
Then if A and B are similar over K they are similar over F.

Proof This is immediate from Corollaries 3 and 4. ]

From the discussion in Section 18, the building blocks in the general structure
theorem are the indecomposable modules. In the case under consideration, these
are the cyclic p;-modules where p; € F[X] is prime.

Definition 19.7 We shall say that an F-morphism f : V — V is p-linear for some
prime polynomial p if the corresponding F[X ]-module V; is a p-module.

For such mappings, we have the following particular case of the rational decom-
position theorem.

Theorem 19.11 Let V be a non-zero finite-dimensional vector space over a field F, let
p € F[X] be prime, and let f : V — V be p-linear. Then there is a unique sequence
(m;)1<i<n Of integers such that

O0<m;<my<---<my,

and a sequence (W), <x<n 0d f -stable subspaces of V such that
n
V=@ W
k=1

and, for each k, the F-morphism induced on W, is cyclic with minimum polynomial
p™. Moreover, the minimum polynomial of f is p™. O

e Recall that the ideals F[X ]p™: are simply the elementary divisor ideals associ-
ated with the p-module V;. In what follows, we shall refer to the polynomials
p™i as the elementary divisors of the p-linear mapping f. We shall denote the
companion matrix of p™ by [p]™. By Theorem 19.8, the induced F-morphism
on W, may be represented by [p]™ and so there is an ordered basis of V with
respect to which the matrix of f is

[p]™
[p]™
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Definition 19.8 Let F be a field and let p € F[X] be prime. By a rational p-matrix
over F we shall mean a matrix A such that, for some sequence (m;);<;<, of integers
withO<m; <my, <--- <my,

[p]™

[p]™

[p]™

It is immediate from Theorems 19.8, 19.9 and 19.11 that if f : V — V is p-linear
where p € F[X] is prime then there is a unique rational p-matrix of f .

Definition 19.9 By a rational (elementary divisor) canonical matrix over a field F we
shall mean a square matrix of the form

A

[A,

in which, for distinct prime polynomials p4,...,p, over F, A, is a rational p;-matrix.

Now since, in the primary decomposition theorem (Theorem 19.6), each M,, is a
pi-submodule of V;, we observe that the morphism induced on M, by f is p;-linear.

We therefore deduce the following result.

Theorem 19.12 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Then there is a rational (elementary divisor)
canonical matrix of f. Moreover; if

Ay B,

A= . , B=

are rational (elementary divisor) canonical matrices of f then n = m and there is a
permutation o on {1,...,n} such that A; = B,; for each i.

Proof The existence is clear from what has gone before. The uniqueness, up to a
rearrangement of the p;-matrices down the diagonal, follows from the uniqueness
of the p;-modules in the direct sum representation. |

e A rational (elementary divisor) canonical matrix of f is often described as a
direct sum of the companion matrices associated with the elementary divisors

of f.
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In the above discussion we had occasion to deal with cyclic morphisms whose
minimal polynomials are of the form p™ for some prime p € F[X]. We shall now
show that we can also represent such morphisms by a matrix that is constructed from
the companion matrix of p rather than the companion matrix of p™. This leads to
yet another canonical form. The fundamental result in this direction is the following.

Theorem 19.13 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a cyclic F-morphism with cyclic vector c. Suppose that the minimum
polynomial of f is g" where

g=ag+a X+ +a, X +X"

Then the rn elements

c f(c) £2(c) F(e)
[g(f)1() [g(fILf ()] eI ... [eDIf ()]

[g(HTHO) [gOTTF] [gOT ] ... [gAOI )]

constitute an ordered basis of V with respect to which the matrix of f is the rn x rn
matrix

[g]
A [g]
A [g]

A [g]
in which [g] is the n X n companion matrix of g and A is the n x n matrix

1

Proof By Theorem 19.8, the dimension of V is the degree of the minimum polyno-
mial of f, namely rn. To show that the given set of elements is a basis, it therefore
suffices to show that that this set is linearly independent. Suppose, by way of ob-
taining a contradiction, that this is not so. Then some linear combination of these
elements is zero with not all the coefficients zero. This implies that there is a poly-
nomial h with [h(f)](c) = 0 and degh < rn = degg”, contradicting the fact that
g" is the minimum polynomial of f. Thus the given set constitutes a basis of V. We
order this basis by taking the elements in the order in which we normally read them,
namely the elements in the first row, then those in the second row, and so on.
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Now we observe that f maps each basis vector onto the next one in the same
row in the above array, except for those at the end of a row; for, f commutes with
every power of g. As for the elements at the end of a row, we observe that

FUTHOI=F1@) =—agc—ar f() = — a1 f"7H(e) +[g(f)](C)

and similarly

FLEOT ™1 (0)]
=[N ™f"(c)]
=[g( T [—aogc =+ =y fH(e) + [2(F(C)]
= —ao[g(f ™) =+ — e [T L]+ [g (T ™ (o).

It follows immediately from this that the matrix of f relative to the above ordered
basis is of the form stated. o]

e Note that in the matrix of Theorem 19.13 every entry immediately below a
diagonal entry is 1.

The converse of Theorem 19.13 is the following.

Theorem 19.14 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Suppose that there is a monic polynomial g of
degree n and an ordered basis (a;);<;<n relative to which the matrix of f has the form
given in Theorem 19.13. Then a, is a cyclic vector for f and the minimum polynomial

of fisg.

Proof Write the basis elements in the array

a; a, ¢
Ani1 D) <ee Qop
AG—n+1 Ae-1n+2 -+ D

and observe that, in any given row, each element except the first is the image under
f of the previous element. Observe also that

@) = fIf"Ha)]

= f(a,)
= —QpQ; — 1Ay = ApGy Ay
= —aoay —a;f(a) = — g f"7(ay) + app

whence we obtain

any1 = [g()](ar);
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and that, for 1 <k <r—2,

f(agne1) = f(a(k+1)n)
= —QAgpp1 — A1 lgpe2 ="~ O 1Ak Dn T+ Akt 1)nr1
= — a1 — 01 f (Qnp1) = = et f " (@png1) + Qs 1)t
whence we obtain
Ak+1)n+1 = [g(f)](agn+1)-
It now follows easily by induction that

(k=1,....r=1) i1 =[N (ay).

We thus see that the f -stable subspace generated by {a; } contains the basis elements
a,...,a,, whence it coincides with V. Thus q; is a cyclic vector for f.
We next observe that [g(f)] (a;) = 0. In fact,

[¢(T (@) = [(AI([eHTH(a)
[e(F)(ag—1)n+1)

n—1
Z akfk(a(r—l)n-H) + fn(a(r—l)n+l)
k=0
n—1

= Z A A(r—1)n+k+1 + f(arn)
k=0

= 0.

Since {a,} generates V;, it follows that g" belongs to AnngxV; whence it is divisible
by the minimum polynomial of f. Now by Theorem 19.8 the degree of the minimum
polynomial of f is the dimension of V, which is the degree of g". Since each of these
polynomials is monic, it follows that g" is the minimum polynomial of f. O

In what follows we shall denote a matrix of the form exhibited in Theorem 19.13
by [g],. With this notation, we note that in Theorem 19.11 the F-morphism induced
on W, by f may be represented by [p],,, and so there is a basis of V with respect to
which the matrix of f is

[Pl

[pIn,
' (plm,

Definition 19.10 Let F be a field and let p € F[X] be a prime. By a classical p-matrix
we shall mean a matrix A of the form

[Pl

(p]n

' (plnm

n

inwhich0<m; <my, <---<m,.
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It is immediate from Theorems 19.11, 19.13, and 19.14 thatif f : V — V is
p-linear where p is prime then there is a unique classical p-matrix of f .

Definition 19.11 By a classical canonical matrix over a field F we shall mean a
square matrix of the form
Ay

[A,

in which, for distinct prime polynomials p,, ..., p, over F, A; is a classical p;-matrix.
The following analogue of Theorem 19.12 is now immediate.
Theorem 19.15 Let V be a non-zero finite-dimensional vector space over a field F and

let f : V — V be a linear transformation. Then there is a classical canonical matrix of
f. Moreover, if

Al Bl

A= . . B=

are classical canonical matrices of f then n = m and there is a permutation o on
{1,...,n} such that A; = B, for each i. |

A particularly important special case of classical canonical matrices arises when
the corresponding prime polynomials p; are linear, say p; = X —A; where A; € F. In
this case, the matrix exhibited in Theorem 19.13 is the r x r matrix

A
1

-

1 A
We shall denote this matrix by [A], and call it the elementary r x r Jordan matrix
determined by A.

Definition 19.12 By a Jordan (X — A)-matrix we shall mean a matrix of the form

(A1,

(Al

(4],

N
3

where 0 <m; <Smy <---
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Finally, by a Jordan canonical matrix we shall mean a square matrix of the form

A

[A,

in which, for distinct scalars A,,...A, € F, A; is a Jordan (X — A;)-matrix.

Definition 19.13 We shall say that an F-morphism f : V — V is a Jordan morphism
if its minimum polynomial factorises into a product of linear polynomials.

In the case where the ground field F is algebraically closed (i.e. every non-zero
polynomial over F factorises into a product of linear polynomials; for example, when
F is the field C of complex numbers), it is clear that every linear transformation
f :V — V is a Jordan morphism and consequently that every square matrix over F
is similar to a Jordan canonical matrix (which, by Theorem 19.15, is unique up to
the arrangement of the (X — A;)-matrices down the diagonal).

e It can be shown that if F is a field then there is a smallest algebraically closed
field F* that contains F as a subfield. This algebraically closed field F* is called
the algebraic closure of F. For example, the algebraic closure of R is C. In a
very loose sense, therefore, every F-morphism can be regarded as a Jordan
morphism; more precisely, as a Jordan F*-morphism.

At this juncture it is both appropriate and instructive to consider some examples
to illustrate the above results.

Example 19.1 Let V be a real vector space of dimension 10 and suppose that f :
V — V is a linear transformation whose sequence of invariant factors is

x3+1) x3+41, X+1.

Recalling that the rational (invariant factor) canonical matrix of f is the direct sum
of the companion matrices associated with the invariant factors, we see that this
matrix is

[0 0000 —1 i
10000 O
01000 O
00100 —2
00010 O
00001 O

0 0 —1

10 0

01 O
- _1_.

In order to determine a rational (elementary divisor) canonical matrix of f we
must first determine the elementary divisors. We recall that these are of the form p;n"
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where p; is a prime polynomial and m; is a positive integer. These may be arranged
in rows, a typical row being

m;

pi b - P

n

where m; = m;, = --- 2 m; > 0. Allowing some exponents to be zero, we can
form a rectangular array in which the invariant factors are the column products (see
Section 18). Since the invariant fcators and the elementary divisors are uniquely
determined, it is readily seen that in the example under consideration such an array

1S
xX?-x+1) X2—-Xx+1 1

(X +1)? X+1 X+1

Now the rational (X2 — X + 1)-matrix associated with the top row is the direct sum
of the associated companion matrices, as is the rational (X + 1)-matrix associated
with the bottom row. Hence a rational (elementary divisor) canonical matrix of f is

000 -1
1 00 2
010 -3
001 2
0 —1
1 1
0 -1
1 -2

-1

-1

Let us now determine a classical canonical matrix of f. This is easily derived from
the above rational (elementary divisor) canonical matrix by replacing the rational
p-matrices involved by the corresponding classical p-matrices. It is therefore clear
that a classical canonical matrix of f is

0-10 O
1 10 O
0 10-1
0 01 1
0 -1
1 1
-1 0
1 -1

-1

-1

Since the minimum polynomial of f is the first invariant factor, namely (X3 + 1),
we see that f is not a Jordan morphism.
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Example 19.2 Consider the same situation as in Example 19.1 but now let V be a
vector space over C. Then the rational (invariant factor) canonical matrix of f is
the same as before. Different rational (elementary divisor) canonical matrices arise,
however, since over the field C the polynomial X — X + 1 is not prime; in fact we

have
X2—X+1=X—-a)X—p)

where a = %(1 +iv/3)and B = %(1 —i+/3). In this case the array of elementary
divisors is readily seen to be

X—a)PX—a 1
X—=BPX—-p 1
X+1PX+1X+1

A rational (elementary divisor) canonical matrix of f is therefore

[0 —a?
1 2a
a
0 —p*
1 28
B
0 -1
1 -2
-1
L _1 -
A classical canonical matrix of f is then
4 o -
1 a
a
p O
1B
B
-1 0
1 -1
-1
- _1 =

Since C is algebraically closed, the above classical canonical matrix is a Jordan
canonical matrix.

Example 19.3 Let V be a real vector space of dimension 6 and let f : V — V be
a linear transformation with elementary divisors X + 2 of multiplicity 3, X — 2 of
multiplicity 2, and X + 3. Arranging these in the usual way, we obtain the array
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X+2 X+2 X+2
X—2 X-2 1
X+3 1 1
whence the sequence of invariant factors of f is
X+2)X—2)(X+3), X+2)(X—2), X +2.

The rational (invariant factor) canonical matrix of f is then

0 0 12
10 4
01 -3

_ O
[N

-2
A rational (elementary divisor) canonical matrix of f is then

—2

—2

-3
This is clearly also a classical canonical matrix and a Jordan canonical matrix.

Our aim now is to bring to light another important polynomial associated with
a linear transformation f : V — V. For this purpose, we note the following result.

Theorem 19.16 If g is a monic polynomial of degree n over a field F and if [ g] denotes
the companion matrix of g then

g = det(XT, —[g]).

Proof We note first that if n = 1, so that g = ay + X, then [g] is the 1 x 1 matrix
[—a,] and the result is trivial. Suppose, by way of induction, that the result holds
for monic polynomials of degree n—1 and let

g=ag+a X+ +a, X +X"

Then we have

X g
_1 X al
det(XI, —[g]) = det -1 X a;

_1 X + an_l
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Now let h be the monic polynomial of degree n —1 given by
h=a;+aX +++a,_ X" +X"1

Considering the Laplace expansion of the above determinant by the first column, we
see that det(X1, —[g]) can be written as

X o 0 O ag

-1 X ay -1 X ay

Xdet -1 X as + det -1 X as
-1 X+oa,, -1 X+a,,

Now by the induction hypothesis the first of these determinants is h; and considering
the Laplace expansion of the second via the first row, and using the fact that the
determinant of a triangular matrix is simply the product of its diagonal entries, we
see that the second determinant is

(1) ag(—1)"? = aq.

Thus we se that det(XI, —[g])=Xh+a+0=g. ol

Definition 19.14 Let V be a non-zero finite-dimensional vector space over a field F.
Let f : V — V be a linear transformation with elementary divisors qy,...,q,. Then
by the characteristic polynomial of f we mean the polynomial

n
xf=11qi-

We define also the characteristic polynomial y, of a square matrix A over a field F
to be that of any linear transformation which is represented by A relative to some
ordered basis.

Theorem 19.17 If Ais an n X n matrix over a field F then
x4 = det(XI, —A).

Proof Since similar matrices have the same invariant factors they have the same
characteristic polynomials. It suffices, therefore, by Corollary 1 of Theorem 19.10, to
consider the case where A is a rational (invariant factor) canonical matrix. The result
then follows from Theorems 19.16 and 17.16, the latter implying via an inductive
argument that the determinant of a direct sum of square matrices is the product of
their determinants. o

Corollary 1 Let g be a monic polynomial over a field F. Then the characteristic poly-
nomial of the companion matrix of g is g.

Proof This is simply a restatement of Theorem 19.16. o]
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Corollary 2 The constant term in the characteristic polynomial of an n x n matrix A
is (—1)"detA.

Proof y,(0)=det(—A) = (—1)"detA. |

Corollary 3 A square matrix is invertible if and only if the constant term in its char-
acteristic polynomial is non-zero. O

The basic connection between minimum polynomials and characteristic polyno-
mials is the following.

Theorem 19.18 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V. — V be a linear transformation. Let m be the number of invariant factors of
f, let x¢ be the characteristic polynomial of f, and let m; be the minimum polynomial

of f. Then
me|xs |m)T.

Proof Since my is the first invariant factor of f and y is the product of the invariant
factors of f, it is clear that m, | y ;. Moreover, since each invariant factor of f divides
the first invariant factor my, their product y; divides m}". |

Corollary 1 x,(f)=0.
Proof We know that m;(f) = 0; and by the above y; = pm; for some p € F[X]. O

e The above Corollary is often known as the Cayley-Hamilton Theorem. Although
the proof that we have given is very simple, the result itself is very deep. In
terms of matrices, it says that every n x n matrix over a field is a zero of its
characteristic polynomial (which, by Theorem 19.17, is of degree n).

Corollary 2 my and y; have the same zeros in F.
Proof This is immediate from Theorem 19.18. O

Example 19.4 It is readily seen that the characteristic and minimum polynomials
of the real matrix

A=

NN =
N =N
= NN

are y, = (X + 1)(X —5) and m, = (X + 1)(X —5). Since y, is the product of the
invariant factors, the first of which is m,, we see that the invariant factors of A are

X+1)X-5), XxX+1.

A rational (invariant factor) canonical matrix of A is then

0 51 0
1 41 0
0 0|—-1
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Since the array of elementary divisors is

X+1 X+1
X—=5 1

it follows that a rational (elementary divisor) canonical matrix of A is

oo =
|
Ol—= O
o o

this also being a classical canonical matrix and a Jordan canonical matrix.

Example 19.5 Let f : R” — R’ be a linear transformation whose characteristic and
minimum polynomials are

=X -1PX-2)"  mp=x-1°(X-2).
The sequence of invariant factors of f is
X-12x-2)° X-1)X-2).

A rational (invariant factor) canonical matrix for f is then

8

1 —28
1 38

1 —25

1 8

The array of elementary divisors is
x-12 x-1
x-22 x-2

and so a rational (elementary divisor) canonical matrix is

Fo 1 -
1 2




Vector space decomposition theorems; canonical forms under similarity 265

Finally, a classical canonical matrix, which is also a Jordan canonical matrix, is

1
11

- N

= N

EXERCISES

19.1 For each of the following matrices over R determine

(a) the characteristic polynomial,

(b) the minimum polynomial;

(¢) the invariant factors;

(d) the elementary divisors;

(e) the rational (invariant factor) canonical matrix;
(f) arational (elementary divisor) canonical matrix;

(g) aclassical canonical matrix.

1 1 3 2 2 1 8 8 i 1

5 2 6|; 2 2 1 |;
-2 -1 -3 2 2 1 1100
1100

19.2 Prove that the F[X]-module V; is cyclic if and only if the minimum polynomial of f
coincides with the characteristic polynomial of f.

19.3 Let C5[X] be the complex vector space of polynomials of degree less than or equal to
3. Let D : C4[X] — C5[X] be the differentiation map. Determine a Jordan canonical
matrix of D.

19.4 Let Abe a 7 x 7 matrix over R with minimum polynomial
m, = (X2 +2)(X +3)°.

Find all possible rational (elementary divisor) canonical forms of A.
[Hint. Argue that the sequence of invariant factors is one of

(@) (X2+2)(X+3)%, X%+2;

(D) (X2+2)(X +3)%, (X+3)%

(c) (X2+2)(X+3), X+3, X+3.]
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19.5

19.6

19.7

19.8

19.9

Module Theory

Determine all possible Jordan forms of the matrices whose characteristic and minimum
polynomials are

(@ xa=X=7), my=X-7)
(0) xa=X—=3)'(x—5)%, my=(X—3)*(X —5)%
If V is a non-zero finite-dimensional vector space over a field F and if f : V - V isa

cyclic transformation, prove that the set of f -stable subspaces of V is equipotent to the
set of monic divisors of the minimum polynomial of f.

[Hint. Use the correspondence theorem. ]

Prove that every square matrix is similar to its transpose.

[Hint. Recall Corollary 5 of Theorem 19.10. By using the algebraic closure of F, re-
duce the problem to showing that it holds for Jordan (and hence elementary Jordan)
matrices. ]

If V is a non-zero finite-dimensional vector space over a field F and if f,g:V — V are
linear transformations such that, for some prime p € F[X],

prove that f and g are similar.

[Hint. Use the rational decomposition theorem; what are the rational (invariant factor)
canonical matrices of f, g?]

Let A be a square matrix over C and let B,Q be rectangular matrices over C such that
A= PQ and B = QP exist. Given h € C[X], prove that Ah(A) = Ph(B)Q.

[Hint. Argue by induction on degh.]

Deduce that one of the following holds :
my=mg; my=Xmg; mzg=Xm,.

Express the matrix

11 ... 1
2 2 ... 2
rr ... r

as a product of a column matrix and a row matrix. Hence determine its minimum
polynomial.
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DIAGONALISATION; NORMAL TRANSFORMATIONS

We shall now concentrate on the common zeros of the characteristic and minimum
polynomials. These are called the eigenvalues of f. The set of eigenvalues of f is
called the spectrum of f. Associated with the eigenvalues is the following important
notion.

Definition 20.1 Let V be a vector space of dimension n over a field F. Then a linear
transformation f : V — V is said to be diagonalisable if there is an ordered basis
(e;),, of V with respect to which the matrix of f is

A
Aa

An
for some A,,...,A, €F.
We can characterise diagonalisable transformations as follows.

Theorem 20.1 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Then f is diagonalisable if and only if the
minimum polynomial of f is of the form

mp =X —=2)X —=23)- - (X —2Ap)
where A, ..., A, are distinct elements of F.

Proof = :If f is diagonalisable then there is an ordered basis relative to which the
matrix of f is the diagonal matrix

M =diag{A,...,A,}.

Now M has the same invariant factors as f and hence the same minimum polynomial
as f. Let the distinct A; in the above list be A4,...,A4,,. Then it is clear that the
minimum polynomial of M, and hence that of f, is

X=X =22) - (X = 4p).

< : Suppose that the minimum polynomial m; of f is of the stated form. Since
my is the first invariant factor of f, and since all the invariant factors of f divide
my, it is clear that every elementary divisor of f is of the form X —2;. Consequently,
every rational (elementary divisor) canonical matrix of f is diagonal and so f is
diagonalisable. o]

267



268 Module Theory
Applying the primary decomposition theorem (Theorem 19.6) to a diagonalis-
able transformation, we obtain the following result.

Theorem 20.2 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a diagonalisable transformation. Let A,..., A, be the distinct eigen-
values of f and fori=1,...,mlet

Vo, ={x €V f(x)=Aix}.

Then each V,_ is an f-stable subspace of V and

-

V= V}L.

i

1

Proof It suffices to observe that the prime polynomials p; of Theorem 19.6 are the
polynomials X — A;. o]

With the notation of Theorem 20.2, the non-zero elements of V,_are called the
eigenvectors associated with the eigenvalue A;. The f-stable subspace v, is called
the corresponding eigenspace.

e Note that V, =Ker(f —A;idy).

The following result is now immediate; indeed it is often taken as a definition of
a diagonalisable transformation.

Theorem 20.3 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V. — V be a linear transformation. Then f is diagonalisable if and only if V has
a basis consisting of eigenvectors of f. o]

A useful criterion for diagonalisability is the following.

Theorem 20.4 Let V be a non-zero finite-dimensional vector space over a field F and
let f : V — V be a linear transformation. Then f is diagonalisable if and only if there
are non-gero projections py,...,px : V — V and distinct scalars A, ...,A; € F such
that

k k
1) f= ;Aipi (2) ;Pi =idy; (3) (i#J) piep;=0.

k
Proof = :If f is diagonalisable then by Theorem 20.2 we have V = (P V, where

i=1
A1, ..., Ay are the distinct eigenvalues of f, and V, = Ker(f —A, idy ) is the eigenspace
associated with A;. If p; : V — V denotes the associated projection then (2) and (3)
follow immediately from Theorem 6.14. Since Imp; = V,_ we also have, for every
xeV,

1

k k k k
)= F(Zpi) = X F 0] = X Api0) = (X 2w )00

whence (1) follows.
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<« : Conversely, suppose that the conditions hold. Then by Theorem 6.14 we have
k
V = @ Imp;. Now the A; appearing in (1) are precisely the distinct eigenvalues of
i=1
f . For, on the one hand, for every j,

k k
fopj= (; Aipi) op;= ;%(Pi op;)=A;(pjop;) =2
so that (f —A;idy) o p; = 0 whence
{0} #Imp; C Ker(f —A;idy),

showing that each A; is indeed an eigenvalue of f. On the other hand, for every
A € F we have . . )
f=2idy = > Aip; — 2 Api = 2. (A — A)p;
i=1 i=1 i=1
k

so that if x is an eigenvector of f we have ».(A; — A)p;(x) = 0 whence, since
i=1
k
V = @ Im p;, we deduce that (A;,—A)p;(x) =0fori=1,...,k.If now A # A; for any
i=1
k
i then we have p;(x) = 0 for every i and hence the contradiction x = >_ p;(x) =0
i=1
Thus A = A, for some i and consequently A,,..., A, are indeed the distinct eigen-
values of f.

We now observe that in fact

Imp; = Ker(f —A4;idy).

For, suppose that f(x) = A;x; then 0 = Z()L —A;)p;(x) whence (A; —A;)p;(x) =0

i=1

for all i and so p;(x) =0 for i # j. Thus x = Zpi(x) =p;(x) €Imp;.

Thus V = @Ker( f — A;idy) and it follows by Theorem 7.8 that V has a basis

consisting of elgenvalues of f. We therefore conclude by Theorem 20.3 that f is
diagonalisable. o

Definition 20.2 For a diagonalisable transformation f the equality

k
f= Zilipi
i=

of Theorem 20.4 is called the spectral resolution of f.

We shall now consider the problem of deciding when two diagonalisable trans-
formations f, g : V — V are simultaneously diagonalisable, in the sense that there
is a basis of V that consists of eigenvectors of both f and g.
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Theorem 20.5 Let V be a non-zero finite-dimensional vector space over a field F and
let f,g : V — V be diagonalisable transformations. Then f and g are simultaneously
diagonalisable if and only if f og =go f.

Proof = :Suppose that there is a basis {e;, ..., e,} of V that consists of eigenvectors
of both f and g. If, for each i, we have f(e;) = A;e; and g(e;) = u;e; then
(f o g)le) = f(pie)) = mif (&) = piAze;;
(gof)e;) =g(Aie)) = A;8(e;) = Ape,
whence we see that f og and go f agree on a basis of V. It follows that fog = gof.
<« : Conversely, suppose hat f og = gof. Since f is diagonalisable, its minimum
polynomial is of the form
mp = (X = A)(X = Ap) - (X — A,).
Now, by Theorem 20.2,
m
V = PKer(f —A;idy).
i=1

Since f and g commute, we have, for v; € V; = Ker(f — A;idy ),
fle(vl=glf (vi)]=g(Av) = A;8(v;)
from which it follows that
g(v;) € Ker(f —A;idy) =V,

so that each V; is g-stable. Let g; : V; — V; be the F-morphism induced by g. Since g

is diagonalisable, so also is each g;; for, the minimum polynomial of g; divides that

of g. Thus, by Theorem 20.3, we can find a basis B; of V; consisting of eigenvectors

of g;. Since every eigenvector of g; is trivially an eigenvector of g and since every
m

element of V; is an eigenvector of f, it follows that _J B; is a basis of V that consists
i=1
of eigenvectors of both f and g. |
As we shall see, the above result yields an important property of Jordan mor-
phisms that is useful in applications.

We note that if f : V — V is a Jordan morphism then clearly every Jordan
canonical matrix of f can be written as the sum of a diagonal matrix and a matrix
of the form
0
10
1 0

10
If N is of size n x n then it is readily seen that N" = 0. This gives rise to the following
notion.
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Definition 20.3 A linear transformation f : V — V (or a square matrix A) is said to
be nilpotent if, for some positive integer n, f" = 0 (or A" = 0).

Theorem 20.6 [Jordan decomposition theorem ] Let V be a non-gzero finite-
dimensional vector space over a field F and let f : V — V be a Jordan transformation.
Then there is a diagonalisable transformation 6 : V — V and a nilpotent transforma-
tionm : V — V such that f = §+m and § on = nob. Moreover, there exist p,q € F[X]
such that & = p(f) and n = q(f ). Furthermore, 6 and m are uniquely determined, in
the sense that if 5’,m’ : V. — V are respectively diagonalisable and nilpotent transfor-
mations such that f =6’ +n and 8 oy’ =1’ 0 &' then 6’ =& and n' = 1.

Proof Since f is a Jordan transformation its minimum polynomial is of the form

mp=(X—2A)"(X—=2A)" - (X —A,)™
and, by Theorem 20.2, V = @ V; where V; = Ker(f — A;id,)™.Let 6 : V — V be
i=1
the linear transformation given by 6 = . A;p; where p; : V — V is the projection
i=1
on V; parallel to . V;. Since, for v; € V;,
J#i

o(v) = (Zn:lljpj)("i) = AV,
i=

it follows by Theorem 7.8 that V has a basis consisting of eigenvectors of & and so,
by Theorem 20.3, 6 is diagonalisable.
Now let n = f—&. Then for v; € V; we have n(v;) = f (v;)—6(v;) = (f —A;idy)(v;)
and consequently
n™(v;) = (f — A;idy)™(v;) = 0.
It follows that, for some k, Kern* contains a basis of V whence we have that n* = 0
and so 7 is nilpotent.

Since V=P V,, every v € V can be written uniquely in the form
i=1

v=vy+---+v,

with v; € V; for each i. Since each V; is f-stable, we deduce that

(pio V) =pilf () +---+ f ()] = F(v) = (f e p)(v).

Consequently p;o f = fop,; fori=1,...,n and so’
Sof=(XApi)of = XA of)

i=1 i=1
=2 A(fop)

i=1

= fO(iZZnilipi)
= foﬁ,
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It follows from this that
Son=60(f—5)=(50f)—82=(f05)—8>=(f —8)o5=nob.

We now show that there are polynomials p,q such that 6 = p(f) and 1 = q(f).
For this purpose, define

my

(l=1,...,n) ti:(){——ki)mi.

Since t4,...,t, are relatively prime, there exist polynomials a,, ..., a, such that
t1a1+“'+tnan:1. (20.1)

Now let b; = t;a; fori =1,...,n and let v=v; +--- + v, be an arbitrary element of
V, with of course v; € V; for each i. Observing that if j # i then b; is a multiple of
(X —2;)™, we deduce that

G#1)  [bi(v)=0.
It now follows from (20.1) that
(i=1,...,n)  [b:(NH]v) =

Consequently, we have

(i=1,...,n)  [b(NIOV)=v=p;(v)

and so b;(f) = p;. It now follows from the definition of & that 6 = p(f) where
n
p =D A;b;. SInce ) = f — & there is then a polynomial g with n = q(f).
i=1
As for uniqueness, suppose that 6°,n’ : V — V are respectively diagonalisable
and nilpotent transformations such that

f=6"+mn", 8on' =n0d.

We note first that these conditions give f 05’ = &' o f and f o’ =1’ o f. Now, as
we have just seen, there are polynomials p,q such that § = p(f) and n = q(f). It
follows, therefore, that § 08’ = §’ 0§ and non’ = n’ on. Consider now the equality

6—8"=n"—n.

Since 1,1’ commute we can use the binomial theorem to deduce from the fact that
1, n’ are nilpotent that n’ — 7 is nilpotent. On the other hand, since 5,5’ commute,
it follows by Theorem 20.3 that there is a basis of V consisting of eigenvectors of
both § and &’. Each of these eigenvectors is then an eigenvector of § — &’; for if
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5(v) = Av and 6'(v) = A’v then (6 — §')(v) = (A — A)v. Consequently, the matrix
of 6 — &’ with repect to this (suitably ordered) basis is diagonal, say

D = diag{d,,...,d,}.

Since 6 — &’ = 1’ — n, this diagonal matrix is also nilpotent. It follows that some
power of each d; is zero whence every d; is zero and hence

6—6'=n"—-n=0,
from which the uniqueness follows. O

o In the above decomposition f = & +n we call 6 the diagonalisable part and 7
the nilpotent part of the Jordan transformation f.

o Note from the above proof that for each projection p; we have p; = b;(f). We
shall use this observation later.

At this stage we return to our discussion of inner product spaces.

Let V be a finite-dimensional inner product space and let f : V — V be a lin-
ear transformation. We shall now consider the question : under what conditions is
f ortho-diagonalisable, in the sense that there is an orthonormal basis consisting of
eigenvectors of f? Put another way, under what conditions does there exist an or-
dered orthonormal basis of V relative to which the matrix of f is diagonal? Expressed
purely in terms of matrices, this question is equivalent to asking precisely when is a
given square matrix (over R or C) unitarily similar to a diagonal matrix?

In order to tackle this problem, we shal concentrate on direct sum decomposi-
tions and the associated projections (see Section 6). The first preparatory result that
we shall require is the following.

Theorem 20.7 If W,X are subspaces of a finite-dimensional inner product space V
such that V.= W @ X, then V. = W & X*. Moreover, if p is the projection on W
parallel to X then the adjoint p* of p is the projection on X+ parallel to W+.

Proof We note first that if A, B are subspaces of V then
ACB = Bt cah

To see this, it suffices to obseve that every element that is orthogonal to B is clearly
orthogonal to A. Next we note that

(A+B)r =AtnB*, (ANB)t =A' +B*.

In fact, since A,B € A+ B we have (A+ B)' C A" nB*; and since ANB C A,B we
have At + B+ C (AN B)*. SInce then

ANB=(ANB c@at+BYHYt cattnBtt =AnB,

we deduce that AN B = (At + BY)!, whence (ANB)* = A* + B*. The other equality
can be derived from this by replacing A, B by A, B*.
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Using the above observations, we see that if V = W @ X then

Vi=W+X)r=wtnxt;
V={0} =(Wnx)t=wt+x*+,

whence V =W e x*.
Suppose now that p is the projection on W parallel to X. Since, by Theorem
11.10(3),

prep'=(pop) =p’,
we see that p* is a projection. Now since Im p = W and since, from the definition of
adjoint, (p(x)|y) = (x| p*(y)) we see that
y €Kerp* < yew",

so that Kerp* = W+. Now for all x, y € V we have

(xly=p"() = (x1y)—{xIp*(¥))
=(x]y)—=({p(x)]y)
=(x—p()]y).
Since, by Theorem 6.12, Imp = {x € V ; x = p(x)} and Kerp = {x —p(x); x € V},

it follows that
y €lmp* < y € (Kerp)',

so that Imp* = (Kerp)* = X*. Thus we see that p* is the projection on X+ parallel
to W, |

Definition 20.4 By an ortho-projection on an inner product space V we shall mean
a projection p : V — V such that Imp = (Kerp)*.

Theorem 20.8 Let V be a non-gzero finite-dimensional inner product space. If p is a
projection on V then p is an ortho-projection if and only if p is self-adjoint.

Proof By Theorem 6.13, p is the projection on Im p parallel to Ker p; and, by The-
orem 20.7, p* is the projection on Imp* = (Kerp)* parallel to Kerp* = (Imp)*. If
then p is self-adjoint we have p = p* and so Imp = Im p* = (Ker p)*; and conversely,
if Imp = (Kerp)* then Imp = Imp* and

Kerp = (Kerp)*t = (Imp)* = Kerp*,

from which it follows by Theorem 6.12 that p = p*. |

Definition 20.5 Let V;,...,V, be subspaces of the inner product space V. Then we
shall say that V is the ortho-direct sum of V;,...,V, if

1 v= GHEVi;
i=1

(2 (i=1,...,n) Vi=XV.
J#
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Ifv = EB V; and if p; denotes the projection on V; parallel to >, V;, then it is
i=1 J#L
clear that V is the ortho-direct sum of Vi,...,V, if and only if each p; is an ortho-

projection. It is also clear thatif V = @ V; then V is the ortho-direct sum of V3, ..., V,

if and only if every element of V; is orthogonal to every element of V; for j # i; for
then )’ V; € Vii whence we have equality since
J#
dim ), V; =dimV —dimV; = dim V;".
J#
The following result is now immediate from the above definitions and Theorem
20.4.

Theorem 20.9 Let V be a non-zero finite-dimensional inner product space. Then a
linear transformation f : V — V is ortho-diagonalisable if and only if there are ortho-
projections pq,...,px : V — V and distinct scalars A4, ..., Ay such that

k
1) f= ;Aipﬁ

k
(2) X pr=idy;
i=1

(B) (i#J) piep;=0. o
Suppose now that f : V — V is ortho-diagonalisable. Then, applying Theorem

11.10 to the conditions (1), (2), (3) of Theorem 20.9, we obtain, using Theorem
20.8,

kK kK
1) fr= ;lipi = ;&-Pi; 29)=(), @)=

We deduce from this that f* is ortho-diagonalisable and that (1*) gives its spectral
resolution. Thus A4, ..., A, are the distinct eigenvalues of f*. A simple computation
now shows that

k
f°f*=§|ki|zpi=f*°f,

so that ortho-diagonalisable transformations commute with their adjoints.
This leads to the following important notion.

Definition 20.6 If V is a finite-dimensional inner product space and if f : V — V
is a linear transformation then we shall say that f is normal if it commutes with its
adjoint. Similarly, if A is a square matrix over the ground field of V then we say that
Ais normal if AA* = A*A.

We have just observed that a necessary condition for a linear transformation f to
be ortho-diagonalisable is that it be normal. It is remarkable that, when the ground
field is C, this condition is also sufficient. In order to establish this, we require the
following properties of normal transformations.
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Theorem 20.10 Let V be a non-zero finite-dimensional inner product space and let
f 1V =V be a normal transformation. Then

(1) (Vxev) [If Il = I[1fColl;

(2) if p is a polynomial with coefficients in the ground field of V then the transfor-
mation p(f):V — V is also normal,

(8) Imf NnKerf = {0}.

Proof (1) Since f commutes with f* we have, for all x € V,

(FOIFC) = (x| fFLf G = x [ FIF7() = (f7 1 £ (),

from which (1) follows.
(2)If p=apX®+a; X' +--- +a,X" then

p(f)=aoidy +arf +---+a.f
and so, by Theorem 11.10,
[p(f)] = aidy +arf" +--- +a@,(f")"

Since f and f* commute, it is clear that so do p(f) and [p(f)]*. Hence p(f) is
normal.

(8)If x €Im f NKer f then there exists y € V such that x = f(y) and f(x) =0.
By (1) we have f*(x) =0 and so

0=(f"()y)=(x|f(¥)) = (x|x)
whence we see that x = 0. |

Theorem 20.11 Let V be a non-gzero finite-dimensional inner product space. If p is a
projection on V then p is normal if and only if it is self-adjoint.

Proof Clearly, if p is self-adjoint then p is normal. Suppose, conversely, that p is
normal. By Theorem 20.10(1), we then have ||p(x)|| = ||p*(x)|| and so p(x) = 0 if
and only if p*(x) = 0. Given x € V let y = x — p(x). Then

p(y)=p(x)—plp(x)] =p(x)—p(x)=0

and so 0 = p*(y) = p*(x) —p*[p(x)]. Consequently we see that p* = p* o p. It now

follows that
]

p=p” =(p"op) =pop” =piop=p".
Theorem 20.12 Let V be a non-zero finite-dimensional complex inner product space.
If f : V. — V is a linear transformation then the following are equivalent :
(1) f is ortho-diagonalisable;

(2) f is normal
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Proof We have already seen that (1) = (2). As for (2) = (1), suppose that f is
normal. To show that f is diagonalisable it suffices, by Theorem 20.1, to show that
the minimum polynomial m of f is a product of distinct linear polynomials. Since
C is algebraically closed, m, is certainly a product of linear polynomials. Suppose,
by way of obtaining a contradiction, that ¢ € C is a multiple root of my, so that

my = (X —c)’g
for some polynomial g. Then
(Vxev) 0=mu(x)=[(f—cidy)*og(f)I(x)

and consequently [(f —cidy)o g(f)](x) belongs to both the image and the kernel of
f —cidy. Since, by Theorem 20.10(2), f —cidy is normal, we deduce by Theorem
20.10(3) that

(VxeVv)  [(f —cidy)og(f)I(x)=0.

Consequently (f —cidy)o g(f) is the zero transformation on V. This contradicts the
fact that (X —c)?g is the minimum polynomial of f. Thus we see that f is diagonal-
isable.

To show that f is ortho-diagonalisable, it is enough to show that the projections
p; corresponding to Theorem 20.4 are ortho-projections; and by Theorem 20.8 it is
enough to show that these projections are self-adjoint.

Now since f is diagonalisable it is a Jordan transformation and clearly coincides
with its diagonal part as described in Theorem 20.6. In the proof of that result, we
observed that there existed a polynomial b; such that b;(f) = p;. We thus see by
Theorem 20.10(2) that the projections p; are normal. It now follows by Theorem
20.11 that each p; is self-adjoint. |

Corollary 1 If A is a square matrix over C then A is unitarily similar to a diagonal
matrix if and only if A is normal. O

o It should be noted that in the proof of Theorem 20.12 we used the fact that C
is algebraically closed. This is not so for R and we might expect that the corre-
sponding result in the case where the ground field is R is false in general. This
is indeed the case : there exist normal transformations on a real inner prod-
uct space that are not diagonalisable. One way in which this can happen, of
course, is when the transformation in question has all its eigenvalues complex.
For example, the reader will verify that the matrix

|: —1 —@ :| |: cos —sin 2 }
T a2 2
g -1 sin¥  cos 3¢
has minimum polynomial X2 + X + 1, which is irreducible over R. In order to
obtain an analogue for Theorem 20.12 in the case where the ground field is R,

we asre therefore led to consider normal transformations whose eigenvalues
are all real.
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Theorem 20.13 Let V be a non-zero finite-dimensional complex inner product space.
If f 1V — V is a linear transformation then the following are equivalent :

(1) f is normal and every eigenvalue of f is real;
(2) f is self-adjoint.

Proof (1) = (2) : If f is normal then by Theorem 20.12 it is diagonalisable. Let
k

f = A;p; be its spectral resolution. We know that f* is also normal with spectral
i=1

resolution f* = Z Al p;. Since each A, is real by hypothesis, we deduce that f = f*.
2)=(1): If f f then it is clear that f isnormal. If the correspondlng spectral

resolutions are f = Z A;p; and f* = Z 2;p; then f = f* gives Z(A —A)p; =0
i=1 i=1 i=1
and so

k _
(YxeV) Z(Ai —2A)pi(x)=0,
i=1

— k
whence (A; — A;)p;(x) = 0 for each i since V = @ Imp,. Since no p; is zero, we
i=1

deduce that A; = )L_l for every i. Consequently every eigenvalue of f is real. O
Corollary 1 All eigenvalues of a hermitian matrix are real. ol

We can now describe the ortho-diagonalisable transformations on a real inner
product space.

Theorem 20.14 Let V be a non-zero finite-dimensional real inner product space. If
f 1V = V is a linear transformation then f is ortho-diagonalisable if and only if f is
self-adjoint.

k
Proof = :If f is ortho-diagonalisable then, as in Theorem 20.9, let f = > A;p;.

i=1
Since the ground field is R, every A, is real and so, taking adjoints and using Tlheorem
20.8, we obtain f = f”.

& : Suppose conversely that f is self-adjoint and let A be the (n x n say) matrix
of f relative to some ordered orthonormal basis of V. Then A is symmetric. Now let
f’ be the linear transformation on the complex inner product space C" whose matrix
relative to the natural ordered orthonormal basis of C" is A. Then f’ is self-adjoint.
By Theorem 20.13, the eigenvalues of f’ are all real and, since f’ is diagonalisable,
the minimum polynomial of f’ is a product of distinct linear polynomials over R.
Since this is then the minimum polynomial of A, it is also the minimum polynomial
of f. Thus we see that f is diagonalisable. That f is ortho-diagonalisable is shown
precisely as in Theorem 20.12. |

Corollary 1 If Ais a square matrix over R then A is orthogonally similar to a diagonal
matrix if and only if A is symmetric. O
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We now turn our attention to a useful alternative characterisation of a self-adjoint
transformation on a complex inner product space. For this purpose, we observe the
following result.

Theorem 20.15 Let V be a complex inner product space. If f : V. — V is linear and
such that (f(x)|x) =0 forall x €V then f = 0.

Proof For all z € V we have
0={(fy+2)ly+z) =2+ {f=)]y);
0={(f(iy+2)liy +2) =i(f(¥)|z) —i{f ()| ¥),
from which it follows that (f (y)|z) =0. Then f(y)=0forall y € V and so f =0.
o}

Theorem 20.16 Let V be a finite-dimensional complex inner product space. If f : V —
V is linear then the following are equivalent :

(1) f is self-adjoint;

(2) (YxeV) {f(x)|x) eR

Proof (1)= (2):If f is self-adjoint then, for every x € V,

(FOx) = {F()[x) = (x| f7(x)) = (F(x) [ x),

from which (2) follows.
(2) = (1) : If (2) holds then

(Fr)x) = (x| f(x)) = (£ [x) = (f(x) | x)

and consequently

((f" =) x) = {f"(x)x) = (f(x) | x) =0.
Since this holds for all x € V, it follows by Theorem 20.15 that f* = f. |
These results lead to the following notion.

Definition 20.7 If V is an inner product space then a linear mapping f : V — V is
said to be positive (or semi-definite) if it is self-adjoint and such that (f(x)|x) = 0
for every x € V; and positive definite if it is self-adjoint and (f (x)|x) > 0 for every
non-zero x € V.

Theorem 20.17 IfV is a non-zero finite-dimensional inner product space and f : V —
V is a linear transformation then the following are equivalent :

(1) f is positive;

(2) f is self-adjoint and every eigenvalue is real and > 0;

(3) there is a self-adjoint g : V — V such that g% = f;

(4) thereis a linear map h: V — V such that h* oh = f.
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Proof (1) = (2): Let A be an eigenvalue of f. By Theorem 20.13, A is real. Then

0 < (f(x)[x) = (Ax[x) = A(x|x)

gives A > 0 since (x| x) > 0.
(2) = (3) : Since f is self- adjoint it is normal and hence is ortho-diagonalisable.

Let its spectral resolution be f = Z A;p; and, using (2), define g : V — V by

g= ZJT%

Since the p; are ortho-projections and hence self-adjoint, we have that g is self-
adjoint. Also, since p; o p; = 0 for i # j, it follows readily that g2=f.

(8)=>(4): Takeh=g.

(4)= (1) : Observe that (h*oh)* =h*oh™ =h*oh and, forallx €V,

(R*[R(x)]]x) = (h(x)[h(x)) = 0.

Thus we see that h* o h is positive. O

It is immediate from Theorem 20.17 that every positive linear transformation
has a square root. That this square root is unique is shown as follows.

Theorem 20.18 Let f be a positive linear transformation on a finite-dimensional inner
product space V. Then there is a unique positive linear transformation g : V. — V such
that g2 = f. Moreover, there is a polynomial q such that g = q(f).

Proof Letf = Z A;p; be the spectral resolution of f and define g by g = Z VA;p;.
i=1
Since this must be the spectral resolution of g, it follows that the elgenvalues of g

are 4/A; fori =1,...,k and so, by Theorem 20.17, g is positive.
Suppose now that h : V — V is also positive and such that h? = f. If the spectral
m

resolution of h is D u;q ; where the q; are orthogonal projections then we have
j=1 k
Z Aipl f hz Z ILL q]
i=1

Now the eigenspaces of f are Imp; fori =1,...,k and also Imgq; for j =1,...,m. It
follows that m = k and that there is a permutation o on {1, ..., k} such that g, ;) = p;
whence ,ufr(l.) = A;. Thus uy(;) = v/ A; and we deduce that h = g.

The final assertion follows by considering the Lagrange polynomials

p_
CoE A A

k
Since P;(1,) = §;,, the polynomial ¢ = 3 1/A;P; is then such that q(f) = g. |
i=1
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Corollary 1 The following are equivalent :
(1) f is positive definite;
(2) f is self-adjoint and all eigenvalues of f are real and > 0;
(3) there is an invertible self-adjoint g such that g2 = f;
(4) there is an invertible h such that h* oh = f.

Proof This is clear from the fact that g is invertible if and only if 0 is not one of its
eigenvalues. o

Corollary 2 If f is positive definite then f is invertible. O

Of course, the above results have matrix analogues. A square matrix that repre-
sents a positive transformation is called a Gram matrix. The following characterisa-
tion of such matrices is immediate from the above.

Theorem 20.19 A square matrix is a Gram matrix if and only if it is self-adjoint and
all its eigenvalues are real and greater than or equal to 0. O

By Theorem 20.12, the ortho-diagonalisable transformations on a complex in-
ner product space are precisely the normal transformations; and by Theorem 20.14
those on a real inner product space are precisely the self-adjoint transformations.
It is natural at this point to ask about the normal transformations on a real inner
product space; equivalently, to ask about real square matrices that commute with
their transposes. In particular, can we determine canonical forms for such matrices
under orthogonal similarity? The following sequence of results achieves this goal.
As a particular case, we shall be able to determine a canonical form for orthogonal
matrices.

Definition 20.8 If V is a finite-dimensional real inner product space and if f : V —
V is a linear transformation then we shall say that f is skew-adjoint if f* = —f.
The corresponding terminology for real square matrices is skew-symmetric; for, the
entries of A being real, A* = —A becomes A® = —A.

Theorem 20.20 If V is a non-zero finite-dimensional real inner product space and if
f :V = Vis alinear transformation then there is a unique self-adjoint transformation
g : V = V and a unique skew-adjoint transformation h : V. — V such that f = g +h.
Moreover, f is normal if and only if g and h commute.
Proof Clearly, we have f = %(f +f)+ %(f — f*) where %(f + f*) is self-adjoint
and %(f — f*) is skew-adjoint.
Suppose then that f = g + h where g is self-adjoint and h is skew-adjoint. Then
f*=g"+h* = g—h and consequently we see that g = %(f +f*)and h = %(f —f).
If now f is normal then f o f* = f* o f gives

(g+h)o(g—h)=(g—h)o(g+h),
which reduces to g oh =ho g. Conversely, if goh =ho g then
fof'=(g+h)o(g—h)=g*+hog—goh—h*=g*>—h’
and likewise f* o f = g2 —h?. o]
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e In the above expression for f we call g the self-adjoint part and h the skew-
adjoint part of f.

A useful characterisation of skew-adjoint transformations is the following.
Theorem 20.21 If V is a non-gero finite-dimensional real inner product space wnd if
f :V — V is a linear transformation then the following are equivalent :

(1) f is skew-adjoint;

(2) (VxeV) (f(x)|x)=0.

Proof (1) = (2):If f is skew-adjoint then, since we are dealing with a real inner
product space, given x € V we have

(FO)x) = (x| f7(x)) = (x| = f(x)) = —(x [ f(x)) = —(f (x) [ x).

It follows that (f (x)|x) =0.
(2)= (1) : If (2) holds then for all x, y € V we have

0= (f(x+y)x+y) = (fO)x)+{fCIy)+{FO)Ix)+{FO)y)
= (f)y) +{(F()x)

whence we obtain

(Fy) == Dx) == f(¥) = (x| =f(¥))-
It now follows by the uniqueness of adjoints that f* = —f. O

Since the main results of our immediate discussion to follow stem from applica-
tions of the primary decomposition theorem (Theorem 19.6), the notion of minimum
polynomial will play an important r6le. Now as the ground field in question is R and
since R[X] is a unique factorisation domain, every non-zero polynomial with real
coefficients can be expressed as a product of powers of distinct irreducible polyno-
mials. For our future work, we note that a monic polynomial over R is irreducible if
and only if it is of the form X —a or X% — (z +2)X + 2Z for some z € C \ R. In fact, if
z € C\R, say z = a+ib with b # 0, then the polynomial

X2 —(24+2)X +22 =X?>—2aX + (> + b?)

is readily seen to be irreducible over R. Conversely, suppose that the monic polyno-
mial p is irreducible over R and that p # X — a. Since C is algebraically closed, we
can find z € C that is a zero of p. Then since ;Tz) = p(2) we see that z is also a zero
of p. It follows that the polynomial

X2 —(z4+2)X+22=(X—-2Z)(X —2)

is a divisor of p; moreover, we cannot have z € R since otherwise X —z € R[X]
would be a divisor of p in R[X], contradicting the fact that p is irreducible.
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Theorem 20.22 If V is a non-gero finite-dimensional real inner product space and if
f V. = V is a normal transformation then the minimum polynomial of f is of the
k

form [ | p; where p, ..., py are distinct irreducible polynomials.
i=1

Proof Since R[X] is a unique factorisation domain, we can express the minimum
k

polynomial of f in the form m,; = I plT"" where p,,...,p, are distinct irreducible
i=1

polynomials. We have to show that every m; = 1. Suppose, by way of obtaining

a contradiction, that for some i we have m; > 2. Let M; = Ker[p;(f)]™, so that

[p;(f)]™i(x) = O for every x; € M;. Then we have

(YxeM;) [p:(f)1™(x) € Imp;(f ) NKer p;(f).

But since f is normal so is p;(f) by Theorem 20.10(2). It now follows by Theorem
20.10(3) that the restriction of [p;(f)]™ to M; is the zero transformation. But, by
the primary decomposition theorem, [p;(f)]™ is the minimum polynomial of the
transformation induced on M; by f. From this contradiction we therefore deduce
that each m; must be 1. |

Concerning the minimum polynomial of a skew-adjoint transformation, we have
the following result.

Theorem 20.23 Let V be a non-zero finite-dimensional real inner product space and
let f :V — V be a skew-adjoint transformation. If p is an irreducible factor of the
minimum polynomial of f then either p =X or p = X2 + c2 for some ¢ # 0.

Proof Since skew-adjoint transformations are normal, it follows by Theorem 20.22
k

that the minimum polynomial of f is of the form l—[ p; Where p,...,p; are distinct
irreducible polynomials. We also know that elther pl is linear or p; is of the form
—2a;X + (a? +b?)

where b; # 0.

Suppose that p; is not linear and let M; = Kerp;(f) be the corresponding pri-
mary component of f. If f; denotes the restriction of f to M; then, by the primary
decomposition theorem, the minimum polynomial of f; is p; and so

0=p;(f) =2 —2a;f +(al + b})idy,
Since f is skew-symmetric, so also is f; and consequently we have
0=f>—2af +(a’ +b?)id = f? + 2a;f + (a + b})id.

These equalities give 4a; f; = 0 whence we deduce that a; = 0; for otherwise f; =0
whence the minimum polynomial of f; is p; = X, contradicting the hypothesis. Thus
we see that p; reduces to

where b? > 0 since b; # 0.
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Suppose now that p; is linear, say p; = X — a;. Then we have f; = q;id and
consequently f* = q;id = f;. But f; is skew-adjoint, so f* = —f;. It follows that
0 = f; = a;id whence a; = 0 and so p; = X. |
Corollary 1 If f is skew-adjoint then the minimum polynomial of f is given as follows :

(1) if f =0 then m; =X;

(2) if f is invertible then

my = (x2 +cf)(X2 +c§)~~(X2 +c,f)
for distinct real numbers cq,...,c;

(8) if f is neither zero nor invertible then

mp=(X*+ )X +¢3) - (XP+ X
for distince real numbers cq, ..., C.

Proof This is immediate from Theorems 20.22, 20.23, and Corollary 3 of Theorem
19.17 on noting that, since the characteristic and minimum polynomials have the
same zeros, the constant term in the characteristic polynomial is non-zero if and
only if the constant term in the minimum polynomial is non-zero. O

Concerning the primary components of a skew-adjoint transformation, we shall
require the following result.

Theorem 20.24 If V is a non-gero finite-dimensional real inner product space and if
f V= V is a skew-adjoint transformation then the primary components of f are
pairwise orthogonal.

Proof Let M;,M; be primary components of f with i # j. If f;, f; are respectively
the transformations induced on M;, M; by the restrictions of f to M;, M; suppose
first that the minimum polynomials of f;, f; are X* +c?,X* + ¢} where ¢;, c; # 0 and
ci2 # cJZ. Then for all x; € M; and x; € M; we have

(f2 + c2id)(x) | x;)
fz(xi)lxj> + Ciz(xi [ x;)

0=

=

= (fe) = f(x)) + Ci2<xi | ;)
(
(

X; |f2(xj)> + Ci2<xi |x;)
xi | ) + x| x;)
(x| _Cjzxj> + e {x; 1 x))

j
= (Ciz —Cf)(xi |Xj>-

Since ¢ # ¢} we deduce that (x;|x;) =0.
Suppose now that the minimum polynomial of f; is X2 + ci2 with ¢; # 0 and
. . 2 . . .. .
that of f; is X. Replacing fj (x;) by 0 in the above string of equalities, we obtain
0 = c?(x; | x;) whence again (x; | x;) = 0. o]
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In order to establish our main result on skew-adjoint transformations, we require
the following general result.

Theorem 20.25 Let W be a subspace of a non-gero finite-dimensional inner product
space V and let f : V — V be a linear transformation. Then W is f -stable if and only
if Wt is f*-stable.

Proof By Theorem 11.12 we have V=W & W=, If W is f-stable then

(VxeW)(VyeWw")  (xIf* () =(()]y)=0

whence we see that f*(y) € W+ for all y € W+, so that W+ is f*-stable. Applying
this observation again, we obtain the converse; for if W+ is f *-stable then W = W+
is f** = f-stable. o]

Theorem 20.26 Let V be a non-zero finite-dimensional real inner product space and
let f : V — V be a skew-adjoint transformation whose minimum polynomial is X2 + b
where b # 0. Then dimV is even and V is an ortho-direct sum of f-cyclic subspaces
each of dimension 2. Moreover, there is an ordered orthonormal basis of V with respect
to which the matrix of f is

0 —b
b 0

0 —b
i b 0|
Proof Let y be a non-zero element of V. Observe first that f(y) # Ay for any
A; for otherwise, since f2(y) = —b%y, we would have A2 = —b? and hence the
contradiction b = 0. Let W, be the smallest f-stable subspace containing y. Since
f2(y) = —b%y, we see that W; is f-cyclic of dimension 2, a cyclic basis for W;
being {y, f (¥)}. Consider now the decomposition V = W, & Wll. This direct sum
is orthogonal. By Theorem 20.25, WlL is f*-stable and so, since f* = —f, we se
that WlL is also f -stable, of dimension dimV — 2. Now let V| = WlL and repeat the
argument to obtain an orthogonal direct sum V; = W, & WZL of f-stable subspaces
with W, f-cyclic of dimension 2. Continuing in this manner, we note that it is not
possible in the final such decomposition to have dim WkL = 1. For, if this were so
then WkL would have a singleton basis {z} whence f(z) ¢ W, a contradiction. Thus
Wkl is also of dimension 2. It follows that dim V' is even.
We now construct an orthonormal basis for each of the f-cyclic subspaces W; in
k
the ortho-direct sum representation V = € W;. Consider the basis {y;, f (y;)} of W,.
i=1

i=
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Since (y; | f(¥;)) = 0 we obtain, via the Gram-Schmidt orthonormalisation process,
an ordered orthonormal basis

(Y fO)
B= {5 oo

for W;. Now

FODIIP = = F ) == L) = b2lyill?
and so this orthonormal basis is

(e fO)
B = iyl iyl
Since now
f(L)z o4 f00).

Iyill Iyl bllyill’

f(f(.yi))z_b Yi +Of(.yi)’
bllyill Iyl bllyill
it follows that the matrix of f relative to B; is

0—b
b 0]
k
It is now clear that | J B; is an ordered orthonormal basis of V with respect to which

i=1
the matrix of f is of the form stated. |

Corollary 1 If V is a non-zero finite-dimensional real inner product space an if f :
V — V is a skew-adjoint transformation then there is an ordered orthonormal basis of
V' with respect to which the matrix of f is of the form

Mlc,]

M(c, ]

iy

where cq, ..., c, are distinct positive real numbers and M([c;] is either a zero matrix or
a matrix as illustrated in Theorem 20.26.

Proof It suffices to combine the Corollary to Theorem 20.23 with Theorems 20.24
and 20.26. o

Corollary 2 A real square matrix is skew-symmetric if and only if it is orthogonally
similar to a matrix of the form given in Corollary 1. |
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Let us now turn to the general problem of a normal transformation on a real
inner product space. Recall by Theorem 20.20 that such a transformation f can
be expressed uniquely as f = g + h where g is self-adjoint and h is skew-adjoint.
Moreover, by Theorem 20.14, g is ortho-diagonalisable.

Theorem 20.27 Let V be a non-zero finite-dimensional real inner product space and
let f : V — V be a normal transformation whose minimum polynomial is the irre-
ducible quadratic

mf=X2—2aX+(a2+b2) (b#0).

If g, h are respectively the self-adjoint and skew-adjoint parts of f then
(1) h is invertible;
(2) my =X —a;
(3) m, =X?+ b2

Proof (1) Suppose, by way of obtaining a contradiction, that Kerh # {0}. Since f
is normal, we have g o h = h o g by Theorem 20.20. It follows from this that Kerh
is g-stable. Since f = g + h, the restriction of f to Kerh coincides with that of g. As
Kerh is g-stable, we can therefore define a linear transformation f’ : Kerh — Kerh
by the prescription

f) = f(x)=g(x).

Since g is self-adjoint, so is f’. By Theorem 20.14, f’ is then ortho-diagonalisable
and so its minimum polynomial is a product of distinct linear factors. But m;, must
divide m; which, by the hypothesis, is irreducible. This contradiction therefore gives
Kerh = {0} whence h is invertible.

(2) Since f = g+ h with g* = g and h* = —h we have f* = g — h, whence
f2—2af +(a?+b?)id, =0 and (f*)*> —2af* + (a® + b?)id, = 0 and consequently
f2=(f*)*=2a(f — f*) = 4ah. Thus, since f commutes wuith f*, we see that

goh=3(f+f)e3(f —f)=31f*~(fY)=ah

and so (g—aidy)oh = 0. Since h is invertible by (1), we then have that g—aid, =0
whence m, =X —a.
(3) Since f —h = g =aid, we have f =h+aid, and so

0 = f2—2af +(a®+b?)idy

= (h+aidy)?—2a(h +aidy) + (a® + b?)idy
— 12+ b2id, .

Now h is skew-adjoint and by (1) is invertible. It therefore follows by the Corollary
to Theorem 20.23 that m, = X2 + b2, o

We now extend Theorem 20.24 to normal transformations.

Theorem 20.28 If V is a non-zero finite-dimensional real inner product space and if
f :V = V is a normal transformation then the primary components of f are pairwise
orthogonal.
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Proof By Theorem 20.22, the minimum polynomial of f has the general form

k
ms = (X —ap) [!(Xz—ZaiX+ai2 +b3)

where each b; # 0. By Theorem 19.6, the primary components of f are
M, =Ker(f —ayidy),
(i=1,...,k) M; =Ker[f?—2a;f + (a? + b} idy ];

moreover, the restriction of f to M; fori =0,..., k induces a normal transformation
f; : M; = M; the minimum polynomial of which is X —a, if i = 0 and X*—2a,X +a’+
bl.2 otherwise. Note that each f; is normal so that f; = g; + h; where g; is self-adjoint
and h; is skew-adjoint. Now g; and h; coincide with the mappings induced on M; by
g and h where g is the self-adjoint part of f and h is the skew-adjoint part of f. To
see this, let these induced mappings be g’, h’ respectively. Then for every x € M; we
have
8i(x) +h(x) = fi(x) = f (x) = g(x) + h(x)

and so g; — g’ = h’ — h;. Since the left-hand side is self-adjoint and the right-hand
side is skew-adjoint, we deduce that g; = g’ and h; = h’.

Suppose now that i,j > 0 with i # j. Then m; = X* —2a,X + a? + b? and
my = X?—2a;X +a} + b, j?, where either a; # a; or b? # b?. By Theorem 20.22,
we have

— Y —q. Y _a. — w2 12 — w2 }2
mg =X —a;, mg =X—a;, my =X + by, my, =X +bj.

Given x; € M; and x; € M;, we therefore have

0= ((hi2+ biz idvi)(xi”xj) = <h2(xi)|xj> + bi2<xi |Xj)
= <Xi|h2(xj)> + bi2<xi|xj>
= (x; |h]2‘(xj)> + bi2<xi [x;)
= _b?<xi|xj> + bi2<xi|xj)

— (h2_ 12
- (bl - bj)<xi |xj B
so that in the case where b? # b? we have (x; | x;) = 0. Likewise,

0=((g; —a;idy)(x;) | x;) = (g(x;)x;) + a;(x;]x;)
= (x;1g(x;)) + a;{x; | x;)
= (x;1g;(x;)) + a;{x;|x;)
a;(x; | x;) + a;{x; | x;)
(aj_ai)<xi |xj>;
so that in the case where a; # a; we have (a;|a;) = 0. We thus se that Mj, ..., M
are pairwise orthogonal. That M, is orthogonal to each M; with i > 1 follows from

the above strings of equalities on taking j = 0 and using the fact that f, = ayidy is
self-adjoint and therefore g, = f, and hy = 0. o]
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We can now establish a canonical form for real normal matrices.

Theorem 20.29 Let V be a non-zero finite-dimensional real inner product space and
let f : V — V be a normal transformation. Then there is an ordered orthonormal basis

of V relative to which the matrix of f is of the form

Ay

[Ak

where each A; is either a 1 x 1 matrix, or a 2 x 2 matrix of the form
a —p
p a

Proof With the same notation as used above, let

in which 8 # 0.

k
ms = (X —ap) [!(XZ—ZaiX+ai2 +b3)

and let the primary components of f be M; fori =0,...,k. Then

mf:

i

X*—2a;X +a?+b? otherwise.

Given any M; with i # 0, we have f; = g; + h; where the self-adjoint part g; is
such that my, = X —a;, and the skew-adjoint part h; is such that m;, = X* + b?.
By Theorem 20.26, there is an ordered orthonormal basis B; of M; with respect to

which the matrix of h; is

[0 —b,
by 0

M[b;] = b, 0

0 _bi
| b 0

Since the minimum polynomial of g; is X —a;, we have g;(x) = a;x for every x € B;
and so the matrix of g; relative to B; is the diagonal matrix all of whose entries are

a;. It now follows that the matrix of f; = g; + h; relative to B; is
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Mla;, b;]= b a

In the case where i = 0, we have f, = a,idy so f is self-adjoint, hence ortho-
diagonalisable. There is therefore an ordered orthonormal basis with respect to
which the matrix of f, is diagonal.

Now by Theorem 20.28 the primary components of f are pairwise orthogo-
nal. Stringing together the above ordered orthonormal bases for My, M, ..., M, we
therefore obtain an ordered orthonormal basis for V with respect to which the matrix
of f is of the form stated. |

Corollary 1 A real square matrix is normal if and only if it is orthogonally similar to
a matrix of the form described in Theorem 20.29. o]

Let us now turn our attention to orthogonal transformations on real inner prod-
uct spaces. Recall that f is orthogonal if f ! exists and is f*. An orthogonal transfor-
mation is therefore in particular a normal transformation. So our labours produce a
bonus : we can use the above result to determine a canonical form for orthogonal
matrices.

Theorem 20.30 Let V be a non-zero finite-dimensional real inner product space and
let f : V — V be an orthogonal transformation. Then there is an ordered orthonormal
basis of V with respect to which the matrix of f is of the form

I

_Ip

7
_ T

in which each P; is a 2 x 2 matrix of the form
a—p
B «a

Proof With the same notation as in the above, the matrix M(a;, b;) that represents
f; relative to the ordered orthonormal basis B; is an orthogonal matrix (since f; is
orthogonal). Multiplying this matrix by its transpose, we obtain an identity matrix

where 8 # 0 and a? + B2 = 1.
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and, equating the entries, we see that al.2 + bl.2 = 1. As for the primary component
M,, the matrix of f; is diagonal. Since the square of this diagonal matrix must then
be an identity matrix, its entries have to be £1. We can now rearrange the basis to
obtain a matrix of the required form. |

The results of this section have applications to a variety of problems that occur
in other areas of mathematics. By way of illustration, we mention that orthogonal
transformations have applications in the study of finite symmetry groups, and the
Jordan decomposition theorem is useful in obtaining solutions of systems of simulta-
neous first order linear differential equations with constant coefficients. Whilst these
and other applications are largely another story, we shall end this section with a brief
description of an application to the study of quadratic forms. These in turn have im-
portant applications in number theory and in cartesian geometry. In the course of our
discussion, we shall shed light on another equivalence relation on square matrices
relative to which we shall seek a useful canonical form.

Suppose then that V is a vector space of dimension n over a field F and let
f 1V xV — F be a bilinear form on V. If (¢;), is an ordered basis of V then by the
matrix of the bilinear form f relative to (e;), we shall mean the matrix A = [a;; ],xn
given by

a;j =f(€i,€j)-
n n
If x = D) x;e; and y = D y;e; then, by the bilinearity of f, we have
i=1 i=1
n n n
flx,y)= z;z;xiyjf(e,,ej)= 'leiyjaij. (20.2)
i=1j= L]=

Conversely, given any n x n matrix A = [a;;] over F, it is clear that (2) defines a
bilinear form f on V whose matrix relative to (e;), is A.

e In what follows we shall commit the usual abuse of identifying a scalar A with
the 1 x 1 matrix [A]. In this way, we can write (1) as

Y1
fay) =[x .. xJA| 1 | =x4y.
Yn

Example 20.1 Let f : F" x F" — F be given as follows : for x = (x4,...,x,) and
n

Y =1, yn) let f(x,y) = D x;;. It is readily seen that f is bilinear; in fact,

i=1

4
fOGy)=1[x1 o x,]
Yn

Let (e;), be the natural ordered basis of F". Then the matrix of f relative to (e;), is
simply I,.
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Example 20.2 The matrix

A=

o O O
O O
O R B

gives rise to the bilinear form f : R® x R® — R described by

Fxy)=x1(y2+y3) + x2¥3.

It is natural to ask how the matrix of a bilinear form is affected when we change
reference to another ordered basis.

Theorem 20.31 Let V be a vector space of dimension n over a field F. Let (e;),, and
(e!), be ordered bases of V. If f : V xV — F is a bilinear form on V and if A= [a;;],xn
is the matrix of f ralative to (e;), then the matrix of f relative to (e;), is P'AP where

P = Mat[idy, (¢/), (€:),]
is the matrix that represents the change of basis from (e;), to (e;),.

n
Proof We have e; = Zpijel- forj=1,...,n and so
i=1

f(el{a e;) = f( Pnepkz pkjek)
-1

I
M=
M= LDM=

ptipkjf(et:ek)

,,
I
-
~
Il
-

|
M=
M=

PtiPkj4¢j

.-,
Il
—
~
Il
—

Il
M-
i
A~
%
Q
>
<
e
N—

Il
5
kE

from which the result follows. o}

Definition 20.9 If A,B are n x n matrices over a field F then we shall say that B is
congruent to A if there is an invertible matrix P over F such that B = P'AP.

It is clear that the relation of being congruent is an equivalence relation on
Mat,,(F).

Definition 20.10 A bilinear form f : V x V — F is said to be symmetric if
(Ve,yeV)  flx,y)=f(y,x).

It is clear that the matrix of a symmetric bilinear form is itself symmetric, and
conversely that every symmetric matrix yields a symmetric bilinear form.
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Definition 20.11 Let V be a vector space over a field F. Then a mappingQ :V — F
is called a quadratic form on V if there exists a symmetric bilinear form f : VxV — F
such that

(VxeV)  Qlx)=f(x,x).

In what follows, we shall restrict our attention to the real field R. Our reason for
so doing is, quite apart from the fact that most applications involve R, that certain
difficulties have to be avoided when the ground field is of characteristic 2. Indeed,
instead of working with R we could work with any field that is not of characteristic
2; but in what we shall discuss no great advantage would be gained in so doing.

Given a symmetric bilinear form f : V x V — R, we shall denote by Q; : V —> R
the quadratic form given by

(VxeV)  Qr(x)=f(x,x).

Theorem 20.32 Let V be a vector space over R. If f : V xV — R is a symmetric
bilinear form then

(1) VAER)Vx€V)  Qp(Ax)=2A%Q;(x);
2) (Vx,yeV)  flx,y)=3[Q(x +¥)—Qr(x)—Q;(1)];
(3) (Vx,yeV)  fl,y)=3[Q(x+y)—Qr(x—y)]
Proof (1):Q(Ax) = f(Ax,Ax)=A*f(x,x) = A*Qs(x).
(2) : Since f is symmetric we have
Qrx+y)=flx+y,x+y) = flx, )+ f(x,y)+f(y, )+ f(¥,¥)
= Qs (x)+2f (x,y)+ Qs (¥),

whence (2) follows.
(3) : By (1) we have Q(—x) = Q;(x) so that, by (2),

Qr(x=y)=Qs(x)=2f(x,y) + Qs(¥)

and consequently Q¢ (x +y) —Qs(x —y) = 4f (x, ). g

Corollary 1 A real quadratic form on V is associated with a uniquely determined sym-
metric bilinear form.

Proof Suppose that Q : V — R is a quadratic form that is associated with both the
symmetric bilinear forms f,g : V x V. — R. Then clearly Q = Q; = Q, and so, by
Theorem 20.32(2), we deduce that f = g. ]

Example 20.3 The bilinear form of Example 20.1 is clearly symmetric. In the case
where F = R the associated quadratic form is given by

WxeV) Q) =flxx)= 3
i=1
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Theorem 20.33 Let V be a vector space of dimension n over R and let (e;), be an
ordered basis of V. If f : V x V. — R is a symmetric bilinear form on V, if Q; is the
associated quadratic form, and if A = [a;;],x, is the (symmetric) matrix of f relative

n
to (e;)y, then for all x = Y x;e; € V we have
i=1

n
Qr(x)= 2} x;xjay;.
i.j=1
Conversely, if A = [a;;],xn is a real symmetric matrix then the above prescription defines
a real quadratic form Q; on V such that A is the matrix of the associated symmetric
bilinear form relative to the ordered basis (e;),.

Proof The first part is clear since Q;(x) = f(x,x). As for the converse, we note
that the mapping f : V x V — R given by

n
flx,y)= Z XiY;Qj
i,j=1
is (as is readily verified) symmetric and bilinear with f (e;, ¢;) = a;;. The associated
quadratic form is precisely Q. |

o By the matrix of a real quadratic form we shall mean, by an abuse of language,
the matrix of the associated symmetric bilinear form.

Example 20.4 The mapping Q : R? — R given by
) 2 4 3 |[x
Qe y) =ax+6xy+9y° =[x ] 3 5 ||

is a quadratic form on R?. The associated symmetric bilinear form is the mapping
f : R? x R? - R given by

f((X,}’); (X/,y/)) = %[Q(X+X/:.y"f‘y/)_Q(X;}’)_Q(X/:J’/)]
= 4xx’+3(xy’ +x'y)+9yy’.

As we have seen in Theorem 20.33, for every quadratic form Q : V — R with
associated matrix A relative to an ordered basis (e;), of V,

X1

n
Q(X): Z XiX;Q;; = [Xl Xn]A
ij=1

Xn

Our aim now is to determine a canonical form for real symmetric matrices under con-
gruence. This will allow us to obtain a simpler formula for Q(x) (relative, of course,
to a specific ordered basis). This we achieve by means of the following result, at the
heart of whose proof lie the facts that a real symmetric matrix is ortho-diagonalisable
(Corollary to Theorem 20.14) and that its eigenvalues are all real (Corollary to The-
orem 20.13).
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Theorem 20.34 If Ais a real n x n symmetric matrix then A is congruent to a unique
matrix of the form

—I

S

0

Proof Since A is real symmetric it is ortho-diagonalisable and its eigenvalues are
all real. Let the positive eigenvalues be A{,..., A, and let the negative eigenvalues
be —A,.1,...,—A.4. Then there is a real orthogonal matrix P such that

P'AP = P7'AP =diag{A,..., Ar,—2Ar11, > —Ar4s,0,...,0}.

Let N be the n x n diagonal matrix whose diagonal entries are

! ifi=1 +
— ifi=1,...,r+s;
n; =1 VA

1 otherwise.

Then it is readily seen that

I,
N'P'APN = —I,
0

Since P and N are invertible, so also is PN; and since N*P* = (PN)¢, it follows that
A is congruent to a matrix of the stated form.
As for uniqueness, it suffices to suppose that

L= _Is B M= s
On—(r+s) On—(r’+s’)
are congruent and show that r = r’ and s =s’. Now if L and M are congruent then
they are certainly equivalent; and since equivalent matrices have the same rank, we

deduce that
r+s=rankL =rankM =1’ +5".

Suppose, by way of obtaining a contradiction, that r < r’ (so that, by the above,
s > s’). Let W be the real vector space Mat,;(R). It is clear that W is an inner
product space relative to the mapping described by

(x,y) = (x|y) =xy.
Consider the mapping f; : W — W given by

fi(x)=Lx.
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Ifx=[x;...x,] andy=1[y; ... y,]°, we have
x| fi(y)) = x'Ly
=Xt XY T X Y T T X s Y s

Now
(f®y) = (Lx|y) = (Lx)'y=x'L'y=xLy

and consequently we see that f; is self-adjoint. Similarly, so is f,; : W — W given by
fu(x) = Mx. Consider now the subspaces

X={xeW;x;==x.=0, X501 = =X, =0};
Y={XeW; x4 ==X,y =0}
Clearly, X is of dimension s and for every non-zero x € X we have
(fi®)|x) =x"Lx=—x? —---—x%,<0. (20.3)
Also, Y is of dimension n—s’ and for x € Y we have

(fu@)x) =x'Mx=x]+---+x?20.

Now since L and M are congruent there is an invertible matrix P such that M =
P'LP. Since, forallx €Y,

0<(fux)|x) = (Mx]|x)
(P'LPx|x)
(

(

(fpe © fr 0 fp)(X¥) %)
(fro fr)(X) | fr(x),

we see that
(Yyef,r) (LG =0. (20.4)
Now since fp is an isomorphism we have
dimf,”(Y)=dimY =n—s’
and so
dimf,”(Y)+dimX =n—s"+s>n>dim[f,"(Y) +X]
and consequently, by Corollary 1 of Theorem 8.10,
dim[f;,”(Y)NnX]> 0.

Suppose then that z is a non-zero element of f,”(Y)NX. Then from (3) we see that
(f.(z|z) is negative; whereas from (4) we see that (f;(z|z) is non-negative. This
contradiction shows that we cannot have r < r’. In a similar way we cannot have
r’ < r. We conclude therefore that r = r’ whence also s =s’. o]



Diagonalisation; normal transformations 297

Corollary 1 [Sylvester’s law of inertia] Let V be a vector space of dimension n over
R and let Q : V — R be a quadratic form on V. Then there is an ordered basis (e;),, of
n

V such that if x = . x;e; then
i=1

2 2_ .2 2
Qlx)=x]+- -+ xr =X —— X,
Moreover, the integers r and s are independent of such a basis. O

o The integers r +s and r —s are called the rank and signature of the quadratic
form Q.

Example 20.5 Consider the quadratic form Q : R® — R given by
Q(x,y,2) = x?—2xy +4yz —2y* + 42°.
By the process of completing the squares it is readily seen that
Qlx,y,2) = (x —y)* —4y* + (y +22)*

which is in canonical form, of rank 3 and signature 1. Alternatively, we can use
matrices. The matrix of Q is

1 -10
A= -1 =2 2
0 2 4

Let P be the orthogonal matrix such that P*AP is the diagonal matrix D. If y = P'x
(so that x = Py) then

x'Ax = (Py)'APy = y'P'APy = y' Dy,
where the right hand side is of the form X2 —4Y? + Z2.
Example 20.6 The quadratic form given by
Q(x,y,2)=2xy +2yz

can be reduced to canonical form either by the method of completing squares or by
a matrix reduction. The former is not so easy in this case, but can be achieved as
follows. Define

V2x=X+Y, V2y=X-Y, V2z2=2.

Then the form becomes
1 1
X*—Y?*+(X—-Y)Z = X +3Z)— (Y +32Z)?
= t(x+y+2)?—3(x—y+2)%

which is of rank 2 and signature 0.
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Definition 20.12 A quadratic form Q is said to be positive definite if Q(x) > 0 for all
non-zero Xx.

By taking the inner product space V to be Mat,,;(R) under (x|y) = x'y, we see
that a quadratic form Q on V is positive definite if and only if, for all non-zerox € V,

0 < Q(x) = x'Ax = (Ax|x),

which is the case if and only if A is positive definite. It is clear that this situation
obtains when there are no negative terms in the canonical form, i.e. when the rank
and signature are the same.

Example 20.7 Let f : R x R — R be a function whose partial derivatives f,, f, are
zero at (xg, ¥o)- Then the Taylor series at (x, + h, y, + h) is

f(XO’.yO) + %[hzfxx +2hkfxy + szyy](xo’)’o) teee

For small values of h, k the significant term is this quadratic form in h, k. If it has
rank 2 then its normal form is £H? £ K2. If both signs are positive (i.e. the form is
positive definite) then f has a relative minimum at (x,, y,), and if both signs are
negative then f has a relative maximum at (x,, y,). If one is positive and the other
is negative then f has a saddle point at (x,, y,). Thus the geometry is distinguished
by the signature of the quadratic form.

Example 20.8 Consider the quadratic form
4x? +4y? + 42> —2xy —2yz + 2x3.

Its matrix is

4 -1 1
A=| -1 4 1
1-1 4

The eigenvalues of A are 3,3, 6. If P is an orthogonal matrix such that P*AP is di-
agonal then, changing coordinates by X = P'x, we transform the quadratic form
to

3X?%+3Y2%2+ 622

which is positive definite.
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EXERCISES

20.1

20.2

20.3

Let SL(2, C) be the multiplicative subgroup of Mat,,,(C) consisting of those 2 x 2 ma-
trices of determinant 1. If M € SL(2,C) and trM ¢ {2,—2}, prove that there exists
PeSL(2,C)and t € C\ {0,1,—1} such that

. [t o
P MP—[Ot_l].

If M € SL(2,C) and M # I, tr M = 2 prove that there exists P € SL(2, C) such that

11
-1 —
p MP—[01:|.

If M € SL(2,C) and M # —I,, tr M = —2 prove that there exists P € SL(2, C) such that

-1 1
-1 —
P MP—[ 0_1].

If A, P € Mat,,,,(C) with P invertible and if f € C[X], prove that
f(PT'AP) =P f(A)P.

If B € Mat,,,,(C) is triangular with diagonal entries t,,..., t,, prove that f (B) is trian-
gular with diagonal entries f(t;),...,f(t,)-

Suppose now that A,,..., A, are the eigenvalues of A. Deduce from the above that the
eigenvalues of f(A) are f(A,),...,f(A,) and that

det f(4) = ﬁlf(xi), trA= imi).

[Hint. Let B be the Jordan form of A.]

By a circulant matrix we mean a square matrix over C of the form

a, ay a3 ... Q,
a, Q; 0y ... Qu
M= @1 o a1 .oy
Ay Az Oy ... O

If f=a;+a,X+-+a,X"and M is an n x n circulant matrix, prove that
detM =[] f(w;)
i=1

where w;,...,w, are the n-th roots of unity.

I
[Hint. Observe that M = f (A) where A= [ n-l ] and use Exercise 20.2.]

1
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20.4 Let V be a non-zero finite-dimensional vector space over a field F and let f : V — V be
n

20.5

20.6

20.7

20.8

a linear transformation. Let V = @ V; be the primary decomposition of V as a direct

i=1
sum of f-stable subspaces. Prove that for each projection pr; : V — V; there exists
g: € F[X] such that pr; = g;(f) where pr; : V — V is induced by pr;.

Deduce that if W is an f -stable subspace of V then

W= @(Wmvi).

i=1

Let V be a non-zero finite-dimensional inner product space. Prove that if 4 is a mapping
from V x V to the ground field of V then ¥ is an inner product on V if and only if there
is a positive transformation f : V — V such that

(Vx,yeV)  90,y)={f()ly)

Let a,b € R be such that a < b. If V is the real vector space of continuous functions
f :[a,b] —> R, prove that the mapping Q : V — R described by

b
Q(f) =f [f (x))2dx

is a quadratic form on V.

Determine the rank and signature of the quadratic form Q : R® — R given by

Q(x,y,2) = 2x*—4xy + 2xz + 3y* — 2yz + 42%.

For each of the following quadratic forms write down the symmetric matrix A for which
the form is expressible as x‘Ax. Diagonalise each of the forms and in each case find an
invertible matrix P such that P'AP is diagonal with diagonal entries in {—1,0,1} :

(1) x?2+2y? =932 —2xy +4xz—6yz;
(2) 4xy +2yz;
(3) yz+xz+2%—4t>+2xy —2xt +6yz—8yt—14zt.



R-algebra, 4
R-endomorphism, 13
R-epimorphism, 13
R-isomorphism, 13
R-module, 2
R-monomorphism, 13
R-morphism, 13
p-linear, 253
p-module, 229
p-primary, 229

adjoint, 133

adjugate, 213

algebraic closure, 259
alternating, 202

annihilated, 102, 229
annihilator, 223

artinian, 40

ascending chain condition, 39
augmented matrix, 113

balanced, 165

Bessel’s inequality, 127
bidual, 98

bilinear, 184, 185
bimodule, 167
bitranspose, 101

butterfly of Zassenhaus, 34

canonical form, 113

canonical projection, 50
cartesian product module, 50
cartesian product morphism, 170
Cauchy-Schwartz inequality, 126
Cayley-Hamilton Theorem, 264
centraliser, 153

centre, 6

character group, 142
characteristic polynomial, 263
Chinese remainder theorem, 156
classical p-matrix, 257

classical canonical matrix, 258
coefficient matrix, 113

cofactor, 213

cokernel, 36

column matrix, 111

column rank, 111

commutative, 21

companion matrix, 250

complex inner product space, 125
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congruent, 293

conjugate transformation, 131
conjugate transpose, 135
coordinate forms, 99
coproduct, 51

cyclic, 223, 249

cyclic vector, 249

derivation, 221
descending chain condition, 40
determinant, 210
diagonalisable, 268
diagram chasing, 23
dimension, 78
dimension theorem, 89
direct product, 50
divisible, 141

division algebra, 4
division ring, 2

dot product, 126

dual basis, 99

eigenspace, 269

eigenvalue, 268

eigenvectors, 269

elementary divisor ideals, 238
elementary Jordan matrix, 258
elementary matrix, 114
elementary row operations, 114
equivalent towers, 42

essential extension, 146

exact sequence, 21

extension, 27, 146

exterior algebra, 199, 204
exterior power, 203, 209
exterior product, 204

external direct sum, 52

faithful, 156

field, 2
finite-dimensional, 78
finitely generated, 9
first isomorphism theorem, 31
flat, 175

formal power series, 4
Fourier coefficients, 129
Fourier expansion, 129
free, 68

free R-module, 66
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generated, 9

Gram matrix, 282

Gram-Schmidt orthonormalisation, 129
group, 1

Hermite matrix, 117
homogeneous equation, 113
homomorphism, 13
homothety, 210

Hopkins’ theorem, 163

image, 14
indecomposable, 237
induced morphism, 84
injective, 139

inner product, 125

inner product space, 125
integral domain, 2
internal direct sum, 57
invariant, 247

invariant factor ideals, 241, 245
invariant under f, 247
isotopic, 156

isotopic components, 157

Jacobson radical, 158

Jordan canonical matrix, 259
Jordan decomposition theorem, 272
Jordan morphism, 259
Jordan-Holder tower, 43

kernel, 14
Krull’s theorem, 77

Lagrange polynomials, 105
Laplace expansion, 213
lattice, 10

left action, 2

left quasi-regular, 164
linear combination, 9
linear equations, 107
linear forms, 98

linear functionals, 98
linear transformation, 13
linearly independent, 68

matrix, 107

maximum condition, 39
minimum condition, 40
minimum polynomial, 248
modular, 10

modular law, 10
morphism, 13

multilinear, 185

Nakayama’s theorem, 160

INDEX

natural basis, 69

nil ideal, 162

nilpotent, 122, 162, 272
nilpotent ideal, 162
noetherian, 39

normal, 137, 276
normal sequence, 241
null-space, 14

opposite ring, 161

ordered basis, 107
ortho-diagonalisable, 274
ortho-projection, 275
orthogonal, 135

orthogonal complement, 134
orthogonal subset, 127
orthogonally similar, 135
orthonormal basis, 128
orthonormal subset, 127

parallelogram identity, 136
Parseval’s identity, 129
piecewise linear function, 79
pivotal condensation, 222
positive, 280

positive definite, 299
primary component, 249
principal ideal domain, 223
product, 48

product of matrices, 108

quadratic form, 294
quasi-simple, 156

quotient algebra, 35
quotient module, 29

range, 14

rank, 228, 298

rational p-matrix, 254
rational canonical matrix, 252, 254
real inner product space, 125
refinement, 42

regular ring, 180

ring, 1

row equivalent matrices, 115
row matrix, 111

row rank, 111

scalar, 2

Schreier’s refinement theorem, 42
second isomorphism theorem, 32
self-adjoint, 135

self-adjoint part, 283
semi-definite, 280

semi-exact sequence, 22
semigroup, 1
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semisimple, 149

set of generators, 9
signature, 298

signum, 199

similar, 246

simple R-module, 41
simple ring, 152
skew-adjoint, 282
skew-adjoint part, 283
skew-symmetric, 120, 282
spectral resolution, 270
spectrum, 268

split sequence, 58

splitting morphsim, 58
stable, 247

stairstep, 116

standard inner product, 126
step function, 78
submodule, 7

submodule generated, 8
substitution morphism, 246
substitution morphisms, 105
symmetric, 120
symmetriser, 220

tensor algebra, 194
tensor map, 166, 186
tensor power, 195
tensor product, 165, 185
tensor product of elements, 186
the 3 x 3 lemma, 26

the five lemma, 24

the four lemma, 23
torsion element, 224
torsion module, 224
torsion submodule, 228
torsion-free, 180, 224
tower of submodules, 42
trace, 193

trace form, 193
transition matrix, 110
transpose, 100
transposition, 199
triangle inequality, 126
trilinear, 185
two-echelon, 116

unitary, 2, 135
unitary transformation, 135

vector space, 2
von Neumann ring, 180

Wedderburn-Artin Theorem, 154
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