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We studied angiogenesis using mathematical models describing the dynamics of tip

cells. We reviewed the basic ideas of angiogenesis models and its numerical simula-

tion technique to produce realistic computer graphics images of sprouting angiogen-

esis. We examined the classical model of Anderson-Chaplain using fundamental

concepts of mass transport and chemical reaction with ECM degradation included.

We then constructed two types of numerical schemes, model-faithful and model-

driven ones, where new techniques of numerical simulation are introduced, such as

transient probability, particle velocity, and Boolean variables.
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1 | INTRODUCTION

Angiogenesis, the formation of new blood vessels from pre-existing

vessels, is a vital component of many growth processes,1 including

embryogenesis, retinal vasculature, wound healing, tumor growth

and numerous vascular diseases. Hypoxic cells release angiogenic

factors such as vascular endothelial growth factor (VEGF) to promote

angiogenesis. When VEGF reaches nearby pre-existing vessels, the

endothelial cell is induced and activated, leading to the formation of

a tip cell with increased motility. Tip cell migrates in response to the

gradient of VEGF, followed by migration of the stalk cell behind the

tip cell, resulting in the formation of a new blood vessel sprout to

carry oxygen and nutrients to hypoxic cells (Figure 1). Sprouting

angiogenesis is not the only method to develop new blood vessels.

Vasculogenesis, the self-development of vascular cells, is the other

way to promote new blood vessel formation. In the present article,

we review sprouting angiogenesis only. For a biological review of

vasculogenesis, see Takakura.2

Some of the earlier angiogenesis models and simulations described

the continuous density of network vessels. This type of model lacks

details in the formed network of a sprout such as tip branching and

anastomosis. An example can be taken from the work of Aubert et al.3

They developed a partial differential system of retinal vascularization

that involves the interaction of tip cell, stalk cell, and VEGF. Numerical

simulation was carried out on a one-dimensional (1D) domain. Figure 2

explains how the density of tip cell, stalk cell, and VEGF are defined in

a 1D model and simulation. Tip cell density is defined as the cell den-

sity of the sprout tip whereas stalk cell density is defined as the cell
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density of sprouts other than tip. Tip branching and anastomosis are

defined as kinetic functions with the form of proliferation and decay

terms. By this definition, we cannot see the difference between cell

proliferation and tip branching. Tip cell density increases with tip

branching applied. The rate of increase depends on the choice of

branching rate. Another important phenomenon, anastomosis, is trea-

ted similar to tip branching. By defining anastomosis as tip cell decay

and stalk cell proliferation, we can see only the increasing or decreas-

ing tip cell and stalk cell density. We do not see the detailed structure

of sprouting angiogenesis from their model and simulation. Another

example of a continuum model and simulation was performed in two

dimensions (2D) by Anderson and Chaplain.4 They involved tip cell,

VEGF, and ECM in the model. Tip cell migrates in response to VEGF

and fibronectin gradients. We call this chemotaxis and haptotaxis,

respectively. They did not consider tip branching and anastomosis in

their continuum model. The simulation results show the importance of

chemotaxis and haptotaxis in sprouting angiogenesis. Chemotaxis

drives tip cell migration directly towards the tumor while haptotaxis

creates dispersion of tip cell density.

The discrete model is often combined with the continuous model

to obtain the detailed structure of a vessel network. Anderson and

Chaplain4 carried out this technique to track individual tip cell

F IGURE 1 Illustration of angiogenesis.
Vascular endothelial growth factor (VEGF)
is released by hypoxia cells, diffusing
through the ECM, and finally reaching the
nearby pre-existing blood vessel. Tip cells
are formed by endothelial cell activation,
which is caused by VEGF induction to the
pre-existing vessel. Then, tip cells migrate
in response to VEGF gradient
chemotactically. Tip cells degrade ECM
(orange lines) during this migration.
Branching and anastomosis occurs during
the angiogenesis process

F IGURE 2 Density of tip cell, stalk cell, and vascular endothelial growth factor (VEGF) on 1D model are defined as the average density on
the green dash-line for each position
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migration. The tracked path creates a continuous line which is then

defined as sprout formation. The tip cell position is updated proba-

bilistically depending on the set of environmental factors (chemotaxis

and haptotaxis) at every time step. Another discrete technique was

carried out by Bentley et al.5 They introduced an agent-based model

for simulating the tip cell selection process involving tip cell induc-

tion which is mediated by VEGF and delta-like 4 (DII4)-Notch signal-

ing. Simulation was carried out on a three dimensions (3D) gridded

lattice. In the simulation, they defined endothelial cell as ‘EC agents’

which is composed of a small agent (‘memAgent’) on the cell periphery.

This memAgent contains receptors of proteins that can promote filopo-

dia extension. Thus, EC agents are capable of filopodia extension and

retraction depending on the level of protein surrounding that agent.

This filopodia extension formed a continuous line as a new blood vessel.

Plank and Sleeman6 developed a lattice-based model of tumor-induced

angiogenesis. They defined the probability of tip cell migration in each

direction as in Othmer and Stevens.7 A reviewed article about recent

computational models of sprouting angiogenesis was written by Heck

et al.8 They categorized the models into three groups: tip cell migra-

tion-based models; tip cell and stalk cell-based models, and cell shape

dynamics models. The first two groups focus on cell migration based on

chemotaxis and haptotaxis. The last group completes the system by

involving cell shape dynamics during sprouting angiogenesis. The Cellu-

lar Potts model can be used to capture this phenomenon. This is a lat-

tice-based model that allows simulation of cell behavior based on total

energy. Cell behavior such as cell size and shape are translated into an

energy equation to become decision points for updating the cell surface

at every time step of numerical simulation. Bauer et al.9 developed the

first model and simulation of sprouting angiogenesis with cell shape

dynamics. This involved a discrete process for migration of cells and a

continuousmethod for the environmental factor (VEGF).

Mathematical study on sprouting angiogenesis, however, inte-

grates biological insights as mathematical formulas to understand

complicated events in a clear and quantitative way, to predict mor-

bid states for proposing better therapeutic strategies, and to develop

effective tools to create new drugs. This approach was initiated by

Anderson and Chaplain4 for tumor-induced angiogenesis, and was

then extended to wound healing10 as well as to retinal vascula-

ture.3,11,12 The study is still under progress collaborating with recent

developments in cell biology; for example, interactions of tip, stalk,

and mural cells under the control of cellular molecules such as

Angiopoietin 1, Angiopoietin 2, platelet-derived growth factor B

(PDGF-B), and so forth.13

The purpose of the present review is to describe their basic ideas,

expecting the reader to see the benefits of these studies, recognizing

the core part of mathematics used in the models. The reader is

expected to also become a good user or collaborator and, furthermore,

one of the experts engaged in this new field of science, mathematical

oncology. To this end, we pick up the classical model,4 modify it based

on later biological knowledge, and propose new numerical schemes

which lead to realistic computer graphics images as in http://body

tokyo.jp/. We review the comparison of numerical simulation results

with experimental data to show the relevance of the model.

2 | BIOLOGICAL INSIGHTS

We begin with a review of several biological insights recently estab-

lished on tumor-induced angiogenesis. First, three types of VEGF are

noticed; that is, VEGF120, VEGF165, and VEGF189. VEGF120 and

VEGF189 are binding and unbinding ECM, respectively, and

VEGF165 takes an intermediate profile. Strong expressions of

VEGF120 and VEGF165 are observed in angiogenic tissues.14,15

ECM-binding VEGF is released with ECM degradation by MMP,

which is thought to be the origin of the VEGF gradient.16-18 In total,

chemotaxis acting on the tip cell is caused by VEGF gradient, and

this gradient is due to ECM degradation by MMP.

Second, remodeling of ECM by tip cells19-21 and also haptotaxis

induced by ECM degradation by MMP22 are observed. Finally, there

is MMP upregulation inside the endothelial cell activated by VEGF

fragments,18,23-25 particularly inside the tip cell.22

3 | FUNDAMENTAL CONCEPTS OF
MATHEMATICAL MODELING

Here we describe two basic concepts in mathematical modeling. The

first is ordinary differential equation (ODE) describing the amount

balance. Supply and consumption with the rate a of the quantity

u = u(t) varying with the time t, are described by

ut ¼ a and ut ¼ �a; (1)

respectively, where ut ¼ du
dt, while

ut ¼ bu and ut ¼ �bu (2)

respectively, indicate growth and decay u with rate b. The quadratic

non-linearity, furthermore, is used to describe the interaction of two

types of particles, as in the chemical reaction inside the solution,

A + B ⇀ P(k); that is,

d½A�
dt

¼ �k½A�½B�; d½B�
dt

¼ �k½A�½B�; d½P�
dt

¼ �k½A�½B�: (3)

This model leads to mass conservation,

½A� þ ½P� ¼ a and ½B� þ ½P� ¼ b; and, with the constants a and b deter-

mined by initial values, which is used to simplify the reaction network

in a quasi-stationary state. For example, if the receptor-ligand process

Rþ w �k
l

Rw (4)

is in equilibrium on the plasma membrane, the formula of Michaelis-

Menten holds as

½RW� ¼ cw
cþ w0 (5)

where c = [RW] + [R] is a constant determined by the initial value

and c = l/k is the equilibrium constant.

The second concept is the gradient. Given the scalar field φ, its

gradient O/ represents the vector field with the direction maximiz-

ing the growth of φ with the length of its rate. The gradient operator
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O is thus defined, which leads to the divergence Oj of the vector

field j. If q = q(x, t) represents the mass density varying in t, its flux

j = j(x,t) is defined by

d
dt

Z
x

q dx ¼ �
Z
ox

v � j dS (6)

where x is an arbitrary domain, v is the outer normal unit vector,

and dS is the surface element. Then the divergence formula of Gauss

induces the equation of conservation,

qt ¼ �O � j: (7)

In the diffusion equation

qt ¼ dqMq; (8)

therefore, the flux j of q is proportional to - Oq. Here and

henceforth, d > 0 represents the physical constant associated

with the material. Some other positive constants are denoted by

a, b, c, d, and so forth, as before. In the transport theory, the

variation of q in time is described in accordance with the veloc-

ity of particles, denoted by v = v (x, t) and, generally, the equa-

tion in the form of

Dq
Dt

¼ h (9)

is called the transport equation, where

D
Dt

¼ o
ot

þ v � O (10)

denotes the material derivative. Under this flow, the position x = x

(t) of the particle is subject to

dx
dt

¼ vðx; tÞ; (11)

and if xt denotes the region made by the particles at time t which

are in x at t = 0, Liouvilles’s theorem implies

d
dt

Z
xt

q dx jt¼0¼
Z
x

Dq
Dt

þ qO � vdx jt¼0¼
Z
x

qt þ O � vqdx: (12)

Mass conservation is thus reduced to

qt þ O � qv ¼ 0 (13)

and the relation j = qv follows, which indicates that the flux of parti-

cle density is the product of itself and its velocity.

4 | TIP CELL MODEL

Here we modify the classical model4 using recent insights of cell

biology and mathematical modeling. The modification is based on

recent biological knowledge reviewed in the section Biological

Insights. First, tip cell is assumed to be continuously distributed and

hence is represented by n = n (x,t) with x and t representing space

and time variables, respectively. It is subject to diffusion and also

chemotaxis by VEGF and haptotaxis caused by ECM degradation.

This process is represented by

nt ¼ dnMn� O � nvm; vm ¼ vðcÞOcþ dfOf; (14)

where c = c (x, t) = c(x, t) and f ¼ f x; tð Þ are VEGF concentration and

ECM (fibronectin) density, respectively, and vm represents the veloc-

ity of n-particles other than the diffusion. The second term on the

right-hand side of vm describes one of the driving forces of tip cell

movement, called haptotaxis, the invasion to ECM of the tip cell.

The first term on the right-hand side of vm, however, represents

chemotaxis, so that v ¼ v cð Þ indicates chemotactic sensitivity. For

the single cell the form

vðcÞ ¼ a

ðbþ cÞ2
(15)

due to is standard,26,27 (page 262) but may be represented as a con-

stant at the tissue level.

ECM density change is under the control of the tip cell, which is

two-fold; that is, ECM degradation and remodeling. This process is

formulated by

ft þ lf v � Of ¼ an� gðc�Þnf; v ¼ � dn
n
Onþ vm; (16)

using the material derivative with constant rate lf on the left-

hand side of the first equation, where v denotes the velocity of

n defined by the second equation. The first term on the right-

hand side of the first equation represents the remodeling of ECM

by the tip cell, whereas the second term is concerned with ECM

degradation by the tip cell. This process is activated by the sig-

naling caused by the VEGF fragment c* = c0 � c in accordance

with MMP proliferation inside the cell, where c0 ¼ c0 xð Þ is the

initial distribution of ECM. Hence, in the above model of ECM

degradation, MMP concentration is replaced by tip density. Here,

it is reasonable to assume g to be

gðc�Þ ¼ bc�
cþ c�

(17)

due to the ligand-receptor binding process, using the equilibrium

constant c, which, however, may be a constant at the tissue level.

The localized VEGF attached to ECM is thought to be the

origin of its gradient. This type of VEGF is destroyed by MMP

which is identified with the tip cell as above. Hence, it follows

that

ct þ lcv � Oc ¼ �dnc: (18)

Totally, only n is involved by the diffusion in this system,

which should be provided with the boundary condition. It is rea-

sonable to assume the null-flux condition here, but may be

replaced by the Neumann zero condition as c and f can remain

as constants near the boundary in a short time because they are

subject to hyperbolic equations. Mathematical justification of this

system is similar to several models associated with diffusion and

chemotaxis.28,29
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5 | MODEL FAITHFUL DISCRETIZATION

Here we describe the method of finite difference for the simple case

of 1D-interval, I = [0,1], using the uniform mesh h defined by

hN = 1, where N is a large integer. Usually,

xi ¼ i� 1
2

� �
h; i ¼ 1; 2; � � � ; N; is taken as the main lattice, where

even and odd extensions are taken at the end points x = 0, 1 for

Neumann and Dirichlet boundary conditions, respectively. On this

lattice we have two ways of approximation of the first derivative,

DhfðxÞ ¼ fðxþ hÞ � fðxÞ
h

; �DhfðxÞ ¼ fðxÞ � fðx� hÞ
h

; (19)

which yields the center difference approximation of

Dh
�DhfðxÞ ¼ �DhDhfðxÞ ¼ fðxþ hÞ � fðx� hÞ � 2fðxÞ

h2
(20)

One may take the mean

1
2
ðDhfðxÞ þ �DhfðxÞÞ (21)

for approximation of the first derivative on the main lattice. The

other way valid to the convection equation

ut ¼ �Gux (22)

is the upstream difference,

ukþ1
i � uki
Mt ¼ � Gþ

i

uki � uki�1

Mx � G�
i

ukiþ1 � uki
Mx

 !
(23)

with G�
i ¼ max �G;0f g, where i and k represent the lattice and the

time step indices, respectively. The mean for approximation of the

first derivative may be replaced by

D̂hfðxiÞ ¼ fðx̂iþ1Þ � fðx̂iÞ
h

(24)

using the sub-lattice denoted by x̂i ¼ ih; i ¼ 0;1; � � � ;N
To solve the equation of conservation

nt ¼ �Fx; F ¼ nv (25)

numerically, we use the non-uniform time mesh combined with the

uniform space mesh,

nkþ1
i � nki

sk
¼ �hð~FxÞkþ1

i � ð1� hÞð~FxÞki ; (26)

where ~Fx denotes the space discretization obtained by the above

methods and 0 < h < 1 is a constant, so that the mixed Euler differ-

ence scheme is applied for time discretization. Writing the above

scheme simply like

nkþ1 ¼ Akn
k (27)

we apply Varga’s theorem to Ak.
30 It says that any irreducible,

diagonally dominant square matrix A, of which diagonal entries are

positive and the others are non-positive, is reversible with A�1

composed of only positive entries. The assumption of this theo-

rem holds to A = Ak if sk is sufficiently small, with the bound

calculated by the quantities at the k-step. By this adaptive mesh,

the positivity and the total mass of n are maintained step by step,

provided by the null-flux boundary condition.31,32 We obtain a

similar fact for

nt ¼ dnMn� O � nvm (28)

adapting the center difference scheme for the diffusion term.

Once this mechanism of numerical stabilization is confirmed, even

forward Euler scheme h = 0 is effcient for actual numerical simula-

tions.33

6 | SCHEME FOR HYBRID SIMULATION

Writing the above scheme as

nkþ1
i ¼ pk;0i nki þ pk;�iþ1n

k
iþ1 þ pk;þi�1n

k
i�1; (29)

we can regard pk;0i ; pk;�iþ1; and pk;þi�1 as the transient probabilities of

the particle on the sites i; iþ 1; and i� 1 to that i at each step,

because it follows that pk;li �0 for l ¼ 0; � and

pk;0i þ pk;�iþ1 þ pk;þi�1 ¼ 1 from the positivity preserving and the total

mass conservation. This scheme is easily extended to the case of

two-dimensional space.

Introducing the above transient probabilities is a fundamental

concept for hybrid simulation described below. Here, we formulate

discrete total velocity. First, the velocity vm of n other than the diffu-

sion is determined by c and f, which is regarded as the environment

variables. These variables are subject to the first-order equation with

the material derivative

D
Dt

¼ o
ot

þ v � O (30)

Then, the first term on the above right-hand side is discretized

by the forward Euler scheme to proceed to the next time scheme,

while upwind finite difference is used for the second term. For this

purpose, we define the velocity v by the formula

vki ¼
h
sk

X2
l¼1

pk;li el; (31)

where pk;1i ¼ pk;�i ; pk;2i ¼ pk;þi ; e1 ¼ 1; and e2 ¼ �1. In the case of

two-dimensional space, the right-hand side is composed of four terms

involving the unit vectors e1 ¼ 1;0ð Þ; e2 ¼ �1;0ð Þ; e3 ¼ 0;1ð Þ;
and e1 ¼ 0;�1ð Þ. In fact, we recall that h and sk represent space mesh

and time mesh, respectively, and the other term on the right-hand side

indicates the dimensionless quantity indicating the position of n at the

next time step in probability.

The other concept of our discretization for hybrid simulation is

the use of the Boolean variable to tip cell density, introduced by.11

Thus, the variable n is localized at several lattice points, denoted

by n*, and we replace n by n* in the right-hand side on the trans-

port equations concerning the environment variables; that is, c

and f. We thus end up with a closed full discrete system concern-

ing n*, c and f.
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7 | NUMERICAL SIMULATION

In this section, we describe the numerical technique of hybrid simu-

lation and show examples of simulation results. We adopted the

parameter values from Anderson and Chaplain.4 The domain is

square with length 1 (non-dimensional). We use dn = 3.5 9 10�4,

vn = 0.38, a = 0.05, c = 0.1, and d = 0.1.4 We assume b = 1,

lf = 10, and lc = 10 to satisfy the stability condition of the numeri-

cal scheme. For this paper, we take vn to be constant. Taking vn to

be dependent of VEGF concentration leads to decreasing of chemo-

tactic sensitivity. Tip cell will become less sensitive to high VEGF,

leading to deceleration of tip cell migration. Detail of simulation

using VEGF dependent-vn can be seen in Minerva.33

In the simulation setting, tip cell is assigned as a single point. We

set five tip cells in the beginning which are denoted as five red dots

at the left boundary (Figure 3A). We choose initial distribution of

ECM to be uniformly distributed,

fðx; y;0Þ ¼ 0:5; (32)

(Figure 3B) and VEGF to be gradually distributed with the form

cðx; y;0Þ ¼ e�
ð1�xÞ2
0:45 (33)

(Figure 3C).

At every time step, we decide the next movement of each tip

cell by using transient probability written similar to Eqn (29). The

choices of tip cell movement are to stay, to move to the left, to the

right, down, or up. Formation of blood vessels is visualized by tracing

tip cell movement in computer graphics. We also put in the branch-

ing and anastomosis rules. In the former, each tip cell is subject to

branching with the probability subject to VEGF density denoted by

c.4 We add a new tip cell with a random choice of direction if

branching occurs (Figure 4B). During the simulation, a tip cell can

meet another tip cell or formed vessel to form loop formation. This

is what we define as anastomosis in numerical process. In the case

of a tip cell that meets another tip cell, we select one tip cell ran-

domly to maintain the model-driven scheme at the next time step.

We remove a tip cell if that tip cell meets the formed vessel (see

Figure 4A for detail). This definition of branching and anastomosis

can also be applied to the 3D domain of simulation. More choices of

direction for tip cell migration give room for the tip cell to branch.

Remember that the rule of branching influences the occurrence of

tip branching. The choice of initial distribution of ECM and VEGF,

and position of tip cells at initial of simulation also affect this two

phenomenon. An example of 3D simulation was carried out by

McDougall et al.11 They successfully discovered branching and anas-

tomosis during the 3D simulation.

F IGURE 3 Initial condition setting of (A) five tip cells position, B, ECM distribution, and C, vascular endothelial growth factor (VEGF) distribution

F IGURE 4 A, Types of anastomosis. (Left) Tip cell meets other vessel or what we call tip to sprout anastomosis. (Right) One tip cell meets
another tip cell or what we call tip to tip anastomosis. B, Branching form possibilities

6 | SUZUKI ET AL.



At the same time step as in tip cell migration, distribution of

ECM and VEGF is also updated by solving Eqn (16) and Eqn (18)

numerically using Euler approximation. Velocity v is calculated using

Eqn (31). Tip cell n is valued as 1 or 0 in Eqn (16) and Eqn (18),

depending on the existence of tip cell (1 is for presence).

We now show some examples of simulation results. Figures 5

and 6 are snapshots of numerical simulation. Red color dot repre-

sents tip cell existence. The black line is the tracked path created by

tip cell migration. We define this as a newly formed vessel. By this

time, a vessel is formed and approaching the right boundary where

high VEGF occurs (Figure 5A). Branching and anastomosis occurs

after the vessels reach position x = 0.2. This two phenomenon can

occur depending on the choice of VEGF density and branching prob-

ability. Placing a different profile of VEGF and ECM affects the

occurrence of branching and anastomosis.33 Furthermore, ECM

degradation and remodeling are observed during tip cell migration in

Figure 5B and 6. The color changes on the area of a newly formed

vessel are detected as this two phenomenon. This creates an ECM

gradient difference for the tip cell to migrate. Minerva33 carried out

alterations to each parameter in the numerical simulation. She also

used two different density profiles of VEGF and ECM to further

examine the difference of vessel growth on the alterations. In the

absence of ECM remodeling and ECM degradation, vessel growth

has no significant changes. Using a different profile of ECM distribu-

tion at the initial step, vessel growth can be inhibited. VEGF induc-

tion on the pre-existing vessel results in fibronectin leakage from the

vessel. This fibronectin bound to ECM forms an ECM gradient where

the high concentration is on the pre-existing vessel area. With

chemotaxis term applied in this ECM gradient, tip cell migrates for-

ward and backward, creating a ‘brush border’, and never reaching

the right boundary where the tumor is placed in the model of

tumor-induced angiogenesis.4 Sholley et al.34 observed that vascular-

ization in the tumor did not occur in the absence of cell proliferation.

Based on this fact, Anderson and Chaplain added cell proliferation to

the simulation process. As a result, the vessel now reached the right

boundary, penetrated the tumor where we assume it to be placed.4

Alteration of VEGF distribution and equation is more interesting.

Placing the source of VEGF, which is regarded as tumor, at the cen-

ter of the right boundary gives a different VEGF gradient profile

from Figure 2 (right). The pattern of vessel networks follows the pat-

tern of VEGF gradient.33 In the absence of VEGF degradation, set-

ting d = 0, vessel growth is decreasing. The vessels stop growing

once they reach the highest density of VEGF.33 This may result in

the failure of complete vascularization inside the tumor.

F IGURE 5 Snapshots of vessel growth on (A) vascular endothelial growth factor (VEGF) distribution and B, ECM distribution in time

F IGURE 6 Snapshots of ECM distribution in time
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8 | COMPARISON WITH EXPERIMENTAL
DATA

There are many earlier studies on mathematical models of sprouting

angiogenesis involving experimental data as comparison. Aubert

et al.3 used retinal vasculature data in mice as comparison for simu-

lation of the capillary tip and astrocytes migration on 1D. They

detected the position of the capillary and astrocyte tip at every time

increment and compared them with experimental data. Their data

match very well. McDougall et al.11 further compared their 2D

model and simulation results of retinal vasculature with experimental

data in mice. Not only tip position data, they successfully compared

the structure of a vessel network with a real figure. The radii

changes that are related to their angiogenesis system creates hetero-

geneity of vessel radii which makes visualization of computer graph-

ics more realistic.

9 | CONCLUSION

Mathematical modeling of sprouting angiogenesis at the tissue level

using partial differential equations and visualization trials using

hybrid simulation with transient probabilities and Boolean variables

have been computed. However, these are based on empirical rules

and measured values. In this article, we established a strategy to

reflect the remodeling and recent biological knowledge that are

directly consistent with numerical simulation results. We proposed

a modification of the classical model4 on tumor-induced angiogene-

sis based on recent developments in biological and mathematical

theories. We formulated ECM degradation and penetration by tip

cell using the transport theory. We clarified theoretically that the

elements missed in the simulations, which included alterations in

the model, that have been done so far do not become practical

obstacles because no specific difference was found in numerical

simulation results. Model-faithful and model-driven discretized

schemes were introduced, where particle velocity is formulated

besides the Boolean environment variables in accordance with the

transient probabilities of the particle variable. Using our discretiza-

tion scheme that guarantees positivity preservation and mass con-

servation, we showed that the transient probability adopted in

hybrid simulation is necessarily valued between 0 and 1. Determin-

istic and stochastic hybrid simulations then visualized realistic

movements of tip cells.
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