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Abstract 41	

 42	

Aim: Species abundance distributions (SADs) are a synthetic measure of biodiversity and community 43	

structure. Although typically described by unimodal logseries or lognormal distributions, empirical 44	

SADs can also exhibit multiple modes. However, we do not know how prevalent multimodality is, 45	

nor do we have an understanding of the factors leading to this pattern. Here we quantify the 46	

prevalence of multimodality in SADs across a wide range of taxa, habitats and spatial extents. 47	

 48	

Location: Global. 49	

 50	

Methods: We used AICc and Likelihood Ratio tests (LRT) to test whether distributions with more 51	

than one mode accurately describe the abundance distributions of the underlying communities. We 52	

analysed 117 empirical datasets from intensely sampled communities, including taxa ranging from 53	

birds, plants, fish and invertebrates, from terrestrial, marine and freshwater habitats. 54	

 55	

Results: We find evidence for multimodality in 14.5% of the SADs when using both AICc and LRT. 56	

This is a conservative estimate, as AICc alone estimates a prevalence of multimodality of 22%. We 57	

additionally show that the pattern is more common in data encompassing broader spatial scales and 58	

greater taxonomic breadth, suggesting that multimodality increases with ecological heterogeneity. 59	

 60	

Main conclusions: We suggest that higher levels of ecological heterogeneity, underpinned by larger 61	

spatial extent and higher taxonomic breadth, can yield multimodal SADs. Our analysis shows that 62	

multimodality occurs with a prevalence that warrants its systematic consideration when assessing 63	

SAD shape and emphasizes the need for macroecological theories to include multimodality in the 64	

range of SADs they predict.  65	
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Introduction 66	

 67	

Species Abundance Distributions (SADs) depict the relative abundance of the species present in a 68	

community and describe one of the most fundamental patterns of species diversity – most 69	

communities contain many rare and only a few common species (McGill et al., 2007). Empirical 70	

datasets consistently produce species abundance distributions that are quasi-hyperbolic on an 71	

arithmetic scale – the ubiquitous ‘hollow curve’. However, on a logarithmic scale of abundance, 72	

SADs exhibit more variability, with species abundance distributions alternately exhibiting no internal 73	

mode - most species occur at the lowest abundance class (i.e. as singletons), one internal mode, or 74	

multiple internal modes. Despite seven decades of study and dozens of different models proposed 75	

(McGill et al., 2007), there is still no consensus about what drives variation in SADs shape, nor how it 76	

might be connected to factors structuring ecological communities (Fisher et al., 1943; Preston, 1948; 77	

Magurran & Henderson, 2003; McGill, 2003b; Green & Plotkin, 2007; Dornelas et al., 2009). The 78	

extent to which current biodiversity theories are able to accommodate and explain such variation is a 79	

critical criterion to their evaluation and application (McGill et al., 2007). 80	

 81	

The two distributions recurrently proposed to describe SADs are the logseries (Fisher et al., 1943) and 82	

the lognormal (Preston, 1948) (Fig. 1). While many intensely sampled communities seem to follow a 83	

lognormal distribution (Magurran, 2004), it has become increasingly clear that empirical SADs often 84	

deviate from a lognormal by having more than one internal mode (Ugland & Gray, 1982; Gray et al., 85	

2005; Dornelas & Connolly, 2008). Multimodality is seldom reported and its implications little 86	

explored (McGill et al., 2007), with some notable, but dispersed, exceptions. Ugland & Gray (1982) 87	

proposed three lognormal distributions, corresponding to rare, intermediate abundant and common 88	

species, to describe non-equilibrium marine benthic communities. Magurran & Henderson (2003) 89	

‘deconstructed’ an estuarine fish community into two groups - ‘core’ and ‘occasional’, based on 90	

species persistence and habitat preferences, where the first group was better fit by a lognormal, while 91	

the ‘occasional’ group of rare species followed a logseries distribution. Gray et al. (2005) showed that 92	
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a mixture of two lognormal distributions provided a good fit to a marine benthos and a tropical tree 93	

data, again separating the species into ‘abundant’ and ‘rare’. 94	

 95	

In the first statistical analysis comparing the fit of distributions with varying numbers of modes, 96	

Dornelas & Connolly (2008) showed that the SAD of an intensely sampled coral community was 97	

multimodal. However, the different modes could not be explained by mixture of species associated 98	

with different habitats, and were only partially explained by different spatial aggregation. Recently, 99	

Matthews et al. (2014), using the same methodology for an arthropod community, showed that 100	

multimodal distributions performed better for many of the samples analysed, and that grouping 101	

ecologically different species leads to multimodality, with the rarest species mode containing a higher 102	

proportion of satellite, introduced and species better adapted to other habitats. However, the effect of 103	

dispersal ability was unclear, and a body size niche axis was unrelated to the multimodal patterns. The 104	

commonality among these studies is that they indicate that multimodality is linked to ecological 105	

heterogeneity, broadly defined as groups of species with different ecological or functional 106	

characteristics. This suggests that multimodality should have higher prevalence among communities 107	

with higher ecological heterogeneity. Our concept of ecological heterogeneity is intended to 108	

encompass the spatial, environmental, taxonomic and functional aspects of ecological systems, rather 109	

than simply the number of species or functional groups.  110	

 111	

The prevalence of multimodality in empirical SADs is as yet unknown. In a recent theoretical study, 112	

Barabás et al. (2013) reported that stochastic versions of both resource partitioning and neutral models 113	

can produce multimodal SADs with a 50% prevalence. The authors argue that in nature, individual 114	

realizations are likely to differ from the mean predicted pattern due to stochastic processes, while 115	

disputing that the Emergent Neutrality model proposed by Vergnon et al. (2012) is the only one able 116	

to produce multimodal SADs. Thus, assessing the prevalence of multimodality in empirical datasets is 117	

warranted to establish the generality of the pattern, as well as help elucidate how it can be related to 118	

different ecological explanations. 119	

 120	
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Here, we undertake a comprehensive global assessment of the prevalence of multimodality for a wide 121	

range of communities. This is, to our knowledge, the first assessment of the prevalence of multiple 122	

modes in SADs. We improve the method of multimodality detection and show with high confidence 123	

that multimodality occurs in 17 out of 117 assemblages. Additionally, we test the hypothesis that 124	

more heterogeneous communities are more likely to exhibit multimodality. We show that 125	

multimodality has higher prevalence for large scale or taxonomically heterogeneous communities. 126	

Broader spatial extent and higher taxonomic breadth (as measured by family diversity) underpin 127	

higher ecological heterogeneity, and hence we suggest these as potential explanations for 128	

multimodality in SADs. 129	

 130	

 131	

Materials and Methods 132	

 133	

Model Selection 134	

To test whether distributions with more than one mode accurately reflect the abundance distributions 135	

of the underlying communities we used maximum likelihood methods to explicitly compare the fit of 136	

mixtures of 1, 2 and 3 Poisson Lognormal distributions (1PLN, 2PLN and 3PLN, respectively) 137	

(Pielou, 1969; Bulmer, 1974); a logseries distribution was also included (Fig. 1). All the calculations 138	

were performed in the software R (R Core Team, 2013). Functions to fit the PLN mixtures and to 139	

calculate maximum likelihood estimates (MLE) were adapted from Dornelas & Connolly (2008) but 140	

using the dpoilog() function from poilog package (Grøtan & Engen, 2008); the log-likelihood 141	

functions are otherwise similar and best fit parameters were found by minimizing the negative log-142	

likelihood (functions available in Appendix S1). Parameter estimation was performed using the R 143	

optimization routine nlminb and parameter searches were initialized from multiple starting points due 144	

to the possibility of several local maxima for more complex distributions (Dornelas & Connolly, 145	

2008; Connolly & Dornelas, 2011). 146	

 147	
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Model comparison was performed under a multi-model information-theoretic framework (Burnham & 148	

Anderson, 2002), using the second order Akaike’s information criterion for small sample sizes (AICc, 149	

Burnham & Anderson, 2002) and Bayesian information criterion (BIC, Schwarz 1978). AICc was 150	

used throughout as it converges to AIC when sample size is large (Burnham & Anderson, 2002, 151	

2004). AIC and BIC are model selection tools that provide quantitative relative support for alternative 152	

hypotheses, while finding a compromise between goodness of fit and model complexity. AIC tends to 153	

overestimate the number of distributions in mixture models, while BIC tends to underestimate them 154	

(McLachlan & Peel, 2000; Henson et al., 2007). Hence, we evaluated the performance of these two 155	

model selection criteria with a simulation study. 156	

 157	

We evaluated model performance in slightly different ways in the empirical and simulation studies. 158	

For the analysis of the empirical data, relative support for the models was calculated as ΔAIC, which 159	

is the difference between the AICc of each model, and the lowest AICc in the model set. Differences 160	

larger than 2 indicate substantial evidence against the model with the higher AICc (or BIC) (Burnham 161	

& Anderson, 2002). However, for the simulation study, the “true model” (the model used to generate 162	

the simulated data) is known. Therefore, we calculated AIC differences relative to this true model, a 163	

quantity we term AICdiff. Specifically, AICdiff is the AICc of the true model, minus the smallest 164	

AICc of the remaining models. This quantity is negative whenever the true model is the best fitting 165	

model (the one with the lowest AIC score). Conversely, if one or more of the alternative models 166	

actually fits better than the true model does, then AICdiff will be positive (note that AICdiff=0 does 167	

not indicate the best fitting model). An analogous quantity was calculated for BIC. 168	

 169	

 170	

Simulation Study 171	

Because the PLN-mixture method has only been applied to specific datasets (Dornelas & Connolly, 172	

2008; Vergnon et al., 2012; Matthews et al., 2014), we conducted a simulation study to assess how it 173	

performed under a broad range of parameter combinations. We were specifically interested in 174	

determining which conditions lead to selection of a model with the wrong number of internal modes. 175	
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We defined a false positive as simulated samples where a multimodal distribution was selected with 176	

high confidence when the true distribution generating the sample was not multimodal; and a false 177	

negative as simulated samples where the true distribution was multimodal but for which a ‘non-178	

multimodal’ distribution was selected. A range of species richness and parameter values for the four 179	

alternative abundance distributions models was used to generate simulated count data. The spectrum 180	

of parameters used was designed to cover a realistic range for species abundance data (Connolly & 181	

Thibaut, 2012), and to provide a quantitative picture of whether and when the method fails to select 182	

the true number of underlying modes. A total of 162 parameter combinations were examined; for each 183	

parameter combination, 100 simulated SAD samples were generated and the alternative log-likelihood 184	

functions were fit (see Appendix S2 for more details and code). 185	

 186	

 187	

Parametric Bootstrap 188	

Following the simulation study results, we identified some 1PLN parameter combinations where AICc 189	

strongly selected a more complex model than the one generating the data with a frequency of up to 190	

~25% of the simulated samples (Fig. S2.2 in Appendix S2). We additionally calculated likelihood 191	

ratio tests (LRT) to minimise the chance of a multimodal distribution being selected due to 192	

overfitting. Likelihood ratio tests assess if the improvement in goodness of fit of a more complex 193	

models is greater than would be expected by chance, if the simpler model were true. LRT are only 194	

applicable to nested models, so the logseries was not included in this analysis. Because the null 195	

distribution of LRT is known to occasionally deviate from a chi squared distribution (McLachlan, 196	

1987; McLachlan & Peel, 2000), we generated null LRT frequency distributions from 1PLN 197	

simulated communities. This allows calculating the equivalent of a p-value for the null hypothesis that 198	

the sampled data are consistent with a 1PLN distribution, thus providing an alternative assessment of 199	

whether a multimodal model provided the best-fit for that parameter combination. For the simulation 200	

study, we illustrate this by comparing LRT distributions for two parameter combinations, one from 201	

the parameter space where AICc successfully selected 1PLN, and the other from the space where AICc 202	

has a higher probability of selecting a more complex model. 203	
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 204	

For the empirical data, we conducted a parametric bootstrap likelihood ratio test (PBLRT; see Knape 205	

& de Valpine 2012 for an example) for all the SADs selected as multimodal by AICc. The parametric 206	

bootstrap procedure consisted of randomly generating species abundance values from a 1PLN density 207	

function parameterized using the model’s maximum likelihood estimates for that empirical dataset 208	

(Connolly et al., 2009). As these analyses are very computationally intensive (Dornelas & Connolly, 209	

2008; Connolly & Dornelas, 2011), 100 parametric bootstrap samples were generated for each 210	

dataset, using 𝜇 and 𝜎 (the estimated mean and standard deviation of log-abundances) and sample size 211	

as the observed number of species, and the log-likelihood functions were fit (details and code in 212	

Appendix S2). This procedure allowed comparing the empirical likelihood ratio, calculated from the 213	

empirical SAD fitting, with the frequency distribution expected under the null hypothesis that the data 214	

are actually a single PLN.  215	

 216	

 217	

Empirical Data 218	

117 datasets from intensely sampled communities were collected from 3 online repositories: OBIS 219	

(Ocean Biogeographic Information System, http://www.iobis.org/), Ecological Data Wiki 220	

(http://ecologicaldata.org/) and GBIF (Global Biodiversity Information Facility, http://www.gbif.org/) 221	

(Fig. 2). These data are freely available and a complete list of the data sources can be found in 222	

Appendix S3. For each dataset a simplified vector of abundances was obtained, corresponding to one 223	

year of sampling only (the most recent year with at least 10,000 individuals where multiple years were 224	

sampled). This was intended to prevent interannual variability from inducing multimodality sensu 225	

Magurran & Henderson (2003), as we were interested in assessing the prevalence of multimodal 226	

SADs independent of a temporal effect of species abundances fluctuations among years. 227	

 228	

Datasets were classified according to spatial extent and taxonomic breadth. These two variables were 229	

intended to represent different axes of ecological heterogeneity. Regarding spatial extent, as explicit 230	

estimates of extent were not available for all datasets, datasets were classified as Local when data 231	
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originated from plots or sampling stations within less than 1° latitude/longitude, as Regional when 232	

data comprised larger areas (e.g. countrywide or larger biome patches), and as Continental when data 233	

spanned broader areas such as the whole eastern North American coast or Antarctica. Regarding 234	

taxonomic breadth, we used the number of families to quantify this variable. We analysed whether the 235	

prevalence of multimodality was influenced by spatial extent and taxonomic breadth (and their 236	

interaction) using two models: first, we used a binomial generalised linear model (GLM), aggregating 237	

1PLN and logseries as ‘non-multimodal’. Additionally, we used a multinomial Bayesian generalised 238	

linear model to assess the prevalence of multimodality, 1PLN and logseries separately. We performed 239	

the Markov chain Monte Carlo (MCMC) estimation using the R package MCMCglmm (Hadfield, 240	

2010). We fitted a model with a random intercept to obtain improved parameter estimates for each 241	

level of the fixed effects (see MCMCglmm vignette (Hadfield, 2010) and Gelman & Hill, 2007), 242	

running 5,000,000 iterations with a burn-in of 100,000 and a thinning interval of 25.  243	

 244	

 245	

Results 246	

 247	

Simulation Study 248	

Overall, the PLN-mixture method was robust to large variation in the parameters used to perform the 249	

simulations. The false positive frequency was very low, particularly for BIC where in only 1% of the 250	

cases was a multimodal distribution selected with high confidence as the best fit model when the true 251	

distribution was not multimodal, and for AICc it was 6%. Species richness (S) had strong and 252	

disparate effects for the 1PLN simulations. For AICc, the percentage of false positives increased with 253	

S, while for BIC the percentage of failures decreased. When inspecting the 1PLN simulation results in 254	

more detail, some particular parameter combinations led AICc to consistently and strongly favour 255	

more complex models than the one generating the data (Fig. S2.2 in Appendix S2). 256	

 257	

The overall false negative frequency, i.e. simulations where the distribution generating the sampled 258	

communities was multimodal but for which a ‘non-multimodal’ distribution was selected as best fit, 259	
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was 25% for AICc and 39% for BIC. For 2PLN and 3PLN simulations, the true model was selected 260	

when the modes were clearly separated, for smaller σ values and for higher species richness. BIC 261	

started to select a simpler model as the distance between the modes decreased ‘earlier’ than AICc, 262	

which was still able to select the true model for closer modes. Overall, the position of the modes, 263	

species richness and particularly σ values showed strong effects in the best-fit model selection, for 264	

both AICc and BIC, sometimes with different directions (see Appendix S2 for more detailed results 265	

and figures for each set of simulations). 266	

 267	

When likelihood ratio tests were used in addition to AICc, the chance of selecting a more complex 268	

model decreased compared to when using AICc alone (Fig. S2.5 in Appendix S2). For the parameter 269	

space where AICc very rarely selected a multimodal distribution, the LRT distribution overlapped 270	

with the AICc selection pattern (Fig. S2.5 a and b). When AICc had a higher false positive frequency, 271	

using the LRT reduced the chance of erroneously selecting a multimodal model. Furthermore, the 272	

parametric bootstrap p-value is more conservative than the critical value from a chi squared 273	

distribution for the latter case (Fig. S2.5 c and d). Hence, both AICc and PBLRT were used to analyse 274	

the empirical SADs, as the high false negative frequency for BIC suggests that it might not effectively 275	

detect multimodality. 276	

 277	

 278	

Empirical Data 279	

Of the 117 SADs analysed, AICc selected a multimodal distribution for 47 SADs, 26 of which with 280	

high confidence. For many SADs, estimated 1PLN parameters fell within the parameter space for 281	

which AICc often selects a multimodal model with high confidence when the true distribution is 282	

unimodal (specifically with an estimated standard deviation of log abundance, σ, of about 2). On the 283	

other hand, all the SADs selected as logseries also had estimated σ ≥2 for the 1PLN model. This 284	

suggests that the method is not overfitting generally, but can occasionally select a more complex 285	

model. On visual inspection, none of the fitted curves seemed to be odd-looking or out of phase with 286	
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the empirical SAD (Figs. 3 and S3.1 in Appendix S3), although it is possible that SADs that appear 287	

unimodal are better fit by multimodal distributions, and vice-versa (Matthews et al., 2014). 288	

 289	

For the SADs selected as multimodal, PBLRT supported AICc model selection for 17 SADs 290	

(empirical likelihood ratio values were higher than the bootstrap p-value from the PBLRT 291	

distribution; Fig. 3 and Table S2.2). For the cases where the PBLRT results did not support 292	

multimodality, the second best model was assumed to be the best model (either logseries or 1PLN). 293	

Overall, 17 SADs are multimodal with high confidence, 1PLN was the best model for 54 and for 46 it 294	

was logseries. None of the datasets selected as logseries had continental spatial scale (Table S3.1).  295	

 296	

Both spatial extent and taxonomic breadth have a positive effect on the prevalence of multimodality 297	

(Table 1). For the binomial GLM, SADs with Local spatial extent were significantly less likely to be 298	

multimodal (p= 0.0073) vs Continental and Regional scales, and there is a positive effect of the 299	

interaction between number of families and the Local scale (p= 0.00407). When using the 300	

multinomial GLM, SADs with Local spatial extent were again significantly less likely to be 301	

multimodal vs 1PLN (Fig. 4; pMCMC= 0.01943), but not at Continental and Regional scales. There is 302	

a positive effect of the interaction between number of families and the Local scale, with the 303	

proportion of multimodality vs 1PLN increasing as the number of families increases (pMCMC= 304	

0.00106). In other words, relative to 1PLN, multimodality is significantly less prevalent at Local 305	

scales and low family richness, compared to when family richness is higher or spatial extent is 306	

Regional or Continental. Conversely, logseries is less prevalent vs 1PLN at Continental scales 307	

(pMCMC= 0.01636), and more prevalent at Regional and Local scales (pMCMC= 0.00923 and 308	

pMCMC= 0.01578, respectively; Table 1). These effects are independent of number of families, 309	

which does not influence significantly the proportion of logseries vs 1PLN. 310	

 311	

 312	

Discussion 313	

 314	
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Here we show that 17 out of 117 SADs are multimodal with high confidence (~15%). Further, there is 315	

a higher prevalence of multimodality for communities with broader spatial scale or higher taxonomic 316	

breadth, suggesting that multimodality increases with ecological heterogeneity. This warrants 317	

systematic consideration of multimodality in the quantification of SAD shape. 318	

 319	

Our analysis across different taxa, biomes and species richness indicates that multimodality is not an 320	

artefact of particular SADs. The only particularity of the SADs analysed is that they were intensely 321	

sampled, and there is no reason to suspect that this holds any influence as to whether the underlying 322	

ecological community is multimodal. Furthermore, because each empirical SAD analysed 323	

corresponds to only one year of sampling, multimodality reflects the structure of the community at a 324	

particular point in time. Additionally, we infer multimodality only when it is supported by both AICc 325	

and PBLRT. Given that false negatives were more prevalent than false positives in our simulation 326	

study, this renders our conclusions highly conservative. A caveat of our study is that the SADs 327	

analysed here do not fully represent the spectrum of community variability in terms of spatial and 328	

taxonomic coverage; furthermore, our sample of SADs was not intended to be representative of taxa, 329	

habitat, climatic regions or even realm. Nevertheless, our results show a positive effect of both spatial 330	

scale and taxonomic breadth on the prevalence of multimodality, regardless of taxa and realm.  331	

 332	

The prevalence of multimodality we found differs from that suggested by Barabás et al. (2013). Our 333	

simulation study showed that depending on the parameter combination, sampled communities from a 334	

single PLN can indeed produce apparently multimodal SADs, as the authors suggested. However, we 335	

believe that the method developed here improves our ability to test for multimodality. Despite there 336	

being no direct correspondence between Barabás et al.’s parameterization and ours, their Fig. 4 337	

suggests that the mode of the average unimodal distributions is located around octave 6 of the SAD, 338	

with the distributions spanning 11 octaves. This could be compared to our 1PLN simulations for 339	

larger µ, σ and species richness values, which fall in the parameter space for which AICc has a higher 340	

chance of erroneously selecting multimodality. Thus it would be interesting to investigate whether 341	
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performing the additional LRT to the SADs generated using Barabás et al.’s parameterization would 342	

still yield similar multimodality frequencies.  343	

 344	

 345	

General explanations for multimodality 346	

Scale is fundamental to understanding biodiversity patterns (Levin, 1992; McGill, 2010). Our results 347	

indicate that multimodality is more likely to occur for regional to continental-scale SADs, albeit not 348	

exclusively. Some SADs selected as multimodal consist of local samples or plots, but all of these are 349	

taxonomically diverse (between 12 and 76 families): ID3 consists of macrobenthos samples from the 350	

Belgian Continental Shelf; IDs 95 and 96 of tropical forest plots in Malaysia, ID99 in Thailand, and 351	

IDs 101 and 102 of tropical plots in Brazil and Colombia, respectively; and IDs 45, 92 and 108 352	

consist of vegetation plots in the USA (desert, shortgrass steppe and dune vegetation, respectively). 353	

This matches our regression analysis, for which local SADs with low family richness exhibited lower 354	

prevalence of multimodality than it did at high family richness or broad spatial scales. 355	

 356	

The explanatory variables we analysed here mirror the spatial and organizational scales suggested by 357	

Levin (1992) as underpinning the variability of ecological patterns, and they support previous 358	

explanations for multimodality. Multimodality has been proposed to arise as consequence of species 359	

differences in ecological or functional characteristics (e.g. Magurran & Henderson 2003; Alonso et al. 360	

2008) and of environmental heterogeneity (Dornelas et al., 2009). Both of these explanations are 361	

consistent with a greater prevalence of multimodality in communities with greater spatial extent or 362	

taxonomic diversity. Our goal was not to develop a predictive model for multimodality, but to 363	

quantify its prevalence and test its association with relevant ecological variables. We believe that 364	

exploring in more detail the effects of environmental heterogeneity, functional diversity, and core-365	

transient species will prove a fruitful avenue to further understand what aspects of ecological 366	

heterogeneity affect SAD shape and lead to multimodality. 367	

 368	
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An additional interesting research question is how temporal variability in the species abundances 369	

might affect SADs’ shapes over time. In the present study, we were interested in removing the 370	

potential effect of temporal fluctuations of the relative abundances of species across years, to avoid 371	

the possibility that multimodality could arise as an artefact of a single mode changing position over 372	

time. In principle, it is also possible that pooling could reduce multimodality, if changes in the 373	

position of modes over time make multiple modes more difficult to detect (for instance, if 374	

multimodality arises as a transient feature of communities, as an effect of particular stochastic 375	

environmental effects). Because the models we use implicitly account for sampling effects, and 376	

require actual counts (number of individuals sampled), an investigation into the effects of temporal 377	

averaging would require the development of an alternative statistical approach. 378	

 379	

 380	

Rarity and commonness 381	

SAD studies have often focused on the left-hand side of the distribution and on different theoretical 382	

models’ ability to accommodate the rarest species mode (e.g. Hubbell 2001; McGill 2003b), and 383	

several studies have described the rarer mode as the one leading to a multimodal pattern (Magurran & 384	

Henderson, 2003; Borda-de-Água et al., 2012; Matthews et al., 2014). Although a mode was often 385	

fitted to the rarest species, some of the empirical SAD also exhibited modes for very abundant species 386	

(e.g. IDs 30, 92, 99 and 108 in Fig. 3). This highlights the observation that communities characterized 387	

by very high abundances of the most abundant species might not be accommodated within a single 388	

lognormal SAD, and a multimodal distribution provides a better description, similarly to communities 389	

with a very high prevalence of rare species. While the majority of species are rare and the universal 390	

‘hollow-curve’ SAD is the definitive description of this, the few most common species 391	

disproportionately dominate communities in terms of abundance and ecological processes (Gaston, 392	

2010, 2011), and might also have considerable influence on SAD shape (e.g. Connolly et al. 2014). 393	

 394	

Logseries distributions were selected as best model relatively frequently, despite all of the data 395	

coming from intensely sampled communities. This suggests that, even for high sampling intensity, 396	
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some communities are characterized by a very high proportion of rare species. The logseries was 397	

more often selected for communities encompassing smaller spatial scales, a finding consistent with 398	

our regression analysis results. Additionally, visual inspection suggests that there was a slight 399	

tendency for the logseries to be favoured when species richness was lower (not shown), and in our 400	

analysis logseries was never the model with the best absolute fit (in terms of negative log-likelihood 401	

values only; c.f. Baldridge et al., 2015). Interestingly, none of the SADs selected as logseries had the 402	

largest spatial extent, contrasting with the predictions of neutral theory with point-mutation speciation 403	

(Hubbell, 2001), which predicts a logseries SAD for the metacommunity. On the other hand, the 404	

maximum entropy theory of ecology (METE, Harte et al. 2008) predicts a logseries SAD, contrasting 405	

with the support for multimodality we found, and with the effect of spatial scale and taxonomic 406	

breadth on model frequency.  407	

 408	

 409	

Model selection tools  410	

The simulation study showed that the position of the modes, species richness and particularly σ values 411	

greatly affected model selection, for both AICc and BIC. Additionally, species richness often had 412	

contrary effects on the information criteria; this can be related to the high level of penalization exerted 413	

by AICc as sample size decreases (Burnham & Anderson, 2002), while the opposite happens for BIC 414	

(by definition), which can be problematic when testing for multimodality in SADs. As expected, BIC 415	

was more conservative than AICc, reflected both in the very low false positive frequency and 416	

particularly in the relatively high frequency of false negatives. While the former is a highly desirable 417	

feature of a selection method, the latter suggests that BIC can be insensitive to deviations in SADs 418	

indicative of multimodality. 419	

 420	

On the other hand, although AICc overestimated the number of modes for some parameter 421	

combinations, for a large number of empirical SADs with estimated parameters within that space, the 422	

more parsimonious model was selected. This suggests that AICc is not overestimating the number of 423	

modes generally, and that model selection criteria might be affected by parameter values in a 424	
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nondirectional fashion. As noted before for SADs, comparative measures of goodness of fit can often 425	

produce conflicting results (McGill, 2003a; McGill et al., 2007). We showed that additionally 426	

calculating LRT frequency distributions further reduces the probability of erroneously selecting 427	

multimodality when compared to using AICc alone.  428	

 429	

 430	

Conclusions 431	

Multimodal SADs occur at a non-negligible frequency. Larger spatial scale or higher taxonomic 432	

breadth can yield multimodal SADs. Greater spatial scale and taxonomic breadth of the communities 433	

imply higher ecological heterogeneity. In turn, this is expressed as different levels of species 434	

abundance, thus being reflected in the SAD shape and informing on community structure. Here we 435	

show that the dichotomy between logseries and lognormal as the sole adequate descriptors of SAD 436	

should be expanded to include multimodal models. This will enhance our ability to use SADs to 437	

detect the effects of ecological or functional mechanisms affecting the communities. Furthermore, 438	

differences in SAD shape across different scales provide important insights to the current endeavour 439	

of biodiversity scaling.  440	
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List of tables 1007	

Table 1. Binomial and multinomial Bayesian generalised linear model fitting results, showing a 1008	

positive effect of spatial scale or higher taxonomic breadth on the prevalence of multimodality. For 1009	

the Bayesian GLM, the posterior mean estimates, the 95% credible intervals and the pMCMC 1010	

(MCMC p-values) values are shown. The parameter estimates were considered statistically significant 1011	

when pMCMC values < 0.05, and the 95% credible intervals did not include 0. The term 1012	

“Multimodality : SpatialExtent.Continental : NumberFamilies” refers to the estimation of 1013	

multimodality vs 1PLN at the Continental scale with the interaction with number of families.  1014	

Binomial GLM Estimate Std. Error z value Pr(>|z|)
SpatialExtent.Continental -0.2207 1.0135 -0.2180 0.8277
SpatialExtent.Regional -1.5511 1.2830 -1.2090 0.2267

SpatialExtent.Local -3.7396 1.3940 -2.6830 0.0073
NumberFamilies -0.0127 0.0154 -0.8230 0.4105

SpatialExtent.Regional : NumberFamilies 0.0060 0.0247 0.2430 0.8084
SpatialExtent.Local : NumberFamilies 0.0747 0.0260 2.8730 0.0041

Multinomial GLM
Reference: 1PLN-SpatialExtent.Continental

Multimodality : SpatialExtent.Continental -0.0013 -2.4390 2.3690 0.9930
Multimodality : SpatialExtent.Regional 0.0183 -3.1700 3.2370 0.9944

Multimodality : SpatialExtent.Local -3.7030 -6.9170 -0.5603 0.0194
Multimodality : SpatialExtent.Continental : NumberFamilies -0.0248 -0.0669 0.0098 0.1597

Multimodality : SpatialExtent.Regional : NumberFamilies -0.0124 -0.0805 0.0541 0.7079
Multimodality : SpatialExtent.Local : NumberFamilies 0.0897 0.0301 0.1519 0.0011

Logser : SpatialExtent.Continental -186.0000 -336.7000 -0.4936 0.0164
Logser : SpatialExtent.Regional 188.1000 1.9480 338.0000 0.0092

Logser : SpatialExtent.Local 186.2000 1.4960 337.8000 0.0158
Logser : SpatialExtent.Continental : NumberFamilies -1.7840 -4.5770 0.7772 0.3401
Logser : SpatialExtent.Regional : NumberFamilies 1.7330 -0.8160 4.5390 0.3565

Logser : SpatialExtent.Local : NumberFamilies 1.7650 -0.8011 4.5560 0.3454

pMCMCUpper 95% 
CI

Lower 95% 
CI

Posterior 
mean
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List of figures 1015	

 1016	

Figure 1. Examples of a logseries distribution, a single Lognormal Poisson (1PLN), and mixtures of 1017	

two and three Lognormal Poisson distributions (2PLN and 3PLN, respectively). For the logseries 1018	

distribution, the single parameter is Fisher’s alpha. For the PLN models, µ and σ are the mean and 1019	

standard deviation of log-abundance for one of the underlying lognormal community abundance 1020	

distributions (one pair of parameters for each mode), and ρn is the probability that a species comes 1021	

from distribution n. The parameters used to generate the sampled abundance data for each distribution 1022	

are shown, and the species pool size was S=100 (the code to generate the 2PLN example can be found 1023	

in Appendix S2). 1024	

 1025	

Figure 2. Map showing the 117 empirical SADs sampling locations and the model selected as best fit 1026	

(each point corresponds to the mean latitude-longitude). 1027	

 1028	

Figure 3. Species abundance distributions (SADs) of the empirical datasets selected as multimodal 1029	

with high confidence, identified by the corresponding ID. All the fitting routines were run on non-1030	

binned data. SADs were plotted with bins representing true doubling classes of abundance, following 1031	

Gray et al. (2006). For all SADs the yy axis is the number of species and the xx axis is the species 1032	

abundance in log2 classes (the first bar represents species with abundance 1, the second one species 1033	

with abundances 2-3, then 4-7, 8-15, etc). The fitted curves are red line for the logseries, bold blue 1034	

line for 1PLN, dashed green line for 2PLN and dotted orange line for 3PLN. The leftmost column 1035	

shows SADs for birds, the second column for terrestrial plants, and the taxon is identified for the 1036	

remaining SADs. The symbols indicate SADs locations: ! in Asia, ! in Europe, ! in North 1037	

America and " in South America. 1038	

 1039	

Figure 4. Model selection frequency vs SADs classification for spatial extent and taxonomic breadth 1040	

as number of families (the xx-axis was truncated at 80 for better visualization; the 4 SADs with higher 1041	
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number of families not shown were best fit by 1PLN). The absolute number of SADs per spatial 1042	

extent is 11 Continental, 42 Regional and 64 Local. 1043	


