Accepted Manuscript

Title: Flash vacuum pyrolysis of benzylidene halides, benzotrihalides and aryl halides over magnesium

Author: R. Alan Aitken, Philip K.G. Hodgson, Adebayo O. Oyewale

PII: S0165-2370(16)30735-5
Reference: JAAP 3921

Received date: 14-11-2016
Revised date: 22-12-2016
Accepted date: 24-12-2016

Please cite this article as: R.Alan Aitken, Philip K.G.Hodgson, Adebayo O.Oyewale, Flash vacuum pyrolysis of benzylidene halides, benzotrihalides and aryl halides over magnesium, Journal of Analytical and Applied Pyrolysis
http://dx.doi.org/10.1016/j.jaap.2016.12.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Flash vacuum pyrolysis of benzyldiene halides, benzotrihalides and aryl halides over magnesium
R. Alan Aitken, a Philip K. G. Hodgson b and Adebayo O. Oyewale a,c

a EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, UK KY16 9ST. E-mail: raa@st-and.ac.uk
b B. P. Research and Engineering Centre, Chertsey Road, Sunbury on Thames, Middlesex, UK, TW16 7LN
c Present address: Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
Abstract
Flash vacuum pyrolysis at 600 °C through glass wool coated with freshly sublimed magnesium is examined as a preparative method for dehalogenative coupling in organic synthesis. Substituted benzylidene chlorides give predominantly the corresponding stilbenes and in some cases these are readily isolated in pure form. With an ortho-halogen substituent, additional cyclisation gives phenanthrenes but the method is not compatible with the presence of several reactive groups. An ortho-methoxy substituent leads to unexpected formation of mono- and dimethyl products. With 1,4-bis(dihalomethyl)benzenes, halogenated polymers are deposited directly from the gas phase via generation of halogenated p-xylylenes. The 1,2- and 1,3-isomers lead respectively to benzocyclobutadiene, isolated as a dimer, and to pyrene. The 1,4-bis(trihalomethyl)benzenes give more highly halogenated polymers directly from the gas phase via halogenated p-xylylenes. While halobenzenes generally give the corresponding benzenes and biphenyls, 1,2-dihalobenzenes additionally produce triphenylene in preparatively useful yield by a process not involving intermediacy of free benzyne.

Keywords: Flash vacuum pyrolysis; Dehalogenation; Coupling; Polymers
1 Introduction
Some time ago we described the application of flash vacuum pyrolysis (FVP) over a layer of freshly sublimed magnesium on glass wool as a preparatively useful method for dehalogenative coupling of benzyl halides, and the effect of these conditions on a wide range of haloalkanes, -alkenes and -alkynes was also examined [1,2]. The same method was later used in dehalogenation of dichlorophosphines to generate simple alkylphosphinidenes [3] and an arylphosphinidene [4]. More recently the occurrence of an unusual rearrangement during such dehalogenative coupling of halogenated methylthiophenes to form benzodithiophenes was also described [5]. In this paper, the further application of these inherently clean, solvent-free conditions to dehalogenative coupling of benzylidene chlorides, benzotrihalides and aryl halides is reported.

2 Experimental

2.1 General
Melting points were recorded on a Kofler hot-stage microscope and are uncorrected. Infra red spectra were recorded as Nujol mulls for solids and as thin films for liquids on a Perkin Elmer 1420 instrument. NMR spectra were obtained for 1H at 80 MHz using a Bruker WP80 instrument or at 300 MHz using a Bruker AM300 instrument, for 13C at 75 MHz using a using a Bruker AM300 instrument and for 19F at 75 MHz using a Bruker WP80 instrument. All spectra were run on solutions in CDCl$_3$ with internal Me$_4$Si as reference for 1H and 13C and CFCl$_3$ for 19F. Chemical shifts are reported in ppm to high frequency of the reference and coupling constants J are in Hz. Solid state CP-MAS 13C NMR spectra were obtained at 125 MHz on a Buker MSL 500 spectrometer. Mass spectra were obtained on an A. E. I. MS–902 spectrometer using electron impact at 70 eV. GCMS was carried out using a Hewlett Packard 5890A coupled to a Finnigan–Incos 50 mass spectrometer. Thermogravimetric analysis was conducted using a Perkin Elmer Series 7 thermal analysis system over the temperature range 30–900 °C.

2.2 Preparation of Substituted Benzylidene Chlorides
These were prepared from the corresponding benzaldehydes either by reaction with 1 equivalent of thionyl chloride heated under reflux in the absence of solvent for 2 h (Method A), reaction with 1 equivalent of thionyl chloride in CH$_2$Cl$_2$ heated under reflux for 2 h (Method B), reaction with 1 equivalent of PCl$_5$ in CH$_2$Cl$_2$ at room temperature for 2 h (Method C), or reaction with 1 equivalent of PCl$_5$ in CH$_2$Cl$_2$ heated under reflux for 2 h (Method D). Work up by addition to water, extraction with ether, drying and evaporation (Method A), evaporation (Method B), or washing with water, drying and evaporation (Methods C and D) was then followed in each case by kugelrohr distillation to give the product as follows:

2.2.1 Benzylidene chloride 1a. Prepared from benzaldehyde (Method A, 87%) as a colourless liquid, bp 85 °C at 10 Torr (lit. [6] 89–90 °C at 10 Torr); δ^H 6.80 (1 H, s) and 7.3–7.7 (5 H, m).

2.2.2 2-Methylbenzylidene chloride 1b. Prepared from o-tolualdehyde (Method A, 86%) as a colourless liquid, bp 60 °C at 1.0 Torr (lit. [7] 105–107 °C at 16 Torr); δ^H 2.40 (3 H, s), 7.00 (1 H, s), 7.2–7.4 (3 H, m) and 7.8–8.0 (1 H, m).
2.2.3 3-Methylbenzylidene chloride 1c. Prepared from m-tolualdehyde (Method B, 89%) as a colourless liquid, bp 130 °C at 20 Torr (lit. [7] 110–111 °C at 15 Torr); δH 2.30 (3 H, s), 6.60 (1 H, s) and 7.0–7.4 (4 H, m).

2.2.4 4-Methylbenzylidene chloride 1d. Prepared from p-tolualdehyde (Method B, 71%) as a colourless crystalline solid, bp 130 °C at 20 Torr; mp 45–47 °C (lit. [8] 47 °C); δH 2.40 (3 H, s), 6.80 (1 H, s), 7.30 and 7.60 (4 H, AB pattern, J 8).

2.2.5 2-Methoxybenzylidene chloride 1e. Prepared from o-anisaldehyde (Method C, 91%) as a colourless liquid, bp 100 °C at 1.0 Torr (lit. [9] 231 °C); δH 3.70 (3 H, s), 6.70 (1 H, m), 6.93 (1 H, m), 7.18 (1 H, s), 7.23 (1 H, m) and 7.80 (1 H, m); δC 55.5 (OMe), 66.5 (CHCl2), 110.7 (C-3), 121.0, 127.9, 128.4 (C-1), 131.2 and 154.3 (C-2).

2.2.6 1-Dichloromethyl-2-methoxynaphthalene 10. Prepared from 2-methoxy-1-naphthaldehyde (Method D, 69%) as a colourless solid, mp 124–125 °C (lit. [10] 125–127 °C); δH 3.92 (3 H, s), 7.12 (1 H, d), 7.40 (1 H, t), 7.60 (1 H, t), 7.70–7.85 (2 H, m), 7.87 (1 H, s, CHCl2) and 8.75 (1 H, m, 8-H) (lit. [10] 3.93 (s), 7.14 (d), 7.3–7.83 (m), 7.90 (s) and 8.26 (dd)); δC 56.7 (OMe), 64.6 (CHCl2), 112.2 (C-3), 124.1, 125.0, 126.9, 128.8, 129.7 (4ry), 130.6 (4ry), 132.8, 137.6 (4ry) and 152.3 (C-2).

2.2.7 4-Methoxybenzylidene chloride 1f. Prepared from p-anisaldehyde (Method B, 77%), as a colourless liquid, bp 100 °C at 1.0 Torr (lit. [11] 130–132 °C at 14 Torr); δH 3.73 (3 H, s), 6.63 (1 H, s), 6.85 and 7.45 (4 H, AB pattern, J 9).

2.2.8 2-Chlorobenzylidene chloride 1g. Prepared from 2-chlorobenzaldehyde (Method D, 85%) as a colourless liquid, bp 120 °C at 1.0 Torr (lit. [7] 226–228 °C); δH 7.00 (1 H, s), 7.0–7.3 (3 H, m) and 7.6–7.8 (1 H, m).

2.2.9 4-Chlorobenzylidene chloride 1h. Prepared from 4-chlorobenzaldehyde (Method D, 77%) as a colourless liquid, bp 120 °C at 1.0 Torr (lit. [7] 236 °C); δH 6.70 (1 H, s) and 7.35 and 7.54 (4 H, AB pattern, J 9).

2.2.10 2-Chloro-6-fluorobenzylidene chloride 1i. Prepared from 2-chloro-6-fluorobenzaldehyde (Method C, 86%) as a colourless liquid, bp 100 °C at 1.0 Torr (lit. [12] 95 °C at 16 Torr); δH 6.9–7.4 (3 H, m) and 7.20 (1 H, s).

2.2.11 6-Chloro-3,4-methylenedioxybenzylidene chloride 1j. Prepared from 6-chloro-3,4-methylenedioxybenzaldehyde (Method D, 93%) as colourless crystals, mp 43–44 °C (Found: C, 40.3; H, 1.9. C8H5ClO2 requires C, 40.1; H, 2.1%); δH 6.09 (2 H, s), 6.85 (1 H, s), 7.19 (1 H, s) and 7.45 (1 H, s); δC 68.2 (CHCl2), 102.4, 108.0, 109.0, 123.2 (4ry), 130.9 (4ry), 147.5 (4ry) and 149.4 (4ry); m/z 238 ([Cl3-M]+, 50%), 203 (100), 173 (5), 147 (18), 133 (8), 111 (28), and 74 (33).

2.2.12 2-Chloro-5-nitrobenzylidene chloride 1k. Prepared from 2-chloro-5-nitrobenzaldehyde (Method D, 90%) as colourless crystals, mp 31–32 °C (Found: C, 35.4; H, 1.6; N, 5.6. C10H8ClNO2 requires C, 35.0; H, 1.7; N, 5.8%); δH 7.25 (1 H, s), 7.71 (1 H, d, J 9), 8.34 (1 H, d of d, J 9, 3) and 8.94 (1 H, d, J 3); δC 66.6 (CHCl2), 124.2, 125.5, 130.9, 137.5 (4ry), 139.3 (4ry) and 147.2 (4ry); m/z 239 ([Cl3-M]+, 35%), 204 (100), 158 (50), 123 (96), 97 (40) and 73 (70).
2.2.13 2-Bromo-4,5-dimethylbenzylidene chloride 11.

2-Bromo-4,5-dimethylbenzaldehyde was first prepared by reaction of 4,5-dibromo-oxylene [13] (see section 2.7.1) with butyllithium followed by DMF at –70 °C (50%) to give a pale yellow solid, mp 64–65 °C; \(\nu_{\text{max}} / \text{cm}^{-1} \) 3050, 1690, 1595, 1250, 1180, 1140, 1035, 975, 915, and 865; \(\delta_H \) 2.30 (3 H, s), 2.33 (3 H, s), 7.54 (1 H, s), 7.80 (1 H, s), 7.80 (1 H, s) and 10.43 (1 H, s); \(\delta_C \) 19.1, 19.9, 124.1 (4ry), 130.3, 131.1 (4ry), 134.4, 136.8 (4ry), 145.7 (4ry) and 191.5; \(m/z \) 214/212 (M\(^+\), 59, 66%), 213/211 (95, 100), 185 (16), 132 (11), 103 (61) and 77 (64).

The title compound was then prepared using this aldehyde (Method B, 75%) as a colourless liquid, bp 100 °C at 5.0 × 10\(^{-2}\) Torr (Found: C, 40.6; H, 3.2. \(\text{C}_9\text{H}_9\text{BrCl}_2 \) requires C, 40.3, H, 3.4%); \(\delta_H \) 2.30 (3 H, s), 2.37 (3 H, s), 7.25 (1 H, s), 7.45 (1 H, s), and 7.85 (1 H, s); \(\delta_C \) 19.3, 19.4, 70.7 (CHCl\(_2\)), 117.2 (4ry), 129.7 133.1, 136.3, (4ry) 137.3, (4ry) and 140.7 (4ry); \(m/z \) 270/268/266 (M\(^+\), 4, 10, 6%), 233/231 (100, 85), 152 (8), 115 (57), 89 (14) and 75 (17).

2.3 Pyrolysis of Substituted Benzylidene Chlorides over Magnesium.

The procedure used was based on that reported previously [1,2]. Using the standard apparatus for FVP [14], the required weight of magnesium turnings was placed at the centre of the furnace tube which was loosely packed with glass wool. The system was connected up to the vacuum pump with a stopper in place of the sample inlet, placed under vacuum, and heated to 700 °C resulting in the metal melting and subliming over the glass wool. The system was then isolated from the pump, cautiously refilled with nitrogen and after allowing the furnace to cool to the operating temperature (600 or 650 °C), the sample inlet tube was attached and the pyrolysis conducted as normal. The products in the cold trap were dissolved out while still cold using CDCl\(_3\) and analysed using NMR and GCMS. Yields were determined by adding a known weight of an internal standard to the solution for \(^1\text{H} \text{NMR} \) and comparing integrals and/or calibration of GC signals.

Pyrolysis of benzylidene chlorides 1a–j was carried out as described above, typically on a 0.5-1.0 g scale, and the results are given in Table 1. In most cases the major product was the corresponding (E)-stilbene 2 and this was obtained in some cases in pure form by recrystallisation of the crude solid product from the furnace exit using EtOH. Physical and spectroscopic data for the most significant products are as follows:

2.3.1 From FVP of 1a

(E)-stilbene 2a, mp 120–122 °C (lit. [15] 124 °C); \(\delta_H \) 7.10 (2 H, s), 7.2–7.35 (6 H, m) and 7.50 (4 H, m); \(\delta_C \) 126.4 (C-2, C-6), 127.5 (C-4), 128.5 (C-3,C-5,C-α), and 137.2 (C-1).

2.3.2 From FVP of 1b

benzocyclobutene 9, \(\delta_H \) 3.02 (4 H, s) and 6.9–7.2 (4 H, s); \(m/z \) 104; (E)-2,2’-dimethylstilbene 2b, \(\delta_H \) 2.45 (6 H, s) and 7.1–7.5 (10 H, m); \(m/z \) 208; 2,2’-dimethylbibenzyl 4b, \(\delta_H \) 2.38 (6 H, s), 2.88 (4 H, s) and 7.1–7.5 (8 H, m); \(m/z \) 210.

2.3.3 From FVP of 1c
(E)-3,3'-dimethylstilbene 2c, δH 2.40 (6 H, s), 7.12 (2 H, s) and 7.1–7.4 (8 H, m); δC 21.4 (Me), 123.7 (C-6), 127.2 (C-2), 128.3 (C-4), 128.5 and 128.6 (C-5 and C-α), 137.4 (C-1) and 138.1 (C-3); m/z 208;
3,3'-dimethylbibenzyl 4c, δH 2.36 (6 H, s), 2.90 (4 H, s), and 7.1–7.4 (8 H, m); δC 21.4 (Me), 38.0 (CH2), 125.4 (C-6), 126.6 (C-4), 128.2 (C-5), 129.2 (C-2), 137.8 (C-3) and 141.9 (C-1); m/z 210.

2.3.4 From FVP of 1d
(E)-4,4'-dimethylstilbene 2d, mp 183–184 °C (lit. [16] 181.7 °C); δH 2.35 (6 H, s), 7.02 (2 H, s), 7.15 and 7.40 (8 H, AB pattern, J 9); δC 21.2 (Me), 126.3 (C-2), 127.6 (C-α), 129.3 (C-3), 134.7 (C-1) and 137.2 (C-4); m/z 208;
4,4'-dimethylbibenzyl 4d, δH 2.5 (6 H, s), 3.0 (4 H, s) and 7.2–7.6 (8 H, m); m/z 210.

2.3.5 From FVP of 1f
p-methoxystyrene, δH 3.75 (3 H, s), 5.12 (1 H, d of d, J 10, 2), 5.60 (1 H, d of d, J 18, 2), 6.64 (1 H, d of d, J 18, 10) and 7.0–7.4 (4 H, m); m/z 134.

2.3.6 From FVP of 1h
(E)-4,4'-dichlorostilbene 2h, mp 177–178 °C (lit. [17] 176 °C); δH 7.17 (2 H, s) and 7.47 and 7.57 (8 H, AB pattern, J 9); δC 127.7 (C-2), 128.0 (C-α), 128.9 (C-3), 133.5 (C-4) and 135.5 (C-1).

2.3.7 From FVP of 1i
Preparative TLC using petroleum ether as solvent gave (E)-2,2'-dichloro-6,6'-difluorostilbene 2i as colourless crystals, mp 106–107 °C (Found: C, 58.8; H, 2.3.
C12H8Cl2F2 requires C, 58.9; H, 2.8%). v_{max}/cm^{-1} 3080, 1720, 1605, 1575, 1250, 1215, 1160, 980, 900, 780 and 730; δH 7.0–7.3 (6 H, m) and 7.5 (2 H, s); δC 114.8 (C-5, d, J 23), 124.2 (C-1, d, J 14), 125.7 (C-3, d, J 3), 126.8 (C-4, d, J 13), 128.7 (C-α, d, J 10), 134.8 (C-2, d, J 5) and 161.1 (C-6, d, J 253); m/z 284 (M\(^{+}\), 28%), 248 (5), 214 (100), 194 (15), 154 (8), 124 (24) and 106 (42); δC –83.6.
(Z)-2,2'-dichloro-6,6'-difluorostilbene 3i, δC 113.8 (C-5, d, J 21), 114.3 (C-1, d, J 22), 125.0 (C-3, d, J 3), 126.6 (C-4, d, J 18), 130.2 (C-α, d, J 10), 130.8 (C-2, d, J 9) and 163.2 (C-6, d, J 255); m/z 284 (M\(^{+}\), 35%), 249 (5), 214 (100), 194 (23), 154 (12), 124 (20) and 106 (45).

2.3.8 FVP of 1-Dichloromethyl-2-methoxynaphthalene 10
FVP of the title compound (0.53 g, 600 °C, 5.0 × 10\(^{-1}\) Torr, inlet 85–90 °C, 1.5 g magnesium) gave a liquid product which was shown by NMR and GCMS to consist of 1-methynaphthalene (51%); δH 2.63 (3 H, s), 7.3–8.1 (7 H, m); δC 19.3 (CH3), 124.1 (C-8), 125.5 (C-7), 125.7 (C-3), 125.8 (C-6), 126.3 (C-4), 127.8 (C-5), 128.5 (C-2), 132.6 (C-9), 133.5 (C-10) and 134.2 (C-1); m/z 142;
1,2-dimethynaphthalene (10%); δH 2.40 (3 H, s), 2.50 (3 H, s) and 7.3–8.1 (6 H, m); δC 14.5 (1-CH3), 21.0 (2-CH3); m/z 156 and small amounts of ethynaphthalene; m/z 156, and 2-methynaphthalene.

2.4 Preparation and FVP of tetrahaloxylene
2.4.1 Preparation of \(\alpha,\alpha',\alpha',\alpha'-\)tetrachloro-p-xylene 11
This was prepared from terephthalaldehyde (5.0 g, 37.3 mmol) and phosphorus pentachloride (16.0 g, 77.0 mmol) in dichloromethane, stirred at room temperature for
2 h. Excess PCl₅ was destroyed by adding water and the organic layer dried and evaporated to give a crystalline solid which was recrystallised from petroleum ether to give \(\alpha,\alpha',\alpha' \)-tetrachloro-\(p \)-xylene (8.1 g, 90%) as colourless crystals, mp 93–95 °C (lit. [18] 92–94 °C); \(\delta_H \) 6.7 (2 H, s) and 7.6 (4 H, s); \(m/z \) 244.

2.4.2 Preparation of \(\alpha,\alpha',\alpha' \)-tetrabromo-\(p \)-xylene 12

This was prepared from terephthalaldehyde (2.0 g, 14.9 mmol) and thionyl bromide (6.2 g, 29.8 mmol) [19] heated under reflux at 100–120 °C for 3 h. On cooling, the residual acidic fumes were removed with a stream of \(N_2 \) gas and the solid residue taken up in hot chloroform. Cooling on an ice-bath gave fine solid precipitate of \(\alpha,\alpha,\alpha',\alpha' \)-tetrabromo-\(p \)-xylene (3.8 g, 61%), mp 169–170 °C (lit. [20] 169 °C); \(\delta_H \) (CD₃COCD₃) 7.2 (2 H, s) and 7.7 (4 H, s); \(m/z \) 422.

α,α,α',α'-tetrachloro-\(p \)-xylene 11

FVP of the title compound (2.2 g, 600 °C, \(8.0 \times 10^{-1} \) Torr, inlet 95–100 °C, 2.0 g magnesium) gave as main product a polymeric material coated in the cold trap, with a trace of a liquid which consisted of \(p \)-xylene (1%), toluene (0.6%) and benzene (0.8%). As the polymer was insoluble in conventional solvents, it was simply peeled off from the cold trap. Microanalysis of the material was indicative of poly(\(\alpha,\alpha' \)-dichloro-\(p \)-xylene) 14 (Found: C, 59.6; H, 3.4. (C₈H₅Cl₂)ₙ requires C, 55.5; H, 3.5%) and the yield of the polymer was 77% (1.20 g); \(\delta_C \) (solid state) 66.7 (CHCl), 128.3 (4 aromatic C) and 140.1 (2 quaternary aromatic C). Thermal analysis showed that the material started degrading at a temperature as low as 50 °C in both an \(N_2 \) and air atmosphere but it finally decomposed at about 400 °C under \(N_2 \) and 600 °C in air. The material gave a sharp isotherm at about 50 °C in both air and \(N_2 \).

α,α,α',α'-tetrabromo-\(p \)-xylene 12

FVP of the title compound (0.98 g, 600 °C, \(1.5 \times 10^{-2} \) Torr, inlet 150–160 °C, 2.0 g magnesium) gave a faint yellow polymeric material as the only product, which was worked up as above. Microanalysis of the material was indicative of poly(\(\alpha,\alpha' \)-dibromo-\(p \)-xylene) 15 (Found: C, 40.9; H, 2.0. (C₈H₅Br₂)ₙ requires C, 36.7; H, 2.3%) and the yield of polymer was 25% (0.15 g); \(\delta_C \) (solid state) 62.3 (CHBr), 128.9 (4 aromatic CH) and 139.9 (2 quaternary aromatic C). Thermal analysis on the material showed that it was stable in an \(N_2 \) or air atmosphere up to 200 °C after which there was a gradual weight loss up to 500 °C at which point it decomposed.

α,α,α',α'-tetrachloro-\(o \)-xylene 16

FVP of the title compound (1.1 g, 600 °C, \(8.0 \times 10^{-2} \) Torr, inlet 85–90 °C, 1.5 g magnesium) gave a faint yellow liquid and a solid. The NMR and GCMS showed that the two fractions consisted of the same mixture of compounds namely: 7,8-dichlorobicyclo[4.2.0]octa-1,3,5-triene [21] (cis and trans, 50%), cis-isomer; \(\delta_H \) 5.6 (2 H, s) and 7.3 (4 H, m); \(\delta_C \) 68.1 (C-7, C-8), 123.0 (C-2, C-5), 131.0 (C-3, C-4) and 138.2 (C-1, C-6), trans-isomer; \(\delta_H \) 5.2 (2 H, s) and 7.3 (4 H, m); \(\delta_C \) 62.2 (C-7, C-8), 122.9 (C-2, C-5), 131.3 (C-3, C-4) and 141.3 (C-1, C-6); \(m/z \) 173 and 7,7,8-trichlorobicyclo[4.2.0]octa-1,3,5-triene [22] (18%); \(\delta_H \) 5.7 (1 H, s) and 7.2–7.5 (4 H, m); \(\delta_C \) 60.7, 71.2, 128.2, 128.5, 130.4, 132.0, 143.1, and 145.8; \(m/z \) 208. There were also small amounts of 7-chlorobicyclo[4.2.0]octa-1,3,5-triene and bicyclo[4.2.0]octa-1,3,5-triene.
Repeat pyrolysis at higher magnesium to substrate ratio (1.0 g of 16, 600 °C, 1.2 × 10⁻² Torr, inlet 85–90 °C, 2.8 g magnesium) gave only a yellow solid product which consisted of 7,8-dichloro-bicyclo[4.2.0]octa-1,3,5-triene (15%) and benzocyclobutadiene dimer [23] 18 (45%); δH 43.2, 43.7, 120.7, 121.5, 125.9, 126.7, 126.8, 127.6 (3C), 127.7 (2C), 133.1, 134.7, 148.5 and 149.0; m/z 204, with only trace amounts of the trichlorobicyclo[4.2.0]octa-1,3,5-triene. The yields were determined from the GC integral.

α,α,α',α'-tetrachloro-m-xylene 19
FVP of the title compound (0.96 g, 600 °C, 4.2 × 10⁻² Torr, inlet 150–160 °C, 1.7 g magnesium) showed only two products: pyrene (54%); δH 8.1–8.2 (m); δC 124.9 (6 C, C-1, C-10b), 125.8 (2 C, C-2), 127.4 (4 C, C-4) and 131.1 (4 C, C-3a); m/z 202, and 3,3'-dimethylstilbene (5%).

2.5 FVP of dichlorodiphenylmethane 22
FVP of the title compound (1.50 g, 600 °C, 1.0 × 10⁻¹ Torr, inlet 50 °C, 1.54 g magnesium) gave a solid product which was shown by GCMS to contain diphenylmethane (7%); m/z 168, 1,1-diphenylethene (1%); m/z 180, fluorene (25%); m/z 166, triphenylmethane (2%); m/z 244, 1,1,1-triphenylethene (1%); m/z 258, tetraphenylethane (39%); m/z 332, 1,1,2,2-tetraphenylethane (1%); m/z 167 (M²/2), and 9-(diphenylmethylene)fluorene 23 (5%); m/z 330.

2.6 FVP of mono- and bis(trihalomethyl)benzenes

2.6.1 FVP of benzoctrichloride 24
FVP of the title compound (0.43 g, 600 °C, 2.0 × 10⁻¹ Torr, inlet room temperature, 0.8 g magnesium) gave mainly a yellow solid with a trace of liquid. The liquid fraction was mainly traces of benzyldiene chloride and starting material. The NMR and GCMS of the solid fraction showed that it consisted of α,α,α',α'-tetrachlorobenzyl 25 (22%); δC 126.6 (4 C), 128.2 (4 C), 129.0, 129.1 and 137.5; m/z 320, (E)-α,α'-dichlortribenzene 26 (23%); m/z 249, (Z)-α,α'-dichlortribenzene 27 (19%); m/z 249, and diphenylacetylene 28 (12%); m/z 178.

Repeat pyrolysis at longer contact time (1 Torr) gave a yellow solid, which consisted of α,α,α',α'-tetrachlorobenzyl 25 (8%), (E)- and (Z)-α,α'- dichlorotribenzene 26 and 27 (21% and 20%); δC 128.2 (4 C), 129.0, 129.1 (4 C), 130.7 and 137.5 for one isomer and δC 128.2 (4 C), 128.5, 129.7 (4 C), 129.8 and 137.1 for the other, and diphenylacetylene 28 (30%); δC 89.4, 123.2, 128.1 (4 C), 128.3 and 131.6 (4 C). The yields were determined from GC integration.

2.6.2 FVP of benzo trifluoride
FVP of the title compound (0.39 g, 600 °C, 40 Torr (N₂ leak), inlet ice-cooled vertical inlet tube, 0.5 g magnesium) gave mainly a liquid fraction, with a small amount of solid. The GCMS indicated the liquid fraction was mainly recovered starting material. While the solid contained various fluorinated compounds, the major ones were α,α,α',α'-tetrafluorobenzyl; m/z 254, bis(trifluoromethyl) biphenyl; m/z 290, α,α'-difluorotribenzene; m/z 216, α-fluorotribenzene; m/z 198, fluorophenanthrene; m/z 196, diphenylacetylene; m/z 178, α,α,α'-trifluorobenzyl; m/z 236, and small amounts of various unidentified compounds. Product identification was based entirely on GCMS evidence and no attempt was made to determine the yield of the products, as most of the starting material was unreacted.
2.6.3 FVP of 1,4-bis(trichloromethyl)benzene 29
FVP of the title compound (1.54 g, 600 °C, 4.4 × 10⁻² Torr, inlet 130–135 °C, 2.0 g magnesium) gave a white polymer, which was insoluble in conventional solvents. Microanalysis of the polymer was consistent with expectation for \(\text{poly}(\alpha,\alpha,\alpha',\alpha''-\text{tetrachloro-p-xyylene}) \) 32 (Found: C, 38.6; H, 1.2. (C₈H₄Cl₃)n requires C, 39.7; H, 1.7%) and the yield of the polymer was 94% (1.16 g); \(\delta_c \) (solid state) 97.8 (2CCl₂), 131.7 (C-2, C-3, C-5, C-6) and 140.4 (C-1, C-4). Using CHCl₃ end group analysis, the polymer was estimated to consist of 10 units, giving an approximate molecular weight of 2420. Thermal analysis of the polymer in air showed a double isotherm at 360 °C, in nitrogen and 570 °C in air; there was however a gradual weight loss of about 25% between 50 and 500 °C in both air and nitrogen.

2.6.4 FVP of 1,4-bis(trifluoromethyl)benzene 30
FVP of the title compound (1.49 g, 600 °C, 2.0 Torr, inlet ice-cooled vertical inlet tube, 1.5 g magnesium) gave two fractions, a white polymer and a liquid, as product. The \(^1\)H NMR and GCMS data showed that the liquid consisted mainly of the starting material and numerous fluorinated compounds. The polymer was insoluble in conventional solvents. Microanalysis of the material was indicative of \(\text{poly}(\alpha,\alpha,\alpha',\alpha''-\text{tetrafluoro-p-xyylene}) \) 33 (Found: C, 54.6; H, 2.2. (C₈H₄F₄)n requires C, 54.6; H, 2.3%) and the yield of polymer was 33% (0.40 g). Solid state \(^{13}\)C NMR of the material was not obtained, because the material was electrostatic and therefore could not be obtained in a form suitable for measurement. Thermogravimetric analysis indicated that the polymer was stable up to 620 °C in nitrogen and 570 °C in air; there was however a gradual weight loss of about 25% between 50 and 500 °C in both air and nitrogen.

2.6.5 FVP of p-(bromomethyl)benzotrifluoride 34
FVP of the title compound (0.81 g, 600 °C, 8.0 × 10⁻² Torr, inlet room temperature, 1.2 g magnesium) gave a solid and a polymeric material as products. The \(^1\)H NMR and GCMS of the solid showed that it was mainly recovered starting material (30%), with a small amount of 4,4′-bis(trifluoromethyl)bibenzyl (4%); \(\delta_H \) 2.9 (4 H, s) and 7.1–7.4 (8 H, m); m/z 318, 4-trifluoromethyltoluene (8%); \(\delta_H \) 2.3 (3 H, s) and 7.1–7.4 (4 H, m); m/z 160, and \(\alpha \)-bromo-\(\alpha' \),\(\alpha'' \)-difluoro-p-xylene (trace); m/z 219.

Microanalysis of the polymer was indicative of \(\text{poly}(\alpha,\alpha-\text{difluoro-p-xyylene}) \) 36 (Found: C, 64.1; H, 4.3; C₃H₄F₂ requires C, 68.6; H, 4.3%) and the yield of the polymer was 12.6% (42.1 mg); \(\delta_C \) (solid state) 36.8 (CH₂, br), 79.3 (CF₂, br), 120.2 (C-2, C-3, C-5, C-6, br) and 160.7 (C-1, C-4, br). Based on end group analysis (CH₃, \(\delta_C \) 13.0) it was estimated to have a molecular weight of 990 (\(\text{i.e.} \) a heptamer). Thermogravimetric analysis of the polymer showed that it was stable in air up to 500 °C but underwent a steady weight loss from about 100 °C. Similar analysis in N₂ showed double isotherms at 100 °C and 550 °C, but it also underwent a steady weight loss from about 100 °C.

2.7 Preparation and FVP of halobenzenes
2.7.1 Preparation of 3,4-dibromo-o-xylene 42 [24]
This was prepared from 5-bromo-4-amino-o-xylene [25] (10.0 g, 50 mmol) which was dissolved in 48% hydrobromic acid (80 cm³) and water (300 cm³) at -5 to +5 °C.
and the mixture was then diazotised with a 10% solution of sodium nitrite. The diazonium salt solution was slowly siphoned, under slight N₂ pressure, into a solution of cuprous bromide (100 g) in conc. hydrobromic acid (270 cm³) and H₂O (100 cm³) kept at 90 °C over a period of 30 min. After a further 30 min, the solution was allowed to cool, extracted with ether, dried and solvent evaporated to give a solid mass. Recrystallisation from ethanol gave 4,5-dibromo-o-xylene (10.4 g, 79%) as light yellow plates, mp 88 °C (lit. [13] 88 °C; δ_H 2.2 (6 H, s) and 7.5 (2 H, s); δ_C 19.7, 121.7, 134.8 and 138.2.

2.7.2 FVP of chlorobenzene
FVP of chlorobenzene (0.63 g, 700 °C, 15 Torr (N₂ leak), 1.0 g magnesium) gave two fractions, a liquid and a solid. The liquid fraction was found to be benzene (60%); δ_H 7.25 (s); m/z 78, while the solid was biphenyl (28%); δ_H 7.3–7.5 (m); m/z 154. Both products were further confirmed by comparison with authentic samples by GC (OV101, 150 °C).

2.7.3 FVP of o-dichlorobenzene 37
FVP of the title compound (1.38 g, 600 °C, 6.8 × 10⁻¹ Torr, inlet room temperature, 2.0 g magnesium) gave three fractions, a liquid, a solid in the cold trap and a solid at the furnace exit. The NMR and GCMS indicated that the liquid product was mainly the starting material and benzene (13%), while the solid in the cold trap was mainly biphenyl (3%) with trace amounts of biphenylene 40. The solid at the furnace exit consisted mainly of triphenylene 41 (6%) with small amounts of biphenyl and terphenyls.

Repeat pyrolysis at 700 °C under the same conditions gave a similar product mixture to above. The product mixture was kugelrohr distilled (100 °C at 2 Torr) leaving behind the solid product (0.11 g, 11%). The solid consisted of triphenylene 41 (80% composition); δ_H 7.65 (6 H, m) and 8.65 (6 H, m); δ_C 123.4 (6 C), 127.3 (6 C) and 129.9 (6 C); m/z 228, biphenyl (12% composition); δ_H 7.3–7.6 (m); δ_C 127.3 (6 C), 128.8 (4 C) and 141.2 (2 C); m/z 154, and biphenylene 40 (8% composition); δ_H 6.6 (4 H, m) and 6.7 (4 H, m); δ_C 117.4 (4 C), 128.3 (4 C) and 151.5 (4 C); m/z 152. All products were further confirmed with authentic samples by GC (OV101, 250 °C).

2.7.4 FVP of o-dibromobenzene 38
FVP of the title compound (2.0 g, 600 °C, 8.0 × 10⁻¹ Torr, inlet 60–65 °C, 2.0 g magnesium) gave a liquid and a solid product. The NMR and GCMS analysis indicated that the liquid product was mainly unreacted starting material with small amounts of benzene and bromobenzene. The solid fraction (73 mg, 11% corrected for recovered starting material) consisted mainly of triphenylene 41; m/z 228, with small amounts of biphenyl; m/z 154 and biphenylene 40; m/z 152.

Repeat pyrolysis at 700 °C under the same conditions gave a liquid and a solid product. The liquid product was only benzene (18%); δ_H 7.3 (s), while the solid product consisted of triphenylene 41 (13%), biphenyl (4%) and biphenylene 40 (1%). The ¹H and ¹³C NMR values for triphenylene, biphenyl and biphenylene, were the same as above and all products were further confirmed with authentic samples by GC (OV101, 250 °C).

2.7.5 FVP of 1-bromo-2-chlorobenzene 39
FVP of the title compound (1.07 g, 600 °C, 1.0 × 10⁻¹ Torr, inlet room temperature, 1.5 g magnesium) gave three fractions, a liquid, a solid in cold trap and a solid at
furnace exit. The 1H NMR indicated that the liquid product consisted of the starting material and benzene, while the solid in the cold trap consisted of biphenyl (6%); δ_H 7.35 (2 H, m), 7.45 (4 H, m) and 7.6 (4 H, m), and biphenylene 40 (1%); δ_H 6.65 (4 H, m) and 6.75 (4 H, m) with traces of benzene. The solid at the furnace exit was triphenylene 41 (11%); δ_H 7.65 (6 H, m) and 8.65 (6 H, m). All products were further confirmed with authentic samples by GC (OV101; 250°C).

2.7.6 FVP of 3,4-dibromo-o-xylene 42
FVP of the title compound (1.12 g, 600 °C, 4.0 × 10$^{-2}$ Torr, inlet 85–90 °C, 3.0 g magnesium) gave mainly a liquid product, with small amount of yellow solid. The 1H NMR showed that the liquid product was o-xylene (77%); δ_H 2.3 (6 H, s) and 7.1 (4 H, s), while the GCMS showed that the solid was tetramethylbiphenyl (7%); m/z 210. Repeat pyrolysis at 700 °C gave the same mixture of products.

3 Results and discussion

3.1 Benzylidene chlorides

A range of substituted benzylidene chlorides (dichloromethylenearenes) 1a–k were prepared from the corresponding benzaldehydes by treatment with either thionyl chloride or phosphorus pentachloride. In many cases these were characterised by NMR spectroscopy for the first time and the resulting data are given in the experimental section. Characteristic signals for the CHCl$_2$ function were observed at δ_H 6.6–7.2 (1H, s) and δ_C 64–70. As noted by previous authors, the compounds were not stable to prolonged storage and freshly prepared and distilled samples were used for the pyrolysis studies.

When the substituted benzylidene halides were subjected to FVP over magnesium there was usually complete reaction at 600 °C and products accounting for between 56 and 92% overall yield were identified by a combination of NMR and GCMS methods (Scheme 1, Table 1). As expected from our previous studies on benzyl halides [2], the major product in most cases was that of dehalogenative coupling to give the stilbene mainly as the (E)-isomer 2 but accompanied by a smaller amount of the (Z)-isomer 3. In favourable cases the pure (E)-stilbene could be obtained simply by recrystallisation of the solid at the furnace exit from ethanol and this occurred for 2a 2d and 2h while the previously unreported compound 2i was obtained pure by preparative TLC. In all cases there were however varying amounts of other products, notably the reduction products: the bibenzyl 4 and the toluene 5. As we noted previously [1], various pieces of evidence point to the involvement of surface-adsorbed organometallic species in these processes but the formation of apparent hydrogen atom abstraction products is consistent with the behaviour observed for benzylidene chlorides [2]. A previous study on atmospheric pressure flow pyrolysis of 1a under nitrogen at temperatures between 430 and 650 °C also gave 10-20% yields of 4 and 5 in addition to stilbene 2a as the major product [26].
Scheme 1. Major products from FVP of benzylidene halides over magnesium

There were also some additional products specific to particular substitution patterns. Thus, for example the 2-methyl compound 1b gave a 17% yield of benzocyclobutene as might be expected from insertion of a carbenoid into the adjacent methyl CH. The 3- and 4-methyl compounds had no such complication and gave higher yields of dimethylstilbenes.
Table 1. Pyrolysis of benzylidene chlorides over magnesium at 600 °C

<table>
<thead>
<tr>
<th>R</th>
<th>g Mg / g 1</th>
<th>Press /Torr</th>
<th>Pyrolysis products yield (%)</th>
<th>Other products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a H</td>
<td>2.0</td>
<td>6.8 × 10⁻¹</td>
<td>42 7 20 12 <1 — —</td>
<td>benzene (6%), styrene (1%), diphenylmethane (<1%)</td>
</tr>
<tr>
<td>1b 2-Me</td>
<td>1.8</td>
<td>7.0 × 10⁻¹</td>
<td>31 5 10 13 — — —</td>
<td>benzocyclobutene (17%), toluene (7%)</td>
</tr>
<tr>
<td>1c 3-Me</td>
<td>1.5</td>
<td>7.0 × 10⁻¹</td>
<td>42 6 12 11 — — —</td>
<td>toluene (5%), 3-methylstylene (<1%)</td>
</tr>
<tr>
<td>1d 4-Me</td>
<td>2.4</td>
<td>7.0 × 10⁻¹</td>
<td>56 7 21 6 — — —</td>
<td>toluene (<1%), 4-methylstylene (<1%)</td>
</tr>
<tr>
<td>1e 2-MeO</td>
<td>2.0</td>
<td>4.0 × 10⁻¹</td>
<td>— — — — — — —</td>
<td>toluene (61%), o-xylene (8%), benzocyclobutene (4%)</td>
</tr>
<tr>
<td>1f 4-MeO</td>
<td>1.3</td>
<td>7.8 × 10⁻¹</td>
<td>18 a 1 a 6 a — — —</td>
<td>4-methoxystyrene (18%), ethylbenzene (7%), styrene</td>
</tr>
<tr>
<td>1g 2-Cl</td>
<td>1.6</td>
<td>6.2 × 10⁻¹</td>
<td>8 — — 2 6 41 8</td>
<td>toluene (2%), chlorobenzene (1%), 2-chlorobenzyl</td>
</tr>
<tr>
<td>1h 4-Cl</td>
<td>2.0</td>
<td>5.2 × 10⁻¹</td>
<td>16 7 <1 1 — 10 10</td>
<td>benzene (4%), 9,10-dihydrophenanthrene (1%)</td>
</tr>
<tr>
<td>1i 2-Cl-6-F</td>
<td>1.0</td>
<td>1.0 × 10⁻¹</td>
<td>48 10 — 2 — 4 —</td>
<td>4-chlorostilbene (5%), benzene (2%), chlorobenzene</td>
</tr>
<tr>
<td>1i 2-Cl-6-F b</td>
<td>3.0</td>
<td>1.8 × 10⁻¹</td>
<td>35 14 — — — — —</td>
<td>E- and Z-tetrachlorodifluorostilbenes (5%), 2-chloro-6-fluorobenzyl chloride (7%)</td>
</tr>
<tr>
<td>1j 2-Cl-4,5-OCH₂O</td>
<td>3.0</td>
<td>1.0 × 10⁻¹</td>
<td>10 2 — — 5 — —</td>
<td>1,2-bis(2-chloro-6-fluorophenyl)ethyne (7%)</td>
</tr>
<tr>
<td>1k 2-Cl-5-NO₂</td>
<td>3.0</td>
<td>1.5 × 10⁻¹</td>
<td>— — — — — — — —</td>
<td>chlorophenanlthrene (10%)</td>
</tr>
</tbody>
</table>

a products formed with loss of R, i.e. 2a, 3a and 5a
b at 650 °C
The 2-methoxy compound 1e gave an unexpected result: the methoxy group was completely lost and the product was a mixture of hydrocarbons: toluene, 1-o-xylene and benzocyclobutene 9 (Scheme 2). One reason to be particularly interested in this compound is that it has been reported [27] to undergo conversion into benzofuran in 65% yield upon FVP in the absence of metals at 600 °C. This process was believed to involve formation of the arylchlorocarbene by thermal loss of HCl which then inserted into CH of the methoxy group, a result supported by deuterium labelling. The authors also obtained 1-chlorobenzocyclobutene by FVP of 1b again by net loss of HCl. In the same paper 1-dichloromethyl-2-methoxynaphthalene 10 was reported to give naphtho[2,1-b]furan by a similar mechanism. Generation of 2-methoxy-1-naphthylcarbene by FVP of an alternative precursor also led to formation of naphtho[2,1-b]furan and its 2,3-dihydro analogue [28]. However, when we subjected compound 10 to our conditions it behaved consistently with 1e, giving mainly 1-methylnaphthalene accompanied by a little 1,2-dimethylnaphthalene (Scheme 2).

Scheme 2. Unexpected formation of hydrocarbon products from 1e and 10

Scheme 3. Proposed mechanism for reaction of 1e
We believe these reactions proceed by a common mechanism illustrated for the case of 1e in Scheme 3. The reactive centre created by magnesium removing the first chlorine atom interacts with the methoxy group with hydrogen atom abstraction and the resulting phenoxymethyl radical rearranges in a well-known process [29] to benzyloxy. Further dechlorination, deoxygenation and decarbonylation then occurs to give the observed products. The 4-methoxy compound 1f also behaved in an unexpected way with predominant loss of the methoxy group and we conclude that methoxy substituents are in general not compatible with this method of gas-phase dehalogenative coupling.

Pyrolysis of 2-halo-substituted compounds with complete dehalogenation might be expected to lead to cyclisation giving phenanthrenes and indeed this was also the basis of our recent approach to benzodithiophenes [5]. Reaction of 2-chlorobenzylidene chloride 1g initially led to incomplete dechlorination to give 7g as the main product but, when the quantity of magnesium in the furnace was increased, phenanthrene 6 was formed in almost 50% yield. It appeared that this might be a useful method to construct specifically substituted phenanthrenes from monocyclic precursors in a single step. However when the 2-chloro-6-fluoro compound 1i was examined it underwent only stilbene formation with no sign of further cyclisation. Interestingly when the amount of magnesium and pyrolysis temperature were increased the diarylalkyne appeared as a new minor product (7%). A further attempt to construct a functionalised phenanthrene was made using the compound 1j but this gave only a low yield of the stilbene and the methylenedioxy group, like methoxy, is evidently not compatible with the conditions required for phenanthrene formation. The same was also the case for the nitro-containing compound 1k which decomposed to give no useful products. A further attempt using a more carefully designed precursor did give more encouraging results (Scheme 4).

Scheme 4. Processes observed upon FVP of 1l over magnesium
Compound 11 with two inert methyl groups and the more reactive o-bromine substituent was found to undergo stilbene formation on FVP through a smaller amount of magnesium, and when this was increased there was complete dehalogenation to give tetramethylphenanthrene as the main product. However even this was not without complication as the product was formed together with two tetramethylphenanthrene isomers (16, 12, 3%) which could not be separated or identified as they all had the expected molecular weight of 234.

We have shown in this section that FVP over magnesium is an effective method for coupling of substituted benzylidene chlorides 1 to give the corresponding (E)-stilbenes 2 which may be isolated in pure form by simple recrystallisation in some cases. However there are limitations with groups such as methoxy, methylenedioxy and nitro not being tolerated. For comparison, the coupling of 1a to give 2 can be achieved using disilane reduction with palladium catalysis [30] but this also gives dichlorobibenzyl depending on the amount of silane used, and coupling of 1a, 1f, and 1h occurs readily using a variety of tungsten carbonyl derivatives [31] giving mixtures of stilbenes 2 and 3.

3.2 Tetrahaloxylene

An obvious extension of the study was to examine compounds with two dihalomethyl groups on a benzene ring. In the case where these groups are para, halogenated p-xylylenes could be formed, and these are known to form a series of useful polymers [32]. To take the example of tetrafluoro-p-xyylene, a gas phase pyrolysis route was initially used industrially to form the stable dimer, octafluoro[2.2]paracyclophane, and this was a convenient precursor for vacuum pyrolytic regeneration of the p-xylylene and direct deposition of a highly crystalline "parylene" polymer film [33]. Later a more convenient route to the cyclophane was developed [34] making the polymer production commercially viable, and shortly thereafter the xyylene was isolated in a matrix and characterised spectroscopically [35].

The tetrachloro and tetrabromo-p-xylenes 11 and 12 were readily formed from terephthalaldehyde and when these were subjected to FVP over magnesium uniform colourless films of polymers were deposited in the cold trap with compositions from elemental analysis and solid state NMR corresponding to the halogenated polymers 14 and 15 expected from the monomers 13 (Scheme 5). Thermogravimetric analysis showed these to be relatively unstable upon heating as expected from the presence of adjacent CHX groups.

\[X_2HC-CH_2CHX_2 \xrightarrow{\text{FVP}[\text{Mg}]} XHC=CHX \]

\[11 \ X = \text{Cl} \]
\[12 \ X = \text{Br} \]

\[13 \]

\[14 \ X = \text{Cl} \]
\[15 \ X = \text{Br} \]

Scheme 5. Pyrolysis of tetrahalo-p-xylylenes over magnesium to form polymers
The pyrolysis of tetrabromo-o-xylene over magnesium was the method used to generate benzocyclobutadiene allowing it to be detected by photoelectron spectroscopy for the first time [36] and represents one of the earliest literature uses of this method. When we subjected the corresponding tetrachloro-o-xylene 16 to our conditions the outcome was found to depend on the amount of magnesium used. With a smaller amount of magnesium there was only partial dechlorination with some loss of HCl to form a mixture of di- and trichloro benzocyclobutenes identified by comparison with literature data [21,22] (Scheme 6). When the amount of magnesium [Scheme 6. Pyrolysis of tetrachloro-o-xylene over magnesium]

was increased complete dehalogenation was observed and the main product isolated was the known dimer of benzocyclobutadiene 17, the tetracyclic hydrocarbon 18 [23].

Finally in this section, we examined the tetrabromo-m-xylene 19 and found that it reacted efficiently over magnesium to give pyrene as the main product together with a little 3,3'-dimethylstilbene (Scheme 7). The likely mechanism involves dehalogenative coupling to form the cyclophane 20 which is known [37,38] to undergo electrocyclisation to dihydropyrene 21 followed by ready aromatisation.
Scheme 7. Pyrolysis of tetrabromo-\textit{m}-xylene over magnesium to give pyrene

3.3 \textit{Dichlorodiphenylmethane and mono- and bis(trihalomethyl)benzenes}

Dehalogenative coupling of dichlorodiphenylmethane 22 to give tetraphenylethene has been reported using a variety of agents including metallic zinc [39], finely divided nickel [40], and either W(CO)$_6$ or WCl$_6$/LiAlH$_4$ [31]. Subjecting 22 to our conditions did give tetraphenylethene as the major product but this was accompanied by a 25\% yield of fluorene, 7\% of diphenylmethane and 5\% of 9-diphenylmethylenefluorene 23 (Scheme 8).

Scheme 8. Pyrolysis of dichlorodiphenylmethane over magnesium

When benzotrichloride 24 was subjected to FVP over magnesium the products formed were tetrachlorobiphenyl 25, the E and Z isomers of dichlorostilbene 26 and 27 and diphenylacetylene 28 (Scheme 9). However the yields were found to depend on the pressure and thus contact time as shown in Table 2.
Table 2. Dependence of product composition on pressure for 24

<table>
<thead>
<tr>
<th>pressure (Torr)</th>
<th>yield/% 25</th>
<th>yield/% 26</th>
<th>yield/% 27</th>
<th>yield/% 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>22</td>
<td>23</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>21</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

It is clear that longer contact time leads to more extensive dehalogenation and increased formation of the alkyne 28 at the expense of tetrachloride 25. Previous studies on dehalogenative coupling of 24 include the use of both zinc [39] and finely divided nickel [40] to give exclusively 26/27 with the E/Z ratio in the latter case being 74:26. Using iron powder in water, the coupling was shown to proceed stepwise by initial formation of 25 which was then further reduced to 26 [41]. The corresponding reaction of benzotrifluoride proved to be much more difficult and under comparable conditions the starting material came through the furnace mostly unchanged, but accompanied by a small proportion of products corresponding to those from 24.

Again we saw the opportunity to generate halogenated \(p \)-xylenes and thus the corresponding polymers by FVP of 1,4-bis(trihalomethyl)benzenes.

Scheme 10. Pyrolysis of 1,4-bis(trihalomethyl)benzenes over magnesium

When either hexachloro-\(p \)-xylene 29 or hexafluoro-\(p \)-xylene 30 were subjected to FVP over magnesium the main product was a transparent polymeric film
deposited in the cold trap. Elemental analysis, and in the former case solid state NMR, was consistent with these being poly(tetrachloro-p-xylylene) 32 and poly(tetrafluoro-p-xylylene) 33 formed by polymerisation of the relevant tetrahalo-p-xylylenes 31 (Scheme 10). The molecular weight was estimated in the case of 32 by end group analysis and corresponded approximately to a decamer. As documented in the literature for these two polymers, they showed exceptional thermal stability with 32 being stable up to over 300 °C [32] and the fluorinated polymer 33 being stable up to nearly 600 °C [35].

A similar method gave access to the unsymmetrical difluoro-p-xylylene 35 and thus the polymer 36 (Scheme 11). The required starting material 34 gave some non-polymeric products in addition to being partly unchanged such as 4,4′-bis(trifluoromethyl)bibenzyl and p-trifluoromethyltoluene. However a 12% yield of polymer was formed which gave elemental analysis and solid state NMR results consistent with the structure 36. This was notably less thermally stable than either 32 or 33.

\[\text{Scheme 11. Pyrolysis of 4-bromomethylbenzotrifluoride over magnesium} \]

3.4 Halobenzenes

The final class of organic halides investigated was the halobenzenes. Chlorobenzene reacted efficiently upon FVP over magnesium at 600 °C to give a mixture of benzene and biphenyl (Scheme 12). These products can be explained by

\[\text{Scheme 12. Pyrolysis of mono and o-dihalobenzenes over magnesium} \]
invoking either a phenyl radical intermediate or a phenylmagnesium species which can dimerise or pick up hydrogen. A similar mechanism applied to o-dihalobenzenes would seem to have the possibility of generating benzyne. Indeed when either o-dichlorobenzene 37 or o-dibromobenzene 38 was submitted to FVP over magnesium at 600 °C there was some unchanged starting material together with benzene and biphenyl but these were now accompanied by significant yields of both biphenylene 40 and triphenylene 41 (Scheme 12). By increasing the furnace temperature to 700 °C the unreacted starting material was avoided and the remaining products were found to be distributed in the cold trap according to volatility, with benzene as a liquid in the coldest part, biphenyl and biphenylene as a solid in the middle, and triphenylene in almost pure form nearest the furnace exit. Using the unsymmetrical precursor 1-bromo-2-chlorobenzene 39 still gave some starting material at 600 °C but the yield of triphenylene was improved so that from 37 or 38 at 700 °C or 39 at 600 °C an isolated yield of 11-13% of triphenylene could be consistently obtained. Biphenylene 40, first isolated in 1941 [42], is the normal product from gas phase generation of benzyne but it was never formed here in more than 1% yield. In contrast, solution reaction of o-metallated halobenzenes is known to give a good yield of triphenylene in a process where benzyne reacts with its precursor leading to formation of the apparent trimer. The high selectivity toward triphenylene as opposed to biphenylene observed here is strong evidence that free benzyne in the gas phase is unlikely to be involved and the formation of triphenylene more likely proceeds stepwise on the metal surface.

We sought to apply the method to the construction of a substituted triphenylene and prepared 4,5-dibromo-o-xylene 42. When this was subjected to the normal conditions however, the products were only o-xylene and 3,3',4,4'-tetramethylbiphenyl (Scheme 13). We conclude that the presence of methyl groups acts as a source of hydrogen and prevents the formation of the triphenylene in any significant amount.

\[
\text{Scheme 13. Pyrolysis of 4,5-dibromo-o-xylene over magnesium}
\]

4 Conclusion

While gas-phase dehalogenative coupling over magnesium has proved to be a viable synthetic method in some cases, various limitations are also apparent. Substituted benzylidene chlorides 1, readily formed from benzaldehydes, undergo selective reaction to form the (E)-stilbenes 2 which can be isolated in pure form in some cases. The method is not compatible with the presence of groups such as methoxy, methylenedioxy or nitro. Both tetrahalo and hexahalo-p-xylenes act as precursors for gas-phase generation of halogenated p-xylenes, useful for direct
deposition of high performance polymers 14, 15, 32, 33 and 36. Tetrachloro-o-xylene reacts to afford benzocyclobutadiene isolated as its dimer 18 and tetrabromo-m-xylene similarly forms pyrene via the cyclophane 20. Reaction of the readily available 1,2-dihalobenzenes provides a viable method for synthesis of triphenylene 41 with the negligible formation of biphenylene ruling out the involvement of free gas-phase benzyne.

Acknowledgements

This work was supported by B.P.
References

Highlights

- FVP over magnesium couples benzylidene chlorides to give mainly stilbenes
- *Ortho*-methoxybenzylidene chlorides unexpectedly give hydrocarbon products
- Halogenated poly(p-xyllylenes) are deposited direct from pyrolysis of halogenated p-xyllylenes
- Dichlorodiphenylmethane gives 9-(diphenylmethylene)fluorene
- Triphenylene is formed in moderate yield from 1,2-dihalobenzenes
- The method offers a convenient one-step solvent-free alternative to catalytic procedures

Graphical Abstract

![Graphical Abstract Diagram]