Utility of 222Rn as a passive tracer of subglacial distributed system drainage

Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas

1: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
2: School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
3: School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

Corresponding author: Benjamin Linhoff (blinhoff@usgs.gov)

Keywords: radon, Greenland, glacier, proglacial river, meltwater.

Abstract
Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011...
and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L$^{-1}$), decreasing by a factor of 2-5 (3-5 dpm L$^{-1}$) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.

1 Introduction

Beneath the ablation zone of the Greenland Ice Sheet (GrIS), meltwater flow paths influence glacier velocities and bulk meltwater chemistry (Bartholomew et al., 2011a; Bartholomew et al., 2012; Tedstone et al., 2013; Hawkings et al., 2014). After the onset of spring melt, the majority of surface derived meltwater travels to the glacier or ice sheet bed through fractures, crevasses and moulins (Sharp et al., 1993; Das et al., 2008). During the summer, bulk meltwater is largely composed of two components, channelized drainage and distributed drainage, which are both derived from snow and ice melt (Tranter et al., 1993; Collins 1979; Chandler et al., 2013; Cowton et al., 2013). On the time scale of an entire melt season, the major component is channelized flow, which pertains to meltwater moving efficiently through large
basal channels (Röthlisberger, 1972; Nye, 1973). In contrast, distributed drainage refers to meltwater in slow transit through either cavities that open behind bedrock bumps due to ice sliding (linked-cavity system; Walder, 1986), a water sheet of near uniform thickness at the ice bed (Creyts and Schoof, 2009), or water flow through permeable subglacial till (Boulton et al., 2009). Meltwater traveling through distributed systems influences subglacial hydraulic pressure distribution, channel spacing, basal sliding and bed deformation (Boulton et al., 2009; Rempel, 2009). In general, meltwater in the distributed system tends to have elevated dissolved solid concentrations, a feature exploited by early attempts at hydrograph separation in glacial watersheds (Collins, 1979). However, rapid mineral weathering reactions may occur when sediments traveling through closed, CO\textsubscript{2} limited, distributed systems mix with open-system, low ionic strength channelized meltwater (Raiswell, 1984; Tranter et al., 1993; Sharp et al., 1993).

Consequently, solute concentrations, often inferred through electrical conductivity (EC) measurements, cannot unequivocally be used as conservative tracers of distributed system meltwaters.

Radon-222 has been used extensively to examine groundwater-surface water exchange processes in a wide range of freshwater and marine systems; this is because groundwater \(^{222}\text{Rn}\) activities are typically highly enriched relative to surface waters due to radioactive decay of \(^{226}\text{Ra}\), naturally present in aquifer mineral surfaces (Burnett and Dulaiova, 2003; Cook et al., 2003; Dulaiova et al., 2008; McCallum et al., 2012). As a relatively soluble, inert noble gas that does not participate in biogeochemical or weathering reactions once in solution, \(^{222}\text{Rn}\) \((t_{1/2} = 3.82\ \text{days})\) can only be added to glacial meltwater in measurable quantities from extensive water-rock interactions. Hence, by its nature, distributed system meltwater should acquire significantly higher \(^{222}\text{Rn}\) activities than meltwater that flows through open channels.
Discrete 222Rn measurements in small glacial watersheds have been used to infer the transition from distributed to channelized drainage (Kies et al., 2010; Bhatia et al., 2011; Kies et al., 2015). This paper expands upon these earlier studies by examining the utility of long term continuous 222Rn measurements in the proglacial river of a large GrIS outlet glacier during the spring and summer of 2011 and 2012. Using a detailed mass balance modeling approach, we provide evidence that 222Rn is a passive tracer of subglacial hydrological routing that can be used to infer the timing and magnitude of distributed system fluxes. To our knowledge this is the first time that continuous, high-resolution 222Rn measurements have been reported from a proglacial river over the course of a melt season.

2 Methods

2.1 Study Area

Fieldwork was conducted during the 2011 and 2012 melt seasons at Leverett Glacier, a large land-terminating glacier on the western margin of the GrIS ($67^\circ03'57.81''$N, $50^\circ10'01.83''$; Figure 1). Its hydrological catchment covers >600 km2, reaches an elevation of 1500 m, and ranges in width from 10-40 km (Bartholomew et al., 2011). Meltwater from the catchment is channeled through a single large proglacial river (Leverett River); at peak discharge, typical flows from the river are in the range of 300-400 m3 s$^{-1}$ (Bartholomew et al., 2010; Cowton et al., 2012). During an exceptional melting period in 2012, the river reached ~800 m3 s$^{-1}$ (Tedstone et al., 2013). On the south side of Leverett Glacier’s snout, the bedrock is a late Achaean (2.5 Ga) granite (Escher, 1971; Nutman et al., 2010) while the Ikertoq complex (1.85 Ga), composed of basement gneisses and granites, borders the north side (Henriksen et al., 2000). The proglacial valley is filled with quaternary sediments composed of weathered materials from afore
mentioned rock units (Hindshaw et al., 2014). This suggests that the subglacial lithology is similar to the bedrock adjacent to the glacier’s snout.

2.2 *Discharge, conductivity, suspended sediment, and 226Ra measurements*

Proglacial river discharge was measured using continuous water stage monitoring through a stable bedrock section of the river (Sole et al., 2013; Tedstone et al., 2013). Stage was converted to discharge using a continuous stage-discharge curve created from repeat Rhodamine WT and Rhodamine B dye injections throughout both melt seasons; the normalized root mean squared deviation of the discharge record has been estimated to be ±10% (Tedstone et al. 2013). Concurrent measurements of EC and the suspended sediment concentration (SSC) are also presented here and, for 2011 and 2012 data, in Butler (2014) and Hawkings et al. (2014) respectively. EC was recorded every five minutes using a Campbell Scientific 247 combined temperature-EC sensor, and logged using Campbell Scientific CR1000 and CR800 loggers. EC was calibrated using a KCl solution of known concentration; errors on EC measurements were ±10% (1-sigma). SSC was estimated from turbidity measurements made with a Partech IR 15C turbidity probe. Calibration curves were created from discrete suspended sediment samples collected from the river. Errors on SSC were ±6% (1-sigma). Dissolved 226Ra was measured throughout the 2011 and 2012 field seasons using methods described by Charette et al. (2001). Briefly, ~200 L river samples were filtered through a column packed with MnO$_2$ impregnated fiber. The fiber was ashed, packed in a sealed plastic vial, and counted for 2-3 days on a well-type germanium gamma detector (Canberra) calibrated using a NIST 226Ra standard prepared in the same manner as the samples.
2.3 *Measuring radon in the proglacial river*

Radon-222 was measured in the Leverett Glacier proglacial river during 2011 (May 8-August 5) and 2012 (May 12-July 28). Continuous (hourly) measurements were made using a RAD7 (Durridge Inc.) radon-in-air monitor in series with a desiccant chamber and a RAD7 water probe, a submersible air-filled gas-permeable membrane coil made from Accruel® tubing (henceforth the term “water probe” will refer to the 222Rn extraction unit). River water 222Rn equilibrates with air in the membrane coil through passive diffusion; the air is continuously circulated in a closed loop through the RAD7 radon-in-air monitor system (Hofmann et al., 2011; Schubert et al., 2012). Radon-in-air activities were then converted to radon-in-water activity via the temperature dependent air–water partition coefficient as described by Schubert et al. (2012).

The water probe was deployed on the northern bank of the river as close to the glacier’s terminus as possible (0-1 km) to minimize potential evasion of 222Rn from the river to the atmosphere (Supplementary Material). Rising river stage required that we periodically moved the water probe downstream to a more stable riverbank. There was no observed decrease in effectiveness of the water probe during long term deployment (Supplementary Material). Typical 1-sigma counting errors for the water probe 222Rn activities were ±5-20%. Discrete 222Rn samples were collected upstream of the water probe at the ice sheet terminus in 250 mL bottles and analyzed using a RAD7 plus Rad-H$_2$O attachment on a regular basis (Figure S1; Supplementary Material).

These discrete 222Rn samples agree within the counting errors of the corresponding continuous 222Rn measurements (Figure S1; Supplementary Material).

Measurements of 222Rn via the water probe system may lag actual aqueous 222Rn due to the time required to equilibrate 222Rn across the gas-permeable membrane (Schubert et al., 2012). To assess the magnitude of this offset, we analyzed field equilibration times during instrument
startup and performed laboratory experiments to estimate the water probe’s response time to changes in 222Rn activity. Key factors that control the equilibration time include the air volume in the system (RAD7 unit, tubing, desiccant and membrane coil), the membrane coil surface area, and the 222Rn activity gradient across the membrane water/air interface (Schubert et al., 2012).

The equilibration time can be minimized when the air volume of the system is low (i.e. using less tubing between RAD7 and membrane), the membrane interface area is maximized (i.e. lengthening the membrane tubing), and the water/air 222Rn activity gradient across the membrane coil is large. The 222Rn activity gradient at the membrane water/air interface has by far the largest effect on the equilibration and response time of the water probe; in stagnant water the response time is on the order of several hours (Hofmann et al., 2011; Schubert et al., 2012). In a flowing river, the activity gradient at the water/air interface is close to 100% such that the response time can be reduced to <1 hour, similar to results obtained using a spray chamber equilibrator such as the RAD-Aqua (Durridge Inc.; Schubert et al., 2012). In our case, the equilibration time of the water probe in the proglacial river was determined to be no greater than 2 hours based on laboratory experiments and less than 1 hour in field observations. A detailed description of these tests and associated results is presented in the Supplementary Material.

2.4 222Rn in subglacial distributed systems and sediment properties

Because we were unable to obtain in-situ distributed system samples from beneath the ice sheet, we estimated 222Rn in this environment via laboratory-based equilibration experiments (Corbett et al., 1998; Dulaiova et al., 2008) using sediments discharged from the subglacial environment. For these tests, four separate aliquots of sediment (50 g) from the proglacial river were incubated with Ra-free water in a sealed 1 L high-density polyethylene bottle for greater
than five half-lives (>20 days). Samples were flushed into a cold trap and scintillation cells using helium and analyzed in triplicate on alpha scintillation counters (Corbett et al., 1998). Wet sediment ^{222}Rn activities in dpm g$^{-1}$ were converted to pore water ^{222}Rn activities (dpm L$^{-1}$) using wet bulk densities and porosities (Supplementary Material).

Radon-222 diffusion from sediments in subglacial channels was another potential source of ^{222}Rn beneath the GrIS. We employed a laboratory method described by Chanyotha et al. (2014) to quantify the diffusive flux. Briefly, 100 g of wet subglacial sediment and 500 mL of ^{222}Rn-free water were sealed inside a gas tight reaction flask connected in a closed loop with a RAD7. Air was pumped through a gas diffusion stone immersed in the water phase using the built in RAD7 pump, then through the desiccant, and back to the radon analyzer where the activity was measured and recorded. While gas leakage is not an issue for routine measurements, a known small leak within the internal air pump of the RAD7 was corrected during the multi-day experiment according to the approach described in Chanyotha et al. (2014). The diffusive flux was determined from the near-linear slope of ^{222}Rn activity in the reaction flask versus time over the first several hours of the experiment. Slope uncertainty was used to estimate the uncertainty of the diffusive flux.

Leakage is an issue for this approach, not necessarily from diffusion through the walls of the plastic bottle but from a known small leak in the internal air pump of the RAD7 as described in Chanyotha et al. (2014). This is not an issue for routine measurements with the RAD7, but needs to be corrected for in the multi-day sediment equilibration method. The data has been leak corrected according to the approach described in Chanyotha et al. (2014)
3 Results

3.1 Discharge

Warmer average air temperatures resulted in nearly twice as much annual discharge in 2012 as in 2011, corresponding to ~2.4 and 1.4 km3, respectively within the Leverett Glacier catchment (Figure 2). Average flows of the proglacial river in the summer were ~200 m3 s$^{-1}$ in 2011 (Sole et al., 2013) and ~400 m3 s$^{-1}$ in 2012 (Tedstone et al., 2013). In 2012, the largest melting event since at least 1889, as indicated by ice cores at the Summit Station, occurred on July 12th (day 194) when over 98% of the surface of the GrIS experienced melting (Nghiem et al., 2012). During this period, river discharge reached ~800 m3 s$^{-1}$ (Tedstone et al., 2013), almost three times larger than maximum discharge in 2011 (Figure 2; Sole et al., 2013). Furthermore, in 2011 the river was largely ice-covered until day 160, while in 2012 the river was ice free from the start of sampling (day 133) onward.

3.2 EC and SSC

We used EC as a proxy for the concentration of dissolved solutes in the proglacial river. During both 2011 and 2012, EC was elevated in the early season (60-100 µS cm$^{-1}$) and decreased to 10-20 µS cm$^{-1}$ with increasing river discharge (Figure 2; Butler, 2014; Hawkings et al., 2014). These results are consistent with the EC range reported in 2009 (Bartholomew et al., 2011). Butler (2014) and Hawkings et al. (2014) observed diurnal variations in EC through much of the 2011 and 2012 seasons, which in general were inverse to river discharge. During both seasons, peaks in EC punctuated the record.

The SSC varied between 1-7 g L$^{-1}$ in 2011 (Butler, 2014) and 1-4 g L$^{-1}$ in 2012 (Hawkings et al., 2014); these concentrations were similar to values reported for 2009 and 2010.
Like EC, diurnal variations in SSC occurred throughout much of the 2011 and 2012 melt seasons, however, these diurnal variations in SSC generally increased with rising river discharge. In 2012, peaks in SSC and EC generally occurred simultaneously (Figure 2, dashed boxes) as noted by Hawkings et al. (2014) and in line with observations in 2009 (Bartholomew et al, 2009). In 2011, SSC and EC peaks were largely decoupled (Figure 2).

3.3 Radon-222 in the Proglacial River

In both 2011 and 2012, the highest 222Rn activities were observed in the early season and generally decreased with increasing river discharge (Figure 2). In 2011, typical 222Rn activities in the early season (days 132-160) were between 10-15 dpm L$^{-1}$. Following day 170, activities were generally between 2-5 dpm L$^{-1}$. In 2012, higher 222Rn activities were observed in the early season, typically between 5-18 dpm L$^{-1}$, falling to between 2-10 dpm L$^{-1}$ after day 150. In a small proglacial river ~100 km north of our field site, Bhatia et al. (2011) reported significantly higher 222Rn activities (25-76 dpm L$^{-1}$), though peak river discharge rates (~2 m3 s$^{-1}$) were orders of magnitude lower than at Leverett Glacier. Regardless, activities measured in this study and in Bhatia et al. (2011) are much higher than those generally observed in non-glaciated river catchments. For example, both Cook et al. (2003) and McCallum et al. (2012) report maximum 222Rn activities of ~1 dpm L$^{-1}$ in tropical and temperate rivers.

Significant peaks in 222Rn are highlighted in Figure 2 by grey shaded boxes. In 2011, 222Rn peaked at ~75 dpm L$^{-1}$ in the early season (days 148-150); during this time, the river was ice covered and a small upwelling spring appeared at the glacier portal through which nearly all river discharge originated. A second large peak (days 190-200) was observed in 222Rn when activities climbed to ~15 dpm L$^{-1}$ from a pre-peak baseline of 3 dpm L$^{-1}$ over a ~5 day period.
In 2012, 222Rn peaks occurred regularly, approximately once every 8-10 days throughout the season (Figure 2). Radon-222 peaks in 2012 generally increased on the falling limb or inflection point of the hydrograph and decreased when river discharge rose (Figure 2). This general relationship between discharge and 222Rn was not observed in 2011. In both field seasons, 222Rn did not correlate with SSC or EC.

3.4 Radon activity in distributed system meltwater

Laboratory derived distributed system 222Rn activities (Rn_{dis}) were estimated using the 222Rn activity of porewater in sediments collected from the proglacial river (Section 2.4) and sediment properties (Corbett et al., 1998) including bulk density (\(\rho_B \)) and porosity (\(\phi \)); Supplementary Material). Wet sediment 222Rn activities (Rn_{sed}) were 0.064-0.093 dpm g\(^{-1}\) (avg=0.076 dpm g\(^{-1}\), n=4). \(\rho_B \) and \(\phi \) were identical for the three glacial river sediment samples analyzed and were 1.7 g cm\(^{-3}\) and 0.37 respectively. Our results are consistent with those of Dow et al. (2013), who estimated subglacial sediment \(\phi \) in the Leverett Glacier catchment between 0.3-0.4. Using Equation 1 and assuming that subglacial sediment \(\phi \) varied between 0.3-0.4, that Rn_{sed} was between 0.064-0.093 dpm g\(^{-1}\), and that \(\rho_B \)=1.7 g cm\(^{-3}\), Rn_{dis} would be expected to span from 270-530 dpm L\(^{-1}\).

\[
Rn_{dis} = \frac{Rn_{sed} \times \rho_B}{\phi} \times 1000 (g \ L^{-1}) \tag{1}
\]

These values are lower than laboratory derived pore water 222Rn activities in proglacial sediments reported by Bhatia et al. (2011), which were between 1285-3045 dpm L\(^{-1}\). A number of factors could explain the difference between the two sites: including sediment grain size
(higher surface area/volume), degree of weathering (affects sediment 226Ra parent activities), or 238U content of the sediment (Dulaiova et al., 2008).

4 Discussion

4.1 Radon-222 sources and sinks

Radon-222 has been used as a tracer of sediment pore water-surface water exchange processes in a diverse range of environmental systems including rivers (McCallum et al., 2012), the coastal ocean (Burnett and Dulaiova, 2003; Dulaiova et al., 2008), and in small glacier catchments (Kies et al., 2010; Bhatia et al., 2011; Kies et al., 2015). In the following discussion, we explore the utility of 222Rn in tracing and quantifying meltwater fluxes from the subglacial distributed system at a large Greenland outlet glacier, Leverett Glacier. There are a number of sources and sinks capable of modulating 222Rn activities in a proglacial river. We use a mass balance approach, similar to those employed in studies of submarine groundwater discharge to the coastal ocean (Burnett and Dulaiova, 2003; Dulaiova et al., 2008), in order to quantify the sources and sinks for 222Rn in the proglacial river (Figure 3):

$$J_{riv} = J_{dis} + J_{cha} + P_{SSL} + \lambda^{226}Ra - J_{atm} - \lambda^{222}Rn$$ \hspace{1cm} (2)

Sources of 222Rn include production from 226Ra associated with suspended sediments (P_{SSL}), production of 222Rn through the decay of dissolved 226Ra ($\lambda^{226}Ra$ where λ is the decay constant for 222Rn), 222Rn diffusion through subglacial channel sediments (J_{cha}), and distributed system meltwater (J_{dis}). Radon-222 sinks include radioactive decay ($\lambda^{222}Rn$) and atmospheric evasion across the water/air interface (J_{atm}). Finally, J_{riv} is the 222Rn flux (dpm s$^{-1}$) exported to the
glacier’s front via the proglacial river and is derived by combining our continuous ^{222}Rn measurements (dpm m$^{-3}$) with the discharge record (m3 s$^{-1}$). All source/sink terms can be directly evaluated except for J_{dis}; hence we use the “flux by difference” approach (Charette et al., 2008), which assumes that the unaccounted for ^{222}Rn in the mass balance model must be due to distributed system meltwater (J_{dis}). We discuss and evaluate each source and sink term for Equation 2 in the following sections. To provide context for the various source and sink terms below, note that J_{riv} ranged from $3.4-4.2 \times 10^6$ dpm s$^{-1}$ and $7.2 \times 10^3-3.4 \times 10^6$ dpm s$^{-1}$, for 2011 and 2012, respectively.

4.1.1 Suspended sediment ^{226}Ra (P_{SSL})

Suspended sediments are a potential source of ^{222}Rn to the river through decay of sediment bound ^{226}Ra. From the laboratory equilibration experiments described above (Section 2.4) we determined that the surface-bound ^{222}Rn activity of sediments at secular equilibrium is 0.076 dpm g$^{-1}$ (Section 3.4). To calculate P_{SSL}, we first assume that suspended sediments could produce ^{222}Rn for 1-18 hours, the range of transit times observed for surface meltwater traveling through channelized drainage in the Leverett Glacier catchment (Chandler et al., 2013; Chandler et al., submitted). Coupling this result with SSC measurements, and assuming that bedload contributed an additional 30-60% of sediment (Cowton et al., 2012), we estimated the upper and lower bounds of the contribution from P_{SSL} to J_{riv}. Over the course of each melt season, P_{SSL} supplied between ~ 100 and 2.1×10^4 dpm s$^{-1}$ ^{222}Rn in 2012 and ~ 100 and 2.4×10^4 dpm s$^{-1}$ ^{222}Rn in 2011. On average, the upper limit of our P_{SSL} estimate contributed on average $\sim 1\%$ of J_{riv} in 2011 and 2012, respectively (Figure 4).
4.1.2 Dissolved ^{226}Ra ($\lambda^{226}\text{Ra}$)

The proglacial river also carried dissolved ^{226}Ra, which could have supported ^{222}Rn via its decay. We observed ^{226}Ra activities of 0.02-0.09 dpm L$^{-1}$ (avg 0.04 dpm L$^{-1}$, n=21) in the proglacial river, with higher values in the early season and lower values in the late season. To solve Equation 2 for J_{dis}, we used the average ^{226}Ra activity measured in the proglacial river. Based on these results, ^{226}Ra decay supplies \sim400 dpm s$^{-1}$ when river discharge was 10 m3 s$^{-1}$ and up to 3.2×10^4 dpm s$^{-1}$ during the maximum river discharge observed in 2012. On average during the 2011 and 2012 field seasons, dissolved ^{226}Ra supplies \sim1% of J_{riv} (Figure 4).

4.1.3 Diffusive flux of ^{222}Rn in channels (J_{cha})

The diffusive flux of ^{222}Rn from channel floor sediments (subglacial or proglacial) is a potential source of ^{222}Rn, particularly after the onset of widespread melting across the catchment and development of a channelized system. Our laboratory sediment diffusion experiment yielded a diffusive flux of 0.006 ± 0.002 dpm m$^{-2}$ s$^{-1}$ ^{222}Rn from glacial sediments. We use this result and an estimate of channel floor area during peak river discharge to quantify the potential upper limit of J_{cha}. To calculate channel floor area, we assume that all discharge moved through semi-circular channels, that channels extended to 41 km from the ice margin (Chandler et al., 2013), that the average number of channels per km catchment width was four (Schoof, 2010; Werder et al., 2013), and that channel density linearly tapered to zero between the ice sheet margin and 41 km. Furthermore, we assumed that catchment width averaged 40 km (Bartholomew et al., 2011) and that water moved through channels at 3 m s$^{-1}$ (Cowton et al., 2013). Using these constraints, we calculated a channel floor area of 2.75 km2 during peak river discharge in 2012 and 1.5 km2 during peak river discharge in 2011. This estimate amounts to 0.3-0.5% of the glacier’s
catchment area, which is consistent with models of the channelized system (Schoof, 2010; Werder et al., 2013). Using these estimates of channel floor area, J_{cha} supplied $\sim 6 \times 10^3$-1.2$ \times 10^4$ dpm s$^{-1}$ 222Rn in 2011 and 1.1$ \times 10^4-2.2 \times 10^4$ dpm s$^{-1}$ 222Rn in 2012. Finally, we assume that J_{cha} is only important after river discharge surpasses 100 m3 s$^{-1}$ as before this time the channelized system is undeveloped (Cowton et al., 2013), and hence, 222Rn diffusion through channel floors is negligible. Based on these estimates, J_{cha} could account for no more than <1-10% of J_{riv} in 2011 and 2012 (Figure 4).

4.1.4 Gas exchange (J_{atm})

The degassing of 222Rn out of water is a function of molecular diffusion produced by the activity gradient at the water/air interface as well as turbulent transfer, which is governed by physical processes such as wind speed, current velocity, and topography. J_{atm}, which we define as the area-normalized flux of 222Rn across the river/air boundary, can be written as:

$$J_{atm} = k(C_w - \alpha C_{atm})$$

where C_w is the 222Rn activity of water, C_{atm} is the 222Rn activity in air (assumed here to be negligible relative to the water activity), α is Ostwald’s solubility constant and k is the gas transfer velocity. The gas transfer velocity is dependent on kinematic viscosity, molecular diffusion, and turbulence and is determined based on empirical relationships observed in different environments for different gases. Borges et al. (2004) suggested that the gas transfer velocity k should be in the range of 3-7 cm hr$^{-1}$ while Dulaiova and Burnett (2006) calculated a gas transfer velocity for 222Rn up to 10 cm hr$^{-1}$ in moving water and high winds.
Because of occasional strong winds and a river current of ~1-3 m s\(^{-1}\) (Cowton et al., 2013), we chose a constant, upper limit \(k\) of 12 cm hr\(^{-1}\) for the duration of the time series. With these assumptions, \(J_{atm}\) varied between <0.01-0.7 dpm m\(^2\) s\(^{-1}\) in 2011 and 0.03-0.6 dpm m\(^2\) s\(^{-1}\) in 2012. Scaling these area normalized \(J_{atm}\) values to total \(J_{atm}\) requires an estimate of river surface area (1100-6000 m\(^2\)) between the ice terminus and the sampling site. From this surface area we determined that \(J_{atm}\) was in the range of 800-4,000 dpm s\(^{-1}\) \(^{222}\)Rn, which was <1% of \(J_{riv}\) on average. The negligible effect of gas loss suggested by these calculations is supported by discrete \(^{222}\)Rn samples collected at the glacier’s terminus, which were within error of the continuous measurements made 1 km downstream (Figure S1; Supplementary Material).

These estimates do not account for any potential loss of \(^{222}\)Rn into the headspace of subglacial air-filled cavities. However, if these environments are largely closed systems, \(^{222}\)Rn build up in the headspace would reduce the water-air concentration gradient and therefore minimize the \(^{222}\)Rn loss from the water phase. While there is evidence for open system channels at the ice bed within several km from the ice margin (Chandler et al., 2013), subglacial gas loss is likely much smaller than in the proglacial river. Air-filled subglacial channels far from the ice sheet margin will only exist during the falling limb of the hydrograph following substantial surface meltwater inputs and channel expansion. These cavities will close within hours to days of opening because of glacial creep (Meierbachtol et al., 2013). If large quantities of \(^{222}\)Rn were lost to air-filled cavities, then \(^{222}\)Rn activities would decrease on the falling limb of the hydrograph yet we generally observed the opposite trend in 2012 (Figures 2). Based on our calculations and field measurements (Supplementary Material), we determined that \(J_{atm}\) was negligible in our calculation of \(J_{dis}\).
4.1.5 Radon-222 decay ($\lambda^{222}\text{Rn}$)

When distributed system meltwater discharges into the channelized system far from the ice margin, some fraction of ^{222}Rn will decay before reaching the ice terminus. For example, during a typical 7 hour transit through the channelized system of Leverett Glacier in July (Cowton et al., 2013), ~5% of unsupported ^{222}Rn will decay. During the early melt season, when the snow line is at a low elevation and river discharge is $<10 \text{ m}^3 \text{ s}^{-1}$, meltwater transit times in channelized drainage are likely no more than 3 hours as water takes a more direct route to the margin (Chandler et al., 2013; Cowton et al., 2013). In this case, 2% of the unsupported ^{222}Rn decays in the channelized system before reaching the ice margin. By the peak melt season, tracer experiments indicate that transit times in the channelized drainage system are 10-24 hours (Chandler et al., submitted) since the catchment extends upwards of ~80 km from the margin and subglacial flow paths are more convoluted. As the location of these experiments was likely near the upper limit of channelized drainage in the catchment (Chandler et al., 2013), we assume nearly all meltwater traveling via channelized drainage reaches the ice sheet margin in <24 hours. Hence for our model, we assume meltwater moving through the channelized system has a transit time between 1 and 24 hours representing a <1-17% loss of ^{222}Rn.

4.2 Quantifying the distributed system flux

After rearranging Equation 2, we solved for the upper and lower bounds of J_{dis} (Figure 5).

$$J_{\text{dis}} = J_{\text{riv}} - J_{\text{cha}} - P_{\text{SSL}} - \lambda^{226}\text{Ra} + \lambda^{222}\text{Rn}$$ (4)
To calculate the likely range of J_{dis}, we propagated the uncertainty of each ^{222}Rn source and sink. The largest source of uncertainty in J_{dis} came from the ^{222}Rn and river discharge measurements used to calculate J_{riv}.

With the exception of days 200-202 in 2011 when J_{riv} dropped to near zero, non-distributed system ^{222}Rn sources cannot account for the vast majority of J_{riv} (Figure 4), we conclude that J_{dis} must contribute the bulk of the ^{222}Rn flux in the proglacial river. Furthermore, ^{222}Rn decay during subglacial transit through the channelized system ($\lambda^{222}\text{Rn}$) and gas loss to the atmosphere (J_{atm}), did not significantly impact the timing or flux of J_{riv}. Given that J_{dis} dominates the ^{222}Rn mass balance for the Leverett Glacier proglacial river, we conclude that ^{222}Rn can be used as a passive tracer of distributed system flows to the ice margin at this field site. This approach should be applicable to other settings, though an essential requirement is subglacial hydrological systems that discharge into a single proglacial river, which permits the quantification of J_{riv}, the main term in the model.

The distributed system meltwater flux (Q_{dis}) can be calculated if J_{dis} and the ^{222}Rn activity of distributed system meltwater (Rn_{dis}) are known:

$$Q_{\text{dis}} = \frac{J_{\text{dis}}}{Rn_{\text{dis}}} \quad (5)$$

This approach assumes that distributed system meltwaters originate from material similar to the proglacial sediments we used to estimate Rn_{dis} (Sections 2.4 and 3.4), and that the transit time of distributed system meltwaters are >20 days (Niu et al., 2015). If the transit time is shorter, Rn_{dis} would decrease and the Q_{dis} fluxes below would increase proportionately.
If the ^{222}Rn activities in distributed system sediments are 270-530 dpm L$^{-1}$ (Sections 2.4 and 3.4), then Q_{dis} would vary between <0.1 to 17 m3 s$^{-1}$ and <0.1 to 14 m3 s$^{-1}$ over the course of the 2011 and 2012 melt seasons, respectively. As a fraction of total river discharge in 2011, Q_{dis} peaked at ~22% in the early season when river discharge was ~1 m3 s$^{-1}$ and reached a minimum of <0.1% between days 202-204. In 2012, Q_{dis} was between 3-5% (0.1-0.5 m3 s$^{-1}$) of total river flow in the early season (days 130-150) and 1-4% (0.1-33 m3 s$^{-1}$) following day 150. The weighted mean of Q_{dis} relative to total river discharge was between 1-2.4% (0.35-8.5 m3 s$^{-1}$) in 2011 and 0.7-1.6% (<1-12.8 m3 s$^{-1}$) in 2012. However, since we were not able to obtain samples of distributed system water directly via borehole sampling (Tranter et al., 1997; Andrews et al., 2014), these estimates of Q_{dis} carry significant uncertainty; therefore, we will use J_{dis} for determining the timing and relative magnitude of distributed system fluxes.

4.3 Seasonal and interannual variability in the distributed system flux

Channels at the ice sheet bed are zones of low-pressure relative to the surrounding distributed system (Röthlisberger, 1969) and generally act to scavenge distributed system meltwater (Boulton et al., 2009). However, during large surface runoff events, such as supraglacial lake drainages or periods of rapid warming, channels may be overwhelmed forcing water into the distributed system (Bartholomew et al., 2012; Gulley et al., 2012). Once surface meltwater runoff decreases, water pressure in channels falls and the flux of distributed system drainage to the ice sheet margin surges (Hubbard et al., 1995; Boulton et al., 2009). This process has been hypothesized to result in more connectivity between channelized and distributed systems causing an overall increase in the spatial extent of subglacial drainage (Andrews et al., 2014). This in turn may lead to less water volume at the ice sheet bed and could explain observed
mid-late summer slowing of land-terminating sections of the GrIS (Sole et al., 2013). Hence, the mechanisms that control the characteristics of distributed system drainage likely play a key role in modulating the speed of GrIS outlet glaciers, especially because distributed system networks make up by far the largest portion of the ice sheet bed area.

In 2011, the largest multiday peak in J_{dis} (Figure 5) (days 190-200) occurred during the onset of melting and ice acceleration (Sole et al., 2013) at high elevations (>1400 m) within the catchment, and the expansion of the channelized system to at least 40 km from the ice sheet margin (Chandler et al., 2013). During the 2012 time series, there were four major multiday peaks in J_{dis} (Figure 5). The largest 2012 peak occurred on the falling limb of the hydrograph of the widely publicized extreme melting event (Nghiem et al., 2012) during which river discharge reached ~800 m3 s$^{-1}$ (day 196; Figure 5). These results provide direct evidence that drainage of distributed regions follows periods of channelized system expansion due to rapid increases in surface meltwater runoff. Following the largest peaks in J_{dis} in 2011 and 2012, significant diurnal variations were observed in J_{dis} (days 205-210 in 2011 and days 199-205 in 2012; Figure 6). These daily cycles in J_{dis} suggest a high degree of connectivity between the distributed and channelized systems with increases in flux from the distributed on the falling limb of the hydrograph when subglacial water pressure subsides (Figure 6).

Bartholomew et al. (2011) and Butler (2014) found evidence that SSC/EC peaks at Leverett Glacier are triggered by supraglacial lake drainage events. These events likely increase the connectivity of the channelized system (Bartholomew et al., 2011a), and may lead to the expulsion of distributed system meltwater. In general, peaks in J_{dis} were not correlated with SSC/EC peaks, nor did peaks in SSC/EC lead to enhanced 222Rn concentrations (Figure 2). Lake drainage events clearly increase the suspended sediment load which may lead to post mixing
solute acquisition reactions, causing meltwaters to rapidly acquire dissolved solutes (Raiswell, 1984; Tranter et al., 1993). Conversely, 222Rn equilibrium in the distributed system will likely be reached long before subglacial meltwaters become saturated with respect to weathering minerals. Hence, we would expect more variation in solute concentrations (EC) in the distributed system than 222Rn activities. Consequently, lake drainage events could produce the observed SSC/EC peaks without a corresponding J_{dis} peak if they act to flush small volumes of distributed system meltwater with high solute concentrations to the ice sheet margin.

5 Conclusions

Using a mass balance model for 222Rn in a large glacial catchment of the GrIS, we found that on average, >90% of the 222Rn in the proglacial river is sourced from the subglacial distributed system. Hence, at Leverett Glacier, 222Rn acts as a conservative, passive tracer of distributed system meltwater fluxes. These fluxes varied on diurnal, seasonal, and interannual time scales. Based on 222Rn measurements, large peaks in distributed system drainage appear to be initiated by the expansion of the channelized system into presumably distributed regions of the ice sheet bed and by rapid increases in supraglacial meltwater runoff. During a large multiday J_{dis} peak in 2011 (days 190-200; Figure 5), SF$_6$ tracer experiments (Chandler et al., 2013) and ice acceleration (Sole et al., 2013) suggested the channelized network expanded coincident with the J_{dis} peak. In 2012, four major multiday J_{dis} peaks were observed (Figure 5), the biggest of which occurred on the falling limb of the hydrograph during the largest surface meltwater runoff event observed in Greenland since at least 1889 (days 196; Nghiem et al., 2012). These results imply that rapid warming events, which initially cause short term glacial acceleration (Tedstone et al., 2013), may lead to enhanced distributed system drainage, a process which could lessen the total
water volume at the ice sheet bed and ultimately, explain the observed mid-summer ice sheet slowing at Leverett Glacier (Sole et al., 2013; Tedstone et al., 2013). Following the largest peaks in \(J_{dis} \) in 2011 and 2012, significant diurnal variations were observed in \(J_{dis} \), indicative of a highly connected distributed system whereby the distributed system water flux substantially increases at night when channelized system water pressure subsides.

Based on our laboratory-based sediment equilibration measurements of \(^{222}\text{Rn}\) activities in distributed system fluids, we estimate that distributed system meltwater fluxes vary seasonally and are on the order of 1-5\% of river discharge. The weighted mean \(Q_{dis} \) relative to total river discharge was between 1-2.4\% in 2011 and 0.7-1.6\% in 2012. Future studies should endeavor to collect samples for \(^{222}\text{Rn}\) analysis directly from distributed and channelized systems so as to better constrain \(Q_{dis} \). Furthermore, utilizing continuous \(^{222}\text{Rn}\) measurements provides a practical tool to capture hourly variations in \(^{222}\text{Rn}\) activity as well as episodic events that might otherwise be missed if solely relying on discrete \(^{222}\text{Rn}\) measurements. Additionally, the detection limit and measurement uncertainty using the water probe extraction method (Section 2.3) is much lower than discrete sampling (Supplementary Material, Figure S1). Our results demonstrate that there is great potential for continuous \(^{222}\text{Rn}\) measurements in proglacial rivers to aid our understanding of how distributed system fluxes impact glacial hydrology, ice-dynamics, and biogeochemical fluxes.

Acknowledgements

We acknowledge and thank our funding sources: U.S. National Science Foundation Arctic Natural Sciences Program (ANS-1256669); Woods Hole Oceanographic Institution Arctic
Research Initiative, Ocean Ventures Fund, and Ocean Climate Change Institute; United Kingdom Natural Environment Research Council studentship (NE/152830X/1); the Carnegie Trust, Edinburgh University Development Trust. We also thank the Leverett field camp members who helped with data collection especially Catie Butler for collecting the 2011 electrical conductivity data that appears in this work. Data presented in this study is archived at: www.aoncadis.org/dataset/GrIS_RADON.html. Finally, we thank the Editor Derek Vance and three anonymous reviewers whose suggestions significantly improved this manuscript.
Figure 1: Location of Leverett Glacier in west Greenland. The primary sampling location for continuous 222Rn measurements is indicated by the black circle though some early season deployments of the 222Rn sensor occurred much closer to the glacier terminus. Figure adapted from Hawkings et al. (2014).
Figure 2: Results from 2011 and 2012 field seasons. Top panels: radon-222 activity (dpm L$^{-1}$); middle panels: EC and SSC (Hawkings et al., 2014); bottom panels: river discharge (Sole et al., 2013; Tedstone et al., 2013). Shaded grey boxes represent 222Rn peaks while dashed grey boxes are SSC/EC peaks, which likely correspond to supraglacial lake drainage events (discussed in text).
Figure 3: Summary of 222Rn sources and sinks in the proglacial river. Sources of 222Rn include the distributed system flux (J_{dis}), 222Rn diffusion through sediments into channels and cavities (J_{cha}), 226Ra bound to the surface of the suspended sediment load (P_{SSL}), and the decay of dissolved 226Ra ($\lambda^{226}\text{Ra}$). The sinks of 222Rn include gas loss to the atmosphere (J_{atm}) and radioactive decay of 222Rn ($\lambda^{222}\text{Rn}$). The flux of 222Rn from the river (J_{riv}) is the summation of these variables.
Figure 4: Average contributions from 2011 and 2012 of 222Rn sources to J_{riv} in the early melt season (river discharge <100 m3 s$^{-1}$) and during the late melt season (river discharge >100 m3 s$^{-1}$). Our mass-balance model suggests that throughout the melt season, the bulk of 222Rn in the proglacial river is derived from the distributed system. Model calculations suggested that the 222Rn contribution from P_{SSL}, 226Ra, and J_{cha} were often <<1% of the total J_{riv}; in these instances, for the purpose of clarity in this figure, they have been rounded to their upper limit estimates (1%).
Figure 5: The estimated subglacial distributed system flux (J_{dis}) from Leverett Glacier and discharge of the proglacial river in 2011 and 2012 (black line). The width of J_{dis} represents uncertainty in this parameter (see text).
Figure 6: Diurnal variations in J_{dis} occurred in both the 2011 and 2012 melt seasons. In general, J_{dis} peaks occurred on the falling limb of the hydrograph. We hypothesize that during this period,
distributed system meltwater was drawn into the channelized system as water pressure dropped in subglacial channels.
Supplementary Material

S1 Water probe response time

During the 2011 and 2012 field seasons, several factors related to the water probe setup may have influenced the response time of the water probe. First, in order to keep the RAD7 a safe distance from the unstable riverbank, the length of tubing between the detector and water probe had to be increased (from 8 to 12.5 m) effectively changing the system air volume from 1650 to 1750 cm3. Furthermore, the interface area of the membrane coil changed as two Accruel® membrane coils of slightly different lengths (a 2.1 m coil and the 2.2 m coil within the Durridge Inc. ‘water probe’) were used interchangeably across the two field seasons. The effect of these changes was quantified using the empirical relationships developed by Shubert et al., (2012), which suggest that our minor changes in air volume and membrane interface area likely only caused a 12-minute difference in equilibration time. This is a negligible difference when considering that the minimum time-scale over which significant changes in observed river 222Rn were diurnal. Furthermore, a field test was conducted in which both membrane coils were simultaneously deployed in the proglacial river for 12 hours. During this test, both systems recorded 222Rn activities well within the statistical counting errors. Consequently, the continuous 222Rn record reported here is a compilation of results obtained using both water probes. During deployment, the membrane coil was checked daily for wear and sediment buildup on its surface. Throughout either field seasons, no algae or sediment buildup was observed. To test the effectiveness of long term deployment of the membrane coil over the course of a melt season, two probes were deployed simultaneously, one that had been in continual use for ~30 days and a second
unit with a new membrane coil. Following an initial equilibration period, both units measured identical ^{222}Rn activities (within the method’s uncertainty) for several days.

To assess the water probe’s response to changes in ^{222}Rn activity, we conducted several laboratory experiments. First, the water probe was deployed simultaneously with the more conventional air-water equilibrating spray chamber (Burnett and Dulaiova, 2003) in a 200 L tank of circulating 10°C seawater for 70 hours. Seawater was continuously pumped into the tank from Vineyard Sound, ~50 m offshore of Woods Hole (MA). The air-water equilibrator spray chamber provided a baseline from which to compare the water probe, because with an optimum setup, its equilibration time is less than 30 minutes (Schubert et al., 2012). The residence time of seawater in the tank was <1 hour and water was kept in constant motion using six submersible bilge pumps, each capable of pumping ~30 L min$^{-1}$. Slow but significant changes in ^{222}Rn were observed by both the spray chamber and water probe likely caused by the changing tide and submarine groundwater discharge (Burnett and Dulaiova, 2003). The equilibration time was defined as the length of time at which the recorded ^{222}Rn activities reached an activity plateau within the statistical counting errors. With this experimental setup, the water probe required an initial six-hour equilibration time while the spray chamber reached equilibrium in <30 min. Subsequent changes in ^{222}Rn activity measured by the water probe lagged 1-2 hours behind the spray chamber. In a separate experiment, the water probe and spray chamber were allowed to equilibrate with ^{222}Rn-free water before being moved quickly into a tank containing ^{222}Rn-enriched groundwater. In this case, both water probe and spray chamber systems responded to the activity change in <30 minutes though the water probe required much longer to reach the new equilibrium plateau.
To determine the equilibration time of the water probe system in the proglacial river, we examined the first six hours of data recorded after the water probe was freshly deployed (see Figure S2 for one example). Our analysis included 14 separate deployments in 2011 and 2012 in river flows ranging from 1 to 750 m3 s$^{-1}$. In each case, an equilibration plateau was reached within two hours of deployment regardless of river flow rate or system configuration (as described above). The equilibration time was therefore three times faster than the laboratory experiments. This was likely because water in the proglacial river was flowing much faster than in laboratory experiments keeping the 222Rn activity gradient at the water/air interface of the membrane coil closer to 100%. These results support the findings of Hofmann et al. (2011) and Schubert et al. (2012) showing that the water flow rate over the membrane coil is the most important factor for passive 222Rn extraction. Because of the much faster equilibration time in the proglacial river, we expect the water probe’s response time to changing 222Rn activities was also faster in the field than the one to two hours suggested by laboratory experiments.

In summary, when interpreting results from continuous 222Rn measurements, we assume changes in 222Rn activity recorded by our methods occurred within one hour of actual 222Rn activity changes in the proglacial river. Also, we have excluded 222Rn results from the first two hours from each fresh deployment while the water probe was equilibrating.

S2 Sediment Properties

The porosity and bulk density of glacial flour collected in the proglacial river was
determined using the moisture content and particle density measured in the laboratory.

Moisture content (%M) was determined by weighing sediments before and after drying at 100°C: using Equation S1:

\[
\%M = \frac{\text{wet wt.} - \text{dry wt.}}{\text{wet wt.}} \times 100
\]

(S1)

Grain density (\(\rho_s\)) was determined using the oven dry weight and volume of sediment. The volume of sediment was determined by adding the sediments to a volumetric flask and measuring the weight of water displaced by the sediments.

Bulk density (\(\beta_D\)) was calculated using Equation S2

\[
\beta_D = \frac{1}{\left(\frac{1}{\left(\frac{100 - \%M}{100}\right) \times 100 + \frac{1}{\rho_s}}\right) - 1}
\]

(S2)

where \(\rho_s\) is the average sediment grain density of triplicate analysis. Finally, porosity (\(\phi\)) was estimated from Equation S3.

\[
\phi = (\rho_s - \beta_D) / \rho_s
\]

(S3)
Figure S1: Comparison of discrete 222Rn samples with comparable time-series measurements using the water probe. Error bars represent 1-sigma counting errors on each measurement. Many of these discrete 222Rn samples were taken at the ice terminus while the water probe measured 222Rn downstream. This implies that gas loss in the proglacial river between the ice terminus and the water probe was within the errors of our measurements.
Figure S2: Equilibration time of the 222Rn water probe on 6/2/2011 (day 153) after being deployed in the proglacial river. Throughout the 2011 and 2012 field seasons, the water probed required 1-2 hours to reach an equilibrium plateau, the time at which the recorded radon activities reach an equilibrium activity plateau within the statistical counting errors.
Table S1. Summary of 250 mL discrete 222Rn samples collected in the proglacial river in 2011.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Day</th>
<th>Date</th>
<th>222Rn (dpm L^{-1})</th>
<th>+/-</th>
<th>EC (μS cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>128.5</td>
<td>5/8/11</td>
<td>15.9</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>129.6</td>
<td>5/9/11</td>
<td>3.2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>132.5</td>
<td>5/12/11</td>
<td>3.2</td>
<td>2.8</td>
<td>69</td>
</tr>
<tr>
<td>0.5</td>
<td>132.8</td>
<td>5/12/11</td>
<td>7.0</td>
<td>5.4</td>
<td>69</td>
</tr>
<tr>
<td>0.5</td>
<td>132.8</td>
<td>5/12/11</td>
<td>4.3</td>
<td>3.0</td>
<td>75</td>
</tr>
<tr>
<td>0.5</td>
<td>132.8</td>
<td>5/12/11</td>
<td>5.9</td>
<td>4.4</td>
<td>75</td>
</tr>
<tr>
<td>0.5</td>
<td>133.4</td>
<td>5/13/11</td>
<td>4.8</td>
<td>2.1</td>
<td>94</td>
</tr>
<tr>
<td>0.5</td>
<td>133.4</td>
<td>5/13/11</td>
<td>7.0</td>
<td>6.4</td>
<td>94</td>
</tr>
<tr>
<td>0.5</td>
<td>133.7</td>
<td>5/13/11</td>
<td>18.2</td>
<td>10.1</td>
<td>79</td>
</tr>
<tr>
<td>0.5</td>
<td>133.7</td>
<td>5/13/11</td>
<td>14.5</td>
<td>7.5</td>
<td>89</td>
</tr>
<tr>
<td>0</td>
<td>133.6</td>
<td>5/13/11</td>
<td>4.3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>133.6</td>
<td>5/13/11</td>
<td>13.4</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>134.5</td>
<td>5/14/11</td>
<td>9.1</td>
<td>2.1</td>
<td>90</td>
</tr>
<tr>
<td>0.5</td>
<td>134.5</td>
<td>5/14/11</td>
<td>7.0</td>
<td>4.4</td>
<td>90</td>
</tr>
<tr>
<td>0.5</td>
<td>135.5</td>
<td>5/15/11</td>
<td>5.4</td>
<td>2.8</td>
<td>74</td>
</tr>
<tr>
<td>0.5</td>
<td>135.5</td>
<td>5/15/11</td>
<td>7.0</td>
<td>6.2</td>
<td>76</td>
</tr>
<tr>
<td>0.5</td>
<td>136.0</td>
<td>5/16/11</td>
<td>10.8</td>
<td>1.8</td>
<td>81</td>
</tr>
<tr>
<td>0.5</td>
<td>137.5</td>
<td>5/17/11</td>
<td>9.1</td>
<td>6.2</td>
<td>76</td>
</tr>
<tr>
<td>0.5</td>
<td>137.5</td>
<td>5/17/11</td>
<td>1.6</td>
<td>2.0</td>
<td>76</td>
</tr>
<tr>
<td>0.5</td>
<td>139.6</td>
<td>5/19/11</td>
<td>4.3</td>
<td>1.8</td>
<td>81</td>
</tr>
<tr>
<td>0.5</td>
<td>140.8</td>
<td>5/20/11</td>
<td>5.9</td>
<td>1.1</td>
<td>73</td>
</tr>
<tr>
<td>0.5</td>
<td>140.8</td>
<td>5/20/11</td>
<td>5.4</td>
<td>2.8</td>
<td>73</td>
</tr>
<tr>
<td>0.5</td>
<td>141.6</td>
<td>5/21/11</td>
<td>14.0</td>
<td>4.1</td>
<td>75</td>
</tr>
<tr>
<td>0.5</td>
<td>145.8</td>
<td>5/25/11</td>
<td>4.3</td>
<td>4.7</td>
<td>65</td>
</tr>
<tr>
<td>0.5</td>
<td>144.6</td>
<td>5/24/11</td>
<td>6.9</td>
<td>3.2</td>
<td>88</td>
</tr>
<tr>
<td>0</td>
<td>147.7</td>
<td>5/27/11</td>
<td>67.4</td>
<td>11.6</td>
<td>49</td>
</tr>
<tr>
<td>0</td>
<td>147.7</td>
<td>5/27/11</td>
<td>32.2</td>
<td>7.3</td>
<td>45</td>
</tr>
<tr>
<td>0.5</td>
<td>147.8</td>
<td>5/27/11</td>
<td>7.5</td>
<td>2.8</td>
<td>45</td>
</tr>
<tr>
<td>0.5</td>
<td>147.8</td>
<td>5/27/11</td>
<td>12.9</td>
<td>3.0</td>
<td>45</td>
</tr>
<tr>
<td>0</td>
<td>148.5</td>
<td>5/28/11</td>
<td>41.4</td>
<td>8.1</td>
<td>85</td>
</tr>
<tr>
<td>0</td>
<td>148.5</td>
<td>5/28/11</td>
<td>54.3</td>
<td>7.3</td>
<td>84</td>
</tr>
<tr>
<td>0.5</td>
<td>148.5</td>
<td>5/28/11</td>
<td>70.3</td>
<td>9.7</td>
<td>62</td>
</tr>
<tr>
<td>0.5</td>
<td>149.8</td>
<td>5/29/11</td>
<td>24.3</td>
<td>6.2</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>149.8</td>
<td>5/29/11</td>
<td>17.8</td>
<td>8.8</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>151.9</td>
<td>5/31/11</td>
<td>17.8</td>
<td>3.1</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>148.8</td>
<td>5/28/11</td>
<td>6.5</td>
<td>3.5</td>
<td>61</td>
</tr>
<tr>
<td>0</td>
<td>150.8</td>
<td>5/30/11</td>
<td>5.4</td>
<td>1.3</td>
<td>40</td>
</tr>
<tr>
<td>0.5</td>
<td>150.8</td>
<td>5/30/11</td>
<td>14.7</td>
<td>6.8</td>
<td>40</td>
</tr>
<tr>
<td>Distance</td>
<td>Day</td>
<td>Date</td>
<td>^{222}Rn</td>
<td>+/-</td>
<td>EC</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>---------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dpm L$^{-1}$</td>
<td>µS cm$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>153.7</td>
<td>6/2/11</td>
<td>22.6</td>
<td>9.5</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>153.7</td>
<td>6/2/11</td>
<td>3.2</td>
<td>2.8</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>152.7</td>
<td>6/1/11</td>
<td>24.1</td>
<td>7.0</td>
<td>36</td>
</tr>
<tr>
<td>0.5</td>
<td>156.6</td>
<td>6/5/11</td>
<td>5.4</td>
<td>3.7</td>
<td>14</td>
</tr>
<tr>
<td>0.5</td>
<td>156.6</td>
<td>6/5/11</td>
<td>4.1</td>
<td>4.8</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>156.7</td>
<td>6/5/11</td>
<td>17.1</td>
<td>3.0</td>
<td>12</td>
</tr>
<tr>
<td>0.5</td>
<td>156.7</td>
<td>6/5/11</td>
<td>17.2</td>
<td>5.3</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>157.7</td>
<td>6/6/11</td>
<td>4.3</td>
<td>3.0</td>
<td>44</td>
</tr>
<tr>
<td>0</td>
<td>157.7</td>
<td>6/6/11</td>
<td>6.5</td>
<td>5.3</td>
<td>45</td>
</tr>
<tr>
<td>0.5</td>
<td>158.3</td>
<td>6/7/11</td>
<td>4.8</td>
<td>3.1</td>
<td>21</td>
</tr>
<tr>
<td>0.5</td>
<td>159.2</td>
<td>6/8/11</td>
<td>3.8</td>
<td>2.1</td>
<td>37</td>
</tr>
<tr>
<td>0.5</td>
<td>159.3</td>
<td>6/8/11</td>
<td>9.7</td>
<td>5.4</td>
<td>36</td>
</tr>
<tr>
<td>0.5</td>
<td>153.7</td>
<td>6/2/11</td>
<td>8.2</td>
<td>5.7</td>
<td>42</td>
</tr>
<tr>
<td>0.5</td>
<td>153.7</td>
<td>6/2/11</td>
<td>20.5</td>
<td>5.5</td>
<td>50</td>
</tr>
<tr>
<td>0.5</td>
<td>162.7</td>
<td>6/11/11</td>
<td>1.6</td>
<td>1.1</td>
<td>16</td>
</tr>
<tr>
<td>0.5</td>
<td>162.7</td>
<td>6/11/11</td>
<td>3.3</td>
<td>1.2</td>
<td>16</td>
</tr>
<tr>
<td>0.5</td>
<td>165.0</td>
<td>6/14/11</td>
<td>4.9</td>
<td>6.9</td>
<td>35</td>
</tr>
<tr>
<td>0.5</td>
<td>165.5</td>
<td>6/14/11</td>
<td>5.4</td>
<td>2.1</td>
<td>27</td>
</tr>
<tr>
<td>0</td>
<td>166.7</td>
<td>6/15/11</td>
<td>3.2</td>
<td>2.1</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>166.7</td>
<td>6/15/11</td>
<td>10.7</td>
<td>5.8</td>
<td>23</td>
</tr>
<tr>
<td>0.5</td>
<td>167.5</td>
<td>6/16/11</td>
<td>2.7</td>
<td>1.1</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>167.6</td>
<td>6/16/11</td>
<td>2.7</td>
<td>3.2</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>170.0</td>
<td>6/19/11</td>
<td>3.8</td>
<td>1.1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>170.0</td>
<td>6/19/11</td>
<td>4.3</td>
<td>1.8</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>172.7</td>
<td>6/21/11</td>
<td>2.7</td>
<td>2.7</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>172.7</td>
<td>6/21/11</td>
<td>4.8</td>
<td>4.7</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>184.6</td>
<td>7/3/11</td>
<td>2.1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>198.9</td>
<td>7/17/11</td>
<td>1.6</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>
References

Hawkins, J.R., Wadhams, J.L., Tranter, M., Raiswell, R., Benning, L.G., Statham, P.J.,
Tedstone, A., Nienow, P., Lee, K., Telling, J., 2014. Ice sheets as a significant
source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5.
doi:10.1038/ncomms4929

Archaean to Quaternary: descriptive text to the 1995 geological map of Greenland,
1: 2 500 000. Geological Survey of Denmark and Greenland.

Hindshaw, R.S., Rickli, J., Leuthold, J., Wadhams, J., Bourdon, B., 2014. Identifying
weathering sources and processes in an outlet glacier of the Greenland Ice Sheet

diffusion membrane for continuous 222Rn measurements for the quantification of

Hubbard, B., Sharp, M., Nielsen, M., Willis, I.C., Smart, C.C., 1995. Borehole water-
level variations and the structure of the subglacial hydrological system of Haut
Glacier d’ Rolla, Valais, Switzerland. J. Glaciol. 41, 572–583.

