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Abstract. This study derives regularity criteria for solutions of the Navier–Stokes equations.

Let Ω(t) := {x : |u(x, t)| > c ||u||Lr(R3)}, for some r ≥ 3 and constant c independent of t, with

measure |Ω|. It is shown that if ||p + P||L3/2(Ω) becomes sufficiently small as |Ω| decreases, then

||u||L(r+6)/3(R3) decays and regularity is secured. Here p is the physical pressure and P is a

pressure moderator of relatively broad forms. The implications of the results are discussed and

regularity criteria in terms of bounds for |p + P| within Ω are deduced.

1. Introduction

This note is concerned with the Cauchy problem of the Navier–Stokes equations

∂u

∂t
+ (u · ∇)u+∇p = ∆u, (1)

∇ · u = 0

in R3×(0,∞) with u(x, 0) = u0(x) divergence-free, smooth and decaying sufficiently fast at infinity.
Given such an initial velocity field, it is well known that a classical solution exists up to some finite
time t = T , which depends on u0(x). The question is whether or not the solution remains smooth
(regular) beyond T , particularly up to all t ≥ T (global regularity).

Decades of active research on this problem since Leray’s seminal work in the 1930s have resulted
in a rich literature [1–33]. Yet, the prospect of a definitive answer to the above question has become
increasingly remote. Early studies by Prodi [22], Serrin [24] and Ladyzhenskaya [20] found that

regularity is guaranteed provided that
∫ T

0
||u||2r/(r−3)

Lr dt <∞, for r ∈ (3,∞). Recently, Escauriaza,
Seregin and Sverák [14] have extended this criterion to esssupt∈(0,T ) ||u||L3 <∞, for the critical case
r = 3. Various criteria expressible in terms of the pressure p and its gradient ∇p have been derived
by a number of authors [1, 4, 8, 10, 12, 15, 23, 25, 28, 30, 32]. Among these, two criteria are most
relevant to the present context. One is the criterion∫ T

0

||p||2r/(2r−3)
Lr dτ <∞, for r ∈ (3/2,∞), (2)

which is an analogue of the Prodi–Serrin–Ladyzhanskaya result. The other is the following theorem
by Seregin and Sverák [23].

Date: October 18, 2016.

2000 Mathematics Subject Classification. 76D03,76D05.
Key words and phrases. Navier–Stokes equations, Hölder continuity, Global regularity.
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Theorem 1 (Seregin & Sverák, 2002). Let u and p solve the Navier–Stokes equations (1). Let
g(x, t) : R3 × (0,∞)→ [0,∞) be such that for any t0 > 0, there exists r = r(t0) > 0 such that

sup
x0∈R3

sup
t0−r2≤t≤t0

∫
B(x0,r)

g(x, t)

|x− x0|
dx <∞.

If

|u(x, t)|2

2
+ p(x, t) ≤ g(x, t) (3)

or

p(x, t) ≥ −2g(x, t), (4)

for x ∈ R3 and t ∈ (0,∞), then u(x, t) is smooth and unique.

This note derives regularity criteria in terms of bounds for an “effective” pressure. The results
have some bearing on criteria (2) and (3) discussed in the preceding paragraph. Qualitatively
speaking, it is proved that if an effective pressure in region(s) of high velocity is bounded by a
singular function similar to g(x, t), then regularity is secured. Here the effective pressure is the sum
of the physical pressure and moderators, which may potentially be used to moderate the former in
such region(s).

For the rest of this study, c denotes a positive constant, which may assume different values from
one expression to another.

2. Results

Let r ≥ 3 and q := (r+ 6)/3, so that 3 ≤ q ≤ r. The evolution of ||u||Lq := ||u||Lq(R3) is governed

by

1

q

d

dt
||u||qLq = (q − 2)

∫
R3

p|u|q−2 û · ∇|u|dx

−(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
, (5)

where û is the unit vector in the direction of u. Our aim is to derive conditions under which the
driving term in (5) becomes smaller than the corresponding dissipation terms, thereby implying a
decay of ||u||Lq and regularity. The following lemmas constitute an integral part of our derivation.
These results are taken from Ref. [27] (see also Ref. [26]) with minor modifications.

Lemma 1. Let

P(x, |u|, t) :=

n∑
i=1

fi(x, t)gi(|u|, t), (6)

where u · ∇fi(x, t) = 0 and gi(ξ, t) ∈ C1, then∫
R3

P |u|q−2 û · ∇|u|dx = 0. (7)

Proof. Let

hi(|u|, t) =
1

|u|q−2

∫ |u|
0

ξq−3gi(ξ, t) dξ.
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Then by virtue of ∇ · u = 0 and the hypothesis u · ∇fi = 0, we have

∇ ·
(
fihi|u|q−2 u

)
= fiu · ∇

∫ |u|
0

ξq−3gi(ξ, t) dξ

= figi|u|q−2 û · ∇|u|. (8)

Summing over i and integrating the resulting equation over R3 proves the lemma.
The function P defined by (6) is called a pressure moderator for the reasons to become apparent

in due course.

Lemma 2. Let P be a pressure moderator satisfying

||p+ P||L2 ≤ c′2 ||u||
2
L4 , (9)

for some absolute constant c′2. Then there is c1 > 0, depending on c′2, ||u0||L2 and the constant c in
the Sobolev inequality ||f ||L6 ≤ c ||∇f ||L2 , such that if we define

Ω(t) := {x : |u(x, t)| > c1 ||u||Lr}, (10)

then ∫
R3\Ω

|p+ P||u|q−2 û · ∇|u|dx ≤ 1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2
.

Proof. Since |u(x, t)| ≤ c1 ||u||Lr for x ∈ R3\Ω we have∫
R3\Ω

(p+ P)|u|q−2 û · ∇|u|dx ≤

(∫
R3\Ω

(p+ P)2|u|q−2 dx

)1/2 ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c
(q−2)/2
1 ||p+ P||L2 ||u||(q−2)/2

Lr

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c
(q−2)/2
1 c′2 ||u||

2
L4 ||u||(q−2)/2

Lr

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c
(q−2)/2
1 c′2 ||u||L2 ||u||q/2L3q

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2
, (11)

where the Hölder inequalities

||u||L4 ≤ ||u||(3q−4)/(6q−4)
L2 ||u||3q/(6q−4)

L3q

and

||u||Lr ≤ ||u||4/[(3q−2)(q−2)]
L2 ||u||q(3q−8)/[(3q−2)(q−2)]

L3q

have been used. The proof is completed with the following application of Sobolev inequality

||u||q/2L3q ≤
cq

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2
,

together with the choice c1 = (cqc′2 ||u0||L2)−2/(q−2).

Lemma 3. Let u and p solve the Navier–Stokes equations (1) and Ω(t) be defined by (10). Let P be

a pressure moderator satisfying (9) and ||p+ P||L3q/2(Ω) ≤ c′3q/2 ||u||
2
L3q for some absolute constant

c′3q/2. Then there is c0 > 0, depending only on c′3q/2 and the constant c in the Sobolev inequality

||f ||L6 ≤ c ||∇f ||L2 , such that if

||p+ P||L3/2(Ω) ≤ c0 (12)

for all t ∈ (0, T ), then ||u||Lq decreases on (0, T ).
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Proof. Upon application of lemmas 1 and 2, (5) becomes

cq
d

dt
||u||qLq ≤

∫
Ω

(p+ P)|u|q−2 û · ∇|u|dx− 1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2

≤
(∫

Ω

|p+ P|3/2 dx

)1/3(∫
Ω

|p+ P|3|u|3q−6 dx

)1/6 ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

−1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2

≤
(∫

Ω

|p+ P|3/2 dx

)1/3(∫
Ω

|p+ P|3q/2 dx

)1/3q (∫
Ω

|u|3q dx

)(q−2)/6q ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

−1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2

≤ c′3q/2

(∫
Ω

|p+ P|3/2 dx

)1/3

||u||q/2L3q

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2
− 1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2

≤ c′3q/2
cq

2

(∫
Ω

|p+ P|3/2 dx

)1/3 ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2
− 1

2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2
, (13)

where cq = q/(q − 2). Now the hypothesis

||p+ P||L3/2(Ω) ≤ c0 (14)

means that the driving term in (13) becomes smaller than the corresponding dissipation term if
c0 ≤ (qcc′3q/2)−2. Hence under this condition, ||u||Lq decays and regularity is secured. The lemma

is proved.

Remark 1. The condition ||p+ P||Ls ≤ c′s ||u||
2
L2s , for s ≥ 2, in the above lemmas trivially holds if

P = c|u|2.

Remark 2. Given P = c|u|2 or P = 0, (14) remains unchanged under the scalings p(x, t) 7−→
λ2p(λx, λ2t) and u(x, t) 7−→ λu(λx, λ2t) that render (1) invariant.

We are now in a position to state and prove the main results of this study.

Theorem 2. Let φ(ξ, t) ≥ 0 be such that

lim
ξ↘0

φ(ξ, t) = 0.

Suppose that

|p(x, t) + P(x, |u|, t)| ≤ φ(|Ω|, t)2/3

|Ω|2/3
, for x ∈ Ω, (15)

holds for sufficiently small |Ω|, then ||u||Lq remains finite and regularity follows.

Proof. Let δ > 0 be such that φ(ξ, t) < c0 whenever ξ < δ. We define

I := {t ∈ (0, T ) : |Ω(t)| < δ} and J := (0, T )\I.

For t ∈ J , by virtue of the definition of Ω we have

||u||Lr ≤
(cqc′2)2/(q−2) ||u0||q/(q−2)

L2

δ1/2
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independent of t. And since 2 < q ≤ r, by Hölder’s inequality, ||u||Lq is bounded independently of
t by

||u||Lq ≤
(cqc′2)6(q−2)/[q(3q−8)] ||u0||1+6(q−2)/[q(3q−8)]

L2

δ3(q−2)2/[2q(3q−8)]
:= Uq. (16)

On the other hand, for t ∈ I, we have φ(|Ω|, t) < c0 and therefore d ||u||Lq /dt ≤ 0 at t.
Now let t ∈ I be arbitrary. We define O := ∪(t1, t2), where the union is over all 0 < t1 < t <

t2 < T such that (t1, t2) ⊆ I. There are two possible cases. First, O is empty. Then t ∈ J (the
closure of J) and there exists a sequence {tn} ⊆ J such that tn → t. By continuity we have

||u(t)||Lq = lim
n→∞

||u(tn)||Lq ≤ Uq.

Second, O is nonempty. Then O = (a, b), for some 0 ≤ a < b ≤ T with a ∈ J ∪ {0}. As ||u(t)||Lq

decreases in (a, b), we have

||u(t)||Lq ≤ max{||u0||Lq , Uq}. (17)

It follows that (17) holds for all t ∈ (0, T ) and regularity is secured.

Remark 3. In essence, theorem 2 implies that no loss of regularity can occur if the effective pressure
|p+ P| in Ω grows marginally less rapidly than |Ω|−2/3 as ||u||Lr increases.

Remark 4. In criterion (15), it is desirable that φ(ξ, t) tends to zero as slowly as possible. Some
simple examples of φ(ξ, t) are 1/| log ξ| and 1/ log | log ξ|.

The bound (15) in theorem 2 is regular, being consistent with the fact that |p+P| <∞ whenever
|Ω| > δ. It is possible to reformulate this result as is done below in terms of singular bounds, which
are commonly considered in the literature.

Theorem 3. Suppose that Ω(t) can be covered by a finite number of balls Bi(xi, ri) in such a way
that ri → 0 for each i as |Ω| → 0. Suppose further that

|p+ P| ≤ c | log |x− xi||−αi |x− xi|−2, for x ∈ Bi and αi > 2/3, (18)

holds for sufficiently small |Ω|. Then ||u||Lq remains finite and regularity follows.

Proof. The hypothesis (18) implies∫
Ω

|p+ P|3/2 dx ≤ c
∑
i

∫
Bi

| log |x− xi||−3αi/2|x− xi|−3 dx

≤ c
∑
i

| log ri|1−3αi/2. (19)

Since 1−3αi/2 < 0, the above sum vanishes in the limit max{r1, r2, · · · } → 0. Hence for sufficiently
small |Ω|, necessarily ensuring sufficiently small max{r1, r2, · · · }, (14) holds and regularity follows.
Thus the theorem is proved.

3. Concluding remarks

We have derived regularity criteria for solutions of the Navier–Stokes equations. It has been
shown that if an effective pressure |p+P| in Ω := {x : |u(x, t)| ≥ c1 ||u||Lr}, where r ≥ 3, grows less

rapidly than |Ω|−2/3 as ||u||Lr increases, then no loss of regularity can occur. Here P is a pressure
moderator whose effectiveness remains to be explored. This result in a sense confirms the physical
pictures that |p| must blow up concurrently with |u| at points where the flow becomes singular.
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The present results are more ”localized” than the Prodi–Serrin type criterion (2). Furthermore,
the pressure moderator P can be of broad forms, including |u|2/2 of (3) as a special case. Note that
P need not be a pointwise moderator. Rather, the moderation is in the sense of L3/2(Ω)-norm. It
is interesting for future studies to examine whether such a pressure moderator can be constructed
and to what extent the moderation can be.
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