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Abstract. Time allocation to different activities and habitats enables individuals to modulate their per-
ceived risks and access to resources and can reveal important trade-offs between fitness-enhancing activi-
ties (e.g., feeding vs. social behavior). Species with long reproductive cycles and high parental investment,
such as marine mammals, rely on such behavioral plasticity to cope with rapid environmental change,
including anthropogenic stressors. We quantified activity budgets of free-ranging long-finned pilot whales
in order to assess individual time trade-offs between foraging and other behaviors in different individual
and ecological contexts, and during experimental sound exposures. The experiments included 1–2 and
6–7 kHz naval sonar exposures (a potential anthropogenic stressor), playback of killer whale (a potential
predator/competitor) vocalizations, and negative controls. We combined multiple time series data from
digital acoustic recording tags (DTAG) as well as group-level social behavior data from visual observations
of tagged whales at the surface. The data were classified into near-surface behaviors and dive types (using
a hidden Markov model for dive transitions) and aggregated into time budgets. On average, individuals
(N = 19) spent most of their time (69%) resting and transiting near surface, 21% in shallow dives (depth
<40 m), and only 10% of their time in deep foraging dives, of which 65% reached a depth 10 m from the
sea bottom. Individuals in the largest of three body size classes or accompanied by calves tended to spend
more time foraging than others. Simultaneous tagging of pairs of individuals showed that up to 50% of the
activity budget was synchronized between conspecifics with decreased synchrony during foraging peri-
ods. Individuals spent less time foraging when forming larger non-vocal aggregations of individuals in late
afternoons, and more time foraging when in the mid-range of water depths (300–400 m) available in the
study area (50–700 m). Individuals reduced foraging time by 83% (29–96%) during their first exposure to
sonar, but not during killer whale sound playbacks. A relative increase in foraging during repeat sonar
exposures indicated habituation or change in response tactic. We discuss the possible adaptive value of
these trade-offs in time allocation to reduce individual conflict while maintaining benefits of group living.
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INTRODUCTION

Animals have evolved behavioral response and
learning strategies to cope with both stable and
variable aspects of their environment. For behav-
ioral responses to be adaptive, individuals must
assess the cost–benefit of behavioral change
against perceived risk and opportunity in their
individual (e.g., body condition, age), social (e.g.,
group size), and environmental (e.g., resource
quality, location) contexts. This assessment is
inherently uncertain, particularly in unfamiliar or
unpredictable environments, and can therefore
lead to either adaptive or maladaptive behavioral
responses. Human-induced rapid environmental
change, such as noise pollution, may further
increase this uncertainty (Sih 2013) and, similar to
predation risk (Frid and Dill 2002), may influence
an individual’s cost–benefit assessment and sub-
sequent investment of time and energy in different
behavioral options. If persistent, such behavioral
decisions may have consequences for individual
fitness and may ultimately impact population via-
bility (Gill et al. 2001, Frid and Dill 2002, Beale
2007, Dunbar et al. 2009, New et al. 2014). A
promising approach to assess biologically signifi-
cant outcomes of behavior change is to quantify
their cost as the level of time and energy trade-offs
that individuals make in different risk–reward
contexts (Houston et al. 2012, Isojunno et al.
2016). With the development of animal-borne data
loggers, there has been increasing scope to mea-
sure such costs for free-ranging animals where
individual behavior can be linked to realistic envi-
ronmental contexts (e.g., prey availability; Fried-
laender et al. 2016) and thus directly contributing
to conservation science.

Time allocation to different activities and habi-
tats is a key behavior tactic that individuals use to
modulate their level of exposure to different types
of resources and risks (Brown and Kotler 2004).
For example, optimal foragers should give up for-
aging and switch to searching when the energetic,
predation, and missed opportunity costs exceed
the benefit of foraging in a food patch (Brown and
Kotler 2004). Time allocation may be an especially
important constraint in social species where indi-
viduals need to decide when to switch from social
interactions to other crucial activities such as forag-
ing or resting (Pollard and Blumstein 2008, Dunbar
et al. 2009), and when to synchronize behavior

with conspecifics (Conradt and Roper 2005, Sueur
et al. 2011). Synchronized behavior can incur “con-
sensus” costs for individuals that have different
optimal time budgets from their group members
due, for instance, to differential energy require-
ments (Côte et al. 1997, Conradt and Roper 2005).
Those types of social trade-offs emerge in social
foraging behavior where individual foraging can
be influenced by the cues or signs of conspecific
foragers (Galef and Giraldeau 2001), incurring
both benefits (e.g., increased ability to find food)
and costs (e.g., competition) (Marshall et al. 2012).
However, behavioral studies have focused on
group-level rather than individual-level time bud-
gets for social species (Marshall et al. 2012) with
few studies focusing on social influences on the
timing of individual foraging (Galef and Giraldeau
2001). Moreover, while studies have reported the
influence of individual, social, or environmental
contexts on daily time budgets over periods of
months, variation within shorter timescales such
as due to diurnal cycles is still relatively poorly
understood (Marshall et al. 2012).
Deep-diving marine mammals have to balance

the energetic benefit of foraging against the time,
energetic, and physiological cost of diving to depth
(Boyd 1997, Kooyman and Ponganis 1998). Species
such as sperm whales (Physeter macrocephalus) that
form cohesive social groups at surface in between
foraging dives (Whitehead 1996, Gero et al. 2009)
may have the added trade-off between individu-
ally optimized feeding opportunities and the need
to maintain or regain social cohesion. The long-
finned pilot whale (Globicephala melas) is found in
both shelf-edge and deep-water habitats in temper-
ate and sub-polar waters of the North Atlantic
(Abend and Smith 1999) and the Southern Ocean
(Van Waerebeck et al. 2010), while a closely related
congener species, the short-finned pilot whale
(Globicephala macrorhynchus), inhabits warm temper-
ate and subtropical waters. Both species feed on
squid (Desportes and Mouritsen 1988, Gannon
et al. 1997, Mintzer et al. 2008), make deep foraging
dives (>500 m; Baird et al. 2002, Aguilar de Soto
et al. 2008), and live in social groups that are
thought to consist of related females and males
(Amos et al. 1993, Ottensmeyer and Whitehead
2003, de Stephanis et al. 2008, Alves et al. 2013b).
The timing of the foraging periods, but not necessar-
ily individual foraging dives, appears temporally
synchronized (Visser et al. 2014); long-finned
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pilot whales have also been shown to perform
closely synchronized surface and underwater
movements (Senigaglia and Whitehead 2012, Aoki
et al. 2013). Similar to other toothed whales, their
echolocation clicks, with terminal series of rapid
clicks known as buzzes indicating prey capture
attempts (Miller et al. 2004), can be used to indi-
cate their foraging effort. Initial tagging studies
with long-finned pilot whales in the Ligurian Sea
indicated that foraging occurred during nighttime,
presumably to match the movements of their verti-
cally migrating prey (Baird et al. 2002). In short-
finned pilot whales, daytime dives were deeper
and more likely to contain high-speed sprinting
behavior (Aguilar Soto et al. 2008).

Toothed whales such as pilot whales are
thought to be especially vulnerable to anthro-
pogenic noise pollution as they use sound both to
search for food (echolocation signals) and to
maintain social contact with conspecifics (Southall
et al. 2007). Navy sonar is of a particular concern,
due to links to cetacean mass mortality events
(D’Amico et al. 2009) and behavioral changes that
may have consequences to individual survival
and fitness in several marine mammal species
(Southall et al. 2016). Long-finned pilot whales
have been reported to have a wide range of
behavioral responses to naval sonar, including
avoidance, cessation of foraging, and changes in
vocal and social behavior (Rendell and Gordon
1999, Miller et al. 2012, Sivle et al. 2012, Antunes
et al. 2014, Visser et al. 2016). In some cases, those
responses were only observed at high received
levels of sonar (Antunes et al. 2014), indicating
that they may not be as sensitive to disturbance
from sonar as other toothed whales. Long-finned
pilot whales have also been shown to be attracted
to playbacks of killer whale (a potential predator/
food competitor) sounds in an apparent mobbing
response (Cur�e et al. 2012). However, the costs of
such responses have not been quantified in terms
of individual-level time trade-offs.

Our overall objective was to assess in free-
ranging long-finned pilot whales the individual
investment in time spent foraging, given other
behavioral options, in diverse contexts that we
expected to influence the perceived cost–benefit
and risk of foraging. We quantified an ethogram
of tagged whales in order to indicate how forag-
ing time may be traded off for other functional
behaviors. Specifically, we expected individual

time spent foraging to vary with the following
internal and external factors: (1) individual body
size and association with a calf, due to increased
energetic requirements; (2) time of day and water
depth, due to availability and accessibility of
prey; (3) social context, due to a need to maintain
social contact but reduce inter-specific competi-
tion for food; and (4) experimental sound expo-
sures, due to a trade-off between foraging and
safety; that is, the perceived cost or risk from the
signals exceeds the benefit of foraging in a given
context. The experimental exposures included
1- to 2- and 6- to 7-kHz naval sonar (an anthro-
pogenic and potentially novel signal) and play-
back of killer whale vocalizations, as well as
negative controls for both an approaching and a
nearby stationary source.

METHODS

Overview
The first part of the analysis aimed to construct

a complete ethogram for long-finned pilot
whales and quantify transition probabilities
between behavior states to indicate how foraging
behavior may be traded off for other functional
behaviors, such as traveling, resting, or socializ-
ing. The second part of the analysis aimed to
quantify any variation in foraging time allocation
in relation to different intrinsic and extrinsic fac-
tors. An overview of the stages of the analysis is
given in Appendix S1: Fig. S2.
The ethogram was constructed by combining

data from 19 tag records (including data on
depth, acceleration, magnetic field, and acoustics)
with surface visual observations of the social con-
text of tagged whales. The multivariate data were
summarized between individual breath times
(inter-breath interval, IBI) detected from the tag, pro-
viding natural break points for potential changes
in behavior state. Dive depth and duration thresh-
olds were used to define a subset of the IBIs as
dives, which were the main focus of the analysis.
Dive thresholds are typically defined a priori
depending upon desired analysis resolution and/
or available resolution from onboard pressures
sensors (e.g., dives defined as longer duration
than 6 s in Mate et al. [2005], or deeper than 5 m
in Aoki et al. [2013]). To inform these thresholds
by behavior, we used mixture models to classify
IBI data variables that we expected to reflect the
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animals’ need to take repeated breaths. The shal-
lower IBI class estimated by the mixture model
was used to characterize the IBI and maximum
depth distribution of near-surface movements
(NSMs) and select dive thresholds. The resulting
NSMs and dives (separated by the thresholds)
were classified further in a hidden Markov model
(HMM) framework to account for the time series
nature of the tag data and to quantify transition
probabilities between behavior states. Separate
HMMs were fit to dives and NSMs, because (1)
there were many more NSMs than dives so a joint
model would have been dominated by NSM sub-
categories when our main focus was on identify-
ing foraging events within dives, and (2) the most
insightful data to classify within each category
was different. The HMM for dives included rich
multivariate time series in order to identify forag-
ing dives and test the number of other distinct
dive types. For NSMs, we were particularly inter-
ested in identifying horizontal travel because it
may indicate changes in habitat preference and
avoidance responses under disturbance. Near-
surface movements were therefore further classi-
fied in a two-state HMM that included movement
variables to identify any traveling behavior while
the animals were near surface.

The HMMs for dives were specified with candi-
date covariates and random effects to allow for
individual and temporal variation in transition
probabilities between behavior states. However,
variation in the dive-by-dive transition probabili-
ties does not necessarily lead to variation in total
time allocation that also includes near-surface
behavior. Therefore, the classified near-surface
and dive behavior states were aggregated into
time budgets, and the effect on time spent for-
aging of sound exposures (e.g., naval sonar) and
other explanatory variables representing different
intrinsic (e.g., body size) and extrinsic factors (e.g.,
water depth) was tested via binomial regression in
a second part of the analysis (Appendix S1:
Fig. S2). The effect of social context was addressed
by analyzing series of activity states from pairs of
whales tagged in close vicinity of each other. We
tested our expectation that shallow dives would
be more synchronous than deep foraging dives
due to lower consensus costs, that is, reduced con-
flict between conspecifics when outside a food
competition context. We provide details of each
step in the sections below.

Data collection
Data were collected from 19 long-finned pilot

whales, of which 18 were tagged with audio-
and movement-recording data loggers using suc-
tion cups (DTAG; Johnson et al. 2009) and one
whale (gm10_144a) was tagged with a logger
that recorded three-axis acceleration, depth, and
speed but neither magnetic field nor acoustics
(PD3GT Little Leonardo, Aoki et al. 2013). Mag-
netometer data were also missing for one tag
record in 2008 (gm08_154d) due to sensor failure.
On four occasions, a second whale was tagged,
allowing us to investigate synchrony in behavior
between two animals tagged in the same area.
The whales were tagged in the Vestfjord basin off
Lofoten in northern Norway (66–70° N latitude)
during the spring and summer 2008–2014. The
field protocol included (1) tagging the whale
from a small rigid-hulled inflatable boat (RHIB)
using a handheld pole and a suction-cup attach-
ment, (2) visual and VHF (Very high frequency)
tracking of the tagged whale, and (3) recovery of
the released tag (after 10–15 h of recording).
The location and social context of the tagged

whale were sampled every two minutes accord-
ing to a standardized visual observation protocol
in 2009–2014 (Miller et al. 2011, Visser et al.
2014). If more than one animal was tagged at a
time, the first one with a successful tag attach-
ment high on the body (i.e., with a good VHF
signal) was selected as the focal whale for visual
tracking and surface behavior data collection.
The position of the focal whale was estimated
using field-estimated range and bearing relative
to the course and GPS position of the observation
vessel. The observation vessel aimed to maintain
100–400 m range to the focal whale. Visual data
were collected at the level of the focal “group,”
defined as individuals in closer proximity to the
tagged individual and each other than other indi-
viduals in the area. Group size, spacing (distance
between individuals, measured in body lengths),
presence/absence of calves, and distance to the
nearest other group were recorded for the focal
group. A full definition for these behavioral vari-
ables is provided in Visser et al. (2014).
Animal experiments were carried out under per-

mits issued by the Norwegian Animal Research
Authority (Permit No. 2004/20607 and S-2007/
61201), in compliance with ethical use of animals
in experimentation. The research protocol was
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approved by the University of St Andrews Animal
Welfare and Ethics Committee and the WHOI
Institutional Animal Care and Use Committee.

Experimental exposure procedures
The exposure experiments were designed and

conducted within the 3S (Sea mammals, Sonar,
Safety) research project. The full experimental
protocol is described in Miller et al. (2011, 2012)
and in Cur�e et al. (2012) and only briefly summa-
rized here.

Tagged whales were exposed to blocks of
transmission (exposure sessions) of two or three
of the following types of sonar: (1) mid-
frequency active sonar (MFAS) 6- to 7-kHz hyper-
bolic upsweep, (2) low-frequency active sonar
(LFAS) 1- to 2-kHz hyperbolic upsweep, or (3)
LFAS 1- to 2-kHz hyperbolic downsweep. Sonar
signals were 1 s in duration and were transmit-
ted at 20-s intervals. Each sonar exposure session
lasted 25-80 min and included only one sonar
signal type, with source levels increasing over
the first 10 min of the exposure session (“ramp-
up” protocol). The towed source (SOCRATES,
TNO, The Netherlands) was towed toward the
whale subject at a depth of about 55 m (range
35–100 m), and source levels (dB re 1 lPa m)
ranged from 152 to 214 dB for LFAS and from
158 to 199 dB for MFAS. Turns toward the
tagged whale were ceased once the source vessel
was within 1 km of the tagged whale. The sonar
source was towed but not transmitting during
no-sonar control approaches in order to separate
potential effects of the approaching source from
effects of sonar. The source ship was the 55 m R/
V H.U. Sverdrup II. The order of signal type was
changed across tag deployments to enable evalu-
ation of order effects, and all exposure and no-
sonar control sessions had at least an hour
between them. The received level of the sonar
signals was estimated as the maximum sound
pressure level over a 200-ms window (SPLmax;
dB re 1 lPa; Miller et al. 2011).

In addition, sound playback experiments were
conducted from a small motor boat (<10 m) that
was stationed at ~800 m range from the tagged
whale at the start of each playback and was
allowed to drift over the course of the playback
(Cur�e et al. 2012). The stimuli included LFAS
sounds that represented a less powerful and sta-
tionary LFAS exposure to be contrasted with the

towed LFAS sonar approaches, and natural
sequences of killer whale sounds recordings
designed to simulate a natural high-level distur-
bance (predator/competition) context providing a
positive control to the sonar exposures. Further,
playbacks of broadband noise were conducted as a
negative control for the playback stimuli (Cur�e
et al. 2012). The broadband noise control play-
backs were prepared from the non-calling periods
of the killer whale DTAG recordings; they included
ambient noise and flow noise from the tag, ampli-
fied to get an average root-mean-square power
equal to the killer whale calls. These playback stim-
uli were 15 min in duration and were broadcast at
source levels of 145–151 dB re 1 lPa m.
For analysis, data were excluded from the

beginning of the tag record until the end of tag-
ging operations (when the boat used for pole-
tagging was no longer active in the vicinity of the
whale; Isojunno and Miller 2015). The data after
tagging, but preceding any experimental control
or sound exposure, were considered to be base-
line data. To minimize potential research effects
related to vessel proximity, the observation vessel
consistently aimed to keep a distance of 200 m of
the tagged whale, avoiding any close (<100 m)
and direct approaches. Our analysis therefore
assumes that any effect of the observation vessel
was negligible and constant across the baseline
and exposure periods.

Behavioral data
Depth, pitch, and roll data (derived following

Johnson and Tyack 2003, decimated at 5 Hz) were
assessed visually in a custom-built program in
MATLAB 8.6 (MathWorks, Natick, Massachusetts,
USA) to mark breath times in the time series.
Breaths were characterized by an arch in the pitch
signature near the sea surface. Breath time was
defined at the point at which the pitch was briefly
horizontal. Visits near the sea surface with roll
other than zero were not marked as breaths, and
instead were considered part of the breath-holding
interval between breaths. Near-surface behaviors
with uncertainty about the number or timing of
breaths were marked as “surface intervals.” These
intervals could include logging behaviors where
animals were near-stationary at the surface while
breathing. Movement and acoustic data extracted
from the DTAG and concurrent visual observa-
tions were then summarized for each IBI.
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Movement data calculated included dive dura-
tion (min), maximum depth (m), total vertical dis-
placement (m), fluke stroke rate (min�1), circular
variance of roll, circular variance of absolute value
of pitch (to represent the vertical sinuosity of the
dive; R package CircStats version 0.2-4 [Jammala-
madaka and Sengupta 2001] within R [R Develop-
ment Core Team 2017]), turning angle, and
horizontal speed. Horizontal movement was sum-
marized for each interval as the turning angle
between tag-recorded headings at consecutive
breath times (over a 0.5-s averaging window), and
mean horizontal speed of the focal group between
visually recorded locations. Fluke stroke rate was
calculated using an automated detector based
upon cyclic variation in pitch (Tyack et al. 2006),
with detection parameters determined manually
for each tag record by inspecting the magnitude of
the stroke signals within the pitch record.

Acoustic data recorded by the DTAG at
192 kHz sampling rate, 16-bit resolution, were
examined visually using spectrograms (4096 point
FFT [Fast Fourier transform], 50% overlap) and
aurally to record start and end times of clicking,
buzzing, and social sounds. Each sound level was
scored as “quiet” (1), “average” (2), or “loud” (3)
relative to the perceived average amplitude of the
tag record. Level 2 and 3 sounds were used in the
analysis and interpreted as the vocal behavior of
the tagged whale and whales closest to the tagged
whale. These were summarized as the number of
each type of sound, and the proportion of time
that echolocation clicks, buzzes, or social sounds
were recorded within each IBI (excluding overlap-
ping time). In total, 40% of the acoustic data were
not analyzed or not available, including the entire
accelerometer tag (gm10_144a).

Visual data were linked to each dive by sum-
marizing the data within the two minutes follow-
ing the whale returning to surface. Speed was
calculated between each pair of visual track loca-
tions that were <5 min apart in time. Each three-
minute interval was allocated a mean group
speed, mean group size, and presence/absence of
tight or very tight individual spacing within the
focal group (i.e., <3 body lengths of one another).

For the four instances when two whales were
tagged simultaneously and therefore there were
time-overlapping DTAG records, an index was
calculated representing the temporal synchrony of
IBIs. The index was calculated as the overlapping

dive time divided by the combined duration of
each pair (overlapping + non-overlapping dive
time). Each focal dive was then associated with
the non-focal dive with the most time overlap.

Data on individual and environmental contexts
Data on the context of individual tagged

whales included a body size class and whether or
not the tagged whale was associated with a calf.
Association with a calf was recorded during field
observations when an adult-sized animal was
tightly paired (<1–3 body lengths) with a clearly
smaller animal during the majority of its time at
surface. To maximize our chances to record
mother–calf associations rather than more short-
term adult–calf associations, only associations that
lasted for the entire deployment (>4 h) were
included in the analysis. Body size class was
determined by combining field estimates (small/
medium/large adult), and where available, esti-
mates of dorsal fin size from good quality pho-
tographs of the tag attached to the dorsal fin of
the whale. The base of the dorsal fin (Augusto
et al. 2013) was measured in perpendicular pho-
tographs and scaled to known length of the tag.
Environmental data included water depth and

slope, solar elevation, and time since solar noon.
Bathymetry data were obtained from the high-
resolution Marine Primary Data (MPD) of the
Norwegian Hydrographic Service. In order to
associate one bathymetry data point with each
dive (in 10-m contours), sighting coordinates were
interpolated linearly at the midpoint of each dive.
Missing values were assigned when dive data
occurred outside the visual track. This matching
was conducted using Universal Polar Stereo-
graphic projection in geographic information sys-
tem software Manifold 8.0 (Manifold Software
Limited, Central, Hong Kong). Slope was calcu-
lated by rasterizing the bathymetric contour map
at 800 9 800 m resolution, and then calculating
the slope from the nearest neighbor pixels (3 9 3
window in Slope transform function, Manifold).
Solar elevation (deg) and time since solar noon (h)
were calculated for each IBI with respect to the
dive start time using R package Maptools (algo-
rithms provided by NOAA; Meeus 1991).

Classification of near-surface movements
The first step of the analysis aimed to select a

dive depth and duration thresholds to separate
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dives from stereotyped NSMs associated with
the animals’ need to take repeated breaths at the
sea surface. Such surface movements were
expected to be relatively stereotyped, with a
short IBI, small vertical displacement, and a rela-
tively constant position of the blow hole relative
to the surface. These behaviors were character-
ized by fitting a two-state multivariate mixture
model to the data (IBI, vertical displacement, and
circular variance of roll). Vertical displacement,
instead of maximum depth, was used to include
information about both depth and the vertical
sinuosity of the IBI. The model aimed to estimate
two latent states: “NSMs” during surfacing, and
dives. Each of the three data variables was
assumed to have a mixture distribution where
the parameters of the component distributions
were dependent upon the latent state. Thus, by
maximizing the joint likelihood of the three mix-
ture distributions, we could estimate both the
state-dependent parameters of each distribution
(e.g., mean and variance of IBI during a dive)
and the most likely state membership of each
observation (i.e., surfacing vs. diving). Inter-
breath interval was fitted by a Weibull distribu-
tion (which allows for positive real values and
right- or left-skewed distributions of IBIs during
breathing vs. diving), vertical displacement, an
exponential distribution, and circular variance of
roll a beta distribution (which allows for values
between 0 and 1 and is extremely flexible in
terms of the shape of the distribution). The classi-
fied NSMs were used to define a dive depth and
duration threshold for dives that were included
in the HMM analysis. The selected thresholds
were used (instead of the most likely states under
the mixture model estimates) in order to remove
state uncertainty in tag records that did not con-
tain data on roll, and to provide a clear-cut defi-
nition of dives for future studies. The thresholds
were selected using a percentile value for dive
depth and duration within the NSMs classified
by the mixture model; IBIs exceeding either the
specified dive depth or duration were classified
as dives; all others were NSMs. The percentile
was selected to minimize the inclusion of NSMs
in the subset of IBIs that would be considered as
dives, and so we aimed primarily to minimize
false positive rate (<0.05) while maximizing sen-
sitivity of the thresholds to detect mixture model
classified dives (Appendix S1: Fig. S3d, e).

The NSMs (those IBIs not exceeding the dive
depth and dive duration thresholds) were further
classified into near-surface traveling and non-
traveling states in a two-state multivariate HMM
(Zucchini et al. 2016). Since dives were removed
from the time series to fit the model, state transi-
tion probabilities were assumed to be the same
between NSMs occurring sequentially and NSMs
that occurred immediately prior to and following
a dive. The HMM included horizontal speed as
well as turning angle, vertical speed, and fluke
stroke rate to complement the sparse visual
observation data. The three positive real-value
data variables (horizontal speed, vertical speed,
and fluke stroke rate) were assumed to follow a
gamma distribution. Turning angles, which can
have values between �180° and 180°, were speci-
fied to have a von Mises distribution (circular
normal distribution). For details about fitting
mixture models and HMMs, please see the fol-
lowing section.

Classification of dive types and analysis of
dive transitions
Dive types were classified by fitting multivari-

ate HMMs (Zucchini et al. 2016) to the move-
ment, acoustic, and visual data summarized for
each dive. The dive summary metrics were mod-
eled as state-dependent processes, and the proba-
bility of transition from one latent state (dive
type) to the next state was described by a transi-
tion probability matrix (TPM). The dive summary
metrics were selected to reflect the animals’diving
effort (dive depth, duration, pitch variance), hori-
zontal swimming effort (horizontal speed, turning
angle), foraging behavior (presence/absence of
echolocation), and social behavior (group size,
presence/absence of social sounds, and presence/
absence of tight spacing within the group). The
presence/absence of pre-dive and post-dive sur-
facing (NSM) was also included in the model to
provide information about transitioning between
near-surface behavior and dives.
Similar to the mixture model, a parametric fam-

ily of distributions was specified for each dive
summary metric (Appendix S2). Covariates were
included in the model to allow for variation in the
Markov transition probabilities via multinomial
logistic regression (Langrock et al. 2014, Zucchini
et al. 2016). We also fitted models with a discrete
random effect of individual whale, where the
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transition probabilities of each individual were
assumed to derive from one of K possible TPMs
(Zucchini et al. 2016, DeRuiter et al. 2017). The
number of states, number of discrete random
effects, and covariates were selected based on
information criteria (Appendix S1: Table S1). BIC
(Bayesian information criterion) was used as the
primary model selection criterion to avoid selec-
tion of overly complex models, but we also com-
puted Akaike’s information criterion (AIC) to
assess sensitivity to the choice of the criterion. The
likelihood of the HMM was computed following
Zucchini et al. (2016) and DeRuiter et al. (2017).
Please see Appendix S2 and supplementary R
scripts in Data S1 for more details on the HMM
structure and likelihood.

The negative log-likelihood of both mixture
models and HMMs was minimized using the nlm
function in R (package stats). Mixture distributions
are multi-modal, and therefore, the minimization
is sensitive to the choice of starting values. To
check for multiple minima and to ensure the algo-
rithm did not terminate at a local minimum, each
model was fitted 50 times with different initial val-
ues and the stability of the resulting likelihoods
was monitored visually. Initial values for the distri-
butional parameters were calculated from random
10% subsets of the input data, based upon a mean
for one-parameter distributions, and both mean
and variance for two-parameter distributions. For
the TPM of the HMM, covariate coefficients and
the mixture weights were generated by sampling
a uniform distribution.

For HMMs without random effects, we used a
dynamic programming algorithm (Viterbi algo-
rithm) to compute the most likely sequence of
underlying hidden states given the parameters
and the observations (Zucchini et al. 2016). For
mixture models and HMMs with random effects,
states were decoded by computing the likelihood
of the multivariate observations during each IBI
(NSM or dive) given the parameter estimates for
each state, and assigning the IBI to the most
likely state.

To avert the possibility of pseudo-replication
(similar behavior by simultaneously tagged
whales) affecting the model results, we fitted the
model using data from one of each pair of simulta-
neously tagged whales for which visual observa-
tions were collected (excluding data from non-focal
whales gm09_137c, gm09_138b, gm13_169b, and

gm14_180b). The fitted model estimates were used
to predict the dive states in these tag records.

Proportion of time spent foraging
The explanatory variables for the probability of

transition from one dive type to the next in the
HMM did not test changes in time budgets, as it
did not account for potential changes in average
time spent in different dives or at surface. We
therefore also modeled the time spent in a dive
type as a proportion of total time in consecutive
time bins. The proportion of time was modeled as
a binomial response variable in a generalized
additive mixed model (GAMM; package mgcv in
R; Wood 2004). The response variable was the
proportion of time spent in the dive type that was
most indicative of foraging (deep dive depth,
presence of echolocation clicks). To account for
any serial correlation in the time spent foraging,
the proportion of time spent foraging in previous
time bin (PRE.Foraging) was included as a covari-
ate. Each experimental exposure was included as
a single time bin in the data. Fifteen minutes was
added to the killer whale sound playback periods,
as previous analyses of these data have shown
behavioral changes to last at least 15 min into the
post-exposure period (Visser et al. 2016). Baseline
and post-exposure periods, which could last for
several hours, were binned into shorter time
intervals. The duration of the baseline and post-
exposure time bin was selected by applying the
univariable model with PRE.Foraging to data
with an increasing bin length. The duration was
selected as the shortest time bin that removed any
serial correlation in model residuals. To account
for the variable bin lengths, the number of
binomial trials in the model was specified as the
duration of the time window divided by the mean
foraging dive duration in the baseline (i.e., if the
time bin encompassed an average foraging dive
exactly, this would be represented in the model as
1 success over 1 trial). Two post-exposure time
bins following each exposure were removed from
the analysis.
Candidate covariates included mean water

depth (m), time since solar noon (h), and pres-
ence/absence of different types of exposures
(Table 1). To allow for non-linear relationships
with the response variable, water depth and time
since solar noon were specified as univariate
smooths (cubic regression splines with shrinkage
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penalty; Wood 2004). The maximum smooth
basis dimension was set to 8 for time since solar
noon and 5 for water depth. To account for varia-
tion in received acoustic level during the LFAS/
MFAS approaches, we also included the propor-
tion of time that sonar signals were received
above 145 dB (SPLmax; dB re 1 lPa), identified
as the threshold for expert-identified behavioral
responses (Miller et al. 2012, Harris et al. 2015).
Order effects were tested by including two
presence/absence covariates, one for towed
approaches (prev.MLFAS) and the other for play-
backs (prev.PBS), which were set to 1 (present)
for control and sound exposures presented after
a sonar approach or a playback of KW/sonar
sounds, and zero (absent) otherwise. The focal
individual was set as a random effect.

We fitted all combinations of covariates (in-
cluding interactions between the order effects
and exposure covariates) and selected the best
model based upon its UBRE score (un-biased risk
estimator; Wood 2004).

RESULTS

Data
In total, 19 tag records were analyzed; 15 of 19

tagged whales were exposed to naval sonar and/or
control sound playbacks. A total of 153.9 h of tag
data were analyzed, of which 70.1 h were baseline
data (Table 2). All data were collected in waters up
to 700 m deep, in Vestfjorden (Appendix S1:
Fig. S1). Four pairs of animals were tagged close in
time, and most of the time these paired tag records
overlapped (Table 2; pair A: 6.9 h; pair B: 9.9 h;
pair C: 6.6 h; and pair D: 8.0 h).
Across the 16 animals for which photographs

were available, there was a reasonable concordance
between the field-estimated body size class (small,
medium, and large) and the size of the dorsal fin.
Two field-estimated “medium” animals were re-
classed to “small” (gm08_150c, gm10_152b), and
one “large” animal was re-classed as “medium”
(gm14_180b). In the resulting classification, the
base of the dorsal fin was estimated to be

Table 1. Candidate covariates for HMM transition probabilities and proportion of time in binomial GAMMs.

Covariate Model Description

solarelev HMM Solar elevation (degrees)
solarnoon GAMM Time since solar noon (h)
water.depth GAMM Mean water depth (m)
PRE.Foraging GAMM Proportion of time spent foraging in previous time bin
ind.calf HMM, GAMM 1 for individuals associated with a calf, 0 otherwise
ind.large HMM, GAMM 1 for individual in the largest size category, 0 otherwise
ind.small HMM, GAMM 1 for individual in the smallest size category, 0 otherwise
ind.LoC HMM 1 for individuals with large body size or a calf, 0 otherwise
SIL GAMM 1 for no-sonar approach, 0 otherwise
MFAS GAMM 1 for MFAS approach, 0 otherwise
LFAS HMM, GAMM 1 for LFAS approach, 0 otherwise
MLFAS HMM, GAMM 1 for MFAS and LFAS sonar approach, 0 otherwise
RL_max HMM Maximum received level (SPLmax) of MFAS or LFAS during a dive
RL_145 GAMM Proportion of time bin MLFAS signals received >145 dB (SPLmax; dB re 1 lPa)
prev.MLFAS HMM, GAMM 1 for sonar and control approaches presented after a sonar approach, 0 otherwise
PB_BBN GAMM 1 during broadband noise control playback, 0 otherwise
PB_KW_15 HMM, GAMM 1 during and 15 min after exposure of killer whale sound playbacks, 0 otherwise
PB_SON GAMM 1 during LFAS sound playbacks, 0 otherwise
PBS HMM 1 during PB_KW_15 or other playbacks of sounds, 0 otherwise including PB_BBN
SON HMM, GAMM 1 during sonar approaches and LFAS sound playbacks, 0 otherwise
prev.PBS GAMM 1 during playbacks presented after a playback of sounds, 0 otherwise
exposed HMM 1 during any exposure and post-exposure, 0 during baseline
exposure HMM 1 during any exposure, 0 during baseline and any post-exposure
exposureS HMM 1 during any sound exposure, 0 during baseline and post-exposure
CTRL HMM 1 during no-sonar approach and control playback, 0 otherwise

Notes: GAMM, generalized additive mixed model; HMM, hidden Markov model; LFAS, low-frequency active sonar; SPL,
sound pressure levels. Not all experimental exposure types could be included separately in the HMM due to the large number
of parameters in the model. We therefore combined the experimental sessions to several binary covariates. Water depth was not
included as a candidate covariate in the HMM due to sparse horizontal tracking data.
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50–60 cm in small animals, 70–90 cm in medium
animals, and 90–130 cm in large animals.

Classification of near-surface movements
The average duration and depth of the NSMs

(n = 14024) classified by the mixture model was
18.4 s (�8.2) and 2.7 m (�1.1; all values are
mean � standard deviation). These IBIs had a
low circular variation in roll (0.007 � 0.008) com-
pared to dives (0.158 � 0.204). In total, 98% of
NSMs were <37.8 s long and 5.3 m deep. The
98% percentile had the maximum sensitivity
(0.65) to detect dives with a false positive rate
below 5% (0.038; Appendix S1: Fig. S3). Dives
either longer or deeper than these thresholds are
hereafter considered dives rather than surface
behavior.

Almost a half (47%) of all NSMs (<37.8 s and
<5.3 m) were classified to be near-surface travel-
ing. The mean horizontal speed was elevated
(1.9 � 0.79 m/s) and the turning angle was smal-
ler and less variable (9.40° � 10.0°) during near-
surface traveling compared to the other 53% of

NSMs (1.11 � 0.52 m/s and 21.2° � 28.9°). Near-
surface traveling also had a higher vertical speed
and fluke stroke rate (Table 3; Appendix S1:
Fig. S4). The model estimated 46% prevalence of
traveling in the 40% of the surfacing data that
did not have horizontal speed data.

Classification of dives and analysis of dive
transitions
Hidden Markov model selection supported a

time-homogeneous model (excluding covariates
and random effects) with up to four different dive
types (Appendix S1: Table S1). Including up to
two or three discrete random-effects groups in the
four-state HMM slightly decreased AIC (3 units)
but significantly increased BIC (72 units). A
reduction of 2 units is usually considered to be
significant change in AIC, but combined with the
large increase in BIC, these results indicate a rela-
tively weak support for any random effects. No
covariate further decreased either AIC or BIC of
the four-state time-homogeneous HMM, except
when individuals with a large body size and those

Table 2. Summary of analyzed data.

ID (pair ID) Body size Calf Experimental exposures Total (h) Baseline (h)

gm08_150c Small 1 MFAS, LFAS 4.8 0.9
gm08_154d Medium 1 LFAS, MFAS 6.5 2.0
gm08_159a Large 0 NS CTRL, LFAS, MFAS, PB KW, PB KW 10.3 2.4
gm09_137b (A) Medium 1 6.9 6.9
gm09_137c (A) Small 0 7.6 7.6
gm09_138a (B) Medium 0 LFAS, MFAS, NS CTRL, LFAS 9.9 3.2
gm09_138b (B) Small 1 LFAS, MFAS, NS CTRL, LFAS, PB KW, PB KW 17.2 3.2
gm09_156b Large 0 NS CTRL, LFAS, MFAS, LFAS, PB KW, PB KW 15.2 5.1
gm10_143a Medium 1 8.8 8.8
gm10_144a Large 0 PB CTRL, PB KW, PB CTRL, PB KW 5.4 1.6
gm10_152b Small 0 1.6 1.6
gm10_157b M-Large 1 PB CTRL, PB CTRL 11.1 10.5
gm10_158d M-Large 0 PB CTRL, PB KW, PB CTRL, PB KW 7.4 2.9
gm13_137a Small 0 PB HW, PB KW 6.6 2.8
gm13_149a Large 0 PB LFAS, PB KW 5.0 2.0
gm13_169a (C) Large 1 PB KW, PB LFAS, PB CTRL 6.6 2.1
gm13_169b (C) Medium 0 PB KW, PB LFAS, PB CTRL 6.7 2.1
gm14_180a (D) Large 0 PB LFAS, PB KW 8.0 2.4
gm14_180b (D) M-Large 0 PB LFAS, PB KW 8.3 2.4
Sum 153.9 70.1

Notes: NS CTRL, no-sonar control approach; MFAS/LFAS, medium-/low-frequency (6–7 vs. 1–2 kHz) sonar approach; PB
LFAS, near-stationary playback of sonar sounds; PB CTRL, broadband noise control playback; PB KW, playback of killer whale
sounds. All tags were DTAGs, except for gm10_144a which was an accelerometer tag. The time-overlapping pairs of dive
records are labeled with A–D. As part of an objective for another research project, one trial playback of humpback whale
sounds was conducted (PB HW). We included these data in the estimation of time budgets to maximize data sample (hidden
Markov models), but the data were excluded from the binomial generalized additive mixed models that aimed primarily to
quantify responses to sonar and killer whale sound exposures.
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associated with calves were combined in a single
factor covariate. However, even in this case the
improvement in AIC was small (2.2 units). We
therefore concluded there was only weak support
for the more complex model structures describing
temporal variation in the transition probabilities,
and selected the model with the lowest BIC (time-
homogeneous model with four dive types) as the
best-fitting model from which we made inferences
about the pilot whale ethogram.

The four dive types showed distinct multivari-
ate distributions (Appendix S1: Fig. S5). The
state-dependent distributions were used to des-
criptively label the dive types as “Foraging” (with
the highest probability of echolocation clicks),
“Exploratory” (with clicking but shallower dive
type), “Crowded” (with the highest average group
size), and “Directed” (the most directional hori-
zontal movement; Fig. 1). Directed dives were the
most frequent dive type (40% of all dives in base-
line), followed by Exploratory (33%) and Crowded
dives (22%), while Foraging dives constituted the
smallest proportion of dives during baseline (6%;
Table 4). Foraging dives had the deepest dive
depth distribution (mean dive depth 301.6 m and
range 24.7–617.4 m; all statistics given in this sec-
tion are computed from the observed data within
each dive type). A minority (n = 7) of the total 176
Foraging dives were shallower than 40 m. For-
aging dives were also the longest in duration
(7.1 min, 1.4–13.8 min), had the highest probabil-
ity of clicking and presence of social sounds (0.98

for both), and had the highest probability of being
preceded or followed by a surfacing (0.98 and
0.97, respectively; Table 3). After a period of
NSMs, Foraging dives were the only type of dive
that was more likely to be followed by another
type of dive than to be repeated (Table 4).
Sea bottom depth and dive depth were corre-

lated among the deepest Foraging dives, with the
maximum correlation achieved within Foraging
dives exceeding 196 m (correlation coefficient
0.93, N = 109), and no apparent correlation for
shallower Foraging dives (0.02, N = 55). Almost
all of the Foraging dives that exceeded the 196 m
depth threshold (94%), and 65% of all Foraging
dives, reached within 10 m of the sea bottom
depth (i.e., exceeded the shallower depth con-
tour). Foraging dives were conducted more often
when animals were present in deeper habitats
(Fig. 2b). Moreover, the bottom phase of For-
aging dives often tracked the demersal/benthic
zone (Appendix S1: Figs. S6 and S7).
Exploratory dives had the second highest

probability of clicking and social sounds, but
were considerably shallower than Foraging dives
(9.9 � 5.0 m, 0.86–39.1 m). Similar to Foraging
dives, Exploratory dives were associated with
small group sizes and slow horizontal speeds.
While Exploratory dives were the most likely
dive state to associate with tight group spacing
(0.87 � 0.34), Foraging dives were the least likely
dive state to have a tight group spacing
(0.63 � 0.48). While Foraging dives were most

Table 3. Mean and standard deviation of data within each dive type and near-surface movement (NSM) state.

Variable Foraging Exploratory Crowded Directed NSM travel NSM other

Dive duration (min) 7.07 (2.91) 1.14 (0.64) 1.33 (0.89) 0.74 (0.18) 0.27 (0.12) 0.33 (0.13)
Dive depth (m) 301.6 (177.7) 9.9 (5) 10.6 (7) 5.3 (1.9) 2.7 (1) 2.6 (1)
Vertical speed (m/s) 1.4 (0.55) 0.4 (0.14) 0.38 (0.14) 0.33 (0.09) 0.41 (0.1) 0.32 (0.06)
Pitch variance 0.71 (0.2) 0.34 (0.24) 0.28 (0.23) 0.15 (0.13) 0.17 (0.1) 0.17 (0.1)
Roll variance 0.59 (0.27) 0.19 (0.23) 0.12 (0.19) 0.06 (0.13) 0.02 (0.06) 0.02 (0.06)
Horizontal speed (m/s) 1.16 (0.51) 1.11 (0.63) 1.3 (0.69) 1.53 (0.78) 1.9 (0.79) 1.11 (0.52)
Turning angle (°) 16.5 (16.5) 26.4 (34.6) 27.9 (35.5) 9.8 (9.2) 9.4 (10) 21.2 (28.9)
Stroke rate (s�1) 0.32 (0.11) 0.15 (0.12) 0.17 (0.12) 0.19 (0.14) 0.35 (0.15) 0.16 (0.1)
Group size 8.8 (6.1) 7.1 (3.4) 20.6 (8.7) 10.8 (3.5) 11 (6.2) 11.6 (8.7)
Tight group (0/1) 0.63 (0.48) 0.87 (0.34) 0.72 (0.45) 0.76 (0.43) 0.66 (0.48) 0.82 (0.38)
Social sounds (0/1) 0.98 (0.13) 0.76 (0.43) 0.38 (0.49) 0.42 (0.49) 0.38 (0.49) 0.35 (0.48)
Clicking sounds (0/1) 0.98 (0.13) 0.75 (0.43) 0.36 (0.49) 0.45 (0.5) 0.42 (0.49) 0.45 (0.5)
Surfacing before (0/1) 0.98 (0.13) 0.75 (0.43) 0.71 (0.45) 0.71 (0.45) 0.87 (0.33) 0.81 (0.39)
Surfacing after (0/1) 0.97 (0.17) 0.8 (0.4) 0.72 (0.45) 0.66 (0.47) 0.87 (0.34) 0.81 (0.39)

Notes: Units are shown for each data variable, except the unitless circular variance of pitch and roll, number of animals in
the focal group (Group size), and presence/absence variables (marked as 0/1). Data are pooled across tag records.
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likely to transition to Exploratory dives, Explora-
tory dives were most likely to transition to and
from Directed dives (Table 4). Directed dives
were classified as the shallowest and shortest
dive type with the least variation in pitch and
turning angle (Table 3), and it was the only dive

type that was more frequently followed by a
traveling than non-traveling NSM (Appendix S1:
Table S2).
Crowded dives were estimated to have a simi-

lar duration and depth distribution to Explora-
tory dives (Table 3); however, they were less

Fig. 1. Example overlapping time series of gm09_137b and gm09_137c. Top two panels: time-overlapping dive
profiles overlaid with bathymetric contour. Rug plot shows timing of sightings, with black indicating observa-
tions of both individuals. Third panel: absolute value of pitch overlaid with visual observations of group size for
the focal animal (gm09_137b). Bottom panel: horizontal speed from visual observations, and turning angle
between subsequent breaths from the tag record.
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likely to have clicking and social sounds, and
group size was usually 2–3 times larger
(20.6 � 8.7 vs. 7.1 � 3.4 animals). Exploratory
and Crowded dives had the highest average
turning angles compared to other dives (>26° vs.
<17°). Crowded dives were the most likely dive
type to be repeated, and similar to Exploratory
dives, most frequently transitioned to Directed
dives (Table 4).

Baseline time budgets
Individuals spent, on average, most of their

time near the sea surface. In total, 24.2% of time
was spent in near-surface traveling and 33.8% in
other near-surface behavior during baseline
(Table 5; individual average proportion of time
spent in each estimated NSM). Combined, the
near-surface traveling and Directed dives made
up the largest proportion (35%) of the individ-
ual-average time budget. The individual-average
time spent in Foraging dives was relatively small
(10.3%), but also the most variable component of
the time budget between baseline records (range
0–60%, coefficient of variation [CV] = 1.5). The
individual-average time spent in Exploratory
dives was similar to Foraging (13.3%), but unlike
Foraging, occurred across all baseline records
(Table 5). Individuals spent the least amount of
time in the Crowded dive type (7.6%), and seven
animals did not conduct any Crowded dives dur-
ing baseline.

Synchrony of time-overlapping dive records
Both the types and timing of dives and NSMs

were synchronized in portions of the time-over-
lapping tag records (e.g., pair gm09_137b/c;
Fig. 1). Individuals spent more time in Crowded
or Exploratory dives than in Foraging dives

when the dive time between the tag records was
temporally synchronized (dive time overlap
>20%), and Foraging dives never overlapped at
>90% (Fig. 3a). Across all the pairs, >50% of dive
and surface states matched when the dive time
overlap exceeded 27%, and the match increased
to >70% when the dive time overlap exceeded
70% (Fig. 3b).
The two tagged pairs A and D were scored to

have more synchronous behavior than pairs B
and C (Table 5). Matching dive types and NSMs
constituted 55% and 47% of overlapping time in
pair A and pair D, compared to 33% and 23% in
B and C, respectively. The two pairs A and D also
had more synchronized dives in terms of exact
timing and activity (>75% dive overlap and posi-
tive within-dive correlation of both dive depth
and vertical speed), with 24.3% and 21.0% of all
dives synchronized, compared to 7.7% and 5.5%
for the other two pairs B and C, respectively.

Trade-offs in time spent foraging
The proportion of time spent in Foraging dives

was selected as the response variable in the bino-
mial GAMM as it was the dive type that was the
most indicative of foraging, with the highest
probability of clicking and the deepest depth dis-
tribution (Methods; Table 3). Twenty-one minutes
was found to be sufficiently long time bin dura-
tion to remove serial correlation in the model
residuals (Appendix S1: Fig. S8).
The best (lowest UBRE) model retained water

depth (m), time since solar noon (h), presence/
absence of sonar approaches or playbacks (SON),
and order effect of sonar approaches (prev.MLFAS;
Table 1). There was a good concordance between
the model predicted and observed time spent in
Foraging dives across tag records (Fig. 4a). We

Table 4. Frequency of transitions between dives in the baseline.

State Foraging Exploratory Crowded Directed

Foraging 0.299 (0.330) 0.403 (0.403) 0.065 (0.065) 0.234 (0.202)
Exploratory 0.060 (0.066) 0.738 (0.711) 0.014 (0.015) 0.189 (0.208)
Crowded 0.022 (0.014) 0.015 (0.025) 0.883 (0.871) 0.080 (0.090)
Directed 0.040 (0.033) 0.151 (0.217) 0.044 (0.055) 0.765 (0.695)
Stationary distribution 0.057 (0.059) 0.328 (0.366) 0.219 (0.222) 0.395 (0.353)

Notes: Values in brackets show transition probabilities estimated by the best hidden Markov model (HMM) that was fitted
to all of the data (including exposures); note the close agreement with frequency of transitions during baseline. The bottom row
gives the stationary distributions for both transition probability matrices. Please see Appendix S1: Table S2 for frequency of
transitions including near-surface movements, and Appendix S1: Table S3 for standard errors and confidence intervals for the
HMM-estimated transition probabilities.
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Fig. 2. Individual-average time budgets (average proportion of time per individual) as a function of environ-
mental and individual factors during baseline and post-exposure periods (a–b, e) and during experimental expo-
sures (c–d). Sample size (number of tag deployments) is shown for each bin at top x-axis. Panels a and b also
show model predictions (see Fig. 4 for details). NS CTRL, no-sonar control approach; MFAS/LFAS, medium-/
low-frequency (6–7 vs. 1–2 kHz) sonar approach; PB LFAS, near-stationary playback of sonar sounds; PB CTRL,
broadband noise control playback; PB KW, playback of killer whale sounds; LFAS, low-frequency active sonar.
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found little overdispersion in the model (scale
parameter estimate 1.2), indicating that the variance
assumption of the binomial distribution was valid.

Foraging dives were conducted during all
times of the day and in waters deeper than

150 m (Fig. 2a, b), with a model-estimated peak
in proportion of time spent foraging at the 400 m
maximum depth contour and a decline in deeper
waters (Fig. 4d). Proportion of time spent forag-
ing was estimated to be at its lowest 5 h after

Table 5. Individual-average baseline time budget (%).

ID (pair ID) Foraging Exploratory Crowded Directed NSM travel NSM other

gm08_150c 0.0 14.7 0.0 29.0 45.3 11.1
gm08_154d 0.0 18.7 0.0 8.8 40.6 31.9
gm08_159a 7.2 8.2 0.0 24.0 43.4 17.1
gm09_137b (A) 9.0 16.5 30.0 6.9 8.5 29.1
gm09_137c (A) 7.0 15.5 22.5 8.8 23.7 22.5
gm09_138a (B) 18.4 0.8 4.8 18.2 31.5 26.3
gm09_138b (B) 1.5 5.9 2.1 26.0 30.6 33.8
gm09_156b 23.8 9.3 15.0 8.4 39.6 3.9
gm10_143a 12.0 16.1 0.0 6.1 19.3 46.5
gm10_144a 0.0 59.7 1.2 0.0 28.7 10.4
gm10_152b 3.0 13.9 13.5 8.7 39.1 21.8
gm10_157b 23.7 7.7 4.4 3.7 48.8 11.7
gm10_158d 0.0 3.7 0.0 14.1 2.1 80.1
gm13_137a 4.6 13.8 30.1 2.8 2.8 45.9
gm13_149a 60.4 0.7 0.0 1.6 8.3 29.1
gm13_169a (C) 25.2 19.0 0.0 4.8 9.3 41.8
gm13_169b (C) 0.0 22.2 0.4 7.0 7.4 63.1
gm14_180a (D) 0.0 3.8 13.4 4.6 17.7 60.5
gm14_180b (D) 0.0 2.5 6.5 21.9 13.5 55.6
Average (CV) 10.3 (1.5) 13.3 (1.0) 7.6 (1.4) 10.8 (0.8) 24.2 (0.6) 33.8 (0.2)

Notes: CV, coefficient of variation; NSM, near-surface movement. Baseline time budgets give proportion of time averaged
across individual data.

Fig. 3. Individual-average time budget (a) and proportion of matching states (b) as a function of overlapping
dive time, expressed as proportion of the maximum dive time of the two tag records (x-axis). The dashed line
shows the overall match between dive types when the dive overlap exceeded the value on x-axis. Solid lines
show the % match for each state (color-coded), as a proportion of those states which exceeded the overlap value.
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Fig. 4. Observed (symbols) and model predicted mean and 95% CI (blue lines) for percentage of time spent in
Foraging dives from the best-fitting GAMM. Data and model predictions are given for each focal whale (panel a)
and each 21-min time bin with symbols indicating different individuals and sonar exposure bins highlighted in
red (panels b–e). Model predictions exclude random effects, with covariate values fixed (time since solar
noon = 0 h; water depth = 400 m; 15% of time spent Foraging in previous 21-min time bin); observed data are
shown for all covariate values and therefore do not necessarily match closely with the univariate predictions
(b–e). SON, sonar exposures pooling LFAS/MFAS approaches and playbacks; F.SIL/SON, first no-sonar
approach/sonar exposure; S.SIL/SON, subsequent no-sonar approaches/sonar exposures conducted after the first
sonar approach; LFAS, low-frequency active sonar; MFAS, mid-frequency active sonar.
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solar noon (Fig. 4e), which coincided with an
increased time spent in Crowded dives (Fig. 2a)
and an increase in both group size and number
of animals within 200 m of the tagged whale
group (Appendix S1: Fig. S7).

The individual-average time spent in Foraging
dives was 10.3% during a pre-exposure baseline,
3.7% during LFAS approaches, 19.7% during
MFAS approaches, 2.1% during playback of
LFAS sounds, and 8.8% during playback of killer
whale sounds (Fig. 2c). The best (lowest UBRE)
model estimated that the ratio of time spent For-
aging to non-foraging decreased by 83% (95% CI
29–96%) during sonar exposures, but increased
by a factor of 7.4 (1.6–33.3; i.e., 638%) from that
lower level for any subsequent no-sonar or sonar
sessions (Fig. 4c). When the model selection was
conducted with sonar approaches (MLFAS) and
playback of sonar (PB_SON) separately, RL_145
was retained and MLFAS and PB_SON excluded,
but the UBRE score of this model was slightly
higher (0.003, or approximately 2.2 DAIC units).
In the model including RL_max instead of SON,
the first 20-min exposure to sonar exceeding
SPLmax 145 dB (SPLmax; dB re 1 lPa) was esti-
mated to decrease the ratio of Foraging to non-
foraging time by 90% (23–99%).

DISCUSSION

Ethogram and functional time budget of the pilot
whale

We identified four different dive types in long-
finned pilot whales: active and mostly deep for-
aging dives (“Foraging”), less active and shallow
dives that also contained echolocation clicks indi-
cating foraging/exploratory behavior (“Explora-
tory”), non-foraging dives associated with large
group sizes and lack of vocalizations (“Crowded”),
and very short dives that exhibited high directional-
ity (“Directed”). In addition, near-surface behavior
could be classified to traveling and non-traveling.
This ethogram could not strictly be aligned into
functional behaviors (foraging, resting, traveling,
and socializing), and each dive could serve multiple
functions. However, we suggest that the primary
function of Foraging and Exploratory dives was
foraging, Crowded dives were mostly dedicated to
social interactions, Directed dives and near-surface
behaviors were used in horizontal travel, and the
remaining near-surface behavior was resting. The

resting periods included surface intervals with little
or no vertical or pitching movements to indicate
separate breathing events, which most likely repre-
sented logging behavior. Overlap in the characteris-
tics of behavior states, such as horizontal speed,
indicated that multiple behavior states could associ-
ate with a function. The lack of a single foraging
dive type is consistent with recent findings of
Quick et al. (2017) who described several dive
types representing different levels of foraging effort
in short-finned pilot whales. Furthermore, social
sounds and dive synchrony occurred in both for-
aging and non-foraging contexts, indicating that
social interactions occurred across the behavioral
repertoire.
On average, individuals spent most of their

time near surface resting (33.8%) or transiting
(35% including both near-surface travel and
directed dives), or in relatively shallow (<40 m)
dives (20.9%; Table 5). Both species of pilot
whales have been previously reported to spend
the majority of their time near surface or shallow
diving (Nawojchik et al. 2003, Alves et al. 2013a,
Quick et al. 2017). Resting time often has both a
physiologically enforced or “conserved” compo-
nent (here, a recovery period required after a
breath-hold dive) and a “free” component that
can be re-allocated to other behaviors that, in
turn, may be more conserved in the time budget
(Dunbar et al. 2009). Whether a component is
free or conserved also depends upon the time-
scale over which the time budgets are calculated.
Here, we examined variation in within-day time
budgets, unlike most studies that have concen-
trated on daily time budgets over longer periods
of time (Marshall et al. 2012). Our analysis
showed high variation in time spent foraging
between baseline tag records; in contrast, time
spent in non-traveling NSMs was the most con-
served feature of the baseline records (lowest CV;
Table 5). This may be expected due to the short
tag records relative to the rate of energy acquisi-
tion in a species that carries reasonable energy
reserves. For cryptic marine mammal species,
estimates of the proportion of time spent at sur-
face are useful to convert at-sea abundance esti-
mated by visual surveys to total abundance. The
relatively large and homogeneous proportion for
pilot whales would imply that the abundance of
this species can be estimated with relatively high
precision.
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Long-finned pilot whales spent 10.3% of their
time in deep Foraging dives, which was rela-
tively little time relative to other deep-diving
toothed whales (Tyack et al. 2006, Watwood
et al. 2006) if feeding was constrained to these
dives alone. Pilot whales are thought to have
high locomotion costs, as indicated by their high-
performance muscle tissues, matching the high
energetic content of fish and cephalopod prey
that they prey upon at relatively deep depths
(>200 m; Aguilar Soto et al. 2008, Spitz et al.
2012, Velten et al. 2013). Buzzes indicating prey
capture attempts were recorded in greatest num-
bers during Foraging dives, but some were also
recorded at shallow depths (<10 m) where
whales might prey upon pelagic fish such as her-
ring or cod. However, we did not include buzzes
in statistical analyses as we could not use them
to confirm feeding at shallow depths; further
detailed analysis of their acoustic characteristics
would be required to distinguish sounds pro-
duced by the tagged whale vs. other whales, the
movement context of tagged whale buzz produc-
tion, and to ensure buzzes are not confused with
acoustically similar “rasps” that pilot whales
may use in social context (P�erez et al. 2016). A
more direct assessment of whether feeding
occurs at shallow depths could be achieved by
animal-attached video cameras or recording
acoustic backscatter from prey using onboard
sensors (Wisniewska et al. 2016).

Benthic habitat use
Within the range of available depths in the

study area (50–700 m), individuals targeted
the demersal zone or the sea bottom during the
deepest parts of dives that exceeded 196 m, and
spent less time foraging and more time transiting
in waters with shallower depths (<200 m; Fig. 2).
This confirms a general pattern of benthic diving
by long-finned pilot whales in this habitat, which
was previously suggested by images of the sea
bottom obtained from a single whale tagged
with a camera logger (Aoki et al. 2013, fig. 8
therein). There was no clear increase in foraging
during particular times of day or light condi-
tions, which may be explained by the whales’
primary reliance on echolocation and the near-
continuous availability of daylight during the
polar summer. However, individuals reduced
time spent foraging and aggregated near the

surface in larger, more silent groups of whales in
the solar afternoon. Long-finned pilot whales
have been suggested to target vertically migrating
prey by conducting deeper dives at night (Baird
et al. 2002, Nawojchik et al. 2003, Mate et al.
2005). Our results suggest that in our study
region, pilot whales instead conducted benthic or
demersal dives to feed on neritic prey, which may
be more accessible to them in the relatively shal-
low coastal area of Vestfjorden. Detailed studies
on pilot whale diving behavior have concerned
deep (>1000 m) pelagic habitats (long-finned:
Baird et al. 2002, short-finned: Aguilar Soto et al.
2008, Jensen et al. 2011), while long-finned pilot
whales are also known to inhabit shelf-edge
(Nawojchik et al. 2003, Mate et al. 2005) and even
shallow inshore habitats such as the fjord studied
here (Nøttestad et al. 2015). Long-finned pilot
whales are likely to switch between these habitats,
for example, between the shelf-edge and the pela-
gic (Mate et al. 2005), and their seasonal move-
ment patterns may be in relation to the location of
their main cephalopod prey (Abend and Smith
1999). Concordantly, both pelagic and neritic spe-
cies (e.g., Todarodes sagittatus) have been reported
in the diet of long-finned pilot whales, with fish
being more important regionally or seasonally
(Desportes and Mouritsen 1988, Gannon et al.
1997). Thus, the benthic/demersal dives reported
here add to the portfolio of foraging strategies
that this generalist predator employs to exploit
profitable food available in different habitats.
That Norwegian pilot whales frequent a

coastal habitat to feed on neritic prey across mul-
tiple years (2008–2014) implies an important
feeding ground in Vestfjorden. Such consistent
habitat use by long-finned pilot whales, a species
listed as data deficient by IUCN (International
union for conservation of nature), bears conser-
vation implications as coastal habitats are partic-
ularly vulnerable to human activities, including
fishing, vessel traffic, coastal development, and
run-off, which contribute to noise and chemical
pollution in the neritic zone (Mann 2009).

Individual differences in optimal time budgets
We expected individuals to have different opti-

mal time budgets and hypothesized that lactat-
ing females and larger animals would spend
more time foraging if they did not match their
absolute energetic requirements with increased
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foraging efficiency. Energy consumption can be
expected to follow an allometric function of body
mass, and the energy requirement of a female
pilot whale can increase by 32–63% depending
on stage of lactation (Lockyer 2007). Our data
were broadly consistent with this expectation,
with individuals associated with calves and indi-
viduals in the largest body size category spend-
ing more than twice the time foraging than small
and medium whales without calves during base-
line (Fig. 2). However, neither effect was clearly
supported by statistical modeling (HMM or
GAMM), likely due to high contextual variability
relative to number of tag records and their dura-
tion. Variation in foraging efficiency due to indi-
vidual size, age, or experience may have also
played a role. Larger animals are able to dive for
longer periods of time due to their greater capac-
ity to store oxygen in the body (Kooyman and
Ponganis 1998) and capture larger prey, also indi-
cated by stomach contents analyses of stranded
long-finned pilot whales (Desportes and Mourit-
sen 1988). Furthermore, not all adults associated
with calves were necessarily lactating. Long-
finned pilot whale calves have been shown to
associate with multiple adults, which have been
suggested to provide alloparental care while for-
aging (Augusto et al. 2017). Future tagging stud-
ies of individuals with known size, age, body
condition, and reproductive status should fur-
ther elucidate the relationship between foraging
efficiency and time allocation.

Social foraging and behavioral synchrony
Synchronization of behavior constitutes ani-

mals conducting the same behavior (activity syn-
chrony) at the same time (temporal synchrony)
and/or at the same place (local synchrony) and is
thought to reduce risk of predation and increase
social cohesion in a wide range of animal taxa
(Duranton and Gaunet 2016). We found evidence
of loose temporal and local synchrony of foraging
dives, while activity synchrony was more appar-
ent closer to the surface and during dive types
that were less likely to involve foraging (Fig. 3).
The synchronization of foraging periods rather
than individual foraging dives, and association of
deep foraging dives with small group sizes and
loose individual spacing observed at the surface,
is consistent with previous analysis on the forag-
ing behavior of the same population of pilot

whales (Visser et al. 2014). Moreover, Foraging
dives were often followed by shallower Explora-
tory dives (Table 4) that had similarly high proba-
bility of clicking and small group size, but unlike
Foraging dives, were associated with tight group
spacing at surface (Table 3). This social foraging
strategy therefore appears to involve fine-scale
vertical and horizontal fission of behavioral syn-
chrony during foraging, and we were able to con-
firm that, at least for one tagged pair, the same
individuals re-joined after such separate foraging
dives (Fig. 1). Pilot whales produce social calls
during and after foraging at depth (Jensen et al.
2011), which might be used to re-locate their
group members after foraging dives.
A fission–fusion of behavioral synchrony such as

indicated by our data implies that the cost–benefit
of activity synchrony depends upon behavior
state. In long-finned pilot whales, behavioral
synchrony may be more expensive to perform
during deep foraging dives due to increased food
competition with conspecifics, and/or reduced
foraging efficiency due to individual differences
in energy requirements or diving capabilities
(consensus costs), and locomotion costs (Aoki
et al. 2013). Thus, a degree of asynchrony in for-
aging behavior may promote individual foraging
strategies and reduce intra-specific competition
for food, which in the case of pilot whales could
be both scramble competition for limited ben-
thic resources and acoustic interference during
echolocation-based foraging. We hypothesize
that a fission–fusion of behavioral synchrony
minimizes such individual conflicts during for-
aging while maintaining the benefits of behav-
ioral synchrony during non-foraging.
Re-establishing a finer degree of time and activ-

ity synchrony implies an important benefit. The
costs and benefits of group living in social species
are modulated by social cohesion and bonds,
which may vary temporally in fission–fusion
dynamics (Conradt and Roper 2000, Sueur et al.
2011). In long-finned pilot whales, synchronous
breathing and diving has been suggested to func-
tion to reinforce social bonds (Senigaglia and
Whitehead 2012, Aoki et al. 2013). Our results on
synchronous shallow diving are in line with pre-
vious findings (Aoki et al. 2013), but further data,
such as photo-identification, are required to link
this behavior with preferred associates. Neverthe-
less, we can expect that individuals with different
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optimal time budgets break their behavioral syn-
chrony occasionally; otherwise, they would lose
out on individual optimal decisions. Consistent
with our hypothesis, we found that the two
whales that were sighted most often within the
same group at the surface (gm09_137b/c 60% and
gm14_180a/b 34% of the focal whale sightings,
compared to gm09_138a/b, sighted together in
18% of the focal sightings, and gm13_169a/b that
were not sighted in the same group) synchronized
50% of their time budget. This was despite the fact
both pairs included whales of different size
classes, and while gm09_137b was associated
with a calf, gm09_137c was not, which could lead
to differences in time spent foraging. We therefore
suggest that the fission–fusion of behavioral syn-
chrony can be a strategy that allows individuals
with different optimal time budgets to remain
within a behaviorally cohesive group.

Potential adaptive functions of social foraging
include increased availability of public informa-
tion, social learning, inclusive fitness benefits,
resource/anti-predatory defense, and/or benefits
of group living that are not specific to foraging,
such as alloparental care (Galef and Giraldeau
2001, Marshall et al. 2012). Public information
can drive “local enhancement” where individu-
als aggregate around resources that have been
discovered by others (Galef and Giraldeau 2001),
and is likely to contribute to the foraging strategy
of toothed whales that can acoustically eaves-
drop on each other’s echolocation clicks (“dinner
bell” effect) that contain information about both
foraging effort (clicks) and success (terminal
buzzes). Such public information may be particu-
larly important in heterogeneous environments,
where intermediate levels of resource patchiness
may drive a fission–fusion strategy (Sueur et al.
2011). If pilot whales are indeed high-risk/high-
benefit foragers (Aguilar Soto et al. 2008) with
limited information available at the surface about
the quality of the food at depth, an evolutionarily
stable strategy may be supported where individ-
uals switch between producing and scrounging
public information (Galef and Giraldeau 2001).
Nevertheless, benefits of social foraging in long-
finned pilot whales are likely to be multiple, and
not necessarily related to foraging. Indeed,
besides enhanced foraging, an additional benefit
of staying within a social group may be to fend
off threats as shown with disturbance-specific

social responses in long-finned pilot whales
(Visser et al. 2016).

Trade-offs in response to disturbance
We found that individuals traded off foraging

time for time spent in shallower dives or at the
surface during sonar exposures. There was a
marked short-term trade-off during the first
sonar exposure, with the ratio of time spent in
foraging vs. time spent in other behaviors esti-
mated to decrease by 83% (29–96%). In experi-
ments following the first sonar approach, there
was a relative increase in time spent foraging.
Such an order effect might indicate habituation
(i.e., increased tolerance; Bejder et al. 2009), and/
or an increased tendency to avoid the source at
foraging depths rather than return to near-sur-
face behavior. The reduced foraging and concur-
rent increase in time spent in transiting states
during sonar approaches (Fig. 2c) are consistent
with previous reports of disrupted deep diving
(Sivle et al. 2012) and avoidance responses to
navy sonar in pilot whales in Norwegian waters
(Antunes et al. 2014). Qualitative scoring of pilot
whale behavioral responses (from the same data-
set) indicated cessation of foraging to occur at
relatively low received sound pressure levels
(SPL) of 145–159 dB re: 1 lPa (Miller et al. 2012)
compared to a high estimated SPL threshold of
170 dB re: 1 lPa above which 50% individuals
are expected to show an avoidance response
(Antunes et al. 2014). Thus, cessation of foraging
may be the first of a sequence of responses where
individuals return to the surface, perhaps to
establish contact with their social group and/or
secure faster access to air (oxygen), before engag-
ing in a group-level and more disturbance-
specific response such as horizontal avoidance or
attraction (Cur�e et al. 2012, Visser et al. 2016). A
relatively low SPL threshold for cessation of for-
aging may explain why the presence/absence of
sonar exposures (towed sonar approaches and
playbacks combined) was supported, despite dif-
ferences in both source and received level.
Pilot whales have also shown a horizontal

attraction response to killer whale sound play-
backs, perhaps to investigate a sound source or as
a mobbing response to a potential predator/food
competitor (Cur�e et al. 2012). Despite an apparent
trend in the data (Fig. 2), we found no strong
statistical evidence that playback of killer whale
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sounds was associated with a reduced proportion
of time spent foraging. The clearer statistical sup-
port for a reduction in time spent foraging during
sonar exposures, including both the towed sonar
approaches and nearby playbacks, may indicate a
more consistent foraging trade-off in response to
the detection of sonar than killer whale sounds. In
mostly solitary sperm whales, 1- to 2-kHz sonar
approaches and killer whale sound playbacks
were associated with a near identical reduction in
time spent foraging (Isojunno et al. 2016). The dis-
crepancy between the two deep-diving odontocete
species may be explained by a different level and
type (predation/competition) of perceived risk
from killer whales. The perceived risk may be fur-
ther modulated by conspecific behavior. A social
response to disturbance in pilot whales (Cur�e et al.
2012, Visser et al. 2016) may allow some individu-
als to display a shorter duration response than the
group as a whole, or even continue key activities
such as foraging. Nevertheless, the weak support
for exposure covariates in the HMMs and wide
confidence intervals around the GAMM estimates
also reflect the previously reported high inter-indi-
vidual variability in behavioral changes (Miller
et al. 2012), which we could partially link to time
of day and water depth (Fig. 2). Thus, the appar-
ent plasticity of individual-level time budgets at
the relatively fine (within-day) temporal scale may
be better explained by more direct drivers of
behavior and habitat use, such as prey field. For
example, Friedlaender et al. (2016) showed that
echosounder data on krill density, as well as bathy-
metric depth, were important for predicting
behavioral responses to sonar in blue whales.

Individual behavior modification to perceived
costs and risks in the environment (e.g., navy
sonar) may become biologically significant if
individuals continued to trade fitness-enhancing
behaviors (e.g., foraging time, physiologically
enforced rest) for perceived safer behavior (Frid
and Dill 2002). For example, killer whales reduce
foraging effort in the presence of vessel traffic,
which could translate to lost feeding opportuni-
ties and a substantial decrease in their energy
intake (Williams et al. 2006, Lusseau et al. 2009).
However, highly context-dependent time bud-
gets may also indicate a degree of flexibility over
short timescales. In the case of pilot whales, we
can speculate that some of the large proportion
of time spent near-surface (>60%; results herein,

Baird et al. 2002, Nawojchik et al. 2003) may rep-
resent “free” time that individuals can re-allocate
without, or with less severe, biologically signifi-
cant consequences to their time budgets. On the
other hand, some individuals and life stages
(e.g., lactating females) with higher energy
requirements may be less flexible to compensate
for lost foraging time. For example, high feeding
rates in harbor porpoise have been suggested to
increase their vulnerability to anthropogenic
noise (Wisniewska et al. 2016).

Methodological considerations
Our results highlight that natural and anthro-

pogenic drivers of individual fitness and survival
are often intertwined, leading to a need for
research methods that can model a multitude of
individual, social, environmental, and anthro-
pogenic processes that contribute to changes in
individual behavior, reproductive success, and
survival (New et al. 2014). The benefit of using
multivariate mixture models and HMMs is that
they can integrate multiple streams of time series
data and easily allow for missing data. We
showed that this approach can be used to gener-
ate ethograms from animal-borne tag data,
which is a key challenge to describe the behavior
of free-ranging species (Sakamoto et al. 2009).
Such an approach could also be used to model,
for example, the context specificity of vocaliza-
tions (Popov et al. 2017), a subject of interest in
social communication. Hidden Markov models
account for the time series nature of the data
explicitly, but a potential drawback is the sim-
plistic first-order Markov aspect of the model
that assumes that the underlying state probabil-
ity is only dependent upon the previous state.
We demonstrated how this assumption can be
relaxed by incorporating time-varying covariates
for the transition probabilities, although in our
dataset these were only weakly supported in
model selection. The HMM did not include
covariate effects on the time spent in different
dive types or at the surface and operated on
slightly different timescales (dive-by-dive vs. 21-
min time bins), which may explain why covari-
ates were retained in the GAMM for proportion
of time spent foraging (based upon UBRE infor-
mation criterion) while covariates were not
clearly supported in the HMM (where AIC
favored individual effects not supported by BIC).
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The random-effect structures were also different,
with the GAMM including a continuous normal
random effect in contrast to the discrete random-
effect structure of the HMM. On the other hand,
the GAMM did not account for any uncertainty
in the classification of foraging dives, but the
simpler parameterization also meant that multi-
ple covariates could be included in the same
model. The two approaches can therefore give
slightly different but complementary results.

The GAMM approach was sufficient to model
proportion of time spent foraging, but there is
room for improvement and need for best practice
research modeling time budgets. We found that
the timescale used to specify the number of suc-
cesses and trials influenced the standard errors
of the parameter estimates of the binomial
GAMM. A smaller timescale increased the bino-
mial sample size for a given bin length (e.g.,
30 min/0.5 h) and thus increased the significance
of covariates. We scaled the number of successes
and trials to the average foraging dive duration,
which allowed us to interpret the proportion of
time spent foraging in a time bin with respect to
an expected number of foraging dives. However,
there is a need to validate this approach, and to
further develop statistical packages to perform
regression modeling of serially correlated time
budgets (multinomial, rather than binomial, pro-
portions) with random effects.

We report activity budgets at a fine temporal
scale from a sample of 19 individuals in a specific
coastal fjord habitat. Therefore, our results
should be interpreted as a report of behavior
within this habitat, and we do not attempt to
generalize specific relationships between the
whale behavior and its environment to else-
where, such as oceanic habitats. However, the
fine-scale temporal approach appears promising
to apply to large datasets, which could be more
readily used to identify the flexibility in activity
budgets to cope with both internal (e.g., body
condition) and external stressors (e.g., reduced
food availability; Russell et al. 2015). For species
whose populations are challenging to monitor,
such as cetaceans that spend only a minority of
their time at the sea surface, approaches that
identify changes in time budgets could be used
to understand both the mechanism and conse-
quence of external stressors such as climate
change to vulnerable populations.

CONCLUSIONS

We quantified an ethogram and activity budget
for the long-finned pilot whale and have demon-
strated that coastal and benthic habitats can be
important feeding grounds in this species. Fission–
fusion of groups at the water surface and activity-
dependent synchrony suggest a foraging strategy
that minimizes individual conflict while maximiz-
ing benefits of group cohesion, such as reduction in
the cost of finding food. There was a decrease in
time spent foraging during the first naval sonar
exposures (1–2 or 6–7 kHz), but the responses were
more variable for subsequent repeat exposures.
Despite previous findings of social responses to
both naval sonar and killer whale sound playbacks
(Visser et al. 2016), we found less evidence for sig-
nificant individual-level foraging time trade-offs in
response to killer whale playbacks. This is likely to
be due to high plasticity of individual behavior,
which we quantified here as variability in time bud-
gets in different social and environmental contexts.

ACKNOWLEDGMENTS

We thank 3S (Sea mammals, Sonar, Safety) ship’s
crew and research team members for efforts on the field
data collection and access. We give special thanks to Dr.
Kagari Aoki for providing the Little Leonardo tag used
in this study. We would also like to thank Prof. Roland
Langrock for his help and advice on fitting HMMs in R.
Visual data were collected using Logger 2000, devel-
oped by the International Fund for Animal Welfare
(IFAW) to promote benign and non-invasive research.
We would also like to thank our sponsors, NL Ministry
of Defence, NOR Ministry of Defence, U.S. Office of
Naval Research (N00014-08-1-0984, N00014-10-1-0355,
N00014-14-1-0390), FR Ministry of Defence (DGA; pub-
lic market no. 15860052), World Wildlife Fund Norway
(9E0682), and French Total Foundation and Bleustein-
Blanchet Foundation. The statistical development work
was supported by a separate grant from the U.S. Office
of Naval Research (N00014-12-1-0204), under the pro-
ject entitled Multi-study OCean acoustics Human
effects Analysis (MOCHA).

LITERATURE CITED

Abend, A. G., and T. D. Smith. 1999. Review of distri-
bution of the long-finned Pilot Whale (Globicephala
melas) in the North Atlantic and Mediterranean.
NOAA Technical Memorandum NMFS-NE 22,
Woods Hole, Massachusetts, USA.

 ❖ www.esajournals.org 22 December 2017 ❖ Volume 8(12) ❖ Article e02044

ISOJUNNO ET AL.



Aguilar de Soto, N., M. P. Johnson, P. T. Madsen, F.
D�ıaz, I. Dom�ınguez, A. Brito, and P. L. Tyack. 2008.
Cheetahs of the deep sea: deep foraging sprints in
short-finned pilot whales off Tenerife (Canary
Islands). Journal of Animal Ecology 77:936–947.

Alves, F., A. Dinis, C. Ribeiro, C. Nicolau, M. Kaufmann,
C. M. Fortuna, and L. Freitas. 2013a. Daytime dive
characteristics from six short-finned pilot whales
Globicephala macrorhynchus off Madeira Island.
Arquipelago 31:1–8.

Alves, F., S. Qu�erouil, A. Dinis, C. Nicolau, C. Ribeiro,
L. Freitas, M. Kaufmann, and C. Fortuna. 2013b.
Population structure of short-finned pilot whales in
the oceanic archipelago of Madeira based on
photo-identification and genetic analyses: implica-
tions for conservation. Aquatic Conservation: Mar-
ine and Freshwater Ecosystems 23:758–776.

Amos, B., C. Schl€otterer, and D. Tautz. 1993. Social
structure of pilot whales revealed by analytical
DNA profiling. Science 260:670–672.

Antunes, R., P. H. Kvadsheim, F. P. A. Lam, P. L. Tyack,
L. Thomas, P. J. Wensveen, and P. J. O. Miller. 2014.
High thresholds for avoidance of sonar by free-ran-
ging long-finned pilot whales (Globicephala melas).
Marine Pollution Bulletin 83:165–180.

Aoki, K., M. Sakai, P. J. O. Miller, F. Visser, and K. Sato.
2013. Body contact and synchronous diving in
long-finned pilot whales. Behavioural Processes
99:12–20.

Augusto, J. F., T. R. Frasier, and H. Whitehead. 2013.
Using photography to determine sex in pilot
whales (Globicephala melas) is not possible: Males
and females have similar dorsal fins. Marine
Mammal Science 29:213–220.

Augusto, J. F., T. R. Frasier, and H. Whitehead. 2017.
Characterizing alloparental care in the pilot whale
(Globicephala melas) population that summers off
Cape Breton, Nova Scotia, Canada. Marine Mam-
mal Science 33:440–456.

Baird, R. W., J. F. Borsani, M. B. Hanson, and P. L.
Tyack. 2002. Diving and night-time behavior of
long-finned pilot whales in the Ligurian Sea.
Marine Ecology Progress Series 237:301–305.

Beale, C. M. 2007. The behavioral ecology of distur-
bance responses. International Journal of Compara-
tive Psychology 20:111–120.

Bejder, L., A. Samuels, H. Whitehead, H. Finn, and
S. Allen. 2009. Impact assessment research: use and
misuse of habituation, sensitisation and tolerance
in describing wildlife responses to anthropogenic
stimuli. Marine Ecology Progress Series 395:
177–185.

Boyd, I. L. 1997. The behavioural and physiological
ecology of diving. Trends in Ecology & Evolution
12:213–217.

Brown, J. S., and B. P. Kotler. 2004. Hazardous duty
pay and the foraging cost of predation. Ecology
Letters 7:999–1014.

Conradt, L., and T. J. Roper. 2000. Activity synchrony
and social cohesion: a fission-fusion model. Pro-
ceedings. Biological Sciences 267:2213–2218.

Conradt, L., and T. J. Roper. 2005. Consensus decision
making in animals. Trends in Ecology and Evolu-
tion 20:449–456.
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