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ABSTRACT 24 

Surveying endangered species is necessary to evaluate conservation effectiveness. 25 

Camera trapping and biometric computer vision are recent technological advances. They 26 

have impacted on the methods applicable to field surveys and these methods have gained 27 

significant momentum over the last decade. Yet, most researchers inspect footage manually 28 

and few studies have used automated semantic processing of video trap data from the field. 29 

The particular aim of this study is to evaluate methods that incorporate automated face 30 

detection technology as an aid to estimate site use of two chimpanzee communities based 31 

on camera trapping. As a comparative baseline we employ traditional manual inspection of 32 

footage. Our analysis focuses specifically on the basic parameter of occurrence where we 33 

assess the performance and practical value of chimpanzee face detection software. We 34 

found that the semi-automated data processing required only 2-4% of the time compared to 35 

the purely manual analysis. This is a non-negligible increase in efficiency that is critical 36 

when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest 37 

that our methodology estimates the proportion of sites used relatively reliably. 38 

Chimpanzees are mostly detected when they are present and when videos are filmed in high 39 

resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos 40 

containing only chimpanzee frontal face views. Certainly our study is only a first step for 41 

transferring face detection software from the lab into field application. Our results are 42 

promising and indicate that the current limitation of detecting chimpanzees in camera trap 43 

footage due to lack of suitable face views can be easily overcome on the level of field data 44 

collection, i.e. by the combined placement of multiple high resolution cameras facing 45 
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reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys 46 

based on camera trapping and semi-automated processing of footage. 47 

 48 

Keywords: apes; animal biometrics; camera placement; site use; automated image 49 

recognition 50 

 51 

Research Highlights 52 

Using semi-automated ape face detection technology for processing camera trap footage 53 

requires only 2-4% of the time compared to manual analysis and allows to estimate site use 54 

by chimpanzees relatively reliably. 55 



Crunchant 4 

 
 

INTRODUCTION 56 

 Motivation. Biodiversity has declined and continues to decline around the world. 57 

This is true of great ape populations, which have dramatically decreased in numbers and 58 

distribution over the past three decades [Walsh et al., 2003; Campbell et al., 2008; 59 

Greengrass, 2009; Junker et al., 2012; Funwi-Gabga et al., 2014]. In light of multiple 60 

drivers of decline (habitat loss [Gates, 1996; Wich et al., 2008; Junker et al., 2012, Wich et 61 

al., 2014], hunting [Gates, 1996; Walsh et al., 2003; Kuehl et al., 2009], and infectious 62 

diseases [Woodford et al., 2002; Leendertz et al., 2004; Bermejo et al., 2006; Leendertz et 63 

al.,  2006; Köndgen et al., 2008]), we face the arduous task of conserving and restoring ape 64 

populations above critical levels and to secure them as a global community. To do this, it is 65 

first necessary to estimate distribution and population sizes accurately in order to allocate 66 

conservation efforts to where they are most needed [Kormos & Boesch, 2003; Oates et al., 67 

2007; Plumptre et al., 2010; Morgan et al., 2011; Carlsen et al., 2012 ; IUCN & ICCN, 68 

2012; Maldonado et al., 2012; Dunn et al., 2014; Tweh et al., 2014]. Distribution and 69 

density estimates of individuals allow inference on changes in population size. With this 70 

information, conservationists can establish and prioritize protected areas and will have a 71 

baseline estimate for assessing the effectiveness of their efforts over time [Kormos & 72 

Boesch, 2003; Nichols & Williams, 2006; Plumptre & Cox, 2006].  73 

General Approach. To obtain population estimates, monitoring needs to be regular 74 

and over a wide range of areas that are inhabited by a species. Long-term monitoring is also 75 

important to address various ecological questions, such as the determination of habitat use, 76 

resource use, community dynamics and community relationships. Yet, with elusive species, 77 

such as apes, direct observations are difficult to obtain without massive habituation efforts, 78 
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which generates a need for reliable indirect monitoring methods [Kuehl et al., 2008; Head 79 

et al., 2013]. An array of indirect monitoring techniques have thus been developed and 80 

employed, including line transect nest and dung counts, camera trapping and non-invasive 81 

genetic sampling [Plumptre & Reynolds, 1996; Kuehl et al., 2007; Kuehl et al., 2008; Todd 82 

et al., 2008; Guschanski et al., 2009; Kouakou et al., 2009; Buckland et al., 2010; Head et 83 

al., 2013]. Distribution and abundance can then be inferred using design-based inference, 84 

spatial modeling techniques or capture-recapture methods [Buckland et al., 2001; Borchers 85 

et al., 2002; Arandjelovic et al., 2010; Head et al., 2013; Murai et al., 2013; Tweh et al., 86 

2014].  87 

Problem Statement. However, while these methods are very useful for 88 

conservation research, some of them can nevertheless be labor, time and cost intensive, for 89 

they require trained staff, adequate equipment, and regular repetition [Gaston & O’Neill, 90 

2004]. Furthermore, some monitoring methods are vulnerable to human observer biases 91 

[Tuyttens et al., 2014]. One exception is camera trapping that is less dependent on human 92 

observer skills in the field. However, camera trapping also requires correct identification of 93 

individuals to e.g. estimate occupancy or population size [O’Connell et al., 2010] and is 94 

ideally only used on demographically closed populations with minimal growth rates and 95 

migration [Borchers & Efford, 2008; Head et al., 2013]. Although advantageous to non-96 

invasively observe elusive species and amass large amounts of data [Noss et al., 2012], the 97 

technique is, when used conventionally, also labor and time intensive, requiring skilled 98 

observers to process the video data.  99 

Animal Biometrics. In response to this problem, animal biometrics has made 100 

progress in developing computerized methods for automated detection and individual 101 
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identification [Gaston & O’Neill, 2004; Kühl & Burghardt, 2013]. Kühl and Burghardt 102 

[2013] defined animal biometrics as the utilization of phenotypic characteristics that can 103 

identify species and in some scenarios even individuals, by exploiting body morphologies, 104 

coat patterns and general appearance, vocalizations or behaviors. Based on phenotypic 105 

observations and distinct animal characteristics, biometric software has helped to identify 106 

individual elephants from ear nicks [Ardovini et al., 2008], dolphins from dorsal fin shapes 107 

[Araabi et al., 2000], zebras from stripe patterns [Lahiri et al., 2011], great white sharks 108 

from dorsal fin shape [Hughes & Burghardt, 2015], and great apes from facial 109 

characteristics [Ernst & Küblbeck, 2011; Loos & Ernst, 2012; 2013].  110 

Performance Estimation. Assuming perfect ground truth labeling, the performance 111 

of automated detection systems can be specified according to a binary classification task. 112 

For the task of animal detection, for instance, detections can be categorized into one of four 113 

classes: true positives (TP, a manually observed animal is also detected by the software); 114 

true negatives (TN, no animal is manually observed nor detected by the software); false 115 

negatives (FN, an animal is manually observed, but not detected by the software); false 116 

positives (FP, no animal is observed manually but software generates a detection). The 117 

performance of the overall detection software can then be characterized by these values. 118 

However, performance statistics could also be reported by a combination of recall and false 119 

alarm rates; where recall is the proportion of true detections by the software in relation to 120 

the total number of detectable events (TP/(TP+FN)) and false alarm rate is the proportion 121 

of false detections (FP/(FP+TN)) [Macmillan & Creelman, 2004].  122 

Novelty of Study using Face Detection. Face detection software, as a particular 123 

class of animal biometric detection technology, is particularly promising for population 124 
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assessment, analysis and conservation of great apes with potential for addressing further 125 

parameters, as well as population and community ecology questions [Kühl & Burghardt, 126 

2013]. To date, face detection software for animals has been successfully tested under 127 

controlled conditions, or was tested based on high-quality image and video datasets which 128 

were not gathered by using remote camera devices as in our study [Loos & Ernst, 2012; 129 

2013]. To our knowledge, no studies have successfully used face detection software under 130 

completely unconstrained field conditions, and we are not aware of any studies that have 131 

directly compared the results of both manual and face detection analyses of camera trap 132 

data from the field.  133 

Aims of Study. In this study we evaluate the applicability of previously developed 134 

chimpanzee face detection software [Ernst & Küblbeck, 2011] to process field camera trap 135 

data. Our primary aim is to assess whether using the software can improve efficiency of the 136 

time consuming processing of camera trap footage. More specifically, we are interested in 137 

quantifying the amount of time field biologists may save and the expected accuracy of key 138 

parameter estimates when using the software compared to purely manual processing. It is 139 

not the goal of this study to assess the performance of the software as an object recognition 140 

framework, this has been already done for high-quality visual footage and the interested 141 

reader is referred to [Ernst & Küblbeck, 2011] for a detailed evaluation. Here we focus on 142 

quantifying the software’s effectiveness for the task of estimating site-specific occurrences 143 

of chimpanzees (site occupancy) based on in-frame animal presence/absence [MacKenzie 144 

et al., 2002; MacKenzie et al., 2006; Andresen et al., 2014]. We note that this task is 145 

fundamentally different compared to evaluating object recognition performance, since 146 

neither accurate spatiotemporal localization nor scale information - critical parameters in 147 
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traditional performance estimates for object recognition - retain their importance when 148 

focusing on presence/absence information over large time windows only.  149 

Our overall target parameter is site occupancy, i.e. we want to estimate the 150 

proportion of an area that is occupied or used by a species during a season [MacKenzie et 151 

al., 2002]. This measure is useful in long-term monitoring programs because it can provide 152 

data to assess population changes, site colonization and extinction, site use, as well as give 153 

insight into multi-species interactions and other ecological parameters [MacKenzie et al., 154 

2002; MacKenzie et al., 2003].  155 

Summary of Objectives. In summary, our objectives are (1) to estimate the 156 

performance and efficiency gain when using the face detection software to recognize 157 

chimpanzee presence and absence under field conditions, and (2) to estimate site use by 158 

two chimpanzee communities from this data. We compare the results of manual processing 159 

of camera trap footage with various degrees of automated processing. Though we have 160 

chosen to conduct our study on a small scale to test the face detection approach, this 161 

approach and software is fit for use at a larger scale where it has the potential to have the 162 

greatest benefit and impact of analyzing field data.  163 

 164 

DESCRIPTION 165 

Analytical methods 166 

Manual Video Processing. All camera trap videos were first manually screened for the 167 

presence of chimpanzees. Detections were also categorized into quality levels of the 168 

underlying images (light conditions, chimpanzee distance from camera, visibility time, and 169 
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face and head positions; Fig. 1). The metadata was recorded together with date, time and 170 

GPS location of the capture.  171 

Face Detection System. We used the face detection framework SHORETM (Sophisticated 172 

High-Speed Object Recognition Engine) [Ernst & Küblbeck, 2011; Loos, 2016] developed 173 

by the Fraunhofer Institute for Integrated Circuits (IIS) trained to detect chimpanzees (Fig. 174 

2). A software license can be requested from (www.iis.fraunhofer.de). SHORETM attempts 175 

real-time detection and tracking of frontal primate faces in images and videos. Whilst a 176 

detailed algorithmic description is published in [Küblbeck & Ernst, 2006; Ernst & 177 

Küblbeck, 2011; Loos & Ernst, 2013], here we present a high-level summary of its 178 

workings to provide the basic technical context in which the study operates. 179 

General Detection System. SHORETM [Ernst & Küblbeck, 2011] builds on the key 180 

concepts of the well-established object detection framework by Viola and Jones [2001]. 181 

SHORETM utilizes a detection model comprising multiple consecutive classification stages, 182 

through which image regions are passing with increasing complexity along an attentional 183 

cascade [Viola & Jones, 2001]. In SHORETM, each stage comprises a feature extraction 184 

step and a look-up table based classification step, where the classifier is built offline using 185 

Real-AdaBoost [Schapire & Singer, 1999]. Real-time capability is achieved by using 186 

simple and fast pixel-based features in early stages for a fast and coarse candidate search. 187 

Later stages implement slower, but more accurate classifications. 188 

Visual Features. Each stage utilizes one out of three illumination-invariant features: edge 189 

orientation features, census features, or structure features. Edge orientation features 190 

represent pixel-based gradient directions and are extracted via Sobel operators. In 191 

subsequent classification stages more complex census features [Zabih & Woodfill, 1994] 192 
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are extracted, which encode local brightness changes. In the final classification stages, 193 

structure features, which are built out of scaled versions of census features, are extracted on 194 

image regions. 195 

System Training. Positive training data, i.e. great ape faces, were used applying slight 196 

random variations such as rotation, mirroring, and translation to increase robustness of the 197 

classifier to be built. Non-face negative training data was generated by randomly cropping 198 

patches from images without great ape faces. Subsequently, further non-face data was 199 

gathered by bootstrapping the initial model on images without ape faces. 200 

Face Detection. During detection, the gray scaled input image is initially convolved with a 201 

3x3 mean filter kernel to compensate noise. While the detection model is fixed with a size 202 

of 24x24 pixels, the mean filtered image is downscaled multiple times using a scaling 203 

factor of 1.24 to build an image pyramid. A real-time capable, coarse to fine search is 204 

applied by shifting the detection window across every pyramid level to achieve scale 205 

invariance. Detections in multiple pyramid levels are subsequently merged to a single 206 

detection with mean size and location by applying non-maxima suppression. 207 

Slicing and Face Tracking. As stated earlier, SHORETM is not only capable of detecting 208 

faces in single frames, but also to track them through a scene. Once a face has been 209 

detected, a unique identifier is assigned to it. During consecutive frames, the tracking 210 

algorithm then tries to maintain the association between ID and face. The subsequent 211 

paragraph briefly reviews the tracking algorithm used within SHORETM. For a more 212 

detailed explanation the interested reader is referred to [Küblbeck & Ernst, 2006]. As 213 

described, the static detector repeatedly searches for faces in all levels of an image pyramid 214 

in order to find faces of different sizes. Assuming scale consistency of faces, it is sufficient 215 
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to scan pyramid levels only a few times per second. Therefore, the image pyramid is 216 

partitioned into slices which are processed alternatingly. In practical applications Küblbeck 217 

and Ernst [2006] observed a performance improvement by a factor of two to three, 218 

depending on the number of faces in the scene. A motion model is then applied to connect 219 

the detections of subsequent frames. A linear Kalman filter [Kalman, 1960; Welch & 220 

Bishop, 2006] is applied in order to estimate the current state of a tracked face from the 221 

detection results. Additionally, the first and second order derivatives are included in the 222 

state vector to represent the velocity and the acceleration of a face. Association of object-ID 223 

and detected face in consecutive frames is done by using a minimum distance criterion: A 224 

detected face in the current frame is associated with the face detected in the previous frame 225 

which is closest to the current object position. It was shown in [Küblbeck & Ernst, 2006] 226 

that based on the observations of past frames it can be decided if a tracked object actually 227 

represents a valid face, which significantly reduces the number of false positive detections 228 

while the detection rate is maintained.  229 

Application of Software. We used the face detection software SHORETM to extract 230 

chimpanzee occurrence from all video footage via R (version 3.0.2; R Development Core 231 

Team, 2013; https://www.r-project.org) The software was carefully trained by computer 232 

vision experts and the detection score was selected based on evaluation on an entirely 233 

different dataset. We included videos that did not contain chimpanzees in the analysis. We 234 

did not modify the software provided by the Fraunhofer Institute and recognize their 235 

contribution to our methodology. The software provides detections of primate faces 236 

contained in images and videos. Note that the software only detects chimpanzee faces and 237 

not whole bodies, its ability to detect chimps in videos is limited to videos where face 238 
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views are visible. The software then produces a script of codes and coordinates as output 239 

for each respective visual image processed. This contained the species detected 240 

(chimpanzee or gorilla) and the age class (infant, juvenile, adult) for each individual. 241 

Additionally, for each frame where an individual was detected, the output gave the 242 

probability of species and the most probable species, the probability of each age class and 243 

the most probable age class, as well as positions of the face, eyes and mouth. 244 

Setups and Post-processing. Automated processing can lead to misclassifications, whose 245 

impact can bias estimates for species occurrence and site occupancy estimates [MacKenzie 246 

et al., 2003; MacKenzie & Royle, 2005; Andresen et al., 2014]. Choosing a suitable 247 

annotation procedure and evaluation approach is therefore essential to rate software 248 

performance appropriately [Mathias et al., 2014]. To better understand software 249 

misclassification, but to also account for the fact that we used software to detect faces and 250 

not any body part of chimpanzees, we applied consecutive and increasingly complex test 251 

steps after the manual and software processing. In the first step, we rated detections made 252 

by the software against all videos manually classified as containing at least one chimpanzee 253 

(i.e. the full set of positives). Second, since the software is based only on the detection of 254 

near-frontal faces and not bodies, we only considered videos that contained at least one face 255 

view of a chimpanzee (i.e. a subset of all positives). Post-processing then took place in the 256 

third and fourth steps. In the third step, we aimed at filtering out false positives, i.e. 257 

instances where the software responded to an object other than a chimpanzee, such as a 258 

swinging branch or a point on a tree (Fig. 2). Since these false detections are usually 259 

stationary objects (e.g. leaf or bark), their location estimates are stationary compared to 260 

variable whenever chimpanzees move across the scene. We calculated the cumulative 261 



Crunchant 13 

 
 

distance between the detected face locations in consecutive video frames and removed 262 

detections whose cumulative distance was lower than 0.02 (i.e. 2% of the frame width). 263 

This threshold was based on the inspection of true and false positive detections with the 264 

aim of minimizing the loss of true detections. Lastly, in our fourth step, we only considered 265 

video clips where at least one chimpanzee individual’s face was in a frontal position (i.e. 266 

both eyes facing the camera) and the associated detection was moving over a detectable 267 

cumulative distance (i.e. greater than 2% of the video size). 268 

Performance of face detection approach 269 

We tested the performance of the software at three levels: 1) simple 270 

presence/absence, 2) sightings vs. time relation to detect chimpanzees manually compared 271 

to automatically, and 3) occupancy modeling.  272 

1) Confirming presence/ absence: We determined how often the face detection software 273 

correctly recognizes chimpanzee presence and absence (see above). We then applied the 274 

four consecutive processing steps and calculated the proportion of each detection category.  275 

2) Detection time: For both the manually and automatically processed video data we 276 

derived accumulation curves showing the cumulative number of cameras with which 277 

chimpanzee presence was confirmed as a function of time. 278 

3) Occupancy modeling: We interpret the commonly used term ‘occupied site’ as a ‘site 279 

used by chimpanzees’. ‘Naïve occupancy’ is defined as the proportion of sites where a 280 

species is present within the surveyed period relative to all surveyed sites. To estimate the 281 

number of sites used by chimpanzees at both locations, we used a single-season model. We 282 

applied the “occu” function from the “unmarked” package in R [Fiske & Chandler, 2011]. 283 

This model estimates two parameters: 1) the probability that a species is present within a 284 
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site, i.e. probability of occupancy (Ψ), and 2) the probability that a species present is 285 

detected within a site, i.e., probability of detection (p). More details about this model can be 286 

found in MacKenzie and colleagues [2006]. The model is based on four assumptions that 287 

need to be respected to avoid any bias of estimators: 1) sites are closed, meaning that no 288 

emigration and no immigration occurs during the study; 2) probability of detection is 289 

constant across all sites and surveys or is a function of site-survey covariates; 3) probability 290 

of occupancy is constant across sites or is a function of covariates; and 4) detection of 291 

species and detection histories at each location are independent of one another [MacKenzie 292 

et al., 2002; MacKenzie et al.,  2006; Fiske & Chandler, 2011]. We divided the sampling 293 

period into sampling occasions (SO) of four days each. We removed one of two sites close 294 

by, surveyed during the same time period and separated only by approximately 50 meters 295 

and we removed sites with less than five sampling occasions. We also combined close and 296 

consecutively surveyed sites to avoid violating independence of detection among sites. We 297 

took only the first ten SO per camera into account for several reasons: first, the number of 298 

sites with more than ten SO was low and thus the value of detection probability could be 299 

biased and have lower precision; second, MacKenzie and colleagues [2002] recommend at 300 

least six SO in order to obtain a relatively unbiased occupancy probability; third, we limited 301 

the length of the study in order to meet the assumption of site closure; lastly, ten SO 302 

represent a total length of 40 days, a length compatible and reasonable with field surveys. 303 

Detection histories were compiled into a matrix containing four different values: (0) 304 

when no detection occurred neither manually nor by the software, i.e. a true negative (TN); 305 

(1) when a true positive (TP) detection occurred, meaning that a chimpanzee was detected 306 

by the software and confirmed manually; (2) when a false positive (FP) occurred, meaning 307 
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that a chimpanzee detected by the software was not confirmed manually; and (3) when a 308 

false negative (FN) occurred, meaning that a chimpanzee detected manually was not 309 

recognized by the software. When no survey was conducted during a SO (e.g. due to 310 

camera malfunctioning), we assigned a value of N/A. In the case where several videos with 311 

different classifications (i.e. FN, FP, TP) occurred in the same sampling occasion, we 312 

prioritized classes as follows: TP>FN>FP>TN. A FN leads to a loss of information and is 313 

therefore more important than a FP, easily corrected to a TN when watching the videos. For 314 

example, if during a sampling occasion both a video without a chimpanzee but with a 315 

detection by the software occurred and a video with a chimpanzee not detected by the 316 

software occurred, the sampling occasion was classified as a FN. We ran models for four 317 

datasets per site, respectively: the manual dataset including all videos and three other 318 

datasets based on the face recognition software output and the fourth processing level (i) 319 

one with no manual cleaning, (ii) one, in which false positive were removed and (iii) one, 320 

in which the proportional removal of false positive and false negatives was equal. 321 

We developed an assessment study where we “cleaned” false positive and false 322 

negative sampling occasions manually by 10% increments; “cleaned” FP SO were 323 

transformed into TN SO, and “cleaned” FN SO were transformed into TP SO. We ran 1000 324 

simulations to get occupancy and detection probabilities for each assessment. We used the 325 

‘plogis’ function in order to obtain the occupancy probability (Ψ) at the original scale, with 326 

values between 0 and 1. A (0) means that the site is not used by chimpanzees and a (1) 327 

means that the site is used by individuals. We calculated the naïve occupancy by taking the 328 

number of sites where a chimpanzee was at least once manually detected divided by the 329 

total number of sites surveyed. 330 
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All analyses and graphs were carried out in R (version 3.0.2; R Development Core 331 

Team, 2013; https://www.r-project.org) and map was created in QGIS 2 (version 2.10.1 332 

Pisa; QGIS Development team, 2015; http://www.qgis.org). 333 

 334 

EXAMPLE 335 

All field research protocol was in compliance with the EU Commission’s legislation 336 

for animals used for scientific purposes, and adhered to the legal requirements in both 337 

Uganda and Liberia. All data collection at Sapo was performed in accordance with 338 

government regulations and approved by the Ministry of Agriculture in Liberia. It adhered 339 

to the legal requirements of the Bundesamt für Naturschutz/Federal Agency for Nature 340 

Conservation in Germany. Lastly, all field methods and research adhered to the American 341 

Society of Primatologists Principles for Ethical Treatment of Non-Human Primates, as well 342 

as the ethical guidelines established by the Max Planck Society.  343 

 344 

Study sites 345 

The data used in this study were gathered from two research sites with unhabituated 346 

chimpanzees as part of the Pan African Programme (http://panafrican.eva.mpg.de/index.php). 347 

The first site, the Budongo Conservation Field Station (henceforth Budongo), is located in 348 

the Budongo Forest Reserve in Western Uganda and comprises 428 km² of continuous 349 

forest (Fig. 3). The Budongo Forest is a moist semi-deciduous tropical rain forest situated 350 

between 1°37’- 2°03’N and 31°22’ - 31°46’E and an average altitude of 1100 m [Eggeling, 351 

1947; Plumptre, 1996]. At the time of data collection the mean monthly rainfall was 125 ± 352 

87 mm and mean minimum and maximum temperatures per day were 16.4 ± 1.3°C and 353 
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31.5 ± 2.3°C, respectively (K. Corogenes, unpublished data). The study was conducted in 354 

the home range of the unhabituated ‘Kamira’ community living adjacent to two habituated 355 

chimpanzee communities (‘Sonso’ and ‘Waibira’). No information about this specific 356 

community has yet been published. The second site is in Sapo National Park in 357 

Southwestern Liberia (henceforth Sapo), situated between 5°24’ - 5°50’N and 8°24’- 52’W 358 

and comprises over 1,800 km2 of tropical rain forest [Robinson & Peal, 1981]. At the time 359 

of data collection mean monthly rainfall was 211 ± 151 mm and mean minimum and 360 

maximum temperatures were 21.7 ± 1.5°C and 29.2 ± 3.1°C, respectively (V. Leinert, 361 

unpublished data). Around 1,500 chimpanzees are estimated to be in the park [Tweh et al., 362 

2014].  363 

 364 

Camera trapping  365 

We installed Bushnell Trophy Cam cameras at both sites, following a standard 366 

protocol (http://panafrican.eva.mpg.de/pdf/Pan_African_Field_Protocol.pdf). At Budongo, 367 

18 high-resolution cameras (“HR”, Bushnell Trophy Cam 2012 model 119466; 720x1080 368 

resolution) were opportunistically placed in a 2x3 km2 grid between July 2012 and March 369 

2013 at 24 unique locations. At Sapo, 34 lower-resolution cameras (“LR”, Bushnell Trophy 370 

Cam 2010 model 119435; 480x620 resolution) were placed at 172 unique locations 371 

between January 2011 and May 2012 in a 5x5 km2 grid. Cameras were attached to trees 1 372 

m above ground at sites where chimpanzee encounters were likely, i.e. feeding spots, 373 

natural bridges and trails. Cameras were triggered by movement, which activated a 60 s 374 

recording, followed by a minimum 1 sec break before another recording. Cameras were 375 

active 24 h a day and checked once a month to change batteries and memory cards.  376 
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 377 

Results 378 

At Budongo the field sampling effort consisted of 2809 trap days with a mean of 379 

117 trap days per camera location. A total of 6733 HR videos were produced, of which 625 380 

included sightings of chimpanzees (Pan troglodytes schweinfurthii) (Table I). The manual 381 

analysis found a total of 119 captured frontal face views of chimpanzees, with 110 videos 382 

containing at least one frontal face view. In 190 videos, only body parts of chimpanzees 383 

were visible. At Sapo, the field sampling effort consisted of 8365 trap days with a mean of 384 

55.4 trap days per location. A total of 8996 LR videos were captured. Of these videos 279 385 

videos contained chimpanzee sightings, with 216 total frontal face views and 148 videos 386 

with at least one frontal face view based on the manual analysis (Table I).  387 

 388 

Performance of face detection approach  389 

Confirmation of Presence/absence 390 

In general, we found the same trend at both sites, though notably more pronounced 391 

for HR videos: as the post-processing level of comparison increased, the number of false 392 

detections decreased and true detections increased (Fig. 4). In the second step, after 393 

considering only videos containing chimpanzee face views as true detections, we found that 394 

TP and FN classifications nearly halved, but as a whole the total number of true detections 395 

(TP and TN) remains relatively constant. In the third step, after removing the false 396 

detections, we found that true classifications almost doubled and FPs decreased by more 397 

than 90% for HR videos and more than 25% for LR data. Finally, after the fourth level of 398 

assessment the rate of true detections (TP and TN) was 97% for HR and 98% for LR. For 399 



Crunchant 19 

 
 

HR, 25 of 110 videos containing chimpanzees were not recognized as such (i.e. false 400 

negatives), while for LR 82 of 148 videos were not recognized. Lastly, the FP rate was at 401 

3% and less than 1% for HR and LR, respectively. 402 

 403 

Detection time 404 

We found that a majority of detections (>70%) occur in the first 40 days after 405 

camera establishment, when comparing manual and automated detections with all 406 

chimpanzee videos (Fig. 5). We also found that after 100 days of sampling, the face 407 

recognition software detected chimpanzees on only 50% of the cameras where a 408 

chimpanzee was detected manually, because of lack of face views. It is suggestive that 409 

chimpanzees walked in different directions and did not show their faces as often and 410 

therefore were not detected by the software. 411 

 412 

Occupancy modeling 413 

With the method described above, we used a total of 21 sites at Budongo and 100 414 

sites at Sapo. Missing detections in tandem with false detections introduced bias in site 415 

occupancy probability estimates when using the LR dataset (Fig. 6B), occupancy 416 

probability was correctly estimated for the HR dataset (Fig. 6A). Cleaning only false 417 

positives in the case of the LR dataset, does not seem to be accurate. However, balancing 418 

the removal of false positives and false negatives seem to be better. When 100% of false 419 

positives and 50% of false negatives are cleaned, occupancy estimates are similar to those 420 

of the manual dataset and have estimates within the standard error interval of the manual 421 

value (Fig. 6). 422 
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 423 

COMPARISON AND CRITIQUE 424 

Through a combination of manual and face detection approaches to evaluate 425 

occurrence, we have found that in its current advanced stage of development, face detection 426 

software (“FaceDetect”) is useful and indeed promising for use in the field when looking to 427 

determine chimpanzee occurrence. Our key goals that we demonstrated were to show that 428 

the software can be successfully used to simply detect presence- absence of chimpanzees in 429 

camera trap footage, can be used for site occupancy modeling and most importantly can 430 

speed up the process for analyzing field survey data by reducing the required time by up to 431 

96-98%. Currently a critical limitation is that video clips need to contain face views for 432 

detection when chimpanzees are present. However, we think that this issue can be easily 433 

overcome on the level of field data collection until full body detection software is available. 434 

Sets of high resolution cameras can be placed in reverse directions at the same location that 435 

is surveyed for chimpanzee occurrence. Such approach should reduce non-detectability of 436 

chimpanzees due to lack of face views to an acceptable minimum. In essence combining 437 

camera trapping and semi-automated processing of footage will permit to conduct 438 

chimpanzee occupancy surveys routinely in an efficient manner.    439 

 440 

Evaluation of face detection approach 441 

The face detection software detected videos containing chimpanzee frontal face 442 

views with an acceptable low rate of false positives. However, we found that datasets had a 443 

large difference from one another: a detection rate of 77% and about 45% at fixed alarm 444 

rates of 2.8% and 0.8%, respectively. It is almost certain that this difference is due to 445 
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camera placements that lead to occlusion of chimpanzee faces, and to differences in video 446 

resolution used at both sites. The face recognition software was developed using high 447 

quality videos with a resolution of 1280x1024, where visual images were pre-selected and 448 

then run through the software for recognition [Ernst & Küblbeck, 2011]. However, videos 449 

from camera traps can be of poorer quality due to lower resolution, weather and exposure to 450 

the elements. Differences in resolution may thus lead to different analysis of results: HR 451 

videos (720x1080, Budongo) had a higher recall rate, while LR videos (480x620, Sapo) 452 

had a lower recall rate. Our rate of false alarm of software detections in the last assessment 453 

was 2.8% for HR (Budongo) and 0.8% for LR (Sapo) data. This is comparable to similar 454 

studies which analyzed high quality images of chimpanzees and gorillas with face detection 455 

algorithms [Ernst & Küblbeck, 2011], but is lower than others that have looked at other 456 

species such as penguins [e.g. Sherley et al., 2010]. In these studies, as in ours, video 457 

quality plays a large role in the ability, accuracy and precision of species detection in data, 458 

and we stress the use of quality to improve results.  459 

 Time saving is undoubtedly the strongest argument for using face recognition 460 

software when comparing manual and automated methods. For example, from the 6733 HR 461 

videos (Budongo) we started with, we would only need to check the 285 videos classified 462 

as positive detections by the face detection software, and of the 8996 LR videos (Sapo) we 463 

started with, we would only need to check the 140 videos classified as positive detections, 464 

leaving aside for a moment the condition that chimpanzee presence can only be detected 465 

when their faces are visible. This results in a drastic decrease of 95.8% and 98.4% of videos 466 

to watch, respectively. When considering that about 3 min/video is needed to manually 467 

check for chimpanzee presence (time to open, start and watch the video, and note 468 
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comments in a sheet), then an estimated 337 h are necessary to derive chimpanzee 469 

occurrence for the 6733 HR videos (Budongo). However, in the semi-automated 470 

assessment, only 285 videos would need to be reviewed, and thus only about 14.3 h are 471 

necessary to obtain occurrence information - a stark difference of 322.7 h.  472 

In our last argument we address the aspect of false negatives and positives. For HR 473 

data (Budongo), we found that false negative detections were not a significant issue and 474 

relatively little information was lost; only 25 videos containing frontal face views were not 475 

detected. LR data (Sapo) had a much higher number of false negatives. Again, non-476 

detections or false negative detections are likely due to poor resolution or occlusion. 477 

Additionally, while false positive detections could bias the occurrence analysis when only 478 

relying on the face detection software, they can be overcome by manually checking the 479 

reduced dataset. Thus we conclude that after post-processing, the face detection software 480 

performs well for detection, especially under the necessity that individuals must look 481 

directly in the camera and show their faces in order to be detected (see guidelines for field 482 

practitioners).  483 

The fact that chimpanzees were detected either relatively quickly by the face 484 

detection software in camera trap footage or not at all is not a byproduct of overfitting the 485 

detection model, as the software was trained on a completely different dataset. Rather it is 486 

more likely that the positioning of cameras differed, which led to a higher or lower chance 487 

of recording chimpanzee face views. 488 

 489 

Site occupancy modeling  490 
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Site occupancy modeling in conjunction with camera trapping can assess the 491 

presence of animals. We are aware that cameras were implemented within a small area in 492 

the chimpanzee territories and were opportunistically placed. Nevertheless, we know from 493 

long-term observations that chimpanzees do not use every part of their territory. We 494 

therefore interpret the estimated site occupancy as the used sites. Opportunistic camera 495 

placements should not be problematic if we consider only the animal populations within the 496 

area we sampled and not the greater region [Bengsen et al., 2011]. Alternatively the 497 

opportunistic camera placement we used can be replaced by a completely systematic design 498 

of camera placement across larger areas. 499 

 500 

Guidelines for field practitioners  501 

To maximize reliability of results, we recommend using high-resolution cameras to 502 

maximize the detectability by the face detection software. At least two cameras should be 503 

installed facing opposite directions at the site of interest to increase the chance of capturing 504 

individual faces. We also suggest that before implementing a study, simulation studies 505 

should be carried out to determine the prerequisites for robust estimates [Foster & 506 

Harmsen, 2012], minimum sampling effort (i.e., number of cameras),  minimum sample 507 

area, and minimum sample size (i.e., number of individuals). Furthermore, for large scale 508 

studies cameras can be placed systematically, which would help meet the assumptions of 509 

occupancy modeling and reduce time to find suitable locations. Together, these aspects will 510 

increase result reliability and encourage the use of camera trapping in the field as part of an 511 

innovative and effective research approach.  512 
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In recent years, despite great strides in technology, many have been cautious of 513 

using face detection software to process field data, and have continued to rely arduously on 514 

human eye and hand. Yet the arguments for and benefits of using advanced software for 515 

data processing are growing and are increasingly hard to ignore. Here, we have 516 

demonstrated that the presence and absence of a species within an area can robustly be 517 

determined from the face detection software after post-processing video field datasets. We 518 

suggest that the time-saving benefits from the software outweigh the false positive 519 

detections that may result. Additionally, the long-term goal of this software employment 520 

will be to do individual recognition in order to obtain detailed demographic information on 521 

communities and populations.  522 

We encourage the use of face detection and recognition software when looking to 523 

process large amounts of field data, when on a tight time schedule, and when strapped for 524 

skilled or trained human resources. As camera trapping becomes increasingly popular 525 

among conservation and community ecologists and researchers, this non-invasive method 526 

combined with a semi-automated face detection processing approach shows great potential 527 

for population surveys.  528 
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