Supplementary material: Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice

S. Klembt, 1, a) T. Harder, O. Egorov, K. Winkler, H. Suchomel, J. Beyerlein, M. Emmerling, C. Schneider, 1, 2 and S. Höfling, 1, 2

1) Technische Physik and Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
2) SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

(Dated: 30 October 2017)

a)Electronic mail: sebastian.klembt@physik.uni-wuerzburg.de
Figure S1. (a)-(d) Photoluminescence measurement showing the lower polariton branch on the planar microcavity sample for increasingly negative detuning (a) δ = +0.76 meV, (b) δ = -8.89 meV, (c) δ = -16.46 meV, and (d) δ = -24.36 meV, respectively. The lower polariton branch shows the typical decrease of effective mass, due to an increasing photonic fraction. (e) White light reflectivity measurements as a function of radial position (detuning). Upper and lower polariton show the typical anti-crossing behavior with a Rabi splitting of 2ℏΩ_R = 9.5 meV.
Figure S2. (a), (c) P-flatband dispersion for the lattice with diameter $d=3.0 \mu m$ at an excitation power of $1.25 P_{th}$. At around $3.13 P_{th}$ a weak signature of a S-flatband becomes visible. (b), (d) S-flatband dispersion for the lattice with diameter $d=2.5 \mu m$ at an excitation power of $1.13 P_{th}$. At around $1.50 P_{th}$ a weak signature of a P-flatband becomes visible.