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Abstract: A set of 7 different lignin preparations was generated from a range of organosolv (acidic, 

alkaline, ammonia-treated and dioxane-based), ionic liquid, autohydrolysis and Kraft pretreatments 

of lignocelluloses. Each lignin was characterised by 2D HSQC NMR spectroscopy, showing 

significant variability in the β-O-4 content of the different lignin samples. Each lignin was then 

valorised using three biocatalytic methods (microbial biotransformation with Rhodococcus jostii 

RHA045, treatment with Pseudomonas fluorescens Dyp1B or Sphingobacterium sp. T2 manganese 

superoxide dismutase) and two chemocatalytic methods (catalytic hydrogenation using Pt/alumina 

catalyst, DDQ benzylic oxidation/Zn reduction). Highest product yields for DDQ/Zn valorisation 

were observed from poplar ammonia percolation-organosolv lignin, which had the highest β-O-4 

content of the investigated lignins and also gave the highest yield of syringaldehyde (243 mg/L) 

when using R. jostii RHA045, and the most enzymatic products using P. fluorescens Dyp1B. The 

highest product yield from the Pt/alumina hydrogenation was observed using oak dioxasolv lignin, 

which also had a high β-O-4 content. In general, highest product yields for both chemocatalytic and 

biocatalytic valorisation methods were obtained from preparations that showed highest β-O-4 

content, while variable yields were obtained with preparations containing intermediate β-O-4 

content, and little or no product was obtained with preparations containing low β-O-4 content.  

 

Synopsis. The study examines the conversion of biomass-derived lignin preparations into renewable 

chemicals using chemocatalytic and biocatalytic methods. 

 

Keywords: lignin valorization; catalytic hydrogenation; microbial biotransformation; Rhodococcus 

jostii RHA1; Dyp peroxidase; superoxide dismutase 
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Introduction 

 The aromatic heteropolymer lignin is an important component of plant cell walls, 

comprising 15-30% of lignocellulosic plant biomass. It therefore represents an abundant renewable 

raw material for conversion to aromatic chemicals, provided that efficient conversion methods can 

be found. Since the aryl-C3 units present in the lignin structure are linked via alkyl-aryl ether 

linkages and carbon-carbon bonds (see Figure 1B), lignin is difficult to depolymerise, and there is 

considerable interest in methods for lignin valorisation.1,2 Several  new chemocatalytic approaches 

for lignin valorisation have been published in recent years, that are able to generate aromatic 

monomers from lignin feedstocks.3-9 There is also renewed interested in novel microbial enzymes 

for lignin oxidation,10 and the use of engineered microbial hosts for the generation of aromatic 

products via microbial biotransformation.11-14  

 A complicating factor in the field is that there are a number of different methods for the 

fractionation of lignocellulose that generate lignin preparations of very different structure, physical 

properties, and reactivity. Some lignin isolation methods such as those based on mechanical milling 

and dioxane extraction are designed to preserve the structure of lignin as found in plant 

lignocellulose,15 while organosolv fractionation methods use a mild organic acid or solvent 

treatment to solubilise lignin and hemicellulose.16 Industrially, technical lignins are generated in 

potentially large quantities from the industrial Kraft and sulfite processes for pulp and paper 

manufacture, but Kraft lignin17 and lignosulfonate18 generated from the sulfite process are both 

extensively structurally modified. In addition new lignin streams are now being generated in 

commercial lignocellulosic biorefineries, mostly as enzymatic hydrolysis residues produced from 

either steam explosion or dilute acid-pretreated substrates. Alternative extraction methods such as 

ionic liquid pretreatments seek to combine cellulose isolation with high quality lignin 

production.19,20 

 In spite of a range of lignin valorisation methods noted above, there are only a few 

observations in the literature concerning the advantages or disadvantages of different lignin 

isolation methods for downstream lignin valorisation. Kraft lignin has been found to give lower 

yields of lignin valorisation products in some biocatalytic processes,11,14 and Bouxin et al. have 

found variable yields of chemocatalytic reduction products using four different lignin 

preparations.21 From observations of groups in this consortium, our hypothesis was that the method 

used to prepare the lignin sample, and the molecular structure of that lignin sample, are likely to 

have major effects on its value for subsequent valorisation. Since lignin valorisation is an important 

part of any future lignocellulose-based biorefinery, we felt that this was an important research 

question, and we have carried out a short collaborative project to study the consequences of 

different lignin isolation methods on lignin valorisation. We have assembled a collection of seven 
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different lignins prepared by different research groups in the consortium, that are representative of 

methods currently published in the field: organosolv methods using mildly acid or mildly alkaline 

conditions; a lignin prepared via ionic liquid extraction; an autohydrolysis lignin and a Kraft lignin. 

We have tested this collection of lignins against five recently published valorisation methods 

developed by research groups in the consortium: two chemocatalytic methods, involving either 

catalytic hydrogenation or oxidative modification followed by reductive C-O cleavage; and three 

biocatalytic methods, involving either a microbial biotransformation, or two enzymatic 

biotransformations (see Figure 1); and have analysed the low molecular weight aromatic products 

from these treatments. The results of this study could then be useful in choosing appropriate 

pretreatment methods to maximise the value of lignin streams in future biorefinery designs. 

 

Figure 1. Design of experimental study. 

 

Experimental Section 
 
Materials. 

 Poplar ammonia organosolv lignin was prepared from hybrid poplar (Populus robusta) 

sawdust using a 15% ammonia percolation method at 180 oC followed by a mild organosolv 

treatment in EtOH/H2O containing 0.1 M H2SO4, as previously described.22 Poplar alkaline 

organosolv lignin was prepared from hybrid poplar (Populus robusta) sawdust as previously 

described.21,22 Oak dioxasolv lignin was prepared from English oak (Quercus robur) sawdust using 

dioxane/H2O (9:1) containing 0.2 M HCl for 1 hr under reflux, as previously described.6 Eucalyptus 

Kraft lignin was prepared from	   Eucalyptus globulus wood chips as previously described.23 

Eucalyptus organosolv lignin was prepared from Eucalyptus globulus wood chips by acidic 

ethanol/water extraction as previously described.24 Eucalyptus autohydrolysis lignin was prepared 

from Eucalyptus globulus wood chips by autohydrolysis pretreatment at 175 oC followed by 

alkaline extraction, as described previously.25 Miscanthus ionosolv lignin was prepared from 

Miscanthus x giganteus by treatment with the ionic liquid triethylammonium hydrogen sulfate 

([TEA][HSO4]) containing 20 wt% water at 20% solids loading and 150 oC for 1 h, as described 

previously.26  

 1H-13C NMR spectra were recorded in d6-DMSO on a Bruker Avance III spectrometer, 

using the protocols previously described.21,27 Assignment of 1H NMR signals was based upon 

considerable literature work on NMR analysis of isolated lignin preparations28,29 and intact plant 

cell wall lignin30,31, including assignment of NMR signals for tricin flavonoid.32 Gel permeation 

chromatography and thioacidolysis were carried out using the previously described method.22 
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DDQ/Zn valorisation method. 

Lignin samples (300 mg, 0.05-0.2 mmol, see molecular weight data in Table 2) were oxidised using 

2,3-dichloro-5,6-ducyano-1,4-benzoquinone (DDQ, 400 mg, 1.7 mmol) in a mixture of 2-

methoxyethanol (3 mL) and 1,2-dimethoxyethane (4 mL) at 60 ℃ for 16 hours. The samples were 

then precipitated in EtOAc and collected by filtration. The samples were then re-suspended in 

methanol (x3) to remove excess DDQ/DDQH2 and then collected by filtration. Typical recovery 

~65%. 100 mg was used for NMR analysis, and 100 mg was used for Zn depolymerisation. 

Oxidised lignin samples (~50 mg) were dissolved in 2-methoxyethanol (0.8 mL) and water (0.2 

mL) at 80 oC. NH4Cl (65 mg) was then added followed by Zn powder (75 mg) and the mixture 

stirred for 1 hour. The reaction mixture was then diluted with water (3 mL), the pH adjusted to ~7 

with NaH2PO4 and then extracted with DCM (3 x 5 mL). The samples (10 µL injection in MeOH) 

were separated on a YMC C18 column 5 µm (120 Å, 250 mm, 4.6 mm) on a Gilson HPLC system, 

at a flow rate of 0.8 mL/min, monitoring at 280 nm. The solvents were water as solvent A and 

MeOH as solvent B. A gradient of 10-35% solvent B from 0-35 min; 35-100% from 35-39 min; 

100-10% from 39-48 min; 10% from 48-50 min was used for separation of products. 

 

Hydrogenolysis over Pt/alumina 

The catalyst used throughout was a 1 wt% Pt/alumina catalyst supplied by Johnson Matthey 

(reference number 1074).  A platinum dispersion of 56 % was determined from carbon monoxide 

chemisorption, giving a particle size of ~2 nm.  The support was confirmed as principally θ-

alumina from XRD analysis.  The catalyst had a BET surface area of 119 m2.g−1, a pore volume of 

0.49 cm3 g−1 and an average pore diameter of 11 nm.  

The catalytic reactions were conducted in a 300 mL, 316 stainless steel, Parr batch autoclave 

reactor, equipped with a digital temperature controller (± 1 K).  The reactant mix within the reactor 

was stirred using a Parr magnetic driven stirrer and pressure was monitored during the reaction 

using a standard pressure gauge.  Prior to reaction the catalyst was pre-reduced by heating to 523 K 

in 2 % H2/N2 at a ramp rate of 10 K.min-1 with a dwell time at 523 K of 2 h.  After the reduction 

step, the catalyst was cooled to room temperature in flowing argon then passivated in 2 % O2/Ar. 

Hydrogenolysis was carried out in a Parr autoclave reactor followed by analysis of the products by 

GC-MS (full analysis methodology given in reference 33).  Briefly, 0.5 g of lignin (0.1-0.3 mmol, 

see molecular weight data in Table 2) and 0.1 g of catalyst were added to a 100 mL methanol-water 

mix (50/50, v/v) and loaded into the reactor.  The system was purged with hydrogen and pressurised 

to 20 barg before heating to 573 K at 10 deg.min-1.  The mixture was stirred at 1000 rpm 

throughout.  The reactor was held at this temperature for 2 h.  At reaction temperature the typical 

pressure recorded was 145 barg.  The reaction mixture was filtered to remove the catalyst and any 
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insoluble products.  The methanol-water soluble fraction was processed and an aliquot analysed by 

GC-MS.  For GC-MS analysis the products were derivatised with trimethylsilyl chloride (TMS).  

Chemical composition was determined using a Shimadzu GC-MS-QP2010S coupled to a Shimadzu 

GC-2010 equipped with a ZB-5MS capillary column (30 m x 0.25 mm x 0.25 µm) with He as the 

carrier gas. 

 

Microbial biotransformation of lignin samples using Rhodococcus jostii Δvdh mutant 

The procedure is adapted from that in reference 11. Lignin (25 mg) was added to 5 mL M9 salts and 

autoclaved, to which filter sterilised solutions of 0.1% glucose, 2 mM MgSO4 and 0.4 mM CaCl2 

were added, then 100 µL of overnight culture of  Rhodococcus jostii RHA1 strains RHA045 (Δvdh) 

was added to inoculate the media. The solution was left to shake at 30°C for 6 days at 180 rpm.  

The samples were acidified with 1 mL HCl (1 M) and frozen overnight, then cells disrupted by 

freeze-thawing three times. The products were extracted with 5 mL EtOAc and the organic layer 

was dried (Na2SO4) and analysed as described below.   

 

Enzymatic treatment of lignin samples  

Recombinant P. fluorescens Dyp1B was expressed and purified as previously described.34 Lignin (5 

mg) was added to 3 mL succinic buffer (50 mM, pH 5.5), and then 100 µL of DyP1B (1 mg/ mL) 

was added, followed by addition of 30 µL of 100 mM H2O2 and 3 µL of 1 M MnCl2. The resulting 

solution was incubated at 30°C for 60 min, then acidified with 1 mL HCl (1 M) and extracted with 

4 mL EtOAc. The organic layer was dried (Na2SO4) and analysed as described below.  

Recombinant Sphingobacterium sp. T2 manganese superoxide dismutase SOD1 was expressed and 

purified as previously described.35 To 3 mL phosphate buffer (pH 7.8, 50 mM), 5 mg of lignin was 

added, followed by 200 µL of SOD1 (1 mg/ mL) and 1 mL of saturated KO2 in dry DMSO. The 

resulting solution was incubated at 30°C for 60 min, then acidified with 1 mL HCl (1 M) and 

extracted with 4 mL EtOAc. The organic layer was dried (Na2SO4) and analysed as described 

below.  

 

Metabolite analysis by LC-MS 

The organic residues from microbial biotransformation of lignin samples and enzyme treatments 

were re-suspended in 200 µL of MeOH/water 1:1 prior to LC/MS analysis. The samples (50 µL) 

were separated on a C18 column using Phenomenex Luna 5 µm (100 Å, 50 mm, 4.6 mm) on an 

Agilent 1200 and Bruker HCT Ultra mass spectrometer, at a flow rate of 0.5 mL/min, monitoring at 

310 and 270 nm. The solvents were water/ 0.1% formic acid as solvent A and MeOH/0.1% formic 

acid as solvent B. Two gradients were used for separation of products: method A starts with 15% 
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solvent B for 5 min; 15-25% B from 5-15 min; 25-70% B from 15-23 min; 70-100% from 23-30 

min. Method B starts with 5% solvent B; 5-30% B from 0-20 min; 30-100% from 30-45 min, 100% 

solvent B from 45-55 min; 100-5% solvent B 55-65 min. Peaks were compared where possible with 

authentic standards in order to confirm structural assignments. 

 

Results  

Preparation of lignin samples 

From samples of poplar hardwood, two methods were used to prepare lignin samples: a 15%  

ammonia percolation method at 180 oC in 0.1 M EtOH/H2O21 and an alkaline organosolv 

method.21,22 Oak hardwood was treated with dioxane/H2O (9:1) containing 0.2 M HCl for 1 hr 

under reflux, to give an organosolv lignin,6 and a standard organosolv method was used to prepare 

lignin from eucalyptus, which was compared with autohydrolysis lignin and Kraft lignin also from 

eucalyptus. Lignin was also prepared using ionic liquid triethylammonium hydrogen sulfate 

([TEA][HSO4]) from Miscanthus x giganteus as described previously.26  

 

Structural characterisation of lignin samples 

Each lignin sample was analysed by two-dimensional 1H-13C HSQC NMR spectroscopy,28-

32 allowing a semi-quantitative estimation of the relative proportions of S, G and H units, the β-O-4, 

β-5 and β−β linkages, and ferulate, p-coumarate and p-hydroxybenzoate ester linkages (see 

Footnote 1). This analysis revealed that both the compositional and structural features of the 

examined lignins varied greatly (see Table 1).  

The poplar ammonia lignin (Figure 2A), a typical hardwood S-G lignin, had the highest β-

O-4 content of all the samples examined and also contained a small number of α-ethoxylated β-O-4 

units presumably resulting from the mild acid catalysed ethanol-water organosolv treatment used to 

purify the crude carbohydrate rich ammonia lignin. This lignin also contained a smaller number of 

β-β and β-5 linkages as well as a small number of p-hydroxybenzoate units, typical of poplar 

lignins, which appear to survive the ammonia treatment. Similarly, the oak dioxasolv lignin, also an 

S rich S-G lignin, had a high proportion of β-O-4 units (see Figure 2) and also contained some 

Hibbert ketones formed by acid catalysed hydrolytic reactions (see Supporting Information Figures 

S1, S2). 

The wheat straw microwave-organosolv and Miscanthus ionosolv lignins were more 

complex, containing S, G, H, ferulate and p-coumarate groups as well as significant amounts of 

tricin units in the case of the wheat lignin.  Both contained significant amounts of β-O-4 units, 

although less than the poplar ammonia and oak dioxasolv lignins. The Miscanthus lignin also 

contained Hibbert ketones consistent with the aqueous acidic ionic liquid pretreatments. This lignin 
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also contained relatively few β-β units, consistent with the high degree of γ-acylation which 

precludes the formation of such units, and the lower proportion of S units present in grass lignins. 

The three eucalyptus lignins examined were particularly S rich. Both the organosolv and 

autohydrolysis eucalyptus lignins contained some β-O-4 and β-β units but almost no β-5 units, 

consistent with the S rich nature of these lignins. Interestingly, the Kraft lignin contained no 

detectable amounts of β-O-4 or β-5 units but contain significant amounts of β-β units and the hemi-

cellulose xylan.  

Interestingly, with the exception of the wheat lignin, in all these lignins detectable amounts 

of epimerised β-β units are present resulting from either acid or base catalysed processes. We have 

previously shown that such units are not detectable in a softwood Kraft lignin (G type),27 so their 

occurrence appears to be both process and feedstock dependent, but they may be present in other S-

G type technical lignins.  

 

Figure 2. Analysis of lignin structure by 1H-13C NMR spectroscopy, showing (A) poplar ammonia 

organosolv lignin containing high β-O-4 content; (B) miscanthus ionic liquid lignin containing 

medium β-O-4 content; (C) Eucalyptus Kraft lignin containing no β-O-4 units. 

 

Chemical valorisation methods 

 Lancefield et al. have previously shown that β-O-4 units can be selectively oxidised using 

cat. DDQ/O2, and then the oxidised α-keto-β-aryl ether linkages can be reductively cleaved by Zn 

to yield 2-hydroxyethyl-aryl ketones (see Figure 3).6 Based on this method, three lignin samples 

were oxidised by stoichiometric DDQ in 2-methoxyethanol/1,2-dimethoxyethane at 60 oC for 16 hr 

to give ligninox. NMR spectroscopic analysis of the oxidised lignin samples verified that the β-O-4 

units had been either completely oxidised (for oak dioxasolv lignin and eucalyptus autohydrolysis 

lignin, see Supporting Information Figures S9 and S11) or largely oxidised (for ammonia 

organosolv lignin, see Supporting Information Figure S10). Treatment of the ligninox samples with 

zinc in 2-methoxyethanol/water/NH4Cl at 80 oC for 1 hr was found to generate a mixture of 2-

hydroxyethyl-aryl ketones 1 and 2 which were quantified by HPLC analysis (see Supporting 

Information).  

The highest total yield (5.3 wt%) was obtained from the poplar ammonia lignin, with a 5:1 

ratio of S:G products. This lignin sample also showed the highest proportion (40 per 100 C9 units) 

of β-O-4 units by NMR analysis, which rationalises why this lignin would perform well via this 

method, since this method requires the presence of two consecutive β-O-4 units.6 Excluding the 

effects of end groups, p-hydroxybenzoylated and condensed units, a theoretical maximum yield of 
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approximately 16 wt% would be expected from this lignin (see Footnote 2). Yields of 1.3 wt% and 

1.4 wt% were obtained from the oak dioxosolv lignin and eucalyptus autohydrolysis lignin 

respectively, with 7:1 and 19:1 ratios of S:G products respectively. These two lignins showed 

similar or slightly lower proportions (40% and 27% respectively) of β-O-4 units by NMR analysis.  

 

Figure 3. Conversion of lignin samples to 2-hydroxyethyl aryl ketones 

 

 Lignin samples were also chemically treated via high-pressure hydrogenation (20 bar) at 

300 oC in a Parr reactor in methanol/water (1:1), over a Pt/alumina catalyst.21 The products were 

analysed by GC-MS giving a collection of guaiacyl (G) or syringyl (S) products with n = 0-3 

carbon sidechains, and some products containing demethylated G and S units. As shown in Figure 

4, best product yields were obtained with the oak dioxasolv lignin, which gave 14% w/w yield of S 

3-carbon products, 9% of 3-methoxyguaiacol, and 22% of other S products, and 9-10% of a mixture 

of G products. Miscanthus ionic liquid lignin was also processed efficiently via this method, giving 

10% 3-methoxyguaiacol and 12-13% of a mixture of S products and 9-10% of a mixture of G 

products. Poplar ammonia organosolv lignin gave 7-8% of a mixture of S products and 3-4% of a 

mixture of G products, similar to the yields reported previously for this lignin preparation, which 

was found to give higher product yield than the poplar alkaline organosolv lignin preparation (6.6% 

S C3 products).21 

 

Figure 4. Products obtained from catalytic hydrogenation at 300 oC/20 bar hydrogen over a 

Pt/alumina catalyst.   

 

Biocatalytic valorisation using Rhodococcus jostii gene deletion mutant RHA045 

 Sainsbury et al have reported that microbial biotransformation of a Rhodococcus jostii Δvdh 

gene deletion mutant lacking vanillin dehydrogenase on M9 minimal media containing 1% (w/v) 

wheat straw lignocellulose led to the accumulation of vanillin (96 mg/L), 4-hydroxybenzaldehyde 

(50 mg/L) and ferulic acid (23-86 mg/L) after 6 days.11 This R. jostii mutant strain was grown on 

M9 minimal media containing 1% (w/v) of each of the set of lignin samples, and samples of culture 

supernatant were removed after 6 days microbial biotransformation at 30 oC, products extracted into 

ethyl acetate, and analysed by LC-MS (see Table 3).  

Aldehyde product syringaldehyde was observed in microbial biotransformations of poplar 

ammonia organosolv lignin (243 mg/L) and oak dioxasolv lignin (95 mg/L). Both of these lignins 

are rich in S units, so these incubations might be expected to accumulate syringaldehyde rather than 

vanillin. Small amounts of vanillin (1-5 mg/L yields) were observed, but were also observed at 
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similar concentrations in control samples with no bacteria, suggesting that the lignin preparations 

themselves contain small amounts of vanillin, as observed previously for Kraft lignin.11 Also 

observed were high yields of vanillic acid (330-630 mg/L), obtained from poplar ammonia 

organosolv lignin, poplar alkaline organosolv lignin, and oak organosolv lignin, and vanillic acid 

was also observed using eucalyptus organosolv lignin and eucalyptus autohydrolysis lignin. The 

latter two samples also yielded substantial quantities of protocatechuic acid (230-300 mg/L), which 

had been observed as a metabolite from wheat straw lignocellulose and is thought to be a shunt 

metabolite.11 Small amounts of reduced vanillyl alcohol were observed in 3 cases, and this was the 

only metabolite observed from the miscanthus ionic liquid lignin. Ferulic acid was also observed as 

a metabolite from oak dioxasolv lignin (yield 74 mg/L). No products were observed from 

eucalyptus Kraft lignin.  

 

Treatment of lignin samples with bacterial lignin-oxidising enzymes 

 Bacterial Dyp-type peroxidases have been discovered in Rhodococcus jostii36 and 

Pseudomonas fluorescens Pf-534 that can oxidise lignin model compounds, and in the presence of 

Mn2+ can oxidise polymeric Kraft lignin and lignocellulose. In the case of P. fluorescens Dyp1B, an 

oxidised lignin dimer bio-product was isolated from treatment of wheat straw lignocellulose with 

hydrogen peroxide and Mn2+.34 

 Each lignin sample was treated with P. fluorescens Dyp1B in 50 mM succinate buffer pH 

5.5 containing 1 mM hydrogen peroxide and 1 mM MnSO4 for 1 hr at 30 oC, and then products 

were extracted into ethyl acetate and analysed by LC-MS. The largest number of product peaks (6 

peaks, see Figure 5) were observed upon treatment of poplar ammonia lignin with Dyp1B, 

including S-containing products syringyl C3 triol (MNa+ 277), syringyl hydroquinone (MNa+ 193) 

and syringyl alcohol (MNa+ 207), and G-containing vanillyl alcohol (MH+ 155). Syringyl products 

were also observed for poplar alkaline organosolv lignin and eucalyptus organosolv lignin. No 

assigned product peaks were observed using eucalyptus Kraft lignin or autohydrolysis lignin. 

 

Figure 5. Products obtained by treatment of lignin preparations with Pseudomonas fluorescens 

Dyp1B (PfDyp1B) and Sphingobacterium sp. T2 manganese superoxide dismutase 1 (SpSOD1).  

 

A novel manganese superoxide dismutase enzyme has recently been discovered in 

Sphingobacterium sp. T2 that can oxidise polymeric organosolv and Kraft lignin, generating 

multiple oxidation products.35 Each lignin sample was treated with Sphingobacterium MnSOD1 in 

50 mM phosphate buffer pH 7.8 containing 1 mM KO2 in DMSO for 5 hr at 30 oC, and then 

products were extracted into ethyl acetate and analysed by LC-MS. The largest number of product 
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peaks were observed upon treatment of poplar alkaline organosolv lignin (6 peaks, including 

syringyl hydroquinone, guaiacyl hydroquinone, and guaiacol) and poplar ammonia lignin (5 peaks, 

including vanillic acid, syringaldehyde, and vanillin). Treatment of oak dioxasolv lignin gave 4 

product peaks including syringaldehyde and syringyl alcohol, and miscanthus ionic liquid lignin 

gave guaiacol and a second unidentified peak. No product peaks were observed using eucalyptus 

Kraft lignin, eucalyptus organosolv lignin, or eucalyptus autohydrolysis lignin. 

 

Discussion 

 Despite extensive interest in lignin valorisation around the world, using both chemocatalytic 

and biocatalytic approaches, there is currently no clear consensus about what type of lignin 

preparation is optimum for subsequent lignin valorisation. This is an important question for the 

design of a lignocellulose-based biorefinery that could generate high-volume cellulosic biofuels, but 

also generate low-volume, high-value aromatic chemicals from the lignin fraction. For this reason, 

we undertook a study to assemble a small collection of different lignin preparations, to characterise 

their structures, and to study their valorisation via both chemocatalytic and biocatalytic methods. 

We have found considerable variation in lignin structure, product distribution and yield, verifying 

the original hypothesis that the method used to prepare lignin can have a large effect on its chemical 

and biological reactivity.  

 Of the lignin samples studied, the poplar ammonia organosolv lignin and oak dioxasolv 

lignin both show high levels of β-O-4 content, and both lignins show consistently good levels of 

lignin valorisation products (see Figure 6). The poplar ammonia organosolv lignin gave the highest 

yield of arylketone products from DDQ/Zn valorisation, a 5.3% yield compared with a theoretical 

maximum yield of 16% via this method (calculated from the incidence of adjacent β-O-4 units in 

the structure), and also gave the highest yield of syringaldehyde from R. jostii RHA045 microbial 

biotransformation, and the largest number of products from treatment with P. fluorescens Dyp1B.  

The oak dioxasolv lignin gave the highest yield of products from reductive catalytic hydrogenation, 

and also generated syringaldehyde from R. jostii RHA045 microbial biotransformation, and 

products from enzymatic oxidation. The observation that the poplar ammonia organosolv lignin 

gave highest yield for DDQ/Zn valorisation, while the oak dioxasolv lignin gave highest yield for 

reductive catalytic hydrogenation, implies that the two chemical methods are highly dependent on 

the method used for lignin fractionation. 

 Lignin samples with intermediate levels of β-O-4 content gave variable types and amounts 

of valorisation products. The miscanthus ionic liquid lignin gave good product yields for the 

reductive catalytic hydrogenation method, but not for the DDQ/Zn valorisation method; it yielded 

no bioproducts from R. jostii RHA045 microbial biotransformation, but generated some enzymatic 
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oxidation products. The eucalyptus autohydrolysis lignin gave some ketone products from DDQ/Zn 

valorisation; it gave no syringaldehyde product from R. jostii RHA045 microbial biotransformation, 

but did produce other bio-products vanillic acid and protocatechuic acid.  

 Lignin preparations with low levels of β-O-4 content showed either no product in the case of 

eucalyptus Kraft lignin, or products from 2 methods for eucalyptus organosolv lignin. Hence an 

important conclusion of our study there is a correlation between the proportion of β-O-4 content 

and the value of the lignin for valorisation. There are a few studies in the literature that have 

compared different lignin preparations with individual lignin valorization methods. In the lignin 

pyrolysis field, Lin et al have compared the fast pyrolysis of four lignins from different isolation 

processes, observing variable product ratios;37 and Liu et al have studied the pyrolysis of 

organosolv lignin vs soda alkali lignin, finding that organosolv lignin with higher β-O-4 content is 

pyrolysed more readily.38 In the lignin chemocatalysis field, Bouxin et al have noted differences in 

yield between different lignin preparations using catalytic hydrogenation,21 and Jongerius et al have 

observed differences in yield between three lignin preparations using liquid-phase reforming and 

hydrodeoxygenation,39 in each case highest yield was obtained with the lignin with highest β-O-4 

content. In this study we have examined a larger collection of lignin preparations across five 

different chemocatalytic and biocatalytic lignin valorization methods. It would be interesting to 

study a greater range of different lignin preparations from the same feedstock (e.g. poplar, oak, 

miscanthus), to see if there are differences in behaviour within individual feedstocks. For individual 

valorisation methods there may also be a preference for particular feedstock, as found for example 

by van den Bosch et al for reductive fractionation of lignocellulosic biomass.40 

   

Figure 6. Summary of the products of biocatalytic and chemocatalytic valorisation methods applied 

to different lignin preparations.  

 
The R. jostii RHA045 gene deletion strain used in this study contains a gene deletion in 

vanillin dehydrogenase responsible for oxidation of vanillin to vanillic acid, and was previously 

shown to accumulate vanillin (96 mg/L) and p-hydroxybenzaldehyde when grown on minimal 

media containing wheat straw lignocellulose, containing G and H lignin units. From hardwood 

lignins containing predominantly S lignin units, one might expect to accumulate syringaldehyde 

rather than vanillin, as observed from poplar ammonia organosolv lignin (95 mg/L) and oak 

dioxasolv lignin (243 mg/L), thus it appears that syringaldehyde is also metabolised via the vanillic 

acid catabolic pathway in Rhodococcus jostii. The yield of syringaldehyde obtained from poplar 

ammonia organosolv lignin is 2.5-fold higher than the yield of vanillin obtained previously by 

Sainsbury et al from wheat straw lignocellulose,11 although in this experiment the growth substrate 
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was a lignin preparation, whereas there is only 20-25% lignin content in wheat straw lignocellulose. 

However, the overall product yields from R. jostii RHA045 treatment of poplar ammonia 

organosolv lignin and oak dioxasolv lignin are 6.3% and 5.1% respectively, higher than product 

yields of 3-4% obtained for wheat straw lignocellulose.11 

The appearance of protocatechuic acid as a bio-product was observed from wheat straw 

lignocellulose, and was interpreted as a shunt metabolite formed by slow demethylation of vanillin 

to give 2,3-dihydroxybenzaldehyde, which is exported and oxidised to form protocatechuic acid 

(see Figure 7),11 and this metabolite was observed in significant quantities in the bioconversions of 

eucalyptus autohydrolysis and organosolv lignin. The appearance of vanillic acid as a bio-product is 

unexpected and puzzling, since the enzymatic oxidation of vanillin to vanillic acid has been 

disrupted by gene knockout. In these cases it is possible that vanillic acid is formed from β-

oxidation of ferulic acid via the pathway elucidated by Otani et al,41 or from another unidentified 

pathway, but one would expect that the vanillic acid would be further metabolised via 

demethylation and subsequently via the β-ketoadipate pathway, as shown in Figure 7. One possible 

rationalisation is that the vanillate demethylase gene, which is normally induced by the presence of 

vanillin,42 is not induced by syringaldehyde, which would result in a shortage of vanillate 

demethylase enzyme in the host organism, thereby accumulating the substrate vanillic acid. 

 

Figure 7. Formation of syringaldehyde, protocatechuic acid and vanillic acid in Rhodococcus jostii 

RHA045.  

 

 A number of product peaks were generated by enzyme-catalysed oxidation by Pseudomonas 

fluorescens Dyp1B and Sphingobacterium sp. T2 manganese superoxide dismutase, and once again 

the product identities and ratios varied between lignin substrates. In the case of P. fluorescens 

Dyp1B, most products were obtained upon treatment of poplar ammonia lignin (6 product peaks), 

including a syringyl C3 triol, structurally related to lignin dimer observed previously upon treatment 

of wheat straw lignocellulose.35 3-Methoxyhydroquinone had previously been observed as a 

metabolite from treatment of wheat straw organosolv lignin with Sphinogobacterium MnSOD1,35 

so the appearance of syringyl hydroquinone can be rationalised by the predominance of S units in 

the poplar and oak hardwood lignins. 

 The development of new methods for chemocatalytic or biocatalytic conversion of lignin 

into feedstock or high-value aromatic chemicals will add value to the generation of biofuels from 

lignocellulose, provided that a compatible pre-treatment method can be developed that allows both 

biofuel generation and lignin valorisation. At present the majority of lignin preparations generated 

commercially in pulp/paper or biofuel manufacture involve either the Kraft process or acidic 
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pretreatments that lead to condensation of the lignin structure and reduction in β-O-4 content. Our 

studies suggest that in order to generate a lignin fraction that can be efficiently valorised for 

chemicals production, the pre-treatment should ideally leave the majority of β-O-4 lignin units 

intact, such as mild organosolv treatments, or methods such as γ-valerolactone fractionation.43 
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Footnotes 

1. The volume integral of a cross peak in a HSQC spectrum is a semi-quantitative measure and 

detailed error assessment methods remain challenging. However, the values presented in Tables 

1 and 2 are reasonable based on the obtained spectra (see ESI Figures S2-S8). 

2. Since this method requires the presence of two consecutive β-O-4 units, the probability of 

obtaining two consecutive β-O-4 units in a lignin with 40% β-O-4 units is 0.4 x 0.4 = 0.16, 

therefore 16% theoretical yield of monomers. 

 

Supporting Information. ESI comprises 1H-13C NMR spectra for lignin preparations (Figures S1-

S8) and DDQ-oxidised lignin samples (Figures S9-S11); analysis of 2-hydroxyethyl-aryl ketone 

products from DDQ oxidation/Zn reduction of lignin samples (Figures S12, S13); and LC-MS data 

for enzymatic products using P. fluorescens Dyp1B (Figure S14) and Sphingobacterium sp. SOD1 

(Figure S15). 
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Figure Legends. 

Figure 1. A. Design of experimental study. B. Structural units found in polymeric lignin. 

 

Figure 2. Analysis of lignin structure by 1H-13C NMR spectroscopy, showing (A) poplar ammonia 

organosolv lignin containing high β-O-4 content; (B) miscanthus ionic liquid lignin containing 

medium β-O-4 content; (C) Eucalyptus Kraft lignin containing low β-O-4 content. Key: A (light 

blue), β-O-4 linkages between S/G units and either G (S/G-G) or S (S/G-S) units or containing α-

ethoxy groups (OEt); B (green), β-5 units; C (purple), β−β units; red, Hibbert ketones; grey, 

condensed units. Signals indicative of β-O-4 linkages indicated in box.  

 

Figure 3. Chemocatalytic conversion of lignin samples to 2-hydroxyethyl aryl ketones 

 

Figure 4. Products obtained from catalytic hydrogenation at 300 oC/20 bar hydrogen over a 

Pt/alumina catalyst.  Yield estimated by GC-MS. Key: G, guaiacyl; S, syringyl; 0-3 indicate the 

number of carbon atoms in the alkyl side-chain at C-1; G(OH), 3,4-dihydroxybenzene aromatic 

unit; S(OH), 3,4-dihydroxy-5-methoxy aromatic; 3(i), 3-carbon side-chain containing alkene; 

3(OMe), 3-carbon side-chain containing OMe; 3(OH), 3-carbon side-chain containing OH. 

 

Figure 5. Products obtained by treatment of lignin preparations with Pseudomonas fluorescens 

Dyp1B (PfDyp1B) and Sphingobacterium sp. T2 manganese superoxide dismutase 1 (SpSOD1). 

Products identified by LC-MS. Black shading, major peak; grey shading, minor peak. Key: S, 

syringyl; G, guaiacyl; H, hydroxybenzyl; 0-3 indicate the number of carbon atoms in the alkyl side-

chain at C-1. 

 

Figure 6. Summary of the products of biocatalytic and chemocatalytic valorisation methods applied 

to different lignin preparations. Key: SA, syringaldehyde; VA, vanillic acid; PCA, protocatechuic 

acid; FA, ferulic acid; NT, not tested. Colour coding: orange, highest product yield ; pale orange, 

good product yield; yellow, some products observed; grey, no products observed. 

 

Figure 7. Formation of syringaldehyde, protocatechuic acid and vanillic acid in Rhodococcus jostii 

RHA045. + indicates up-regulation of vanillate dehydrogenase gene by vanillin. 
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Table 1. Ratio of S/G/H units determined by 1H-13C NMR spectroscopy and by thioacidolysis. % 

condensed S units (Scon) is also shown. ND, not determined. 

Lignin % S % G % H % Scon S:G:H Thioacidolysis 

S:G ratio 

Oak dioxasolv 53 19 0 28 4.2:1:0 2.65 ±0.04 

Poplar ammonia 

organosolv 

62 38 0 0 1.6:1:0 1.86 ±0.03 

 

Poplar alkaline 

organosolv (ref 19) 

48 52 0 ND 0.9:1:0 1.32 ±0.05 

 

Miscanthus ionic 

liquid 

16 52 15 17 0.6:1:0.33 0.73 ±0.01 

 

Eucalyptus 

autohydrolysis 

60 10 0 30 9.0:1:0 ND 

Eucalyptus 

organosolv 

46 18 0 36 4.6:1:0 ND 

Eucalyptus Kraft 29 12 0 59 7.1:1:0 ND 
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Table 2. Characterisation of lignin samples. Percentage of β-O-4, β-5 and β−β units based upon 

alkyl hydrogen signals observed by 1H-13C NMR spectroscopy (calculation of these data is 

illustrated in Figure S8 in Supporting Information); Mw and Mn values of acetylated lignins by gel 

permeation chromatography. Notes: a, excluding α-ethoxy units, arising from ethanol used in lignin 

fractionation. 

Lignin β-O-4 (%) β-5 (%) β−β (%) Mw Mn 

Oak dioxasolv 40 3 8 5267 734 

Poplar ammonia 

organosolv 

49 (40a) 3 7 4013 1072 

Poplar alkaline 

organosolv (ref 19) 

12 5 4 ND ND 

Miscanthus ionic 

liquid 

10 5 2 3061 894 

Eucalyptus 

autohydrolysis 

27 2 8 4364 822 

Eucalyptus 

organosolv 

16 (13a) 2 5 1765 750 

Eucalyptus Kraft 0 0 5 1764 664 
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Table 3. Bioproduct yields (in mg/L) obtained via microbial biotransformation of Rhodococcus 

jostii RHA045 using different lignins as carbon source at 1% (w/v) in minimal M9 media after 6 

days microbial biotransformation at 30 oC. nac, small amounts (1-5 mg/L) not above those of 

control incubation lacking bacteria; nd, not detected.  

Lignin S:G:H 

ratio 

vanillin syring- 

aldehyde 

vanillic 

acid 

vanillyl 

alcohol 

Proto-

catechuic 

acid 

ferulic 

acid 

Total 

yield 

(%) 

Oak dioxasolv 3:1:0 nac 95 340 nac nd 74 5.1 

Poplar 

ammonia 

organosolv 

1.6:1:0 nac 243 360 23 nac nac 

 

6.3 

Poplar alkaline 

organosolv 

1.3:1:0 nac nac 630 42 nd nac 6.7 

Miscanthus 

ionic liquid 

0.8:1:0.9 nac nac nac nac nd nac <1 

Eucalyptus 

autohydrolysis 

5.9:1:0 nd nd 130 nd 230 nac 3.6 

Eucalyptus 

organosolv 

5.9:1:0 nac nd 105 20 300 nac 4.2 

Eucalyptus 

Kraft 

3.4:1:0 nac nac nac nac nac nac <1 

Wheat straw 

lignocellulose9 

 96 nd 3-120 nd nd 23-86 3-4 
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Figure 1 
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Figure 2 
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Figure 3. 
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Figure 5	  
	  

	  
	  
	  
Figure	  6	  
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Figure	  7.	  
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An Investigation of the Chemocatalytic and Biocatalytic Valorisation of a Range of Different 

Lignin Preparations: the Importance of β-O-4 Content 
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Jason Hallett, Sharif Zein, Jaime Rodríguez, S. David Jackson, Nicholas J. Westwood,  
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Synopsis:	  A	  set	  of	  7	  lignins	  prepared	  from	  biomass	  using	  a	  range	  of	  fractionation	  methods	  was	  

characterised,	  and	  tested	  against	  2	  chemocatalytic	  and	  3	  biocatalytic	  valorisation	  methods.	  

	  
	  
	  


