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Abstract: 

Boson sampling is considered as a strong candidate to demonstrate the “quantum 

computational supremacy” over classical computers. However, previous proof-of-

principle experiments suffered from small photon number and low sampling rates 

owing to the inefficiencies of the single-photon sources and multi-port optical 

interferometers. Here, we develop two central components for high-performance 

boson sampling: robust multi-photon interferometers with 99% transmission rate, 

and actively demultiplexed single-photon sources from a quantum-dot-micropillar 

with simultaneously high efficiency, purity and indistinguishability. We implement 

and validate 3-, 4-, and 5-photon boson sampling, and achieve sampling rates of 

4.96 kHz, 151 Hz, and 4 Hz, respectively, which are over 24,000 times faster than 

the previous experiments. Our architecture is feasible to be scaled up to larger 

number of photons and with higher rate to race against classical computers, and 

might provide experimental evidence against the Extended Church-Turing Thesis. 
  



Quantum computers1 can in principle solve certain problems faster than classical 

computers. Despite substantial progress in the past two decades2-4, building quantum 

machines that can actually outperform classical computers for some specific tasks—an 

important milestone termed as “quantum supremacy”—remained challenging. In the 

quest of demonstrating the “quantum supremacy”, boson sampling, an intermediate (i.e., 

non-universal) quantum computer model proposed by Aaronson and Arkhipov5, has 

received considerable interest as it requires much less physical resources than building 

universal optical quantum computers6. 

A quantum boson-sampling machine can be realized by sending n indistinguishable 

single photons through a passive m-mode (𝑚𝑚 > 𝑛𝑛) interferometer, and sampling from 

the probabilistic output distribution. Mathematically, the probability amplitude of each 

output outcome is proportional to the permanent of a corresponding 𝑛𝑛 × 𝑛𝑛 submatrix, 

which is strongly believed to be intractable because calculating the permanent is a so-

called #P-complete complexity problem. Note that, however, boson sampling is itself 

not a #P-complete problem, i.e., cannot efficiently calculate the matrix permanent. For 

a specifically defined task of sampling over the entire distribution, it is expected that a 

sufficiently large quantum boson-sampling machine cannot be efficiently simulated by 

the classical computers5,7,8. In principle, a large-scale boson-sampling machine would 

constitute an effective disproof against a foundational tenet in computer science: the 

Extended Church-Turing Thesis, which postulates that all realistic physical systems can 

be efficiently simulated with a (classical) probabilistic Turing machine. 

To this end, an experimental roadmap for demonstrating “quantum supremacy” is 

to construct multi-photon boson-sampling machines with increasing number of input 

photons and faster sampling rates to race against classical computers. However, the 

overall performance of the previous proof-of-principle boson-sampling experiments9-17 

were critically limited due to the lack of high-quality single-photon sources and low-

loss multi-mode circuits. For example, the most commonly used pseudo-single photons 

created using spontaneous parametric down-conversion18 (SPDC) were intrinsically 

probabilistic and mixed with multi-photon components. The SPDC probability was 



kept small (about a few percent) in order to suppress the unwanted two-photon emission. 

The frequency correlation of the SPDC photon pairs and the inefficient collection into 

single-mode fibers further reduced the single-photon heralding efficiency to typically a 

low level of ~1% in the previous work9-16 (see Supplementary Information Table S1). 

In addition, the boson-sampling rate was significantly reduced due to the coupling and 

propagation loss in the multi-mode photonic circuits. In an attempt to solve the intrinsic 

probabilistic problem of SPDC, spatial or temporal multiplexing19,20 and scattershot 

boson sampling21 schemes were proposed and demonstrated14. Yet, so far, all the 

previous quantum optical boson-sampling machines9-17 have demonstrated only up to 

three single photons with arbitrary input configurations and 4-6 photons in special Fock 

states, and the obtained sampling rates were several orders of magnitudes too low to 

even outperform some of the earliest classical computers. 

Indistinguishable single photons 

Scaling up boson-sampling to large number of photons and with high sampling 

rates represents a non-trivial experimental challenge. Importantly, it requires high-

performance single quantum emitters22-24 that can deterministically produce one and 

only one photon under each pulsed excitation. The generated photons must 

simultaneously have high single-photon purity (that is, the multi-photon probability 

should be vanishingly small), high indistinguishability (that is, photons are quantum 

mechanically identical to each other), and high collection efficiency into a single spatial 

mode25-27. These three key features are compatibly combined in our experiment using 

pulsed s-shell resonant excitation28 of a single self-assembled InAs/GaAs quantum dot 

embedded inside a micropillar cavity29-31 (see Fig.1 and Supplementary Information). 

At π pulse excitation with a repetition rate of 76 MHz, the quantum dot-micropillar 

emits ~25.6 million polarized, resonance fluorescence single photons per second at the 

output of a single-mode fiber, of which ~6.5 million are eventually detected on a silicon 

single-photon detector. Considering the detector dead time of ~42 ns, the actual count 

rate should be corrected to 9 MHz (Fig. 2a). This is the brightest single-photon source 

reported in all physical systems to date, which are directly used—without any spectral 



filtering—for the photon correlation and interference measurements, and for boson 

sampling. We measure its second-order correlation, and observed 2 0.02(0) 1)7(g =  at 

zero time delay, which confirmed the high purity of the single-photon Fock state. We 

perform Hong-Ou-Mandel interference as a function of the emission time separation 

between two single photons31. With a time separation of 13 ns and 14.7 μs, photon 

indistinguishabilities of 0.939(3) and 0.900(3) are measured, respectively (see Fig. 2b 

and Supplementary Information). Thanks to the pulsed resonant excitation method that 

eliminates dephasings and time jitter28, we obtain long streams near-transform-limited 

single photons that are sufficient for multi-photon experiments on a semiconductor chip 

for the first time. 

Efficient multi-photon source 

Next, we de-multiplex the single-photon stream into different spatial modes using 

fast optical switches that consist of Pockels cells (with a transmission rate >99% and 

extinction ratio >100:1) and polarizing beam splitters (with an extinction ratio >1200:1). 

The Pockels cells, synchronized to the pulsed laser and operated at 0.76 MHz with a 

rising time of 8 ns, convert the single-photon pulse train into 3, 4, or 5 separate beams 

(see Supplementary Information and Fig. S5). The largest time separation between two 

de-multiplexed photons is ~1.05 μs (80 pulses), where the photon indistinguishability 

remains 0.923 (Fig. 2b). 

To ensure that these pulses arrive simultaneously at a multi-mode interferometer, 

optical fibers of different lengths and translation stage are used to finely adjust their 

arrival time. The average efficiency of the optical switches is ~84.5%, which was 

mainly due to the coupling efficiency and propagation loss in the optical fibers. The 

efficiency can be improved in the future using faster Pockels cells (see Supplementary 

Information). Thus, we eventually obtain five separate single-photon sources with end-

user efficiencies of about 28.4%. Note the active de-multiplexing method eliminates 

the common technical overhead for overcoming the inhomogeneity of independent self-

assembled quantum dots to build many identical sources. 



Ultra-low-loss photonic circuit 

Another important ingredient for reliable and fast boson-sampling is a multi-mode 

interferometric linear optical network that is phase stable, has high transmission rate, 

and can implement a Haar-random unitary matrix. While the previously demonstrated 

waveguide-based photonic chips showed promise for large-scale integration10-16, the 

coupling and propagation loss in these chips seriously limited the overall efficiencies 

to ~30% so far (see Supplementary Information Table S1). 

Here, we put forward a new circuit design that simultaneously combines the 

stability, matrix randomness, and ultra-low transmission loss. As shown in Fig. 1 (see 

also Fig. S6), a 9×9 mode interferometer is constructed with a bottom-up approach, 

from individual tiny trapezoid, each optically coated with polarization-dependent beam 

splitting ratios (Supplementary Information). This network consists of 36 beam splitters 

and 9 mirrors, and implements a near-unitary transformation to input state (Fig. 2c, d). 

Thanks to the antireflection coating, the overall transmission efficiency (from input to 

output) is measured to be above 99%. By Mach-Zehnder-type coherence measurements, 

the spatial-mode overlap is determined to better than 99.9%. The interferometer is 

housed on a temperature-stabilized baseplate, and remains stable at least for weeks (for 

a test, see Fig. S7). Such a design can be further improved32 and scaled up to reasonably 

larger dimensions, which can be sufficient for the near-term goal of demonstrating 

quantum supremacy through boson sampling. 

Experimental results and validation 

We send three, four, and five single photons into the 9-mode interferometer, and 

measure the output multi-photon events, as shown in Fig. 3. We use nine silicon single-

photon avalanche detectors (efficiency ~32%), one in each output of the interferometer, 

to register the no-collision (one photon per output-mode) events, which have 84, 126, 

and 126 different output distributions for the 3-, 4-, and 5-boson sampling, respectively. 

A total of 446084 three-photon events (Fig. 3a), 36261 four-photon events (Fig. 3b), 

and 11660 five-photon events (Fig. 3c) are obtained in accumulation time of 90s, 240s, 



and 2900s, respectively. The obtained data (solid bar, denoted as qi) are plotted together 

with ideal probability distribution (empty bar, denoted as pi) in Fig. 3. We quantify the 

match between these two sets of distributions using the measure of similarity, defined 

as i ii
F p q= ∑ , and the measure of distance, defined as (1 / 2) i ii

pD q= −∑ . From 

the data in Fig. 3, we can calculate similarities of 0.984(1), 0.979(5), and 0.973(9), and 

distancess of 0.125(1), 0.141(3), and 0.178(5) for the 3-, 4-, and 5-boson sampling, 

respectively. 

For a large-scale boson-sampling device, not only the calculation of its outcome, 

but also a full certification of the outcome is strongly conjectured to be intractable for 

classical computation. There have been proposals33-35 and demonstrations15,16 for 

validating boson-sampling that can provide supporting or circumstantial evidence for 

the correct operation of this protocol. In our work, we first employ Bayesian analysis34 

to rule out uniform distribution (Fig. 4a). With only ~20 events, we can reach a 

confidence level of 99.8% that these outcomes are from genuine boson-samplers. 

Another possible hypothesis is using distinguishable single photons (classical particles) 

or spatial-mode mismatched interferometers, which should be excluded by applying 

standard likelihood ratio test35. Figure 4b shows an increasing difference between solid 

(indistinguishable bosons) and dotted lines (distinguishable bosons) as experimental 

events increasing, and thus the distinguishable hypothesis is ruled out with only ~50 

events (see Supplementary Information). 

Conclusion and outlook 

Owing to our development of the high-efficiency source of highly indistinguishable 

single photons and ultra-low-loss photonic circuits, the experiment demonstrated 3-

boson sampling rate of 4.96 KHz is ~27,000 times faster than the best previous 

experiments using SPDC9-16, and ~24,000 times faster than the recent work17 using 

passive demultiplexing (thus intrinsically inefficient) of quantum-dot single photons 

using incoherent excitation that limited the photon indistinguishability to 52%-64%. 

Meanwhile, we achieve the first 4- and 5-boson sampling using single-photon Fock 



state—which were formidable challenges before—and obtain high sampling rates of 

151 Hz and 4 Hz, respectively. These multi-photon boson-sampling machines have also 

reached a computational complexity that can race against early classical computers. 

Under the specific racing rule in ref. 5, 9, 10, we could compare the required time for 

obtaining one output sample using the quantum machines with the simulated time for 

calculating one permanent using the published data of the early classical computers (see 

Supplementary Information). As shown in Table SII, the quantum photonic machines 

are provably faster for the boson-sampling task than ENIAC and TRADIC, the first 

electronic computer and transistorized computer. 

Our work has demonstrated a clear, realistic pathway to build boson-sampling 

machines with many photons and fast rates. Using superconducting nanowire single-

photon detectors36,37 with reported efficiency of ~95% and antireflection optical coating, 

one can straightforwardly increase the 3-, 4-, and 5-boson sampling rates to 130 KHz, 

12 KHz, and 1 KHz, respectively, and implement 14-boson-sampling with a count rate 

of 5/h (see Supplementary Information). A remaining challenge is to remove the cross-

polarization in the confocal setup—used to extinguish the laser background—which 

reduced the single-photon source efficiency by half. Future work will focus on 

deterministic dot-micropillar coupling38 and developing side excitation39 to boost the 

single-photon source efficiency to over 74%, in which case we can expect 20-boson 

sampling rate of ~130/h, and an increasing quantum advantage over classical 

computation for larger number of photons. 
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Figure captions: 

Figure 1 | Experimental setup for multi-photon boson-sampling. The setup includes 

four key parts: the single-photon device, de-multiplexers, ultra-low-loss photonic 

circuit, and detection. The single-photon device is a single InAs/GaAs quantum dot 

coupled to a 2-μm diameter micropillar cavity, which yields a Purcell factor of 7.63(23) 

at resonance. The quantum dot is coherently pumped by a picosecond laser. A confocal 

microscope is operated in a cross-polarization configuration to extinguish laser 

background. The resonance fluorescence single photons collected into a single-mode 

fiber are sent to active de-multiplexers, which consist of Pockels cells and polarizing 

beam splitters, and separated into five spatial modes. The five photons are then fed into 

a tailor-made ultra-low-loss photonic circuit that consists of 36 beam splitters. Finally, 

the output out of the interferometer are measured by nine single-photon detectors and 

the multi-photon coincidence are analyzed by a time-to-digit converter (TDC). 

Figure 2 | The single photon source and interferometer for boson-sampling. a, 



Observed Rabi oscillation by pulsed resonant excitation of the quantum dot. The blue 

dots are directly measured by silicon detectors, whereas the red dots are corrected by 

the dead time of the detectors. The single-photon counts reach maximum at the π pulse 

power, which is 1.6 nW. b, The measured photon indistinguishability drops slightly 

from 0.939(3) at 13 ns to a plateau of 0.900(3) at >10 μs separation, fitted with a 

decaying time constant of 2.1 μs, assuming non-Markovian noise model. The blue 

arrow indicates the regime in our current work where two photons are maximally 

separated by a time of 1.05 μs due to de-multiplexing. The error bars denote one 

standard deviations, deduced from propagated Poissonian counting statistics of the raw 

photon detection events. c, d, Measured elements (c, amplitude and d, phase) of the 

unitary transformation of the optical network. 

Figure 3 | Experimental results for the (a) 3-, (b) 4-, and (c) 5-boson sampling. The 

measured relative frequencies of all no-collision output combinations, denoted by (i, j,

 ) where there is one photon detected in each output mode i, j, . The solid bars are 

the normalized coincidence rate of different output distribution. The empty bars are 

theoretical calculations in the ideal case. The error bar is one standard deviation from 

Poissonian counting statistics. 

Figure 4 | Validating boson sampling results. The open points in a and the dotted 

lines in b are tests applied on simulated data generated from the two alternative 

hypotheses, sampling from a uniform distribution and distinguishable particles, 

respectively. In both a and b, the solid points and solid lines are tests applied on the 

experimental data. A counter is updated for every event and a positive value validates 

the data being obtained from a genuine boson sampler. a, Application of the Bayesian 

analysis to test against uniform distribution. b, Discrimination of the data from a 

distinguishable sampler using standard likelihood ratio test. 
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