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Abstract

Species distribution maps can provide important information to focus conservation
efforts and enable spatial management of human activities. Two sympatric marine
predators, grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina), have
overlapping ranges but contrasting population dynamics around the UK; whilst
grey seals have generally increased, harbour seals have shown significant regional
declines. A robust analytical methodology was developed to produce maps of
grey and harbour seal usage estimates with corresponding uncertainty, and scales
of spatial partitioning between the species were found. Throughout their range,
both grey and harbour seals spend the majority of their time within 50 km of the

coast.

The scalability of the analytical approach was enhanced and environmental
information to enable spatial predictions were included. The resultant maps have
been applied to inform consent and licensing of marine renewable developments
of wind farms and tidal turbines. For harbour seals around Orkney, northern
Scotland, distance from haul out, proportion of sand in seabed sediment, and

annual mean power were important predictors of space-use.

Utilising seal usage maps, a framework was produced to allow shipping noise,
an important marine anthropogenic stressor, to be explicitly incorporated into
spatial planning. Potentially sensitive areas were identified through quantifying
risk of exposure of shipping traffic to marine species. Individual noise exposure
was predicted with associated uncertainty in an area with varying rates of co-
occurrence. Across the UK, spatial overlap was highest within 50 km of the
coast, close to seal haul outs. Areas identified with high risk of exposure included

11 Special Areas of Conservation (from a possible 25). Risk to harbour seal

X



populations was highest, affecting half of all SACs associated with the species. For
20 of 28 animals in the acoustic exposure study, 95% CI for M-weighted cumulative
Sound Exposure Levels had upper bounds above levels known to induce Temporary
Threshold Shift. Predictions of broadband received sound pressure levels were

underestimated on average by 0.7 dB re 1uPa (4 3.3).

An analytical methodology was derived to allow ecological maps to be
quantitatively compared. The Structural Similarity (SSIM) index was enhanced to
incorporate uncertainty from underlying spatial models, and a software algorithm
was developed to correct for internal edge effects so that loss of spatial information
from the map comparison was limited. The application of the approach was
demonstrated using a case study of sperm whales (Physeter macrocephalus,
Linneaus 1758) in the Mediterranean Sea to identify areas where local-scale
differences in space-use between groups and singleton whales occurred. SSIM
is applicable to a broad range of spatial ecological data, providing a novel tool for

map comparison.
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3 Introduction

Objectives

This research is motivated by the spatial ecology of marine top predators.
Methodologies were linked to provide solutions for some of the quantitative
challenges that arise when analysing spatial data. The work primarily focuses
on grey (Halichoerus grypus) and harbour (Phoca vitulina) seals, which are two
sympatric species resident around the UK. In addition, existing methodology
is enhanced to quantitatively compare maps, which has more general ecological

applications. The key ecological objectives for the portfolio are to:
e Characterise grey and harbour seal distributions around the UK.

e Investigate whether grey and harbour seal distributions display spatial

partitioning, and at which spatial scales.

e Determine which environmental drivers are important to harbour seal space-

use.

e Quantify risk of exposure to shipping noise on seal populations and

individuals.

This research fills important gaps in our knowledge around how seals use their
marine environment, which has historically been examined in local areas around
the UK (Thompson et al., 1996; Aarts et al., 2008). By expanding the study
area, and with enhanced methodologies, we gain more general biological insights
that are robust to spatial, temporal, and individual variability. Additionally,
the portfolio addresses methodological problems by developing analyses to
characterise species distributions using an approach coupling density estimation
with regression modelling; and quantitatively compare geographically referenced
maps, propagating uncertainty and correcting for edge effects. The research
presented here is motivated by ecological questions of animal movement and
offers bidirectional knowledge transfer between ecology, statistics and geographic
information science, enabling ecological questions to be addressed from a novel

perspective.
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Conservation through spatial planning

There is an increasing drive towards the use of spatial planning as a tool
for conservation in the marine environment (Gormley et al., 2012). Marine
top predators are often studied as due to various life history characteristics,
populations are slow to recover from negative impacts such as overfishing, their
loss can dramatically affect ecosystem functioning (Hooker et al., 2011), and the
conservation status of many marine mammals is directly protected by legislation.
The designation of Marine Protected Areas (MPAs) is used to identify and protect
areas that are important to focal species. However, a consequence of the high
mobility of marine mammals is that MPAs may only afford partial protection
because animals spend only a proportion of their time within them. Therefore,
it is crucial to identify how and why these animals use habitats available to
them (Wakefield et al., 2014), and the impacts of natural and anthropogenic
pressures that may act cause them to change their use of space over time so
that appropriate areas can be protected (Thaxter et al., 2012; Gormley et al.,
2012). Animal movement is driven by fundamental biological requirements to
survive, mature, and reproduce by exploiting the available environment given their
physiological constraints. Complex emergent behaviours can evolve from social
interactions, avoiding predators and competitors, or responding dynamically to
changing prey patches. These complexities are generally summarised into a chosen

metric characterising spatial distribution to fulfil spatial planning requirements.

Data integration

Many marine mammals such as cetaceans and sirenians spend their entire lives at
sea, surfacing only briefly to breathe. Estimating their abundance and distribution
is challenging and methods such as distance sampling (Thomas et al., 2002) and
mark-recapture analyses (White, 1982) are often used. Other marine carnivores
such as otters, polar bears, pinnipeds, some seabirds, and turtles spend some of
their time on land, and through land-based surveys their population size can be

estimated (Matthiopoulos & Aarts, 2010). Fitting animals with tracking devices
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whilst on land provides a spatially explicit link between local population estimates
and at-sea movement of telemetered animals, enabling species distributions to
be characterised. Habitat selection models offer a modelling framework for
areas where movement data are limited, and for predicting changes to species
distribution time and space (Aarts et al., 2012; Johnson et al., 2013; Beyer
et al., 2010). Habitat selection models often use pertinent covariates to describe
environmental and geographic space available to the focal species such as

oceanographic variables (e.g. http://marine.copernicus.eu/).

Engineering technology of animal-borne sensors have developed and advanced over
the past 25 years, evolving from simple locator devices to animals becoming
oceanographic sensors themselves (e.g. SEaOS - biology.st-andrews.ac.uk/
seaos). However, collecting these data is still a costly and time-consuming
process, as large amounts of data are produced and robust analyses are required
to integrate multiple data sources. An implicit issue with telemetry data is that
an animal observed at a specific location and time is based partly on where
the animal chooses to be and partly due to where it had been a short-time
previously (spatial and temporal dependencies, termed as autocorrelation; Fieberg
et al. (2010)). These underlying dependencies can vary due to animal behaviour,
so that they may increase when an animal is foraging (e.g. making repeated
movements in a small area), and decrease when an animal is travelling (e.g.
moving directionally). Ignoring these dependencies can have serious consequences
essentially resulting in misidentification of preference when predicting habitat
selection, unless dependence is accounted for in space and time in appropriate,
realistically complex statistical models. Both onshore and at-sea data are
usually incomplete through time and space due to factors such as survey design
constraints or technological issues (e.g. satellite uplink failure), and so modelling
methodologies must be developed to handle partial data. Therefore, modelling
frameworks need to account for regions in space and time where there were no data
(unobserved regions). Uncertainty should be propagated through models so that
mean estimates can be produced with an accompanying measure of uncertainty.
However, this can be challenging when integrating many different sources of data,

or where variance cannot be observed.


http://marine.copernicus.eu/
biology.st-andrews.ac.uk/seaos
biology.st-andrews.ac.uk/seaos
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Analytical frameworks

Synthesising large, complex data of animal movement and population abundance
requires a robust analytical framework. The first paper in the portfolio
characterises grey and harbour seals around the UK. A requirement for the
analysis was to incorporate a broad spatial extent around the UK so that the
resultant usage maps could be used for both coastal and offshore spatial planning.
Continuous coverage over the spatial extent was required, which included spatial
predictions in areas where no animal movement data were collected but where
animals were known (from terrestrial counts) to exist. To achieve these goals,
density estimation and regression modelling were integrated into an analytical
framework. There are a number of habitat-based established methods for mapping
species distributions. In recent years, regression modelling (Aarts et al., 2008;
Wakefield et al., 2011), and climate envelope modelling (Berry et al., 2002; Cheung
et al., 2008) have become popular. However, these methods require covariate
data that often limit the geographical extent of the analysis. When the focus is
purely on spatial patterns, the batch of methods belonging to the area of density

estimation (Silverman, 1986) offer a flexible alternative.

As central-placed foragers, UK seals spend much of their time on land or near
the coast, but can also travel several hundred kilometres away from their haul
outs. Environmental data such as prey fields and their potential physical proxies,
which are often used for regression and climate envelope modelling can have
limited geographical extent and variable resolution, limiting the spatial extent
of predictions. Telemetry tags track individual seal locations, producing spatial
non-uniformity. Therefore, imbalanced sampling effort needed to be accounted
for, which is relatively easy to do using density estimation but not with the
other proposed methodologies. Finally, fine-scale resolution over a broad-scale
spatial extent was required. Climate envelope modelling uses coarse-scale data so
fine-scale features may not be revealed. Density estimation was the only way to
model fine-scale, broad-scale distributions and uncertainties given computational
constraints. However, one limitation of density estimation is that it cannot be

used for predictions. Therefore, to address spatial usage for unobserved regions,
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regression models were implemented using the covariate shortest at-sea distance
from haul out, which was available over the study area and was generated at the
spatial resolution of the analysis. Predictions from these models provided general
characterisations of animal distributions but cannot reveal fine-scale structure in

usage.

Comparison between distributions

The fourth paper in the portfolio presents methodology to quantitatively compare
geographically referenced maps, demonstrated using a case study of sperm
whales (Physeter macrocephalus, Linneaus 1758) in the Mediterranean Sea. Map
comparison techniques are useful to quantify similarity between two (or more)
maps. In ecology, this problem has been explored in the context of comparisons
of land-use where the underlying data is categorical (Hagen-Zanker & Lajoie,
2008). For many ecological data, such as species distributions, these methods
are not appropriate because the underlying maps being compared are continuous
density surfaces. There are currently several methods for comparing ecological
data: (1) cell-by-cell comparisons between maps, which do not account for any
spatial dependencies between cells within each underlying map being compared
(Leitao et al., 2011), and (2) overlap indices to assess spatial autocorrelation (e.g.
Moran's I or Geary's C tests Cliff & Ord (1970)). Locational information is lost
and only one form of spatial structure within the data is measured (Reid et al.,
2004; Manne et al., 2007). These inadequacies were addressed by implementing
a map comparison methodology originally developed in computer science (Wang
et al., 2004). Enhancements useful for ecology were developed by incorporating
uncertainty of the underlying maps being compared into the map comparison
calculation, and correcting for edge effects. By taking account of edge effects, the
resultant maps produced from the comparison analysis had the same spatial extent
as the underlying maps (i.e. the study area remained the same). This ensured that
any important ecological processes taking place close to geographical borders at

the edge of the study area were captured by the map comparison.
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Portfolio summary

The portfolio is presented in a series of interlinked papers, which have been peer-
reviewed to (1) characterise spatial distributions of grey and harbour seals and
investigate scales of spatial partitioning between the species; (2) characterise
space-use of harbour seals at a fine spatial scale; (3) quantify population risk
and individual exposure of seals to ship noise; and (4) present novel methodology

to compare maps in an ecological context.

Patterns of space use in sympatric marine colonial predators

reveals scales of spatial partitioning

Marine Ecology Progress Series, 2015, 534:235-249

Esther L. Jones, Bernie J. McConnell, Sophie Smout, Philip S. Hammond, Callan
D. Duck, Christopher D. Morris, David Thompson, Deborah J.F. Russell, Cecile
Vincent, Michelle Cronin, Ruth J. Sharples, Jason Matthiopoulos

Abstract: Species distribution maps can provide important information to focus
conservation efforts and enable spatial management of human activities. Two
sympatric marine predators, grey seals (Halichoerus grypus) and harbour seals
(Phoca vitulina), have overlapping ranges on land and at sea but contrasting
population dynamics around Britain: whilst grey seals have generally increased,
harbour seals have shown significant regional declines. We analysed two decades of
at-sea movement data and terrestrial count data from these species to produce high
resolution, broad-scale maps of distribution and associated uncertainty to inform
conservation and management. Our results showed that grey seals use offshore
areas connected to their haul-out sites by prominent corridors, and harbour seals
primarily stay within 50 km of the coastline. Both species show fine-scale offshore
spatial segregation off the east coast of Britain and broad-scale partitioning off
western Scotland. These results illustrate that, for broad-scale marine spatial
planning, the conservation needs of harbour seals (primarily inshore, the exception

being selected offshore usage areas) are different from those of grey seals (up to
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100 km offshore and corridors connecting these areas to haul-out sites). More
generally, our results illustrate the importance of detailed knowledge of marine
predator distributions to inform marine spatial planning; for instance, spatial
prioritisation is not necessarily the most effective spatial planning strategy even

when conserving species with similar taxonomy.

Fine-scale harbour seal usage for informed marine spatial

planning

Scientific Reports, Accepted
Esther L. Jones, Carol E. Sparling, Bernie J. McConnell, Christopher D. Morris,
Sophie Smout

Abstract: High-resolution distribution maps can help inform conservation
measures for protected species; including where any impacts of proposed
commercial developments overlap the range of focal species. Around Orkney,
northern Scotland, UK, the harbour seal population has decreased by 78% over
20 years. Concern for the declining harbour seal population has led to constraints
being placed on tidal energy generation developments. For this study area,
telemetry data from 54 animals tagged between 2003 and 2015 were used to
produce density estimation maps. Predictive habitat models using GAM-GEEs
provided robust predictions in areas where telemetry data were absent, and were
combined with density estimation maps, and then scaled to population levels
using August terrestrial counts from 2008 to 2015, to produce harbour seal usage
maps with confidence intervals around Orkney and the North coast of Scotland.
The selected habitat model showed that distance from haul out, proportion of
sand in seabed sediment, and annual mean power were important predictors of
space-use. Fine-scale usage maps can be used in consenting and licensing of
anthropogenic developments to determine local abundance. When quantifying
commercial impacts through changes to species distributions, usage maps can
be spatially explicitly linked to individual-based models to inform predicted

movement and behaviour.
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Seals and shipping: quantifying population risk and

individual exposure to vessel noise

Journal of Applied Ecology, 2017, In press
Esther L. Jones, Gordon D. Hastie, Sophie Smout, Joseph Onoufriou, Nathan D.
Merchant, Kate L. Brookes, David Thompson

Abstract: Vessels can have acute and chronic impacts on marine species. As the
rate of increase in commercial shipping accelerates, there is a need to quantify and
potentially manage the risk of these impacts. Usage maps characterising densities
of grey and harbour seals and ships around the UK were used to produce risk
maps of seal co-occurrence with shipping traffic. Acoustic exposure to individual
harbour seals was modelled in a study area using contemporaneous movement data
from 28 animals fitted with UHF GPS telemetry tags and AIS data from all ships
during 2014 and 2015. Data from four acoustic recorders were used to validate
sound exposure predictions. Across the UK, rates of co-occurrence were highest
within 50 km of the coast, close to seal haul outs. Areas identified with high
risk of exposure included 11 Special Areas of Conservation (from a possible 25).
Risk to harbour seal populations was highest, affecting half of all SACs associated
with the species. Predicted cumulative sound exposure level, ¢SELs(M,y), over
all seals was 176.8 dB re 1uPa® s (CI 95% 163.3, 190.4), ranging from 170.2 dB
re 1uPa? s (CI 95% 168.4, 171.9) to 189.3 dB re 1uPa® s (CI 95% 172.6, 206.0)
for individuals. This represented an increase of 28.3 dB re 1uPa? s over measured
ambient noise. For 20 of 28 animals in the study, 95% CI for ¢SELs(M,,) had
upper bounds above levels known to induce Temporary Threshold Shift (TTS).
Predictions of broadband received sound pressure levels were underestimated on
average by 0.7 dB re 1uPa (£ 3.3). We present a framework to allow shipping
noise, an important marine anthropogenic stressor, to be explicitly incorporated
into spatial planning. Potentially sensitive areas are identified through quantifying
risk of exposure of shipping interactions to marine species, and individual noise
exposure is predicted with associated uncertainty in an area with varying rates
of co-occurrence. The detailed approach taken here facilitates spatial planning

with regards to underwater noise within areas protected through the Habitats
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Directive, and could be used to provide evidence for further designations. This
framework may have utility in assessing whether underwater noise levels are at

Good Environmental Status under the Marine Strategy Framework Directive.

Novel application of a quantitative spatial comparison tool

to species distribution data

Ecological Indicators, 2016, 70: 67-76
Esther L. Jones, Luke Rendell, Enrico Pirotta, Jed A. Long

Abstract: Comparing geographically referenced maps has become an important
aspect of spatial ecology (e.g. assessing change in distribution over time). Whilst
humans are adept at recognising and extracting structure from maps (i.e.
identifying spatial patterns), quantifying these structures can be difficult. Here,
we show how the Structural Similarity (SSIM) index, a spatial comparison method
adapted from techniques developed in computer science to determine the quality
of image compression, can be used to extract additional information from spatial
ecological data. We enhance the SSIM index to incorporate uncertainty from the
underlying spatial models, and provide a software algorithm to correct for internal
edge effects so that loss of spatial information from the map comparison is limited.
The SSIM index uses a spatially-local window to calculate statistics based on local
mean, variance, and covariance between the maps being compared. A number of
statistics can be calculated using the SSIM index, ranging from a single summary
statistic to quantify similarities between two maps, to maps of similarities in
mean, variance, and covariance that can provide additional insight into underlying
biological processes. We demonstrate the applicability of the SSIM approach using
a case study of sperm whales in the Mediterranean Sea and identify areas where
local-scale differences in space-use between groups and singleton whales occur.
We show how novel insights into spatial structure can be extracted, which could
not be obtained by visual inspection or cell-by-cell subtraction. As an approach,
SSIM is applicable to a broad range of spatial ecological data, providing a novel,

implementable tool for map comparison.
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ABSTRACT: Species distribution maps can provide important information to focus conservation
efforts and enable spatial management of human activities. Two sympatric marine predators, grey
seals Halichoerus grypus and harbour seals Phoca vitulina, have overlapping ranges on land and
at sea but contrasting population dynamics around Britain: whilst grey seals have generally
increased, harbour seals have shown significant regional declines. We analysed 2 decades of at-
sea movement data and terrestrial count data from these species to produce high resolution,
broad-scale maps of distribution and associated uncertainty to inform conservation and manage-
ment. Our results showed that grey seals use offshore areas connected to their haul-out sites by
prominent corridors, and harbour seals primarily stay within 50 km of the coastline. Both species
show fine-scale offshore spatial segregation off the east coast of Britain and broad-scale partition-
ing off western Scotland. These results illustrate that, for broad-scale marine spatial planning, the
conservation needs of harbour seals (primarily inshore, the exception being selected offshore
usage areas) are different from those of grey seals (up to 100 km offshore and corridors connecting
these areas to haul-out sites). More generally, our results illustrate the importance of detailed
knowledge of marine predator distributions to inform marine spatial planning; for instance, spatial
prioritisation is not necessarily the most effective spatial planning strategy even when conserving
species with similar taxonomy.
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INTRODUCTION

Anthropogenic activities directly (e.g. fisheries,
energy extraction, shipping traffic; Merchant et al.
2014) and indirectly (e.g. prey depletion due to fish-
eries, climate change; Guénette et al. 2006) impact

*Corresponding author: el298@st-andrews.ac.uk

on the marine environment to an increasing spatial
extent and intensity. Apex predators are particularly
vulnerable to such impacts because their K-selected
life histories limit the speed at which they can
respond to reductions in population size. Anthropo-
genic activities at sea can affect marine predator dis-

© Inter-Research 2015 - www.int-res.com
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tributions, particularly in the context of area-based
conservation of species and in relation to the man-
agement of these activities, such as the rapid devel-
opment of renewable energy extraction. One focus of
area-based conservation in the marine environment
is the identification of areas with a high abundance of
apex predators (Hooker et al. 2011). However, areas
shared by multiple predator species may not include
optimal habitat for any of those species (Williams et
al. 2014). Williams et al. (2014) found that, at a
regional scale, areas of greatest overlap in marine
mammal distributions excluded areas of highest den-
sity for all species. Marine mammals are commonly
used as indicators of ecosystem health (Boyd et al.
2006, Piatt & Sydeman 2007), and a good under-
standing of how their abundances are distributed is
essential if marine protected areas (MPAs) for them
are to be effective.

There are a number of habitat-based methods for
mapping species distributions (Matthiopoulos &
Aarts 2010). However, these methods are based on
model predictions and require covariate data, which
may limit the geographical area over which predic-
tions can be made. When the focus is purely on spa-
tial patterns, density estimation methodology offers
a flexible alternative in which the spatial extent is
not restricted by external covariates (Silverman
1986). Density estimation is data-driven and does
not rely on model predictions, making it particularly
suitable for estimating species distributions where
movement and population data are available and
can be linked explicitly. Combining density-estimation
methods with simple habitat models using (distance-
based) covariates that are universally available to
predict in areas where movement data are absent,
we develop a generalised framework to produce
species distribution maps for terrestrial and marine
animals integrating animal movement and popula-
tion data. Obtaining robust population-level insights
from individual animal data is challenging because
such data can be difficult and expensive to collect
and because the sample must be proportional to the
animals' prevalence in the population. Many factors
affect the precision of inference from limited sam-
pling, such as the underlying population structure
and consistency in spatio-temporal behaviour. We
propagate uncertainty through the entire analysis
from movement and population data to estimated
space use distributions.

Our study focusses on grey and harbour seals, 2
sympatric species that inhabit much of the coasts and
continental shelf waters of northwest Europe. They
are listed under Annex II of the European Habitats

Directive, which requires designation of MPAs; these
exist for terrestrial sites, but marine sites have not yet
been proposed (JNCC 2010). As central place for-
agers, grey and harbour seal access to the marine
environment is restricted by the need to return to
shore periodically between foraging trips (Matthio-
poulos et al. 2004). The 2 species have overlapping
ranges on land and at sea, similar but variable
diets, and comparable but asynchronous life-cycles
(McConnell et al. 1999, Sharples et al. 2009, Brown et
al. 2012). They may therefore be expected to display
spatial niche partitioning to some extent. If the spa-
tial component of niche partitioning at sea is strong,
with little overlap in areas of highest density, this
would have implications for designation of marine
MPAs based on relative abundance. Designating
MPAs for multiple species, sometimes known as
‘double badging’, is one way for management autho-
rities to strengthen conservation measures within
limited resources. However, this would not be ef-
fective if there were strong evidence of spatial
partitioning.

An issue of particular interest is that although grey
and harbour seals are sympatric species and are
therefore likely to be facing the same environmental
stressors, they show opposing population trends in
some areas around Britain, which comprises the
majority of our study area. Grey seal numbers have
generally increased since at least 1984 and, although
stable in the Western and Northern Isles, are still
increasing in the North Sea (Thomas 2013). Harbour
seals have declined in Orkney, Shetland and the east
coast of Scotland since around 2000 but are stable in
the Western Isles (Lonergan et al. 2007, Duck et al.
2013). Possible causes of declines in harbour seal
numbers include direct mortality from vessel interac-
tions (Bexton et al. 2012), the effects of infectious dis-
eases (Hall et al. 2006, Harris et al. 2008), biotoxin
exposure (Hall & Frame 2010) and interspecific com-
petition with grey seals (Bowen et al. 2003, Svensson
2012). Knowledge of regional variation in the extent
of overlap in the at-sea distributions of grey and har-
bour seal populations could help to inform whether
the 2 species compete for food.

Here, we synthesise >2 decades of population and
movement data around the continental shelf of
Britain, Ireland and France for 2 sympatric seal spe-
cies. We describe species distributions for grey and
harbour seals, defined as ‘usage’, with robust esti-
mates of uncertainty and investigate patterns of spa-
tial partitioning between the species. Our results are
thus important to inform the placement of areas for
conservation, including in the context of concern
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Fig. 1. Flowchart representing high-level analytical methodology

about harbour seal population declines. They are
also important to inform other aspects of marine spa-
tial planning, including local developments such as
wind farms and tidal turbines. The methods devel-
oped here can readily be used in other situations
where the ranges of central-place foragers (e.g. other
pinnipeds, breeding seabirds and terrestrial preda-
tors) overlap and may be useful for informing marine
spatial planning issues in these cases.

METHODS

Fig. 1 shows a schematic flowchart of the analytical
process, which synthesises movement and popula-
tion data to produce usage maps with accompanying
uncertainty. Analyses were conducted using R 3.0.2
(R Core Team 2014), and maps were produced using
Manifold 8.0.28.0 (Manifold Software 2013).

(1) Population data. Grey and harbour seals are sur-
veyed by the Sea Mammal Research Unit (SMRU)
during August when harbour seals are moulting and
haul-out on land for an extended period. During
standard aerial surveys, all seals along a specified
coastline are counted and coordinates are recorded
to an accuracy of up to 50 m. Surveys take place
within 2 h of low tide when low tide is between 12:00
and 18:00 h (Thompson et al. 2005, Lonergan et al.
2011). Ground- and boat-based count data collected
by other organisations were also used in the analysis,
and all sources of data collection are summarised in

(3a) Positional corrections. Positional
error, varying from 50 m to >2.5 km,
affects SRDL telemetry points. Errors
were assigned by the Argos system to 6 location
quality classes. We developed a Kalman filter to
obtain position estimates accounting for observation
error (Royer & Lutcavage 2008). SRDL data were first
speed-filtered at 2 m s7! to eliminate outlying loca-
tions that would require an unrealistic travel speed
(McConnell et al. 1992). Observation model parame-
ters were provided by the location quality class errors
from Vincent et al. (2002), and process model param-
eters were derived by species from the average
speeds of all GPS tags. GPS tags are generally more
accurate than SRDL tags, and 75 % of these data have
an expected error of <55 m (Dujon et al. 2014). How-
ever, occasional outliers were excluded using thresh-
olds of residual error and number of satellites.

(3b) Interpolation. Movement SRDL data were inter-
polated to 2 h intervals using output from the Kalman
filter and merged with linearly interpolated GPS data
that had been regularised to 2 h intervals. A regular
grid of 5 km resolution was created to encompass all
telemetry data; 5 km was selected based on the com-
putational trade-off between the resolution and spa-
tial extent of the final maps. Data from 259 grey seal
tags (Fig. 3a; see Table S1 in Supplement 1) and 277
harbour seal tags were used (Fig. 3b; see Table S2 in
Supplement 1). The patterns of movement of the
tagged animals were assumed to be representative of
the whole population (Lonergan et al. 2011). Tag
deployment occurs outside each species breeding
and moulting seasons, and tags usually fall off when
animals moult. Therefore, although telemetry data
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Table 1. Summary of grey and harbour seal terrestrial surveys. Unless specified otherwise in the description, all surveys took place

during August. SMRU: Sea Mammal Research Unit

Nook, The Wash in East Anglia,
and Thames estuary

(Hassani et al. 2010)

Area surveyed Method Description Data used

Scotland Aerial survey (helicopter) Both species surveyed every 1996-2013
1 to 5 yr using SMRU protocol

Moray Firth, Firth of Tay, Donna Aerial survey (fixed-wing) Both species surveyed annually 1996-2013

using SMRU protocol

Chichester and Langstone harbour ~ Ground counts through Chichester Harbour seals surveyed 1999-2012
Harbour Authority annually
Cornwall and Isles of Scilly, Boat survey (Leeney et al. 2010) Grey seals surveyed in April 2007
south-west England
Isles of Scilly Ground counts (Sayer et al. 2012) Grey seals 2010
North Wales Ground counts (Westcott & Stringell 2004)  Grey seal counts extended 2002, 2003
over 12 mo
Skomer Island, West Wales Ground counts Adult grey seals 2013
Ramsey Island, West Wales Ground counts Grey seals 2007-2011
Northern Ireland Aerial survey (helicopter) Both species surveyed 2002
using SMRU protocol
Strangford Lough, Northern Ireland Aerial survey (helicopter) Both species surveyed 2006, 2007,
using SMRU protocol 2008 and 2010
Republic of Ireland Aerial survey (helicopter) Both species surveyed 2003
using SMRU protocol
Northern France Ground counts with extrapolation Harbour seals surveyed annually 1996-2008

were collected year-round, data collection occurred
primarily between June and December for grey seals
and between January and June for harbour seals.

(3c) Haul-out detection. Haul-out events for both
SRDL and GPS tags were defined as starting when
the tag sensor had been continuously dry for 10 min
and ending when the tag had been continuously wet
for 40 s. Haul-out event data were combined with po-
sitional data using date/time matching by individual
animal. Each event was then assigned to a particular
geographical location. In the intervening periods be-
tween successive haul-out events, a tagged animal
was assumed to be at sea (if the tag provided such in-
formation) or in an unknown state (if the tag did not).
(3d) Haul-out aggregation. Haul-out sites (defined
by the telemetry data as any coastal location where
at least 1 haul-out event had occurred) were aggre-
gated into 5 x 5 km? grids (defined above). Haul-out
events occur on land or intertidal sandbanks. Haul-
out sites were associated with a terrestrial count in
order to scale the analysis to population level. First,
telemetry haul-outs were linked to terrestrial counts
based on matching their grid cells. Second, if no
match could be found, the nearest valid haul-out site

visited by the animal either directly before or after
the unmatched haul-out site event was chosen.
Third, if an animal had never been to a haul-out with
associated terrestrial data during the time it was
tagged, count information was assigned from the
nearest haul-out based on Euclidean distance.

(3e) Trip detection. Seals move between different
haul-out sites. The movements of individuals at sea
were divided into trips, defined as the sequence of
locations between defined haul-out events. Each
location in a trip was assigned to a haul-out site. After
spending time at sea, an animal could either return to
its original haul-out (classifying this part of the data
as a return trip) or move to a new haul-out (giving
rise to a transition trip). Journeys between haul-out
sites were divided temporally into 2 equal parts, and
the corresponding telemetry data were attributed to
the departure and termination haul-outs.

(3f) Kernel smoothing. Telemetry data are locations
recorded at discrete time intervals. To transform
these into spatially continuous data representing the
proportion of time animals spent at different loca-
tions, we kernel smoothed the data. The KS library in
R (Chacon & Duong 2010) was used to estimate spa-
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Fig. 2. (a) Grey and (b) harbour seal terrestrial counts between 1996 and 2013 for the British Isles and the European coasts of
the English Channel. Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) shoreline data
from NOAA were used in Figs. 2, 3, 4, 6 & 7, available from www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

tial bandwidth of the 2D kernel applied to each ani-
mal/haul-out map using the unconstrained plug-in
selector (‘Hpi') and kernel density estimator (‘kde’) to
fit a usage surface. Kernel smoothing can be sensi-
tive to the choice of smoothing parameter and serial
correlation in the observations. However, thinning
the data to eliminate autocorrelation would have
meant a significant loss of information. Instead, the
average tag duration (grey seals = 124 d, harbour
seals = 99 d) was determined to be long enough to
counteract bandwidth sensitivity (Blundell et al.
2001, Fieberg 2007). Only at-sea locations were
smoothed because haul-outs were fixed locations
and known without uncertainty at the scale of the
analysis. Therefore, haul-out locations were incorpo-
rated back into the maps as discrete grid square
usages.

(3g) Information content weighting. To account for
differences in tag operation duration, an Index of

Information Content (Supplement 2 at www.int-res.
com/articles/suppl/m534p235_supp.pdf) was derived.
This process ensured the importance of animals with
short tag-lifespans was reduced and animals with
heavily auto-correlated location data were not over-
represented. A 'discovery' rate was determined for
each species, defined as the total number of new grid
cells visited as a function of tag lifespan, and mod-
elled using generalised additive models (Wood 2006,
2011). Explanatory covariates were tag lifespan, type
of tag (SRDL or GPS) and (for grey seals) age of each
animal (14 or pup). Each animal/haul-out map was
multiplied by a normalised discovery rate (termed
an 'information content weighting’), and all maps
connected to each haul-out were aggregated and
normalised to 1.

(4) Population scaling. The population at each haul-
out was estimated from terrestrial count data, which
were rescaled to allow for the proportion of animals
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Fig. 3. (a) Grey seal telemetry tracks between 1991 and 2013 showing 259 animals; (b) harbour seal telemetry tracks between
2003 and 2013 showing 277 animals

that were at sea when surveys were carried out.
Using the mean species haul-out probabilities over
all available months and their variances, we derived
a distribution (Supplement 3 at www.int-res.com/
articles/suppl/m534p235_supp.pdf) of population
estimates ranging from the value of each terrestrial
count (minimum population size) to 100 times the
count (maximum population size). The distribution
was sampled using parametric bootstrapping 500
times per count to produce a distribution of esti-
mates. These data were then processed through a
decision tree to produce current population estimates
and variances, given the limitations in fine-scale
data. Hereon, population numbers are given based
on these estimates.

(5) Population uncertainty. Population-level uncer-
tainty incorporated observational, sampling and scal-
ing errors (Supplement 3). ‘Population scaling’ (ex-
plained above) produced estimates of population
variance for each haul-out.

(6) Individual-level uncertainty. Within haul-out
uncertainty accounted for the differences in the
magnitude of data collected by an animal over its
tag lifespan and for variation in the parameters of
the tag itself. Variance was modelled using data-
rich sites (determined experimentally to be those
sites which had >7 animals associated with them)
(Supplement 3). Variance was estimated using lin-
ear models with explanatory covariates of sample
size (number of animals at the haul-out) and mean
usage of seals. The models predicted variance for
data-poor and null usage sites (where population
data existed but movement data did not; see
'Accessibility modelling’ below). Within-haul-out
variance was estimated for null usage sites by set-
ting the sample size of the uncertainty model to 0.
Individual and population-level variances were
combined to form uncertainty estimates for the
usage maps (Supplement 3). Usage and variance
by haul-out were aggregated to a total usage and
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variance map for each species. Estimates of haul-
out usage were then added to at-sea usage to gen-
erate maps of total usage.

(7) Accessibility modelling. For haul-outs that had
terrestrial counts but did not have associated tele-
metry data, we estimated usage in the form of ac-
cessibility maps (see Supplement 4 at www.int-res.
com/articles/suppl/m534p235_supp.pdf). We mod-
elled the expected decay of usage with increasing
distance from the haul-out in the absence of between
haul-out spatial heterogeneity. To ensure the spatial
extent of the analysis was not restricted by availabil-
ity of environmental data, simple habitat models
were built using covariates of geodesic and shore dis-
tance from haul-out in a generalised linear model for
each species (McCullagh & Nelder 1989). Previous
studies have shown that UK grey and harbour seal
habitat preference is primarily driven by distance to
haul-out site (geodesic distance) (Aarts et al. 2008,
Bailey et al. 2014). The model predicted usage for
each haul-out that was normalised and weighted by
the mean proportion of time animals spent not
hauled out. Mean and variance were scaled to popu-
lation size by combining each one with the popula-
tion mean and variance estimates of each haul-out,
and these were aggregated to the total usage map for
each species.

(8) Spatial comparisons between species. To com-
pare spatial use between species, an index (s; =
Mg — Mjpy)) was calculated to show the global dif-
ference in the 2 species’ at-sea distributions, where
estimated usage (M;) was the number of animals
expected to use grid cell i. (Hg) refers to grey seals,
(Pv) refers to harbour seals.

The methodology described above is based on
Matthiopoulos et al. (2004). However, the methodo-
logy was changed significantly and extended to
ensure the analysis could be resolved to a fine-scale,
that all available telemetry data could be included
(see 'Trip detection') and that more sources of vari-
ability were incorporated and propagated through
the analysis to produce continuous uncertainty
estimates.

RESULTS

Using data from 259 grey seal and 277 harbour
seal telemetry tags deployed between 1991 and
2013, we combined terrestrial counts collected be-
tween 1996 and 2013. Combined hauled-out and
at-sea usage data of grey and harbour seals
around Britain, Ireland and France are scaled to

contemporary population levels (2013) and are
shown in Fig. 4, with uncertainty. Both species’
usage is concentrated around Scotland, reflecting
the terrestrial distribution of seals around Britain,
Ireland and France (Duck & Morris 2013). Grey
seal distribution is widespread with high-usage
areas close to the coast linked with high usage off-
shore (Fig. 4a). In some areas, these offshore areas
coincide with rocky ridges, such as Stanton Banks
south of Barra, west Scotland, and with sandbanks,
such as West Bank in the Moray Firth and Dogger
Bank in the southern North Sea (see Fig. 7 for
named locations). The linking corridors of usage
provide insight into how grey seals move between
regions. Grey seal usage extends over the continen-
tal shelf off the west coast of Scotland and Ireland.
The largest aggregation of high usage was around
the Orkney Islands. Grey seal usage around Ire-
land was primarily coastal, with limited movement
between Ireland and other areas of high usage
around Britain.

In contrast, Fig. 4b shows that harbour seals remain
close to the coast in a number of apparently discrete
local populations around Britain and Ireland, with
little movement among them. However, in the Moray
Firth and Firth of Tay, eastern Scotland, they spent
time offshore at Smith Bank and Marr Bank, and
from The Wash, England, they travelled to sand-
banks up to 150 km offshore (see Fig. 7 for named
locations). Offshore usage from The Wash in particu-
lar can be seen in fine-scale detail due to the large
sample size (59 tagged animals) in this region. At-sea
usage of each species calculated within buffers of
increasing distance from the coast shows that har-
bour seals were more likely to stay close to the coast,
spending only 3% of their time at distances >50 km
from the coast (Fig. 5). In contrast, grey seals spent
12 % of their time at distances >50 km from the coast.
Movements of harbour seals, shown by the data
underpinning the usage maps, confirm that although
they do not usually travel as far offshore as grey
seals, they do exhibit considerable movement paral-
lel to the coast, resulting in concentrated patches of
high coastal usage.

Fig. 6 shows the difference, by grid cell, between
the predicted abundance of grey and harbour seals
as a measure of the distribution of each species rela-
tive to the other. Grey seal prevalence is expected
because the population is much larger than that of
harbour seals. From the usage maps, estimated total
abundance of grey seals is 109500 (95 % CI = 75900
to 185400), and the estimate of harbour seals is
44000 (95% CI = 20800 to 68000), which are similar
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Fig. 4. The predicted number of (a) grey seals and (b) harbour seals in each 5 x 5 km? grid square, e.g. a yellow square denotes
between 10 and 50 seals are within that grid square. White contour lines denote standard deviation from the mean as a
measure of uncertainty around the estimated usage. Labels show the standard deviation value at each contour

to the published UK population estimates for 2012 for around specific haul-out sites in northern France,
grey (O Cadhla et al. 2013, Thomas 2013) and har- west Scotland, parts of Ireland, and in localised off-
bour seals (Duck et al. 2013). Harbour seals were shore patches in the Moray Firth, off the west coast

dominant in the southernmost part of the North Sea, Orkney, and around Shetland.
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DISCUSSION

We describe for the first time the species distribu-
tions of 2 sympatric marine predators in fine resolu-
tion and at a broad-scale with estimates of uncer-
tainty. Our analysis allows us to compare patterns of

marine space use between the 2 species to provide
insight into the extent to which they divide or share
the common space available to them. In the context
of variation in regional population trajectories, we
can explore how patterns of spatial overlap between
the species at sea relate to recent declines in some
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harbour seal populations. An application of our re-
sults is that they enable us to provide scientific
advice on the areas of most importance to each spe-
cies to inform conservation and management. Our
results show that at-sea usage of harbour seals is
heterogeneous with small patches of highly concen-
trated numbers of animals, indicative of the discrete
regional populations found around Britain, Ireland
and France (Vincent et al. 2010, Cronin 2011,
Sharples et al. 2012). On the east coast, harbour
seals spend a high proportion of time at offshore
sandbanks, indicative of foraging areas (Thompson
et al. 1996). In contrast, grey seal usage is charac-
terised by a series of interconnected highly utilised
offshore areas that include known foraging sites
(Matthiopoulos et al. 2004, McClintock et al. 2012).
These differences in the way the 2 species use the
marine environment may have consequences for
their population dynamics in relation to changes in
local prey availability (Sharples et al. 2009), disease
transmission (Herreman et al. 2011) and their vul-
nerability to metapopulation collapses (Coltman et
al. 1998, Matthiopoulos et al. 2005). In the south-
eastern North Sea, where there is a separation of
usage between grey and harbour seals, harbour seal
numbers are increasing. This pattern is repeated at
a finer-scale in the Moray Firth, an area where the
harbour seal population has historically fluctuated
but has appeared to stabilise in recent years (Duck
et al. 2013). In both these areas, harbour seals utilise
different offshore sandbanks, which are likely for-
aging areas (Tollit et al. 1998, McClintock et al.
2012). However, in the Firth of Tay (see Fig. 7),
where the population of harbour seals has declined
to <200 animals (Duck et al. 2013), both species
utilise the same offshore areas. West of Scotland
and around Ireland, harbour seal populations are
stable, and the seals use coastal areas (such as sea
lochs and harbours) that grey seals do not, suggest-

ing an inshore foraging distribution. These patterns
give an indication that offshore spatial overlap may
be detrimental to harbour seals, but further studies
incorporating information on seal diet, body condi-
tion, and prey distribution and abundance are
required before conclusions can be reached. How-
ever, there is corroborating evidence from other
populations where the species co-exist to demon-
strate that interspecific competition between grey
and harbour seals is prevalent. Within their range,
grey and harbour seals co-exist in the northeast
Atlantic and along the east coasts of North America
and Canada. A decline in harbour seals throughout
the 1990s at Sable Island, Canada, has been partly
attributed to inter-specific competition for shared
food resources with grey seals (Bowen et al. 2003).
On the east coast of the USA, in New England, seal
haul-out sites that were once dominated by harbour
seals are now designated as shared sites or domi-
nated by grey seals (Gilbert et al. 2005, Waring et
al. 2010). Recent abundance estimates indicate the
harbour seal population may be declining, and
therefore, the increasing and spatially expanding
grey seal population needs to be evaluated (Gordon
Waring pers. comm).

Assumptions and limitations

We assumed that the spatial distributions of each
species were in equilibrium to allow 22 yr of move-
ment data to be integrated. Inter-annual variability in
the movement data was captured in the maps so that
they show the largest extent to distributions possible.
However, population dynamics of both species have
changed considerably in recent history, and there-
fore, pressures of density dependence at some haul-
outs may have altered, speculatively leading to
changes in the metapopulation dynamics of each
species. Therefore, we recommend that future
telemetry deployments should carry out repeat tag-
ging for each species in areas of recent population
change, in similar areas to enable estimates of tem-
poral heterogeneity in spatial distribution that could
be integrated into haul-out uncertainty estimates.
Parameters differed between telemetry tags depend-
ing on the purpose for which they were built. Two
processes enabled the tags to be directly compared:
regularising the tracks accounted for differences in
call attempts, call abortions, haul-out sampling rates
and the minimum number of satellites needed;
weighting individual animals by their 'Information
Content Weighting’ (Supplement 2) accounted for
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ulation numbers. Red denotes greater harbour seal usage; blue denotes greater grey seal usage. Traffic light indicator arrows

show the population trajectories (2000-2010) of harbour seals in relation to each Seal Management Unit (SMU), and the
accompanying text shows the per annum change in moult counts for harbour seals (Duck et al. 2013)

the cut-off date for call attempts and the wet/dry sen- and annually (Duck & Morris 2013, Duck et al. 2013).

sor failure criteria.

Therefore, to directly compare distributions at a pop-

The at-sea and on-land distributions of grey and ulation level, we used terrestrial count data of both
harbour seals vary seasonally (Thompson et al. 1996) species from August. There were seasonal gaps in



246 Mar Ecol Prog Ser 534: 235-249, 2015

Land
Coumry SowmRIY Shetland
| North Sea boundary
Sand bank y )
Rocky ridge / ‘j
Orkney / “
V |
West Bank
Moray Firth \
Scotland North Sea
Firth of Tay
Stanton Banks Marr Bank
Dogger Bank
Ireland S
The Wash
Wal
e England
0 100 km

harbour seal usage distribution. To explore
changes in the way that distributions of both
species may vary annually and seasonal-
ly, more data collection is required. In the
future, this may be possible through teleme-
try devices encompassing new technology
such as extended tag lifetimes (years rather
than months) and with the advent of more
affordable devices so that tags could be
deployed on many more animals.

Informing conservation and management

Quantifying species distributions and
understanding the differences in the way
apex predators utilise the marine environ-
ment has important implications for the
impacts of anthropogenic activities and man-
agement action to mitigate such impacts.
Grey and harbour seals are both listed in
Annex II of the European Habitats Directive,
which has led to the designation by the gov-
ernments of the UK and the Republic of Ire-
land of a number of terrestrial MPAs, where
grey or harbour seals are a qualifying feature
(JNCC 2012, NPWS unpubl. data). No off-
shore MPAs have been proposed yet for
these species, primarily because of the lack
of robust science to inform this process.
Here, we provide valuable new information,

Fig. 7. Map of the British Isles showing key areas and locations

referred to in the text

the telemetry data for each species at different times
of the year. However, our examination of spatial
partitioning between the 2 species is based on the
assumption that patterns of usage remain constant.
Grey seals show high pupping-site fidelity to aggre-
gated colonies during the breeding season (Pomeroy
et al. 2005). However, some animals travel to a site to
pup but return after only a few weeks to non-breed-
ing haul-out regions (Russell et al. 2013). This sug-
gests that animals providing telemetry data during
the breeding season may deviate from their non-
breeding behaviour for only a short time, having little
impact on grey seal usage distribution. Male and
female harbour seals have been shown to restrict
their foraging range during the breeding season
(Thompson et al. 1994, Van Parijs et al. 1997). How-
ever, lactation lasts around 24 d (Bowen et al. 1992),
so this temporary behaviour is also unlikely to impact

which together with other recent work (e.g.
Russell et al. 2013), will allow governments
to move towards selecting suitable sites to
propose as marine MPAs for grey and har-
bour seals. We have shown that both species of seal
spend the majority of their time at sea up to 50 km
from the coast, but these areas are more important to
harbour seals because they rarely move further from
the coast; conservation and management action for
harbour seals should therefore be focused in this
zone. The exceptions are off The Wash and in the
Moray Firth, where harbour seals spend more time
farther offshore. Grey seal distribution is more exten-
sive, and our results show that both offshore (pre-
sumed) foraging habitat and the transition corridors
that link these foraging areas to haul-out sites are
important to consider in the process of selecting mar-
ine MPAs. An important practical point arising from
our results is that the uncertainty estimate for each
grid square provides information about how repre-
sentative the mean is of the underlying population.
This provides information on the need for further
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data collection in areas of interest to conservation
and management. Additionally, the results can be
used directly in conservation planning tools such as
Zonation software (http://cbig.it.helsinki.fi/software/
zonation/) that identifies areas important for habitat
quality retention.

One issue of increasing conservation concern is the
continuing rapid increase in marine renewable
energy extraction in European waters (Edrén et al.
2010, Skeate et al. 2012, Thompson et al. 2013). Our
results show that the impact of these developments
on grey and harbour seals may vary because of dif-
ferences in their spatial distributions. The effects of
near-shore devices will potentially have a greater
impact on harbour seals because a relatively greater
proportion of the population will be exposed to the
development. Conversely, a larger proportion of the
grey seal population will be exposed to develop-
ments far offshore where corridors of usage form net-
works among offshore areas of high usage and haul-
out sites. Through comparing grey and harbour seal
distributions, we found spatial partitioning over vary-
ing spatial scales showing that sympatric apex pred-
ators have dissimilarities in their spatial patterns in
this case. Therefore, it should not be assumed that
spatial prioritisation can be used effectively to con-
serve species at similar trophic levels or taxonomic
groups, and there is a requirement for careful ana-
lysis of their distributions, as presented here, to prop-
erly inform spatial planning mechanisms.

Broader applications

Animal-borne sensors have developed and advan-
ced over the past 25 yr, allowing many species to be
tagged and producing large amounts of movement
data (e.g. movebank.org). Density estimation is driven
by movement data and does not rely on predictions of
spatial usage, making it an ideal method where
appropriate data are available. However, predictive
modelling using underlying covariate data is suitable
for areas where movement data are not available.
The species density estimation combined with a
simple habitat model framework presented here is
applicable to a range of applications and datasets.
The combined methodology presented here will be
pertinent to species for which movement patterns of
the whole population cannot be observed but popu-
lation count data can be linked explicitly. In studies
of marine central-place foragers, both sexes of seals
and some seabirds can be counted reliably on land,
tagged, and then tracked at sea, allowing insight into

their spatial distribution. In the terrestrial environ-
ment, the methodology can be applied more widely
as many terrestrial predators tend to be central-place
foragers (e.g. wolves Canis lupus; Sand et al. 2005)
and therefore relevant movement and population
data are more readily available. Additionally, for
environments where covariate data are spatially
extensive and continuous, the accessibility modelling
framework presented here could be extended to
include readily available environmental covariates.
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Supplement 1 - Seal deployments by year

Table S1. Summary of grey seal telemetry deployments by year. Tag type denotes
satellite relay data logger (SRDL) or global postitioning satellite (GPS).

Year Tag type No. Sex Age Mean Tagging location
tags ratio (adult: tag
(M:F) pup) lifespan

(days)

1991 SRDL 5 4:1 5:0 106 NE England

1992 SRDL 12 8:4 12:0 107 Moray Firth, NE England

1993 SRDL 3 1:2 0:3 59 NE England

1994 SRDL 4 2:2 0:4 59 NE England

1995 SRDL 21 15:6 15:6 92 Western Isles

1996 SRDL 20 8:12 20:0 59 Western Isles, Orkney & N
coast, E Scotland

1998 SRDL 14 10:4 14:0 119 Orkney & N coast, Shetland

1999 SRDL 6 4:2 0:11 75 France

2001 SRDL 11 74 10:10 140 E Scotland

2002 SRDL 20 11:9 24:0 110 E Scotland, France

2003 SRDL 24 14:10 31:0 120 W Scotland, France

2004 SRDL 31 14:17 11:0 146 W Scotland, E Scotland, W
England & Wales

2005 SRDL 11 5:6 2:0 155 E Scotland, SE England

2006 SRDL 2 1:1 19:0 66 E Scotland

2008 SRDL/GPS 10/9 9:10 7:5 186 E Scotland, NE England

2009 GPS 12 2:10 4:26 180 W England & Wales, Republic
of Ireland

2010 GPS 30 13:17 3:0 128 Orkney & N coast, W
England & Wales, France

2011 GPS 3 3:0 3:1 109 Republic of Ireland, France

2013 GPS 11 10:1 3:3 164 E Scotland, Republic of

Ireland, France

TOTAL Mean=259 141:118 183:69 Mean=124
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Table S2. Summary of harbour seal telemetry deployments by year.

Year Tag type No. Sex Age Mean Tagging location
tags ratio  (adult: tag
(M:F) pup) lifespan

(days)

2003 SRDL 26 11:15 26:0 161 W Scotland, Orkney & N
coast, Shetland, SE England

2004 SRDL 29 15:14 29:0 116 W Scotland, Orkney & N
coast, Shetland, SE England

2005 SRDL 21 12:9 21:0 94 W Scotland, Moray Firth, SE
England

2006 SRDL/GPS 25/30  36:19 51:0 90 Western Isles, Moray Firth,
SE England, Ireland, France,
N Ireland

2007 SRDL/GPS 1/8 5:4 6:0 108 Moray Firth, N Ireland,
France

2008 GPS 15 14:1 0 129 France

2009 GPS 10 3:7 10: 0 84 W Scotland, Moray Firth, W
England & Wales

2010 GPS 10 8:2 10:0 92 N Ireland

2011 GPS 31 22:9 31:0 96 W Scotland, Orkney & N
coast, E Scotland

2012 GPS 68 40:28 68:0 7 W Scotland, Orkney & N
coast, E Scotland, SE England

2013 GPS 3 2:1 3:0 56 E Scotland

TOTAL Mean=277 101:81 255:0 Mean=99

Supplement 2 - Information content weighting

The amount of data collected for each animal varies through differences in both
individual behaviour and the functioning of the telemetry tag. Tag lifespan is a
primary factor of the data richness an individual contributes. The rate of telemetry

fixes is variable as it is dependent on how often the transmitter and receivers
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communicate, which in turn depends on the location of an animal. Parameter
settings on each batch of tags can be different; for example they can be adjusted
to vary the number of attempted transmissions when an animal is hauled-out.
To account for individual variation in the observation effort (telemetry points
collected from each animal), information content weightings were devised using
data from the entire study area. This approach reduced the importance of data-
poor animals, whilst simultaneously not overstating the contribution of animals
with heavily auto-correlated observations. For each species, models were built
using a response variable of ‘discovery rate’, defined by the number of new 5 x
5 km? grid cells an animal visits during the lifespan of the telemetry tag. This
rate was modelled as a function of the tag lifespan, tag type (SRDL or GPS),
and (for grey seals) the age of the animal (14 or pup). The intercept was set to
zero and a quasi-poisson distribution with a log-link function was used within a
Generalised Additive Model (GAM) framework utilising the R library mgcv (Wood
2006, 2011).

Results

Figure Sla shows a boxplot of grey and harbour seals tag type vs. discovery
rate for total usage. The mean number of grid cells discovered throughout a tag’s
lifespan are shown by red triangles (grey: GPS = 312, SRDL = 213; harbour: GPS
=19, SRDL = 72). A Welch two-sided ¢-test demonstrated a statistical difference
between species/tag type means at 80% confidence level. This was driven by a
significantly higher tag lifespan, shown by green triangles in Figure S1b (grey:
GPS = 3862 hours, SRDL = 2850 hours; harbour: GPS = 2175 hours, SRDL
= 2929 hours). Model selection was based on Generalised (Approximate) Cross
Validation (GCV; Craven & Wahba 1979). Similar models were selected for both
grey and harbour seals, and tag lifespan was smoothed. Tag lifespan, tag type
(SRDL or GPS), and age of animal (14 or pup) were significant (p-value < 0.001)
and explained 31.7% and 16.1% of variation in the data for grey and harbour seals
respectively. Fitted values were normalised and used to weight the contribution of

different animals to estimate usage associated with each haul-out location. Figure
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S2 shows observed (points) and predicted (lines) values for the four subsets of
animals (SRDL adults, SRDL pups, GPS adults, GPS pups) for (a) grey and (b)

harbour seals.
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Figure S1. (a) Discovery rate (number of new grid cells "discovered’ by each animal
during the tag lifetime by species (Hg=Halichoerus grypus, Pv=Phoca vitulina)
and tag type; (b) Total number of tag hours of by species and tag type.
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Figure S2. Plots showing tag lifespan vs. the number of discovered cells. Lines
represent model predictions and points show observed data for (a) grey seals and

(b) harbour seals.



37 Grey & harbour seal usage

Supplement 3 - Quantifying uncertainty and

scaling terrestrial counts to estimate population

Uncertainty was accounted for at individual animal and population level.

Within haul-out (individual) uncertainty

From the movement data, some haul-outs (89) had many animals associated with
them, termed as data-rich sites, but the majority (430 out of 536) of haul-out sites
were data-poor and half of these had only one animal associated with them. We
needed a way to estimate variance at haul-outs where there were small numbers
of animals that could not be bootstrapped, and also at haul-outs where terrestrial
count data existed but movement data did not (null sites; Supplement 4). To do
this, we estimated individual variance in two stages. Firstly, assuming constant
variance and coefficient of variation across space we used the data-rich haul-outs
to fit models of variance. These were defined as all haul-outs with more than 7
animals associated with them, which were determined experimentally to be the
minimum number of animals needed to robustly bootstrap each haul-out. At-sea
kernel smoothed densities were bootstrapped 500 times for each data-rich haul-
out, resampling with decreasing sample size to produce estimated logged variance
and logged mean densities. Secondly, linear models (LMs) were fitted to these data
by species with a response variable of logged variance and covariates of sample
size (number of animals associated with a haul-out) and logged estimated mean
density of seals weighted by information content. As expected, number of animals
at a haul-out and logged mean densities explained 99.9% of the variation in the
data. The variance increased asymptotically as the mean density increased, and
simultaneously decreased as the number of animals at a haul-out increased (Figure
S3). This allowed us to predict variance for any number of animals at a haul-out

site. To predict uncertainty for the null sites, sample size was set to zero.
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Scaling terrestrial counts to estimate population

Scaling terrestrial counts to estimate population size by haul-out with
accompanying uncertainty was carried out through a two-stage process: A range
of population estimates and associated uncertainty were generated, and were then

processed through a decision tree to obtain a contemporary population estimate.

Several types of uncertainty are associated with terrestrial surveys and scaling to
population level. Observational errors occur in surveys due varying to weather
conditions, aircraft altitude (in aerial surveys), accuracy in recording animal
locations, and possible disturbance to animals during surveying. Sampling errors
occur because surveys by their nature are instantaneous counts in time. These
errors are mitigated as much as possible through survey design and repeat
surveying. Errors also occur when scaling to population estimates. We modelled
these errors as follows: Parameters for the beta function in the likelihood function
were calculated using the mean proportion of time each seal species spent hauled-
out along with their corresponding confidence intervals (Matthiopoulos 2011,

Lonergan et al. 2011, 2013).

i
a=(p—p =0’

Where:

1 = mean seal population hauled-out at any point in time.

0? = variance in seal population hauled-out at any point in time.

A likelihood distribution was then derived as:

Ni—m;+B—1
. . ]- Hk::Ni—Jmij-i-l k
Likelihood = —W
i Hk:Ni-&-l k

Where:

N, = Seal population of i** haul-out.

my; = Number observed on i haul-out on j*™ survey.
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For each haul-out the estimated population size was allowed to vary from the
value of each terrestrial count (minimum population size) to 100 times the
count (maximum population size). Parametric bootstrapping using the derived
likelihood distribution was repeated 500 times per count to produce a range of

population estimates.

Surveying the entire coastline of the UK each year is infeasible, and therefore
estimating the current populations of both species was challenging; many haul-out
sites had limited count data and/or the data was not contemporary. Both species’
populations have varied over the temporal scale of the analysis and there are also
local fluctuations in population levels. To obtain a single population estimate
for each haul-out from the bootstrapped estimates, a decision tree approach
was taken to provide robust population estimates with uncertainty that reflected

contemporary population dynamics as much as possible (Figure S4).

Population means and variances, and means and variances for each haul-out
were combined using formulas for the product of independent variables, where

X represents population estimates and Y represents individual estimates.

mean = E (X) E (Y)

variance = E(Y)E (Y) Var (X) + E(X) E(X) Var (Y) + Var (X) Var (Y)

Visualising spatial sampling effort

To quantify spatial sampling effort the coefficient of variation was calculated by
grid cell (z) as the ratio of uncertainty (expressed by the standard deviation (o)
to the estimated proportional usage (u). The coefficient of variation was higher in
areas of the usage maps where telemetry tagging effort was low relative to the local
population size or where null maps contributed to the majority of the estimated
usage. This provides information on telemetry data gaps and where future tagging

effort can be concentrated (Figure S5).
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Figure S3. Grey (left) and harbour (right) plots to show the predicted variance of
the chosen models when mean density and the number of animals at a haul-out

are varied from 1 to 100 respectively.
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Figure S4. Flow chart showing population estimates by haul-out depending on

the terrestrial count data available.
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Figure S5. (a) Grey and (b) harbour seal coeflicients of variation, showing areas

where uncertainty deviates from the expected uncertainty.

Supplement 4 - Accessibility modelling

Sampling effort in the telemetry data was unbalanced because tag deployments
tend to focus on larger seal colonies or specific study areas. Therefore, to account
for areas in the maps where survey count data were present but telemetry data
were not, models were derived to estimate likely usage in those areas using a sub-
sample of telemetry data. The number of telemetry locations in each 5 x 5 km?
grid were modelled using Generalised Linear Models (GLM; McCullagh & Nelder
1989) as a function of distance to the shore to represent accessibility to the coast
(in 5 km bins) and accessibility to a given haul-out, termed as geodesic distance,
which is the distance to any given grid square from a haul-out taking land into
account. Previous studies of UK grey and harbour seals have shown that habitat

preference is primarily driven by geodesic distance (Aarts et al. 2008, Bailey et al.
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2014). Geodesic distance and distance-to-shore were continuous, but additional
environmental covariates could not be considered because they would reduce the
spatial extent of the analysis. A sub-sample of 50 adult tracks from each species
were selected without replacement and the number of available grid squares at
each combination of distance to shore and geodesic distance was used as an offset

in the log link quasi-Poisson distribution models.

Telemetry and accessibility maps

Continuous coverage of usage around the UK was achieved by combining telemetry
and accessibility maps. 927 and 1018 haul-outs were used for grey and harbour
seals respectively: 466 (50%) and 398 (39%) haul-outs had telemetry data
associated with them. Figure S6 and Figure S7 show (a) telemetry, (b)
accessibility, and (c) combined usage maps. Population scaling and uncertainty
were estimated for telemetry and accessibility usage separately and so the total
usage maps were a result of directly combining the telemetry and accessibility
maps. Grey and harbour seal accessibility usage maps (Figure S6b and Figure
S7b) contribute to the aggregate maps in similar areas. Harbour seals have more
disaggregated haul-outs than grey seals, and distribute themselves diffusely along
the coast. Therefore, tagging effort was concentrated over a relatively small area,
when compared to the species distribution on land. This, combined with harbour
seals prevalence in west Scotland and Ireland, which have long complex coastlines
meant the accessibility map contributed 48% of the total usage for harbour seals,

compared to 16% for grey seals.
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Figure S6. Grey seal (a) telemetry map; (b) accessibility map; (c) telemetry and

accessibility maps combined to produce final usage map.
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Figure S7. Harbour seal (a) telemetry map; (b) accessibility map; (c) telemetry

and accessibility maps combined to produce final usage map.
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Abstract

High-resolution distribution maps can help inform conservation measures
for protected species; including where any impacts of proposed commercial
developments overlap the range of focal species. Around Orkney, northern
Scotland, UK, the harbour seal population has decreased by 78% over 20 years.
Concern for the declining harbour seal population has led to constraints being
placed on tidal energy generation developments. For this study area, telemetry
data from 54 animals tagged between 2003 and 2015 were used to produce density
estimation maps. Predictive habitat models using GAM-GEEs provided robust
predictions in areas where telemetry data were absent, and were combined with
density estimation maps, and then scaled to population levels using August

terrestrial counts from 2008 to 2015, to produce harbour seal usage maps with
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confidence intervals around Orkney and the North coast of Scotland. The selected
habitat model showed that distance from haul out, proportion of sand in seabed
sediment, and annual mean power were important predictors of space-use. Fine-
scale usage maps can be used in consenting and licensing of anthropogenic
developments to determine local abundance. When quantifying commercial
impacts through changes to species distributions, usage maps can be spatially
explicitly linked to individual-based models to inform predicted movement and

behaviour.

Introduction

Within the context of increasing anthropogenic activities in coastal environments,
understanding movement and distributions of top predators is critical to
deliver effective marine spatial planning and ensure adequate management and
protection'™. However, marine animals are challenging to study as they spend all
or most of their lives at sea, and much of this time underwater. Robust estimates
of space use at appropriate spatial and temporal scales are required and should
include estimates of uncertainty to ensure that risks to the population can be

identified and managed objectively.

In early-stage marine spatial planning, constraint mapping is carried out
to reduce conflicts and ensure sustainable use of marine resources. For
example, areas are identified for potential commercial development, such
as defining lease areas for proposed offshore marine renewable projects,
whilst ensuring the conservation of protected species and habitats (e.g.
marine protected areas; www.gov.uk/government/publications/east-inshore-
and-east-offshore-marine-plans). During consenting and licensing stages,
a common approach is to overlay spatial layers within a Geographical
Information System (GIS) framework, such as anthropogenic activities and species
distributions, so that areas of interest and associated risks can be identified®.
Anthropogenic activities in the marine environment are often resolved to a fine

spatio-temporal scale (e.g. locations of marine energy leasing areas or oil and gas
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pipelines), and to improve efficacy in marine spatial planning it is important to
also use high resolution and robust maps of species distributions and habitats
prioritised for conservation. Estimates of uncertainty in species distributions
should be generated to inform decision-making regarding the level of identified

risks.

Harbour seals (Phoca vitulina) are one of two resident seal species around the UK,
spending the majority of their time within 50 km of the coast’. Around Orkney,
their diet (in 2010/11) was dominated by sandeel (Ammodytes spp), cod (Gadus
morhua), and saithe (Pollachius virens) in spring and summer, and pelagic and
gadid fish (mainly herring (Clupea harengus) and cod) in autumn’. They haul
out for extended periods to breed in June and July, and moult in August®. The
Habitats Directive (1992 Directive on the Conservation of Natural Habitats and of
Wild Fauna and Flora (92/43/EEC)), is one of the main policy drivers for nature
conservation in European waters including the UK. The Habitats Directive is
transposed into Scottish law by the Conservation (Natural Habitats) Regulations
1994 (as amended in Scotland), and under these Regulations Special Areas of
Conservation (SACs) have been established for harbour seals. The harbour seal
population has been in decline in some areas around the UK since at least
2000. Animals within the Orkney and the North Coast management region have
been particularly affected with numbers decreasing by 78% between 1997 and
2013°. Concern around the status of the population, coupled with uncertainty
surrounding the risk of collisions between tidal turbines and seals, has led to
constraints being placed on tidal energy generation developments in this area until
more information is available on the potential risks presented to this species by
tidal turbines. A key element of models for assessing collision risk is determining

the abundance of animals that may use the area close to the turbines.

Orkney and the North coast of Scotland is an interesting study area: it has a
convoluted coastline with diverse physical environment and sediment dynamics,
including the Pentland Firth, an area with strong tidal currents!®. The declining
local harbour seal population, coupled with the worlds first commercial tidal

stream array (www.meygen.com) now in place, makes characterisation of seal usage
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at a more appropriate scale for assessing individual project development essential

for effective spatial management.

Maps of at-sea usage of harbour seals around Orkney and the North coast
of Scotland were produced with associated 95% confidence intervals. Based
on established methodology®, analytical capabilities were enhanced to address
scalability, uncertainty, and predictive power. We implemented an analytical
solution with high spatial resolution to more appropriately reflect underlying
heterogeneity in seal movement, reduced uncertainty by clustering similar
haul outs to ensure underlying telemetry data were retained in the analysis,
and incorporated environmental covariates pertinent to the species in a more
sophisticated modelling framework to predict space use in regions where telemetry

data were unavailable.

Results

Year and shortest at-sea distance from haul out were included in the selected
habitat model. Shortest at-sea distance was required so that predicted usage
for each null cluster was limited according to the distance that an animal
could realistically travel from the cluster. Fig. 1 shows the occurrence rate for
each covariate (response variable on the scale of the exponential of the linear
predictor; y-axes) with accompanying 95% confidence intervals calculated through
parametric bootstrapping. As expected, shortest at-sea distance had a strongly
negative coefficient, indicating that usage decreased with increasing distance from
haul out. Proportion of sand in sediment and annual mean tidal power were
retained in the selected model as polynomial terms. High usage of low proportions
of sand was associated with wide confidence intervals, as data were limited. Space
use then increased with increasing proportion of sand, peaking when sediment was
54% sand. The relationship between usage and annual mean tidal power shows
that usage generally decreases with increasing tidal power, although confidence
intervals are wide. The relative contribution of each covariate to model selection is

shown in Fig. 2. The model with only year and at-sea distance covariates produced
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a fold pass score (FPS = 0.84), above threshold (0.80) using 40 equal-size bins.
Including sand increased the cross-validation score (FPS = 0.86) and including
tidal power raised the score (FPS = 0.89). This FPS could not be improved upon
with additional covariates. We speculate that the decrease in score when tidal
power was added to the baseline model was due to an unquantified interaction
between tidal power and at-sea distance. Interactions could not be included in

model selection due to non-convergence of the GAM-GEEs.

Usage based on telemetry observations comprised 82% and the habitat modelling
contributed 18% to the at-sea map. Fig. 3a shows at-sea distributions of harbour
seals around Orkney and the North coast of Scotland, and can be interpreted as
the estimated mean number of seals present in each 0.6 km x 0.6 km cell. The map
shows that harbour seals spend the majority of their time within 30 km of the coast
around Orkney and the North coast of Scotland, and that much of the centre of
the channel of the Pentland Firth (Fig. 4) is not well utilised. Figs. 3b and 3c show
lower and upper 95% confidence intervals and can be interpreted as the bounds
on the estimated number of seals in each cell. Harbour seal at-sea usage across
the whole map is estimated as 2444 (95% CI 946, 4006). Aggregating haul outs
at 3.6 km gave rise to 246 telemetry clusters (haul out clusters that had telemetry
data associated with them). Seven of these clusters had only one tagged animal
and a terrestrial count greater than one, which contributed to approximately to
7% of the total at-sea mean usage calculated from the maps. 45% of total at-
sea usage (over half of the telemetry usage contribution to the maps) arose from
data-rich clusters with geq 7 tagged animals associated with them (Fig. S3 in
Supplementary information). It is important to note that at-sea usage in any
given cell is influenced by density estimation from multiple telemetry clusters, and
predicted usage from null clusters. Therefore, in cases where few tagged animals
were explicitly associated with a haul out cluster did not necessarily mean that

only usage from these individuals influenced the total usage of that cluster.
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Figure 1. Occurrence rate of animals, predicted by the selected model (i.e. mean
population responses) for each covariate (a) Shortest at-sea distance to haul out,
(b) Proportion of sand in sediment, (¢) Annual mean tidal power. Occurrence rate
is calculated on the scale of the exponential of the linear predictor (proportional
to usage; y-axes) with shaded areas representing 95% confidence intervals (using
parametric bootstrapping). Rug plots showing data values are displayed on the

x-axis of each plot.
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Figure 2. Forwards model selection resulted in increasingly complex models until
five-fold cross-validation scores (using 40 equal bins areas) did not improve. The
length and direction of the arrows indicate change in cross-validation following
the addition of each covariate. Solid arrows indicate the variables that led to the

largest improvement in score.
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Figure 3. At-sea harbour seal usage (a) mean, (b) lower 95% confidence interval,
(c) upper 95% confidence interval. The figure was produced using R 3.3.23* and
GIS software Manifold 8.0.29.03°.

Discussion

Maps of harbour seal at-sea usage were produced for the area around Orkney and
the North coast of Scotland, with associated 95% confidence intervals. These high
spatial resolution maps with levels of uncertainty around the mean distribution of

animals can be used to inform spatial management of the marine environment.

Harbour seals are central-place foragers, regularly hauling out on land in between
spending time at sea travelling and foraging. Therefore, their at-sea distribution
is likely to be strongly linked to their haul out locations. At-sea usage maps show
that harbour seals around Orkney concentrated space-use within 30 km of their
haul outs, a behaviour consistent with other areas around the UK®!-13 The

primary driver of space-use was distance from haul out in the predictive habitat
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model; usage declined with increasing distance from haul out. More specifically,
animals spent the majority of time within a few kilometres of the coast in shallow
water (less than 50 m); an exception was to the north-west of the Orkney mainland

where animals spent time further offshore presumably foraging at sand banks'*.

From the habitat model, the second driver of seal usage was the proportion of
sand in sediment. Excluding the lower range where data were limited, harbour
seal usage increased until 54% sand, whereby usage then declined. Sandeels are
non-migratory resident species that live in sand/gravel mix sediment'>®. They
are a primary component in the diet of harbour seals around Orkney’, and
the relationship found between seal space-use and sand could be driven by this

predator-prey interaction.

The Pentland Firth, an area with strong tidal currents, is of commercial interest
as a number of leased tidal developments are situated within it. Usage within
the Pentland Firth itself was limited although haul outs were situated to the
north and south of the channel. The relationship between seal usage and annual
mean tidal power showed that harbour seal space use generally declined with
increasing power. Relationships found between shortest at-sea distance from
haul out and seabed sediment corroborate with other literature that have found

these relationships in grey seal habitat preference in the North Seal!”.

Like any
predator, seals most likely respond dynamically to their environment with regards
to the location of their prey species, and sand in sediment and annual mean

18,19 Free-ranging

tidal power are likely to act as proxies for prey distribution
marine animals such as seals must be influenced by currents, either positively by
using currents to travel more efficiently and utilise concentrated prey patches, or
negatively by swimming against currents when travelling to a haul out, which
may vary regionally'®22. Relevant environmental covariates were used for habitat
modelling but other covariates likely to be good predictors of space use could be
included. The composition of harbour seal diet is known to change over time and

region”. Where available, temporally and spatially aligned prey data may be likely

candidates to increase predictive ability?® (although see 2*).

It is important to understand how species distributions change over time. However,
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animal location data are usually not complete across time and space as a result of
patchy data collection. The modelling framework was developed to handle partial
data, accounting for areas where no data were available (unobserved regions), as
well as quantifying the accompanying uncertainty. This methodology could be
extended using historical data sets to investigate temporal changes in distribution
such as seasonal changes and inter-annual fluctuations, so that long-term changes
in abundance and distribution can be captured to inform conservation of the
species. Usage maps were scaled to population estimates using terrestrial counts
collected during August. During this time, harbour seals moult, spending much
of their time hauled out, and the terrestrial counts provide information about the
abundance and distribution of seals at this stage in their lifecycle. Intra-annual
movement of individuals outside of the study area, or the distribution of animals
between haul out sites within the study area were not accounted for. To identify
these, and seasonal changes in distribution, additional terrestrial counts outside
of moult season would be required, as well as an estimate of proportion of animals

hauling out when these additional surveys were carried out?.

Usage in a given at-sea grid cell was a complex summation (including weightings)
of maps from different haul out clusters. For any given grid cell, there are likely
to be substantial contributions from several clusters, and those with few seals
associated with them are likely to have low weights. A grid cell will be influenced
by null maps from clusters where there are no telemetry data. To account for any
extreme seal behaviour from one animal at one haul out cluster, each kernel smooth
was reweighted by the index of information content (by individual) based on the
relative amount of information that animal contributed (hours tagged per animal
and tag type). This method ensured that fine-scale features in space use were
retained, whilst not emphasizing abnormal behaviour of individuals. Uncertainty
in the usage where results from some haul out clusters having few seal trips are
influential is represented in the confidence interval maps (i.e. wider confidence
intervals in those areas). Usage was displayed over all types of seal activity without
distinguishing between habitat that may be important for specific events, such
as foraging or breeding, from areas that might be used as commuting corridors

between such sites. Anthropogenic activities can have chronic impacts on marine
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species such as avoidance of important habitats, or changes to behaviour?s. One
way to assess these impacts is to quantify the population effects on the species;
energetic costs to animals vary by activity?” and therefore explicitly accounting for
activity budgets would be required. When marine spatial planning objectives are
to identify risks to animals given their space use, then usage including all activity
types is required. However, specific events such as foraging can be prioritised
for some applications (e.g. population consequences of disturbance; PCOD?),
and under these circumstances, information in addition to usage maps would be

required to fulfil conservation objectives.

Species distribution analyses often require underlying data to be aggregated into
a static map®. The analysis presented here does not take patterns of residency
and site turnover of animals into account. For example, mean usage does not
differentiate between occasional use of an area by many individuals, or a small
number of individuals utilising an area intensively. The number of individuals
exposed to collision risk from marine renewable developments (e.g. tidal turbines)
is likely to be different between these two situations. This is true of any static
density inputs into collision risk models, and implications of not accounting
for individual turnover in an area include predictions of collision risk that can
exceed the total local population of animals, affecting the efficacy of the spatial

management process>’.

Spatial management can be informed through predicting movement of animals
under given conditions, termed individual-based models (IBM)3!. These models
can be used to assess changes in species distributions over time and space, and
as predictive tools to assess the impact of anthropogenic activities®?. For central-
place foragers in particular, predicting changes in distribution can be challenging.
Central places can transition over time (e.g. seals can move to different haul outs;
bats change roosting sites seasonally®?), but the locations and time of switching to
new central places can be difficult to predict. To provide more accurate analyses of
changes in species distributions, environmental space can be parameterised within

31

IBMs using underlying maps of habitat preference or space-use These can

provide information about the range of the species, areas of important habitat (e.g.
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optimal, sub-optimal, and infeasible) to better inform movement and behaviour.
For example, energetic costs of displacement when animals move from optimal
to sub-optimal habitat due to anthropogenic activities can be quantified. High-
resolution usage maps such as the ones presented here can be integrated within
IBMs to produce a powerful analytical framework to predict change in species
distributions and assessment the impact of direct and indirect anthropogenic

activities on protected species.

Methods

Study area

A study area centred on Orkney was delineated from 58.52°N to 59.66°N and
3.98°W to 1.88°W, to include the majority of telemetry data from the surrounding
area (Fig. 4). To ensure that usage in the outer regions of the study area was
not underestimated, a larger analytical area was delineated to capture telemetry
data from animals that spent time at-sea within the study area. Emphasis was
placed on determining a high grid resolution so that detailed space-use could
be represented. The underlying telemetry data were regularised to two-hourly
intervals and the degree of kernel smoothing (see Movement data) to produce
density surfaces was dependent on this regularisation. An appropriate spatial
resolution of 0.6 km x 0.6 km was determined through estimation of median
distance (median = 0.64 km; variance = 2.7 km) between each location of an
individual. Analyses were conducted using R 3.3.2%* and GIS software Manifold
8.0.29.0% and all maps were projected using Universal Transverse Mercator
30° North, World Geodetic System 1984 datum (UTM30ON WGS84). Global
Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG)
shoreline data version 2.2.2 from NOAA were used to represent land, available

from http://www.soest.hawaii.edu/pwessel/gshhg/.
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Figure 4. Map showing the spatial extent of the analysis, tracks of 54 animals
(dark grey points), their tagging locations (black circles), proposed offshore marine
renewable developments [tidal stream (blue), wave (pink), wind (green) areas], and
study area centred on Orkney (blue background). The figure was produced using

R 3.3.233* and GIS software Manifold 8.0.29.033%°.
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Movement data

60 adult animals (defined as older than one year old), tagged between 2003 and
2015, spent time within the study area. Between 2003 and 2005, Satellite Relay
Data Loggers (SRDL) were deployed that use the Argos satellite system for data
transmission®®. Between 2011 and 2015, GPS phone tags that use the GSM mobile
network with a Fastloc@hybrid protocol were deployed®”. All animal handling
procedures were carried out under Home Office Animals (Scientific Procedures)
Act licence numbers 60/2589, 60/3303, 60/4009, and 60/7806. Telemetry data
were processed through a set of data-cleansing protocols to remove observations

with null and missing values, and duplicated records from the analysis.

SRDL positional error was corrected using a Kalman filter and data were used

6:38 " The majority of GPS locations

to estimate positions at two-hourly intervals
have an expected error of < 55 m?°, although occasional outliers were excluded
using thresholds of residual error and number of satellites, and then straight-line
interpolated to regularise to the same two-hourly intervals as the SRDL data®.
Three animals had few locations within the study area, and three animals did not
have any haul out records, so these six animals were excluded, bringing the total

number of animals used in the analysis to 54 (Table S1 and Fig. S1; Supplementary

information).

Continuous spatial surfaces to represent the proportion of time animals spent
in different areas were derived by kernel-smoothing the telemetry data. The ks
R library*® was used to estimate spatial bandwidth of the 2D kernel applied to
each animal/haul out site map. A multivariate plug-in bandwidth selector was
determined for each individual by combining all locations associated with that
individual. Individual-level weightings were applied to account for differences
in the magnitude of data collected by an animal over its tag lifespan and
for variation in the operational settings of the tag itself’. This ensured that
individuals with long tag lifespans, which could be highly auto-correlated, were
not overrepresented, whilst also ensuring the individual with short tag lifespans
were not under-represented in the analysis. A discovery rate (termed index of

information content®) was determined as the total number of new grid cell that
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an individual visited during the tag lifespan. The mgcv library in R* was used to
fit a Generalised Additive Model (GAM) with a quasi-poisson distribution with
a log-link function. The response variable was discovery rate and explanatory
variables were the smooth of tag lifespan (hours) and tag type (SRDL or GPS)
as a factor. Each animal/haul out map was multiplied by a normalised discovery
rate and all density maps connected to each haul out cluster were aggregated and

normalised to one.

Terrestrial counts

Harbour seals are surveyed during their moult in August when the greatest number
of animals haul out on land for an extended period. Different sections of coastline
are surveyed each year. During aerial surveys all seals along a specified section of
coastline are counted and coordinates are recorded to an accuracy of approximately
50 m. Surveys take place within two hours of low tide, when low tide is between
12:00 and 18:00 hours*?. Surveyed coastline was gridded to 0.6 km x 0.6 km
and the most recent available count (ranging from 2008 to 2015) was recorded
in each onshore grid cell (Fig. 5 & S2 in Supplementary information). Grid cells
that were surveyed but in which no animals were located were given a value
of zero. For each grid cell, the local population was estimated with associated
uncertainty. Full details of this method are available from (Supplementary

information www.int-res.com/articles/suppl/m534p235_supp.pdf®).


www.int-res.com/articles/suppl/m534p235_supp.pdf
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Figure 5. Map showing the most recent terrestrial surveys within the spatial extent

of the analysis. Black lines represent no survey effort. The figure was produced

using R 3.3.233% and GIS software Manifold 8.0.29.03%.
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Environmental data

1. Shortest at-sea distance from haul out location By definition, central-
place foragers have a home-range. For seals, this was represented by the
shortest distance between a haul out site and an at-sea location taking into
account land barriers (such as islands) that animals must swim around.
Shortest at-sea distance was calculated using the gdistance R library*® at
a resolution of 0.6 km x 0.6 km to determine distance between each seal

location and the associated haul out (either departure or destination).

2. Bathymetry The bathymetric metadata and Digital Terrain Model
data products were derived from the European Marine Observation and
Data Network (EMODNet) Bathymetry portal (http://www.emodnet-
bathymetry.eu) released August/September 2015. Seabed depth data had a
resolution of 1/8 minutes (about 230 m) and are based on the seabed depth
at the Lowest Astronomical Tide (Fig. 6a).

3. Tidal power and peak flow Seals haul out on exposed areas of rock and
sandbanks at low tide, and tidal information is likely to play an important

2. Tidal energy resources were characterised by

role in their distribution®
annual mean tidal power (kWm™; Fig. 6b), peak flow for mean spring
tide (ms™!; Fig. 6¢), and peak flow for mean neap tide (ms™; Fig. 6d),
calculated using the Pentland Firth and Orkney Waters Hydrodynamic
Model (PFOW)!. Mean peak current speeds were calculated using two
tidal harmonics (M2; lunar and S2; solar) from 60 days of mid-depth velocity
from the PFOW climatology run. The east and west components of current
velocity were used to produce M2 and S2 amplitudes and phases. The semi-
major axis amplitudes for each ellipse (M2 and S2) were then summed to
produce peak flow for mean spring/neap tide. To represent the kinetic
energy available throughout the tidal cycle, annual mean tidal power (Pr)
was calculated. Average power available over 365 days from the PFOW
climatology run was calculated taking a complete tidal cycle into account

(rather than only peak values): Pr = 1/2pU3, where p is density of water,
taken as 1027 kg m™, and U is the mid-depth current speed'®*. Model


http://www.emodnet-bathymetry.eu
http://www.emodnet-bathymetry.eu
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predictions were available in an unstructured grid ranging from a resolution

of 150 - 250 m at the coast to 3 km at the outer edges of the study region.

. Sediment type was derived from the British Geological Survey (available
to download http://www.bgs.ac.uk), obtained from core samples spaced
5 km apart on average (Figs. 6e-g). A simplified Folk classification
system? was applied to derive variables containing proportions of sand,
gravel, and mud. Data were given as a percentage-by-weight of gravel
(particles > 2.0 mm in diameter), sand (0.0625 — 2.0 mm in diameter), and
mud (particles < 0.0625 mm in diameter). Spatial autocorrelation between
the three covariates was calculated by randomly sub-sampling the cores to
calculate semi-variograms*®. Each sediment covariate was kriged at a 1 km
resolution using the semi-variograms and the resultant local estimates were
normalised'”. These covariates did not account for other substrate (such as

underlying rock or biotope information) that may have been present on the

seabed.


http://www.bgs.ac.uk
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(e) (f) ()

Environmental covariates (except shortest at-sea distance) used for habitat
modelling: (a) Seabed depth, (b) Annual mean tidal power, (c) Peak flow for
mean spring tide, (d) Peak flow for mean neap tide, (e) Proportion of sand in
seabed sediment, (f) Proportion of gravel in seabed sediment, (g) Proportion of
mud in seabed sediment. The figure was produced using R 3.3.23% and GIS
software Manifold 8.0.29.03%.

Haul out clustering

A 0.6 km x 0.6 km grid cell was identified as an onshore haul out either from
the telemetry data where animals moved onto land, or from the terrestrial count
data where animals were counted within that cell. Haul out cells were aggregated
for the purpose of scaling to a local population level because: (a) The resolution
of a 0.6 km x 0.6 km cell may not have been consistent with the scale of animal
behaviour and space use if more than one haul out formed part of a connected
aggregation (e.g. seals may return to an onshore location close to departure haul
out); (b) using non-aggregated haul outs maximised the number of haul out cells
defined by the terrestrial count data which did not have telemetry data directly
associated with them. This would have resulted in inflated uncertainty as the
habitat model would contribute more usage to the analysis than necessary; and
(c) using non-aggregated haul out cells associated with telemetry data but where
the terrestrial count was zero reduced the importance of telemetry data (effectively

removing telemetry data from the usage surface). Haul out cells were aggregated
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using a clustering algorithm based on shortest at-sea distance between them. To
define an appropriate spatial scale, hierarchal cluster analysis with a centroid
agglomeration method was used to generate clustering ranges from a minimum
separation of 0.6 km (no clustering) to 15 km (maximum clustering) in increments
of 0.6 km*". A change point analysis was performed based on the number of
clusters using the changepoint R library*®. A single change point occurred at
3.6 km and haul outs were aggregated to this scale for the remainder of the analysis.
Telemetry clusters were defined as having telemetry data from at least one tagged
animal associated with any haul out cell in the cluster. Null clusters were those
where terrestrial count data showed seals were present, but no tagged animals
visited any haul out cells within the cluster. To retain telemetry clusters with
zero terrestrial counts in the analysis, their counts were changed to one, and the

total was rescaled to the original count.

Habitat modelling

Predictions of at-sea usage were required for null clusters (where seals were
known to haul out from the terrestrial count data but for which no telemetry
data were available). Augmenting the approach taken in Jones et al. (2015),
a Generalised Additive Modelling - Generalised Estimating Equation (GAM-
GEE) modelling framework was used to predict at-sea seal usage. Models were
fitted using all telemetry locations with five pseudo-absences associated with each
presence point by repeatedly selecting at-sea locations within the study area to
associate a representative range of underlying environmental covariates with the
pseudo-absence points*. Multicollinearity between the covariates was tested using
Variation Inflation Factor (VIF) analysis from the car R library®®. Peak flows
for mean spring and neap tides were highly correlated (based on a threshold for
high collinearity > 5) so these covariates were not included in the same model
during model selection. All other covariates had a VIF score between 1.5 and
3.7. The geepack R library® was used to fit binomial GAM-GEEs with a logit
link function and an independent working correlation structure to account for any

residual autocorrelation within defined panels of data®?. Panels were defined for
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individual animal and for pseudo-absences separately to avoid underestimating
autocorrelation within presences of an individual, and each pseudo-absence was
assumed to be independent?®. Covariates were standardised (mean = 0, sd = 1) to
aid model fitting®®. Year of tag deployment was included as a factor and shortest
at-sea distance was included as a linear covariate within the linear predictor.
The splines R library was used to implement cubic [-splines to allow all other
covariates to vary as a function of one-dimensional smooth terms within the linear
predictor (4 degrees of freedom) with one internally positioned knot at the mean
of each covariate®®. Linear and spline terms were offered in model selection for
all covariates. Allowing interactions between covariates was not possible due to
non-convergence in the models. Models were assessed on their ability to predict
spatially, and similar-sized spatial blocks were delineated based on haul out cluster
using the sample function in R. Forwards model selection was carried out using k-
fold cross-validation, using four blocks to fit a model and predicting from the fifth
block. This was repeated five times until all blocks had been used in prediction.
For each fold, equal-areas with 40 bins with a moving window were used and
Spearman rank correlations were calculated based on n = 40 and o = 0.05. Folds
passing this test were summed and the count divided by five. The threshold for
fold pass score (FPS) for five-folds was FPS > 0.8%.

The selected model was used to estimate usage for the study area for each
null cluster. The median value for tag deployment year (2011) was used for
all predictions and shortest at-sea path from haul out cluster was calculated.
Predicted (mean population) space-use was calculated from the exponential of the
linear predictor!”. For each null cluster, space-use was normalised to one, so that

it could be scaled to the local population estimate.

Propagating uncertainty and population-scaling

Uncertainty within each grid cell of the usage maps was calculated. Within-
cluster variance was modelled using data-rich telemetry clusters (determined
experimentally to be those sites which had > 7 tagged animals associated with

them). Variance was estimated from linear models with explanatory covariates
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of sample size (number of tagged animals in the telemetry cluster) and mean
usage by seals. The models predicted variance for data-poor telemetry and null
clusters (by setting the sample size of the uncertainty model to zero). Predicted
within-cluster variance increased as the mean usage and number of tagged animals
decreased (Supplementary information, Fig. S4). The harbour seal population in
each cluster was estimated from terrestrial count data, which were rescaled to allow
for the proportion of animals at sea when surveys were carried out®. Population-
level variance for each cluster was calculated from bootstrapping, based on the
uncertainty in estimates of haul-out probability®. Within-cluster and population-
level variances were combined to give uncertainty estimates for each grid cell in
the usage maps. Maps for all clusters were then scaled according to the local
harbour seal population, also accounting for the mean proportion of time animals
spent at sea (calculated from the telemetry data). Density estimation maps (using
telemetry data) were combined with habitat model predictions of usage for null
clusters to create total usage maps, showing mean usage with associated 95%

confidence intervals.

Data availability

The datasets analysed during the current study are available in the
Pure repository, http://dx.doi.org/10.17630/4£86d1c0-£999-4ca2-b6a8-
6€a63a83400b.
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Supplementary information

Table S1. Animals included in the analysis showing animal reference number, tag

type, age-class, region, location of tagging, sex, year tagged, and number of days

of movement data collected.

# Animal Tag Age Management Tagging Sex Year Tagged
reference type region location days

1 pvl-ali-03 SRDL 1+ Orkney & N coast Sanday F 2003 187
2 pvl-Arnie-03 SRDL 1+ Orkney & N coast Eynhallow M 2003 179
3 pvl-bo-03 SRDL 1+ Orkney & N coast Sanday F 2003 184
4  pvl-Bob-03 SRDL 1+ Orkney & N coast  Eynhallow M 2003 131
5  pvl-cat-03 SRDL 1+ Orkney & N coast Sanday F 2003 217
6 pvl-dot-03 SRDL 1+ Orkney & N coast Sanday F 2003 273
7  pvl-erin-03 SRDL 1+ Orkney & N coast Rousay F 2003 165
8  pv6-Ken-04 SRDL 1+ Orkney & N coast  Stronsay M 2004 143
9  pv6-Len-04 SRDL 1+ Orkney & N coast Stronsay M 2004 112
10 pv6-Max-04 SRDL 1+ Orkney & N coast Rousay M 2004 78
11 pv6-0Oli-04 SRDL 1+ Orkney & N coast Eynhallow M 2004 92
12 pv6-pat-04 SRDL 1+ Orkney & N coast  Stronsay F 2004 115
13 pv6-Pete-04 SRDL 1+ Orkney & N coast Eynhallow M 2004 26
14 pv6-queenie-04 SRDL 14 Orkney & N coast Rousay F 2004 99
15 pv6-sally-04 SRDL 1+ Orkney & N coast  Eynhallow F 2004 T4
16 pvll-James-05 SRDL 14 Moray Firth Dornoch M 2005 32
17  pvll-Kath-05 SRDL 1+ Moray Firth Dornoch F 2005 108
18 pv24-112-11 GPS 1+ Orkney & N coast  Pentland M 2011 167
19 pv24-148-11 GPS 1+ Orkney & N coast  Pentland M 2011 143
20 pv24-150-11 GPS 1+ Orkney & N coast Pentland F 2011 113
21 pv24-151-11 GPS 1+ Orkney & N coast Pentland M 2011 72
22 pv24-153-11 GPS 1+ Orkney & N coast  Pentland F 2011 121
23  pv24-155-11 GPS 1+ Orkney & N coast  Pentland M 2011 36
24 pv24-165-11 GPS 1+ Orkney & N coast Pentland M 2011 48
25 pv24-394-11 GPS 1+ Orkney & N coast Pentland M 2011 88
26 pv24-541-11 GPS 1+ Orkney & N coast  Pentland M 2011 133
27  pv24-580-11 GPS 1+ Orkney & N coast Pentland F 2011 94
28  pv24-590-11 GPS 1+ Orkney & N coast Pentland M 2011 71
29 pv24-598-11 GPS 1+ Orkney & N coast  Pentland F 2011 110
30 pv24-622-11 GPS 1+ Orkney & N coast Pentland M 2011 76
31 pv24-x625-11 GPS 1+ Orkney & N coast Pentland M 2011 84
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# Animal Tag Age Management Tagging Sex Year Tagged

reference type region location days
32 pv44-003-12 GPS 1+ Orkney & N coast Eday F 2012 41
33 pv44-004-12 GPS 1+ Orkney & N coast Eday F 2012 41
34  pv44-005-12 GPS 1+ Orkney & N coast  Eynhallow M 2012 51
35 pv44-007-12 GPS 1+ Orkney & N coast Eday F 2012 40
36 pv44-011-12 GPS 1+ Orkney & N coast Eynhallow M 2012 51
37 pv44-014-12 GPS 1+ Orkney & N coast Eynhallow M 2012 44
38 pv44-017-12 GPS 1+ Orkney & N coast Eday M 2012 41
39 pv44-018-12 GPS 1+ Orkney & N coast Eday M 2012 26
40 pv44-020-12 GPS 1+ Orkney & N coast Eday F 2012 32
41  pv44-021-12 GPS 1+ Orkney & N coast Eday F 2012 25
42  pv47-392-12 GPS 1+ Orkney & N coast Eynhallow M 2012 110
43  pv47-427-12 GPS 1+ Orkney & N coast Eynhallow M 2012 17
44  pv47-539-12 GPS 1+ Orkney & N coast Eday M 2012 143
45  pv47-583-12 GPS 1+ Orkney & N coast  Eynhallow M 2012 99
46 pv47-585-12 GPS 1+ Orkney & N coast Eday M 2012 151
47 pv4T7-588-12 GPS 1+ Orkney & N coast Eynhallow M 2012 93
48 pvh7-197-14 GPS 1+ Orkney & N Coast St Margarets F 2014 88
49 pvbH7-199-14 GPS 1+ Orkney & N Coast ~ Switha M 2014 5
50 pvb7-200-14 GPS 1+ Orkney & N Coast St Margarets F 2014 151
51 pvH7-913-14 GPS 1+ Orkney & N Coast St Margarets F 2014 176
52  pvbH9-05-15 GPS 1+ Moray Firth Loch Fleet F 2015 121
53 pvH9-07-15 GPS 1+ Moray Firth Loch Fleet F 2015 141
54  pvbH9-12-15 GPS 1+ Moray Firth Loch Fleet F 2015 128
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Figure S1. Temporal extent (day of year) of movement data by animal.
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Summary

1. Vessels can have acute and chronic impacts on marine species. The rate of increase in
commercial shipping is accelerating, and there is a need to quantify and potentially manage
the risk of these impacts.

2. Usage maps characterising densities of grey and harbour seals and ships around the Brit-
ish Isles were used to produce risk maps of seal co-occurrence with shipping traffic. Acoustic
exposure to individual harbour seals was modelled in a study area using contemporaneous
movement data from 28 animals fitted with UHF global positioning satellite telemetry tags
and automatic identification system data from all ships during 2014 and 2015. Data from four
acoustic recorders were used to validate sound exposure predictions.

3. Across the British Isles, rates of co-occurrence were highest within 50 km of the coast,
close to seal haul-outs. Areas identified with high risk of exposure included 11 Special Areas
of Conservation (SAC; from a possible 25). Risk to harbour seal populations was highest,
affecting half of all SACs associated with the species.

4. Predicted cumulative sound exposure level, cSSELs(M,,,), over all seals was 176-8 dB re 1 pPa®s
(95% CI 163-3-190-4), ranging from 170-2 dB re 1pPa’s (95% CI 168-4-171-9) to 189-3 dB re
1 pPa?s(95% CI 172-6-206-0) for individuals. This represented an increase in 28-3 dBre 1 pPa’s
over measured ambient noise. For 20 of 28 animals in the study, 95% CI for ¢cSELs(M,,,) had
upper bounds above levels known to induce temporary threshold shift. Predictions of broadband
received sound pressure levels were underestimated on average by 0-7 dBre 1 pPa (£3-3).

5. Synthesis and applications. We present a framework to allow shipping noise, an important
marine anthropogenic stressor, to be explicitly incorporated into spatial planning. Potentially
sensitive areas are identified through quantifying risk to marine species of exposure to ship-
ping traffic, and individual noise exposure is predicted with associated uncertainty in an area
with varying rates of co-occurrence. The detailed approach taken here facilitates spatial plan-
ning with regard to underwater noise within areas protected through the Habitats Directive,
and could be used to provide evidence for further designations. This framework may have
utility in assessing whether underwater noise levels are at Good Environmental Status under
the Marine Strategy Framework Directive.

Key-words: acoustic propagation, AIS, Halichoerus grypus, marine stressor, MSFD, noise
pollution, Phoca vitulina, spatial overlap, telemetry, uncertainty

. Coastal regions serve as important habitats (e.g. for
Introduction . . . .
breeding, foraging) for many species of marine mammals

Major shipping routes converge around populated coastli- leading to the potential for interactions with ships in these
nes with relatively high densities of ships accessing ports. areas. Marine mammal habitats are often conserved

through protected areas or other spatial planning mea-
*Correspondence author. E-mail: el298 @st-andrews.ac.uk sures. There is a perceived requirement for effective
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spatial planning where shipping traffic and marine mam-
mals share the same environment (Erbe et al. 2014; Wil-
liams et al. 2015), but the level of management required
will depend to a large extent on the scale and intensity of
interactions and the effects these have on the behaviour
and welfare of the species of interest. Injury due to colli-
sions with vessels is widely recognised as a serious risk for
large cetaceans and sirenians (Beck, Bonde & Rathbun
1982; Panigada et al. 2006). Trauma ascribed to ship
strikes has also been identified in a proportion of both
live stranded (Goldstein et al. 1999) and dead stranded
seals in the United States (Swails 2005), suggesting that
mortality resulting from these collisions may pose a risk,
albeit lower, for pinnipeds. However, difficulties in
observing these unpredictable events mean that mortality
rates are still poorly understood.

Shipping traffic is a major component of underwater
low-frequency ambient noise in the oceans, and has
increased by 10 dB since the mid-1960s in monitored areas
of the Pacific (Andrew ez al. 2002). A focus of the Marine
Strategy Framework Directive (MSFD, 2008/56/EC; Euro-
pean Commission 2008) requires EU member states to
ensure that noise levels do not adversely affect the marine
environment. Phocid seals rely on sound for communica-
tion (van Parijs et al. 1997), and potentially navigation and
predator—prey detection, and have good low-frequency
hearing from a few hundred Hz to 70-80 kHz (Cunning-
ham & Reichmuth 2016). Vessel noise is likely to be audible
to seals at relatively long ranges and has the potential to
lead to a range of chronic effects. For marine mammals,
these include avoidance of important habitats (Morton &
Symonds 2002), changes in behaviour such as interference
with vocalisations (Payne & Webb 1971) and auditory dam-
age (Southall ez al. 2007), which may pose a significant risk
of detrimental long-term population consequences (Tyack
2008). Reviewing previous studies of auditory damage in
marine mammals, Southall et al. (2007) proposed sound
pressure level [SPL; dB re: 1 pPa (peak) (flat)] and sound
exposure level (cSEL; dB re 1 pPa” s), a measurement of
cumulative acoustic energy over time, as noise assessment
metrics for auditory damage in marine mammals. Hearing
loss can be characterised as permanent threshold shift
(PTS) in hearing sensitivity that is unrecoverable over time,
or a temporary threshold shift (TTS) where hearing recov-
ers completely over a specified time. For pinnipeds exposed
to non-pulse underwater sounds, cSEL was predicted as
203 dB re 1 pPa’s and 183 dB re 1 puPa’ s for the onset of
PTS and TTS, respectively.

Potential impacts of exposure to shipping noise are
likely to increase concomitantly with growth in the com-
mercial shipping industry (Hatch ez al. 2008). Despite this,
little is known about the levels of noise exposure from
shipping in relation to the distribution, movements or
behaviour of pinnipeds. Shipping traffic is known to dis-
turb seals from haul out sites (Jansen er al. 2015), but
there is little published information using at-sea move-
ments of seals in relation to vessel activity (Chen et al.

2016). Several studies have called for monitoring of areas
where there is high incidence of shipping traffic (Merchant
et al. 2012; Williams et al. 2015) so that acute and chronic
impacts on marine species can be addressed. It is impor-
tant to identify areas of greatest risk within the marine
environment (Erbe, MacGillivray & Williams 2012; Erbe
et al. 2014), and to develop techniques to assess long-term
sound exposure (Merchant ez al. 2012).

Grey (Halichoerus grypus) and harbour (Phoca vitulina)
seals are abundant around much of the UK coastline;
they are central-place foragers spending the majority of
their time within 50 km of the coast (Jones et al. 2015).
With similar but asynchronous lifecycles, they haul out on
land (to rest, breed and moult) and spend time at-sea
travelling to their foraging grounds and moving between
haul out sites. Important areas for both species are pro-
tected under Annex II of the Habitats Directive (JNCC
2010) and Special Areas of Conservation (SAC) have been
designated around the British Isles to protect their terres-
trial breeding habitats.

We propose a generalisable framework to characterise
co-occurrence between seals and shipping on a broad spa-
tial scale (i.e. nationally). Predicted exposure to shipping
noise on individual seals is then investigated in an area
where an SAC is designated and where varying spatial
overlap occurred.

Materials and methods

SPATIAL CO-OCCURRENCE

To characterise spatial overlap between seals and shipping traffic,
two modelled data sources were used: seal at-sea usage maps
(Jones et al. 2015) and ship usage maps (MMO 2014). Rate of
co-occurrence was calculated to quantify spatial overlap between
seals and ships in each grid cell. This was defined as the daily
number of co-occurrences between seals and ships in each
Skm x 5 km grid cell, i, described as S;B; where S;= mean
number of seals in i; B; = mean daily number of vessel transits in
i. The resolution of the co-occurrence maps was not explicitly
linked to the spatial scale of potential auditory damage. Rather,
the scale was chosen so that broad-scale analysis could be pro-
duced to identify potentially acoustically sensitive areas around
the British Isles.

Seal at-sea usage maps for grey and harbour seals around the
British Isles were produced at a 5 km x 5 km resolution
(Appendix S1: Fig. S1, Supporting Information). Methodology to
generate usage maps from Jones ef al. (2015) is summarised:
Usage was estimated using a combination of terrestrial counts of
seals at haul out sites and animal-borne telemetry data from 259
grey seals and 277 harbour seals. Animals were tagged with satel-
lite relay data loggers (SRDL) or global positioning satellites
(GPS) phone tags between 1991 and 2013. A series of data pro-
cessing protocols removed observations with null, missing or
duplicated data. SRDL data were speed filtered at a maximum of
' and Kalman filtered to correct for positional errors.
Occasional outliers in the GPS data were excluded using thresh-

2 ms~

olds of residual error and number of satellites (Russell et al.
2015). To account for sampling bias, telemetry locations were
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regularised to 2-hourly intervals. Locations were kernel-smoothed
into continuous spatial surfaces to represent the proportion of
time animals spent in different areas. Tagged seals did not haul
out in some areas, but terrestrial surveys showed that animals
were present. To complete the usage maps in these areas, a null
model was fitted using all telemetry data to model usage as a
function of distance from haul out site. Local usage maps were
scaled to local population estimates for 2013. Telemetry-based
maps were aggregated with predictions from the null model to
create a usage map for the area of the study. Uncertainty was
propagated by combining variance in onshore counts with varia-
tion between spatial usage of haul outs to produce confidence
intervals of usage estimates.

Ship usage maps showing the distribution of vessels around the
British Isles in 2012 were developed using automatic identification
system (AIS) ship tracking data, available to download from the
Marine Management Organisation (https://data.gov.uk/dataset/
mmo 1066-vessel-density-grid-2012). Due to international maritime
legislation on the requirement for use of AIS (IMO 1974), vessels
greater than 299 gross tonnes and all passenger vessels in British Isles
waters over the study period were represented in the data. Where
available, smaller vessels that carried AIS (but were not required to)
were also included in the data. Positional data were supplied by the
Maritime and Coastguard Agency, collected by their network of
ground-based receiving stations around the British Isles. Methodol-
ogy to generate ship usage at a resolution of 2 km x 2 km from
MMO (2014) is summarised: Due to computational constraints, AIS
data were sampled over 42 days throughout 2012 (3-9 January, 1-7
March, 1-7 May, 1-7 July, 1-7 September and 1-7 November) to
remove seasonality. Positional data were translated into vessel tran-
sits to produce a continuous track. A transit began when speed over
ground (SOG) exceeded 0-5 knots and normally ended when SOG
stayed below 0-2 knots for more than 5 min (or other specified
threshold; Appendix S1: Table S1). Density was defined as the num-
ber of vessel transits in a grid cell rather than the number of times a
vessel transited across a grid cell. Data processing to translate raw
AIS locations into a usage surface is summarised in Appendix S1:
Table S2. AIS data had maximum locational error of 50 m (Russell
et al. 2015), so uncertainty in locations around mean usage was not
considered. Vessels were categorised into 11 groups: cargo vessels
(48%), tankers (18%), passenger (9%), fishing (8%) and the other
groups (unknown, non-port and port service, dredging, high-speed
craft, military and sailing craft) comprised the remaining usage
(Appendix S1: Table S3). To calculate rates of co-occurrence, all ves-
sel types were used to create ship usage, defined as the mean daily
number of vessel transits in each grid cell at the same 5 km x 5 km
resolution as the seal usage maps (Appendix S1: Fig. S2).

ACOUSTIC EXPOSURE

A study area including high rates of co-occurrence (>100 per day)
was identified. Located 57.5°N to 58.6°N and 2.2°W to 4.4°W,
the area was centred on the Moray Firth, north-east Scotland
(Fig. 1la), and encompassed the Dornoch Firth and Morrich
More SAC where harbour seals were a primary reason for site
selection. Harbour seals spend time around haul out sites and
foraging in offshore areas in the Moray Firth (Thompson et al.
2013). The study area has a mean depth of 54 m (max = 202 m)
and sediment in the area is primarily sand, with a mixture of
gravel and mud. A series of acoustic propagation approaches
were used to predict exposure to shipping noise for individual
harbour seals.

Seal-shipping co-occurrence 3

Seal telemetry data were collected using Fastloc® GPS Ultra
High Frequency tags (Pathtrack Ltd, Leeds, UK). Over 2 years,
35 tags were deployed on harbour seals. Of these, 28 tags trans-
mitted sufficient information to be analysed, between 19 May—17
August 2014 and 6 January-2 August 2015 (Table 1). Seals were
captured whilst hauled out and anesthetised with intravenous
Zoletil100® (Virbac, Bury St Edmunds, UK) at a dose rate of
0-5 mg kg~'. Tags were attached to fur on the back of the neck
using Loctite® 422 (Henkel, Hemel Hempstead, UK) Instant
Adhesive. All procedures were carried out under Home Office
Animals (Scientific Procedures) Act licence number 70/7806.
Data from each tag were uploaded to one of five archiving UHF
receiver base stations positioned at locations around the Moray
Firth (Fig. la). Data transfers were made when animals surfaced
or hauled out within range (line-of-sight) of a receiver station.
High-resolution movement data were generated by sampling ani-
mal locations every 3 min. Erroneous locations were removed
using thresholds of residual error and number of satellites (Rus-
sell et al. 2015). Locations were interpolated and sub-sampled to
estimate noise exposure every 15 min and at-sea locations were
retained.

Ship tracking data were provided by MarineTraffic (www.ma
rinetraffic.com) for all vessels with operational AIS transmitters
in the Moray Firth. AIS data mostly extended over the same
spatio-temporal range as the seal telemetry data to enable acous-
tic exposure of seals to be modelled in the context of surround-
ing ship traffic (19 May—17 August 2014 and 11 March-2 August
2015). Information was provided on individual vessel name, type,
length and width. The sampling rate was set to 2-min intervals
and true speed at each vessel location was derived from the
on-board vessel log system. Course, heading, date and time were
also recorded. Data were cleaned and locations with missing
attributes or stationary vessels (speed = 0 knots) were removed.
Vessel data were grouped to the same 15-min intervals as the seal
data, and one location for each vessel present by interval was
selected randomly. Data from 1689 vessels were retained
(Table 2).

Predictions of acoustic exposure were made. Source levels (SPLs
referenced to 1 m; dB re 1 pPa at 1 m) were estimated for each
ship by date and time within one-third octave bands (centre fre-
quencies: 12-5 Hz to 20 kHz) based on ship length and speed,
using the ‘Research Ambient Noise Directionality’ model (Breed-
ing et al. 1996; Table 2; Appendix S2). Transmission losses (dB)
and associated uncertainty were estimated using spherical and
cylindrical spreading models (Marsh & Schulkin 1962; Urick
1983), based on empirical measurements in shallow water in the
frequency range 0-1-10 kHz. In coastal waters, estimations of
ship noise need to account for the dependence of sound wave
attenuation on highly variable local environmental factors (Jensen
et al. 2011), and so seabed depth and sediment type were incor-
porated into acoustic modelling. Bathymetric metadata and Digi-
tal Terrain Model data products were derived from the European
Marine Observation and Data Network (EMODNet) Bathymetry
portal (http://www.emodnet-bathymetry.eu) released August/
September 2015, and were based on the seabed depth at the Low-
est Astronomical Tide (LAT).

Skip distance (H; km) represents the distance at which sound
waves make first contact with either the sea floor or surface,
where (D; m) is the water depth (Schulkin & Mercer 1985).

H=[2D/3]'? eqn 1
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Fig. 1. (a) At-sea telemetry locations from 28 tagged seals, regu-
larised to 15-min intervals (grey points), tagging locations (blue
points), UHF GPS receiver stations (orange diamonds), and
boundary of Dornoch Firth and Morrich More SAC (black out-
line); (b) AIS shipping density over the study period at
0-5 x 0-5 km resolution, AIS receiver stations (squares), and
labelled SM2M recorders (circles with cross). Global Self-consis-
tent, Hierarchical, —High-resolution Geography Database
(GSHHG) shoreline data version 2.2.2 from NOAA were used to
represent land, available from http://www.soest.hawaii.edu/pwe
ssel/gshhg/.

Transmission loss (TL; dB) was calculated using the distance
between source (ship location) and receiver (seal location), range
(R; km), absorption coefficient in seawater (o; dB km™") where
o = 0-036f"° with each one-third octave band centre frequency
(f; kHz; Richardson et al. 1995), near-field anomaly (ky; dB) and
shallow water attenuation coefficient (a; dB).

Short-range R< H TL = 20log;y R+ aR + 60 — k. eqn 2

Mid-range H<R<8H  TL =15log;,R +aR + at <§— 1)

+ 5 log o H + 60 — ki,
eqn 3

H
+10log)o H + 64-5 — ki

R
Long-range R>8H TL =10log;y R+ aR + aT(— — 1>

eqn 4

Sand was the predominant sediment in the study area [sea-
bed sediment data (BGS Geology: marine sediments 250k) used
with permission of the British Geological Survey, http://www.b
gs.ac.uk, and available to view on Maremap, http://www.mare
map.ac.uk/index.html], and estimates of k; and ar in shallow
water with sand sediment were used in eqns (2)-(4), where sea
state was assumed to be 2 on the Beaufort scale (Appendix S2:
Table S4).

Uncertainty in transmission loss was modelled using data of
error  estimates  at frequencies and  ranges
(Appendix S2: Table S5). A linear model was produced with a
response variable of standard deviation and explanatory covari-
ates of range and frequency (up to 2:85 kHz). The maximum
standard deviation predicted from the model was used for
higher frequencies (up to 20 kHz). Received SPLs (dB re
1 pParms)) were calculated by subtracting transmission loss
from source levels and integrating over frequency to produce
broadband received SPL at each seal location. For analytical
purposes, sound sources (vessels) and receivers (seals) were
assumed to be located at the mid-point of the water column.
Uncertainty in transmission loss was propagated through the
acoustic models: Parametric bootstrapping was used to create a
set of realisations, sampling from transmission loss mean and
standard deviation. Estimated mean ambient noise in the study
area (see Acoustic validations below) was used as a minimum
threshold for predictions of SPL. Mean SPL was calculated by
seal for each 15-min interval. Based on the tracks of seals
through predicted sound fields, and using the M-weighting
function for pinnipeds in water (Southall er al. 2007), ¢SEL
(M,,,) was calculated every 15-min for each individual over
each 24 h period. Mean cSEL(M,,) for ambient noise (see
Acoustic validations below) was used as a minimum threshold
for the predictions. Using bootstrapped data, estimates of mean
c¢SEL(M,,,) and 95% CI were produced for each 15-min inter-
val over 24 h for individual animals and as an aggregation

selected

over all individuals.

ACOUSTIC VALIDATIONS

Predictions from the acoustic models were compared to field
measurements of underwater sound made using remote acoustic
recorders deployed on the seabed. Four recorders (Wildlife
Acoustics SM2M recorders; Maynard, MA, USA) with a sam-
ple rate of 96 kHz and gain of 12 dB were deployed within
the study area and were set to record on a 33% duty cycle
(10 min on, 20 min off) (Fig. 1b). Recordings were available
from 27 June to 17 August 2014, overlapping the study period
by 53 days. Details of the data analysis procedure are given in
Merchant et al. (2016); the monitoring data selected for com-
parison were resolved to one-second resolution in one-third
octave bands between 25 Hz and 1| kHz. Broadband received
SPL over this frequency range were calculated at the same 15-
min intervals used in the predictive model. SPL mean and vari-
ance were calculated if there was more than one observation
within an interval. Daily ambient noise at each receiver loca-
tion was calculated as a median SPL (Merchant et al. 2016).
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Table 1. Animals used to predict acoustic exposure

Mass at Tag duration Number of days
Animal ID Year Tagging site Sex capture (kg) (days) used in analysis
65170 2014 Ardersier M 74-8 579 56
65180 2014 Ardersier M 77-8 923 86
65181 2014 Ardersier M 83.6 599 53
65184 2014 Ardersier M 81-8 394 36
65185 2014 Ardersier M 88-8 732 70
65186 2014 Ardersier F 90-2 359 35
65187 2014 Ardersier M 60-6 391 38
65190 2014 Ardersier M 51-8 50-4 36
65194 2014 Ardersier M 90-6 67-8 52
65196 2014 Ardersier F 742 66-0 59
65198 2014 Ardersier F 820 455 40
65145 2015 Ardersier M 77-3 61-5 60
65202 2015 Ardersier M 57-2 156-7 154
65204 2015 Ardersier M 87-2 97-5 79
65206 2015 Ardersier F 82.7 96-6 96
65207 2015 Ardersier M 89.7 131-8 107
65209 2015 Ardersier M 79-1 145-8 120
65212 2015 Ardersier M 87-1 983 92
65213 2015 Ardersier F 94.3 91-0 89
65214 2015 Ardersier F 79-7 89-7 82
65217 2015 Ardersier M 851 1110 106
65219 2015 Ardersier F 80-3 98-2 95
65220 2015 Ardersier M 87-7 1142 109
65226 2015 Dornoch Firth M 90-3 379 37
65233 2015 Dornoch Firth M 65-5 1319 126
65234 2015 Dornoch Firth M 88-5 386 33
65255 2015 Dornoch Firth M 627 84-1 79
65258 2015 Dornoch Firth F 727 20-9 15

Table 2. Moray Firth AIS data summarised by vessel group (italicised sub-totals)

Number of
Mean source level locations

Number of Mean vessel length  Mean vessel speed  (min, max; dBre  (15-min Proportion of

Group  Vessel type vessels (min, max; m) (min, max; kts) 1 pPa at I m) intervals) locations (%)
1 Tug 82 53 (13,95) 6 (0-1,14) 148 (113, 196) 22217 89
2 Cargo 526 126 (15, 335) 11 (0-1, 23) 160 (112, 187) 33 409 13-4
Tanker 110 159 (40, 333) 10 (0-1, 16) 160 (137, 178) 24 979 10-0
636 132 (15, 335) 11 (01, 23) 160 (112, 187) 58 388 234
3 Dredger 13 83 (15, 207) 6 (01, 13) 150 (123, 191) 1648 0-7
Fishing 192 32 (9, 143) 7 (0-1, 65) 144 (113, 202) 73 982 29-7
205 35(9,207) 7 (0-1,65) 144 (113, 202) 75 630 30-3
4 Local Vessel 5 24 (15, 28) 6 (0-1, 18) 173 (154, 194) 784 0-3
Pilot Vessel 1 5 16 144 970 0-4
Pleasure Craft 126 13 (7, 60) 6 (01, 23) 134 (113, 205) 5461 2.2
Port Tender 1 19 8 137 122 0-0
Sailing Vessel 323 14 (6, 59) 5(0-1, 33) 133 (113, 203) 15018 6-0
456 14 (5,60) 5(0-1, 33) 134 (113, 205) 22 355 9-0
5 Dive Vessel 15 75 (17, 157) 9(0-1,21) 149 (129, 170) 1370 0-5
6 High Speed Craft 8 20 (17, 26) 13 (0-1, 24) 156 (127, 198) 3180 1-3
Law Enforcement 4 66 (24, 84) 72,11 140 (118, 156) 828 0-3
Reserved 9 41 (11, 92) 7 (0-1, 20) 145 (116, 201) 2168 09
Search and Rescue 32 35 (12, 105) 7 (0-1, 26) 151 (113, 198) 8773 3.5
53 36 (11, 105) 8 (0-1, 26) 150 (113, 201) 14 949 6-0
7 Military Operations 9 69 (6, 176) 18 (0-1, 102) 157 (118, 219) 552 0-2
8 Passenger 75 155 (11, 333) 12 (2, 24) 160 (115, 181) 5513 2.2
9 Unclassified 158 69 (2, 208) 8(0-1,22) 151 (113, 204) 48 379 19-4
Total 1689 76 (2, 335) 8 (0-1, 102) 149 (112, 219) 249 353 100-0

© 2017 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society, Journal of
Applied Ecology



6 E. L. Jones et al.

The acoustic exposure model was run contemporaneously for
these four locations at the same temporal resolution. Uncer-
tainty in transmission loss was propagated and mean and vari-
ance of SPL were estimated. The minimum predicted SPL in
the four locations was used as a threshold of daily ambient
noise. Estimates of SPL from the acoustic exposure model were
then compared with measurements from the acoustic monitor-
ing data at each of the four locations to validate the noise
estimations. Mean ambient noise over all four locations was
also calculated by taking an average over median daily values
of SPL. To represent ambient noise over a 24-h period, cSEL
(M) was calculated. These data represented a spatial, tempo-
ral and frequency sample, which was assumed to be representa-
tive of daily ambient noise over the study area.

Results

SPATIAL CO-OCCURRENCE

Estimated number of daily co-occurrences per grid cell
between grey and harbour seals and vessels around the
British Isles are shown in Fig. 2. For both species, high
spatial overlap (>100 per day) occured within 50 km of
the coast close to seal haul outs. Due to low densities of
shipping in the west coast of Scotland, there were rela-
tively low rates of co-occurrence than would be expected
given the high usage by both species of seals.
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Fig. 2. Estimated number of daily co-occurrences around the British Isles between vessels and (a) grey seals; (b) harbour seals. Bound-
aries of SACs are shown (black outlines), available to download from http://jncc.defra.gov.uk/protectedsites/SACselection/gis_data/te
rms_conditions.asp, and are labelled to show where the daily rate of co-occurrence >100 (yellow cells) within an SAC.
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Fig. 2. Continued.

Of the 13 SACs designated for grey seals, five were
associated with high co-occurrence, in Orkney (Faray and
Holm of Faray), north-east England (Berwickshire and
North Northumberland Coast), east England (Humber
Estuary), Isles of Scilly off the west coast of England and
Northern Ireland (The Maidens) (Fig. 2a). Six of the 12
SACs designated for harbour seals were in areas of high
overlap, in west Scotland (South-East Islay Skerries;
Eileanan agus Sgeiran Lios mor), Outer Hebrides (Sound
of Barra), Shetland (Mousa; Yell Sound Coast) and east
England (The Wash and North Norfolk Coast) (Fig. 2b).
Fig. 3 shows that variable spatial overlap occurs within
the Moray Firth, the detailed study area where acoustic
exposure was estimated.
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ACOUSTIC EXPOSURE

Locations (corresponding to 2040 seal days) from 28
animals (M = 20; F =38; Table 1) were combined with
locations from 1689 vessels to estimate mean SPL at each
seal location and mean cSEL(M,,) for seals over each
24-h period. The majority of location data came from three
groups of vessels: fishing and dredging (30-3%), cargo and
tankers (23-4%), and unclassified (19-4%) (Table 2).

Mean SPL was estimated for each seal location (Fig. 4).
Higher mean SPLs (>140 dB re 1 pPa) were predicted
close to the ports of Nigg in the Cromarty Firth,
Inverness in the inner Moray Firth, and Banff. The spa-
tial pattern in mean SPL corresponds well with areas of
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Fig. 3. Estimated number of daily co-occurrences between har-
bour seals and vessels within the Moray Firth study area. The
boundary of Dornoch Firth and Morrich More SAC is shown
(black outline).

high co-occurrence previously identified (Fig. 3), with the
exception of Banff, which did not feature as an area of
high spatial overlap because a single animal spent time
there, and therefore it was not representative of seal
movement at the population level.

Maximum daily ¢SEL(M,,,) for each individual ranged
from 1702 dB re 1 pPa® s (95% CI 168-4-171.9) to
1893 dB re 1 pPa® s (95% CI 172-6-206-0) (Appendix S3:
Fig. S3). Figure 5 shows the cSEL(M,,,) over all individu-
als with a maximum of 176-8 dB re 1 pPa’ s (95% CI
163-3-190-4). Mean cSEL(M,,,) based on ambient noise
levels was calculated as 150-0 dB re 1 pPa” s, suggesting
that 26-8 dB re 1 pPa® s of sound exposure above this
level could be attributed to shipping traffic.

ACOUSTIC VALIDATIONS

Predictions from the acoustic exposure model underesti-
mated SPL on average by 0-7 dB re 1 pPa (£3-3) when
compared with measurements of underwater sound
(Appendix S4: Fig. S4). The four locations (Fig. 1b) var-
ied in prediction accuracy: location 1 (0-9 dB re 1 pPa;
+2-3), location 2 (1-1 dB re 1 pPa; 4+2-6) and location 4
(0-6 dB re 1 pPa; £6-3). Location 3, which had the high-
est volume of ship traffic in close proximity corroborated
to within 0-1 dB re 1 pPa (4+2-0) of field measurements.

Discussion

We describe a framework to identify exposure risk to
marine species from vessel traffic, and predict acoustic
exposure to shipping noise for individuals, validated
using measurements of underwater sound. Distributions of
seals and shipping traffic around the British Isles were
analysed to identify persistent spatial patterns of co-
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Fig. 4. Predicted mean SPL (higher than ambient levels) for seal
locations within the study area, with ascending order of plotting
to show locations where highest values occurred.
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Fig. 5. Predicted mean cSEL (M,,,) over all individuals by hour
of day (orange line) with 95% CI (dotted orange lines). The max-
imum elevation above mean ambient noise (grey line) with 95%
confidence intervals (dotted grey lines) is 26-8 dB re 1 pPa’s.

occurrence. Caveats and limitations associated with the
analysis of spatial overlap of seals and vessels, and the
acoustic exposure approach taken here are discussed in
Appendix S5. Both seal and vessel distributions have low
stochasticity at a broad spatial scale; seals are central-place
foragers, and ships travel on defined shipping routes. Co-
occurrence was most intense within 50 km of the coast
close to seal haul outs, and given their relatively coastal
range (Jones et al. 2015), any impacts may affect more of
the harbour seal population compared with grey seals.
Some offshore areas greater than 50 km from the coast
also exhibited high spatial overlap; this was generally lim-
ited to areas where seal usage was coincident with offshore
shipping lanes. When considering exposure to shipping
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traffic in isolation, we found no evidence relating declining
seal population trajectories with high levels of co-occur-
rence between animals and vessels. Particularly, counts of
harbour seals in east Scotland have decreased (by over
90% between early 2000s and 2015), where there are rela-
tively lower levels of shipping, compared with east Eng-
land where the harbour seal population is increasing and
there are high intensities of vessels (Duck & Morris 2016).
Our results show that 11 SACs around the British Isles
have high risk of exposure within their boundaries.
Predicted exposure levels in the Moray Firth were
below those previously estimated to cause PTS (203 dB re
1 uPa® s) for pinnipeds in water (Southall er al. 2007).
However, upper confidence interval bounds of 20 from 28
animals did exceed levels previously shown to cause TTS
as a result of 25 min exposure to 2-5 kHz Octave Band
Noise with a source level of 152 dB re 1 pPa (183 dB re
1 puPa’ s) (Kastak er al. 2005). When making this compar-
ison, it is important to highlight that shipping noise in the
current study was generally below this frequency, but
studies investigating TTS have not included lower fre-
quencies. Nevertheless, this demonstrates the importance
of propagating uncertainty in predictive modelling of ves-
sel noise, particularly close to the coast where sound
propagation can be highly variable. There is a degree of
uncertainty in the TTS estimates as published TTS values
(Kastak er al. 2005) were based on unweighted cSELs,
whereas our predicted cSELs were M-weighted; for a dis-
cussion of the implications of applying different weighting
systems during the data collection and subsequent predic-
tion stages, see Tougaard, Wright & Madsen (2015).
However, as the signals used to derive TTS estimates
(2:50 and 3-53 kHz) in Kastak ef al. (2005) were within
the functional hearing range of seals as defined by South-
all et al. (2007), they effectively had an M-weighting of
0 dB, making our comparisons valid. While the definition
of injury from exposure to noise is not written into law,
guidance regarding European Protected Species (EPS)
only refers to permanent shifts in hearing thresholds of
cetaceans. TTS would not be considered to be an injury
under EPS, and in this context, the definition is transfer-
able to seals. However, where high levels of noise have
been identified, the acoustic modelling approach presented
here could be used further to test the potential effective-
ness of pragmatic mitigation measures. For example, the
impact of rerouting shipping lanes or speed restrictions at
different levels (Bagocius 2014; Merchant et al. 2014) in
these areas could be modelled so that predicted sound
levels received by individuals (assuming consistent beha-
viour) are reduced to acceptable limits. Although high
spatial co-occurrence was present in the Moray Firth, by
comparison with other areas around the British Isles, it
has relatively less intense shipping traffic. Predictions of
exposure to ship noise are likely to be considerably higher
in other areas where very high intensities of spatial over-
lap occur for one or both species of seals (e.g. daily rate
>1000) such as Orkney, Shetland, north-east Scotland,
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cast and south-east England, west Scotland and north
Wales. The framework could also be used to identify the
potential consequences of changes in shipping traffic. This
is particularly relevant to areas that currently experience
lower levels of anthropogenic noise where ecosystems may
undergo relatively large changes if shipping traffic
increases.

Auditory masking of biologically significant sounds for
seals is a potential risk, defined as the amount by which
the audibility threshold for one sound is raised by the
presence of another (Moore 1982). This may be particu-
larly important where higher levels of sound above ambi-
ent noise are estimated in and around SACs, designated
due to their importance for breeding. Vocalisations, which
overlap in frequency with shipping noise appear to play a
role in harbour seal reproduction, through male—male
competition or advertisement to females (Hanggi &
Schusterman 1994; van Parijs, Hastie & Thompson 2000).
A reduction in the ability of seals to detect these calls has
the potential to lead to biologically significant effects.
Furthermore, behavioural responses by seals to anthro-
pogenic sound (e.g. Russell ez al. 2016) have the potential
to lead to avoidance of important foraging habitats with
possible impacts on energy acquisition by individuals.
However, paucity of empirical studies on behavioural
responses by seals to shipping noise means that impacts
associated with avoidance have not been quantified in the
current study. This remains a clear data gap when consid-
ering the potential risks posed by shipping to seal popula-
tions. Although our results do not suggest an acute effect
on individuals, where populations are affected (90%
decline in harbour seals in some regions over the last
15 years; Duck & Morris 2016) by other stressors, cumu-
lative impacts may have a significant effect.

Identifying levels of risk of marine stressors for spatial
planning is a focus of legislation in the EU (European
Commission 2008). EU member states are required to
manage the marine environment to ensure ‘Good Envi-
ronmental Status’ (GES), but given the paucity of infor-
mation on population or ecosystem level effects of
underwater noise (descriptor 11 of MSFD), measuring
whether GES is being achieved remains challenging. The
framework presented here offers a basis to begin assess-
ing GES by identifying areas where high levels of noise
coincide with areas of greatest usage by sensitive species.
This provides evidence for further investigation and the
application of mitigation measures (Bagocius 2014; Mer-
chant er al. 2014). Here, we demonstrate areas where
high rates of co-occurrence between seals at-sea and ship-
ping coincide with SACs; designated to protect these spe-
cies at a population level during important periods of
their life history through the Habitats Directive. To man-
age this risk and develop properly targeted mitigation
solutions, there remains a need to improve understanding
of the implications of cumulative exposure to elevated
ambient noise levels for both individual- and population-
level eftects.
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FUTURE RECOMMENDATIONS

We describe a framework to identify risk of exposure to
marine species populations from shipping traffic, through
spatially explicitly calculating rates of co-occurrence
between animals and vessels. We then predict exposure to
individuals using acoustic models to estimate mean SPL
and cSEL(M,,,) with associated uncertainty. Where there
are increasing populations of animals combined with a
growing volume of ship traffic, spatial co-occurrence can be
used to identify new regions of overlap. In areas where
levels of noise exposure to individuals are above acceptable
thresholds, the framework could inform mitigation mea-
sures to reduce noise to tolerable levels. However, there
remains a need to investigate the impact of elevated noise
exposure on avoidance behaviour of individuals. To under-
stand the long-term implications of exposure to noise from
shipping, targeted studies to assess the effects on individual
survival and reproductive parameters in areas with quanti-
fied but differing levels of shipping would be useful.
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Appendix S1 - Usage maps

Seal at-sea usage maps
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Fig. S1. (a) Grey and (b) harbour seal at-sea usage maps showing number of
seals in each 5 km x 5 km grid cell, scaled to 2013 population levels, adapted from
Fig. 4; Jones et al. (2015). Global Self-consistent, Hierarchical, High-resolution
Geography Database (GSHHG) shoreline data from NOAA were used to represent

land, available from http://www.soest.hawaii.edu/pwessel/gshhg/.
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Ship usage maps

AITS shipping data were processed to produce daily ship usage by vessel type.

Table S1. Vessel transit termination codes, extracted from Table 3; MMO (2014).

Code Transit termination reason

0 End of the period of the input dataset.

1 Position outside the national area of interest.

2 Contact lost.

3 Intermittent contact (position reports greater than 10 minutes apart,
start of an inferred transit).

4 Intermittent contact finished, normal contact restored (end of an
inferred transit).

5 Normal transit termination, which includes speed over ground falls
below 0.2 knots for more than 5 minutes.

6 Quality Assurance (QA) checks on consecutive positions result in

repeated invalid points and therefore a termination of the transit line.

Table S2. Summary of AIS shipping data processing, adapted from MMO (2014).

e Decoding and sorting of AIS signal (positional reports and

voyage information).

Stage 1
e Associating ship static and voyage information with positional
reports for each vessel.
e Identification of vessel transits.
e Quality assurance of vessel transit lines.
Stage 2

e Transit simplification.

e Identification and reporting of vessel AIS processing statistics.
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e Plotting of vessel transits in GIS.

e Spatial QA of transit lines to remove overland transit segments.

e Identification of vessel transit start/finish points within regional

Stage 3
zones.
e Validation and correction of vessel information against a third
party vessel statistics database.
e Calculation of Vessel Transit Classification (VTC).
e Creating density grids.
Stage 4

e (Calculating temporal differences.

e (Calculation of regional shipping statistics.

Table S3. AIS data vessel groupings, adapted from MMO (2014).

Group Type Description Usage
0 Unknown 6%
1 Non-Port service craft Search and rescue vessels, towing, 1%
medical transports, ships according
to resolution no. 18, other special
craft.
2 Port service craft Pilot vessels, tugs, port tender and 3%
vessels with anti-pollution facilities
or equipment.
3 Vessels engaged in Vessels engaged in dredging or 2%
dredging or underwater = underwater operations, vessels
operations engaged in diving operations.
4 High Speed Craft 2%
) Military or law 1%
enforcement vessels
6 Passenger vessels 9%
7 Cargo vessels 48%
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8 Tankers 18%

9 Fishing™* Fishing vessels. 8%

10 Sailing and Pleasure Pleasure craft, sailing vessels. 2%
craft

*Fishing vessels are not required to carry AIS beacons. As a result AIS data may
not be a fully accurate representation of fishing activity. All fishing vessels > 15 m

are required to carry Vessel Monitoring System (VMS) beacons.
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Fig. S2. Mean daily ship usage in 2012 showing the mean number of vessel transits
in each 5 km x 5 km grid cell (e.g. red denotes between 50 and 100 vessel transits

within a grid cell in one day).
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Processing ship and seal usage maps to calculate spatial

COo-occurrernce

Ship and seal usage maps were assessed to ensure they could be compared. Ship
usage maps were scaled from 2 km x 2 km resolution to the same 5 km x 5 km
resolution as the seal at-sea usage maps implementing ‘Spatial Overlay’ with
averaged proportionality using Manifold v8.0.29.0 (Manifold Software Limited
2015). Both data layers were originally projected in Universal Transverse Mercator
30° North, datum World Geodetic System 1984 (UTM30N WGS84) and this
projection was used for subsequent analysis. The spatial extent for the comparison
was defined by the ship usage maps. Density surfaces by vessel type were
aggregated and the resulting weekly density was divided by 7 to give daily ship
usage (Fig. S2). Usage maps were produced for shipping traffic throughout 2012.
Population data for seals were collected in August each year. Therefore, seal
usage maps were scaled to the most contemporary seal population estimate in
2013. Here, we estimate overlap based on the mean temporal distribution of
seals and ships (i.e. mean over the year). Seal at-sea usage maps used movement
data available over many months and years, analogous to their long-term marine
distribution, but not accounting for significant lifecycle events such as breeding and
moulting that occur primarily on land. Likewise, ship usage maps were produced
as a mean daily distribution, and seasonality was accounted for by sampling AIS

data throughout the year.

Appendix S2 — Modelling acoustic exposure

Ship source levels

Source levels (SL) of noise from ships were estimated by third-octave frequency
band (f; Hz) from ship length (I; ft) and speed (v; kt) using the Research Ambient
Noise Directionality 3.1 model (Breeding et al. 1996). Mean ship speed (v =
4.26 kt) and length (I = 185.24 ft) were calculated over all available ship data.

SL (f,v,1) = L(f) + 60 logy, (v/D) + 20 logyo (I/1) + df.dl + 3 (S1)
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0 <f <284 df =81
. (52)
f>284 df =223 - 9.77 logy, (f)
dl = 117 /3643 -
L(f) = f <500 L(f)=-10 10g10(10_1-06 logyo f~14.34 4 1()3.32 logyg f—21.425()s4)
f= 900 L(f)=173.2— 18 log,o(f)

Transmission loss

Transmission loss in shallow water and associated uncertainty were calculated
using spherical and cylindrical spreading models (Marsh & Schulkin 1962), based
on empirical measurements in shallow water in the frequency range 0.1 — 10 kHz.
The equations use spherical spreading for short ranges and cylindrical spreading
at long ranges. Estimates of k; and ar in shallow water from Marsh & Schulkin
(1962), reproduced in Urick (1983) were used where sea state was assumed to be
2 on the Beaufort scale, and primary sediment was sand (Table S4). Uncertainty
in transmission loss was modelled using data from the semi-interquartile error
estimates (Table S5), also from Marsh & Schulkin (1962), reproduced in Urick
(1983).

Table S4. Estimates for near-field anomaly and attenuation coefficient in shallow
water by frequency assuming Beaufort sea state 2 and sand sediment (Marsh &

Schulkin (1962), reproduced in Urick 1983).

Frequency (f; kHz) kr; dB ar; dB

0.1 7.0 1.0
0.2 6.2 1.3
0.4 6.1 1.6
0.8 5.9 1.9
1.0 5.7 2.1

2.0 4.2 3.1
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Frequency (f; kHz) ki; dB ar; dB

4.0 3.6 3.7
8.0 2.9 4.5
10.0 2.7 4.8

Table S5. Error estimate in transmission loss by range and frequency, assuming
Beaufort sea state 2 and sand sediment (Marsh & Schulkin (1962), reproduced in
Urick 1983).

Range (R; km) Frequency (f; kHz)

0.112 0.446 1.12 2.82
2.7432 2 4 4 4
8.2296 2 4 5 6
27.432 4 9 11 11
54.864 5 9 11 12
82.296 6 9 11 12
Appendix S3 — Sound exposure levels for
individuals

Predicted mean cumulative sound exposure levels, ¢SEL(M,), and associated
95% confidence intervals were calculated for each individual over a typical 24-
hour period (Fig. S3). Mean maximum cSELs(M,,,) for each individual ranged
from 170.2 dB re 1uPa? s (CI 95% 168.4, 171.9) to 189.3 dB re 1uPa? s (CI 95%
172.6, 206.0).
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Appendix S4 — Validating acoustic predictions

with underwater sound measurements
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Fig. S4. AIS shipping density in the Moray Firth study area, labelled (1,2,3,4)
SM2M sound recorders (white circles), and plots of SPL for measurements vs.
predictions (black points) with 95% CI (pale grey lines). The red lines delineate

accordance.

Appendix S5 — Caveats and limitations

AIS data have been shown to effectively characterise shipping noise (McKenna,
Wiggins & Hildebrand 2013; Merchant et al. 2014, 2016; Farcas, Thompson
& Merchant 2016). These data represent vessels > 299 gross tonnes and all
passenger vessels, and smaller vessels such as fishing fleets that are arguably
likely to contribute to close-to-coast underwater noise are under-represented.
Spatial overlap and noise level predictions presented here may be underestimated

in coastal waters, quantified by the disparity between acoustic predictions and
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measurements (Appendix S4). Although the assumed relationship between ship
speed and broadband source level (Breeding et al. 1996) breaks down for bulk
carriers and container ships (McKenna et al. 2012), McKenna, Wiggins &
Hildebrand (2013) showed that speed and length covariates remain significant
when modelling ship noise production levels. Information about vessel loads,
propeller type, or year of build, which can all potentially affect ship noise
production levels should be included in future modelling. Source characteristics
may also have been underestimated given that directivity of sound emissions from
ships can be highly variable; for example, the level of stern aspect noise from vessels
can be 8 — 12 dB higher than bow aspect noise (over frequency range 160 Hz to
4 kHz; Trevorrow, Vasiliev & Vagle 2008). Noise levels were propagated from the
middle of the water column so the diving depth of seals or change in propeller depth
(unloaded ships have a shallower depth of propeller, radiating less noise) could not
be accounted for explicitly. Vessels with speeds of 0 knots were excluded but we
could not distinguish vessels that were moving at low speeds under way from those
that were at anchor but moving with the tide because AIS data did not provide
this information reliably. Sound propagation in shallow water environments can
be highly variable due to complexity in hydrography and bathymetry, and the
effects of weather and tidal currents. Model validation has shown that spreading
law models such as those used here can underestimate sound levels close to the
source and overestimate sound levels further from the source (Farcas, Thompson
& Merchant 2016). However, balancing computational constraints with model

complexity prohibited the use of more sophisticated acoustic models.

Ship usage was derived from 42 days of tracking data throughout 2012, and seal
at-sea usage was scaled to a population estimate in August 2013, providing the
most contemporaneous temporal alignment between the two datasets. Shipping
lanes are well-defined and although the volume of ship traffic can vary year-by-
year, the routes of these vessels generally do not. We conducted the spatial overlap

analysis using vessel densities in 2011, which produced similar results (Appendix

S6, Fig. S5).
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Appendix S6 — Spatial co-occurrence using 2011

ship usage maps

Spatial co-occurrence was calculated between seal at-sea usage maps (Jones et
al. 2015) and ship usage maps generated from AIS data in 2011 (MMO 2014),
available to download from https://data.gov.uk/dataset/mmo1066-vessel-
density-grid-2011. AIS data were sampled at two-month intervals throughout
2011, from the first 7 days of per month commencing with January. Results showed
that similar spatial patterns arise when ship usage in 2011 and 2012 were used
(Fig. S4). This demonstrates that between these years, inter-annual fluctuation

in vessel density is minimal on the broad-spatial scale considered in these analyses.
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Fig. S5. Estimated number of daily co-occurrences around the UK in 2011 between
vessels and (a) grey seals; (b) harbour seals. Ship usage maps were available in a

reduced study area for 2011, which did not extend to northern Scotland.
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Comparing geographically referenced maps has become an important aspect of spatial ecology (e.g.
assessing change in distribution over time). Whilst humans are adept at recognising and extracting struc-
ture from maps (i.e. identifying spatial patterns), quantifying these structures can be difficult. Here, we
show how the Structural Similarity (SSIM) index, a spatial comparison method adapted from techniques
developed in computer science to determine the quality of image compression, can be used to extract
additional information from spatial ecological data. We enhance the SSIM index to incorporate uncer-
tainty from the underlying spatial models, and provide a software algorithm to correct for internal edge
effects so that loss of spatial information from the map comparison is limited. The SSIM index uses a
spatially-local window to calculate statistics based on local mean, variance, and covariance between the
maps being compared. A number of statistics can be calculated using the SSIM index, ranging from a single
summary statistic to quantify similarities between two maps, to maps of similarities in mean, variance,
and covariance that can provide additional insight into underlying biological processes. We demonstrate
the applicability of the SSIM approach using a case study of sperm whales in the Mediterranean Sea and
identify areas where local-scale differences in space-use between groups and singleton whales occur.
We show how novel insights into spatial structure can be extracted, which could not be obtained by
visual inspection or cell-by-cell subtraction. As an approach, SSIM is applicable to a broad range of spatial

ecological data, providing a novel, implementable tool for map comparison.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction because the human visual system excels at recognising struc-
ture in these familiar and intuitively read images. However, visual
interpretation of spatial patterns in such maps is subjective (Da

Silva-Buttkus et al., 2009), which can be further complicated by

Ecological systems typically exhibit spatial heterogeneity aris-
ing from underlying processes that influence species occurrence,

abundance, and diversity. Characterising spatial heterogeneity, and
changes toit, are essential to understanding the structure of ecolog-
ical systems (Fortin and Dale, 2005). Spatial ecological data range
from spatially discrete events or individuals, represented as basic
plots of locations in space referenced by a point (e.g. vegetation
assemblages in geographical space, Penttinen et al., 1992), to dis-
tributions of species across habitats, characterised by continuous
density maps (McKinney et al., 2012). Geographically referenced
maps are an effective way to convey complex spatial information

* Corresponding author at: Sea Mammal Research Unit, Scottish Oceans Institute,
University of St Andrews, St Andrews KY16 8LB, United Kingdom.
E-mail address: el298@st-andrews.ac.uk (E.L. Jones).

http://dx.doi.org/10.1016/j.ecolind.2016.05.051

the characteristics of the mapped data, such as scale (e.g. grain
and extent) and the particular cartographic representation used
(e.g. projection, colour, symbology) (MacEachren, 1995). Therefore,
methods have moved towards objectively quantifying the patterns
observed in mapped data to produce consistent and repeatable
analyses (Fortin and Dale, 2005).

The comparison of two (or more) geographically referenced
maps aims to characterise differences in spatial heterogeneity and
structure, and calculate defined spatial metrics between them. The
problem of map comparison (Jacquez, 1995) has been studied for
decades by geographers (Tobler, 1965), as well as ecologists (Levine
et al.,, 2009). There are many ecological applications where map
comparison can lead to new insights. Ecological data often have
intrinsic properties that make them challenging to compare spa-

1470-160X/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tially: data tend to be continuous-valued (e.g. spatially explicit
model predictions) and have underlying spatial dependencies (e.g.
neighbouring cells are not independent). However, there are few
established spatial comparison techniques documented in the eco-
logical literature directly relating to the type of problems outlined
above, as available methods generally only address one or other of
these properties.

In recent years, emphasis has been placed on comparisons of
mapped categorical data (Hagen-Zanker and Lajoie, 2008) and
methods for assessing spatial structure in maps of continuous val-
ued data or spatially explicit model predictions on a regular spatial
lattice remain limited in both scope and sophistication (Hagen-
Zanker, 2006a). Cell-by-cell comparisons and non-spatially explicit
indexes weighted by grid cell are widely used in remote sensing, but
do not account for spatial dependencies between cells (Horn, 1966;
Leitdo et al., 2011). Likewise, Moran’s I or Geary’s C tests (Cliff and
Ord, 1970) assess spatial autocorrelation but provide single indices
across space, which do not retain locational information. Metrics
used to investigate niche similarity between species distributions
predicted with Environmental Niche Models also lose spatial infor-
mation to give a single measure of overlap or equivalency (Warren
et al., 2008). Overlap indices and tests for spatial autocorrelation
measure only one form of spatial structure in the data, and this
may not be sufficient for the ecological question being posed.

A Structural Similarity Index (SSIM index) was proposed origi-
nally by Wang et al. (2004) for comparing compression techniques
used in digital imaging (e.g. JPEG compression). The index uses a
spatially-local moving window to generate independent compo-
nents relating to local similarities in the mean, variance, and spatial
correlation between the two maps being compared. SSIM can assess
continuous data and simultaneously considers local magnitude and
spatial structure, making it suitable to be adapted for the applica-
tion of comparing spatial ecological data. Map comparison methods
to ecological problems should allow uncertainty associated with
the data or model predictions to be included in the map compar-
ison to aid interpretation. Ecological maps often have uncertainty
estimates associated with each grid cell when values are obtained
using spatially explicit predictive models (Rocchinietal.,2011),and
these should be incorporated in a map comparison approach. Addi-
tionally, local statistics such as the SSIM index are susceptible to
edge effects arising from the use of a spatially local neighbourhood
(Boots, 2002). Edge effects (i.e. the inclusion of null areas outside
the study) are exacerbated by irregularly shaped boundaries caused
by arbitrarily shaped administrative units or geographical features
(e.g. islands). These may or may not influence the spatial process
under study. Ecological processes often change on or near bound-
aries (Wiensetal., 1985), for example, the boundary of the Antarctic
Circumpolar Current affects the surrounding marine ecosystem
(Tynan, 1998), and so these areas can be of specific interest. There-
fore, we propose two enhancements to the SSIM index to address
common issues faced in spatial ecological analysis by incorporat-
ing uncertainty associated with the underlying data into the map
comparison, and correcting for edge effects. We demonstrate use
of the SSIM methodology and our enhancements by applying them
to a case study to compare habitat preference by groups and sin-
gletons of sperm whales (Physeter macrocephalus, Linneaus 1758)
in the Mediterranean Sea (Pirotta et al., 2011).

2. Methods
2.1. Map comparison
Consider two continuous valued maps (A and B) each repre-

sented as regular grids. For each cell, a local neighbourhood is
defined by (n) neighbouring spatial units given a weighting (w).

The size of the neighbourhood is user-defined, has a lower limit of
3 x 3 cells and can take any non-even value. Wang et al. (2004)
proposed the use of a (circular) Gaussian weighting function of
w={w;li=1,2...,n where w; is obtained from a Gaussian ker-
nel centred on the focal cell. The standard deviation, o = n/3, is
normalised so that £ w; = 1.

The index iiterates through all n cells within each local region
to produce means and variances for each map as well as covariance
between the two gridded maps.

n
Ma = Zwiai (1)
i=1

oF = Zwi(ai ~ 1ta)? (2)
i=1
oy = Y _wi(a; — 1ta) (bi — 11p) (3)

i=1

Ma, olf, and oy, represent spatially local measures of mean,
variance and covariance, computed for each cell, where g; andb;
represent the values in cell i for maps A andB respectively. The
three components of the SSIM method are then calculated from
these statistics, giving spatially local measures of similarity in the
mean, variance, and covariance of the two maps.

2altp +C1 4)

SIM (A, B) =
1+ pp +

SIV (A, B) = M (5)
(e +Ub +C2

SIP(A, B) = Oab+C3 (6)
04q0p +C3

The statistics are named Similarity in Mean (SIM), Similarity
in Variance (SIV), and Similarity in Pattern (SIP) of spatial covari-
ance, so that they can be interpreted intuitively in ecological terms
(Table 1). Constants (c;—c3) are used in equations (4)—(6) to aid sta-
bility when the denominators of the equations, sum of the squared
means (uﬁ + Mi) sum of the squared variances (03 +a§). and
product of the standard deviations (o40}) are close to 0. Follow-
ing guidelines proposed by Wang et al. (2004), the constants can
be estimated heuristically from the range of values of the underly-
ing maps being compared (R) together with k;=0.01 and k,=0.03.
Therefore, ¢ =(k1R)?, ¢ =(koR)?, and c3 =c,/2.

An overall measure for comparison can be computed as the
product of all three components.

SSIM(A, B) = [SIM(A, B)]* - [SIV(A, B)]? - [SIP(A, BY" ] (7)

Constants ¢, B, y can be used to weight individual compo-
nents in SSIM and can take any value where (¢ > 0, 8 > 0, y > 0).
Default values of « = 8 = y = 1 are used for the case study below.
The overall comparison measure meets the following criteria:
(1) symmetry: SSIM (A, B) = SSIM (B, A); (2) boundedness: —1 <
SSIM (A, B) < 1; and (3) unique maximum: SSIM (A, B) = 1ifA = B.
SSIM is bounded by (—1,1) where —1 indicates complete dissimi-
larity between the spatial structure of the underlying maps, and 1
shows the maps are identical (Table 1). Similarity in pattern (SIP)
of spatial covariance is of interest to ecologists because it reveals
differences in spatial structure that are difficult to capture visu-
ally or through simple comparison methods such as direct map
subtraction. In the context of species distribution models, low val-
ues (SIP — —1) will show local-scale differences in space use that
may indicate underlying mechanisms such as competitive exclu-
sion, niche partitioning, or habitat segregation, whereas high values
(SIP— 1) could indicate areas where direct competition or some
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Description of local statistics calculated in SSIM index, using pairs of images (maps A and B) to demonstrate high and low similarity. The interpretation column provides a
general ecological interpretation of each metric using the case example of one species in Map A and a different species in Map B.

(SIP) of spatial
covariance

covariance to the
product of the local
standard deviations.

B has high values in alternate cells. Spatial
correlation is negative (e.g. species exhibit
spatial partitioning).

0=Map A and B exhibit no spatial correlation
(e.g. species distributions are independent).

1=Map A and B have high and low values in
the same cells. Spatial correlation is positive

Index Description Bounds Interpretation Map A Map B
Similarity in means Ratio of twice the (0,1) 0=Map A has high values; map B low values.
(SIM) product of the local The means are dissimilar (e.g. species have
means to their different local abundances).
summed squares.
1=Both maps A and B have similarly high (or
low) values (e.g. species have similar local
abundances).
Similarity in variance Ratio of twice the 0,1) 0=Map A has high variance; map B low
(SIV) product of the local variance. The variances are dissimilar (e.g. one
standard deviations to species is spatially clustered, the other has a
their summed homogeneous distribution).
variances.
1=Both maps A and B have similarly high (or
low) variance (e.g. both species have similar
degrees of spatial clustering, or both have
homogeneous local distributions).
Similarity in pattern Ratio of the local (-1,1) —1=Map A has high values in some cells; Map E ﬁ

(e.g. species are using the same resources, or
have predator-prey interactions).

form of ecological interaction, such as predation, are occurring. The
means of each metric can be calculated to produce summary statis-
tics (SIM, SIV, SIP) if required. The mean of SSIM (SSIM ) will provide
an overall metric of map comparison, capturing the similarities
between means, variances, and covariance in a single value.

The mean and variance of each grid cell in the underlying maps
are resampled to generate a series of realisations (N). SSIM statistics
are calculated for each set of realisations (1---N) of the two maps
being compared. A variance-adjusted measure of SSIM is calculated
by taking the mean of each statistic over the resulting comparisons.
Upper and lower 95% confidence limits of the statistics can be cal-
culated from the mean and variance of the sampled comparisons.
To correct for edge effects, a reflection algorithm is implemented
to generate synthetic buffers and ensure the spatial extent of the
map comparison is preserved (Appendix A in Supplementary).

2.2. Case study: sperm whales in the Mediterranean

2.2.1. Introduction

In the Mediterranean, a small population of sperm whales per-
sist. Sperm whales show sexually dimorphic behaviour as adults:
males become increasingly solitary as they mature, and segregate
from long-term social units of adult females and their offspring,
excepting short term associations for mating purposes (Whitehead,
2003). It is unclear what drives this segregation and hypothe-

ses include: groups of females outcompeting solitary males when
exploiting mid-water squid patches, males and females having dif-
ferent dietary and hence habitat preferences, or higher male growth
rates that require wider search areas to locate high prey densi-
ties (Whitehead, 2003). Understanding habitat use in areas where
both sexes co-occur is of obvious interest with respect to these
hypotheses. Pirotta et al. (2011) predicted habitat preferences of
sperm whales in the waters around the Balearic archipelago in
the Mediterranean Sea. In this area both groups (assumed to be
female social units) and singleton whales (assumed to be males)
were regularly observed, suggesting a breeding ground. Measures
of uncertainty around the estimated probability of occurrence
were obtained from the modelling process to characterise vari-
ance around the mean estimate in each grid cell. Uncertainty arises
in all ecological models and could result, for example, from sam-
pling design and data collection, the resolution of environmental
variables used in the model, modelling process, or the dynamic
nature of species’ distribution (Rocchini et al., 2011; Tessarolo
et al, 2014). The SSIM index and our enhancements can be imple-
mented accounting for any sources of uncertainty. Here, we use
habitat preference maps and associated uncertainty to compare
spatial patterns of use between assemblages. We demonstrate that
the proposed map comparison methodology can quantify differ-
ences in the local spatial patterns observed between the maps and
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Fig. 1. Predicted probability of occurrence for both social assemblages: (a) groups; (b) singletons (c) variance in group presence; and (d) variance in singleton presence. (a)
and (b) are modified from Pirotta et al. (2011). Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) shoreline data from NOAA were used,
available to download from http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.htmlhttp://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html.

provide novel biological insights not readily apparent from visual
assessments alone.

2.2.2. Data

The study area was located from 38 to 41°N and 0.5-5°E, centred
on the islands of Ibiza, Mallorca and Menorca (Fig. 1). Informa-
tion on sperm whale occurrence was collected during dedicated
summer research cruises covering the waters around the Balearic
archipelago. Each cruise lasted for approximately a month and
was repeated over 6 consecutive years (2003-2008). Whales were
located and tracked acoustically from their echolocation clicks,
and an encounter was defined as a period of continuous acous-
tic contact with one or more animals. Pirotta et al. (2011) used a
Generalised Additive Modelling (GAM) approach to model sperm
whale occurrence as a function of several environmental and tem-
poral predictors, combined with Generalised Estimating Equations
(GEEs) to account for autocorrelation in the residuals. Further
details on the environmental datasets and analytical approach can
be found in Pirotta et al. (2011) and are summarised here: Separate
analyses were carried out for singletons and groups to determine
whether habitat preference was characterised by different extrinsic
drivers. The final model for sperm whale groups included latitude,
longitude, weekly sea surface temperature (SST) and slope gra-
dient. For singletons, latitude, longitude, year, monthly SST and
slope aspect were retained by model selection. The authors noted

qualitatively different spatial patterns emerging for the two social
assemblages in the final prediction maps, quantitatively supported
by an inverse relationship with SST, and suggested that these might
be the result of fine-scale habitat segregation.

2.2.3. Analysis

The predicted probability of presence of groups and singletons,
and corresponding estimates of variance were mapped at a spatial
resolution of 2 nautical miles (NM) on a regular grid. To calcu-
late SSIM statistics, the size of the local neighbourhood for both
maps should be defined by taking the nature of the underlying data
and ecological process in question into account. Lewis et al. (2007)
examined the nearest-neighbour distances between sperm whales
in the Mediterranean Sea using a similar acoustic survey approach
to data used in Pirotta et al. (2011) and found that animals defined
as belonging to a ‘cluster’ mostly had an upper limit of 2.7 NM of
perpendicular distance between them, whereas dispersed (single-
ton) animals were separated by distances beyond this threshold.
The size of the local neighbourhood was defined in a 3 x 3 (n=9)
cell window (6 NM x 6 NM), such that the edge of the window was
at least 2 NM (1 grid cell) from any animals encountered in the cen-
tre cell. A circular Gaussian weighting kernel (w={w; |i=1,2...,9})
with a standard deviation (o =n/3) was set to 3 NM. Sensitivity
tests were applied to verify that varying the size of local neighbour-
hood and using a Gaussian weighting kernel did not affect results
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Fig. 2. Map comparison between the predicted probability of occurrences of group and singleton sperm whales. A reflection algorithm was used to counteract internal edge
effects: (a) Similarity In Means (0-1); (b) Similarity In Variance (0-1); (c) Similarity In Pattern of spatial covariance (-1 to 1); and (d) Structural Similarity index (-1 to 1).

from the case study (Section 2.2.4 and Appendix B in Supplemen-
tary). Uncertainty from the underlying data was included in the
map comparisons using parametric bootstrapping. Samples from a
multivariate normal distribution were generated using model coef-
ficients and each covariance matrix to produce 500 realisations of
model coefficients for the group and singleton models. These were
used to predict 500 sets of probabilities for the group and single-
ton models. SSIM statistics were calculated for each pair of maps
generated from bootstrapped data. Mean and variance of predicted
probabilities in each grid cell were taken for each statistic (SIM,
SIV, SIP, and SSIM). All analysis was conducted using the statistical
software package R (R Core Team, 2014), and code and data used
for calculating the SSIM index can be obtained from Appendices C
and D in Supplementary respectively.

2.2.4. Sensitivity testing

Sets of sensitivity tests were conducted to demonstrate how
varying specific (user-defined) parameters could potentially affect
results of the map comparison analysis for the sperm whale data:
(1) A circular Gaussian weighting kernel was applied to the local
neighbourhood window vs. no weighting; (2) the size of the local
neighbourhood was varied, using 3 x 3, 5 x 5, and 7 x 7 grid cells;
and (3) areflection algorithm to correct for edge effects was applied
vs. no edge correction. For Gaussian weighting tests, the size of the
local neighbourhood (w) was setat 3 x 3 grid cells and the reflection
algorithm was implemented. For local neighbourhood tests, Gaus-
sian weighting and the reflection algorithm were applied. For edge

effects tests, the size of the local neighbourhood (w) was setat 3 x 3
grid cells and Gaussian weighting was applied. In all tests, o =n/3
and only mean values from the underlying maps being compared
were used. SSIM statistics were calculated for each set of tests and
means and variances of each statistic (SIM, SIV, SIP, SSIM) were cal-
culated to provide summary statistics. Welch two-sample t-tests
were used to compare the SSIM statistic for each set of tests.

3. Results

SSIM was used to compare the predicted probability of occur-
rence between groups and singleton sperm whales (Fig. 2). Fig. 2a,
showing similarity between the local means (SIM), aligns with
visual differences seen between the underlying maps (Figs. 1a and
b). Areas where SIM is close to 1 (yellow) are found in regions of
the study area where habitat preference is high for both social
assemblages (east and south of Mallorca, and east and south of
Formentera), or low for both social assemblages (north-west of
Mallorca). Values of SIM close to 0 (red) denote areas where one
social assemblage has low habitat preference and the other has
high habitat preference. An example is to the north of Menorca,
where fewer data were collected: the sperm whale group model in
particular was subject to sampling bias, resulting in a high estimate
for habitat preference, whereas predicted probability of occurrence
for singletons was low (Pirotta et al., 2011). Fig. 2b shows similarity
in local variance (SIV) between the maps. Values close to 1 (yel-
low) show areas where assemblages have similar variance in the
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probability of occurrence, and values close to 0 (red) show areas
where the variance is different. For example, the area to the north
of Menorca shows a transition zone where groups and singletons
are using space differently—groups have heterogeneous, sporadic
space use (i.e. high variance), singletons are utilising space in a
consistent, homogeneous way (i.e. low variance). Fig. 2c shows the
similarity in patterns (SIP) of spatial covariance between the maps.
The SIP metric is the most difficult to capture through visual com-
parison of habitat use between groups and singletons (c.f. Figs. 1a
and b). Values close to 1 (yellow) denote local regions where the
spatial structure between predicted probability of occurrence of
groups and singletons is similar, meaning grid cells with relative
high and low variance are in the same locations in each underlying
map. Underlying mechanisms of direct competition for resources
could be occurring, for example to the north, east and west of
Menorca, and north and west of Mallorca. Values close to —1 (red)
indicate areas where local spatial structure is dissimilar, suggesting
spatial partitioning may be occurring (north of Menorca in the tran-
sition zone discussed previously, and the southern edge of the study
area). Fig. 2d shows SSIM, which is the product of the other three
statistics. Differences in spatial structure detected in SIV (Fig. 2b)
and SIP (Fig. 2c) at the southern edge of the study area remain
apparent in the SSIM index. Some spatial structural similarities
seen throughout Figs. 2a—c to the north-west and east of Mallorca,
and south-east of Formentera are also retained in SSIM. The mean

value of SSIM was calculated (SSIM = 0.22), showing positive spatial
structure between the underlying maps.

Results incorporating uncertainty from the underlying maps
into the comparison calculation are provided in Fig. 3, and show
similar inferences to those in Fig. 2, although each of the four
comparison metrics exhibit less extreme values. An area of par-
ticular interest is south of Mallorca (Fig. 3c), where SIP is close
to —1 (red), characterising different spatial patterns in habitat use
between groups and singletons. Fig. 4 focuses on this area, which is
situated over the continental slope and has previously been iden-
tified as a feeding ground for sperm whales (Gannier and Praca,
2007; Gannier et al., 2002). Although Fig. 4a shows that both social
assemblages have similar (high) habitat preference (SIM is close to
1), there is strong negative SIP in specific areas (Fig. 4c), indicat-
ing local-scale spatial partitioning between groups and singletons.
These patterns occur mostly along bathymetric contours at depths
ranging between 1000 to 2000 m. The spatial structure can be seen
in SSIM (Fig. 4d).

The results of sensitivity tests are shownin Table 2 (visual results
are available in Appendix B in Supplementary). When comparing
Gaussian weighting vs. no weighting, there was no significant dif-
ference in SSIM (t=0.06, p-value = 0.95). By varying the size of the
local neighbourhood between 3 x 3 and 5 x 5 grid cells SIV and SIP
show differences (calculated from the variance and covariance in
the underlying maps being compared), leading to a significant t-test
result when comparing SSIM (t =4.14, p-value <0.00005). Likewise,




Table 2

Results determining sensitivity of the SSIM index when user-defined parameters were varied: applying Gaussian weighting to the local neighbourhood vs. no weighting; varying the size of the local neighbourhood; and

implementing the reflection algorithm vs. not countering for edge effects.

t-test on SSIM

SIP SSIM

SIV

SIM

Parameters

Sensitivity analysis

t; p-value

Upp
95%Cl

Low

Upp Mean

Low

Upp Mean Low Upp Mean

Low

Mean

95%Cl

95%Cl

95%Cl

95%Cl

95%Cl

95%Cl

95%Cl

0.218 -0.293 0.729 0.06; 0.95
-0.294

1.434
1.435

1.313 0.654 -0.127
-0.130

0.169
0.167

0.741

1.048
1.048

-0.183
-0.183

0.432

Gaussian weighting

Weighting

1.313 0.652 0.218 0.729

0.740

0.432

No Gaussian weighting

4.14; 0.00

0.729

1.434 0.218 -0.293
-0.284
-0.279

1.362
1314

-0.127
-0.229

0.169 1.313 0.654
-0.284

0.104
0.063

1.048 0.741

1.041
1.039

-0.183
-0.174
-0.169

0.432

3 x 3 cells

Local neighbourhood

0.666

0.191

0.567

1.308
1.306

0.706
0.684

0.433

5 x5 cells
7 x 7 cells

0.633

0.177

0.515

0.435

2.34; 0.022

0.218 -0.293 0.729 0.79; 0.43
-0.287

1.434
1.427

0.169 1.313 0.654 -0.127
-0.150

0.155

0.741

1.048
1.047

-0.183
-0.177

0.432

Reflection algorithm

Edge effects
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0.712

0.212

0.639

1.314

0.734

0.435

No reflection algorithm

2 5 x 5 Window vs. 7 x 7 were compared to give this t-test result.

when comparing 5 x5 and 7 x 7 tests, there is a significant dif-
ference between SSIM(t=2.34, p-value =0.02). When the reflection
algorithm was not applied, the value of SSIM was not affected sig-
nificantly but there was a reduction in the spatial extent of the
map comparison (as values for edge cells could not be calculated)
(Appendix B in Supplementary).

4. Discussion

We have described an approach to objectively compare spatial
patterns between two continuous valued maps. We enhanced the
original SSIM index (Wang et al., 2004) by incorporating uncer-
tainty from underlying maps into the comparison calculation and
correcting for edge effects. Application of the SSIM approach,
including our enhancements, was demonstrated with a case study
using sperm whale distribution data in the Mediterranean Sea.
Quantitative map comparison tools are currently limited in their
extent and application in the ecological literature (Hagen-Zanker,
2006b; Robertson et al., 2014), possibly because ecological data
have characteristic properties such as continuous values and inher-
ent spatial dependencies that make quantifying the underlying
spatial structure between geographically referenced maps chal-
lenging. As well as accounting for these characteristics, the SSIM
index has several key advantages making it ideal for broader ecolog-
ical applications. First, the methodology can be easily implemented
regardless of the prediction or estimation method used to obtain
the underlying maps. For instance, a useful application of the
method would be to compare two maps where different statisti-
cal methods were used to address similar questions. Second, the
SSIM index produces a number of underlying statistics, as well
as an overall measure of similarity in spatial structure. By com-
paring local means, variances, and covariance between underlying
maps, different aspects of spatial patterns are characterised, poten-
tially providing insight into underlying processes that drive these
patterns. Finally, the size of the local neighbourhood in the map
comparison calculation is user-defined. Prior knowledge of spatial
scale of the data can be used to inform the map comparison analysis,
providing more meaningful results.

Dependent on the size of the local neighbourhood, edge effects
occur when comparing maps because non-valued cells beyond the
boundary of the study area are included. To ensure the map com-
parison produced the same spatial extent as the underlying maps, a
reflection algorithm was chosen to correct for edge effects because
of its ability to deal with complex edges and ease of implementa-
tion. The algorithm reflected known data along edges to extrapolate
outside of the study area. A limitation of this method is that it can
emphasise fine-scale or local patterns in areas where it is imple-
mented, and so care should be taken when interpreting results close
to edges in the study area.

The definition of spatially local neighbourhoods and the effects
of their size have been well studied (Chefaoui, 2014; Long et al.,
2010; Zurlini et al.,2007).In ecology, local neighbourhood size must
be considered in the context of spatial resolution of the data and the
underlying ecological processes being investigated (Wiens, 1989;
Wu, 2004). Therefore, local neighbourhood sizes are often varied to
examine their influence on results and inferences. However, there
can still be subjectivity in selecting the appropriate local scale for
spatial analysis (Nelson and Boots, 2008). In the case study, a local
neighbourhood was selected based on the spatial scale present in
the ecological process (i.e. the distance between the assemblages
being compared). As the local neighbourhood size increases fine-
scale differences in patterns identified through SSIM will disappear,
resulting in a smoothing effect. Similarly, using the minimum local
neighbourhood (3 x 3 grid squares) may produce results that show
fine-scale differences in patterns which do not make sense ecolog-
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Fig. 4. Map comparison between the predicted probability of occurrence of group and singleton sperm whales using bootstrapped uncertainty from the habitat preference
models of both social assemblages. A reflection algorithm was used to counteract internal edge effects. Focusing on the area of interest south of Mallorca: (a) Similarity In
Means (0-1); (b) Similarity In Variance (0-1); (c) Similarity In Pattern of spatial covariance (—1 to 1); and (d) Structural Similarity index (-1 to 1).

ically. We recommend use of a local neighbourhood in the SSIM
index that bears relation to: (1) the scale of underlying data (e.g.
movement of animals) represented in the maps being compared,
(2) ecological questions being investigated through map compar-
isons, and, (3) scale-dependent patterns of underlying ecological
processes being investigated.

4.1. Case study

The map comparison showed differences in space use between
groups and singleton sperm whales. The area south of Mallorca
was also identified by Pirotta et al. (2011) as important to both
social assemblages. Data sampling effort was greatest here and
therefore groups and singleton models suffered less from sampling
bias than in other areas. In this area, both social assemblages had
high predicted probability of occurrence. Statistical differences in
patterns of space-use were associated with fine-scale features at
depths between 1000 and 2000 m, and the probability of occur-
rence for both social assemblages was previously found to be driven
by bathymetric features (Pirotta et al., 2011). Although the sex of
animals included in the study was not verified, singletons showed
diving behaviour typical of solitary males, and groups of sperm
whales are generally associated with adult females and their imma-
ture offspring (Drouot et al., 2004; Whitehead, 2003). Whitehead
(2003) suggested that reduced foraging success for males in areas
where both social assemblages exist may be a result of resource

competition. Our results reveal that groups and singletons do inter-
act spatially in some mutually exclusive way. This has implications
for both understanding local space use, and informing more gen-
eral hypotheses about the evolution of extreme behavioural sexual
dimorphism in sperm whales (Whitehead and Weilgart, 2000). The
results provide a specific target area so that efficient resources
can be put into studying sexual segregation of groups and sin-
gletons. Hypotheses could be investigated to determine whether
patterns of mutually exclusive (presumed) foraging of groups and
individuals show stable resource partitioning (in which case both
social assemblages may be foraging optimally), or whether pat-
terns are the result of one social assemblage being outcompeted
and forced to utilise sub-optimal habitat. Sensitivity tests indicated
that comparison results were affected by neighbourhood size, and
any interpretation should take account of this.

4.2. Broader applications and further development

Comparisons of spatially referenced data provide a mechanism
for linking observed spatial patterns with underlying ecological
processes (Turner, 1989). Methodology presented here has wider
applications for ecology, where quantitative comparisons of spa-
tial patterns are often required to understand underlying processes
and guide management decisions. Application of the SSIM index
with our enhancements provides spatially explicit comparisons to
identify areas where there are underlying differences in space-
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use. There are many applications to spatial ecology problems
such as identifying areas of conflict between anthropogenic activ-
ities and wildlife: depredation on domestic livestock and farmed
species by apex predators (Berland et al., 2008; Ripple et al., 2014;
Suryawanshi et al., 2013). An important application is the assess-
ment of change in distribution between and within species, such as
comparing density maps obtained using different methods (Bailey
etal., 2014), assessing competition and spatial segregation between
species (Suryawanshi et al., 2013; Wilson, 2010), and seasonal
changes in distribution (Millspaugh et al., 2015).

The Marine Strategy Framework Directive uses an ecosystem-
based approach to management of anthropogenic activities within
the marine environment (Olenin et al., 2010). Under this frame-
work, ecosystems are assessed through a set of environmental
abundance and distribution indicators to determine conservation
status. Spatially-explicit indicators such as biodiversity indices
(species richness and diversity) present mean values over time
(Piroddi et al., 2015). The SSIM index and enhancements presented
here can be used to elevate these indicators to a spatio-temporal
context and assess biodiversity over time. When used in conjunc-
tion with abundance estimates, these can further inform the spatial
management process.

The methodology could be developed further. Currently, spatial
resolution and extent of the maps being compared must be regu-
larly spaced and identical, and the case study used to demonstrate
the methodology benefitted from having these characteristics.
However, comparing animal distributions (e.g. using line transect
data from animal sightings surveys) may result in varying spa-
tial resolution and extent because sampling effort and survey area
can change over time. Adapting SSIM methodology to allow for
maps with non-regular lattices and point-process patterns to be
compared, would be beneficial for effective analyses. For longer
time-series (Bailey et al., 2014) or multiple species comparisons
(Wilson, 2010), map comparison functionality could be extended
to compare more than two maps at once, either sequentially, or
through pair-wise comparisons.

5. Conclusions

The SSIM index and enhancements presented here offer a com-
prehensive tool to objectively compare spatially explicit ecological
data within an implementable framework. An advantage of the
SSIM index is that different aspects of spatial comparison can be
investigated: maps of SIM, SIV, and SIP (relating to similarities in
local means, variances, and covariance, respectively) can be calcu-
lated to reveal spatial patterns that cannot be seen through visual
inspection of the underlying maps. The SSIM metric summarises
SIM, SIV, and SIP into one map because summary statistics are
often required to condense information. This can be further sum-
marised by calculating the mean over SSIM to give a single value
representing similarity between the underlying maps.

We presented enhancements to the SSIM index by incorporat-
ing uncertainty from the underlying maps and correcting for edge
effects so that the methodology can be broadly applied to many
types of spatial ecological data. Using an ecological case study to
compare groups and singletons sperm whale distribution in the
Mediterranean Sea, we demonstrated the presence of local-scale
spatial structure that could not be detected either visually or using
map subtraction techniques. We found that in these areas where
(presumed) foraging was taking place, singletons and groups of
whales were spatially mutually exclusive. This enabled us to rec-
ommend that future behavioural studies focusing on interactions
between singletons and groups of whales whilst foraging could
most effectively be carried out in the areas of interest we have
identified.
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Appendix A - Edge effects

Edge effects (i.e. the inclusion of null areas outside the study region) are
encountered in a number of problems such as point pattern analysis (Gignoux
et al., 1999; Haase, 1995), geostatistics (Xu and Dowd, 2012), and local
regression models (Fotheringham et al., 2002). Edge effects are exacerbated by
irregularly shaped boundaries caused by arbitrarily shaped administrative units or
geographical features (e.g. islands) that may influence the spatial process under
study. In order to account for edge effects one of three general methodologies
are typically used: (1) exclude edge data (i.e. those locations where the spatially
local neighbourhood extends beyond the study area) from final results (Ripley,
1991); (2) buffer the study area with empirical or synthetic data (Haase, 1995;
Sterner et al., 1986); or (3) re-shape the local neighbourhood in the presence of
an edge (Fotheringham et al., 2002; Getis and Franklin, 1987; Gignoux et al.,
1999). Excluding edge locations has the undesirable effect of reducing the study
area proportional to the local neighbourhood size. This is especially problematic
for ecological studies where important spatial processes may occur near study site
boundaries (Tynan, 1998). Increased sampling effort to collect additional empirical
data is not always feasible, and is only realistic where the spatial process continues
unabated outside of the study area edges. In many cases, such a sampling strategy
cannot be employed due to the nature of the edge (e.g. a boundary such as a
coastline). Any of the above strategies for mitigating edge effects can be readily

implemented with the SSIM index.

Here we employ a reflection algorithm that is appropriate with regular lattice
(gridded) data to generate a buffer of synthetic data around the study area (Figure
Al). Let Z(z,y) be the value of the known data at location (z, y) where z and
y index columns and rows. Let the parameter n be the size of the spatial local
neighbourhood to be used in analysis (e.g. 7 in a 7 x 7 kernel window), which
controls how many iterations (n/2-1) are required. The reflection algorithm is a

four-step process, and begins with the incrementing parameter k£ = 1.

Define all edge cells in the map as the set E {e (z,y)}
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For each edge cell calculate values of the reflected synthetic data, Z, using:

Ze (LL’, y) _ Z(a:,yfk)JrZ(:Jc,erk):)rlZ(xfk,y)+Z(z+k,y) (Al)

where m is the number of non-null Z values in the calculation.

For any edge cell, e* that is null after step 2 (i.e. outer corners) calculate Zos

using:

Ze* (x, y) _ Z(xfk,yfk)JrZ(x—k,y+k);;Z(x+k,y+k)+Z(x+k7y,k) (A2)

={Z, Z} If £ < n increment k£ by 2 and return to step 1, otherwise the

algorithm is complete.

12 4 1|2 3 (4] 4 1|2 4 | 4
12 4 112 3 4] 4 1|2 4 | 4
2| 2 2| 2 |25 3 |a]|* 2| 2|25 3| 4| 4
1(1 1(1 |1 1111
1(1 111 11| 1
11| 11| 1
Step 1: Define edge cells Step 2: Compute reflected Step 3: For remaining cells
(shown in light grey). values along the x and y (denoted by * in Step 2)
axis (ignoring NULL compute reflected values
values). along the diagonal axis
(ignoring NULL values).

Figure Al. Description of steps 1-3 in the reflection algorithm. The example is

shown for k& = 1, but the algorithm is extensible to larger windows.

Appendix B - Sensitivity analysis

Sets of sensitivity tests were conducted to demonstrate how changing specific user-
defined parameters could potentially affect results of the map comparison analysis:
(1) A circular Gaussian weighting kernel was applied to the local neighbourhood
window vs. no weighting; (2) the size of the local neighbourhood was varied, using

3x3, 5x5, and 7x7 grid cells; and (3) a reflection algorithm to correct for edge
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effects was applied vs. no edge correction.

Method

For Gaussian weighting tests, the size of the local neighbourhood (w) was set at 3x3
grid cells and a reflection algorithm was implemented. For local neighbourhood
tests, Gaussian weighting and reflection algorithm were applied. For edge effects
tests, the size of the local neighbourhood (w) was set at 3x3 grid cells and the
Gaussian weighting was applied. In all tests, 0 = n / 3 and only mean values from
the underlying maps being compared were used. SSIM statistics were calculated
for each set of tests and means and variances of each statistic (SIM, SIV, SIP,
SSIM) were calculated to provide summary statistics. Welch two-sample ¢-tests

were used to compare the SSIM statistic for each set of tests.

Results

Figures B1 and B2 show map comparisons when a Gaussian weighting was applied
to the local neighbourhood and no weighting was applied, respectively. Figures B1,
B3, and B4 show map comparisons where the local neighbourhood is 3x3, 5x5, and
7x7 grid cells, respectively. As the size of the local neighbourhood increases, local-
scale features from the map comparison show less prevalence. However, even when
a large (when compared to the scale of the local features) local neighbourhood
(7x7) is used, spatial partitioning between groups and singletons identified in the
main paper can be seen (Figure B4d). Figure B1 shows the results of applying a
reflection algorithm to correct for edge effects. Figure B5 shows that when edge
effects are not countered, the spatial extent of the map comparison is reduced due

to missing values.
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(b) Similarity In Variance (0-1); (c) Similarity In Pattern of spatial covariance (-1

to 1); and (d) Structural Similarity index (-1 to 1).
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Pattern of spatial covariance (-1 to 1); and (d) Structural Similarity index (-1 to
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Gaussian weighting implemented) (from top-left): (a) Similarity in Means (0-1);
(b) Similarity In Variance (0-1); (c¢) Similarity In Pattern of spatial covariance (-1

to 1); and (d) Structural Similarity index (-1 to 1).

Appendix C - R code

library (maptools)
library (geepack)
library(splines)
library(SpatialTools)

3k 3k ok ok ok K ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K sk ok ok ok ok sk ok K ok K sk ok ok ok ok ok ok K K ok ok ok ok ok ok ok ok K K
#SSIM - R implementation of the Structural Similarity

#Index using raster package

FEk % 5k %k %k >k 5k 5k 5k %k >k 5k 5k 5k 5k >k 5k 5k 3k 5k >k 5k %k 3k 5k >k 5k 5k k %k >k >k 5k k %k >k 5k 5k %k %k > 5k >k %k %k 5% >k %k %k %k % %k k % *
library(raster) ### Requires raster >= 2.3-12

#Function for iterative edge correction via map
#reflection (and averaging)
edge.cor.ref <- function(ras,w){
iter.edge.cor.ref <- function(ind, ras, cel){
#reflect along wvertical/horizontal edges
i <- celx*2-1
col. <- colFromCell(ras,ind)
row. <- rowFromCell(ras, ind)
cols <- c(col.-i, col., col.+i, col.)
rows <- c(row., row.-i, row.,
row.+i)
celly <- cellFromRowCol(ras,rows,cols)

subr <- ras[celly]
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est <- mean (subr,na.rm=TRUE)
if (!'is.nan(est)){
return(est)
} else {
#Reflect along diagonal i1f 2t <s
#only corner connected.
cols <- c(col.-i, col.-1i,
col.+i, col.+i)
rows <- c(row.-i, row.+1i,
row.+i, row.-1i)
celly <- cellFromRowCol(ras,
rows,cols)
subr <- ras[celly]
est <- mean (subr,na.rm=TRUE)
if (!is.nan(est)){
return(est)

} else {return(NA)}

#Assume NA values (edge padding or donut holes)
#exist for edge correction.
for (cel in 1:w){
temp <- boundaries(ras,type=’outer’)
loc <- Which(temp==1,cells=T)
for (ind in loc){
ras[ind] <- iter.edge.cor.ref (ind.

ras,cel)

}

return(ras)
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#Gaussian filter wetghts matriz
filter.g <- function(w,sigma){
f.g <- function(x,y,sigma){ (1/(2*pi*sigma”2))
xexp (-(x"2+y~2)/(2*xsigma~2))}
w.i <- seq(-w,w,1)
Xy <- expand.grid(x=w.i,y=w.1i)
xy$w <- f.g(xy$x,xy$y,sigma)
w.m <- matrix(xy$w,nrow=length(w.i),byrow=T)
/sum (xy$w)

return(w.m)

ssimMap <- function(imgl, img2, w=3, sigma=1.5,
gFil=FALSE, outer.edge.pad=FALSE,
edge.cor=FALSE) {

#Check to see i1f extents are equal

imgl.extent <- extent(imgl)

img2.extent <- extent(img2)

imgl.na <- Which(is.na(imgl),cells=TRUE)

if (imgl.extent != img2.extent){stop(’Warning:
UuuuuuuuuuuSSIM  calculation  aborted. The ,raster ,extents

uvuuuuuuuuuudonot ymatch. ?) }

#set constants
1 <- max(cellStats(imgl, max),
cellStats (img2, max))

globalMin <- abs(min(cellStats(imgl, min),
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cellStats (img2, min)))
1 <- 1 - globalMin
k <- ¢(0.01, 0.03)
Cl <-(k[1]1%1)"2
C2 <-(k[2]%*1)"2
C3 <-C2/2

#Create Null filter
filterx <- matrix(l,ncol=w*x2+1,nrow=w*x2+1)
/(ux2+1) 72
if (gFil) A
#create Gaussian filter

filterx <- filter.g(w,sigma)

#0ptionally pad edges with NA’s for
#edge correction
if (outer.edge.pad){

imgl <- extend(imgl ,62%*w)

img2 <- extend(img2,2*w)

#Compute tterative edge correction ’reflect’
if (edge.cor==’reflect’){
imgl <- edge.cor.ref (imgl ,w)

img2 <- edge.cor.ref (img2,w)

#get mu
mul <- focal(imgl, filterx)

mu2 <- focal(img2, filterx)
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sigl <- abs(focal(imglximgl,filterx)
- mul*mul)~0.5

sig2 <- abs(focal(img2*img2,filterx)
- mu2*mu2)°0.5

#s51912 relates to correlation

sigl2 <- focal(imgl*img2, filterx) - mul*mu2

#compute components

L <- ((2*mul*mu2)+C1l) / (mul~"2 + mu2°2 + C1)

C <- ((2*siglxsig2)+C2) / (sigl~2 + sig2°2 + C2)
S <- (sigl2 + C3) / (sigl * sig2 + C3)

#compute SSIM

SSIM2 <- L *x C * S

#Compute RasterBrick
ssim.brick <- brick(SSIM2, L, C, S)
ssim.brick <- crop(ssim.brick,imgl.extent)

ssim.brick[imgl.na] <- NA

ssim.brick@data@names <- c(’SSIM’, ’SIM’,
>SIV’, ’SIP’)

return(ssim.brick)

HURRAAARAAARRRRRRRRARAARRRBRRRRRRARARRRBRRRRRRRARRHRH
# SSIM comparisons using paramteric bootstrapping &
# reflection edge-correction algorithm
HURRRARRARARRRBRRRRARAARRRRRBRRARARARRRBRRRRRRRARRHRH

dat<-read.csv("Balearics_dataset.csv" ,header=T)

n=500 # Define number of boostraps
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w <- 1 # window size in pizrels - window
# size = (2w+1)°2 , w=2 15 a 5z5 window

sigma <- ((2*xw+1)°2)/3 # sigma of gausstian window

FEk %k 5k 5k sk >k 5k 5k 5k k >k 5k 5k 5k %k >k 5k 5k 5k %k >k 5k 5k k %k >k 5k %k >k %k >k 5k %k >k %k % 5k %k %k %k % %k k %k %k % %

# Singletons

FH 3k % 5k ok sk >k 5k 5k ok sk >k ok ok sk 5k >k ok ok 3k 5k >k ok 5k 3k %k 5k 5k 5k sk %k >k ok ok k %k >k ok k %k %k % ok k %k %k % k

# To select only sightings with single males

datli<-subset (dat,Group!=1)

# Fit single model

mod_single<-geeglm(Pres ~ bs(Lat,knots=mean(Lat))+
bs (Long ,knot=mean (Long))+as.factor(Year)
+SST_monthly+bs (Aspect ,knots=mean (Aspect)),
family=binomial, corstr="independence",id=Line_Id,

data=datl)

# Bootstrap model coefficients
BootstrapParametersSingles<-rmvnorm(n, coef(mod_single),

summary (mod_single)$cov.unscaled)

# Import the prediction dataset as a shapefile
sshape <- (readShapeSpatial ("Prediction_final_
LuuuuuuuuusSingle _2005. shp",
proj4string=CRS("+proj=utm ,+ellps=WGS84
Luuuuuuuuutdatum=WGS84 ,+zone=31_ ,+north +units=m")
, repair=T))
# Read in *x.shp file
# Define general raster

r <- raster (xmn=bbox(sshape)[1,1],
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xmx=bbox (sshape) [1,2],
ymn=bbox (sshape) [2,1],
ymx=bbox (sshape) [2,2],
crs="+proj=utmy+ellps=WGS84 ,+datum=WGS84
UuLuLLuuuutzone=31 ,+north ,+tunits=m",
resolution=((3706*x8)+3) /8, vals=NULL)
## Rasterize the shapefile

rs <-rasterize (sshape,r)

snewdata <- data.frame(Long=values(rs)[,3],
Lat=values (rs)[,4],
Aspect=values(rs)[,5], Year=values(rs)[,6],

SST_monthly=values(rs)[,7])

# Set up a matriz for the predictions to go into
smatrix <- matrix(data = NA, nrow = nrow(snewdata),

ncol = n, byrow = FALSE, dimnames = NULL)

for (i in 1:n) {
# Substitute the model coefficients
#for each of the bootstraps
mod_single$coefficients <-
BootstrapParametersSingles [i,]
# predict
smatrix[,i] <- predict(mod_single,

newdata=snewdata,

type="response")

FEk % 5k %k %k %k 5k ok %k %k %k 5k 5k %k %k ok 5k 3k 5k %k >k 5k 3k %k %k >k 5k %k %k %k >k %k %k %k % >k %k %k %k % %k k %k

# Groups
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FH ok % 5k ok sk >k 5k ok sk sk >k ok ok 3k ok ok ok 5k 5k >k ok ok 3k 5k %k ok 5k 5k %k >k 5k 5k 5k >k %k >k ok %k %k k k k %

# To select only sightings with groups

dat2<-subset (dat ,Group!=0)

# Fit group model

mod_group<-geeglm(Pres ~ bs(Lat,knots=mean(Lat))+
bs (Long ,knot=mean (Long))+
bs (SST_weekly ,knots=mean (SST_weekly))+
bs (Slopelx ,knots=mean(Slopelx)),
family=binomial,

corstr="independence",id=Line_Id,data=dat2)

# Bootstrap model coefficients
BootstrapParametersGroups<-rmvnorm(n, coef (mod_group),

summary (mod_group) $cov.unscaled)

# Set up a matriz for the predictions to go into
gmatrix <- matrix(data = NA, nrow = nrow(values(rg)),

ncol = n, byrow = FALSE, dimnames = NULL)

# Import the prediction dataset as a shapefile

gshape <- (readShapeSpatial ("Prediction_final_group.shp",
proj4string=CRS("+proj=utm,+ellps=WGS84

LuuLuuuuuuutdatum=WGS84 ,+zone=31_,+north +units=m"),
repair=T)) # Read in *.shp file

## Rasterize the shapefile

rg <-rasterize(gshape,r)

gnewdata <- data.frame(Slopelx=values(rg)l[,3],
Long=values (rg)[,4],

Lat=values(rg)[,5],
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SST_weekly=values(rg)[,6])

for (i in 1:n) {
# Substitute the model coefficients for each
# of the bootstraps
mod_group$coefficients <-
BootstrapParametersGroups [i,]
# predict
gmatrix[,i] <- predict(mod_group,

gnewdata, type="response")

5k 5k 5k ok ok ok ok ok ok ok K K K ok ok K K K K K 3K 3K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok K K K K K K K K K K K K K
# Comparisons

#H3k sk ok ok sk sk sk sk ok ok ok ok ok ok ok sk sk ok K K ok 3k 3k sk ok sk ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok K K K K K K
# Set up output matrices

rSSIM <- rSIM <- rSIV <- rSIP <-

matrix(data = NA, nrow = nrow(snewdata), ncol = n,

byrow = FALSE, dimnames = NULL)

# Comparison loop

for (j in 1:n) {

# Define each raster in the loop jJ
s <- g <-r
values (s) <- smatrixl[, j]

values (g) <- gmatrix[,j]

reflectedge <- ssimMap(s, g, w=w, sigma=sigma,

gFil=TRUE, outer.edge.pad=TRUE,
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edge.cor="reflect’)

rSSIM[, j] <- values(reflectedge$SSIM)

rSIM[, jl <- values(reflectedge$SIM)
rSIV[,jl <- values(reflectedge$SIV)
rSIP[, ]l <- values(reflectedge$SIP)
print (j)

K K oK ok oK K ok K K oK KoK oK oK K K oK K oK oK ok K oK oK K oK oK ok K oK oK K oK oK ok K oK oK K oK oK ok K oK ok K K oK kK Kk K
# Take mean & wvariance of sampled comparisons

ZEK % 5k ok oK ok oK K oK oK K oK oK oK K oK oK K oK oK oK K oK oK K oK oK ok K oK oK K oK oK oK K oK oK K oK ok ok K ok oK K oK ok koK K kK
meanSSIM <- apply(rSSIM, 1, mean)

varSSIM <- apply(rSSIM, 1, var)

meanSIM <- apply(rSIM, 1, mean)

varSIM <- apply(rSIM, 1, var)

meanSIV <- apply(rSIV, 1, mean)

varSIV <- apply(rSIV, var)

[EY

meanSIP <- apply(rSIP, 1, mean)

varSIP <- apply(rSIP, var)

[

Appendix D - Data

Corresponding data for Appendix C - R Code is available to download from https
//doi.org/10.1016/j.ecolind.2016.05.051
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An analytical framework to produce grey and harbour seal usage maps with
accompanying uncertainty around the UK was developed in Jones et al. (2015).
The framework was enhanced in Jones et al. (2017¢) to produce fine-scale at-sea
usage maps of harbour seals around Orkney and the north coast of Scotland.
In Jones et al. (2017a), usage maps from Jones et al. (2015) and ship usage
maps were used to quantify risk to seals of co-occurrence with vessels through
identifying potentially acoustically sensitive areas. Sound exposure levels to vessel
noise with associated uncertainty were predicted for individuals in an area with
varying rates of co-occurrence, and validated using field sound measurements. A
map comparison methodology was applied to an ecological case study in Jones
et al. (2016), to compare groups and singleton assemblages of sperm whales in
the Mediterranean Sea. Figure 1 shows a synthesis of the portfolio, ecological

insights, and the outputs made available for practitioners.

Methods

< 50 km from coast space use. lkm from coast. whales found that groups and
Ecological |. g;;aﬁ.al partitioning Vat * Stayed =30 km from coast | |* 11 SACs had high risk of singletons have mutually
insights | different scales between around Orkney. exposure. exclusive space-use in area
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scales of spatial
partitioning. MEPS
53:535-549
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sion modelling

seal species
with confidence ntervals.

* Both species primarily stay

grey & harbour seals
around UK.

~_ |

Broad-scale usage maps with
CIs to inform conservation
and management of both

species.

Jones et al. (2017¢) Fine-
scale harbour sealusage
for informed marine
spatial planning. Sci. Rep.

Density estimation combined
with enhanced reg
modelling using G

produced fine-scale harbour
seal species distributions
with confidence intervals.

* Fine-scale structure in

* Haul out distance, sand. &
peak flow for annual mean
power predictors of

space use.

Fine-scale usage maps with
ClIs used in consenting &
licensing of anthropogenic
developments to determine
local abundance.

\/

Jones et al. (2017a) Seals
and shipping: quantifving
population risk and
individual exposure to
vesselnoise. J. App. Ecol

Seal and ship usage maps
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maps of potentially
acoustically sensitive areas.
Acoustic modelling

approach predicted received

levels of underwater noise by

individuals.

*» Highest co-occurrence =< 50

* Mean cSEL(M,,..) was
1768 dB re 1uPa? s (CI
95% 163.3, 190.4).
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underwater noise from
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~_
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species distribution data.
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Enhanced SSIM index for
use in ecological data by
accounting for edge effects
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assemblages.

Map comparison technique
& software applicable toa
wide range of ecological
spatial data

~_

~_

Fig. 1. Flowchart to highlight the contents of the portfolio, primary ecological

insights, and the applied nature of each paper.
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Patterns of space-use in sympatric marine colonial

predators reveal scales of spatial partitioning

Grey and harbour seal usage maps with accompanying uncertainty were produced
by developing an analytical framework to combine density estimation and
regression modelling approaches. Fulfilling a conservation objective to identify
seal space-use over a large spatial extent (i.e. nationally), the framework was
developed so that space use could be characterised over the study area. A
trade-off of the approach was that a coarse spatial resolution was used due to
computational limitations. This was appropriate for understanding the broad-
scale species distribution of grey and harbour seals, and has since been used by
practitioners in many applied contexts: informing general conservation (Hayhow
et al., 2016), offshore energy strategic environmental assessment (Jones & Russell,
2016), licensing and consenting of offshore marine renewable developments (Jones
& Matthiopoulos, 2011; Sparling et al., 2012), and contributing to advice for the

planning of Marine Protected Areas (Jones et al., 2017b).

Grey and harbour seal usage maps showed how both species heavily utilised
coastal areas close to their haul outs. Although both species are central-
place foragers, individuals may transition between haul outs regularly; they are
generalist predators, foraging on a wide range of benthic and demersal species
in the neritic environment (Prime & Hammond, 1990), which vary spatially and
temporally (Brown et al., 2012; Wilson & Hammond, 2015; Hammond & Wilson,
2016). An advantage of characterising species distributions is that generalised
movement patterns can be identified visually. In particular, contrasts between
the two species showed that harbour seals exist in localised populations close
to their haul outs, and stay within 50 km of the coast for over 95% of the
time. An exception is the Wash, east England (52.924° N, 0.249° E), a wide
harbour with sand banks and mud flats (Hall et al., 1998). The increasing harbour
seal population consistently use haul outs within the Wash between travelling to
offshore sandbanks (Duck et al., 2015). Grey and harbour seals exhibit spatial

partitioning in this region, with grey seals hauling out further north at Donna
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Nook (53.476° N, 0.153° E), and utilising offshore sandbanks further north-east
than harbour seals (McClintock et al., 2012). Grey seal distribution was also
concentrated close to their haul outs. However, by contrast with harbour seals,
grey seal offshore distribution had spatial structure, and often connected haul
outs between regions through corridors of offshore usage. Grey seals travel farther
offshore than harbour seals, and are likely to be physiologically more capable of
exploiting dynamic prey patches, which may drive differences in diet between the

two species (Wilson & Hammond, 2016).

Seal Management Units (SMUs) inform the conservation management of the
two species by dividing the UK into spatial regions (SCOS, 2015). Comparing
predicted abundance of both species by grid cell as a measure of the distribution
of each species relative to each other, it was shown that SMUs where grey and
harbour seals overlapped heavily coincided with areas of harbour seal decline (3
— 18%) over the previous 10 years (2000 — 2010). By contrast, SMUs where grey
and harbour seals exhibited spatial partitioning were in regions where harbour seal
numbers remained stable or were increasing (SCOS, 2015). Although no causal
link could be established in this analysis, the authors suggest that increasing
grey seal numbers from lower historic levels to current population size may be
adversely impacting harbour seal numbers in areas where there is strong spatial
overlap between the species, either through direct competition for resources, or
more indirect means. Since publication of this paper, evidence has arisen for
interspecific (and possibly intraspecific) competition of grey seals with sympatric
species through grey seal predation on harbour porpoise (Leopold et al., 2015),
juvenile grey seals (Bishop et al., 2016; Brownlow et al., 2016), and harbour seals
(van Neer et al., 2015). Examination of the carcasses showed that characteristic
corkscrew lesions on dead stranded animals, that had previously been attributed
to ship strikes (Bexton et al., 2012), were in fact caused by grey seal predation.
Matthiopoulos et al. (2014) showed that proximate causes for the Moray Firth
harbour seal decline were juvenile mortality and decreased fecundity rate. It is
likely that a combination of factors contribute to the harbour seal decline in regions
of the UK; an increasing grey seal population creating interspecific competition

directly through predation of harbour seals, and indirectly through competition for
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shared resources. Additionally, pressure on the harbour seal population in some
regions may cause outbreak of disease or reduced fitness of individuals through

exposure to toxins (Hall & Frame, 2010; Jensen et al., 2015).

Characterising species distributions is a central insight in ecology, and the grey
and harbour seal usage maps have utility for informing conservation objectives and
marine spatial planning. However, managing changes to populations facilitated
by external pressures such as climate change and anthropogenic activities requires
an understanding of ecosystem functioning to explicitly link source-based (e.g.
foraging distributions) with process-based information (e.g. trophic linkages).
Faecal analysis provides a comprehensive and quantitative estimate of prey
composition. However, constraints in data collection and processing limit broad-
scale analysis to decadal occurrences around the UK (in 1985, 2006, 2010; Wilson
& Hammond (2015); Hammond & Wilson (2016)). Studies of faecal analysis have
shown that diet composition of both grey and harbour seals, which vary regionally
and seasonally, have changed over the past 20 years. For long-lived generalist
predators like seals, changes in diet linked to shifts in foraging distribution and/or
trophic level depredation are likely to manifest over long temporal scales, and
other means of dietary analysis such as stable isotopes can provide a long-term
view of trends in diet composition. Recent work has found that in the North
Sea, the grey seal isotopic niche has contracted, signifying both a decline in
trophic position and change in foraging habits over the 20 century (Hanson
et al., In review). Corroborating previous studies of an increased reliance on
sandeels (Ammodytes marinus) by composition, long-term change in diet could be
the response of grey seals adapting to larger prey items being removed from the
ecosystem by overfishing (Speirs et al., 2016). Additionally, a contributory factor
could be intraspecific competition; where the grey seal population is increasing,
individuals may be constrained to more reliable prey patches as resources become

more valuable.

The usage maps assume that telemetry data are in equilibrium, e.g. an animal
tagged 20 years ago used space in a similar way to the same animal tagged 10 years

ago at the same location. This assumption was necessary to produce static usage
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maps across time. However, given the weight of evidence showing shifts in grey seal
diet (Hanson et al., In review; Wilson & Hammond, 2015; Hammond & Wilson,
2016), spatio-temporal boundaries (Fietz et al., 2016), and population dynamics
(Thomas, 2015), it seems implausible that space use has not changed over the last
20 years (when the first telemetry tags used in the usage maps were deployed).
Foraging is a primary at-sea behaviour of seals, and they must respond dynamically
to their environment. Telemetry deployments used for the usage maps, whilst
providing detailed locational information, were not part of an experimental design
for this purpose, as individual deployments had differing objectives. Therefore,
there have been few repeat tagging events (i.e. animals tagged in different years
at the same place), and none that can be reliably compared (e.g. adults and
juvenile deployments took place in the same location between years). A regime
of repeat tagging over time at selected sites would give a baseline of inter-annual
differences in space-use, and provide insight into how space use changes over time
with respect to intrinsic and extrinsic factors. Additionally, Hanson et al. (In
review) found that juveniles have foraging distributions relatively closer to the
coast than adults. This has implications for conservation objectives in terms of
protection of the species, as well as marine spatial planning objectives. Although
the grey and harbour seal usage maps used telemetry data from juveniles, there
were limited deployments, and so juvenile space use could not be characterised.
Therefore, a gap in our understanding is the at-sea distribution of juvenile seals,
how this differs from adults, and the potential implication for management of the

species.

Fine-scale harbour seal usage to inform marine

spatial planning

The second paper characterises fine-scale harbour seal at-sea usage around
Orkney and the North coast of Scotland, and addresses limitations of scalability,
uncertainty, and predictive power in Jones et al. (2015). In areas where

proposed offshore marine renewable developments are at consenting or licensing
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stages, estimates of abundance of protected species in the area around the
proposed development are required (Marine Scotland, 2010). For offshore marine
renewables, these can range in size from large windfarms to localised tidal power
streams. Therefore, scalability of the analytical framework to produce species
distribution maps at an appropriate spatial resolution was required. As part of
the consenting process, regulations call for an assessment of the potential impact
to the ecosystem of the proposed development. For developments with moving
parts, such as underwater tidal turbines, an assessment of potential collision risk

with animals in the area is required.

Collision risk models often use mean density estimates and uncertainty of animals
as initial values for individual based models (IBMs), and therefore it is important
to use accurate abundance estimates values where possible (Donovan et al., 2017).
Fine-scale maps were produced at the most highly resolved spatial resolution
supported by the underlying telemetry data. To scale to local population levels,
each at-sea telemetry location was explicitly linked with terrestrial count data
from onshore counts. To avoid inflating estimates of uncertainty, haul outs within
a specified distance from each other were aggregated. Harbour seal distribution
on land is often disaggregated along the coastline and they may return from an at-
sea trip to within several kilometres of their departure haul out. Aggregating haul
outs for the purposes of scaling to population levels ensured that terrestrial counts
were utilised more effectively, and maps of density estimation (which had lower
uncertainty associated with them) were used more often than maps of predicted
space use from the regression model (which had higher uncertainty associated
with them), reducing the uncertainty around the mean population estimate for

the study area.

When considering analytical methodology to characterise species distributions
that will be used in evidence-based decisions such as in consenting and licensing,
sources of uncertainty, and the method of propagating these through the analysis
should be considered to ensure the methodology can be used appropriately by
practitioners. Regression modelling was used to understand how animals interact

with geographical and environmental space by predicting space use in areas where
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telemetry data were not present. In Jones et al. (2015), additional environmental
covariates could not be implemented because the spatial extent of the analysis
extended around the UK, where many different habitats types exist, making
it challenging to more generally characterise habitat use from environmental
predictors. For example, seal diet changes by region (Wilson & Hammond, 2016),
which may affect habitat preference and seal behaviour. However, the smaller
study area centred on Orkney was occupied by a local harbour seal population,

allowing the prediction of space-use from environmental covariates more plausible.

Enhancements in the analytical framework combined with additional movement
data resulted in at-sea usage of harbour seals that showed fine-scale structure,
which was not visible in Jones et al. (2015). They remained primarily within
30 km of the coastline, and their distribution was linked to seabed sediment of
sand, and annual mean tidal power. Sandeels are a non-migratory species that
live in a sand/gravel mix of sediment (McConnell et al., 1999; Reay, 1970) and are
an important aspects of harbour seal diet around Orkney (Wilson & Hammond,
2015). Harbour seal space use generally declined with increasing tidal power. The
Pentland Firth is an area with strong tidal currents and is of commercial interest
as a number of tidal turbine developments are situated within it. There were seal
haul outs on the north and south coasts but harbour seal space use was limited

within the channel.

There are two limitations of the analysis. First, for central placed foragers that
have daily cycles of hauling out between making foraging trips at sea, the most
important covariate will always be distance from haul out. Grey and harbour
seals are strongly linked to the coast, and this covariate dominates their selection
of space use. When predicting space use by aggregated haul out, as was the
case in this analysis, it is essential that distance from haul out is included
in a predictive model, otherwise predictions are simply not accurate. Second,
analysing movement data as a static distribution and subsequently using dynamic
hydrographic and environmental information as static covariates inevitably results
in a loss of information. Therefore, it is difficult to accurately associate animal

space use with the environment, making the interpretation of that association
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challenging. Modelling space use or habitat preference in a more dynamic flexible
analytical framework would go some way towards a more realistic scenario of
modelling, and provide more useful interpretations of how and why seals use the

environment available to them.

Seals and shipping: quantifying population risk

and individual exposure to vessel noise

At-sea usage maps from Jones et al. (2015) were used to investigate the risk to
seals of co-occurrence with vessel traffic. Overlaying grey and harbour seals with
ship usage maps, potentially acoustically sensitive areas were identified. A key
finding was that 11 from 25 Special Areas of Conservation (SACs) for seals, which
protect habitat important for breeding, had high levels of co-occurrence within
them. There are some important caveats when interpreting this finding; high co-
occurrence was defined by the authors as over 100 co-occurrences per day. This
was not related to sound levels received by animals but was derived according
to the data from spatial overlap. SACs are primarily onshore delineations, with
facility to extend up to 500 m from land. However, seal distributions showed
that animals were at-sea within the boundaries of SACs, although it is unknown
whether individuals were under the water or at the surface. The results highlight
an important gap in regulation as anthropogenic noise is not currently considered

in marine spatial planning.

In an area identified as potentially acoustically sensitive, acoustic exposure models
predicted received levels of noise from 1,689 vessels to 28 individuals. To
reduce processing times, a simple acoustic approach was used. Spatio-temporal
movements of seals and vessels were modelled and received levels were calculated
in 15-minute intervals. Variance in transmission loss was propagated through
the analysis, so that received levels were produced with estimates of uncertainty
associated with them. There were several sources of variance that could not
be accounted for, particularly uncertainty arising from source levels. Source

levels were estimated by vessel at each location based on ship length and speed
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(Breeding et al., 1996). This was a simplification as noise generated by vessels
are dependent on many other characteristics such as load weight (which can affect
draft), propeller type, and aspect of vessel in relation to receivers (Trevorrow et al.,
2008). Although adjustments in the acoustic exposure modelling were made for
bathymetry and sediment, it was assumed that both source (vessels) and receivers
(seals) were consistently in the middle of the water column. Seals forage on a
wide range of benthic and demersal species in the neritic environment (Prime
& Hammond, 1990; Hammond & Wilson, 2016) before surfacing between dives
(Thompson & Fedak, 1993). Although on average they may be in the middle of
the water column, when calculating received noise levels, their placement in the
water column at each time interval is likely to be an important consideration.
Despite these assumptions, predictions of acoustic exposure corroborated with

contemporaneous sound field measurements.

The framework presented here can serve to understand the impact of changes
over time. Localised changes in both marine species populations and vessel traffic
could alter the acoustic sensitivity of areas. For example, changes to local seal
populations; grey seal numbers increasing in the North Sea, or the harbour seal
population decreasing in Orkney (Duck et al., 2015; Thomas, 2015). Although
shipping lanes are fairly static, vessel numbers are generally increasing (Tournadre,
2014). The framework can be used to identify new areas of potentially acoustic
sensitivity for seals under changing conditions. Further studies are required
to understand seal behavioural responses to shipping noise, and more broadly
anthropogenic noise. Some understanding is known about their behavioural
responses to acute noise (Hastie et al., 2015; Russell et al., 2016), but research
has not been published on behavioural responses to chronic anthropogenic noise.
There is a clear data gap when considering the impacts of shipping on seal
populations and individuals. Although the study did not find an acute effect from
the received levels to individuals of shipping noise, where populations of animals
may be already under stress, chronic impacts that contribute to cumulative effects
may have a significant effect, and these effects should be considered when assessing

population vulnerability.
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Novel application of a quantitative spatial

comparison tool to species distribution data

Motivation for this paper came from the spatial comparison between grey and
harbour seal at-sea usage in Jones et al. (2015). One aspect of the study was
to identify areas where spatial partitioning between the species was relevant
and investigate the spatial scales of the partitioning. However, techniques were
limited because cell-by-cell comparisons do not take interdependencies between
cells into account (Horn, 1966; Leitao et al., 2011), and locational information is
lost when indices across space are applied (Cliff & Ord, 1970). Additionally,
spatial comparisons using within-model methods (Scott-Hayward et al., 2013)
were not appropriate for these data because the analytical framework (density
estimation and regression modelling) meant that single predictive models for each
species were not produced. Methods were investigated that could be adapted
for spatial ecology, which often use continuous data with spatial autocorrelation
and uncertainty around the mean estimate in each grid cell of the underlying
maps being compared. In ecology, maps of predicted distribution are often the
endpoint of an analysis (e.g. Embling et al. (2010); Hammond et al. (2013)), and
changes in distribution over time are compared qualitatively or by using simple
metrics such as utilisation distributions (Fieberg & Kochanny (2005) but see
Demsar et al. (2015) for a sophisticated analysis). Map comparisons need to be
objective so that the any additional ecological findings from the interpretation
of the comparison are quantified and robust. The paper showed how a map
comparison methodology can be enhanced for use in spatial ecology. Using the
Structural Similarity index (SSIM; Wang et al. (2004)), different aspects of spatial
comparison can be identified, and the similarities in spatial structure between the
two images being compared can be examined in different ways. These metrics
can also be collapsed into single metrics or even an overall metric. This could be

particularly useful if many sets of maps were compared.

An appropriate ecological case study was used in the paper to demonstrate

the map comparison index. A small population of sperm whales exist in the
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Mediterranean Sea. As males mature sexually, they disaggregate from females
and their offspring, becoming increasingly solitary (Whitehead, 2003). The
mechanism for this behaviour is unknown, and theories include female social units
outcompeting solitary males when exploiting mid-water squid patches, or male
growth rates driving wider search areas for additional prey resources. Centred on
Mallorca and including surrounding islands in the Mediterranean Sea, the habitat
preference for singles and groups of cohorts of sperm whales were compared using
the SSIM index. Identifying differences in spatial patterns showed that in an
area of strong habitat preference for both social assemblages where presumed
foraging was taking place, there was mutually exclusive spatial segregation. This
provided a focused area for future data collection to investigate the mechanisms
for this behaviour. Hypotheses include whether this pattern of behaviour shows
stable resource partitioning (optimal foraging for both assemblages) or whether
one assemblage is being outcompeted into sub-optimal habitat. The study showed
that there wass spatial structure that cannot be detected either visually or by using

simple map subtraction techniques.

Most data collection, particularly involving animals is expensive, time-consuming,
and sometimes intrusive. Therefore, if additional ecological insights can be
extracted using previously collected and analysed data, these insights will provide
added value. There are advantages to using map comparison techniques that can
be applied after analysis of data are complete. For the production of species
distributions maps, data collection can occur across decades with results being
produced years apart with different underlying data collection and analytical
methods (Hammond et al., 2002, 2013). The SSIM index does not require
reanalysis of underlying data, which may be problematic to obtain, or even that
data are analysed using similar methods. Uncertainty can also be used in the map

comparison software, resulting in more robust spatial comparisons.

There are several limitations discussed in the paper regarding the implementation
of the SSIM index software that would be useful to address for practitioners:
the spatial resolution and extent of the maps being compared must be identical.

Surveys carried out through time often use varying transects, meaning that
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spatial extent and resolution are likely to be dissimilar between years. A fairly
simple software change would allow non-identical spatial resolutions and extents
to be incorporated into the map comparison index. A significant addition would
be to allow more than two maps to be compared. Species distributions are
often available over time, or multiple species analyses are produced. Pair-
wise comparisons or sequential analysis, and corresponding metrics could be
incorporated into the software to allow this. The comparison algorithm could
be improved for accessibility and usability by developing an R library to increase

its appeal.

Synthesis and future research

The aim of the studies contained within this portfolio was to develop robust
analytical tools and innovative analyses to gain meaningful ecological insights
into the study species, interactions with their environment, and potential impacts
of anthropogenic activities. These findings were then disseminated to inform the
guidance given by regulators to practitioners in the commercial sector. A theme of
this portfolio was to combine many different data sets to provide robust analysis
and ecological findings. This has enhanced our knowledge of how seals use space,
what is important to them in their environment, and how anthropogenic activities

may impact them.

Ultimately, using movement data to produce static distributions results in a loss
of information such as temporal and behavioural data. There remains a challenge
to preserve and use as much information as possible whilst producing outputs
from analysis that can used by practitioners in an applied context. Animals
continuously interact with their environment, producing dynamic distributions
through time, and predicting more realistic space use to include three dimensions
would undoubtedly bring additional insights. There is a requirement for the
development of innovative analytical tools, and the interpretation of cutting-edge

techniques to integrate into working practice by end-users.

Modelling approaches using Integrated Nested Laplace Approximations (INLA;
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Rue et al. (2009)), is a promising approach that may provide solutions to some
of the analytical and software challenges for analysing complex telemetry data.
Although the issue of scalability was addressed in Jones et al. (2017c), the
resultant analysis mapped usage in regularly gridded cells. This was effective
as the usage surfaces could be mapped easily using Geographic Information
System (GIS) software, and interpretation was ‘number of animals per km?’, for
example. However, justification of spatial resolution was based on limitations of
data collection (e.g. mean time between GPS locations), rather than the inherent
behaviour of the species. Limitations in data collection are inevitable but one
solution would be to implement a mesh, available using the Stochastic Partial
Differential Equation approach (SPDE; Lindgren et al. (2011)). This approach
can be combined with INLA to flexibly fit complex spatio-temporal models. In
data-rich regions mesh would be finer, and in areas where there are less data the
mesh would be coarser, representing the underlying data more appropriately and
enabling the analysis to characterise fine-scale features (e.g. movements in a focal

area).

Identifying spatial partitioning between species then raises the question of how
to explicitly link causal mechanisms with mutually exclusive behaviour. Jones
et al. (2015) compared grey and harbour seal usage maps using simple map
subtraction to identify spatial partitioning. Omne approach to determine the
nature of the relationship between sympatric species would be to model the
presence of one species on the other using joint species distribution modelling,
which the INLA framework allows. Extending this, different trophic levels could
also be added to determine relationships within the ecosystem, giving additional
insight into food web associations and ecosystem functioning. Changes in species
distributions are ultimately important for the purposes of predicting future change
to manage populations and marine spatial planning. Incorporating dynamic
spatio-temporal environmental covariates as well as other information such as
diet and potential prey fields into spatial models is vital. The INLA-SPDE
approach offers a flexible analytical framework that produces interpretable results.
Although habitat selection models can associate environmental information with

animal locations, a challenge remains to include more dynamic covariates that
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are likely to be pertinent to top marine predators. Marine predators such as
seals are known to respond quickly to changes in their environment, and their
movements are explicitly linked to shifts in prey availability as well as constraints
of the environment available to them. Likewise, prey availability is explicitly
linked to dynamic environmental covariates such as currents and thermal mixing,
and spatial models need to incorporate these (Scott et al., 2010). There has
been progress in recent years associating predator movements and space-use with
environmental features (Scales et al., 2014). However, work needs to be done to
build methodological bridges between spatial and movement ecology and close the

gap between modelling populations and individuals.

A branch of spatial ecology has arisen to address space use of animals through
bespoke analytical methods of their movements (Patterson et al., 2008). State-
space methods feature process and observation models that are explicitly linked
to predict future states through a time series approach. Hidden Markov Models
use a state-space approach with unobserved (hidden) states, and have become
increasingly popular for ecological data; they are can be reasonably straightforward
to fit and typically have rapid processing times (Zucchini et al., 2016). Covariates
can be included, and so they can describe space use of individuals within the
context of geographic and environmental space. In this way, usage maps could
be included as habitat covariates to inform HMMs. By contrast, individual based
models (IBMs) use simulations of many individuals, whose movements are defined
by a set of criteria to investigate space use. Incorporating usage maps into IBMs
can aid model fitting, as estimated densities in each grid cell can inform the model
about the local seal population abundance at the beginning of the simulation
(Donovan et al., 2017). The models can be validated using movement data but

depending on complexity, this can be challenging (Nabe-Nielsen et al., 2014).
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