
 

PARAMETER REDUNDANCY IN LOG-LINEAR MODELS 

Serveh Sharifi Far 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 

  

2017 

Full metadata for this thesis is available in                                                      
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 

Identifiers to use to cite or link to this thesis: 

DOI: https://doi.org/10.17630/10023-11739  
http://hdl.handle.net/10023/11739  

 
 

This item is protected by original copyright 

 
This item is licensed under a 
Creative Commons License 

https://creativecommons.org/licenses/by-nc-nd/4.0 

http://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/10023-11739
http://hdl.handle.net/10023/11739
https://creativecommons.org/licenses/by-nc-nd/4.0


Parameter Redundancy in Log-linear
Models

Serveh Sharifi Far

Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

in the School of Mathematics and Statistics

UNIVERSITY OF ST ANDREWS

August 2017



Declaration

1. Candidate’s declarations:
I, Serveh Sharifi Far, hereby certify that this thesis, which is approximately 30,000
words in length, has been written by me, and that it is the record of work carried out by
me, or principally by myself in collaboration with others as acknowledged, and that it
has not been submitted in any previous application for a higher degree.
I was admitted as a research student and as a candidate for the degree of PhD in Statistics
in September 2013; the higher study for which this is a record was carried out in the
University of St Andrews between 2013 and 2017.

Date ————- signature of candidate ————-

2. Supervisor’s declaration:
I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and that
the candidate is qualified to submit this thesis in application for that degree.

Date ————- signature of supervisor ————-

3. Permission for publication:
In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the
work not being affected thereby. I also understand that the title and the abstract will
be published, and that a copy of the work may be made and supplied to any bona fide
library or research worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested below, and that the
library has the right to migrate my thesis into new electronic forms as required to ensure
continued access to the thesis. I have obtained any third-party copyright permissions



iii

that may be required in order to allow such access and migration, or have requested the
appropriate embargo below.
The following is an agreed request by candidate and supervisor regarding the publication
of this thesis:
Embargo on all of both print copy and electronic copy for a period of two years on the
following ground: publication would preclude future publication.

Date ————- signature of candidate ————-

signature of supervisor ————

Serveh Sharifi Far
August 2017



Acknowledgements

I would like to express my gratitude to my supervisors Michail Papathomas and Ruth
King, for their constant guidance, support and encouragement along this work. They
devoted countless hours to meetings, discussions and answering queries, and without
them this thesis would not have been possible.

I am extremely grateful to the School of Mathematics and Statistics, and the Engineer-
ing and Physical Sciences Research Council (EPSRC), for the financial support of my
studies. A very special appreciation goes to everyone in CREEM for their friendly
manner and assistance. Many thanks to my officemates, and friends, Claudia, Christina,
Andreia, Ameneh, and Laleh for their friendship and camaraderie.

I want to thank my mother Nina, my brother Siamand and his wife Azadeh, for encour-
aging me in my academic development. Thanks to my sister and my best friend Silvana,
and my nieces Viyana and Rozhina who made my vacations back home relaxing and
unforgettable. Special thanks to my aunts Esmat and Amin for all their support and
kindness. Finally, I gratefully acknowledge my late father who taught me to enjoy the
endless world of research, reading and learning.



Abstract

Log-linear models are widely used to analyse categorical variables arranged in a contin-
gency table. Sampling zero entries in the table can cause the problem of large standard
errors for some model parameter estimates. This thesis focuses on the reason of this
problem and suggests a solution by utilising the parameter redundancy approach. This
approach detects whether a model is non-identifiable and parameter redundant, and
specifies a smaller set of parameters or combinations of them that all are estimable. The
parameter redundancy method is adapted here for Poisson log-linear models which are
parameter redundant because of the number and pattern of the zero observations in the
contingency table. Furthermore, it is shown that in some parameter redundant log-linear
models, the presence of constraints referred to as esoteric constraints can make more
parameters estimable. It is proven in a theorem that for a saturated Poisson log-linear
model fitted to an lm table with one zero cell count, which model parameters are not
estimable. Three examples of real data in sparse contingency tables are presented to
demonstrate the process of identifying the estimable parameters and reducing the model.

An alternative approach is the existence of the MLE method that checks for the
existence of the maximum likelihood estimates of the cell means in the log-linear
model after observing the zero entries. The method considers the log-linear model as
a polyhedral cone and provides conditions to detect the estimability of the cell means.
This method is compared here with the parameter redundancy approach and their
similarities and differences are explained and illustrated using examples. In parameter
redundant models with existent MLE, it is observed that the presence of the esoteric
constraints makes all the parameters estimable.
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Chapter 1

Introduction

1.1 Categorical variables and contingency tables

Statistical methods for analysing categorical data have always been of interest to
statisticians and relevant methodology has mostly been developed since the beginning
of the 20th century. A categorical variable is used to describe qualitative or quantitative
data that are classified in a set of possible categories or levels. Categorical variables
are commonly used in the social and biomedical sciences for measuring attitudes and
various states of variables. Their application, however, is not only restricted to these
areas and they occur in ecological, medical and even engineering and industrial sciences.
There are three types of categorical variables based on the nature of the set of categories.
When the categories of a variable do not have an intrinsic order, the variable is called
nominal. For instance, eye colour, gender, and blood type are considered nominal
categorical variables. In contrast, variables which do have naturally ordered categories,
such as education level and social class, are named ordinal variables. Categorical
variables for which there is a numerical distance between two levels is an interval
variable. An interval variable is usually a categorised continuous or discrete numerical
variable, for example, age, and years of education are interval variables.

A display format for data with categorical measurements is a contingency table,
first introduced by Karl Pearson in 1904 [Agresti, 2002]. It is designed to assist with the
detection of the relationship between two or more categorical variables. In such a table,
subjects are cross-classified over different categories of variables, and each cell count
represents the number of subjects under a certain cross-classification. A contingency
table for two variables X and Y , with I rows and J columns, is referred to as a two-way
I × J table. Table 1.1 is a 2×3 contingency table, taken from Agresti [2002], which
shows the relationship between two nominal categorical variables, aspirin use and heart
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Heart attack
Fatal Non-fatal None

Placebo 18 171 10,845
Aspirin 5 99 10,933

Table 1.1 2×3 contingency table of aspirin use and heart attack.

attack. The joint probability distribution πi j indicates the probability that X and Y

realisation belongs to the cell at row i and column j. The marginal distribution for each
variable is derived by summing the joint probabilities over the other variables. For a
two-way table, the marginal distributions are given by,

πi+ =
J

∑
j=1

πi j, π+ j =
I

∑
i=1

πi j,

such that ∑
I
i=1 ∑

J
j=1 πi j = ∑

I
i=1 πi+ = ∑

J
j=1 π+ j = 1.

Each cell count in a contingency table can be viewed as a random variable with
non-negative integer possible values. For a table with n cells, we denote these random
variables as Yi and their observed values as yi, i = 1, . . . ,n. The distribution of these
variables depends on the assumed sampling distribution. The two commonly used
sampling distributions for the cell counts of a contingency table are the Poisson and
multinomial distributions.

The Poisson distribution is the most common distribution for count data. A Poison
random variable indicates the number of independent events occurring in a fixed period
of time or interval of space. Its probability mass function is,

P(Yi = yi) =
e−µi µ

yi
i

yi!
, yi = 0,1,2, . . . , (1.1)

where µi > 0 and µi = E(Yi) = Var(Yi). The joint probability distribution for n indepen-
dent variables is the product of their probability mass functions.

When the total sample size is fixed, so that N = ∑
n
i=1 yi is known, the sampling

distribution for the table counts is the multinomial distribution. The probability mass
function for the n cells of the table is,

P

(
Y1 = y1,Y2 = y2, . . . ,Yn = yn |

n

∑
i=1

yi = N

)
=

N!
∏

n
i=1 yi!

n

∏
i=1

π
yi
i , (1.2)
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in which yi = 0,1,2, . . . , and πi is the probability that a subject belongs to cell i. A
special case of multinomial sampling happens when instead of having a fixed total
sample size, the number of observations in each row or column is fixed. This sampling
distribution is called “independent multinomial” or “product multinomial” sampling.
The multinomial distribution for the cell counts then becomes the product of the
multinomial distributions for the rows or columns.

1.2 Log-linear models for contingency table data

In most statistical analyses there is a distinction between dependent or response variables
and independent or explanatory variables. The aim is usually to describe the effects
of some of the independent variables on the dependent ones. Some prominent models
for categorical data belong to the family of generalized linear models (GLM). The
dependent variable in a generalized linear model is assumed to be from the exponential
family distributions. The probability function for a variable with n independent values
from a member of the exponential family distributions is,

f (yi|λi,φ) = exp
{

yiλi −b(λi)

a(φ)
+ c(yi,φ)

}
. (1.3)

In such a function, φ is referred to as the dispersion parameter and λi is called the natural
parameter. We also know that for these distributions, µi =E(Yi) = b′(λi) [Agresti, 2002].
In a GLM, a link function (g) relates the expected values of the observations to the
independent variables by the formula,

g(µµµ) = Aθθθ . (1.4)

Aθθθ terms are known as the linear predictors. In this thesis, we show matrices with upper
case letters and show vectors with bold symbols or letters. A is the design matrix or
model matrix and includes the values of the independent variables and θθθ is the vector
of model parameters. The model’s parameter estimates are obtained by maximising the
likelihood function and often applying the Newton-Raphson algorithm or the iterative
weighted least square method.

The cell counts in a contingency table are often assumed to be from the Poisson
distribution, which is a member of the exponential family of distributions with the
dispersion parameter φ = 1 and the natural parameter λi = log µi. Then for each of the
n cell counts in a contingency table, the probability mass function is as equation (1.1).
The natural GLM link function for a Poisson distribution is the log function. So the



1.2 Log-linear models for contingency table data 4

generalised linear model in this case is,

log(µµµ) = Aθθθ .

This model is called a log-linear model, in which means of cell counts are related to
model parameters θθθ via design matrix A. Log-linear models specify the association
patterns among the categorical variables and in these models there is no distinction
between dependent and independent variables. If such a distinction is required then
logit models or logistic regressions can be used instead of log-linear models.

A possible log-linear model for a two-way contingency table with categorical
variables X and Y , with I rows and J columns and n = IJ cells is,

log µi j = θ +θ
X
i +θ

Y
j +θ

XY
i j , i = 1, . . . , I, j = 1, . . . ,J.

This model is known as a saturated model, since it is the most general and flexible
model and it is containing all possible parameters to associate patterns among the
variables. θ is the intercept for the model. θ X

i represents the effect of each level of
variable X (row effects) on the logarithm of cell means. θY

j is representative of the
effect of the variable Y levels (column effects) on the logarithm of cell means. θ XY

i j

allows for possible association between the two variables and describes its effect on
the logarithm of the cell means. It is also called an interaction parameter. θ X

i and
θY

j are the main effects and θ XY
i j is the first order interaction parameter. The higher

or lower value for each of them relatively increases or decreases the expected cell
counts of the corresponding cells in the contingency table. To make the parameters
mathematically estimable, there are two common types of constraints to imply on
them. One type is the “sum to zero” or “effect coding” constraints which assume

∑
I
i=1 θ X

i = ∑
J
j=1 θY

j = ∑
I
i=1 θ XY

i j = ∑
J
j=1 θ XY

i j = 0. The other type is “corner point” or
“dummy coding” constraints which set one level of each effect or interaction, say the
first level, equal to zero to have θ X

1 = θY
1 = θ XY

i1 = θ XY
1 j = 0.

For the same contingency table assume that the two variables are independent. The
joint probability then for each cell is πi j = πi+π+ j and therefore the expected cell count
is,

E(Yi j) = µi j = Nπi j = Nπi+π+ j.

Taking the logarithms of both sides of this equation leads to the log-linear model,

log µi j = θ +θ
X
i +θ

Y
j , i = 1, . . . , I, j = 1, . . . ,J.
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This model only includes the intercept and main effects, or row and column effects,
without the parameter representing the association between two variables. This model
is called the independence model and is a special case of the saturated model.

To define a log-linear model for any contingency table, we follow the notation of
Overstall and King [2014]. Let V= {V1, . . . ,Vm} denote a set of m categorical variables
and assume the jth variable has l j levels. The contingency table corresponding to
these variables has n = ∏

m
j=1 l j cells, and is referred to as a l1 × ·· · × l j table. We

let y denote a n× 1 vector corresponding to the observed cell counts. Each element
of this vector is specified by yi with i = (i1, . . . , im) identifying the combination of
variable levels that cross-classify the given cell. We define L as the set of all n cross-
classifications and thus the set of all cells in the table. Mathematically, L =⊗m

j=1[l j], in
which [l j] = {0,1, . . . , l j −1} (note that the variables levels start from level zero). Then
by definition |L|= n and N = ∑i∈L yi is the total observed number of counts.

We assume the data (i.e. yis) are observations from independent Poisson distributions
with the associated probability mass function (1.1) and µi = E(Yi). Let E denote a set of
subsets of V. By adapting the notation of Johndrow et al. [2014], the log-linear model
assumes the form,

mi = log µi = ∑
e∈E

θ
e(i), (1.5)

θ e(i) ∈ R denotes the interaction among the variables in e corresponding to the levels
in i. The summation is over all members of E, which could be the set of all subsets
of variables (for a saturated model) or a set of desired subsets (for a smaller model
only with the desired variables). As a convention, θ corresponds to e = ∅, which
guarantees that there is an intercept in the model. Each model could include parameters
which specify the main effects of the variables or the interactions between them on the
logarithm of the cell means. For identifiability, we choose corner point constraints, such
that the lowest level (the zero level) of each main effect or interaction is set equal to
zero. Generally, the log-linear models can be written with the design matrix A and p

number of θ parameters, as mn×1 = log µµµn×1 = An×pθθθ p×1. Model (1.5) is referred to
as a hierarchical model if for every e ∈ E that θ e(i) = 0, we have θ f (i) = 0 for all f ⊇ e

[Johndrow et al., 2014].
For a log-linear model fitted to an lm table, another way to order cell counts or

cell means in model (1.5) is setting a one to one correspondence between the set
i = (i1, ..., im) and integer numbers i = 1, ..., lm, as,

i = (i1, ..., im) = i1l0 + i2l1 + · · ·+ im−1lm−2 + imlm−1 +1. (1.6)
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We will use this in examples and proofs for simplification, and order the cell counts
inside the contingency tables using this notation.

Log-linear models are essential and widely used for analysing categorical data in
contingency tables with applications in many scientific areas. Some examples in social,
medical and biological sciences are given in Agresti [2002], Bishop et al. [1975] and
McCullagh and Nelder [1989]. Statistical theory for contingency tables can be traced
back to Bartlett [1935] who computed the maximum likelihood estimates (MLE) of
log-linear models in 2×2×2 tables and investigated the independence test of variables
for them. The study of log-linear models for three-way and higher-way tables began
by Birch [1963] who derived maximum likelihood estimates and sufficient statistics
for log-linear models under certain hypothesises. Goodman [1970, 1971] continued
the work of estimating multiplicative interactions of log-linear models and analysing
marginal tables in m-way tables. Fienberg [1972] estimated the total population size
of a multiple recapture census for closed population by fitting a log-linear model to
an incomplete 2k contingency table. A comprehensive study of log-linear models for
contingency tables was developed by Haberman [1973].

1.3 The problem of zero observations in contingency ta-
bles

Contingency tables might contain zero cell counts. There are two main types of zero
observations: structural and sampling zeros. If an observed cell count (yi) is zero and
we know that the expected value (µi) for that cell is zero too, then it is a structural zero.
A positive cell count is impossible to occur for such a cell as the mean and variance
of the cell count are both zero. For example, in a contingency table with two variables
of sex and cancer type, there must be zero in the cells for male and ovarian cancer,
or female and prostate cancer. A structural zero does not contribute to the likelihood
function and that cell count and cell mean can be removed from the table and the model.
The corresponding contingency table is then known as an incomplete table [Agresti,
2002], although the term is used to refer to tables with unobserved cells too [Overstall
and King, 2014, Overstall, et al., 2014]. On the other hand, if we know that the expected
value is not necessarily zero (yi = 0,µi > 0), then that zero cell count is a sampling zero
and still contributes to the likelihood function. A sampling zero is a part of the data set,
as it is a possible outcome in both Poisson and multinomial sampling distributions. The
estimated value (µ̂i) for a sampling zero could be either zero or non-zero. A contingency
table including many sampling zero cell counts is called a sparse table.
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While fitting a log-linear model to a contingency table, some observed cell counts
may be zero which in turn can raise problems in estimating the parameters of the
model, including slow or non convergence of the routine or large standard errors for
the estimates [Fienberg and Rinaldo, 2007] . Sampling zeros are more common than
structural zeros and we primarily focus on the effect of their presence on the likelihood
surface and identifiability of log-linear models. This section provides the background
for two approaches that address the possible problems in a log-linear model caused by
zero cell counts. The matter of the existence of the MLE and the parameter redundancy
approach are briefly explained here. Chapters 2 and 4 illustrate the required theorems
and methods regarding each of these two approaches.

Existence of the MLE

For n independent observations from the Poisson distribution (1.1) for the log-linear
model log(µµµ) = Aθθθ , the log-likelihood function becomes,

l(µµµ(θθθ)) =
n

∑
i=1

(yi log µi(θθθ)−µi(θθθ))−
n

∑
i=1

logyi!. (1.7)

In order to fit a log-linear model to a contingency table, the parameters of model
(1.5), θθθ and µµµ , must be estimated by maximizing the likelihood function (1.7). This
likelihood function is a strictly concave function of µµµ . It means the second derivative
of the function is always negative if we assume the cell count variables could only
have positive means, i.e., µi > 0 [Haberman, 1973]. Agresti [2002] notes that if all cell
counts are positive, the MLE of log-linear model parameters exists.

For the generalized linear models in the form of (1.4) the estimates vector obtained
by the Iterative Re-weighted Least Squares (IWLS) method is,

θ̂θθ
(t+1)

= (ATW(t)A)−1ATW(t)z(t), (1.8)

such that W(t) = diag
(

Var(Yi)gT(µ
(t)
i )2

)−1
, z(t)i = g(µ(t)

i )+ (yi − µ
(t)
i )gT(µ(t)

i ) and
the superscript T shows the transpose of a vector or a matrix. For the log-linear model,
the initial values are usually µ

(0)
i = yi ̸= 0 to make the initial value of g(µi) and zi finite.

So as long as the cell counts are not zero, the parameter estimates exist. In case of
having zero observations, usually a small value is added to the cell counts [Agresti,
2002]. When a model is over-parametrized, the initial W matrix and therefore ATW(t)A

are singular and more than one solution for θ̂θθ is possible. Obtaining a point estimate for
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all parameters is possible even when the matrix is singular but the over-parametrization
will be shown by big or zero asymptotic standard errors [Brown and Fuchs, 1983].

Haberman [1973] proves maximum likelihood estimates for log-linear models
are unique when they exist and provides a necessary and sufficient condition for the
existence of the MLE of cell means (µµµ) in a theorem given in Section 4.1.1. For some
patterns of zero cell counts in the contingency table, the MLE of the log-linear model
parameters might not exist. Assuming only positive values for the cell means, the
theorem determines whether the MLE for all cell means exists or not for any pattern
of zeros in the table. Haberman [1974] states the fact that the parameter of a Poisson
distribution could take the value of zero too and this was a motivation to define the
extended MLE of cell means, when µ̂i = 0 and there are infinite estimates for some
log-linear model parameters (θs). The word “extended” indicates extending the range
of µi in (1.1) from positive values to non-negative values. The interest was increased in
studying the effect of sampling zeros in contingency tables. Brown and Fuchs [1983]
investigate this effect by considering and comparing some iterative methods.

The effect of the presence of zero observations in deriving maximum likelihood
estimates for parameters of the log-linear models has been studied in a polyhedral
and graphical model framework based on works by Lauritzen [1996]. Eriksson et
al. [2006] provide a polyhedral version of the Haberman’s necessary and sufficient
condition for the existence of the MLE. Fienberg and Rinaldo [2012a] study estimability
of parameters under non-existent MLE with extended exponential families and under
different sampling schemes. Their work is developed to higher dimensional problems
by Wang et al. [2016]. The existence of the MLE approach will be discussed in detail
in Chapter 4.

Parameter redundancy

A model is parameter redundant when statistical methods fail to estimate all of its
parameters. In some cases, the reason is over-parametrization in the model, whilst
sometimes lack of data causes this failure. The concept of parameter redundancy is
related to the identifiability of a model. A model is not identifiable if two different sets
of parameter values generate the same model for the data and this often happens when
a model is over-parametrized [Silvey, 1975]. If the model could be rearranged as a
function of a smaller set of parameters, which themselves are a function of the initial
parameters, then the model is parameter redundant. Thus, a parameter redundant model
could be reduced to a smaller but identifiable model with all estimable parameters.
Non-parameter redundant models are referred to as full rank models.
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Catchpole and Morgan [1997] define parameter redundant models and provide a
symbolic method to detect them. They prove that these models have a flat ridge in
their likelihood function which makes the unique existence of some MLEs impossible.
Catchpole et al. [1998] describe the method to find the estimable parameters or the
estimable combinations of parameters in parameter redundant models. Examples of
models which are parameter redundant due to their structure are provided in capture-
recapture and mark-recovery areas in Catchpole and Morgan [2001]. They also mention
that parameter redundancy might occur because of zero observations, as it may happen
in the contingency tables. Their work was developed by Cole et al. [2010], by using
exhaustive summaries in parameter redundant biological examples. Choquet and Cole
[2012] develop a symbolic-numeric method for detecting parameter redundancy and
for obtaining the estimable model parameters for the cases where the symbolic method
is not easily applicable and provide examples in capture-recapture and compartment
models.

Log-linear models are an example of models that can become parameter redundant
as a result of lack of data or zero cell count observations. Both sampling and structural
zeros can lead to parameter redundancy but we focus on the presence of sampling zeros.
In the presence of structural zeros, the corresponding cell means are removed from the
model and the resulting model can then be checked for possible parameter redundancy.
In Chapter 2, we adapt the parameter redundancy approach to fit log-linear models to
contingency tables data including zero observations.

1.4 Thesis aim and structure

The main objective of this thesis is to study parameter redundancy in log-linear models
fitted to contingency tables with some sampling zero observations. We aim to examine
if a log-linear model for a given table is parameter redundant or not and to detect
which parameters or functions of parameters are estimable in the case of parameter
redundancy. This enables us to address how to reduce a parameter redundant model to
a smaller identifiable one, remove parameters that are not estimable, and fit a model
that is identifiable. In contrast to the other approach, we focus on the estimability of
the parameters of the log-linear model (θθθ ) rather than the cell means (µµµ), although it
is possible to obtain one’s values from knowing the other one. The log-linear model
parameters are of particular interest in investigation on how variables interact and relate
to each other. This is revealed by the presence or absence of the interaction terms in
the model and their sign and magnitude. We describe the alternative approach which
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discusses the existence of the MLE, and compare this method and its results to the
parameter redundancy approach.

In Chapter 2 parameter redundancy and the method to detect it in a model are
described. We explain how to adapt the existing methodology to Poisson log-linear
models, in terms of detecting parameter redundancy and reducing the model to a
smaller model composed of only the estimable parameters. We illustrate the method
by considering 2× 2 contingency tables including one or more zero cell counts and
address saturated, non-saturated, non-hierarchical models and Poisson and multinomial
sampling distributions. It is explained that for some parameter redundant log-linear
models, the unique MLE could still be calculated for all of the parameters after implying
some additional constraints.

In chapter 3, we provide general theorems about saturated Poisson log-linear models
fitted to a contingency table with only one zero cell. We indicate exactly which model
parameters become inestimable after a zero count is observed in a specific cell. The
theorems are proved for saturated log-linear models corresponding to 2m, 3m and lm

contingency tables.
Chapter 4 explains the approach on the existence of the MLE for log-linear models

fitted to a table containing zero cells. The method based on the graphical and polyhedral
framework is described in detail. This technique determines whether the MLE exists
for a pattern of zero and if it does not, it further determines which cell means are
estimable. The results from this approach are compared to the ones based on the
proposed parameter redundancy approach, illustrated by examples. We investigate the
similarities and explain the differences between the results.

Applications from a variety of scientific fields are presented in Chapter 5. The data
in the first illustration is from Silverman [2014] on “an exploratory analysis of the
scale of modern slavery in the UK, using the statistical technique of multiple systems
estimation”. The contingency table in this study is made of five variables with two
levels for each and 2744 observations in total. The table contains several sampling zeros.
We fit a log-linear model to the table after finding the estimable parameters and estimate
the total number of the potential victims which is the aim of this study. The data set
for the second example is from Brown and Fuchs [1983]. The sparse contingency table
in this case, with five variables and two levels for each, presents a symptoms study of
118 patients after the same ear surgery. We fit the specified desirable model to the data,
reduce it to an identifiable model and estimate all estimable model parameters. The data
of the third example is from Papathomas et al. [2012], which marks 50 important SNPs
in a genome-wide association study of lung cancer. We choose five of those SNPs with
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three levels for each that make a sparse table of 4260 subjects. A log-linear model is
fitted to the sparse table and the estimable parameters and their estimates are obtained.

We conclude in Chapter 6 with a general discussion containing conclusion, a
description of the computational aspects, and mentioning the future work.



Chapter 2

Parameter redundancy in log-linear
models

2.1 Introduction

The parameter redundancy concept and the approach to detect and apply parameter
redundant models are described in Section 2.2 of this chapter. In Section 2.3, we adapt
the parameter redundancy method to Poisson log-linear models to realise how zero
entries can change the model and affect the parameter estimation process. Examples of
log-linear models fitted to contingency tables containing zero cell counts and details
about the model specifications are given in Sections 2.4, 2.5 and 2.6. In Section 2.7, we
specify a special case of parameter redundant log-linear models and explain that they
can be recognised as non-redundant after considering some extra constraints for the
model.

2.2 Parameter redundancy

An identifiable model is defined by Silvey [1975] as a model in which two different sets
of parameters never give the same probability distribution for the data. Assume M(θθθ) is
the function that specifies a statistical model containing parameters θθθ ∈ Ω. Then there
are two types of identifiability:

Definition 2.1. A model is globally identifiable if M(θθθ 1) =M(θθθ 2) implies that θθθ 1 = θθθ 222.

A model is locally identifiable if there exists an open neighbourhood of any θθθ such that

this is true. Otherwise a model is non-identifiable. [Cole et al., 2010, Definition 1]
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Identifiability is closely related to parameter redundancy. Catchpole and Morgan
[1997] state that the most obvious cause for non-identifiability is the model’s over-
parametrisation, which is referred to as parameter redundancy. A model with p parame-
ters is parameter redundant if all of its parameters are not estimable, so the model can
be rewritten in terms of q estimable parameters such that q < p. We summarize the
approach introduced by Catchpole and Morgan [1997] and Catchpole et al. [1998] to
identify a parameter redundant model and to find the smaller set of estimable parameters.
Consider independent observations yT = (y1, ...,yn) from a member of the exponential
family of distributions (1.3). The cell mean vector µµµ is expressible as a function of
parameters θθθ

T = (θ1, ...,θp) ∈ Ω. The derivative matrix, D(θθθ), describes the relation
between µµµ (or a monotonic function of it) and θθθ ,

Dsi(θθθ) =
∂ µi

∂θs
, i = 1, . . . ,n, s = 1, . . . , p. (2.1)

This matrix is said to be symbolically rank deficient, if and only if there exists a
non-zero vector, ααα(θθθ), such that for all θθθ ,

ααα(θθθ)TD(θθθ) = 0. (2.2)

So ααα(θθθ) is the null space of the transpose of the derivative matrix, i.e., DT(θθθ)ααα(θθθ) = 0.

Theorem 2.1. A model is parameter redundant if and only if its derivative matrix is

symbolically rank-deficient. [Catchpole and Morgan, 1997, Theorem 1]

This method has a long history of use as a general way to detect identifiability
including Goodman [1974], Shapiro [1986], Thowsen [1978], Pohjanpalo [1982],
Delforge [1989] and Chappell and Gunn [1998]. After detecting parameter redundancy
in a model and realising that all p model parameters are not estimable, we specify how
many estimable parameters or estimable combinations of parameters exist. The rank
of the derivative matrix (r) determines this number. Then d = r− p is called model
deficiency which indicates the number of all possible ααα(θθθ) vectors. Zero elements in
ααα(θθθ) correspond to those parameters of the model that are directly estimable. In order
to find other possible estimable combinations of the parameters, the next theorem is used.
The method used in this theorem was also developed independently for compartment
models by Chappell and Gun [1998] and Evans and Chappell [2000].

Theorem 2.2. A minimal parameter set, containing p−d parameters, can be found

by solving the auxiliary equations of a system of linear first order partial differential
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equations,
p

∑
s=1

αs j
∂ f
∂θs

= 0, j = 1, ...,d. (2.3)

[Catchpole et al., 1998, Theorem 1]

A model which is not parameter redundant is called a full rank model. In that case,
the rank of the derivative matrix equals to the number of parameters and the model
deficiency is zero. If the rank of D(θθθ) equals to p for all θθθ ∈ Ω, the model is essentially
full rank and if this is true for some but not all θθθ , then the model is conditionally full
rank. Cole et al. [2010] provide a theorem which determines if the model is essentially
or conditionally full rank by taking a decomposition of the derivative matrix.

Theorem 2.3. For a full rank model, write D = PLUR, where P is a permutation matrix,

L is a lower triangular matrix with ones on the diagonal, U is an upper triangular

matrix and R is a matrix in reduced echelon form. The model is parameter redundant at

θ if and only if Det(U) = 0 at a point θ ∈ Ω and R is defined at θ . [Cole et al., 2010,
Theorem 4]

Catchpole and Morgan [1997] clarify the relationship between identifiability and
parameter redundancy:

• “If a model is parameter redundant, then it is not locally identifiable.”

• If a model is essentially full rank, then it is (at least) locally identifiable.

• “It is certainly not true that full rank models are necessarily identifiable, or even
locally identifiable” (the models might be conditionally full rank).

• “It is an open question whether or not essentially full rank models must be
identifiable (the answer is positive for a particular simple class of models).”

In a parameter redundant model, after detecting estimable parameters and estimable
combinations of them, the initial model will be reduced to a model only including
estimable parameters and combinations. The reduced model is full rank and maximizing
its likelihood function results in obtaining MLE of the parameters. The shape of the
likelihood surface in a parameter redundant model is described in the next theorem.

Theorem 2.4. If a model is parameter redundant, then for any data set, the likelihood

surface has a completely flat ridge. [Catchpole and Morgan, 1997, Theorem 2]

The flat ridge usually makes it impossible to find a unique maximum likelihood estimate
for some parameters. However, in some cases the flat ridge might be orthogonal to
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some parameter axes, so those parameters still have unique estimates which maximise
the likelihood function [Catchpole et al., 1998].

Rothenberg [1971] employed the information matrix instead of the derivative matrix
D and proved that for probability function f , if the information matrix with elements

Ii j = E
[

∂ log f
∂θi

.
∂ log f

∂θ j

]
is non-singular then the model is locally identifiable. If the

matrix in non-singular and f is a member of the exponential family of distributions, then
the model is globally identifiable. Catchpole and Morgan [1997] used the derivative
matrix and showed that its rank is the same as the rank of the information matrix and
noted that although the information matrix is smaller, it is algebraically more difficult
to handle.

In defining the model, M(θθθ) could be the probability function from the exponential
family of distributions, or terms of a log-likelihood function or any other functions
that represent the model. In some examples, a vector of parameter combinations that
uniquely defines the model could be used to make the symbolic computations easier.
This parameter vector is called an exhaustive summary and is shown as κκκ(θθθ). In
the general definition of the derivative matrix (2.1), we have κκκ(θθθ) = µµµ [Cole et al.,
2010]. Another option which simplifies the symbolic computations and is helpful for
large and complicated derivative matrices, is to use the extension theorem [Catchpole
and Morgan, 1997, Cole et al., 2010]. Assume κκκ1(θθθ 1) is the exhaustive summary

used to make the derivative matrix D1(θθθ 1) =

[
∂κκκ1(θθθ 1)

∂θθθ 1

]
. If the model is extended

by adding a new set of parameters θθθ 2, the exhaustive summary is also extended to
κκκ(θθθ 1,θθθ 2) = [κκκ1(θθθ 1),κκκ2(θθθ 1,θθθ 2)]. Then the derivative matrix for the extended model
is,

D =

[
D1(θθθ 1) D2(θθθ 1)

0 D2(θθθ 2)

]
,

such that D2(θθθ 1) =
∂κκκ2(θθθ 1,θθθ 2)

∂θθθ 1
and D2(θθθ 2) =

∂κκκ2(θθθ 1,θθθ 2)

∂θθθ 2
[Cole et al., 2010]. The

following theorem explains how to detect whether the general D matrix is full rank.

Theorem 2.5. If the original model is full rank (i.e. D1(θθθ 1) is full rank) and D2(θθθ 2) is

full rank, then the extended model is full rank also. [Cole et al., 2010]

Thus, finding the rank of D is not necessary and calculating the rank of smaller and
simpler derivative matrices corresponding to smaller models are enough.
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2.3 Adaptation to log-linear models

Parameter redundancy is usually a characteristic of the model’s structure and does
not depend on data. Examples of such parameter redundant models from biology,
compartment models and ring-recovery data are given in Catchpole and Morgan [1997],
Catchpole et al. [1998] and Cole et al. [2010]. In practice, a full rank model may
turn into a parameter redundant one because of missing data or zero observations.
For example, Cole et al. [2010] describe such a model for capture-recapture data
and mention the interest to discover how much data could be missed before the model
becomes parameter redundant. This type of parameter redundancy is sometimes referred
to as “extrinsic” parameter redundancy [Gimenez et al., 2004]. To detect the effect of
a zero observation on identifiability of a model, exhaustive summaries or monotonic
functions of the variables expectations containing the observations could be used in
forming the derivative matrix [Cole et al., 2010]. Cole et al. [2012] use log-likelihood
function elements as exhaustive summaries to detect extrinsic parameter redundancy
for a mark-recovery model with some zero observations.

The log-likelihood function for independent Poisson observations in (1.7) is a strictly
concave function of cell means for positive µµµ . It is known that in a log-linear model
for a contingency table with all positive yi, maximum likelihood estimates exist for all
the model parameters [Haberman, 1973]. Nonetheless, in chapter 3 we will prove that
such a model is full rank and all of its parameters are estimable. For a log-linear model,
zero cell count observations may rise identifiability problem [Catchpole and Morgan,
2001]. We want to detect the effect of one or more zero cells in the contingency table
on estimability of the model parameters and indicate which parameters of the model or
which combinations of parameters are estimable.

To adapt the method described in Section 2.2 to detect the parameter redundancy of
a log-linear model as (1.5), the derivative matrix (2.1) must be adjusted first. In forming
the derivative matrix, some monotonic transformation of the cell means could be used
[Catchpole and Morgan, 1997]. Thus, instead of taking derivatives of cell means we
choose to use the monotonic function of them yi log µi, such that,

Dsi =
∂yi log µi

∂θs
, i = 1, . . . ,n, s = 1, . . . , p. (2.4)

These matrix elements are not functions of θθθ any more, as log µi is a first order linear
function of θθθ in a log-linear model. This also applies to the corresponding vector of
ααα(θθθ) in (2.2) which could be shown as ααα for a log-linear model.
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Including cell counts in the monotonic function of the cell means in equation (2.4)
allows us to investigate the effect of zero observations in the identifiability of the model.
Each sampling zero cell count turns a column of the matrix to zero and may decrease the
rank of the derivative matrix and the number of estimable parameters. Thus, the model
is parameter redundant only for a given data set not for any data set. The log-likelihood
function elements are usually another option to consider in forming the derivative matrix
as exhaustive summaries including the data [Cole et al., 2010]. However, for the Poisson
log-linear model those elements are yi log µi(θθθ)− µi(θθθ) as shown in (1.7), in which
setting yi = 0 would not decrease the rank of the derivative matrix. Furthermore, these
elements are not monotonic functions of cell means or model parameters and do not
uniquely define them. Catchpole and Morgan [1997, 2001] form the derivative matrix
for contingency table data from a multinomial log-linear model and denote the effect of
missing data on the redundancy of the model, which will be mentioned in Section 2.5.2.

Using information matrix instead of a derivative matrix is an alternative for detecting
parameter redundancy, as mentioned before in Section 2.2. However, by forming
the information matrix with the Poisson log-likelihood function elements which are
yi log µi(θθθ)−µi(θθθ), the presence of zero entries does not reduce the rank of the matrix.
If we consider yi log µi(θθθ) elements to form a Hessian matrix, the second derivatives
of the elements with respect to the model parameters are zero. So in this extrinsic
parameter redundant model, information matrix suffers from the same problem as the
standard derivative matrix constructed with log-likelihood function elements. Potential
use of the informations matrix and it’s correspondence to the derivative matrix for
detecting parameter redundancy in log-linear models with some zero observations needs
further investigation.

A log-linear model is full rank if the rank of the derivative matrix is not smaller than
the number of model parameters or p, otherwise, the model is parameter redundant.
When the model is full rank, it is always essentially full rank for the whole range
of parameters since the derivative matrix does not include parameters. For a square
and full rank derivative matrix (which can be formed as upper triangular), the PLUR
decomposition in Theorem 2.3 provides the upper triangular matrix U equal to the
derivative matrix. Thus, when the determinant of U is zero it does not depend on the
parameter values and the model is essentially full rank. After calculating ααα in (2.2) and
solving the partial differential equations in (2.3), finding all estimable parameters (θθθ )
and estimable combinations of parameters declares which cell means (µµµ) are estimable.
Some cell means with corresponding zero observations might not be expressible in
terms of the estimable parameters, so they are referred to as inestimable cell means.
The estimate for these cell means could be considered as zero, then we treat them as
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structural zeros and remove them from the model. Nonetheless, some cells with zero
entries might have positive estimable cell means. Obtaining the vector of the estimable
parameters and combinations of them (θθθ ′) and the vector of estimable cell means (µµµ ′)

lead to a new and smaller design matrix (A′). The reduced model is built by using these
vectors and matrix as log µµµ ′ = A′θθθ ′.

After finding the estimable set of parameters and reducing the model to a smaller
model with rank r, the degree of freedom for the new model is the number of usable data
(i.e. observations with corresponding estimable cell means) minus r (i.e. the number of
estimable parameters).

Discovering the set of estimable parameters in the log-linear model makes the
process of model selection easier, since checking all of the model parameters is not
required and one can consider only the smaller set of estimable parameters in the search
for the best model. In other words, only the set of non-redundant models is searched to
obtain the best fit. We use an example to illustrate this process in Chapter 5.

In the next sections of this chapter, examples of fitting log-linear models to relatively
small contingency tables will be investigated. We examine the effect of zero observations
on estimates of the model parameters and indicate the maximum number of zeros a
table could contain before the parameter redundancy issue rises.

2.4 Examples in 22 contingency tables

We begin fitting log-linear models to contingency tables containing zero observations
by considering a small 2×2 table. A saturated model will be fitted to the table data
to observe the maximum number of zero cells that the table could contain before
parameter redundancy occurs. We consider a numerical example first to see what
parameter estimates are provided by a standard statistical software like R for a parameter
redundant model. Then the parameter redundancy in the model is studied in a symbolic
and general way.

2.4.1 Numerical example for a saturated log-linear model

Assume two categorical variables X and Y , with two levels 0 and 1 for each variable,
and observations vector of yT = (y1,y2,y3,y4) as shown in Table 2.1. The cell counts
are ordered according to equation (1.6).
The aim is to fit a saturated model to the table data. According to equation (1.5), we
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X
Y

0 1
0 y1 y3
1 y2 y4

Table 2.1 A 22 contingency table.

have V = {X ,Y},m = 2 and l1 = l2 = 2, so the saturated log-linear model is,

m1 = log µ1 = log µ00 = θ , (2.5)

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y +θ
XY ,

and the vector of parameters is θθθ
T = (θ ,θ X ,θY ,θ XY ) with p = 4. There are two

levels for each variable, so for example, we have θ X
0 and θ X

1 . Due to the use of corner
point constraints, θ X

0 is set equal to zero and as there remains only one corresponding
parameter θ X

1 , it is denoted by θ X . The model in matrix form log µµµ = Aθθθ is:
log µ00

log µ01

log µ10

log µ11

=


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1




θ

θ X

θY

θ XY

 .

As a numerical example, we adopt Table 2.2 from Agresti [2002] which refers to a
1992 survey by the Wright State University School of Medicine and the United Health
Services in Dayton, Ohio. The survey asked 2276 students in their final year of high
school in a non-urban area whether they had ever used alcohol, cigarettes, or marijuana.
This 2× 2 table is only one part of the original table and it represents cigarette and
marijuana use for those students who have ever used alcohol.

Cigarette (X)
Marijuana (Y )

No (0) Yes (1)
No (0) 456 44
Yes (1) 538 911

Table 2.2 Cigarette and marijuana use for high school seniors.
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We make use of the glm function in R to fit model (2.5) to this table’s data. R code
is provided in Appendix A. The output including parameter’s estimates and standard
errors is,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.12249 0.04683 130.741 < 2e-16 ***

A2 0.16537 0.06365 2.598 0.00938 **

A3 -2.33830 0.15786 -14.812 < 2e-16 ***

A4 2.86499 0.16696 17.159 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

So θ̂θθ
T
= (6.12,0.16,−2.33,2.86), and subsequently µ̂µµ

T = (456,538,44,911) since
the model is saturated.

Now one cell at a time is set equal to zero to observe how parameter estimates are
changed.

Case I. If y4 = y11 = 0, the estimates and standard errors are given as:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.122e+00 4.683e-02 130.741 < 2e-16 ***

A2 1.654e-01 6.365e-02 2.598 0.00938 **

A3 -2.338e+00 1.579e-01 -14.812 < 2e-16 ***

A4 -2.625e+01 4.225e+04 -0.001 0.99950

The standard error for the fourth parameter or θ XY is a large number com-
pared to the estimates and the standard errors for the other parameter esti-
mates, which makes the corresponding parameter estimate unreliable.

Case II. If y3 = y01 = 0, the estimates and standard errors are given as:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.122e+00 4.683e-02 130.741 < 2e-16 ***

A2 1.654e-01 6.365e-02 2.598 0.00938 **

A3 -2.843e+01 4.225e+04 -0.001 0.99946

A4 2.895e+01 4.225e+04 0.001 0.99945

The standard errors for the third and the fourth parameters or θY and θ XY are
equal and large, so the corresponding parameter estimates are questionable.

Case III. If y2 = y10 = 0, the estimates and standard errors are given as:
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.122e+00 4.683e-02 130.741 <2e-16 ***

A2 -2.843e+01 4.225e+04 -0.001 0.999

A3 -2.338e+00 1.579e-01 -14.812 <2e-16 ***

A4 3.146e+01 4.225e+04 0.001 0.999

The standard errors for the second and the fourth parameters or θ X and θ XY

are equal and large, so the corresponding parameter estimates are question-
able.

Case IV. And finally if y1 = y00 = 0, the estimates and standard errors are given as,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 -22.30 42247.17 -0.001 1.000

A2 28.59 42247.17 0.001 0.999

A3 26.09 42247.17 0.001 1.000

A4 -25.56 42247.17 -0.001 1.000

The standard errors for all parameters are the same and large, so the parameter
estimates are not reliable.

In each case, we lose some information by having a zero cell count. The number of
parameters which should be estimated is four but the number of non-zero cell counts
is three. So R cannot estimate all parameters properly and, for some of them, reports
numbers with large standard errors instead. It can suggest that these parameters are
not directly estimable. It seems that only one zero cell count is enough to make this
saturated log-linear model non-identifiable. To get a more clear sense of parameters
behaviour in the presence of one zero observation, we utilise WinBUGS to estimate
parameters one more time.

WinBUGS is a computer package for implementing Bayesian analyses and only the
likelihood model and prior distributions need to be specified. The Markov chain Monte
Carlo (MCMC) iterations are then performed and posterior summary statistics are
produced in addition to some other useful plots and statistics. The purpose of applying
the Bayesian approach here is to see if the existence of some prior information on
the parameters could turn an inestimable parameter to an estimable one. Although
the concept of identifiability in the Bayesian framework is different with the one in
classical statistics [Almond, et al., 2015, Rao and Dey, 2005], we do not discuss these
in any detail here. Our aim is only to obtain parameter estimates with this alternative
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method rather than the maximum likelihood estimation. The corresponding WinBUGS

code is given in Appendix A. For our example, the prior distribution for θθθ parameters
is assumed as a flat Normal distribution with zero mean and a large variance, i.e.
N(0,10000) which is an uninformative prior. Three chains are used in the process and
the initial values for each parameter in each chain are 0, 10 and -10. The code is run for
100000 iterations and we eliminate the first 30000 iterations as burn-in. Corresponding
trace plots and marginal density plots are provided in Appendix B. The trace plots show
how iterations converge to the estimated values for three implied chains. The density
plots demonstrate the marginal posterior density of the parameters.

We consider Table 2.2 without any zero cells first. In Figures B.1 and B.2, the
trace plots indicate an acceptable convergence to the estimates and marginal density
plots show normal posterior distributions for the parameters and they are unimodal with
modes at the estimates. The parameters estimates and some other statistics are given
below. The posterior means and posterior standard deviations are almost the same as
estimates and standard errors achieved by R.

node mean sd MC error 2.5% median 97.5%
theta[1] 6.121 0.0467 3.314E-4 6.029 6.122 6.212
theta[2] 0.165 0.0636 4.847E-4 0.0407 0.1654 0.2897
theta[3] -2.347 0.1583 0.002225 -2.664 -2.343 -2.047
theta[4] 2.874 0.1673 0.002367 2.555 2.871 3.209

Now one cell at a time is set to be equal to zero and we use WinBUGS to check the
estimates and the convergence behaviour of parameters in the saturated model.

Case I. If y4 = y11 = 0, the estimates and standard errors are given below. The
estimated posterior mean for parameter θ XY is a number with a big posterior
standard deviation compared to the standard deviations for the other esti-
mates. In Figures B.3 and B.4, the trace plot for this parameter does not
converge around a specific value and the location of mode in the marginal
density plot of the parameter is not exact.

node mean sd MC error 2.5% median 97.5%
theta[1] 6.121 0.04693 2.082E-4 6.028 6.122 6.213
theta[2] 0.1657 0.06375 2.749E-4 0.04105 0.1655 0.2906
theta[3] -2.349 0.1588 4.327E-4 -2.671 -2.346 -2.048
theta[4] -82.77 59.42 0.1374 -225.5 -70.5 -7.541

Case II. If y3 = y01 = 0, the estimates and standard errors are given below. The
estimates for parameters θY and θ XY are numbers with relatively big standard
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deviations. In Figures B.5 and B.6, the three chains in the trace plots for
these parameters do not converge around specific values and the marginal
density plots are not unimodal.

node mean sd MC error 2.5% median 97.5%
theta[1] 6.121 0.04653 2.643E-4 6.029 6.122 6.211
theta[2] 0.1656 0.06347 4.014E-4 0.0415 0.1653 0.29
theta[3] -12.74 4.322 0.1532 -23.56 -11.78 -6.573
theta[4] 13.26 4.322 0.1532 7.1 12.31 24.08

Case III. If y2 = y10 = 0, the estimates and standard errors are given below. The
estimates for parameters θ X and θ XY are numbers with relatively big standard
deviations. In Figures B.7 and B.8, the three chains in the trace plots for
these parameters do not converge around specific values and the marginal
density plots are not unimodal .

node mean sd MC error 2.5% median 97.5%
theta[1] 6.122 0.04693 2.979E-4 6.028 6.122 6.213
theta[2] -11.56 4.687 0.1662 -20.94 -9.599 -5.914
theta[3] -2.352 0.1583 0.002211 -2.669 -2.35 -2.048
theta[4] 14.6 4.689 0.1662 8.949 12.65 23.96

Case IV. If y1 = y00 = 0, the estimates and standard errors are given below. The
estimates for all parameters are numbers with relatively big standard devia-
tions. In Figures B.9 and B.10, the three chains in the trace plots for these
parameters do not converge around specific values and the marginal density
plots are not unimodal .

node mean sd MC error 2.5% median 97.5%
theta[1] -4.373 2.615 0.09263 -9.081 -4.407 -0.01017
theta[2] 10.66 2.615 0.09262 6.298 10.7 15.36
theta[3] 8.144 2.615 0.09259 3.775 8.198 12.85
theta[4] -7.617 2.615 0.09259 -12.33 -7.671 -3.245

These results from WinBUGS are consistent with those derived by R for parameters
which do not have large standard estimation errors. If we make the prior distribution
informative by decreasing the variance of the Normal distribution, the standard deviation
for those parameters which had large standard deviations will be decreased too. So,
with a precise informative prior for inestimable parameters, and considering the fact
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that there is no corresponding data to affect that prior, then the posterior estimate is
reliable. However, adequate Bayesian learning is of concern here [Lee, 2011]. Brooks
et al. [2000] investigate the effect of improving the prior distributions in estimating
the parameters in recovery and recapture models. They show that Bayesian estimates
could be quite precise when unique maximum likelihood estimations do not exist but
the location of the flat ridge in the likelihood function is known.

The next section applies the method described in Section 2.3 to symbolically identify
the inestimable parameters in the assumed model in the presence of zero cell counts.
We also detect the estimable parameters and the estimable combinations of parameters
afterwards.

2.4.2 Symbolic method for a saturated log-linear model

Consider M(θθθ), the function that specifies model (2.5), as,

M1(θθθ) = log µ00 = θ ,

M2(θθθ) = log µ10 = θ +θ
X ,

M3(θθθ) = log µ01 = θ +θ
Y ,

M4(θθθ) = log µ11 = θ +θ
X +θ

Y +θ
XY .

According to Definition 2.1, this model is globally identifiable because two different set
of parameters cannot produce the same model and it is true for all values of θθθ .

The derivative matrix (2.4) for model (2.5) is,

D =

[
∂yi log µi

∂θs

]
=

 y1 y2 y3 y4
0 y2 0 y4
0 0 y3 y4
0 0 0 y4

, i = 1,2,3,4, s = 1,2,3,4. (2.6)

If none of the cell counts are zero, then this matrix is full rank with rank r = 4 and
model deficiency d = 0, so there does not exist an ααα such as defined in (2.2). This
means all model parameters, θθθ , and subsequently all cell means, µµµ , are estimable.

To investigate the effect of zero cells, we assume one cell count is zero at a time and
then check the parameter redundancy for the model.

Case I. If y4 = y11 = 0, the fourth column in the derivative matrix turns to zero and
the rank of the matrix decreases to r = 3 which is smaller than the number of
the model parameters. The model deficiency d = p−r = 4−3 = 1 indicates
there exist one ααα as defined in (2.2), which is αααT = (α11,α21,α31,α41) =
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(0,0,0,α41). Note that the last element of the vector could be any non-
zero value or any function of the parameters, for simplification purpose we
consider it as αααT = (0,0,0,1). The three zero elements represent the three
estimable parameters. Thus, the smaller set of the estimable parameters is
θθθ

′T = (θ ,θ X ,θY ). This denotes that in model (2.5), only the first three cell
means are estimable and log µ11 is not estimable because it is not defined
by a combination of parameters in θθθ

′. y11 = 0 is treated as a structural zero
now and is removed from the model. The reduced full rank model with rank
3 and degree of freedom of d. f = 3−3 = 0 is,

m1 = log µ1 = log µ00 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ +θ
Y .

We fit this reduced model to the data in Table 2.2, assuming y11 = 0. The
data vector for the reduced model is yT = (456,538,44) and the parameter
estimates corresponding to θθθ

′ are,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.12249 0.04683 130.741 < 2e-16 ***

A2 0.16537 0.06365 2.598 0.00938 **

A3 -2.33830 0.15786 -14.812 < 2e-16 ***

---

predictions:

1 2 3

456 538 44

Case II. If y3 = y01 = 0, the third column in the derivative matrix turns to zero and
the rank of the matrix decreases to r = 3 which is smaller than the number
of the model parameters. The model deficiency is d = p− r = 4− 3 = 1
and αααT = (0,0,1,−1). Again the elements 1 and -1 of the vector could be
any non-zero value or function of the parameters. The two zero elements
of the vector represent two parameters which are directly estimable, i.e.
θ ,θ X . Because the rank of the matrix is three, there must exist one more
estimable parameter. In order to find that one, we refer to Theorem 2.2. The
corresponding partial differential equation (PDE) in (2.3) is,

4

∑
s=1

αs1
∂ f
∂θs

= 0+0+
∂ f

∂θY − ∂ f
∂θ XY = 0.
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The solution for this PDE is, f = θY +θ XY , which is the third estimable
parameter. Thus, the smaller set of the estimable parameters is θθθ

′T =

(θ ,θ X ,θY + θ XY ). This denotes as θY is not estimable in model (2.5),
log µ01 is not estimable either. y01 = 0 is treated as a structural zero now
because its corresponding model equation cannot be written by combinations
of estimable parameters in θθθ

′. The reduced full rank model with rank 3 and
degree of freedom of d. f = 3−3 = 0 is,

m1 = log µ1 = log µ00 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y +θ
XY .

With the data vector yT = (456,538,911), the parameter estimates corre-
sponding to θθθ

′ are,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.12249 0.04683 130.741 < 2e-16 ***

A2 0.16537 0.06365 2.598 0.00938 **

A3 0.69205 0.05736 12.064 < 2e-16 ***

---

Predictions:

1 2 3

456 538 911

Case III. If y2 = y10 = 0, we follow the same procedure again. The second column in
the derivative matrix turns to zero and the rank of the matrix decreases to
r = 3. The model deficiency is d = p−r = 4−3 = 1 and αααT = (0,1,0,−1).
The two zero elements of the vector represent two parameters which are
directly estimable, i.e. θ ,θY . Solving the corresponding partial differential
equation in (2.3) gives us the third estimable parameter,

4

∑
s=1

αs1
∂ f
∂θs

= 0+
∂ f

∂θ X +0− ∂ f
∂θ XY = 0.

The solution for this PDE is f = θ X + θ XY . Thus, the smaller set of the
estimable parameters is θθθ

′T = (θ ,θ X +θ XY ,θY ). This denotes as θ X is not
estimable in model (2.5), log µ10 is not estimable either. y10 = 0 is treated as
a structural zero now. The reduced full rank model with rank 3 and degree
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of freedom of d. f = 3−3 = 0 is,

m1 = log µ1 = log µ00 = θ ,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y +θ
XY .

With the data vector yT = (456,44,911), the parameter estimates corre-
sponding to θθθ

′ are,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.12249 0.04683 130.74 <2e-16 ***

A2 3.03035 0.15435 19.63 <2e-16 ***

A3 -2.33830 0.15786 -14.81 <2e-16 ***

---

predictions:

1 2 3

456 44 911

Case IV. If y1 = y00 = 0, we follow the same procedure but the result is a bit different.
The first column in the derivative matrix turns to zero and the rank of the
matrix decreases to r = 3. The model deficiency is d = p− r = 4−3 = 1
and αααT = (1,−1,−1,1). There are no zero elements in the vector which
denotes none of the parameters are directly estimable. As the model rank is
3, we must find three estimable combinations of parameters by solving the
corresponding PDE in (2.3) which is,

4

∑
s=1

αs1
∂ f
∂θs

=
∂ f
∂θ

− ∂ f
∂θ X − ∂ f

∂θY +
∂ f

∂θ XY = 0.

The minimal linearly independent set of solutions for this PDE is,

f = θ +θ
X ,θ +θ

Y ,θ −θ
XY ,

thus the smaller set of the estimable parameters is,

θθθ
′T = (θ +θ

X ,θ +θ
Y ,θ −θ

XY ).

y00 contributes to estimate θ whose estimate goes to minus infinity here,
thus other parameters are not estimable either because all cell means are
functions including θ . We are not able to define and estimate log µ00 by
using this set of estimable combinations of parameters. So, y00 = 0 is treated
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as a structural zero now. The reduced full rank model with rank 3 and degree
of freedom of d. f = 3−3 = 0 is,

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y +θ
XY .

In the matrix form it is shown as, log µ10
log µ01
log µ11

=

 1 0 0
0 1 0
1 1 1

 θ +θ X

θ +θY

θ −θ XY

 .

With the data vector yT = (538,44,911) the parameter estimates correspond-
ing to θθθ

′ are,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.28786 0.04311 145.85 <2e-16 ***

A2 3.78419 0.15076 25.10 <2e-16 ***

A3 -3.25751 0.16026 -20.33 <2e-16 ***

---

predictions:

1 2 3

538 44 911

More than one zero observation

The method described in Sections 2.2 and 2.3 is applicable for any number of zero
observations in the contingency table. As an example, we consider fitting model (2.5)
to Table 2.1, assuming two cells y01 and y11 are zero. Then all elements in third and
fourth columns of the derivative matrix (2.6) become zero, and we have,

r = 2, d = p− r = 4−2 = 2, α
T = (0,0,1,1), θθθ

′T = (θ ,θ X).

As only θ and θ X are estimable, log µ01 and log µ11 cannot be defined using the
estimable parameters. y01 = 0 and y11 = 0 are treated as structural zeros now. The
reduced full rank model with rank 2 and degree of freedom of d. f = 2−2 = 0 is,

m1 = log µ1 = log µ10 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X .
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2.5 Alternative specifications

In defining the general log-linear model (1.5), we specified the model as a Poisson
log-linear model with corner point constraints on the model parameters. In this section,
we briefly consider some alternative specifications. Sum to zero constraints and a
multinomial distribution as the sampling distribution are applied to the small model
(2.5) which was used before. We also look at the corresponding independence model
for Table 2.1, as an example of an unsaturated model and illustrate an example of a
non-hierarchical model.

2.5.1 Sum to zero constraints

In this section, we fit a saturated log-linear model to the 2×2 Table 2.1, adopting sum
to zero constraints instead of corner point constraints. A sum to zero constraint does
not set any level of the parameters equal to zero but assumes that the summation of
parameters over each index equals to zero. Therefore, for this example with two existent
levels for each variable, the Poisson log-linear model with sum to zero constraints is,

m1 = log µ1 = log µ00 = β +β
X
0 +β

Y
0 +β

XY
00 ,

m2 = log µ2 = log µ10 = β +β
X
1 +β

Y
0 +β

XY
10 ,

m3 = log µ3 = log µ01 = β +β
X
0 +β

Y
1 +β

XY
01 ,

m4 = log µ4 = log µ11 = β +β
X
1 +β

Y
1 +β

XY
11 .

The model parameters vector is θθθ
T = (β ,β X

0 ,βY
0 ,β

XY
00 ,β X

1 ,β XY
10 ,βY

1 ,β
XY
01 ,β XY

11 ). The
parameters are shown as β to emphasize the fact that they are different to those in model
(2.5). For example, the interpretation of the intercept β here is not the same as θ in the
model (2.5). The sum to zero constraints imply that,

1

∑
i=0

β
X
i =0 → β

X
1 =−β

X
0 ,

1

∑
j=0

β
X
j =0 → β

Y
1 =−β

Y
0 ,

1

∑
i=0

β
XY
i j =0 → β

XY
10 =−β

XY
00 , β

XY
11 =−β

XY
01 ,

1

∑
j=0

β
XY
i j =0 → β

XY
01 =−β

XY
00 , β

XY
11 =−β

XY
10 , β

XY
00 = β

XY
11 .
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So the log-linear model equations could also be defined by only four parameters in the
parameter vector θθθ

T = (β ,β X
0 ,βY

0 ,β
XY
00 ), as,

m1 = log µ1 = log µ00 = β +β
X
0 +β

Y
0 +β

XY
00 , (2.7)

m2 = log µ2 = log µ10 = β −β
X
0 +β

Y
0 −β

XY
00 ,

m3 = log µ3 = log µ01 = β +β
X
0 −β

Y
0 −β

XY
00 ,

m4 = log µ4 = log µ11 = β −β
X
0 −β

Y
0 +β

XY
00 .

The parameter estimates for fitting this model to the data in Table 2.2 are obtained
as:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 5.75227 0.04174 137.81 <2e-16 ***

A2 -0.79893 0.04174 -19.14 <2e-16 ***

A3 0.45290 0.04174 10.85 <2e-16 ***

A4 0.71625 0.04174 17.16 <2e-16 ***

These estimates are different with the previous ones in the model (2.5), because as
mentioned before, the parameter interpretations in these two models are different.
However, there is an obvious relation between them as,

β +β
X
0 +β

Y
0 +β

XY
00 =θ ,

β −β
X
0 +β

Y
0 −β

XY
00 =θ +θ

X ,

β +β
X
0 −β

Y
0 −β

XY
00 =θ +θ

Y ,

β −β
X
0 −β

Y
0 +β

XY
00 =θ +θ

X +θ
Y +θ

XY .

The equations hold in the numerical example. For example, the first equation implies
that,

5.7522710−0.7989298+0.4529047+0.7162469 = 6.12249.

The presence of zero observations

The effect of the presence of zero observations in model (2.7) is a bit different with the
one in model (2.5), because of the relation between each cell mean of the model with
all the four parameters in θθθ . To observe the difference, assume y2 = y10 = 0 in Table
2.2. Then the parameter estimates are reported as:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 -1.395 10561.791 0.000 1.000
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A2 6.349 10561.791 0.001 1.000

A3 -6.695 10561.791 -0.001 0.999

A4 7.864 10561.791 0.001 0.999

Standard errors for all estimates are equal large numbers indicating that estimates are
not reliable. In the symbolic way, the derivative matrix (2.4) is represented now as,

D =

[
∂yi log µi

∂θs

]
=

 y1 y2 y3 y4
y1 −y2 y3 −y4
y1 y2 −y3 −y4
y1 −y2 −y3 y4

 i = 1,2,3,4, s = 1,2,3,4. (2.8)

After setting the second column to zero, we have αααT= (−1,1,−1,1), which reveals that
none of the parameters are directly estimable. The rank of this matrix is 3, so there must
be three estimable combinations of parameters. They are β +β X

0 ,−β +βY
0 ,β +β XY

00 ,
derived by solving the corresponding partial differential equations in (2.3). By setting
any of the cell counts equal to zero there are three estimable combinations of parameters,
unlike model (2.5) in which some of the model parameters in the initial vector of
parameters θθθ could be directly estimable. Hence, we retain corner point constraints as
they provide an easier version in defining the model.

2.5.2 Multinomial sampling distribution

It is well known that fitting a log-linear model to a contingency table data produces
identical inferences whether Poisson or multinomial sampling distributions are consid-
ered. Haberman [1973] proved in a theorem that if µ̂µµ

m is the MLE of cell means for a
multinomial model and µ̂µµ is their MLE for a Poisson model, then µ̂µµ

m = µ̂µµ .
Suppose the sum of the cell counts in Table 2.1 is fixed as N. Then the data vector

is from a multinomial distribution as defined in (1.2),

P

(
Y1 = y1,Y2 = y2,Y3 = y3,Y4 = y4 |

4

∑
i=1

yi = N

)
=

N!

∏
4
i=1 yi!

4

∏
i=1

π
yi
i .

Only three parameters are free to estimate since ∑i πi = 1. For this distribution, cell
means are,

µi = Nπi, πi =
µi

∑i µi
,

and for a saturated model π̂i = pi =
yi
N . The log-likelihood function for this multinomial

distribution is,

l(µµµ(θθθ)) =
4

∑
i=1

yi log
µi

∑i µi
.
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A multinomial log-linear model is structured using πi rather that µi. For model (2.5),
cell probabilities are as follows and the model intercept cancels out.

π1 = π00 =
eθ

eθ+θ X+θY+θ XY
+ eθ+θ X

+ eθ+θY
+ eθ

=
1

eθ X+θY+θ XY
+ eθ X

+ eθY
+1

,

π2 = π10 =
eθ+θ X

eθ+θ X+θY+θ XY
+ eθ+θ X

+ eθ+θY
+ eθ

=
eθ X

eθ X+θY+θ XY
+ eθ X

+ eθY
+1

,

π3 = π01 =
eθ+θY

eθ+θ X+θY+θ XY
+ eθ+θ X

+ eθ+θY
+ eθ

=
eθY

eθ X+θY+θ XY
+ eθ X

+ eθY
+1

,

π4 = π11 =
eθ+θ X+θY+θ XY

eθ+θ X+θY+θ XY
+ eθ+θ X

+ eθ+θY
+ eθ

=
eθ X+θY+θ XY

eθ X+θY+θ XY
+ eθ X

+ eθY
+1

.

These elements could be simplified by dividing each cell probability or cell mean
over a non-zero probability or cell mean. Here dividing by µ1 makes the equations
simpler,

log
π1

π1
= log

µ1

µ1
= log

eθ

eθ
= log1 = 0,

log
π2

π1
= log

µ2

µ1
= log

eθ+θ X

eθ
= logeθ X

= θ
X ,

log
π3

π1
= log

µ3

µ1
= log

eθ+θY

eθ
= logeθY

= θ
Y ,

log
π4

π1
= log

µ4

µ1
= log

eθ+θ X+θY+θ XY

eθ
= logeθ X+θY+θ XY

= θ
X +θ

Y +θ
XY .

Any monotonic function of cell means could be used to form the derivative matrix.

Catchpole and Morgan [2001] form the derivative matrix as Dsi(θθθ) =
∂ logπi

∂θs
. The

score vector, shown by U(θθθ), is U(θθθ) =

(
∂ l

∂θ1
, ...,

∂ l
∂θp

)T

= D(θθθ)y which implies that

the effect of a zero cell count is equivalent to setting the corresponding column of D to
zero. To make the derivative matrix, we choose the monotonic function of the cell means
as yi log

µi

µ1
to keep the derivative matrix similar to the one from the Poisson model and

also illustrate the fact that the intercept cancels out from a multinomial log-linear model.
Then the derivative matrix (2.4), for parameter vector θθθ

T = (θ X ,θY ,θ XY ) is,

D =

[
∂yi log(µi/µ1)

∂θs

]
=

 y2 0 y4
0 y3 y4
0 0 y4

, i = 2,3,4, s = 1,2,3.
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The rank of this derivative matrix is 3 which is equal to the number of parameters,
so all those three parameters are estimable when none of the cell counts is zero. y1 does
not exist in this matrix and it must not be zero as we have divided all cell probabilities
over the first cell’s probability. If one cell count is observed as zero, for example y2 = 0,
then the rank of the derivative matrix is decreased to 2 and the deficiency is 1. Then,
αααT = (α11,α21,α31) = (α11,0,−α11) which we write it as αααT = (1,0,−1). Thus the
estimable parameters are θY and θ X +θ XY . If y3 = 0, then the rank of the derivative
matrix is 2, the deficiency is 1 and we have αααT = (0,1,−1). Thus the estimable
parameters are θ X and θY +θ XY . If y4 = 0, then the rank of the derivative matrix is
2, the deficiency is 1 and we have αααT = (0,0,1). So the estimable parameters are θ X

and θY . After considering the fact that there is not an intercept parameter in this model,
these results match the ones from a Poisson model.

Wang et al. [2016] imply the following way to discover estimable and inestimable
parameters in fitting a multinomial saturated log-linear model to the data in Table 2.1,
including zero observations. By rearranging model (2.5), we can write,

θ = log µ00,

θ
X = log

µ10

µ00
,

θ
Y = log

µ01

µ00
,

θ
XY = log

µ11µ00

µ01µ10
.

If we assume that the model includes an intercept and consider the data vector yT =

(0,y10,y01,y11), then defining the model based on π̂i = pi =
yi

N
gives the parameters

estimates as,

θ̂ = log p00 →−∞,

θ̂
X = log

p10

p00
→+∞,

θ̂
Y = log

p01

p00
→+∞,

θ̂
XY = log

p11 p00

p01 p10
→−∞,

indicating none of them is directly estimable. However, θ̂ + θ̂ X = log p10 = log
y10

N
converges to a finite value, so do θ̂ + θ̂Y = log p10 and θ̂ − θ̂ XY = log

p10 p01

p11
which

are the three estimable combinations of parameters in this example (the result holds for
a Poisson log-linear model; for a multinomial model without an intercept it actually
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means that non of the parameters in θθθ are estimable). The approach could be considered
for having different zero cell counts as well, but it gets difficult to detect the estimable
combinations of parameters for larger models.

2.5.3 Independence model

Here the parameter redundancy method is extended to an unsaturated log-linear model.
The procedure, which includes defining the model, building the derivative matrix,
finding ααα vector and solving the differential equations remains the same despite of the
type of the model.

An independence log-linear model is fitted to Table 2.1 here as an example of an
unsaturated model. The saturated model (2.5) is altered to the following model which
does not contain a parameter describing the interaction of the two variables,

m1 = log µ1 = log µ00 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y .

The derivative matrix (2.4) for parameter vector θθθ
T = (θ ,θ X ,θY ) is,

D =

[
∂yi log µi

∂θs

]
=

 y1 y2 y3 y4
0 y2 0 y4
0 0 y3 y4

, i = 1,2,3,4, s = 1,2,3.

The rank of this derivative matrix is 3 which is equal to the number of parameters
(the smaller dimension of the matrix), so when none of the cell counts is zero, the model
is full rank and all three parameters are estimable. If any of the four cell counts are
zero, the rank of the matrix remains three indicating this independence model for a
2×2 table is identifiable and full rank in the presence of one zero observation. Now
we investigate the effect of having two zero cells in the table. There are six different
combinations for two zero cell counts:

Case I. If y1 = y2 = 0, then r = 2, d = 1, αααT = (1,0,−1) and θθθ
′T = (θ X ,θ +θY ).

Case II. If y1 = y3 = 0, then r = 2, d = 1, αααT = (1,−1,0) and θθθ
′T = (θ +θ X ,θY ).

Case III. If y1 = y4 = 0, then r = 2, d = 1, αααT = (1,−1,−1) and θθθ
′T = (θ +θ X ,θ +

θY ).

Case IV. If y2 = y3 = 0, then r = 2, d = 1, αααT = (0,1,−1) and θθθ
′T = (θ ,θ X +θY ).
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Case V. If y2 = y4 = 0, then r = 2, d = 1, αααT = (0,1,0) and θθθ
′T = (θ ,θY ).

Case VI. If y3 = y4 = 0, then r = 2, d = 1, αααT = (0,0,1) and θθθ
′T = (θ ,θ X).

As a numerical example, we fit the independence model to the data in Table 2.2.
The parameter estimates for the model and cell mean predictions, without any zero
observations in the table, are:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 5.54127 0.04993 110.983 <2e-16 ***

A2 1.06402 0.05187 20.515 <2e-16 ***

A3 -0.04003 0.04531 -0.883 0.377

---

predictions:

1 2 3 4

255.0026 738.9974 244.9974 710.0026

If one cell count is zero, for example, the first one y1 = 0, estimates for all three
parameters are given with reasonable standard errors although the estimates are not the
same as the previous ones.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 2.76351 0.15465 17.87 <2e-16 ***

A2 3.49444 0.15303 22.84 <2e-16 ***

A3 0.57385 0.05391 10.64 <2e-16 ***

---

predictions:

1 2 3 4

15.85532 522.14468 28.14468 926.85532

By setting more than one cell equal to zero, the large standard errors for some parameter
estimates emerge. For example, if y1 = y2 = 0, then the parameter estimates are:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 -25.8194 52624.4897 0.000 1

A2 3.0304 0.1544 19.633 <2e-16 ***

A3 29.6036 52624.4897 0.001 1

As mentioned before, the estimable set of parameters in this case is θθθ
′T = (θ X ,θ +

θY ). Defining and estimating log µ00 and log µ10 are not possible with only these two
estimable parameters . The two cells with zero observations, y00 = 0 and y10 are treated
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as structural zeros now. The reduced full rank model with rank 2 and degree of freedom
of d. f = 2−2 = 0 is,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y .

With the data vector yT = (44,911), the parameter estimates are:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 3.0304 0.1544 19.63 <2e-16 ***

A2 3.7842 0.1508 25.10 <2e-16 ***

---

prediction:

1 2

44 911

The next combination of zero cells create a different situation. If the two zero cell
counts are y1 = y4 = 0, the parameter estimates are:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 3.7056 0.1512 24.50 <2e-16 ***

A2 2.5037 0.1568 15.97 <2e-16 ***

A3 -2.5037 0.1568 -15.97 <2e-16 ***

Large standard errors are not observed here, although we obtained the estimable set
of parameters as θθθ

′T = (θ +θ X ,θ +θY ) which suggests log µ00 and log µ11 are ines-
timable. So the model is parameter redundant but the numerical routine has computed
the maximum likelihood estimates of the parameters. In Section 2.7, we explain the
reason of this occurrence and discuss these kind of models in detail in Chapter 4.

2.5.4 Non-hierarchical models

The parameter redundancy approach is not limited to the hierarchical models. Assume
the following non-hierarchical model is fitted to the contingency table 2.1.

m1 = log µ1 = log µ00 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ

m4 = log µ4 = log µ11 = θ +θ
X +θ

XY .
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The derivative matrix (2.4) for parameter vector θθθ
T = (θ ,θ X ,θ XY ) is,

D =

[
∂yi log µi

∂θs

]
=

 y1 y2 y3 y4
0 y2 0 y4
0 0 0 y4

, i = 1,2,3,4, s = 1,2,3.

The rank of the matrix is 3 for all positive cell counts. One zero cell may or may
not reduce the rank as:

Case I. If y1 = 0, then r = 3, d = 0.

Case II. If y2 = 0, then r = 2, d = 1, αααT = (0,1,−1) and θθθ
′T = (θ ,θ X +θ XY ).

Case III. If y3 = 0, then r = 3, d = 0.

Case IV. If y4 = 0, then r = 2, d = 1, αααT = (0,0,1) and θθθ
′T = (θ ,θ X).

As a numerical example, this model is fitted to the data in Table 2.2. The parameter
estimates for the model and cell mean predictions, without any zero observations in the
table, are:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

x1 5.52146 0.04472 123.464 <2e-16 ***

x2 0.76640 0.06212 12.338 <2e-16 ***

x3 0.52668 0.05437 9.686 <2e-16 ***

---

predictions:

1 2 3 4

250 538 250 911

Assume y2 = 0. Then the estimates for some of the parameters have large standard
errors.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

x1 5.52146 0.04472 123.464 <2e-16 ***

x2 -19.82405 773.78384 -0.026 0.980

x3 21.11713 773.78383 0.027 0.978

---

predictions:

1 2 3 4

2.500000e+02 6.144212e-07 2.500000e+02 9.110000e+02
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2.6 Example in a 33 contingency table

A larger contingency table is considered now and an unsaturated model is fitted to the
data as an example for a parameter redundant model. In the previous examples, if the
model was parameter redundant, then the zero cell counts were treated as structural
zeros since their means were not estimable according to the estimable parameters of
the model. Nonetheless, it is quite possible that one or some cells with sampling zero
observations have estimable cell means as a result of having corresponding estimable
parameters. In this case, those cells are kept in the model as well, we fit a reduced
non-saturated model with a positive degree of freedom and estimate the cell means for
all estimable cells of the table.

Table 2.3 is an example taken from Fienberg and Rinaldo [2012a] with three
variables X (rows), Y (columns), Z (layers) and three levels (0,1,2) for each variable.
Eight cell counts are observed as sampling zeros and the other cell counts are assumed
to be positive values from the Poisson distribution. Cell counts are ordered inside the
table according to equation (1.6).

0 y4 y7
0 y5 y8
y3 y6 y9

y10 y13 y16
y11 y14 0
y12 0 0

0 y22 0
0 y23 y26

y21 y24 y27

Table 2.3 Observations in a 33 contingency table.

The desirable hierarchical model to fit to the table data is (XY, XZ, YZ), denoting
that only main effects and first-order interactions of variables are present in the model.
This log-linear model is shown as,

log µµµ27×1 = A27×19θθθ 19×1,

such that the 19 model parameters are,

θθθ
T = (θ ,θ X

1 ,θ X
2 ,θY

1 ,θ
Y
2 ,θ

Z
1 ,θ

Z
2 ,θ

XY
11 ,θ XY

21 ,θ XY
12 ,θ XY

22 ,

θ
Y Z
11 ,θY Z

21 ,θY Z
12 ,θY Z

22 ,θ XZ
11 ,θ XZ

21 ,θ XZ
12 ,θ XZ

22 ),

and the model’s design matrix is shown in Figure 2.1. We use a function in R, given in
Appendix A, to make the design matrix and the derivative matrix for a specified model
with m variables and l levels for each variable.

Now the procedure explained in Sections 2.2 and 2.3 is followed to detect parameter
redundancy in this model. We use two procedures in Maple, given in Appendix A, to



2.6 Example in a 33 contingency table 39

Fig. 2.1 The design matrix for model (XY, XZ, YZ) fitted to the 33 contingency table.

find the ααα vector and solve the PDEs to achieve the estimable set of parameters. For
examples with larger contingency tables, it is easier to find the ααα vectors in MATLAB and
use Maple only to solve the PDEs in the symbolic way. The rank of the corresponding
derivative matrix is 18, meaning that there are only 18 estimable parameters in the
model. The ααα defined in (2.2) is,

ααα
T = (1,0,−1,−1,−1,−1,0,0,1,0,1,1,1,0,0,0,1,0,0).

By considering this vector and solving the PDEs in (2.3), the vector of estimable
parameters is obtained as,

θθθ
′T =(θ X

1 ,θ +θ
X
2 ,θ +θ

Y
1 ,θ +θ

Y
2 ,θ +θ

Z
1 ,θ

Z
2 ,θ

XY
11 ,−θ +θ

XY
21 ,θ XY

12 ,

−θ +θ
XY
22 ,−θ +θ

Y Z
11 ,−θ +θ

Y Z
21 ,θY Z

12 ,θY Z
22 ,θ XZ

11 ,−θ +θ
XZ
21 ,θ XZ

12 ,θ XZ
22 ).

It determines 21 out of 27 cell means are estimable including cells 17 and 25 with
zero observations, which are shown in the table with bold zeros, since,

log µ17 = log µ121 = θ +θ
X
1 +θ

Y
2 +θ

Z
1 +θ

XY
12 +θ

Y Z
21 +θ

XZ
11 ,

log µ25 = log µ022 = θ +θ
Y
2 +θ

Z
2 +θ

Y Z
22 ,

are only containing the estimable combinations of parameters provided in θθθ
′. On

the other hand, inestimable cell means include some inestimable combinations of the
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Fig. 2.2 The reduced design matrix for the log-linear model fitted to the 33 contingency table.

parameters,
log µ1 = log µ000 = θ ,

log µ2 = log µ100 = θ +θ
X
1 ,

log µ15 = log µ211 = θ +θ
X
2 +θ

Y
1 +θ

Z
1 +θ

XY
21 +θ

Y Z
11 +θ

XZ
21 ,

log µ18 = log µ221 = θ +θ
X
2 +θ

Y
2 +θ

Z
1 +θ

XY
22 +θ

Y Z
21 +θ

XZ
21 ,

log µ19 = log µ002 = θ +θ
Z
2 ,

log µ20 = log µ102 = θ +θ
X
1 +θ

Z
2 +θ

XZ
12 .

Therefore, the initial model must be reduced to a smaller model including 18 es-
timable parameters in θθθ

′ and 21 estimable cell means excluding cells 1,2,15,18,19,20.
Then the reduced full rank model, with rank 18 and with degrees of freedom d. f =

21−18 = 3, is,
log µµµ21×1 = A′

21×18θθθ
′
18×1.

The reduced design matrix, matching the set of estimable cell means and parameters, is
given in Figure 2.2. For a known y, we can fit this model and find estimates for all the
18 estimable quantities and 21 estimable cell means.

2.7 The esoteric constraints

The likelihood function of parameter redundant models includes a flat ridge as stated
in Theorem 2.4. This flat ridge is sometimes orthogonal to some parameters’ axes, so
those parameters still have unique maximum likelihood estimates [Catchpole et al.,
1998] and this type of likelihood function imposes some extra constraints on the model
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parameters. Those constraints are not arbitrary and are implied through the model’s
likelihood and permit estimating more model parameters. Knowledge on the existence
and nature of these constraints, which are not reported by standard statistical software,
reveals the true model that is fitted. The existence of such constraints, which we name
them esoteric constraints, can be checked after detecting the parameter redundancy.

Consider the log-likelihood function for (1.5) as,

l(θθθ) = ∑
i
(yi log µi(θθθ)−µi(θθθ))−∑

i
logyi!

and the corresponding score vector as,

U(θθθ) =

(
∂ l

∂θ1
, ...,

∂ l
∂θp

)T

,

such that,

∂ l
∂θs

= ∑
i

(
yi

µi(θθθ)
−1
)

∂ µi(θθθ)

∂θs
= ∑

i
(yi −µi(θθθ))

∂ µi(θθθ)

∂θs

1
µi(θθθ)

.

Whenever a model is parameter redundant and αααT
j (θθθ)D(θθθ) = 0, j = 1, · · · ,d, it follows

that αααT
j (θθθ)U(θθθ) = 0, j = 1, · · · ,d [Catchpole and Morgan, 1997].

For a parameter redundant log-linear model, αααT(θθθ)U(θθθ) = 0 always holds. If
αααT

j (θθθ)U(θθθ) are impossible to be zero with finite θs then the extra constraints do not
exist and estimates for some model parameters tend to infinity. However, if imposing
one or more constraints can make the expressions zero, then those are the esoteric
constraints. Determining these constraints is more straightforward with using the
Poisson sampling distribution rather than the multinomial distribution, in which we
mentioned that the first cell count is non-zero.

These constraints do not exist for a saturated model with at least one zero cell in
the table, thus the examples presented in Section 2.4 do not have esoteric constraints.
A Maple procedure is given in Appendix A that can be used to find αααT(θθθ)U(θθθ) and
determining the existence of any esoteric constraints. The esoteric constraints do not
exist for the model studied in Section 2.6 since we have,

ααα
TU(θθθ) =−eθ+θ X

1 +θ Z
2 +θ XZ

12 − eθ+θ X
2 +θY

1 +θ Z
1 +θ XY

21 +θY Z
11 +θ XZ

21 − eθ+θ X
2 +θY

2 +θ Z
1 +θ XY

22 +θY Z
21 +θ XZ

21

− eθ+θ Z
2 − eθ − eθ+θ X

1 ,

which no constraints can make it equal to zero. Catchpole and Morgan [2001] fit
a model with five parameters to a mark-recovery data set that provides a parameter
redundant model with three estimable combinations of parameters. They mention that
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Y
X 0 1 2
0 0 0 1
1 0 0 1
2 1 1 0

(a)

Y
X 0 1 2
0 0 0 0
1 0 1 1
2 0 1 1

(b)

Table 2.4 Observations in 32 contingency tables

the unique MLE for all five parameters can be obtained after imposing two constraints.
The next example presents a model that depending on the place of the zero entries can
have esoteric constraints.

Example 2.1. Consider two variables with three levels for each, as shown in Table 2.4.
The model that we fit to such a data, based on the corner point constraints, includes
only the main effects of the variables,

log µi j = θ +θ
X
i +θ

Y
j , i = 0,1,2, j = 0,1,2,

and can also be shown as,

log µ1 = log µ00 = θ ,

log µ2 = log µ10 = θ +θ
X
1 ,

log µ3 = log µ20 = θ +θ
X
2 ,

log µ4 = log µ01 = θ +θ
Y
1 ,

log µ5 = log µ11 = θ +θ
X
1 +θ

Y
1 ,

log µ6 = log µ21 = θ +θ
X
2 +θ

Y
1 ,

log µ7 = log µ02 = θ +θ
Y
2 ,

log µ8 = log µ12 = θ +θ
X
1 +θ

Y
2 ,

log µ9 = log µ22 = θ +θ
X
2 +θ

Y
2 .

The parameter vector is θθθ
T = (θ ,θ X

1 ,θ X
2 ,θY

1 ,θ
Y
2 ) and the corresponding derivative

matrix is,
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D =

[
∂yi log µi

∂θs

]
=


y1 y2 y3 y4 y5 y6 y7 y8 y9

0 y2 0 0 y5 0 0 y8 0

0 0 y3 0 0 y6 0 0 y9

0 0 0 y4 y5 y6 0 0 0

0 0 0 0 0 0 y7 y8 y9

, i = 1, . . . ,9, s = 1, . . . ,5.

The log-likelihood function for the model is,

l(θθθ) =∑
i
(yi log µi(θθθ)−µi(θθθ))−∑

i
logyi!

=y1(θ)+ y2(θ +θ
X
1 )+ y3(θ +θ

X
2 )+ y4(θ +θ

Y
1 )+ y5(θ +θ

X
1 +θ

Y
1 )

+ y6(θ +θ
X
2 +θ

Y
1 )+ y7(θ +θ

Y
2 )+ y8(θ +θ

X
1 +θ

Y
2 )+ y9(θ +θ

X
2 +θ

Y
2 )

− (eθ + eθ+θ X
1 + eθ+θ X

2 + eθ+θY
1 + eθ+θ X

1 +θY
1 + eθ+θ X

2 +θY
1 + eθ+θY

2

+ eθ+θ X
1 +θY

2 + eθ+θ X
2 +θY

2 )−∑
i

logyi!

For the zero pattern in part (a) of Table 2.4, the ααα and U(θθθ) vectors are,

ααα
T = (−1,0,1,0,1), ααα

TD = 0, ααα
TU(θθθ) =− dl

dθ
+

dl
dθ X

2
+

dl
dθY

2
= 0.

To check the condition that αααTU(θθθ) = 0 for finite θs, we have,

ααα
TU(θθθ) =− (

9

∑
i=1

yi − (eθ + eθ+θ X
1 + eθ+θ X

2 + eθ+θY
1 + eθ+θ X

1 +θY
1 + eθ+θ X

2 +θY
1 + eθ+θY

2

+ eθ+θ X
1 +θY

2 + eθ+θ X
2 +θY

2 ))+(y3 + y6 + y9 − eθ+θ X
2 − eθ+θ X

2 +θY
1 − eθ+θ X

2 +θY
2 )

+(y7 + y8 + y9 − eθ+θY
2 − eθ+θ X

1 +θY
2 − eθ+θ X

2 +θY
2 )

=− (y3 + y6 + y7 + y8)+(y3 + y6)+ eθ + eθ+θ X
1 + eθ+θY

1 + eθ+θ X
1 +θY

1

+(y7 + y8)− eθ+θ X
2 +θY

2

=eθ + eθ+θ X
1 + eθ+θY

1 + eθ+θ X
1 +θY

1 − eθ+θ X
2 +θY

2 .

It equals to zero, if
eθ X

1 + eθY
1 + eθ X

1 +θY
1 − eθ X

2 +θY
2 =−1. (2.9)

This relation among the parameters creates a flat ridge in the likelihood function
which is orthogonal on some parameters. Thus, the unique MLE exists for all the
parameters of this model. Without this constraint only 4 quantities given in θθθ

′T =
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(θ X
1 ,θ + θ X

2 ,θY
1 ,θ + θY

2 ) are estimable. Note that equation (2.9) can be rearranged
as θ X

2 +θY
2 = log

(
eθ X

1 + eθY
1 + eθ X

1 +θY
1 +1

)
which is made of only estimable param-

eters. Therefore, three combinations of parameters (θ + θ X
2 ,θ + θY

2 ,θ
X
2 + θY

2 ) are
estimable. Because the number of equations and unknowns are equal, all three un-
knowns (θ ,θ X

2 ,θY
2 ) are estimable along with θ X

1 and θY
1 in θθθ

′, which make all the
model parameters estimable. A numerical routine can estimate all model parameters for
a Poisson or a multinomial sampling scheme (even though the first cell count is zero)
despite not knowing (2.9) as a relation among the parameters .

For the zero pattern in part (b) of Table 2.4, there are two ααα vectors:

αααT
1 = (−1,0,0,1,1)

αααT
2 = (−1,1,1,0,0)

, ααα
TD = 0, ααα

TU(θθθ) =

 − dl
dθ

+
dl

dθY
1
+

dl
dθY

2
= 0

− dl
dθ

+
dl

dθ X
1
+

dl
dθ X

2
= 0

 .
To check the condition that αααTU(θθθ) = 0 for finite θs, we have,

ααα
T
1 U(θθθ) =− (

9

∑
i=1

yi − (eθ + eθ+θ X
1 + eθ+θ X

2 + eθ+θY
1 + eθ+θ X

1 +θY
1 + eθ+θ X

2 +θY
1 + eθ+θY

2

+ eθ+θ X
1 +θY

2 + eθ+θ X
2 +θY

2 ))+(y4 + y5 + y6 − eθ+θY
1 − eθ+θ X

1 +θY
1 − eθ+θ X

2 +θY
1 )

+(y7 + y8 + y9 − eθ+θY
2 − eθ+θ X

1 +θY
2 − eθ+θ X

2 +θY
2 )

=eθ + eθ+θ X
1 + eθ+θ X

2 ,

ααα
T
2 U(θθθ) =− (

9

∑
i=1

yi − (eθ + eθ+θ X
1 + eθ+θ X

2 + eθ+θY
1 + eθ+θ X

1 +θY
1 + eθ+θ X

2 +θY
1 + eθ+θY

2

+ eθ+θ X
1 +θY

2 + eθ+θ X
2 +θY

2 ))+(y2 + y5 + y8 − eθ+θ X
1 − eθ+θ X

1 +θY
1 − eθ+θ X

1 +θY
2 )

+(y3 + y6 + y9 − eθ+θ X
2 − eθ+θ X

2 +θY
1 − eθ+θ X

2 +θY
2 )

=eθ + eθ+θY
1 + eθ+θY

2 .

Neither of them could be zero with imposing constraints on θs, so there does not exist
any esoteric constraints to make all the parameters estimable. As functions appear in
αααTU(θθθ) = 0 are exponential, the existence of the esoteric constraints depend on the
sign of the ααα elements. However, this model is parameter redundant and αααTU(θθθ) = 0
occurs because θ → −∞. In other words, the intercept is not estimable and if we
want to consider an estimate for that, it would be a number with a large standard
deviation occurred by the flat ridge in the likelihood surface. The slope of the likelihood
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surface with respect to the parameters makes the equations − dl
dθ

+
dl

dθY
1
+

dl
dθY

2
= 0

and − dl
dθ

+
dl

dθ X
1
+

dl
dθ X

2
= 0 hold. Thus, the only 3 estimable quantities in this model

are θθθ
′T = (−θ X

1 +θ X
2 ,θ +θ X

1 +θY
1 ,θ +θ X

1 +θY
2 ).



Chapter 3

The saturated Poisson log-linear model

3.1 Introduction

In this chapter, a saturated Poisson log-linear model is fitted to a contingency table
with m variables and l levels or categories for each variable. The aim is to prove two
theorems. For the first theorem, all cell counts in the table are assumed to be positive
and we prove that the model is full rank in this case. Although this is already known,
the process reveals the derivative matrix formation and how the described parameter
redundancy method works for log-linear models. In the second theorem, we set one
table cell count equal to zero and find out exactly which model parameters become
inestimable in the result of that. The estimable combinations of parameters can be
derived by solving the corresponding partial differential equations, but that is not the
focus here. To enhance clarity with respect to the notations and the process of the proofs,
we prove the theorems for a 2m and a 3m model first and then for an lm model. The
induction method is implemented to prove the theorems. The theorem’s statement is
shown to be true for a starting point, it is assumed to be true for the number of variables
equals to m, then we prove it is also true for m+1.

Row vectors are shown with bold symbols and letters in this chapter. The fitted
saturated log-linear model is model (1.5) with E as the set of all subsets of V. We

set Dr(θθθ r) =
dµµµ r

dθθθ r
in which µµµ r and θθθ r are vectors of those cell means and parameters

which are added to the model because of adding the rth variable to the table. We

then define Dr = Dr(θθθ r) =
dµµµ r

dθθθ r
as the derivative matrix for µµµ r = µµµ1 ∪ µµµ2 ∪ ·· · ∪ µµµ r

and θθθ r = θθθ 1 ∪θθθ 2 ∪·· ·∪θθθ r, which are the union of elements of cell mean and model
parameter vectors for having variables 1 to r. Furthermore, instead of yi and 0 in
the derivative matrix we write 1 and 0 for simplicity, and it also forms a relationship
between the derivative matrix for m variables and the one for m+1 variables. As stated
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in the last chapter, a zero cell turns a corresponding column to zero in the derivative
matrix and we still apply it despite having 1 and 0 in the derivative matrix.

The next two definitions will be used in proving this chapter’s theorems.

Definition 3.1. For a saturated log-linear model we define the parameter corresponding
to cell yi, i = 1, . . . ,n, as the θ which has the maximum number of variables in its
superscript in log µi = A(i)θθθ , where A(i) is the ith row of the design matrix A.

For example, in a saturated model fitted to a 33 contingency table, the parameter
corresponding to cell y201 or cell y12 according to (1.6), is θ XZ

21 .

Definition 3.2. For a given parameter, parameters associated with a higher order inter-
action are all those which could be specified by including all the additional variables in
the given parameter’s superscript.

For example, in a saturated model fitted to a 33 contingency table, the parameters
associated with a higher order interaction of parameter θ XZ

21 , are θ XY Z
211 and θ XY Z

221 .

3.2 The 2m contingency table

In this section, a 2m contingency table is considered. The simplest possible model
would be a saturated model for the table 21 which has only one variable, say X, with
two levels. Then the log-linear model has an intercept and one other parameter, as,

log µi = θ +θ
X
i , i ∈ {0,1}.

As corner point constraints are considered, we have θ X
0 = 0 and θ X

1 is shown as θ X . So
the derivative matrix (2.4) is,

m = 1, D1 = D1(θθθ 1) =

 µ0 µ1

θ 1 1
θ X 0 1

 , θθθ 1 = (θ ,θ X), µµµ1 = (µ0,µ1).

If any of the two table cell counts are observed as zero, the rank of the matrix is reduced
by one and by solving (2.2) and (2.3) the parameters that are not directly estimable are
obtained as,

zero cell ααα vector inestimable parameters
y0 = 0 ααα11 = (1,−1) θ ,θ X

y1 = 0 ααα12 = (0,1) θ X

For a 22 table with two variables X and Y , the saturated log-linear model is,

log µi j = θ +θ
X
i +θ

Y
j +θ

XY
i j , i, j ∈ {0,1}2.
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The model’s derivative matrix is,

m = 2, D2 = D2(θθθ 2) =


µ00 µ10 µ01 µ11

θ 1 1 1 1
θ X 0 1 0 1
θY 0 0 1 1

θ XY 0 0 0 1



=

[
D1(θθθ 1) D2(θθθ 1)

0 D2(θθθ 2)

]
=

[
D1 D2(θθθ 1)
0 D1

]
,

θθθ 1 = (θ ,θ X), θθθ 2 = (θY ,θ XY ), θθθ 2 = (θ ,θ X ,θY ,θ XY ),

µµµ1 = (µ00,µ10), µµµ2 = (µ01,µ11), µµµ2 = (µ00,µ10,µ01,µ11).

If any of the four table cell counts are observed as zero, then the inestimable parameters
are,

zero cell ααα vector inestimable parameters
y00 = y1 = 0 ααα21 = (1,−1,−1,1) = (ααα11,ααα11) θ ,θ X ,θY ,θ XY

y10 = y2 = 0 ααα22 = (0,1,0,−1) = (ααα12,ααα12) θ X ,θ XY

y01 = y3 = 0 ααα23 = (0,0,1,−1) = (0,ααα11) θY ,θ XY

y11 = y4 = 0 ααα24 = (0,0,0,1) = (0,ααα12) θ XY

Note that we omit the sign in assigning ααα2i, so ααα21 = (ααα11,ααα11) is correct in terms
of places of zero and non-zero elements which indicate the estimable and inestimable
parameters. The pattern continues by enlarging the model.

For a 23 table with three variables X , Y and Z, the saturated log-linear model is,

log µi jk = θ +θ
X
i +θ

Y
j +θ

XY
i j +θ

Z
k +θ

XZ
ik +θ

Y Z
jk +θ

XY Z
i jk , i, j,k ∈ {0,1}3.

The model’s derivative matrix is,

m = 3, D3 = D3(θθθ 3) =



µ000 µ100 µ010 µ110 µ001 µ101 µ011 µ111

θ 1 1 1 1 1 1 1 1
θ X 0 1 0 1 0 1 0 1
θY 0 0 1 1 0 0 1 1

θ XY 0 0 0 1 0 0 0 1
θ Z 0 0 0 0 1 1 1 1

θ XZ 0 0 0 0 0 1 0 1
θY Z 0 0 0 0 0 0 1 1

θ XY Z 0 0 0 0 0 0 0 1
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=

[
D2(θθθ 2) D3(θθθ 2)

0 D3(θθθ 3)

]
=

[
D2 D3(θθθ 2)
0 D2

]
,

θθθ 3 = (θ Z,θ XZ,θY Z,θ XY Z), θθθ 3 = (θ ,θ X ,θY ,θ XY ,θ Z,θ XZ,θY Z,θ XY Z),

µµµ3 = (µ001,µ101,µ011,µ111), µµµ3 = (µ000,µ100,µ001,µ110,µ001,µ101,µ011,µ111).

If any of the eight table cell counts are observed as zero, then the inestimable parameters
are,

zero cell ααα vector inestimable parameters
y000 = 0 ααα31 = (−1,1,1,−1,1,−1,−1,1) = (ααα21,ααα21) θ ,θ X ,θY ,θ XY ,θ Z,θ XZ,θY Z,θ XY Z

y100 = 0 ααα32 = (0,1,0,−1,0,−1,0,1) = (ααα22,ααα22) θ X ,θ XY ,θ XZ,θ XY Z

y010 = 0 ααα33 = (0,0,1,−1,0,0,−1,1) = (ααα23,ααα23) θY ,θ XY ,θY Z,θ XY Z

y110 = 0 ααα34 = (0,0,0,−1,0,0,0,1) = (ααα24,ααα24) θ XY ,θ XY Z

y001 = 0 ααα35 = (0,0,0,0,1,−1,−1,1) = (0,ααα21) θ Z,θ XZ,θY Z,θ XY Z

y101 = 0 ααα36 = (0,0,0,0,0,−1,0,1) = (0,ααα22) θ XZ,θ XY Z

y011 = 0 ααα37 = (0,0,0,0,0,0,−1,1) = (0,ααα23) θY Z,θ XY Z

y111 = 0 ααα38 = (0,0,0,0,0,0,0,1) = (0,ααα24) θ XY Z

By increasing m, the number of variables in the model, the observed pattern continues
among ααα vectors, D matrices and inestimable parameters.

Although it is known that a log-linear model with all positive data is a full rank model
and all of its parameters are estimable and it is not structurally parameter redundant,
we prove this in the next theorem by checking the rank of the derivative matrices. The
contingency table is assumed to have m variables each categorized in two levels, so
L =⊗m

j=1[l j] such that [l j] = {0,1}.

Theorem 3.1. A saturated Poisson log-linear model for a 2m contingency table (m ≥ 1)
is full rank, when yi > 0, ∀i ∈ L.

Proof. For the simplest possible model with m = 1 which has only an intercept and one
other parameter, the derivative matrix is,

D1 = D1(θθθ 1) =

[
1 1
0 1

]
, θθθ 1 = (θ ,θ X).

When all yi > 0, no matrix column is zero so the derivative matrix rank is 2 and the
model is full rank. As m = 1 can be considered too trivial regarding contingency tables,
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we show that the theorem statement is also true for m = 2 with variables X and Y .

D2 = D2(θθθ 2) =


1 1 1 1
0 1 0 1

0 0 1 1
0 0 0 1

 =

[
D1(θθθ 1) D2(θθθ 1)

0 D2(θθθ 2)

]
=

[
D1 D2(θθθ 1)

0 D1

]
,

θθθ 1 = (θ ,θ X), θθθ 2 = (θY ,θ XY ), θθθ 2 = (θ ,θ X ,θY ,θ XY ).

When all yi > 0, no matrix column is zero so the derivative matrix rank is 4 and this
model is full rank. The derivative matrix for m = k variables takes the form Dk and is
assumed to be full rank if no observation is zero,

Dk = Dk(θθθ k) =

[
Dk−1(θθθ k−1) Dk(θθθ k−1)

0 Dk(θθθ k)

]
=

[
Dk−1 Dk(θθθ k−1)

0 Dk−1

]
.

Now, we must prove that the derivative matrix is full rank for m = k+1. According to
the pattern among the derivative matrices, Dk+1 is made of Dk, as,

Dk+1 = Dk+1(θθθ k+1) =

[
Dk(θθθ k) Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
=

[
Dk Dk+1(θθθ k)

0 Dk

]
.

Dk was assumed to be full rank, so according to Theorem 2.5 the matrix Dk+1 is also
full rank.

In the next theorem, induction method is used again to prove that by having one
zero cell count in the 2m contingency table with a saturated Poisson log-linear model
fitted to it, the parameter corresponding to the zero cell and given it, all other parameters
associated with a higher order interaction, according to Definitions 3.1 and 3.2, become
inestimable. Estimable combinations of parameters can easily be derived by solving the
corresponding partial differential equations (2.3).

Theorem 3.2. In a saturated Poisson log-linear model for a 2m contingency table
(m ≥ 1), if ∃i, i ∈ L such that yi = 0, then the corresponding parameter to that cell and
all other parameters associated with a higher order interaction given that parameter,
are inestimable.

Proof. The theorem statement is true for the simplest possible model with m = 1.

D1 =

[
1 1
0 1

]
, θθθ 1 = (θ ,θ X).
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zero cell ααα vector inestimable parameters

y0 = 0 ααα11 = (1,−1) θ ,θ X

y1 = 0 ααα12 = (0,1) θ X

If y1 = 0, then θ X is inestimable and there is no parameter associated with a higher
order interaction given it. If y0 = 0, then θ , the parameter corresponding to the first cell
is inestimable along with θ X , which is associated with a higher order interaction given
the intercept. In each case, there is only one ααα since only one column has turned to
zero and the rank of the derivative matrix is decreased by one, so d = 1.

We assume the theorem statement is true for the model with m = k. The derivative
matrix, made of the derivative matrix with one fewer variable, is,

Dk =

[
Dk−1 Dk(θθθ k−1)

0 Dk−1

]
.

Consider those k variables as X ,Y, . . . ,U,W . When each cell count yi, i ∈ {0,1}k is
zero, the parameters stated in the following table are assumed to be inestimable. It also
indicates the ααα vectors because there exists only a unique one in each case.

zero cell ααα vector inestimable parameters

y0...0 = 0 αααk1 = (ααα(k−1)1,ααα(k−1)1) θ ,θ X ,θY , . . . ,θW ,θ XW , . . . ,θ XY ...UW

...
...

...

y11...10 = 0 αααk2k−1 = (ααα(k−1)2k−1 ,ααα(k−1)2k−1) θ XY ...U ,θ XY ...UW

y00...01 = 0 αααk(2k−1+1) = (0,αααk1) θW ,θ XW ,θYW , . . . ,θ XY ...UW

...
...

...

y1...1 = 0 αααk2k = (0,ααα(k−1)2k−1) θ XY ...UW

Now the theorem statement must be proven for the model with m = k+1 variables.
Assume the added variable is Q. The derivative matrix is,

Dk+1 =

[
Dk Dk+1(θθθ k)

0 Dk

]
,
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and the inestimable parameters should be,

zero cell inestimable parameters

y0...0 = 0 θ ,θ X , . . . ,θ Q,θ XQ, . . . ,θ XY ...WQ

...
...

y11...10 = 0 θ XY ...UW ,θ XY ...WQ

y00...01 = 0 θ Q,θ XQ,θY Q, . . . ,θ X ...WQ

...
...

y1...1 = 0 θ XY ...WQ

In order to prove that these are inestimable parameters, obtaining the corresponding
ααα vectors are required. We observed a repetitive pattern of ααα vectors in making the
derivative matrices and increasing the number of variables in the contingency table.
According to that pattern, αααs are made of vectors of the previous step. Therefore the
unique ααα vectors are,

zero cell ααα vector

y0...0 = 0 ααα(k+1)1 = (αααk1,αααk1)
...

...

y11...10 = 0 ααα(k+1)2k = (αααk2k ,αααk2k)

y00...01 = 0 ααα(k+1)(2k+1) = (0,αααk1)
...

...

y1...1 = 0 ααα(k+1)2k+1 = (0,αααk2k)

For the first half of the cases in the above table, having a zero cell count gives
ααα = (αααki,αααki). Since the theorem is assumed to be true for m = k, αααki makes the
corresponding parameter to that cell and all other higher order interaction parameters to
be inestimable for the last smaller model. Repeating αααki in the ααα vector shows some
other parameters of the new model as inestimable as well, which are the same previous
parameters but corresponding to the new variable in this model, say Q. For example, if
we had θ X before as an inestimable parameter, now θ XQ is added to the inestimable
parameters set as well. As a result, the corresponding parameter to the zero cell count
and all other parameters associated with a higher order interaction given that parameter,
are inestimable.

For the second half of the cases, having a zero cell count gives ααα = (0,αααki). αααki

shows the corresponding parameter to that cell and all other parameters associated with
a higher order interaction are inestimable for the last smaller model, but as it appears
after a vector of zeroes here, those parameters will have the new variable, say Q, in their
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superscript. In conclusion, the theorem statement is true for m = k+1 and the theorem
is proven by induction.

3.3 The 3m contingency table

In this section, a 3m contingency table is considered. The simplest possible model
would be a saturated model for the table 31 which has only one variable, say X, with
three levels. Then the log-linear model has an intercept and two other parameters, as,

log µi = θ +θ
X
i , i ∈ {0,1,2}.

So the derivative matrix (2.4) is,

m = 1, D1 = D1(θθθ 1) =


µ0 µ1 µ2

θ 1 1 1
θ X

1 0 1 0
θ X

2 0 0 1

 , θθθ 1 = (θ ,θ X
1 ,θ X

2 ), µµµ1 = (µ0,µ1,µ2).

If any of the three table cell counts are observed as zero, the rank of the matrix is
reduced by one and by solving (2.2) and (2.3) the inestimable parameters are obtained
as,

zero cell ααα vector inestimable parameters
y0 = 0 ααα11 = (−1,1,1) θ ,θ X

1 ,θ X
2

y1 = 0 ααα12 = (0,1,0) θ X
1

y2 = 0 ααα12 = (0,0,1) θ X
2

For a 32 table with two variables X and Y , the saturated log-linear model is,

log µi j = θ +θ
X
i +θ

Y
j +θ

XY
i j , i, j ∈ {0,1,2}2.

The model’s derivative matrix is,

m = 2, D2 = D2(θθθ 2) =



Y=0 Y=1 Y=2
µ00 µ10 µ20 µ01 µ11 µ21 µ02 µ12 µ22

θ 1 1 1 1 1 1 1 1 1
θ X

1 0 1 0 0 1 0 0 1 0
θ X

2 0 0 1 0 0 1 0 0 1
θY

1 0 0 0 1 1 1 0 0 0
θ XY

11 0 0 0 0 1 0 0 0 0
θ XY

21 0 0 0 0 0 1 0 0 0
θY

2 0 0 0 0 0 0 1 1 1
θ XY

12 0 0 0 0 0 0 0 1 0
θ XY

22 0 0 0 0 0 0 0 0 1
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=

[
D1(θθθ 1) D2(θθθ 1)

0 D2(θθθ 2)

]
=

[
D1 D2(θθθ 1)
0 D2(θθθ 2)

]
,

such that,

D2(θθθ 2) =

[
D1 0
0 D1

]
,

and,

θθθ 1 = (θ ,θ X
1 ,θ X

2 ), θθθ 2 = (θY
1 ,θ

XY
11 ,θ XY

21 ,θY
2 ,θ

XY
12 ,θ XY

22 ), θθθ 2 = (θθθ 1 ∪θθθ 2),

µµµ1 = (µ00,µ10,µ20), µµµ2 = (µ01,µ11,µ21,µ02,µ12,µ22), µµµ2 = (µµµ1 ∪µµµ2).

If any of the nine table cell counts are observed as zero, the inestimable parameters are,

zero cell ααα vector inestimable parameters
y00 = 0 ααα21 = (1,−1,−1,−1,1,1,−1,1,1) = (ααα11,ααα11,ααα11) θ ,θ X

1 ,θ X
2 ,θY

1 ,θ
XY
11 ,

θ XY
21 ,θY

2 ,θ
XY
12 ,θ XY

22
y10 = 0 ααα22 = (0,−1,0,0,1,0,0,1,0) = (ααα12,ααα12,ααα12) θ X

1 ,θ XY
11 ,θ XY

12
y20 = 0 ααα23 = (0,0,−1,0,0,1,0,0,1) = (ααα13,ααα13,ααα13) θ X

2 ,θ XY
21 ,θ XY

22

y01 = 0 ααα24 = (0,0,0,−1,1,1,0,0,0) = (0,ααα11,0) θY
1 ,θ

XY
11 ,θ XY

21
y11 = 0 ααα25 = (0,0,0,0,1,0,0,0,0) = (0,ααα12,0) θ XY

11
y21 = 0 ααα26 = (0,0,0,0,0,1,0,0,0) = (0,ααα13,0) θ XY

21

y02 = 0 ααα27 = (0,0,0,0,0,0,−1,1,1) = (0,0,ααα11) θY
2 ,θ

XY
12 ,θ XY

22
y12 = 0 ααα28 = (0,0,0,0,0,0,0,1,0) = (0,0,ααα12) θ XY

12
y22 = 0 ααα29 = (0,0,0,0,0,0,0,0,1) = (0,0,ααα13) θ XY

22

ααα21 = (ααα11,ααα11,ααα11) is correct in terms of places of zero and non-zero elements which
indicate the estimable and inestimable parameters. The pattern continues by enlarging
the model.

For a 33 table with three variables X , Y and Z, the saturated log-linear model is,

log µi jk = θ +θ
X
i +θ

Y
j +θ

XY
i j +θ

Z
k +θ

XZ
ik +θ

Y Z
jk +θ

XY Z
i jk , i, j,k ∈ {0,1,2}3.

The model’s derivative matrix is,

m = 3, D3 = D3(θθθ 3) =

[
D2(θθθ 2) D3(θθθ 2)

0 D3(θθθ 3)

]
=

[
D2 D3(θθθ 2)
0 D3(θθθ 3)

]
,

such that,

D3(θθθ 3) =

[
D2 0
0 D2

]
,
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and,

θθθ 3 =(θ Z
1 ,θ

Z
2 ,θ

XZ
11 ,θ XZ

21 ,θY Z
11 ,θY Z

21 ,θ XZ
12 ,θ XZ

22 ,θY Z
12 ,θY Z

22 ,θ XY Z
111 ,θ XY Z

211 ,θ XY Z
121 ,θ XY Z

221 ,

θ
XY Z
112 ,θ XY Z

212 ,θ XY Z
122 ,θ XY Z

222 ),

θθθ 3 =(θθθ 1 ∪θθθ 2 ∪θθθ 3).

By increasing m, the number of variables in the model, the observed pattern continues
among ααα vectors, D matrices and inestimable parameters.

In the next theorem, we prove that a saturated log-linear model is full rank when
all the observations are positive, by checking the rank of the derivative matrices. The
contingency table is assumed to have m variables categorized in three levels, so L =

⊗m
j=1[l j] and [l j] = {0,1,2}.

Theorem 3.3. A saturated Poisson log-linear model for a 3m contingency table (m ≥ 1)
is full rank, when yi > 0, ∀i ∈ L.

Proof. For the simplest possible model with m = 1 which has only an intercept and one
other parameter, the derivative matrix is,

D1 = D1(θθθ 1) =

 1 1 1
0 1 0
0 0 1

 , θθθ 1 = (θ ,θ X
1 ,θ X

2 ).

When all yi > 0, no matrix column is zero so the derivative matrix rank is 3 and the
model is full rank. As m = 1 can be considered too trivial for a contingency table, we
show that the theorem statement is also true for m = 2 with variables X and Y .

D2 = D2(θθθ 2) =

[
D1(θθθ 1) D2(θθθ 1)

0 D2(θθθ 2)

]
=

[
D1 D2(θθθ 1)

0 D2(θθθ 2)

]
,

such that,

D2(θθθ 2) =

[
D1 0
0 D1

]
,

and,
θθθ 2 = (θY

1 ,θ
XY
11 ,θ XY

21 ,θY
2 ,θ

XY
12 ,θ XY

22 ), θθθ 2 = (θθθ 1 ∪θθθ 2).

When all yi > 0, no matrix column is zero so the derivative matrix rank is 9 and this
model is full rank. The derivative matrix for m = k variables takes the form Dk and is
assumed to be full rank if no observation is zero.

Dk = Dk(θθθ k) =

[
Dk−1(θθθ k−1) Dk(θθθ k−1)

0 Dk(θθθ k)

]
=

[
Dk−1 Dk(θθθ k−1)

0 Dk(θθθ k)

]
,
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such that,

Dk(θθθ k) =

[
Dk−1 0

0 Dk−1

]
.

Now, we must prove that the derivative matrix is full rank for m = k+1. According to
the pattern among the derivative matrices, Dk+1 is made of Dk, as,

Dk+1 = Dk+1(θθθ k+1) =

[
Dk(θθθ k) Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
=

[
Dk Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
,

so that,

Dk+1(θθθ k+1) =

[
Dk 0
0 Dk

]
.

Dk is assumed to be full rank so Dk+1(θθθ k+1) is full rank as well. Then according to
Theorem 2.5, the matrix Dk+1 is also full rank.

In the next theorem, we prove the same statement as given in Theorem 3.2 but for a
Poisson saturated model fitted to a 3m contingency table.

Theorem 3.4. In a saturated Poisson log-linear model for a 3m contingency table
(m ≥ 1), if ∃i, i ∈ L such that yi = 0, then the corresponding parameter to that cell and
all other parameters associated with a higher order interaction given that parameter,
are inestimable.

Proof. The theorem statement is true for the simplest possible model with m = 1.

D1 =

 1 1 1
0 1 0
0 0 1

 , θθθ 1 = (θ ,θ X
1 ,θ X

2 ).

zero cell ααα vector inestimable parameters

y0 = 0 ααα11 = (−1,1,1) θ ,θ X
1 ,θ X

2

y1 = 0 ααα12 = (0,1,0) θ X
1

y2 = 0 ααα12 = (0,0,1) θ X
2

If y1 = 0, then θ X
1 is inestimable and there is no parameter associated with a higher

order interaction given it. If y0 = 0, then θ , the parameter corresponding to the first
cell, is inestimable along with θ X

1 and θ X
2 which are parameters with a higher order

interaction given the intercept. In each case, there is only one ααα since only one column
has turned to zero and the rank of the derivative matrix is decreased by one, so d = 1.
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We assume the theorem statement is true for the model with m = k. The derivative
matrix, made of the derivative matrix with one fewer variable, is

Dk =

[
Dk−1 Dk(θθθ k−1)

0 Dk(θθθ k)

]
,

such that,

Dk(θθθ k) =

[
Dk−1 0

0 Dk−1

]
.

Consider those k variables as X ,Y, . . . ,U,W . When each cell count yi, i ∈ {0,1,2}k is
zero, the parameters stated in the following table are assumed to be inestimable. It also
indicates the ααα vectors, as there exists only a unique one in each case.

zero cell ααα vector inestimable parameters

y00...00 = 0 αααk1 = (ααα(k−1)1,ααα(k−1)1,ααα(k−1)1) θ ,θ X
1 ,θ X

2 , . . . ,θ XY ...UW
22...22

...
...

...

y22...20 = 0 αααk3k−1 = (ααα(k−1)3k−1 ,ααα(k−1)3k−1 ,ααα(k−1)3k−1) θ XY ...U
22...2 ,θ XY ...UW

22...21 ,θ XY dotsUW
22...22

y00...01 = 0 αααk(3k−1+1) = (0,ααα(k−1)1,0) θW
1 ,θ XW

11 ,θ XW
21 , . . . ,θ XY ...UW

22...21
...

...
...

y22...21 = 0 αααk3k−1×2 = (0,ααα(k−1)3k−1 ,0) θ XY ...UW
22...21

y00...02 = 0 αααk(3k−1×2+1) = (0,0,ααα(k−1)1) θW
2 ,θ XW

12 ,θ XW
22 , . . . ,θ XY ...UW

22...22
...

...
...

y22...22 = 0 αααk3k = (0,0,ααα(k−1)3k−1) θ XY ...UW
22...22

Now the theorem statement must be proven for the model with m = k+1 variables.
If the added variable is Q, then the derivative matrix is,

Dk+1 =

[
Dk Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
,

such that,

Dk+1(θθθ k+1) =

[
Dk 0
0 Dk

]
.
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The inestimable parameters should be,

zero cell inestimable parameters

y00...00 = 0 θ ,θ X
1 , . . . ,θ XY ...WQ

22...22
...

...

y22...20 = 0 θ XY ...UW
22...2 ,θ XY ...WQ

22,...,21 ,θ XY ...WQ
22,...,22

y00...01 = 0 θ
Q
1 ,θ XQ

11 ,θ XQ
21 , . . . ,θ XY ...WQ

22...21
...

...

y22...21 = 0 θ
XY ...WQ
22...21

y00...02 = 0 θ
Q
2 ,θ XQ

12 ,θ XQ
21 , . . . ,θ XY ...WQ

22...22
...

...

y22...22 = 0 θ
XY ...WQ
22...22

The corresponding ααα vectors must be obtained to prove that these are the inestimable
parameters. We observed a repetitive pattern of ααα vectors in making the derivative
matrices and increasing the number of variables in the contingency table. According to
the pattern, αααs are made of vectors of the previous step. Therefore the unique ααα vectors
are,

zero cell ααα vector

y00...00 = 0 ααα(k+1)1 = (αααk1,αααk1,αααk1)
...

...

y22...20 = 0 ααα(k+1)3k = (αααk3k ,αααk3k ,αααk3k)

y00...01 = 0 ααα(k+1)(3k+1) = (0,αααk1,0)
...

...

y22...21 = 0 ααα(k+1)3k×2 = (0,αααk3k ,0)

y00...02 = 0 ααα(k+1)(3k×2+1) = (0,0,αααk1)
...

...

y22...22 = 0 ααα(k+1)3k+1 = (0,0,αααk3k)

For the first one third of the cases in the above table, having a zero cell count gives
ααα = (αααki,αααki,αααki). Since the theorem is assumed to be true for m = k, the first αααki

shows the corresponding parameter to that cell and given that, all other parameters
associated with a higher order interaction are inestimable for the last smaller model.
Repeating αααki two times in the ααα vector shows some other parameters of the new model
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are inestimable too, which are the same previous parameters corresponding to the both
levels of the new variable, Q. For example if we had θ X

1 before, now θ
XQ
11 ,θ XQ

12 are
added to the inestimable parameters set as well. In result, the corresponding parameter
to the zero cell count and given that, all other parameters associated with a higher order
interaction are inestimable.

For the next two third of the cases, having a zero cell count gives ααα = (0,αααki,0) or
ααα = (0,0,αααki). αααki shows the corresponding parameter to that cell and given that, all
other parameters associated with a higher order interaction are inestimable for the last
smaller model, but as it appears after one or two vectors of zeroes here, those parameters
will have the first or second level of the new variable, say Q, in their superscript and
subscript. In conclusion, the statement is true for m = k+1, so the theorem is proven
by induction.

3.4 The lm contingency table

The theorems in this section differ from the previous ones as an lm contingency table is
considered here, so neither the number of variables, m, nor the number of categories for
each variable, l, are fixed. A different version of induction method is adopted here to
prove the theorems. Earl [2003] suggests following ways to deal with the induction for
two variables. If we consider P(n,k) for n,k= 1,2,3, . . . , as the general statement with
two variables, then induction method can be used to prove it in one of these two ways:

• Prove P(1,1) and show P(n+1,k) and P(n,k+1) both follow from P(n,k) for
all n and k.

• Prove P(1,k) for all k and show how knowledge of P(n,k) for all k proves
that P(n+1,k) holds for all k. This reduces the problem to one application of
induction for a family of statements. Or we could do the inducting part through k

and consider n as the arbitrary variable. So we prove P(n,1) for all n and show
how knowing P(n,k) for all n, leads to proving P(n,k+1) for all n.

In the next theorem, we prove that a saturated log-linear model is full rank when
all the observations are positive, by checking the rank of the derivative matrices. The
contingency table is assumed to have m variables categorized in l levels, so L =⊗m

j=1[l j]

and [l j] = {0,1, . . . , l − 1}. We also provide a descriptive proof for the theorem in
addition to the induction based proof.
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Theorem 3.5. A saturated Poisson log-linear model for an lm contingency table (m ≥
1, l ≥ 2) is full rank, when yi > 0, ∀i ∈ L.

Proof. The derivative matrix elements are derivatives of logarithm of cell means with
respect to the parameters. We can always consider an order of cell means and their
corresponding parameters that form the D matrix as an upper triangular matrix with all
main diagonal elements equal to 1 (like all of the derivative matrices in this chapter).
By implying corner point constraints in the model there is one parameter corresponding
to each cell according to Definition 3.1 and derivations with respect to them make a
vector of 1s in the diagonal of the derivative matrix. The rank of an upper triangular
matrix is the number of none zero elements on the main diagonal. So in the case of
having no zero cell counts, the D matrix is always full rank. Since this does not depend
on the value of parameters θθθ , the model is essentially full rank.

In order to prove the same theorem by induction, we use the second method de-
scribed above on dealing with induction for two variables. The method has two steps.
On the first step, we prove that the statement is true for an l1 table for all integers l ≥ 2.
On the second step, we show that when the statement is assumed true for an lm table, it
is also true for lm+1.

Proof. Step one: We prove that the statement is true for the saturated model of an l1

table, for all integers l ≥ 2. Consider the only variable in this contingency table is X

with [l] = {0,1, . . . , l −1} levels, therefore the saturated model includes l parameters.
The derivative matrix for this model is,

D1 = D1(θθθ 1) =



µ0 µ1 µ2 µ3 µl−1

θ 1 1 1 1 . . . 1

θ X
1 0 1 0 0 . . . 0

θ X
2 0 0 1 0 . . . 0

θ X
3 0 0 0 1 . . . 0
...

...
...

...
...

...
...

θ X
l−1 0 0 0 0 . . . 1


.

When all cell counts are positive then the elements on the main diagonal of this matrix
are always none zero, so the rank of the matrix equals to the number of parameters of
the model and it is full rank.

Step two: The statement is assumed to be true for the saturated model for an lm

table when m = k, it should be true when m = k+1 as well. For m = k the derivative
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matrix which is assumed to be full rank, is,

Dk = Dk(θθθ k) =

[
Dk−1(θθθ k−1) Dk(θθθ k−1)

0 Dk(θθθ k)

]
=

[
Dk−1 Dk(θθθ k−1)

0 Dk(θθθ k)

]
,

such that,

Dk(θθθ k) =


Dk−1 0 . . . 0

0 Dk−1 . . . 0
...

...
...

...

0 0 0 Dk−1

 .
l−1×l−1

Now, we must prove that the derivative matrix is full rank for m = k+1. The derivative
matrix in this case is,

Dk+1 = Dk+1(θθθ k+1) =

[
Dk(θθθ k) Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
=

[
Dk Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
,

such that,

Dk+1(θθθ k+1) =


Dk 0 . . . 0
0 Dk . . . 0
...

...
...

...

0 0 0 Dk

 .
l−1×l−1

In this matrix, Dk is an lm−1 × lm−1 matrix and assumed to be full rank, so matrix
Dk+1(θθθ k+1) is full rank. It follows that Dk+1 is also full rank according to Theorem
2.5.

Catchpole and Morgan [1997] proved a relevant theorem which is a special case
of Theorem 2.5. “Suppose that a product multinomial model with parameter vector
θθθ = (θ1, . . . ,θp) is full rank for an r×c table. Let r′ ≥ r and c′ ≥ c. Suppose that for an
r′× c′ experiment, the extension of the table by one row leads to the inclusion of extra
parameters ψψψ = (θp′+1, . . . ,θp′+v). Regard this extra row as a function of ψψψ only, and
form its derivative matrix. Now repeat this procedure for an extension by one column.
If both of these subsidiary derivative matrices are full rank, then the model is full rank
for any r′× c′ table” [Catchpole and Morgan, 1997, Theorem 6]. The theorem states
that when the model for a table with only two variables is full rank and adding more
levels to those variables makes a full rank subsidiary derivative matrix, then the model
for the bigger table is full rank. In order to prove this, the model is assumed to be full
rank for an r× c table with derivative matrix D. After the addition of a row or column,
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the derivative matrix is,

D =

[
D B

0 C

]
.

The columns of B and C correspond to the extra cell means (or cell probabilities for a
multinomial model), and the rows of C correspond to the extra parameters. The matrix
C is the subsidiary derivative matrix created due to adding a row or a column to the
model and it is formed only based on the extra cell means and the extra parameters. If D

and C are both full rank, it follows immediately that D is full rank. The result follows
by induction, therefore the model remains of full rank after adding a row or a column.

In Theorem 3.5, we showed that a saturated model for an lm table is full rank when
all cell counts are positive. In general, adding a variable to the table or adding a level
to all table variables result in having a subsidiary derivative matrix akin to C in the
main derivative matrix D above. If this subsidiary derivative matrix is full rank then the
general derivative matrix is also full rank.

In the next theorem, we prove the same statement as given in Theorems 3.2 and 3.4,
but for a Poisson saturated model fitted to an lm contingency table. We prove that the
theorem’s statement is true for an l1 table, for all integers l ≥ 2. Then we show that if
the statement is true for lm, then it is true for lm+1.

Theorem 3.6. In a saturated Poisson log-linear model for an lm contingency table
(m ≥ 1, l ≥ 2), if ∃i, i ∈ L such that yi = 0, then the corresponding parameter to that
cell and all other parameters associated with a higher order interaction given that
parameter, are inestimable.

Proof. Step one: We prove that the statement is true for l1 for all integers l ≥ 2.
Assume the only variable in this model is X with [l] = {0,1, . . . , l −1} levels, therefore
the saturated model includes l parameters. The derivative matrix for this model is,

D1 = D1(θθθ 1) =



µ0 µ1 µ2 µ3 µl−1

θ 1 1 1 1 . . . 1

θ X
1 0 1 0 0 . . . 0

θ X
2 0 0 1 0 . . . 0

θ X
3 0 0 0 1 . . . 0
...

...
...

...
...

...
...

θ X
l−1 0 0 0 0 . . . 1


.

For this model, ααα vectors and the inestimable parameters in the presence of zero cell
counts are shown here. Since only one cell count is zero, deficiency is one and there is
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one α vector for each case.

zero cell ααα vector inestimable parameters

y0 = 0 ααα11 = (1,−1,−1,−1, . . . ,1) all parameters

y1 = 0 ααα12 = (0,1,0,0, . . . ,0) θ X
1

y2 = 0 ααα13 = (0,0,1,0, . . . ,0) θ X
2

y3 = 0 ααα14 = (0,0,0,1, . . . ,0) θ X
3

...
...

...

yl−1 = 0 ααα1l = (0,0,0, . . . ,0,1) θ X
l−1

According to the ααα vectors, the theorem statement is true for this model.
In order to further clarify the idea, we can fix the number of variables at m = 2 and

show that the statement is still true for this model with any number of levels. So let
the variables in this model to be X ,Y with [l] = {0,1, . . . , l −1} levels. The derivative
matrix D2 = D2(θθθ 2) for the model fitted to the l2 table is,



Y = 0 Y = 1 Y = l −1
µ00 µ10 µ20 . . . µl−10 µ01 µ11 µ21 . . . µl−11 . . . µ0l−1 µ1l−1 µ2l−1 . . . µl−1l−1

θ 1 1 1 . . . 1 1 1 1 . . . 1 . . . 1 1 1 . . . 1
θ X

1 0 1 0 . . . 0 0 1 0 . . . 0 . . . 0 1 0 . . . 0
θ X

2 0 0 1 . . . 0 0 0 1 . . . 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

...
θ X

l−1 0 0 0 . . . 1 0 0 0 . . . 1 . . . 0 0 0 . . . 1

θY
1 0 0 0 . . . 0 1 1 1 . . . 1 . . . 0 0 0 . . . 0

θ XY
11 0 0 0 . . . 0 0 1 0 . . . 0 . . . 0 0 0 . . . 0

θ XY
21 0 0 0 . . . 0 0 0 1 . . . 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

...
θ XY

l−11 0 0 0 . . . 0 0 0 0 . . . 1 . . . 0 0 0 . . . 0
...

...
...

...
...

θY
l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 1 1 1 . . . 1

θ XY
1l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 1 0 . . . 0

θ XY
2l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...
...

...
θ XY

l−1l−1 0 0 0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 . . . 1



=


D1 D1 . . . D1

0 D1 . . . 0
...

...
...

...

0 0 0 D1

 .

The derivative matrix is upper triangular and all elements on the main diagonal are
1. Consider yi(0) as a cell count that its index is finished with zero, we can order these
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cell counts also from 1 to lm according to (1.6). γγγ i is the set including inestimable
parameters. Thus in case of having one zero cell count, the inestimable parameters and
unique ααα vectors are given in the below table which match the theorem’s statement.

zero cell ααα vector inestimable parameters

yi(0) = y1 = 0 ααα21 =

#l︷ ︸︸ ︷
(ααα11, . . . ,ααα11) γγγ i = γγγ1 = {all parameters}

...
...

...

yi(0) = yl = 0 ααα2l = (ααα1l, . . . ,ααα1l) γγγ i = γγγ l = {θ X
l−1,θ

XY
l−11, . . . ,θ

XY
l−1l−1}

yi(1) = yl+1 = 0 ααα2(l+1) = (0,ααα11,0, . . . ,0) γγγ i = γγγ l+1 = {θY
1 ,θ

XY
11 , . . . ,θ XY

l−11}
...

...
...

yi(1) = y2×l = 0 ααα2(2×l) = (0,ααα1l,0, . . . ,0) γγγ i = γγγ2×l = {θ XY
l−11}

...
...

...

yi(l−1) = yl2−l+1 = 0 ααα2(l2−l+1) = (0,0, . . . ,ααα11) γγγ i = γγγ l2−l+1 = {θY
l−1,θ

XY
1l−1, . . . ,θ

XY
l−1l−11}

...
...

...

yi(l−1) = yl2 = 0 ααα2l2 = (0,0, . . . ,ααα1l) γγγ i = γγγ l2 = {θ XY
l−1l−1}

Step two: The statement is assumed to be true for lm when m = k, it should be
true when m = k + 1 as well. For m = k when any of the cell counts is zero, the
corresponding parameter to that cell and given that, all parameters associated with a
higher order interaction of variables are assumed to be inestimable. The derivative
matrix is,

Dk =

[
Dk−1 Dk(θθθ k−1)

0 Dk(θθθ k)

]
.

Derivative matrices are upper triangular and all elements on their main diagonals are
1. Consider yi(0) as a cell count such that the final element of i is zero. γγγ i is the set
including the parameter corresponding to that cell and given that, all parameters with a
higher order interaction of variables. The order of setting cell counts to zero here is the
same order that used in forming the derivative matrix. Thus, the inestimable parameters
should be as follows (so are ααα vectors, due to the repetitive pattern in models and the
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point that in each case there is only one ααα vector),

zero cell ααα vector inestimable parameters

yi(0) = y1 = 0 αααk1 =

#l︷ ︸︸ ︷
(ααα(k−1)1, . . . ,ααα(k−1)1) γγγ i = γγγ1 = {all parameters}

...
...

...

yi(0) = ylk−1 = 0 αααklk−1 = (ααα(k−1)lk−1 , . . . ,ααα(k−1)lk−1) γγγ i = γγγ lk−1

yi(1) = ylk−1+1 = 0 αααk(lk−1+1) = (0,ααα(k−1)1,0, . . . ,0) γγγ i = γγγ lk−1+1
...

...
...

yi(1) = ylk−1×2 = 0 αααk(lk−1×2) = (0,ααα(k−1)lk−1 ,0, . . . ,0) γγγ i = γγγ lk−1×2

...
...

...

yi(l−1) = y(lk−1×l−1)+1 = 0 αααk((lk−1×l−1)+1) = (0,0, . . . ,ααα(k−1)1) γγγ i = γγγ(lk−1×l−1)+1
...

...
...

yi(l−1) = ylk = 0 αααklk = (0,0, . . . ,ααα(k−1)lk−1) γγγ i = γγγ lk = {only the

highest order parameter}

Now the theorem statement must be proven for m = k+1, while the derivative matrix
is,

Dk+1 =

[
Dk Dk+1(θθθ k)

0 Dk+1(θθθ k+1)

]
.

The inestimable parameters should be,

zero cell inestimable parameters
yi(0) = y1 = 0 γγγ i = γγγ1 = {all parameters}

...
...

yi(0) = ylk = 0 γγγ i = γγγ lk

yi(1) = ylk+1 = 0 γγγ i = γγγ lk+1
...

...
yi(1) = ylk×2 = 0 γγγ i = γγγ lk×2

...
...

yi(l−1) = y(lk×l−1)+1 = 0 γγγ i = γγγ(lk×l−1)+1
...

...
yi(l−1) = ylk+1 = 0 γγγ i = γγγ lk+1 = {only the highest order parameter}
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In order to prove that these are inestimable parameters, we need to obtain the corre-
sponding ααα vectors. According to the repetitive pattern of ααα vectors that was observed
before, αααs are made of vectors of the previous step. Therefore the unique ααα vectors are,

zero cell inestimable parameters

yi(0) = y1 = 0 ααα(k+1)1 =

#l︷ ︸︸ ︷
(αααk1, . . . ,αααk1)

...
...

yi(0) = ylk = 0 ααα(k+1)lk = (αααklk , . . . ,αααklk)

yi(1) = ylk+1 = 0 ααα(k+1)(lk+1) = (0,αααk1,0, . . . ,0)
...

...
yi(1) = ylk×2 = 0 ααα(k+1)(lk×2) = (0,αααklk ,0, . . . ,0)

...
...

yi(l−1) = y(lk×l−1)+1 = 0 ααα(k+1)((lk×l−1)+1) = (0,0, . . . ,αααk1)
...

...
yi(l−1) = ylk+1 = 0 ααα(k+1)lk+1 = (0,0, . . . ,αααklk)

For the first 1
l of the cases in the above table, having a zero cell count gives

ααα = (αααki, . . . ,αααki). Since the theorem is assumed to be true for m = k, the first αααki

shows the corresponding parameter to that cell and given that, all parameters associated
with a higher order interaction of variables are inestimable for the last smaller model
(m = k). Repeating αααki, l − 1 times in the ααα vector shows some other parameters
of the new model are inestimable as well, which are the same previous parameters
corresponding to all levels of the new variable. As a result, the parameters stated in the
theorem are inestimable.

For the other cases in the above table, having a zero cell count makes an αααki happen
in the vector. αααki shows the corresponding parameter to that cell and given that, all
parameters associated with a higher order interaction of variables are inestimable for
the last smaller model, but as it appears after one or more vectors of zeroes here, those
parameters will have the higher levels of the new variable in their superscript and
subscript. In conclusion, the statement is true for m = k+1 and the theorem is proved
by induction.
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ααα vectors and D matrices

In all the previous examples for saturated log-linear models with one zero cell count in
their contingency tables, we observe that when a cell count is zero then the ααα vector
(which is the null space for the transpose of the derivative matrix containing zero
columns) matches the corresponding row of the main derivative matrix in terms of
the position of zero and non-zero elements. This is Theorem 3.6 in different words.
Because when each matrix row is the ααα vector of setting the corresponding column to
zero, then it has non-zero elements for the corresponding parameter to that cell and
given that, all parameters associated with a higher order interaction of variables.

For instance, in a saturated log-linear model for a 22 table, ααα vectors and inestimable
parameters for setting each cell equal to zero are,

D =


µ00 µ10 µ01 µ11

θ 1 1 1 1
θ X 0 1 0 1
θY 0 0 1 1

θ XY 0 0 0 1

 ,

zero cell ααα vector inestimable parameters
y00 = y1 = 0 ααα21 = (1,−1,−1,1) = 1st row of D θ ,θ X ,θY ,θ XY

y10 = y2 = 0 ααα22 = (0,1,0,−1) = 2nd row of D θ X ,θ XY

y01 = y3 = 0 ααα23 = (0,0,1,−1) = 3rd row of D θY ,θ XY

y11 = y4 = 0 ααα24 = (0,0,0,1) = 4th row of D θ XY

More than one zero cell

In fitting the saturated log-linear model to an lm contingency table, adding more zero
cells do not alter any previous inestimable parameter to be an estimable one. So the
set of the model’s inestimable parameters is the union of the inestimable parameters
caused by each zero cell. That set then is the set of the corresponding parameters to
all zero cells and given them, all parameters associated to a higher order interaction
of variables. Meanwhile, the estimable combinations of the parameters for the model
with more than one zero entry could be derived by solving the corresponding partial
differential equations (2.3).



Chapter 4

Existence of the MLE and comparison
with parameter redundancy

4.1 Maximum likelihood estimation in log-linear mod-
els

The prominent purpose of our work so far, has been detecting parameter redundancy
and the estimability of θ e(i) for a log-linear model defined in (1.5), as

mi = log µi = ∑
e∈E

θ
e(i),

which also leads to finding the estimable µi. In this chapter, we review the alternative
approach that seeks the estimable and inestimable cell means of the log-linear model
in the presence of zero cell counts by investigating the existence of the MLE for µi.
We refer to the approach described in Sections 4.1.1 and 4.1.2 as the existence of the
MLE (EMLE) method. In Section 4.2, this approach and its results are compared with
the parameter redundancy method. Section 4.3 discusses a specific kind of models
according to these two methods.

Maximum likelihood estimates of the expected values of cells in a contingency table
play a prominent role in the model selection and goodness of fit test [Bishop, 1975].
When sampling zeros occur in the contingency table, the maximum likelihood estimate
of some cell means may not exist. The conditions for the existence of the MLEs of the
cell means in log-linear models were studied by Birch [1963], Haberman [1973] and
Bishop [1975].

Assume the saturated log-linear model for a three-way table with three variables
X (rows), Y (columns) and Z (layers). Then the log-likelihood function (1.7) for this
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model is,

l(µµµ) =∑
i

∑
j
∑
k
(yi jk log µi jk −µi jk)

=y+++θ +∑
i

yi++θ
X
i +∑

j
y+ j+θ

Y
j +∑

k
y++kθ

Z
k +∑

i
∑

j
yi j+θ

XY
i j +∑

i
∑
k

yi+kθ
XZ
ik

+∑
j
∑
k

y+ jkθ
Y Z
jk +∑

i
∑

j
∑
k

yi jkθ
XY Z
i jk −∑

i
∑

j
∑
k

exp(θ + · · ·+θ
XY Z
i jk ).

yi jks are sufficient statistics for θ XY Z
i jk and maximum likelihood estimates for cell means.

Estimates of the model parameters do not exist when any yi jk = 0 and they are finite
only when all cell counts are positive [Agresti, 2002].

As a non-saturated model, consider the same three-way table with the fitted hier-
archical model (XY, XZ, YZ) which includes the main effects of the variables and first
order interactions between them. The corresponding likelihood function is,

l(µµµ) =∑
i

∑
j
∑
k
(yi jk log µi jk −µi jk)

=y+++θ +∑
i

yi++θ
X
i +∑

j
y+ j+θ

Y
j +∑

k
y++kθ

Z
k +∑

i
∑

j
yi j+θ

XY
i j

+∑
i

∑
k

yi+kθ
XZ
ik +∑

j
∑
k

y+ jkθ
Y Z
jk −µ+++.

Marginal totals yi j+,yi+ j,y+ jk are maximum likelihood estimates of their expectations
[Birch, 1963] and form a complete minimal sufficient statistic set under the Poisson
model [Haberman, 1973]. Therefore, cell mean estimates do not exist when any
marginal is zero in the set of sufficient marginals [Agresti, 2002]. For example if yi j+

is zero then an infinite estimate occurs for θ XY and maximum likelihood estimate of
µi j+ = µi j0 + µi j1 + . . . is zero which is not admissible in a log-linear model. Table
4.1 from Agresti [2002] shows minimal sufficient statistics for different hierarchical
log-linear models for a three-way contingency table.

Model Minimal sufficient statistics
(X ,Y,Z) yi++,y+ j+,y++k
(XY,Z) yi j+,y++k
(XY,Y Z) yi j+,yi+k

(XY,XZ,Y Z) yi j+,yi+k,y+ jk

Table 4.1 Minimal sufficient statistics for log-linear models in a three-way table.

For log-linear models with an explicit formula for µ̂i as a function of the observa-
tions, positivity of sufficient table marginals is a necessary and sufficient condition for
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the existence of the MLE of µµµ [Agresti, 2002]. These models are named decompos-
able models and can be interpreted in terms of the relationship among the variables,
such as independence and conditional independence [Goodman, 1970, 1971]. For non-
decomposable models, µ̂i is obtained by iterative methods and positivity of sufficient
table marginals is still a necessary condition for the existence of MLE, but it is no longer
sufficient. Table 4.2 from Agresti [2002] shows the formula for finding the estimates of
cell means for some different hierarchical models fitted to a three-way table. As it is
shown, the formula for cell mean estimates of a model with no three order interaction is
not known and numerical methods should be used to obtain the estimates.

Model Probabilistic form Estimated mean value
(X ,Y,Z) πi jk = πi++π+ j+π++ k µ̂i jk =

yi++y+ j+y++k
N2

(XY,Z) πi jk = πi j+π++k µ̂i jk =
yi j+y++k

N
(XY,XZ) πi jk =

πi j+πi+k
πi++

µ̂i jk =
yi j+yi+k

yi++

(XY,XZ,Y Z) πi jk = ψi jφ jkωik Iterative methods
(XY Z) No restriction µ̂i jk = yi jk

Table 4.2 Estimated mean values for log-linear models in a three-way table.

Note that knowing µ̂i = yi for a saturated model explains the result stated in Theorem
3.6. When one µ̂i = yi = 0, the logarithm of that cell mean tends to minus infinity along
with the parameter corresponding to that cell, while all other parameters in that equation
have already been estimated. When this parameter appears in the other equations of the
log-linear model, which all have finite µ̂i, only its summation with parameters with the
higher order interaction of variables are estimable, not any of those parameters alone.

4.1.1 Haberman’s Theorem

Linear manifolds are considered as a general way to describe the log-linear models
either from Poisson or multinomial sampling by Haberman [1973]. Assume M is a
p-dimensional linear manifold contained in RL and PM is the orthogonal projection
from RL to M . The next theorem concerns the MLE of m in (1.5).

Theorem 4.1. If an MLE m̂ exists, then it is unique and satisfies the equation

PM µ̂µµ = PM y.

Conversely, if for some m̂ ∈ M and µ̂µµ = em̂ the equation is satisfied, then m̂ is the MLE
of m. [Theorem 3.1, Haberman, 1973]

The theorem gives the MLE for the cell means of the contingency table. For example,
in a saturated model each cell count is the MLE for the corresponding cell mean and for
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the unsaturated models, certain marginal totals make the MLE. But no condition has
been given for the existence of the MLE so far. The next theorem provides a necessary
and sufficient condition for the existence of the MLE of m in (1.5) for Poisson and
multinomial models, regardless of the presence of positive or zero table marginals.
Define M⊥ as the following set,

M⊥ =
{

x ∈ R|L| : (x,m) = xTm = 0,∀m ∈ M
}
.

Theorem 4.2. A necessary and sufficient condition that the MLE m̂ of m exists is that
there exist δδδ ∈ M⊥ such that yi + δi > 0 for every i ∈ L. [Theorem 3.2, Haberman,
1973]

In this theorem, µµµ in m = log µµµ is assumed to be positive. The theorem specifies
whether the MLE of all the cell means exists or not for any pattern of zeros in the table.
The following examples from Haberman [1973] show the significance of this theorem.

Example 4.1. Consider fitting log-linear model (4.1) below to the contingency Table 4.3
with three variables categorized in two levels. This model is a hierarchical no-second-
order interaction model and can be shown as (XY, XZ, YZ) . If the table contained only
one zero cell, the model would be full rank. But there are two zero cells in the table,
with all other cells assumed to have positive observations.

log µi jk = θ +θ
X
i +θ

Y
j +θ

Z
k +θ

XY
i j +θ

XZ
ik +θ

Y Z
jk , i, j,k ∈ {0,1}2. (4.1)

In the matrix form, it is shown as,

m1 = log µ000

m2 = log µ100

m3 = log µ010

m4 = log µ110

m5 = log µ001

m6 = log µ101

m7 = log µ011

m8 = log µ111


=



1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

1 1 1 1 1 1 1





θ

θ X

θY

θ XY

θ Z

θ XZ

θY Z


.

None of the marginal totals yi j+,yi+ j,y+ jk are zero in this example and the model
is not decomposable. According to Theorem 4.2, the MLE exists if and only if there is
such an δδδ vector. The δδδ vector could be,

δδδ
T = (+δ ,−δ ,−δ ,+δ ,−δ ,+δ ,+δ ,−δ ),
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Z = 0
Y

X 0 1
0 0 y3
1 y2 y4

Z = 1
Y

X 0 1
0 y5 y7
1 y6 0

Table 4.3 Observations in a 23 contingency table.

as δδδ
Tm equals to zero,

δm1 −δm2 −δm3 +δm4 −δm5 +δm6 +δm7 −δm8

=δθ −δθ −δθ
X −δθ −δθ

Y +δθ +δθ
X +δθ

Y +δθ
XY −δθ −δθ

Z

+δθ +δθ
X +δθ

Z +δθ
XZ +δθ +δθ

Y +δθ
Z +δθ

Y Z

−δθ −δθ
X −δθ

Y −δθ
Z −δθ

XY −δθ
XZ −δθ

Y Z = 0.

But even with assuming 0 < δ < 1, yi +δi is not positive for i = 8. The estimated cell
means are shown in Table 4.4. If there is a positive estimate δ in the first cell, then the
other mean estimates are determined by that δ , which imposes a negative estimate in
the last cell. It is clearly impossible to find a δ that yields a positive estimate for the
mean of both zero cells, unless it is δ = 0 which means the fitted values are the same as
the observations [Bishop, 1975]. Thus, there is not such a δδδ as defined in the theorem
and the MLE of m does not exist.

Z = 0
Y

X 0 1
0 +δ y3 −δ

1 y2 −δ y4 +δ

Z = 1
Y

X 0 1
0 y5 −δ y7 +δ

1 y6 +δ −δ

Table 4.4 The estimated cell means.

This example was initially introduced as a “pathological example” since none of the
sufficient marginals of the table is zero and the MLE of µµµ does not exist [Haberman,
1973]. However, Theorem 4.2 clarifies the reason for this non-existent MLE. Although
the sufficient statistics are positive, they impose constraints that make some cell mean
estimates (those cells with zero observation) equal to zero. Non-existent MLE is
reported in computational packages by failure in convergence or large standard errors
for some estimates. More examples of sparse contingency tables with positive margins
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but non-existent MLE for the cell means are provided by Fienberg and Rinaldo [2007].
They prove that for a 2k contingency table and the model of no-(k−1) order interaction,
the probability that two randomly placed sampling zeros cause the non-existent MLE
without inducing zero margins is,

2k−1 − k
2k −1

. (4.2)

The next example fits the same model (4.1) to a different pattern of zeros in the 23 table.

Example 4.2. Consider fitting model (4.1) to the pattern of zeros in Table 4.5. Accord-
ing to Theorem 4.2, the positive MLE for all the cell means in this model exists, as the
possible δδδ is,

δδδ
T = (+δ ,−δ ,−δ ,+δ ,−δ ,+δ ,+δ ,−δ ).

δδδ
Tm equals to zero and by assuming 0 < δ < 1 we have yi +δi > 0 even if the positive

cell counts are as small as 1. Adding and subtracting these appropriate amounts to the
observed data eliminate the zero cells in the table. So the estimated cell means are as
shown in Table 4.6 and the MLE of m does exist. This is the positive vector of values
which provides the same vector of margins in (4.3).

Z = 0
Y

X 0 1
0 0 y3
1 y2 0

Z = 1
Y

X 0 1
0 y5 y7
1 y6 y8

Table 4.5 Observations in a 23 contingency table.

Z = 0
Y

X 0 1
0 +δ y3 −δ

1 y2 −δ +δ

Z = 1
Y

X 0 1
0 y5 −δ y7 +δ

1 y6 +δ y8 −δ

Table 4.6 The estimated cell means.
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The extended MLE

Theorem 4.2 assumes that µµµ can only be positive and it gives a result that either the
MLE exists for all the cell means or not. For model (1.5), we have,

µµµ = exp{m}, or log µµµ = m, m = Aθθθ .

This re-parametrization is not able to cover the whole range of µ . µ as the mean of a
Poisson variable may take value of zero, but there is no equivalent for that in the log
expression. For example, assume that we have only one observation from the Poisson
distribution, which happens to be zero. The corresponding probability function is,

P(Y1 = 0) = e−µ , µ ≥ 0.

This function clearly has a maximum, which happens at µ = 0, so this point is the
MLE for cell mean or µ̂MLE = 0. But there is no equivalent for this estimate in the
sense of log µµµ = m as the logarithm of zero is not defined [Baker and Clarke, 1985].
Theorem 4.2 does not allow for a zero estimate for Poisson means as the parameter
space is defined for µµµ > 0 to accommodate for the log expression. To cover such
cases, Haberman [1974] introduced the “Extended MLE” for µ which could be zero
as well and cancels the restriction previously set for the parameter space. So the MLE
for µµµ always exists and maximizes the likelihood function, although in some cases
there is µ̂i = 0 and the logarithmic re-parametrization of µi is not defined [Baker and
Clarke, 1985]. Feinberg and Rinaldo [2012a] indicates the extended MLE is always well
defined in the “extended exponential family of distributions”, in which, for example,
the parameter of Poisson distribution is a non-negative integer.

This concept enables us to proceed with the models that according to Theorem 4.2
do not have the existent MLE for µµµ . Examples of such a model could be a saturated
log-linear model with at least one zero observation or the model presented in Example
4.1. After detecting the cells in which µ̂i = 0 and respectively some θ →−∞, we can
still find the estimates for the other cell means and model parameters.

4.1.2 The polyhedral method

A necessary and sufficient condition for the existence of the unique MLE of the vector
of cell means was provided in Theorem 4.2, assuming that each cell mean estimate
could only be positive. A geometric and polyhedral equivalent of that theorem to detect
the existence of the MLE of cell means for a hierarchical log-linear model is presented
by Eriksson et al. [2006]. This new approach gives a simpler way and an algorithm to
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check whether the MLE of the cell means exists or not. Detailed definitions and more
information on polytopes are provided by Lauritzen [1996], Ziegler [1995] and Gentle
[2007].

Consider M is a p-dimensional log-linear subspace for the log-linear model and A

is the corresponding |L|× p design matrix which is not required to be full rank [Fienberg
and Rinaldo, 2005], but for simplicity we assume it as a full rank matrix with rank p

[Fienberg and Rinaldo, 2012b]. The Polyhedral cone generated by spanning columns of
the matrix A is,

CA = {t : t = ATy,y ∈ R|L|
≥0}, (4.3)

which is called the marginal cone [Fienberg and Rinaldo, 2005]. It is an intersection
of a finite number of half spaces [Dotour, 2008], or a set spanned by vectors. The
p-dimensional vector t is the vector of marginal totals including sufficient statistics for
the vector of µµµ [Fienberg and Rinaldo, 2005]. The necessary and sufficient condition
for the existence of the MLE of µµµ in Theorem 4.2 could be reduced to the geometric
study of these sufficient statistics. Eriksson et al. [2006] prove that under any sampling
designs (Poisson, multinomial, Product multinomial) the MLE of µµµ , thus m, exists if
and only if the observed margins, t = ATy, lie in the relative interior of the marginal
cone. In this case, the log likelihood function parametrized by cell means (m ∈ M ) or
natural parameters (θθθ ∈ Rp) is a concave function and guarantees a unique maximizer.
The relative interior of the marginal cone is {t : t = ATy,y ∈ R|L|

>0}. So the MLE of
µµµ exists if and only if there exist a y > 0 for which t = ATy, and this is equivalent
to Theorem 4.2. These concepts are also studied for a more general sampling design
known as conditional Poisson scheme, originally introduced by Haberman based on
linear restrictions on data y, by Fienberg and Rinaldo [2012a].

Consider model (4.1) for which t = ATy is,



y+++

y1++

y+1+
y11+
y++1
y1+1
y+11


=



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1





y000
y100
y010
y110
y001
y101
y011
y111


.

For the given observations in Example 4.2, the positive integer vector yT = (y000 +

δ ,y100 − δ ,y010 − δ ,y110 + δ ,y001 − δ ,y101 + δ ,y011 + δ ,y111 − δ ) produces exactly
the same t, thus the MLE exists. But for the observed cell counts in Example 4.1, this
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vector is not all positive any more although the vector of margins is still fixed. Thus for
this pattern of zeros the MLE does not exist according to the polyhedral condition.

This polyhedral condition also means that the MLE does not exist if and only if
t =ATy lies on a facet of the marginal cone CA, or in other words, belongs to the relative
interior of some proper face of the marginal cone [Eriksson et al., 2006, Fienberg and
Rinaldo, 2005 and 2012]. Therefore, to realise if the MLE exists or not, instead of
finding δδδ (in Theorem 4.2) or y > 0 (such that t = ATy), we can check whether the
marginals vector lies on a facet of the cone to expose a zero pattern which is one of the
facets of the cone.

A face of the marginal cone is defined as a set F= {t ∈CA : (t,ζζζ ) = 0} for some
ζζζ ∈ Rp, such that (t,ζζζ )≥ 0 for all t ∈CA, and (t,ζζζ ) represents their inner product. A
polyhedral cone has a finite number of faces and it is a face of itself which is called the
improper one [Fienberg and Rinaldo, 2005].

The facial set F is a set of cell indexes of the rows of A whose conic hull is
precisely F. It means, F ⊆ L is a facial set of F for any design matrix A for M , if there
exists some ζζζ ∈ Rp such that,

(A(i),ζζζ ) = 0, if i ∈ F , (4.4)

(A(i),ζζζ )> 0, if i ∈ F c,

A(i), i = 1, . . . ,n is the ith row of A and F c = L−F is the co-facial set of F. So in
terms of notations, F is a face, F is a facial set and F c is a co-facial or a facet of a
cone [Fienberg and Rinaldo, 2012a, 2012b].

Another way to define the facial set is by denoting sub matrices obtained from
A, named A+ and A0. They are made of rows indexed by L+ := {i : yi ̸= 0} and
L0 := {i : yi = 0} respectively. The vector of marginals belongs to the relative interior
of some proper face of the marginal cone if and only if F c ⊆ L0. This is equivalent to
the existence of a vector ζζζ satisfying the following three conditions:

1. A+ζζζ = 0. (4.5)

2. A0ζζζ  0.

3. The set{i : (Aζζζ )(i) ̸= 0}has maximal cardinality among all sets of the form

{i : (Ax)(i) ̸= 0}with Ax  0 [Fienberg and Rinaldo, 2012b].

In these three conditions and also in (4.4) the inequality signs greater than zero could be
switched to less than zero without loss of generality [Fienberg and Rinaldo, 2005]. In
conclusion, if rank(A+) = rank(A), the MLE exists since there is not such a vector like
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ζζζ and F c =∅. If rank(A+)< rank(A), the MLE may still exist, so we should search
for a facial set [Fienberg and Rinaldo, 2012b].

Example 4.3. As a general example, consider fitting model (4.1) to a 23 contingency
table with two zero cell counts. We can find all the zero patterns that lead to a non-
existence MLE in this model. As mentioned before, the marginals yi j+,y+ jk,yi+k are
sufficient statistics and there are four different marginals of each, so they could make 12
zero patterns with the non-existence MLE. There are four more patterns which are not
causing zero marginals but still it is not possible to find a δδδ for them that suits Theorem
4.2, or a ζζζ that fits (4.4) is possible. In these patterns, zeros could be in cells 1 and 8
(Example 4.1), or cells 2 and 7, or cells 3 and 6, or cells 4 and 5. Therefore, there are 16
facets of the cone, which 12 of them are associated with zero margins. Then, according
to (4.2), the probability that two randomly zeros cause the non-existent MLE without

inducing zero margins is
4

28
=

1
7

, as there are 28 different cases of choosing two cells
from 8 cells.

Algorithms to detect the existence of the MLE

Linear and non-linear optimisation methods can be applied to detect the existence of
the cell mean MLEs based on the polyhedral description of the model. Two of such
algorithms from Fienberg and Rinaldo [2012b] are given here. The first one indicates
whether the MLE exists and the second one provides the inestimable cells of the table
in case of non-existent MLE. More alternative methods of linear and non-linear optimi-
sation for the same purposes are presented by Fienberg and Rinaldo [2012b].

Algorithm 1: The polyhedral condition for the existence of the MLE, that observed
margins must lie in the relative interior of the marginal cone, is equivalent to the
following linear program,

max s

such that ATy = t

yi − s ≥ 0, ∀i

s ≥ 0.

The MLE does not exist if and only if the optimum s∗ is zero, since it means that a
strictly positive vector of cell counts satisfying ATy = t does not exist.
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Algorithm 2: When rank(A) is bigger than rank(A+), we look for finding the facial set.
Kernels of (A+) can be put in columns of a matrix like Z, then define B = A0Z whose
rank is q = rank(A)− rank(A+). So,

AZy =

[
A+Zy
A0Zy

]
=

[
0

By

]
,

for some y ∈ Rq. It is the same as the non-linear optimisation problem,

max |supp(By)|

such that By ≥ 0.

The MLE exists if and only if the system By  0 is infeasible and any optimal solution
y∗ identifies the co-facial set F c = {i : (By∗)(i) ̸= 0}.

What if the MLE does not exist?

If we conclude that the MLE exists by checking any of the methods explained before,
then the log-likelihood function must be maximised to find the estimates for model
parameters. Therefore,

θ̂θθ = argmaxθθθ∈Rpl(θθθ) = argmaxθθθ∈RptTθθθ −1T exp(Aθθθ).

If A is full rank a numerical method like the Newton-Raphson could be implied to find
a unique maximizer and it will converge from any starting approximation. Then the
MLE of the cell mean vector is m̂ = exp(Aθ̂θθ) [Fienberg and Rinaldo, 2012b].

If the MLE does not exist, then based on the extended MLE theory we can take a
subset of size pF of the original parameters (or a linear combinations of them [Fienberg
and Rinaldo, 2012a]) and estimate them. Let AF be the matrix whose rows are only
those from A that their coordinates are in F , so its rank is pF and whose column
span is MF (the methods and algorithms described before are used to find the set
F ). Then we can replace this |F | × p design matrix with any other full rank one
named A∗

F of rank pF and identical column range to use a minimal representation
(pF = rank(AF ) = rank(A∗

F )). Now the natural parameter space for the reduced model
is RpF . A∗

F is made of any linear independent rows from AF and can be formed by using
Proposition 5.1 in [Fienberg and Rinaldo, 2012b]. The idea of the extended exponential
family provides justification to identify a subset of cell means and parameters which
are estimable and the inestimable cells in F c are treated as being structural zeros. By
implementing this reduced design matrix, the log likelihood function is defined which
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is concave and admits a unique maximizer. The extended MLE is,

θ̂θθ
e
= argmaxθθθ∈RpF lF(θθθ) = argmaxθθθ∈RpF tTF θθθ −1T exp(A∗

F θθθ), (4.6)

in which tF = (A∗
F )TyF , and the MLE of the cell mean vector is m̂e = exp(A∗

F θ̂θθ
e
).

The Newton-Raphson method is the primary approach to finding the estimates. The
degree of freedom for the reduced model is d. f = |F |− rank(A∗

F ), which is the number
of usable data or cell means that are estimable minus the number of estimable log-linear
model parameters [Fienberg and Rinaldo, 2012a, 2012b]. Examples to illustrate the
existence of the MLE method are provided in section 4.2.2.

Modifying the likelihood function in a straightforward way and maximizing the
extended likelihood function by iterative numerical methods to find the MLEs are
studied by Fienberg and Rinaldo [2012a, 2012b].

4.2 Comparing the two approaches: The existence of
the MLE and the parameter redundancy

4.2.1 Methods comparison

The two approaches are empirically compared here with respect to their processes and
produced results. If there are such facial and co-facial sets as defined in (4.4), the MLE
does not exist and some of the zero cells are treated as structural zeros. In the parameter
redundancy, this is equivalent to αααTD = 0 and no esoteric constraints in αααTU(θθθ) = 0
which translates to the existence of a flat ridge, non-orthogonal on the parameters’
axes, or a flat surface in the likelihood function. When rank(A+) = rank(A) and the
co-facial set is null, the MLE exists. It is equivalent to the model being full rank in
the parameter redundancy, so there is a peak point in the likelihood function. When
rank(A+)< rank(A) and there is no co-facial set as described in (4.4), the MLE exists.
In the parameter redundancy, it means that the model is parameter redundant but the
esoteric constraints exist. It is possible then to find the MLEs for all the parameters
as the flat ridge in the likelihood function is orthogonal on some of the parameters’
axes. Furthermore, the D matrix in the parameter redundancy approach is the same
as the transpose of A+ matrix in the existence of the MLE approach. We look for
finding the ααα vector satisfying αααTD = 000, then ααα = ζζζ

T in (4.5). The second and third
conditions in (4.5), which indicate whether the MLE exists or not, perform the same
task as αααT U(θθθ) = 0.

In the parameter redundancy method, we do not use the table marginals until utilising
the log-likelihood function to determine the esoteric constraints, despite the polyhedral
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method which is based on the observed marginal vector. When the pattern of zeros in
the table does not show a marginal zero, the rank of the derivative matrix may still get
decreased and make the model parameter redundant. However, for parameter redundant
models that the MLE exists, the presence of the esoteric constraints makes all the
parameters estimable (and these are the only models that we have observed the esoteric
constraints for them). Providing the esoteric constraints by the parameter redundancy
method is an advantage, since they present some extra information about the relation
among parameters in the likelihood function of the parameter redundant models with
the existent MLE.

The existence of the MLE approach focuses on µµµ not θθθ since θs have different
interpretations based on the chosen parameter constraint, while the concept of the cell
means is constant. In the parameter redundancy approach, the focus is on θθθ as the
parameters that describe the relation between variables and their effect on the cell means.
Some examples of studies that are interested in estimating θs are given in Chapter 5.
After identifying the estimable and inestimable cell means or θs, it is possible to
find which of the other ones are estimable. In the parameter redundancy approach
the number of estimable cell means is not known in advance, unlike the existence of
the MLE approach, in which |F | shows the number of estimable cell means and pF
shows the number of estimable model parameters. Another difference between the two
methods is that the polyhedral method is defined only for the hierarchical and the class
of graphical models but the parameter redundancy approach is not limited to these type
of models.

As it was mentioned before, the existence of the MLE approach converts the problem
to an optimisation issue which can be handled with various numerical methods. Wang
et al. [2016] report that these methods to find the co-facial sets do not work when
the number of variables in the model is larger than 16. In the parameter redundancy
approach, the symbolic algebra package Maple is used to simultaneously solve a number
of corresponding partial differential equations and it is unable to do the calculation for
a large number of equations when the model deficiency is about 40.

4.2.2 Examples

In this section, we investigate a few examples by using the two methods; parameter
redundancy described in Section 2.3 and the existence of the MLE described in Section
4.1.

Example 4.4. The example presented in Section 2.6, including a contingency table
with three variables and three levels for each, was studied by the parameter redundancy
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Fig. 4.1 AF matrix for the log-linear model fitted to the 33 contingency table.

method. Now we investigate the same example by using the existence of the MLE
method to compare the results. The contingency table is given in Table 2.3 and the
design matrix is shown in Figure 2.1 for the model,

log µµµ27×1 = A27×19θθθ 19×1.

The rank(A) = 19 and we have,

L0 = {1,2,15,17,18,19,20,25},

L+ = L−L0,

such that the numbers show the corresponding cells in the contingency table. Matrices
A+ and A0 get the rows from A with corresponding numbers in L+ and L0. Then
rank(A+) = 18 < rank(A) = 19, and the MLE may still exist, so we search for a facial
set. The facial set and co-facial set of the cone and ζζζ according to conditions (4.4) are,

F c = {1,2,15,18,19,20},

F = L−F c,

ζζζ
T
= (1,0,−1,−1,−1,−1,0,0,1,0,1,1,1,0,0,0,1,0,0).

Cells 17 and 25 are included in L0 but not in F c, as those corresponding rows of
the design matrix multiply in ζζζ equal to zero as well. Therefore, cells 17 and 25 are
distinguished with bold in the contingency table.

Now we can form AF matrix, which is shown in Figure 4.1. The dimension of this
matrix is |F |× p = 21×19 and rank(AF ) = pF = 18, so it is not a full rank matrix.
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The matrix A∗
F which is full rank with dimensions |F |× pF = 21×18, should be

formed by reducing AF . If we use the function drop.coef in R, the reduced design
matrix is AF without its 17th column. Meaning that θ XZ

21 is removed from the model
and the new set of variables θθθ

′ is containing 18 parameters. Thus the reduced model,
non saturated with d. f = |F |− pF = 3, is,

log µµµ
′
21×1 = A∗

21×18θθθ
′
18×1.

By comparing the result from this method with what we obtained in Section 2.6,
we realise that there are different vectors of 18 estimable parameters, but the estimates
for each available parameter and for the cell means would be the same in a numerical
example. Which cell means or θ parameters are estimable depends on the design matrix
for the reduced model or A∗

F and the two methods have different ways to construct it.
In the polyhedral method, AF must be reduced to a full rank matrix. In the parameter
redundancy method, we consider the estimable combinations of parameters and find out
which cell means could be defined by them and form the reduced design matrix based
on that.

For this model, there does not exist a δδδ as in Theorem 4.2 or an all positive vector
that satisfies (4.3), so the MLE does not exist. Also by checking the esoteric constraint
conditions, we are not able to derive any constraint that makes all the cell means
estimable.

In the next two examples, we revisit Example 4.1 and Example 4.2 to apply both
methods of parameter redundancy and the existence of the MLE. For a parameter
redundant model without any possible additional esoteric constraints, as for the model
in Example 4.1, the only way to proceed with the initially considered model is to reduce
it. But for a model which is parameter redundant and the MLE does exist according to
the existence of the MLE method, there are more options to consider. For the model in
Example 4.2, there is an esoteric constraint that can make all the parameters estimable.
This suggests two ways to deal with these type of models. We could reduce the model
to a smaller identifiable one, or use the esoteric constraint which is equivalent to using
the numerical methods and maximize the likelihood function to obtain the MLE for all
the parameters.

Example 4.5. Consider the model and the data presented in Example 4.1. We showed
that the MLE does not exist for this model according to Theorem 4.2. We revisit this
example using both methods of parameter redundancy and the EMLE.
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Parameter redundancy. If the table contained only one zero cell, the model would be
full rank. But there are two zero cells in the table and all other cells are assumed to
have positive cell counts. In order to discover the possible parameter redundancy, we
apply the method described in Section 2.3. The associated derivative matrix is,

D =



µ000 µ100 µ010 µ110 µ001 µ101 µ011 µ111

θ 0 y2 y3 y4 y5 y6 y7 0

θ X 0 y2 0 y4 0 y6 0 0

θY 0 0 y3 y4 0 0 y7 0

θ XY 0 0 0 y4 0 0 0 0

θ Z 0 0 0 0 y5 y6 y7 0

θ XZ 0 0 0 0 0 y6 0 0

θY Z 0 0 0 0 0 0 y7 0


.

The rank of this matrix is 6, so d = p− r = 7−6 = 1 and from (2.2) we have,

ααα
T = (1,−1,−1,1,−1,1,1).

Solving the corresponding equations in (2.3) indicates the estimable parameters are,

θθθ
′T = (θ +θ

X ,θ +θ
Y ,−θ +θ

XY ,θ +θ
Z,−θ +θ

XZ,−θ +θ
Y Z).

According to these estimable combinations of parameters, all of the cell means but the
first one (log µ000 = θ ) and the last one (log µ111 = θ +θ X +θY +θ XY +θ Z +θ XZ +

θY Z) are estimable. We treat these two cells as they are structural zeros and remove
them from the model. Then, we reduce the model to a saturated one with design matrix
of rank 6, and the MLE for model parameters and cell means would be derived by
maximizing the likelihood function of the reduced model. The reduced model is,

log µ100

log µ010

log µ110

log µ001

log µ101

log µ011


=



1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

0 0 0 1 0 0

1 0 0 1 1 0

0 1 0 1 0 1





θ +θ X

θ +θY

−θ +θ XY

θ +θ Z

−θ +θ XZ

−θ +θY Z


.

To check if there is an esoteric constraint for this parameter redundant model, we have,

ααα
TU(θθθ) = y000 + y111 − eθ − eθ+θ X+θY+θ XY+θY+θ XZ+θY Z

,
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which cannot be zero for finite θs, as,

−eθ − eθ+θ X+θY+θ XY+θY+θ XZ+θY Z
̸= 0.

Therefore, there is no esoteric constraint for this model.

The existence of the MLE. This example includes no zero sufficient marginals for the
model but positive MLE for the cell means do not exist according to the Haberman’s
sufficiency and necessary condition for the existence of the MLE. The mentioned
polyhedral condition also confirms that the MLE do not exist for this example as there
is no y > 0 that yields (4.3).

The sub-matrices of the design matrix are,

A+ =



1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1


, A0 =

[
1 0 0 0 0 0 0

1 1 1 1 1 1 1

]
.

The facial and co-facial sets and ζζζ vector as defined to satisfy conditions (4.4) are,

F = {100,010,110,001,101,011},

F c = {000,111},

ζζζ
T
= (1,−1,−1,1,−1,1,1),

which also satisfies three conditions of (4.5). Rank(A+)< rank(A), so the MLE might
exist. Due to the existence of ζζζ , the vector of marginals belongs to the relative interior
of the face F, then the MLE does not exist for all of the cell means.

A+ζζζ =



1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1





1

−1

−1

1

−1

1

1


= 0,
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A0ζζζ =

[
1 0 0 0 0 0 0

1 1 1 1 1 1 1

]


1

−1

−1

1

−1

1

1


=

[
1

1

]
.

To double check that the vector of marginals (t) belong to the relative interior of the
face F, we have,

F= {t ∈CA : ζζζ
Tt = 0}= {ATy : ζζζ

T
ATy = 0}.

The ζζζ that we have found matches the above condition, meaning ζζζ
T
ATy = 0. Because

ζζζ
T
AT is zero for those columns of AT that are rows of A+ as A+ζζζ = 0. Then the other

elements of ζζζ
T
ATy are zero, since the yis corresponding to them are zero.

The MLE does not exist for this model and we must reduce the model. In this
example, AF = A+. The design matrix for the reduced model is A∗

F which is a
|F | × pF = 6× 6 matrix. It could be found by using the suggested proposition in
Fienberg and Rinaldo [2012b] and using their MATLAB function Recompute-Basis1.
Given a matrix U not of full-column rank, this function produces a matrix of full column
rank whose columns are a subset of the columns of U. Then, based on the reduced
design matrix, the final model becomes,

log µ100

log µ010

log µ110

log µ001

log µ101

log µ011


=



1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 0 0 1 0

1 1 0 0 1 1

1 0 1 0 1 0





θ

θ X

θY

θ XY

θ Z

θ XZ


.

The estimable cell means are the same as derived by the parameter redundancy approach,
but θY Z is dropped from the model. So six estimable parameters remain (instead
of making six estimable combinations of parameters). The estimates for this set of
parameters are derived by maximizing the corresponding likelihood function as it is
shown in (4.6).

Function drop.coef in R could also be used to transform matrix AF to another
full rank matrix by dropping some of its columns. The matrix given by this function

1Available at http://www.stat.cmu.edu/~arinaldo/?page_id=137

http://www.stat.cmu.edu/~arinaldo/?page_id=137
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is AF without the 6th column. Hence, one of the parameters (θ XZ) is removed as the
dimension of the parameters vector must be 6×1.

In a numerical example, the maximum likelihood estimates for all six estimable cell
means are the same in these two methods, and log-linear model parameter estimates are
likewise consistent. For example, the estimated value for θ +θ X in the first reduced
model equals to θ̂ + θ̂ X in the second one. Although both methods reduce the model to
a model with only six estimable parameters, the parameters interpretations are different.
The parameters derived by parameter redundancy approach are exactly the ones in the
initial model. But for instance, θ in the second reduced model is not the intercept of the
initial log-linear model.

Example 4.6. Consider the model and the data table presented in Example 4.2. We
showed that the MLE exists for this model according to Theorem 4.2. We revisit this
example by using both methods of parameter redundancy and the EMLE.

Parameter redundancy. For applying the parameter redundancy approach, the derivative
matrix is derived as,

D =



µ000 µ100 µ010 µ110 µ001 µ101 µ011 µ111

θ 0 y2 y3 0 y5 y6 y7 y8

θ X 0 y2 0 0 0 y6 0 y8

θY 0 0 y3 0 0 0 y7 y8

θ XY 0 0 0 0 0 0 0 y8

θ Z 0 0 0 0 y5 y6 y7 y8

θ XZ 0 0 0 0 0 y6 0 y8

θY Z 0 0 0 0 0 0 y7 y8


.

The rank of this matrix is 6 again and d = p− r = 7−6 = 1. Then,

ααα
T = (1,−1,−1,0,−1,1,1),

which indicates the estimable parameters are,

θθθ
′T = (θ +θ

X ,θ +θ
Y ,θ XY ,θ +θ

Z,−θ +θ
XZ,−θ +θ

Y Z).

By considering these estimable combinations, log µ000 and log µ110 are not estimable.
So we reduce the initial model to a saturated one with the design matrix of rank 6. The
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reduced model is,

log µ100

log µ010

log µ001

log µ101

log µ011

log µ111


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 1 1 0

0 1 0 1 0 1

1 1 1 1 1 1





θ +θ X

θ +θY

θ XY

θ +θ Z

−θ +θ XZ

−θ +θY Z


.

To check if there is an esoteric constraint for this parameter redundant model, we have,

ααα
TU(θθθ) = y000 − y110 − eθ + eθ+θ X+θY+θ XY

= 0,

which means the esoteric constraint is,

θ
X +θ

Y +θ
XY = 0, or, log µ000 = log µ110. (4.7)

Imposing this constraint on model (4.1) makes all parameters estimable, although the
model is parameter redundant and has a flat ridge in the likelihood surface. From
equation (4.7), θ XY = −θ X − θY and we know that θ XY is estimable. So the three
estimable combinations of parameters (−θ X −θY ,θ +θ X ,θ +θY ) make a system of
three equations and three unknowns and in result (θ ,θ X ,θY ) are estimable. Estimability
of θ makes other parameters θ Z,θ XZ,θY Z estimable.

The existence of the MLE. The existence of the MLE in this example is also confirmed
by the polyhedral condition as the observed marginals lie in the relative interior of
the marginal of the polyhedral cone. There exists a y > 0 such that satisfies (4.3), Let
0 < δ < 1, then,

yT = (y1 +δ ,y2 −δ ,y3 −δ ,y4 +δ ,y5 −δ ,y6 +δ ,y7 +δ ,y8 −δ ).

Or in other words, there is no ζζζ which satisfies conditions in (4.4). The sub-matrices of
the design matrix are,

A+ =



1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

1 1 1 1 1 1 1


, A0 =

[
1 0 0 0 0 0 0

1 1 1 1 0 0 0

]
.
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Rank(A+)< rank(A), so the MLE might still exist. To try to find ζζζ , we have,

A+ζζζ =



1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

1 1 1 1 1 1 1





1

−1

−1

0

−1

1

1


= 0,

but,

A0ζζζ =

[
1 0 0 0 0 0 0

1 1 1 1 0 0 0

]


1

−1

−1

0

−1

1

1


=

[
1

−1

]
,

which is not strictly positive (or negative). So we are unable to find a ζζζ vector that
satisfies the three conditions (4.5). It means the facial and co-facial sets do not exist in
this case and the MLE exists. Thus, we can calculate the MLEs for all parameters of
this model by numerical methods. The esoteric constraint (4.7) will still be true as a
relation among the parameters but the numerical methods reach the estimates without
reporting this constraint.

4.3 Parameter redundant models with existent MLE

We make use of a numerical example for a parameter redundant model with existent
MLE to investigate the various options of handling such models. Three possible ways
of dealing with such a model are reviewed here:

• Reducing the parameter redundant model to a smaller non-redundant one.

• Estimate the MLE for all the parameters using the numerical methods or the
explicit formulas to estimate cell means of decomposable models, knowing that
an extra set of constraints exists among the parameters.

• Since the esoteric constraints do reduce the number of initial parameters (by
setting constraints among them), we might be able to find another model with
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Y
X 0 1
0 0 44
1 538 0

(a) Observations

Y
X 0 1
0 40.67 3.33
1 497.3 40.67

(b) Cell mean estimates

Y
X 0 1
0 − 44
1 538 −

(c) Cell mean estimates
in the reduced model

Table 4.7 A 22 table for the model of no-second-order interaction.

the same number of parameters which fits the data better by providing a smaller
residual deviance or a smaller Akaike Information Criterion (AIC).

The example which is used here, was briefly mentioned in Section 2.5.3. Assume
we are fitting the independence model or the model with no-first-order interaction for
two variables,

log µi j = θ +θ
X
i +θ

Y
j , i, j ∈ {0,1}, (4.8)

which could be shown as,

m1 = log µ1 = log µ00 = θ ,

m2 = log µ2 = log µ10 = θ +θ
X ,

m3 = log µ3 = log µ01 = θ +θ
Y ,

m4 = log µ4 = log µ11 = θ +θ
X +θ

Y .

The observed data are shown in Table 4.7, part (a).
In Section 2.5.3, the estimates with reasonable standard errors for this model

parameters θθθ
T = (θ ,θ X ,θY ) were obtained by the glm function in R as,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 3.7056 0.1512 24.50 <2e-16 ***

A2 2.5037 0.1568 15.97 <2e-16 ***

A3 -2.5037 0.1568 -15.97 <2e-16 ***

---

predictions:

1 2 3 4

40.67354 497.32646 3.32646 40.67354

---

Residual deviance: 311.83 on 1 degrees of freedom

AIC: 331.58

BIC: 329.7379
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However, it is a decomposable model and we can calculate the estimates directly as
below,

log µ̂00 = θ̂ = log
y0+y+0

N
= log

44×538
44+538

= log40.67 = 3.7,

log µ̂10 = θ̂ + θ̂
X = log

y1+y+0

N
= log

538×535
44+538

= log497.3 = 6.2,

log µ̂01 = θ̂ + θ̂
Y = log

y0+y+1

N
= log

44×44
44+538

= log3.33 = 1.2,

log µ̂11 = θ̂ + θ̂
X + θ̂

Y = log
y1+y+1

N
= log

44×538
44+538

= log40.67 = 3.7

Therefore, the expected cell counts are the values obtained by R in Table 4.7, part
(b). These equations force θ X + θY = 0 and we get the same estimates for θ X and
θY with opposite signs and the same standard errors. This is the esoteric constraint
defined in Section 2.7 that makes all parameters estimable by obliging the flat ridge to
be orthogonal on some parameter axes. In this example we have,

ααα
TU = y00 − y11 − eθ + eθ+θ X+θY

= 0.

It means θ X =−θY or log µ00 = log µ11. Thus, we draw the conclusion that the fitted
model here is actually a model with only two parameters due to the esoteric constraint,
which could be presented as,

log µ1 = log µ00 = θ , (4.9)

log µ2 = log µ10 = θ +θ
X ,

log µ3 = log µ01 = θ −θ
X ,

log µ4 = log µ11 = θ .

Fitting this model gives the same estimates as before for θθθ
T = (θ ,θ X) as shown below,

but the model has 2 degrees of freedom not 1.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

x31 3.7056 0.1028 36.03 <2e-16 ***

x32 2.5037 0.1109 22.58 <2e-16 ***

---

predictions:

1 2 3 4

40.67354 497.32646 3.32646 40.67354

---

Residual deviance: 311.83 on 2 degrees of freedom

AIC: 329.58
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BIC: 328.3516

In order to check the parameter redundancy for model (4.8), the derivative matrix is
formed as,

D =


µ00 µ10 µ01 µ11

θ 0 538 44 0
θ X 0 538 0 0
θY 0 0 44 0

 .
The rank of the matrix is 2 and there are d = p− r = 3−2 = 1 vector of ααα(θθθ), which
is αααT = (1,−1,−1). After solving the corresponding partial differential equation, the
estimable parameters are θ +θ X ,θ +θY and estimable cell means are µ01,µ10. We
reduce the initial model to a model with only these two estimable parameters and two
estimable cells, which is a saturated model,

log µ2 = log µ10 = θ +θ
X , (4.10)

log µ3 = log µ11 = θ +θ
Y .

The estimates for model parameters θθθ
′T = (θ +θ X ,θ +θY ) and two cell means are

obtained with reasonable standard errors as below and are also shown in Table 4.7, part
(c).

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 6.28786 0.04311 145.8 <2e-16 ***

A2 3.78419 0.15076 25.1 <2e-16 ***

---

predictions:

1 2

538 44

---

Residual deviance: -4.7073e-14 on 0 degrees of freedom

AIC: 17.752

BIC: 15.13819

Models (4.9) and (4.10) are not comparable, as the later one describes only two
cell counts but the first one describes all four cell counts. Although model (4.9) is
obtained automatically from the esoteric constraint and is maximising the likelihood
function, the goodness of fit measurements do not seem very promising. We want to
realise if there exist other possible models with four cells and only two parameters
which improve these estimates and goodness of fit measurements. A possible model



4.3 Parameter redundant models with existent MLE 92

which is empirically derived can be,

log µ1 = log µ00 = θ −θ
X , (4.11)

log µ2 = log µ10 = θ +θ
X ,

log µ3 = log µ01 = θ ,

log µ4 = log µ11 = θ −θ
X .

Estimates for parameters θθθ
T = (θ ,θ X) and cell means, and some goodness of fit

measurements for this model are,

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 3.5547 0.1375 25.85 <2e-16 ***

A2 2.7415 0.1419 19.33 <2e-16 ***

---

predictions:

1 2 3 4

2.255291 542.510581 34.978837 2.255291

---

Residual deviance: 11.208 on 2 degrees of freedom

AIC: 28.96

BIC: 27.73222

which indicates a better fit compared to model (4.9).
Therefore, fitting the independence model to data in Table 4.7 results in three

different possible models. As we know that the model is parameter redundant because
of the two zero cells, it could be reduced to a smaller saturated model as (4.10). But
fitting the model in a software gives us the model (4.9) which has only two parameters
instead of having the three parameters in the initial model. It is because of the esoteric
constraint which maximizes the likelihood function. However, models may exist with
two parameters that would fit the data better, such as model (4.11), but it can not be
interpreted as a usual log-linear model.

Considering the approximate shape of the log-likelihood function in each of the
models helps to clarify the idea of the existence of the MLE. The independence log-
linear model (4.8) has three parameters. To provide an approximate illustration of the
log-likelihood function, we fix one of the parameters and plot the log-likelihood against
the remaining parameters. Figure 4.2 part (a) shows the log-likelihood function’s shape
when θ is fixed at its maximum likelihood estimate. In this model, all the cell counts are
positive and a peak is obvious in the plot, which is the unique MLE for parameters θ X

and θY . Part (b) of the figure shows the log-likelihood surface for the same model and
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Fig. 4.2 Log-likelihood functions for (a) The independence model with y > 0, (b) The indepen-
dence model with y1 = y4 = 0, (c) Model (4.11) with two parameters, (d) The independence
model with y1 = y2 = 0.

fixed intercept, for observations in Table 4.7 when y1 = y4 = 0. A flat ridge orthogonal
on the θ X axis is present. Part (c) of the figure is the log-likelihood surface for the
proposed model (4.11), which only has two parameters and the surface includes a
maximum point. Part (d) presents the likelihood function for model (4.8) with a fixed
value for θ , when y1 = y2 = 0 which causes a marginal zero. This function includes a
flat surface, indicating that the model must be reduced.



Chapter 5

Applications

5.1 Introduction

This chapter includes three examples of fitting log-linear models to categorical data in
sparse contingency tables. In each example, we identify whether the initial model is
parameter redundant. The estimable parameters and the estimable linear combinations
of parameters are derived and the model is reduced to a smaller non-redundant model
with all estimable parameters. We also check if there exist any esoteric constraints in
the model as defined in Section 2.7, so the MLE could exist. The data in each example
are taken from published papers and the results are compared with those from the
papers when it is relevant. The first example includes a 25 contingency table which
is cross-classifying the number of 2744 potential victims of human trafficking in the
UK, over five different sources of identifying the victims [Silverman, 2014]. The
second example is presenting again a 25 contingency table, classifying 119 patients
based on five variables observed after an ear surgery [Brown and Fuchs, 1983]. In
the third example, a 35 contingency table includes the frequency of 3841 individuals
on the combinations of three levels of five different single nucleotide polymorphisms
(SNPs) in two chromosomes [Papathomas et al., 2012]. An extra variable indicating
the presence of cancer in each individual is added as well to make a sparse 35 × 21

contingency table.

5.2 Modern slavery study

5.2.1 The data

An analysis of the scale of modern slavery in the UK is reported by Silverman [2014].
According to this paper, the National Crime Agency in the UK carried out a strategic
assessment in 2013 to locate and identify “potential victims of trafficking” to ensure
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they receive the suitable and required support. These victims are said to be living in
modern slavery.

The information about potential victims in this assessment is based on different
sources, but it cannot present a whole picture of the victim population. Gathering the
data is difficult due to the sensibility of the matter and the criminal nature of human
trafficking. The part of this population which has not been found and counted in the
process of identifying the victims is called “dark figure” and the aim of the paper is to
estimate it and subsequently estimate the whole population size. Another example of
estimating the dark figure is provided by Overstall et al. [2014], in which the aim is to
estimate the number of people who inject drugs in Scotland.

The method applied to estimate the dark figure size is appointed as multiple system
estimation, which is an extension of the mark-recapture approach when there are more
than two lists [Silvermen, 2014]. In a contingency table, each variable can be considered
as a list. The information about potential victims in this assessment is collected from a
lot of different organisations, but they are summarised into five main lists. An individual
might be on one or more than one of these lists. Then there are 31 possible situations
for each individual to belong to one or more than one of theses lists, or they may belong
to none of the lists which is the dark figure side that is supposed to be estimated. The
five lists or the main sources of information on recognising the potential victims are:

• LA: Local Authority (A),

• NG: Non-governmental organisation (B),

• PF: Police force (C),

• GO: Government organisations (D),

• GP: The general public, through various routes (E).

The individuals who are identified by any or some of those lists are counted and
the collected information is shown in Table 5.1 which is taken from Silverman [2014].
The total number of identified potential victims is 2744. The table reports that, for
example, 54 individuals are identified by local authority and 15 of them are also in the
list provided by the non-governmental organisation.

This data could be presented in a contingency table as each list is a categorical
variable with two levels. Level 1 indicates the individual belongs on this list and 0 states
otherwise. It forms a 25 contingency table given in Table 5.2. y00000 is the cell count
when all variables are on their 0 level. It is unknown and shows the dark figure size
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LA × × × × × × ×
NG × × × × × × × × ×
PF × × × × × × × ×
GO × × × × × × × ×
GP × × × ×
yi 54 463 995 695 316 15 19 3 62 19 1 76 11 8 4 1 1 1

Table 5.1 Number of potential victims in different lists.

or the number of potential victims who are not identified by any of the information
sources.

5.2.2 Analysis

The analysis by Silverman [2014] is carried out using the R package Rcapture, and the
closedp.MX routine is used to fit the log-linear models. A forward method is applied
to choose the best possible model with the best AIC (Akaike Information Criterion).
In this model selection method, interaction effects are added stepwise and at each step
the interaction which makes the biggest improvement in the AIC is included in the
model. The main effects of each variable on the logarithm of cell means and the ten
possible pairwise interactions of variables are considered as the initial parameters of
the log-linear model. It is reported in the paper that: “It was found that the resulting
model contains one interaction which has a very high standard error and is very far from
statistically significant, and so this was dropped from the model” [Silverman, 2014].
The final model including five main effects and six firs-order interactions is given in
Table 5.3. The dark figure’s estimate is 8569, and the population size estimate derived
by this model is 11313 with standard error 802. The 95% confidence interval for the
population size obtained by the profileCI routine is (9918,13046).

To check the parameter redundancy, the model we want to fit the data must be
chosen first. We try the saturated model, as it enables us to consider all the possible
interactions among the five variables. The aim is to find the best log-linear model for
the data in contingency Table 5.2 and then estimating the population size of potential
victims. According to (1.5), the saturated log-linear model for a 25 table is,

log µi jklm = θ +θ
A
i +θ

B
j +θ

C
k +θ

D
l +θ

E
m +θ

AB
i j +θ

AC
ik +θ

BC
jk + · · ·+θ

ABCDE
i jklm ,

such that, i, j,k, l,m ∈ {0,1}5. 13 cell counts in the contingency table are zero, so some
of the model parameters have estimates with large standard errors in fitting a saturated
model. We aim to identify the estimable parameters and then ignore the inestimable
ones in building the best model for the data. Note that the esoteric constraint and the
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LA NG PF GO GP cell yi

1

1

1
1

1 y11111 0
0 y11110 1

0
1 y11101 0
0 y11100 1

0
1

1 y11011 0
0 y11010 1

0
1 y11001 0
0 y11000 15

0

1
1

1 y10111 0
0 y10110 0

0
1 y10101 0
0 y10100 19

0
1

1 y10011 0
0 y10010 3

0
1 y10001 0
0 y10000 54

0

1

1
1

1 y01111 0
0 y01110 4

0
1 y01101 0
0 y01100 62

0
1

1 y01011 0
0 y01010 19

0
1 y01001 1
0 y01000 463

0

1
1

1 y00111 0
0 y00110 76

0
1 y00101 11
0 y00100 995

0
1

1 y00011 8
0 y00010 695

0
1 y00001 316
0 y00000 -

Table 5.2 Contingency table of the observed number of potential victims in different lists.
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Silverman’s model The reduced model
Parameter Estimate Standard Error Estimate Standard Error

θ Intercept 9.05591 0.09305 9.02849 0.09331
θ A LA -5.08848 0.15254 -5.06467 0.15845
θ B NG -2.90507 0.09507 -2.87858 0.09512
θC PF -2.14852 0.08809 -2.12439 0.08811
θ D GO -2.52177 0.09129 -2.49543 0.09145
θ E GP -3.30533 0.10827 -3.27274 0.10896
θ AB LA*NG 1.52395 0.27625 1.64387 0.29661
θ BE NG*GP -2.92170 1.00582 -2.87716 1.00609
θCE PF*GP -1.24675 0.31883 -1.23345 0.31912
θ AC LA*PF 0.92243 0.26209 1.10502 0.27738
θ DE GO*GP -1.19052 0.36926 -1.18087 0.36950
θ BD NG*GO -0.55335 0.22399 -0.61809 0.22778
θ ABC LA*NG*PF -1.70973 1.06433

θ ABCD +θ ACD LA*NG*PF*GO 3.11352 1.42952
+ LA*PF*GO

Residual deviance 16.35 on 19 d.f 2.82 on 4 d.f

Table 5.3 The parameters estimates for the final log-linear models.

MLE do not exist for this model since it is a saturated model with at least one zero
cell in the table. As discussed in Chapter 4, the cell counts are sufficient statistics
for a saturated model, thus the MLE does not exist here. Theorem 3.6 identifies the
parameters that are not directly estimable after setting each cell observation to zero in a
saturated model.

The design matrix for this model is formed in R and transposing it makes the
derivative matrix only including 0 ans 1s. The rank of this matrix is 32 but after
considering the zero cell counts, in accordance with the derivative matrix defined in
(2.4), it reduces to 19. Since the number of parameters in this saturated model is p = 32,
the deficiency is d = p− r = 32− 19 = 13. We find those 13 ααα vectors, given in
Appendix B, and then solve the corresponding differential equations (2.3), using Maple,
to obtain the 19 estimable parameters which are,

θθθ
′T =(θ ,θ A,θ B,θC,θ D,θ E , (5.1)

θ
AB,θ AC,θ BC,θ AD,θ BD,θCD,θ BE ,θCE ,θ DE ,

θ
ABC,θ ABD,θ BCD,θ ABCD +θ

ACD).

The other parameters are not estimable. These estimable parameters show that the
13 cells with zero cell counts cannot have estimable means. The 19 cell means with
non-zero cell counts are estimable. We make the reduced design matrix by considering
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19 non-zero cell counts and 19 estimable parameters, which is full rank with the rank
19. There exist 19 non-zero cell counts but since the cell count corresponding to the
intercept is unknown, we eliminate the corresponding row (with first element of 1 and
all others 0) from the matrix. Now there are 18 cell counts, an 18×19 design matrix
and 19 estimable parameters. By using the glm function, the parameter estimates for
the reduced model log µµµ ′

18×1 = A′
18×19θθθ

′
19×1 are given as below. One of the parameters

is not estimated but not due to the parameter redundancy caused by zero cell counts,
as in this stage we only have estimable cell means. This problem appears simply due
to singular or under-determined system of equations, as the number of equations (18)
is smaller than the number of parameters (19). To fix the problem, the number of
parameters must be decreased.

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

A1 9.5684 0.5801 16.494 < 2e-16 ***

A2 -5.5794 0.5959 -9.364 < 2e-16 ***

A3 -3.4306 0.5782 -5.933 2.98e-09 ***

A4 -2.6656 0.5792 -4.602 4.19e-06 ***

A5 -3.0245 0.5789 -5.225 1.74e-07 ***

A6 -3.8126 0.5828 -6.542 6.09e-11 ***

A7 2.1497 0.6477 3.319 0.000904 ***

A8 1.6211 0.6377 2.542 0.011020 *

A9 0.6550 0.5632 1.163 0.244832

A10 0.1341 0.8288 0.162 0.871479

A11 -0.1688 0.5294 -0.319 0.749807

A12 0.4524 0.5665 0.799 0.424479

A13 -2.3251 1.1565 -2.010 0.044384 *

A14 -0.6922 0.6554 -1.056 0.290909

A15 -0.6518 0.6806 -0.958 0.338206

A16 -2.3185 1.2062 -1.922 0.054592 .

A17 0.3512 1.3034 0.269 0.787609

A18 NA NA NA NA

A19 2.2556 1.8405 1.226 0.220381

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2.8711e+04 on 18 degrees of freedom

Residual deviance: 4.2188e-14 on 0 degrees of freedom

AIC: 123.25
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Model selection; Forward method

This model includes many parameters and it is possible to improve the model by
removing some of them. We apply a forward selection method to choose the best
possible model. The knowledge of estimable and inestimable parameters makes model
selection easier by dealing with only 19 parameters instead of 32. First, we consider
the model with only main effects. Second, we add 13 interaction effects stepwise and
find the interaction which makes the biggest improvement in the AIC. The process
terminates when AIC does not decrease any more. By using this procedure the remained
parameters in the final model are,

(θ ,θ A,θ B,θC,θ D,θ E ,

θ
AB,θ AC,θ BD,θ BE ,θCE ,θ DE ,

θ
ABC,θ ABCD +θ

ACD).

In order to fit this model, building a proper design matrix A′ is required. We have 18
cell counts and 14 parameters, so an 18×14 design matrix is formed. The parameters
estimates subsequently are as below, and they are also shown in Table 5.3.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 9.02849 0.09331 96.754 < 2e-16 ***

A2 -5.06467 0.15845 -31.965 < 2e-16 ***

A3 -2.87858 0.09512 -30.262 < 2e-16 ***

A4 -2.12439 0.08811 -24.111 < 2e-16 ***

A5 -2.49543 0.09145 -27.287 < 2e-16 ***

A6 -3.27274 0.10896 -30.036 < 2e-16 ***

A7 1.64387 0.29661 5.542 2.99e-08 ***

A8 1.10502 0.27738 3.984 6.78e-05 ***

A9 -0.61809 0.22778 -2.714 0.006656 **

A10 -2.87716 1.00609 -2.860 0.004240 **

A11 -1.23345 0.31912 -3.865 0.000111 ***

A12 -1.18087 0.36950 -3.196 0.001394 **

A13 -1.70973 1.06433 -1.606 0.108189

A14 3.11352 1.42952 2.178 0.029405 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 28711.2319 on 18 degrees of freedom

Residual deviance: 2.8209 on 4 degrees of freedom

AIC: 118.07
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According to this log-linear model, the intercept is 9.02849 and the number of
individuals who are not in any lists is 8337 since,

log µ00000 = θ , ⇒ µ̂00000 = eθ̂ = e9.02849 = 8337.

By adding those 2744 cases that are already known, the total population size estimation
is 11081. The estimated confidence interval for the population size is also computable.
The standard error for µ̂00000 is 777.94 as computed by the Delta method in R. Hence,
the 95% confidence interval for µ̂00000 is (6812,9862), as,

8337.261−1.96×777.9498 = 6812.479,

8337.261+1.96×777.9498 = 9862.043.

The 95% confidence interval for the population size is (9556,12606). The intercept and
population estimates in this model are very close to the values (θ̂ = 9.05591, µ̂00000 =

8569) obtained by Silverman [2014]. The cell mean estimates provided by this model
are given in Table 5.4 and as mentioned before, non of the cell means with a zero
observation are estimable.

cell yi µ̂i cell yi µ̂i

y11111 0 - y01110 0 -
y11110 1 1.00 y01110 4 2.48
y11101 0 - y01101 0 -
y11100 1 1.00 y01100 62 56.00
y11011 0 - y01011 0 -
y11010 1 0.68 y01010 19 20.82
y11001 0 - y01001 1 1
y11000 15 15.31 y01000 463 468.00
y10111 0 - y00111 0 -
y10110 0 - y00110 76 82.15
y10101 0 - y00101 11 11.00
y10100 19 19.00 y00100 995 996.34
y10011 0 - y00011 8 8.00
y10010 3 4.38 y00010 695 687.49
y10001 0 - y00001 316 316.00
y10000 54 52.00 y00000 - -

Table 5.4 The cell counts and estimated cell means.

The last two interactions in this model have respectively a large p-value and a large
standard error. We can eliminate them from the model and fit the model again, which
provides the following estimates and slightly increases the AIC.
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

A1 9.02981 0.09330 96.782 < 2e-16 ***

A2 -5.02762 0.15413 -32.620 < 2e-16 ***

A3 -2.88147 0.09513 -30.289 < 2e-16 ***

A4 -2.12556 0.08811 -24.124 < 2e-16 ***

A5 -2.49684 0.09143 -27.309 < 2e-16 ***

A6 -3.27407 0.10895 -30.052 < 2e-16 ***

A7 1.45705 0.27729 5.255 1.48e-07 ***

A8 0.94333 0.26131 3.610 0.000306 ***

A9 -0.57770 0.22407 -2.578 0.009931 **

A10 -2.87427 1.00609 -2.857 0.004278 **

A11 -1.23229 0.31912 -3.862 0.000113 ***

A12 -1.17946 0.36949 -3.192 0.001412 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 28711.232 on 18 degrees of freedom

Residual deviance: 8.579 on 6 degrees of freedom

AIC: 119.83

In this case, the estimate for the number of individuals who are not in any lists is 8348,
since,

log µ00000 = θ , ⇒ µ̂00000 = eθ̂ = e9.02981 = 8348.

By adding those 2744 cases that are already known, the total population size estimation
is 11092. Although now the model includes the exact same parameters as the Silver-
man’s model, their parameter estimates are slightly different. It may be the result of
using the different R functions closedp.MX and glm.

5.2.3 Results

Silverman [2014] estimates the dark figure size between 7,000 to 10,000, which means
the actual population size is from 10,000 to 13,000. Thus, the National Crime Agency
is aware of 20% to 30% of the potential victims. As shown in Table 5.3, the interactions
between LA and NG, and LA and PF are positive. It suggests that being known by local
authorities increases the chance of victims to be known by NGOs and police forces.
The interactions between GP and NG, and PF and GO are negative. There is also a
negative interaction between NG and GO, which may reflect the fact of not sharing
information on the potential victims between NGOs and government organisations
[Silverman, 2014].
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In our model with parameter estimates in Table 5.3, the dark figure and the total
population size estimates are only a little smaller than what was predicted before. The
variables interaction signs are the same as the Silverman’s model. We have two more
interactions in the model. One is a second-order interaction among variables LA, NG,
FP which has a negative estimate, and the other one is the summation of two interactions
LA*NG*PF*GO and LA*PF*GO, which has a positive estimate.

Instead of considering a saturated model with 32 parameters, we could begin to
investigate finding the best model by considering an initial model only including the
main effects and the firs-order interactions of variables which make 16 parameters.
In this case, the rank of the derivative matrix would be 15, suggesting that only one
parameter, θ AE or interaction LA*GP, is not estimable. We assume that must be the
same parameter mentioned by Silverman [2014] as the parameter which has a very high
standard error.

5.3 Ear surgery outcome

5.3.1 The data

This example is taken from Brown and Fuchs [1983] described as “an example of errors
that arise in fitting models to sparse tables”. The data set presents a study of 118 patients
who had the same ear surgery. The variables of interest are five binary variables related
to the success of the surgery. They are shown as D,B,M,N,E and rated in two levels.
For example, D indicates the dryness of the ear as dry (1) or not dry (0). The data is
presented in Table 5.5 as a 25 contingency table. The table includes 13 sampling zeros.

5.3.2 Analysis

Two numerical methods, the Iterative Proportional Fitting (IPF) and the iteratively re-
weighted Newton-Raphson algorithm (NR) are compared in fitting the log-linear model
to the mentioned sparse table by Brown and Fuchs [1983]. They focus on comparing the
efficiency of these two methods in estimating the expected cell counts, determining the
degree of freedom of the model, and deriving the parameters estimates. The initial log-
linear model chosen to fit the data is the hierarchical model (DEB,DN,DM,ENMB).
Choosing the best possible model is not of interest here as the aim is to show the
effect of zero observations on the estimability of parameters. This model includes 22
parameters, an intercept, five main effects, ten first-order interactions of variables, five
second-order interactions, and one third-order interaction. Since 13 cell counts are
zero in the table, some of the model parameters are not estimable. The marginal table



5.3 Ear surgery outcome 104

D B M N E Cell yi

1

1

1
1

1 y11111 33
0 y11110 32

0
1 y11101 8
0 y11100 8

0
1

1 y11011 0
0 y11010 1

0
1 y11001 1
0 y11000 0

0

1
1

1 y10111 0
0 y10110 1

0
1 y10101 0
0 y10100 0

0
1

1 y10011 0
0 y10010 1

0
1 y10001 0
0 y10000 0

0

1

1
1

1 y01111 2
0 y01110 10

0
1 y01101 3
0 y01100 6

0
1

1 y01011 1
0 y01010 2

0
1 y01001 0
0 y01000 2

0

1
1

1 y00111 0
0 y00110 1

0
1 y00101 0
0 y00100 4

0
1

1 y00011 0
0 y00010 1

0
1 y00001 0
0 y00000 2

Table 5.5 Contingency table of observed frequencies.
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corresponding to DEB contains two zeros and marginal table ENMB contains four
zeros. They cause eight cells to have expected frequencies equal to zero. A formula is
given by Brown and Fuchs [1983] for specifying inestimable parameters, which utilises
the number of zero cells in marginal subtables corresponding to the each configuration
of parameters. By applying this formula the inestimable parameters in the model are
reported as θ EB,θ DEB,θ ENB,θ EMB,θ ENMB in the paper. The estimable parameters
cause 24 cells to have non-zero mean estimates. The model’s parameter estimates
obtained by the IPF and NR methods with tolerance limit of 0.001 are presented in
Table 5.6. The model’s degree of freedom is d. f = (32−8)− (22−5) = 7, calculated
by the number of non-zero cell means minus the number of estimable parameters. They
mention that the number of estimable parameters is the rank of ATWA in (1.8), but there
might be a “problem of numerical accuracy” in the determination of it. Thus, the rank
of this matrix must be the same as the rank of the derivative matrix, although calculating
the later is quite straightforward.

We apply the parameter redundancy approach for this example. The unsaturated
log-linear model (DEB,DN,DM,ENMB) for the 25 table has 22 parameters and is as
below,

log µi jklm =θ +θ
E
i +θ

N
j +θ

M
k +θ

B
l +θ

D
m +θ

EB
il +θ

DE
mi +θ

DB
ml +θ

DN
m j +θ

DM
mk +θ

EM
ik

+θ
EN
i j +θ

BM
lk +θ

BN
l j +θ

MN
k j +θ

DEB
mil +θ

EBM
ilk +θ

BMN
lk j +θ

EMN
ik j +θ

BMN
lk j

+θ
EBMN
ilk j , i, j,k, l,m ∈ {0,1}5.

To find the estimable parameters, we build the design matrix for this model in R, which
is a 32× 22 matrix and its transpose gives the derivative matrix. After considering
the 13 zero cell counts, the rank of the derivative matrix is r = 17 and the deficiency
is d = p− r = 22− 17 = 5. We can find those five ααα vectors and then solve the
corresponding differential equations using Maple to obtain all the estimable parameters.
The ααα vectors are,

ααα
T
1 = (0,−1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0),

ααα
T
2 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,1),

ααα
T
3 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,−1,0,0,0,0,0,1,0),

ααα
T
4 = (0,0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,1,0,0,0),

ααα
T
5 = (0,0,0,0,0,0,−1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0).
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Brown and Fuchs’ model The reduced model
Parameter IPF method NR method IWLS

θ 0.189 -1.600 0.64891
θ E -0.294 -2.083 -
θ N 0.080 0.111 -0.10303
θ M 0.854 0.741 0.53062
θ B 0.661 2.450 -0.13222
θ D -0.106 -0.061 -3.09602
θ EB - 1.789 -
θ DE 0.307 0.352 -
θ DB 0.381 0.337 1.45083
θ DN 0.324 0.324 1.25508
θ DM 0.340 0.340 1.62498
θ EM 0.035 -0.078 -
θ EN -0.074 -0.043 -
θ BM 0.438 0.551 0.90864
θ BN 0.130 0.099 0.16796
θ MN -0.013 0.027 -0.97434
θ DEB - -0.045 -
θ EBM - 0.113 -
θ EBN - -0.031 -
θ EMN 0.020 0.059 -
θ BMN 0.204 0.164 1.20094

θ EBMN - -0.040 -
θ E +θ EB -1.03154

θ DE +θ DEB 1.24974
θ EM +θ EBM -0.01258
θ EN +θ EBN -0.76270

θ EMN +θ EBMN 0.52102

Table 5.6 Parameter estimates of the log-linear model (DEB,DN,DM,ENMB).
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Cell means estimates
Cell IPF NR IWLS

y11111 32.3 32.3 31.3
y11110 32.8 32.5 32.5
y11101 8.5 8.7 8.5
y11100 6.9 7.3 6.9
y11011 0.8 - 0.7
y11010 1.0 1.2 1.2
y11001 0.5 1.0 0.4
y11000 0.4 - 0.3
y10111 0 - 0
y10110 0.9 1.2 0.8
y10101 0 - 0
y10100 0.7 - 0.7
y10011 0 - 0
y10010 0.3 0.8 0.2
y10001 0 - 0
y10000 0.1 - 0.08
y01111 2.7 2.7 2.6
y01110 9.2 9.5 9.4
y01101 2.5 2.3 2.4
y01100 7.1 6.7 7.0
y01011 0.2 1.0 0.2
y01010 1.0 0.8 1.7
y01001 0.5 - 0.5
y01000 1.6 2.0 1.6
y00111 0 - 0
y00110 1.1 0.8 1.1
y00101 0 - 0
y00100 3.3 0.4 3.2
y00011 0 - 0
y00010 1.7 1.2 1.7
y00001 0 - 0
y00000 1.9 2.0 1.9

Table 5.7 Cell means estimates of the log-linear model (DEB,DN,DM,ENMB).
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Solving the partial differential equations (2.3) specifies the 17 estimable parameters of
the model as,

θθθ
′T =(θ ,θ N ,θ M,θ B,θ D,θ DB,θ DN ,θ DM,θ BM,θ BN ,θ MN ,θ BMN ,

θ
E +θ

EB,θ EN +θ
EBN ,θ EM +θ

EBM,θ DE +θ
DEB,θ EMN +θ

EBMN).

Due to having marginal zeros in the model, there does not exist any esoteric constraints
to make it possible to obtain the MLEs for all the parameters. By checking the existence
of the MLE approach for this example, we find out the MLE does not exist and the
corresponding co-facial set as defined in (4.4) is,

F c = {00001,00011,00101,00111,10001,10011,10101,10111} .

The set of estimable parameters and estimable combination of parameters makes 24
cell means to be estimable. Estimates for cells y01001,y10000,y10100,y11000,y11011 are
possible to be computed, although their observed frequencies are zero. The reduced
model formed by the vector of estimable parameters (θθθ ′), the vector of estimable cell
means (µµµ ′) and the corresponding design matrix (A′) is shown as,

log µµµ
′
24×1 = A′

24×17θθθ
′
17×1,

with degree of freedom d. f = 24−17 = 7.
If we fit the log-linear model with all 22 parameters to the 32 cell counts, the esti-

mates for some parameters have large standard errors which reveal the over-parametrization
of the model.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A(Intercept) 0.6489 0.7086 0.916 0.35982

AE -20.2576 10129.4383 -0.002 0.99840

AN -0.1030 1.0056 -0.102 0.91839

AM 0.5306 0.8771 0.605 0.54520

AB -0.1322 1.0070 -0.131 0.89554

AD -3.0960 1.0783 -2.871 0.00409 **

AEN -0.4998 15081.3500 0.000 0.99997

AEM -1.3184 15337.8713 0.000 0.99993

AMN -0.9743 1.3391 -0.728 0.46686

AEB 19.2261 10129.4384 0.002 0.99849

ABN 0.1680 1.3651 0.123 0.90208

ABM 0.9086 1.1657 0.779 0.43571

ADN 1.2551 0.4935 2.543 0.01099 *

ADM 1.6250 0.7999 2.032 0.04219 *
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ADE 1.6560 11711.7642 0.000 0.99989

ADB 1.4508 0.8991 1.614 0.10660

AEMN 0.9249 20880.9104 0.000 0.99996

AEBN -0.2629 15081.3501 0.000 0.99999

AEBM 1.3058 15337.8714 0.000 0.99993

ABMN 1.2009 1.6463 0.729 0.46571

ADEB -0.4062 11711.7643 0.000 0.99997

AEBMN -0.4038 20880.9105 0.000 0.99998

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 434.4815 on 32 degrees of freedom

Residual deviance: 9.0345 on 10 degrees of freedom

AIC: 110.06

Cell mean estimates for 32 cells are given in Table 5.7. The zero estimates are actually
reported as very small numbers, for example µ̂00001 = 3.048127× e−09.

However, the final model to fit the data is the reduced model. It produces the
following estimates and reasonable standard errors. The estimates are also given in
Table 5.6 to be comparable with the model by Brown and Fuchs [1983].

Coefficients:

Estimate Std. Error z value Pr(>|z|)

A(Intercept) 0.64891 0.70864 0.916 0.35982

AE+EB -1.03154 1.25282 -0.823 0.41030

AN -0.10303 1.00564 -0.102 0.91839

AM 0.53062 0.87711 0.605 0.54520

AB -0.13222 1.00701 -0.131 0.89554

AD -3.09602 1.07832 -2.871 0.00409 **

ADE+DEB 1.24974 0.54568 2.290 0.02201 *

ADB 1.45083 0.89908 1.614 0.10660

ADN 1.25508 0.49352 2.543 0.01099 *

ADM 1.62498 0.79985 2.032 0.04219 *

AEM+EBM -0.01258 1.31908 -0.010 0.99239

AEN+EBN -0.76270 1.69710 -0.449 0.65313

ABM 0.90864 1.16573 0.779 0.43571

ABN 0.16796 1.36513 0.123 0.90208

AMN -0.97434 1.33913 -0.728 0.46686

AEMN+EBMN 0.52102 1.74792 0.298 0.76564

ABMN 1.20094 1.64630 0.729 0.46571

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 418.4815 on 24 degrees of freedom

Residual deviance: 9.0345 on 7 degrees of freedom

AIC: 100.06

Cell mean estimates for 24 estimable cells, from y00000 to y11111 are as below, which
are the same as those given in Table 5.7 but now there is no cell mean estimated as zero.

1 2 3 4 5

1.91345667 1.72612098 3.25285967 1.10756268 1.67648004

6 7 8 9 10

0.59759386 1.78893106 0.29741739 7.07071911 2.48889065

11 12 13 14 15

9.46386979 2.61609809 0.08654333 0.27387902 0.74714033

16 17 18 19 20

0.89243732 0.32351996 0.40240614 1.21106894 0.70258261

21 22 23 24

6.92928089 8.51110935 32.53613021 31.38390191

5.3.3 Results

The primary focus of the work by Brown and Fuchs [1983] is on the estimability of
parameters θθθ . The models from Brown and Fuchs [1983] in Table 5.6 include 32 cells
and 22 parameters. Our reduced model contains only 24 cells with non-zero expected
values and 17 estimable parameters and it makes use of the iteratively re-weighted least
squares (IWLS) method, which is the default method in the glm function in R. The
degree of freedom for all of those models is 7. In the IPF method output, the estimates
for the main effect of variables E,D and for interactions of EN and MN are negative
values. The parameters without reported estimates by this numerical method are,

θ
EB,θ DEB,θ ENB,θ EMB,θ ENMB.

In the parameter redundancy approach, those parameters and five more parameters are
known as not directly estimable and only some combinations of them are estimable as,

θ
E +θ

EB,θ DE +θ
DEB,θ EN +θ

ENB,θ EM +θ
EMB,θ EMN +θ

EMNB.

The estimates for the main effect of variables N,B,D, the interaction of MN and linear
combination of interactions E +EB, EM+EBM and EN +EBN are negative values.
In the NR method, all of the parameters have a reported estimate value. As an example,
consider that according to the parameter redundancy θ E and θ EB are not individually
estimable but according to the IPF method, θ E is estimable. The NR method has split
the IPF estimate of θ E between θ E and θ EB and reported estimates for both of them.
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The parameter redundancy approach identifies eight cells with inestimable means.
The IPF method in the mentioned paper, specifies the same cells have the expected
value of zero, which are,

µ00001,µ00011,µ00101,µ00111,µ10001,µ10011,µ10101,µ10111.

The estimate values for other cell means derived by the IPF and the IWLS method in
the glm function are almost the same, as shown in Table 5.7. The NR method does
not estimate any cell means with a corresponding zero observation, which makes 13
cells. Brown and Fuchs [1983] fit a logistic equivalence of the model using the Newton-
Raphson method, which provides the same cell means as the IPF method but then only
six of the parameters are estimated. However, Brown and Fuchs [1983] do not reduce
the model containing zero cell counts and determine the parameter estimates only based
on the numerical methods result.

Therefore, the two approaches (parameter redundancy and the method applied
by Brown and Fuchs [1983]) which both primarily focus on the estimability of θs,
identify the same degree of freedom for the model and the estimable cell means in
the parameter redundancy matches the non-zero cell means in the model obtained by
IPF method. However, the empirically derived formula by Brown and Fuchs [1983] to
determine the inestimable parameters is difficult to calculate, as it requires forming the
marginal sub-tables corresponding to all the configuration of variables in the model and
then collapsing them over all the possible indices to find all the zeros in them. This
formula may not work when the model is parameter redundant or the MLE does not
exist but there is no zero marginal in the table. In this example, it provides a set of
inestimable parameters which is only a part of the set of inestimable parameters derived
by the parameter redundancy method. These points suggest that the different set of
estimable θs could be explained as different parametrizations, similar to what occurred
in Example 4.5 for the parameter redundancy and the EMLE methods. Although the
numerical methods (IPF method and IWLS in glm) specify the right estimates for the
estimable cell means, a comprehensive understanding of the model structure depends
on identifying the estimable θs which is allowed by parameter redundancy method.

5.3.4 The numerical methods in fitting the log-linear models

For hierarchical log-linear models and even for more general log-linear models, different
numerical methods are used to estimate the model’s parameters. The Newton-Raphson
method is a common method to optimise the log-likelihood function of the model, but
it is a complex one since requires reversing a matrix and solving a set of equations



5.3 Ear surgery outcome 112

at each step. When the MLE exists, it eventually achieves a unique optimiser from
any starting point for natural parameters. But it sometimes is not “feasible” when
the model is high dimensional or in presence of zero observations [Agresti, 2002,
Fienberg and Rinaldo, 2012b]. The iterative proportional fitting (IPF) method is a
simple algorithm for calculating cell mean estimates which does not require matrix
inversion and is based on keeping the estimated sufficient marginals equal to the
observed ones. Since the optimisation occurs in the mean value space, the algorithm
converges to a unique optimum regardless of the existence of the MLE [Fienberg and
Rinaldo, 2012b]. However, this method has some deficiencies. The algorithm can be
very slow to converge if the model is not decomposable, [Agresti, 2002, Fienberg and
Rinaldo, 2012b] and it does not provide any indication of non-existent MLE. In the
later case, monitoring the slow rate of the convergence [Fienberg and Rinaldo, 2012b]
or noticing the zero cell mean estimates [Fienberg and Rinaldo, 2007] are the only ways
of detecting the non-existent MLE. As a result, these methods are usually appropriate
to estimate cell means but not to identify the number of estimable natural parameters of
the model or to estimate them [Fienberg and Rinaldo, 2012b].

In the reviewed example here, Brown and Fuchs [1983] compare the Newton-
Raphson and the IPF methods to fit a log-linear model to a sparse contingency table.
The model (DEB,DN,DM,ENMB) is non-decomposable because its corresponding
graph has a chordless cycle of length more than three [Lauritzen, 1996]. The cell mean
estimated by both methods are given in Table 5.7, in which the results based on the IPF
and the IWLS methods match. Then identifying the estimable parameters and reducing
the model is necessary to estimate the log-linear parameters, θ . Aston and Wilson
[1984] comment on the Brown and Fuchs’ [1983] paper and mention the importance
of removing the cells with zero estimated values from the model. So for the same
model, they fit 24 cells with 22 parameters by implementing the iteratively reweighted
Newton-Raphson method. The cell mean estimates are almost the same as those already
derived by the IPF and the IWLS in Table 5.7. However, since we know that the number
of estimable parameters is 17 not 22, they obtain zero estimates for the same five θ s that
are not estimated by the IPF in Table 5.6. They declare these parameters as “extrinsically
aliased” and that the algorithm can not detect all the redundancies while contracting the
model’s design matrix.

IWLS method is an application of the Newton-Raphson method [Fienberg and
Rinaldo, 2007] which replaces the Hessian matrix of the procedure with the expectation
of the Hessian matrix [Agresti, 2002]. It is applied by the glm function in R and seems
to be a good numerical method, at least for the small dimensional tables, since it shows
the non-existent MLE with numbers tending to zero for inestimable cell means and
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distinguishes the parameters that are not directly estimable with large standard errors.
Fienberg and Rinaldo [2007] compare the IWLS and the IPF methods’ behaviour by
using two examples of 23 and 33 contingency tables with non-existent MLE and positive
marginals. The IWLS method converges to the extended MLE faster than the IPF, but
the estimated parameters tend to “explode” when the MLE does not exist. Fienberg
and Rinaldo [2005] suggest modifications to improve the Newton-Raphson procedure
for larger models and eliminate the exploding behaviour. For an example of a 23 ×3
contingency table with a decomposable model and a marginal zero observation, the IPF
converges in the first iteration and the only indication of the non-existent MLE is that
some of the fitted values are zero [Fienberg and Rinaldo, 2007].

By applying the parameter redundancy approach, we aim to identify the cell means
and parameters that are mathematically estimable given the observed data set, and then
compute the point and interval estimates for them which needs proper standard errors.

5.4 A genome-wide association study of lung cancer

5.4.1 The data

A genome-wide association study of lung cancer is provided in Hung et al. [2008].
317,139 single nucleotide polymorphisms (SNP) in chromosomes 6 and 15 are con-
sidered to perform genotyping. Each SNP is categorised at three levels of 0, 1 and 2
which indicate the number of their minor allele. The study sample consists of 4260
individuals from six European countries and age, gender, smoking status and country of
origins for each individual are also provided. Removing the individuals from the data
set with some missing information reduced the total number of them to 3841. 500 SNPs
are chosen as the top ones which have the highest p-value in the test for association
with lung cancer. This number of SNPs is decreased to 50 SNPs selected via applying
profile regression by Papathomas et al. [2012]. Those 50 SNPs are again reduced to 12
and then to 3 most important ones by Papathomas and Richardson [2016] to compare
all possible graphical models by using reversible jump MCMC. Their final aim is to
investigate the presence of gene-environment with log-linear model comparison.

The Spearman’s correlation among the chosen 50 SNPs is shown in Figure 5.1,
which suggests about 19 groups of correlated variables. We select the following five
uncorrelated SNPs as variables that will form the contingency table to estimate their
main effects and their interactions effects on the cell means in a log-linear model.

• rs7748167_C (A),
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Fig. 5.1 Spearman correlation ( ρ2) for 50 SNPs.

• rs4975616_G (B),

• s6803988_T (C),

• rs11128775_G (D),

• rs9306859_A (E).

The observed cell counts for the 243 possible cross-classifications of the five variables
is provided in Appendix B.

5.4.2 Analysis

We choose to fit a log-linear model with main effects, firs-order, and second-order
interactions of the variables to the selected data in the 35 contingency table. The corre-
sponding log-linear model, as shown in (1.5), has 243 cell counts and 131 parameters.
The parameter vector is made of the intercept, 10 main effects, 40 parameters describ-
ing firs-order interactions and 80 parameters describing second-order interactions of
variables.

The contingency table includes 132 sampling zero cells. To check the parameter
redundancy, the design matrix and the derivative matrix must be formed. After involving
the zero cells the rank of the derivative matrix is 95, indicating only 95 parameters
or linear combinations of parameters is estimable in this model. The deficiency of
the model is d = p− r = 131− 95 = 36. As this model is bigger than the previous
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examples, Maple is not able to find the αααs and we use MATLAB to find them. Using the
36 ααα vectors, given in Appendix B, and solving the corresponding differential equations
in (2.3) specify the 95 estimable parameters as,

θθθ
′T =(θ ,θ A

1 ,θ
A
2 ,θ

B
1 ,θ

B
2 ,θ

C
1 ,θ

C
2 ,θ

D
1 ,θ D

2 ,θ E
1 ,θ

E
2 ,

θ
AB
11 ,θ AB

21 ,θ AB
12 ,θ AB

22 ,θ AC
11 ,θ AC

21 ,θ AC
12 ,θ AC

22 ,θ AD
11 ,θ AD

21 ,θ AD
12 ,θ AE

11 ,θ AE
21 ,θ BC

11 ,θ BC
21 ,

θ
BC
12 ,θ BC

22 ,θ BD
11 ,θ BD

21 ,θ BD
12 ,θ BE

11 ,θ BE
21 ,θ BE

12 ,θ BE
22 ,θCD

11 ,θCD
21 ,θCD

12 ,θCE
11 ,θCE

21 ,θCE
12 ,

θ
DE
11 ,θ DE

21 ,θ DE
12 ,

θ
ABC
111 ,θ ABC

211 ,θ ABC
121 ,θ ABC

112 ,θ ABC
212 ,θ ABC

122 ,θ ABC
222 ,θ ABD

111 ,θ ABD
211 ,θ ABD

121 ,θ ABD
221 ,θ ABD

112 ,

θ
ACD
111 ,θ ACD

121 ,θ ACD
221 ,θ ACD

112 ,θ BCD
111 ,θ BCD

211 ,θ BCD
121 ,θ BCD

221 ,θ BCD
112 ,θ BD

22 +θ
BCD
212 ,θ ABE

111 ,

θ
ABE
211 ,θ ABE

121 ,−θ
ACD
211 +θ

ABE
221 ,θ AE

12 +θ
ABE
112 ,θ AE

12 +θ
ABE
122 ,θ ACE

111 ,θ ACE
211 ,θ ACE

121 ,

−θ
ACD
211 +θ

ACE
221 ,θ ACE

112 ,θ BCE
111 ,θ BCE

211 ,θ BDE
121 ,θ BCE

221 ,θ BCE
112 ,θ BCE

212 ,

θ
CE
22 +θ

BCE
122 ,θCE

22 +θ
BCE
222 ,θ ADE

111 ,θ ACD
211 +θ

ADE
211 ,θ BDE

111 ,θ BDE
211 ,θ BDE

112 ,θCDE
111 ,

θ
CDE
211 ,θCDE

121 ,θ BDE
121 +θ

BCD
122 +θ

CD
22 +θ

CDE
221 ,θCDE

112 ).

These parameters and linear combinations of parameters make 12 cell means estimable
of those 132 cells with zero cells entries. Thus, 95 quantities and 123 (111+12) cell
means of the model are estimable. This leads to reducing the model to a smaller one
with the corresponding design matrix A′, shown as,

log µµµ
′
123×1 = A′

123×95θθθ
′
95×1,

with degree of freedom of d. f = 123−95 = 28.
After forming the new design matrix and fitting the model to the data for 123

cells, the parameter estimates obtained by the glm function in R, respectively to θθθ
′, are

provided without noticing large standard errors. There is also no esoteric constraint as
defined in Section 2.7 to make all the cell means estimable. By checking the existence
of the MLE approach for this example, we find out the MLE does not exist and the
co-facial set as defined in (4.4) includes 120 cells of the contingency table.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Ared1 6.07828 0.04716 128.897 < 2e-16 ***
Ared2 -1.82339 0.11934 -15.279 < 2e-16 ***
Ared3 -4.53620 0.44583 -10.175 < 2e-16 ***
Ared4 0.16896 0.06343 2.664 0.00773 **
Ared5 -1.21935 0.09783 -12.464 < 2e-16 ***
Ared6 -0.37684 0.07269 -5.184 2.17e-07 ***
Ared7 -1.78243 0.12288 -14.506 < 2e-16 ***
Ared8 -1.59376 0.10861 -14.674 < 2e-16 ***
Ared9 -4.82373 0.51943 -9.287 < 2e-16 ***
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Ared10 -1.32967 0.09906 -13.423 < 2e-16 ***
Ared11 -4.08292 0.36755 -11.108 < 2e-16 ***
Ared12 -0.07037 0.15628 -0.450 0.65249
Ared13 0.21000 0.56512 0.372 0.71019
Ared14 0.33359 0.21823 1.529 0.12636
Ared15 0.08116 0.89559 0.091 0.92779
Ared16 0.04792 0.17080 0.281 0.77903
Ared17 0.49483 0.61812 0.801 0.42340
Ared18 -0.15757 0.31309 -0.503 0.61476
Ared19 0.04112 1.01581 0.040 0.96771
Ared20 0.37068 0.21186 1.750 0.08019 .
Ared21 0.85309 0.73472 1.161 0.24560
Ared22 1.48261 0.77232 1.920 0.05490 .
Ared23 0.15311 0.20989 0.729 0.46571
Ared24 -2.54539 1.50802 -1.688 0.09143 .
Ared25 0.04610 0.09620 0.479 0.63179
Ared26 0.27839 0.14142 1.969 0.04900 *
Ared27 -0.30850 0.17431 -1.770 0.07676 .
Ared28 -0.04093 0.25498 -0.161 0.87247
Ared29 0.29023 0.13556 2.141 0.03228 *
Ared30 0.04269 0.21694 0.197 0.84400
Ared31 0.59055 0.62017 0.952 0.34097
Ared32 -0.11480 0.13219 -0.868 0.38515
Ared33 -0.12873 0.20664 -0.623 0.53330
Ared34 0.24534 0.46937 0.523 0.60118
Ared35 -1.43964 1.22404 -1.176 0.23954
Ared36 0.29030 0.14980 1.938 0.05264 .
Ared37 0.07721 0.26479 0.292 0.77060
Ared38 0.62497 0.67600 0.925 0.35522
Ared39 0.17532 0.14144 1.239 0.21516
Ared40 -0.63914 0.30451 -2.099 0.03582 *
Ared41 -1.12068 0.81090 -1.382 0.16696
Ared42 0.14677 0.19061 0.770 0.44130
Ared43 0.76826 0.88180 0.871 0.38362
Ared44 -0.83987 1.10777 -0.758 0.44835
Ared45 0.14543 0.20746 0.701 0.48330
Ared46 -1.53105 0.98680 -1.552 0.12077
Ared47 -0.58927 0.30888 -1.908 0.05642 .
Ared48 0.51318 0.38280 1.341 0.18006
Ared49 -0.25941 1.24694 -0.208 0.83520
Ared50 -0.63577 0.62672 -1.014 0.31037
Ared51 0.68987 1.53772 0.449 0.65370
Ared52 -0.31688 0.23477 -1.350 0.17710
Ared53 -0.65127 0.92291 -0.706 0.48040
Ared54 -0.28173 0.36847 -0.765 0.44452
Ared55 -0.39438 1.46691 -0.269 0.78804
Ared56 -1.19327 1.01177 -1.179 0.23824
Ared57 -0.13365 0.23379 -0.572 0.56755
Ared58 0.09403 0.41723 0.225 0.82169
Ared59 0.88049 1.17506 0.749 0.45367
Ared60 -0.80018 1.02714 -0.779 0.43595
Ared61 -0.31080 0.18312 -1.697 0.08965 .
Ared62 -0.29014 0.28756 -1.009 0.31298
Ared63 -0.19269 0.34056 -0.566 0.57154
Ared64 0.12529 0.48819 0.257 0.79745
Ared65 -0.80282 0.84276 -0.953 0.34079
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Ared66 0.82457 0.68772 1.199 0.23053
Ared67 0.09254 0.23888 0.387 0.69845
Ared68 1.96678 1.18112 1.665 0.09588 .
Ared69 0.08582 0.34530 0.249 0.80372
Ared70 5.12715 2.46393 2.081 0.03744 *
Ared71 0.40637 0.67952 0.598 0.54983
Ared72 3.06370 1.23149 2.488 0.01285 *
Ared73 -0.24453 0.23376 -1.046 0.29553
Ared74 2.17911 1.39025 1.567 0.11701
Ared75 -0.15251 0.44521 -0.343 0.73193
Ared76 2.56379 2.18522 1.173 0.24070
Ared77 -1.01258 1.26281 -0.802 0.42264
Ared78 -0.27004 0.18353 -1.471 0.14120
Ared79 0.18134 0.26602 0.682 0.49543
Ared80 0.70008 0.36774 1.904 0.05694 .
Ared81 1.10395 0.48428 2.280 0.02263 *
Ared82 0.62483 0.92740 0.674 0.50048
Ared83 2.27819 1.48319 1.536 0.12454
Ared84 -0.31874 1.05065 -0.303 0.76161
Ared85 2.48698 1.55267 1.602 0.10921
Ared86 0.25977 0.25687 1.011 0.31189
Ared87 -0.25149 1.30623 -0.193 0.84732
Ared88 -0.17091 0.21397 -0.799 0.42443
Ared89 -0.33016 0.33537 -0.984 0.32488
Ared90 0.94414 1.17431 0.804 0.42140
Ared91 -0.11082 0.21281 -0.521 0.60255
Ared92 0.22132 0.39026 0.567 0.57064
Ared93 -0.42344 1.21343 -0.349 0.72712
Ared94 1.38528 1.20246 1.152 0.24930
Ared95 0.60942 0.90605 0.673 0.50119
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 29437.659 on 123 degrees of freedom
Residual deviance: 36.452 on 28 degrees of freedom
AIC: 669.2

5.4.3 Results

The fitted reduced model records 17 of the estimable parameters significant at 0.05
level. Parameters θ ,θ B

1 ,θ
BC
21 ,θ BD

11 ,−θ ACD
211 + θ ABE

221 ,θ AE
12 + θ ABE

122 ,θ BCE
221 have positive

estimates, which indicate a positive influence on the logarithm of the cell means.
The other 10 significant parameters, θ A

1 ,θ
A
2 ,θ

B
2 ,θ

C
1 ,θ

C
2 ,θ

D
1 ,θ D

2 ,θ E
1 ,θ

E
2 ,θ

CE
21 , have a

negative effect on the logarithm of the cell means. The firs-order interactions are
specifying a positive estimate for B2C1, B1D1 and a negative estimate for C2E1. The
second-order interactions are indicating a positive estimate for B2C2E1.
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5.4.4 Including the outcome variable

A crucial variable in this study is an outcome variable which describes the presence
or absence of cancer in each of the 3841 individuals. By adding this variable (F),
the 35 × 21 contingency table has 486 cells. To study the interactions between the 5
SNPs and the outcome variable, we only consider the main effects of variables and the
firs-order interactions between them which make 62 parameters. Then the contingency
table has 298 zero cell counts which makes a derivative matrix with the rank 59 and
d = 62− 59 = 3. It indicates that there are 59 estimable parameters in the model
fitted to this sparse table, so the reduction in the number of estimable parameters is
relatively small. After finding the three ααα vectors, given in Appendix B, and solving
the corresponding partial differential equations, the estimable parameters are,

θθθ
′T =(θ ,θ A

1 ,θ
A
2 ,θ

B
1 ,θ

B
2 ,θ

C
1 ,θ

C
2 ,θ

D
1 ,θ D

2 ,θ E
1 ,θ

E
2 ,θ

F
1

θ
AB
11 ,θ AB

21 ,θ AB
12 ,θ AB

22 ,θ AC
11 ,θ AC

21 ,θ AC
12 ,θ AC

22 ,θ AD
11 ,θ AD

21 ,θ AD
12 ,θ AE

11 ,θ AE
21 ,θ AE

12 ,θ AF
11 ,θ AF

21 ,

θ
BC
11 ,θ BC

21 ,θ BC
12 ,θ BC

22 ,θ BD
11 ,θ BD

21 ,θ BD
12 ,θ BD

22 ,θ BE
11 ,θ BE

21 ,θ BE
12 ,θ BF

11 ,θ BF
21 ,θ BE

22 ,

θ
CD
11 ,θCD

21 ,θCD
12 ,θCD

22 ,θCE
11 ,θCE

21 ,θCE
12 ,θCE

22 ,θCF
11 ,θCF

21 ,

θ
DE
11 ,θ DE

21 ,θ DE
12 ,θ DF

11 ,θ DF
21 ,θ EF

11 ,θ EF
21 ).

Thus, only three parameters θ AD
22 ,θ AE

22 ,θ DE
22 are not estimable due to the sparseness of

the table. These estimable parameters make 360 out of 486 cell means estimable, so
62 cells with the observed zero counts have estimable cell means. The reduced model
including only the estimable parameters and the estimable cell means is shown as,

log µµµ
′
360×1 = A′

360×59θθθ
′
59×1,

with degree of freedom of d. f = 360−59 = 301.
After forming the new design matrix and fitting the model to the data for 360

cells, the parameter estimates obtained by the glm function in R, respectively to θθθ
′, are

provided. There is no esoteric constraint as defined in Section 2.7 to make all the cell
means estimable.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Ared1 5.42696 0.05344 101.548 < 2e-16 ***
Ared2 -1.87099 0.10154 -18.426 < 2e-16 ***
Ared3 -4.68509 0.37935 -12.350 < 2e-16 ***
Ared4 0.24632 0.06428 3.832 0.000127 ***
Ared5 -1.05975 0.09527 -11.123 < 2e-16 ***
Ared6 -0.22708 0.06828 -3.326 0.000882 ***
Ared7 -1.76466 0.12250 -14.406 < 2e-16 ***
Ared8 -1.56473 0.09055 -17.281 < 2e-16 ***
Ared9 -4.69328 0.38424 -12.215 < 2e-16 ***
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Ared10 -1.21471 0.08512 -14.271 < 2e-16 ***
Ared11 -4.25712 0.36514 -11.659 < 2e-16 ***
Ared12 -0.14261 0.06606 -2.159 0.030849 *
Ared13 -0.02763 0.09801 -0.282 0.778034
Ared14 -0.14612 0.35632 -0.410 0.681742
Ared15 0.06729 0.14231 0.473 0.636311
Ared16 -0.20232 0.56314 -0.359 0.719398
Ared17 -0.04924 0.09579 -0.514 0.607235
Ared18 -0.29659 0.37785 -0.785 0.432497
Ared19 -0.01274 0.17707 -0.072 0.942629
Ared20 0.58813 0.50622 1.162 0.245316
Ared21 0.18004 0.10962 1.642 0.100507
Ared22 0.41781 0.37579 1.112 0.266215
Ared23 0.14501 0.45095 0.322 0.747779
Ared24 0.15718 0.10977 1.432 0.152157
Ared25 -0.02808 0.42447 -0.066 0.947259
Ared26 0.16294 0.41751 0.390 0.696345
Ared27 0.20548 0.09138 2.249 0.024534 *
Ared28 0.50831 0.33907 1.499 0.133836
Ared29 -0.06152 0.07335 -0.839 0.401571
Ared30 0.17252 0.10782 1.600 0.109569
Ared31 -0.13376 0.13574 -0.985 0.324402
Ared32 0.13169 0.19394 0.679 0.497106
Ared33 0.07692 0.08657 0.889 0.374255
Ared34 -0.16413 0.13455 -1.220 0.222502
Ared35 -0.12612 0.35626 -0.354 0.723332
Ared36 -0.27434 0.56294 -0.487 0.626018
Ared37 -0.19701 0.08663 -2.274 0.022955 *
Ared38 -0.02225 0.12506 -0.178 0.858785
Ared39 0.74971 0.37460 2.001 0.045351 *
Ared40 0.73081 0.49742 1.469 0.141777
Ared41 -0.08363 0.07035 -1.189 0.234537
Ared42 -0.28488 0.10567 -2.696 0.007016 **
Ared43 0.06397 0.08512 0.751 0.452366
Ared44 0.09772 0.15517 0.630 0.528858
Ared45 0.32838 0.34581 0.950 0.342317
Ared46 -0.13843 0.75185 -0.184 0.853925
Ared47 0.02720 0.08440 0.322 0.747230
Ared48 -0.08882 0.15927 -0.558 0.577072
Ared49 -0.49060 0.33870 -1.448 0.147481
Ared50 -0.74619 0.73645 -1.013 0.310954
Ared51 -0.15960 0.06895 -2.315 0.020633 *
Ared52 -0.32750 0.12950 -2.529 0.011439 *
Ared53 0.07618 0.09949 0.766 0.443855
Ared54 -0.23437 0.45044 -0.520 0.602841
Ared55 -0.21562 0.41686 -0.517 0.604977
Ared56 0.22181 0.08140 2.725 0.006429 **
Ared57 0.52895 0.33870 1.562 0.118356
Ared58 -0.20169 0.08221 -2.453 0.014151 *
Ared59 -0.72222 0.34331 -2.104 0.035406 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 24843.79 on 360 degrees of freedom
Residual deviance: 287.32 on 301 degrees of freedom
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AIC: 1097.9

The significant coefficients at 0.05 level are all the main effects and the following
interactions,

θ
AF
11 =0.205, θ

BE
11 =−0.197, θ

BE
12 = 0.749,

θ
BF
21 =−0.284, θ

CF
11 =−0.159, θ

CF
21 =−0.327,

θ
DF
11 =0.221, θ

EF
11 =−0.201, θ

EF
21 =−0.722.

Thus, the presence of cancer has a positive interaction with the level 1 of variables A
and D. It has a negative interaction with the level 1 of variables C, E and the level 2 of
variables B, C, E.



Chapter 6

Discussion

6.1 Conclusion

Sampling zero observations can cause problems in fitting a log-linear model. Chapter
2 suggested the parameter redundancy method as an approach to check the changes
created by zero entries in the log-linear model. If the number of zero observations
is enough to make the model parameter redundant, then the method was described
to detect all the estimable model parameters and cell means and reduce the model to
a smaller identifiable one. Small contingency tables were used to illustrate the idea
and also to demonstrate the reasons for choosing Poisson distribution and corner point
constraints to construct the model. The esoteric constraints were introduced as hidden
constraints imposed on the model by the likelihood function that turn all the parameters
estimable when the model is parameter redundant but none of the sufficient statistics is
zero and the MLE exists for the cell means.

In Chapter 3, we pursued a general manner towards specification of inestimable
model parameters. In the case of positivity of all the cell counts, the saturated model
fitted to an lm table was proved to be full rank. Afterwards, we proved that exactly
which model parameters are turned to inestimable by observing a zero entry in each
specific cell. The model was assumed to be saturated, as many different configurations
of unsaturated models produce different results.

An alternative way to investigate the effect of sampling zero observations in a
contingency table is exploring the existence of the maximum likelihood estimates for
the hierarchical log-linear model’s cell means. This approach was explained in Chapter
4 and was referred to as the existence of the MLE (EMLE) method. Considering a
polyhedral resolution by defining an equivalent cone for the log-linear model is the
base of this method which divides the models into two groups: the group with the
existent MLE and the group with the non-existent MLE that must get reduced. The
theoretical methods and the results of this approach were compared to the parameter
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redundancy approach. We mentioned that parameter redundant models with esoteric
constraints are classified by the EMLE approach as models with the existent MLE,
without acknowledging the present extra relations among the parameters. Both the
methods have strengths and weaknesses regarding their computational capacities, which
are discussed in Section 6.2.

Examples of fitting log-linear models to real data were given in Chapter 5. Saturated
and unsaturated models with a different number of variables, levels, and zero patterns
were investigated for parameter redundancy. Section 5.3.4 briefed some different
numerical methods used for estimating log-linear model parameters and cell means
and mentioned how they behave in the presence of zero observations. The motivation
in investigating parameter redundancy in log-linear models is to determine the point
estimates and confidence intervals for as many model parameters as possible. Although a
numerical method like IWLS specifies the cell means with zero estimates, the parameter
redundancy method reveals how the log-linear model is changed by zero observations
and which cell means and model parameters are technically estimable. This aim
is also achievable (with a different parametrization of the model) by applying the
existence of the MLE procedure. However, when the model is parameter redundant
with existent MLE, the parameter redundancy provides more information about the
model by obtaining the esoteric constraints.

6.2 Computational aspects

In Section 4.1.2, we summarised the polyhedral approach toward determining the
existence of the MLE and mentioned the linear procedures aimed to find the co-facial
set of the marginal cone or polytope. The MLE exists if and only if the observed margin
t lies in the relative interior of the marginal cone and the MLE does not exist if and only
if t belongs to the relative interior of some proper face F of the marginal cone. Wang et
al. [2016] mention that “solving a sequence of linear programming problems” to find
the co-facial set or the extreme points of the cone does not work when the number of
variables in the hierarchical model is larger than 16. Massam and Wang [2015] consider
less than 16 variables and describe how to find an outer approximation for F. Wang et
al. [2016] show how to find an inner approximation of F and explain that if these two
approximations are the same then the face is determined. They apply this methodology
to larger hierarchical log-linear models, for example, a model with 16 binary variables
and 314 parameters and a model with 100 binary variables and 277 parameters.

The parameter redundancy approach described in Chapter 2 has four main steps.
First, constructing the design matrix and the derivative matrix for the desired model.
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We do it in R for an lm model and it could also be done for an lm1
1 × lm2

2 × . . . model
with some justification in the function. For example, the matrix can be computed for 20
binary variables with 6196 parameters up to the 4th-order interactions, but allocating the
matrix is not possible when the model is bigger and the matrix size surpasses about 100
GB (on a computer with 3.1 GHz processor and 256 GB memory). Second, we set the
corresponding zero columns in the derivative matrix and calculate the rank of the matrix
and its null spaces by using MATLAB. The third step is solving the corresponding partial
differential equations to derive the estimable parameters, which is done in Maple as it
solves the differential equations in a symbolic way. When the number of equations d

gets as large as 40, Maple can not solve them simultaneously. The number of equations
mainly depends on the number and position of zero cells rather than the model size.
The last step is finding the esoteric constraints which requires symbolic calculations
applied by Maple and can get complicated for large models.

6.3 Future work

We investigated the log-linear model in this thesis, which does not distinguish between
explanatory and response variables. If a categorical variable depends on the other
model variables, then it is treated as a response variable and the others are explanatory
variables. The obtained model is a logit model and it is equivalent to a certain log-linear
model for that response variable. For example, the equivalent logit model for model
(XY, XZ, YZ) defined in (4.1) with Y as a response variable, is,

logit [P(Y = 1|X = i,Z = k)] = α +β
X
i +β

Z
k .

The association parameter θ XZ
ik of the log-linear model is not included in this model,

as it cancels in the difference in logarithms the logit defines [Agresti, 2002]. This
correspondence between the two models could be helpful in estimating some parameters
when the contingency table is sparse, as is mentioned in Brown and Fuchs [1983].
Investigating the parameter redundancy in logit models for sparse tables by considering
their correspondence with log-linear models could be studied. Another legitimate model
to fit the count data is a Poisson regression model. It is similar to a log-linear model and
when a large proportion of data is zero counts then zero-inflated Poisson distribution is
applied which allows for overdispersion. This model could be studied by the parameter
redundancy approach to specify the effect of the zero observations on estimability of
the parameters.

Improving the parameter redundancy procedure by overcoming computational
problems is a part of the future work to be able to use the method for larger models. For
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a parameter redundant model, we specify the estimable cell means after determining the
estimable parameters and combinations of parameters. Although it is not a difficult task
for relatively small tables and the estimable cell means can be identified by monitoring
the numerical method output for larger models, having a routine process would be
helpful in identifying the estimable cell means and also in forming the reduced design
matrix to match the estimable combinations of the parameters.

Models discussed in Section 4.3 can be studied further in terms of the importance
of the esoteric constraints and possible ways of dealing with these models. Although
the suggested Model (4.11) provides a better fit to the data compared to model (4.9),
it is constructed only based on having the same number of parameters and cells as
the log-linear model (4.9). One issue with this model is that of interpretability, as the
standard log-linear models have a natural interpretability with regard to the parameters
and the interactions between the variables. Another question raised regarding these
models is about the degree of freedom of them and whether the esoteric constraints
decrease the number of free parameters in the model.

Further studies can investigate the parameter redundancy concept in a Bayesian
context. However, the meaning of identifiability concept differs in frequentist and
Bayesian frameworks. Non-identifiability is not considered a strong Bayesian issue
[Almond, et al., 2015, Rao and Dey, 2005] since as long as a proper prior distribution is
defined for a parameter, the posterior distribution is proper as well and the parameter
is thus estimable. In a Bayesian context, obtaining the proper posterior estimates of
parameters for a parameter redundant model is possible even with choosing a uniform
prior distribution for the parameters and it is due to the known orientation of the flat
ridge [Cole, et al., 2010]. But for an inestimable parameter in the model, its prior and
posterior distributions may occur to be almost identical and it means the estimates are
very sensitive to the prior distribution [Almond, et al., 2015]. Similar prior and posterior
distributions imply Bayesian learning issues. Bayesian learning is accomplished when
the prior distribution differs from the posterior distribution, revealing the fact that
the data have led us from the prior distribution toward the posterior distribution and
have changed our knowledge about the distribution of the parameters [Lee, 2011]. To
measure the information gained in the process of moving from the prior to the posterior,
one way is to compute the Kullback–Leibler distance [Green, et al., 2003].
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Appendix A

Computer code

Chapter 2

• R code to fit model (2.5) to the data in Table 2.2:

y <- c(456,538,44,911)

A <- matrix(c(1,0,0,0,1,1,0,0,1,0,1,0,1,1,1,1),nrow=4,ncol=4,byrow=T)

model <- glm(formula=y~A-1, family=poisson)

summary(model)

predict(model,type="response")

• WinBUGS code to fit model (2.5) to the data in Table 2.2:

model{

# Model's likelihood

for (i in 1:4){

n[i] ~ dpois( mu[i])

mu[i] <- exp(logmu[i])

}

logmu[1] <- theta[1]

logmu[2] <- theta[1]+ theta[2]

logmu[3] <- theta[1]+ theta[3]

logmu[4] <- theta[1]+ theta[2]+theta[3]+theta[4]

# Prior specification

for (i in 1:4){

theta[i]~dnorm(0,0.0001)

}

}

# Data

list(n=c(456,538,44,911))

# Initial parameters values

list(theta=c(0,0,0,0))

list(theta=c(10,10,10,10))

list(theta=c(-10,-10,-10,-10))

• R code to fit model (2.7) to the data in Table 2.2:
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y <- c(456,538,44,911)

A <- matrix(c(1,1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1),nrow=4,

byrow=T)

model <- glm(formula=y~A-1, family=poisson)

summary(model)

predict(model,type="response")

• The R function to make the design matrix and the derivative matrix for a specified
model with m variables and l levels for each of them:

Dmatfor <- function(m,l,formula){

le <- l-1

li <- rep(list(0:le), m)

vars <- expand.grid(li)

# Making a dataframe

d.f <- model.frame(vars)

# Changing the names of columns to A,B,C...

lett <- LETTERS[1:m]

colnames(d.f) <- lett

# Adding the cell counts vector (y) with length of l^m to the

dataframe

y.data <- paste0("y", 1:l^m)

d.f$new.col <- y.data

colnames(d.f)[m+1] <- "y"

# Factorizing the levels

nc <- ncol(d.f)-1

for (i in 1:nc){

d.f[,i] <- factor(d.f[,i])

}

attach(d.f)

# Making the model of data frame vectors

mf <- model.frame(formula=formula)

# Making the design matrix

X <- model.matrix(attr(mf, "terms"), data=mf)

# Make the derivative matrix as the transpose of the design

matrix

Dm <- t(X)

return(Dm)

}

• Three Maple procedures are provided here. DmatY takes the derivative matrix for a
model with m variables and l levels for each variable and transforms it to the derivative
matrix with yis and zero columns corresponding to zero cell observations.

DmatY := proc (m, l, DR, a)

local p, Y, i, j, ans;
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description "Converting the derivative matrix from function

Dmatfor in R to matrix DR with ys and 0.

a is the vector of zero cells, 1<a_i<n=l^m";

p := RowDimension(DR);

Y := Vector(l^m, symbol = y);

Y[a] := 0;

for j to l^m do

for i to p do

DR[i, j] := Y[j].DR[i, j]:

end do

end do;

DR;

end proc:

• The Estpars procedure, which is mostly the work of Cole et al. [2010], takes the
derivative matrix from DmatY, produces the ααα and corresponding partial differential
equations and then solves them. The procedure’s output is the rank of the model, the
deficiency of the model, the vector of estimable parameters and ααα vectors.

Estpars := proc (DD1, pars)

local r, d, alphapre, alpha, PDE, FF, i, ans, x, j;

description "Finding the estimable set of parameters";

with(LinearAlgebra);

r := Rank(DD1);

d := Dimension(pars)-r;

alphapre := NullSpace(Transpose(DD1));

if NullSpace(Transpose(DD1)) = {} then print('Model is full rank')

else

alpha := Matrix(d, Dimension(pars));

PDE := Vector(d);

FF := f(seq(pars[i], i = 1 .. Dimension(pars)));

for i to d do

alpha[i, 1 .. Dimension(pars)] := alphapre[i];

PDE[i] := add((diff(FF, pars[j]))*alpha[i,j],

j=1..Dimension(pars)):

end do;

ans := pdsolve({seq(PDE[i] = 0, i = 1 .. d)});

<r, d, ans, {alpha}>:

end if;

end proc:

• The EsoCon procedure takes the vector of cell counts, the model’s design matrix,
the vector of parameters and the ααα vectors. The output is αααTU(θθθ) and the esoteric
constraints are determined by setting it to zero.

EsoCon := proc (y, X, pars, alpha)
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local tmar, XP, n, XPE, p, U, ltheta, i;

description "Give alpha*U to specify if there exists any esoteric

constraints";

tmar := Transpose(X).y;

XP := X.pars;

n := Dimension(y);

XPE := Vector(n, 0);

for i to n do

XPE[i] := exp(XP[i]):

end do;

ltheta := Transpose(tmar).pars-Transpose(Vector(n, 1)).XPE;

p := RowDimension(pars);

U := Vector(p, 0);

for i to p do

U[i] := diff(ltheta, pars[i]):

end do;

Transpose(alpha).U;

end proc:



Appendix B

Plots and Data

Chapter 2

• Trace and density plots derived by WinBUGS to fit model (2.5) to the data in Table 2.2
in section 2.4.1.

Fig. B.1 Trace plots for the parameters θθθ , if all observations are positive
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Fig. B.2 Marginal density plots for the parameters θθθ , if all observations are positive

Fig. B.3 Trace plots for the parameters θθθ , if y4 = 0
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Fig. B.4 Marginal density plots for the parameters θθθ , if y4 = 0

Fig. B.5 Trace plots for the parameters θθθ , if y3 = 0
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Fig. B.6 Marginal density plots for the parameters θθθ , if y3 = 0

Fig. B.7 Trace plots for the parameters θθθ , if y2 = 0
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Fig. B.8 Marginal density plots for the parameters θθθ , if y2 = 0

Fig. B.9 Trace plots for the parameters θθθ , if y1 = 0
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Fig. B.10 Marginal density plots for the parameters θθθ , if y1 = 0
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Chapter 5

• The 13 ααα vectors with 22 parameters for the parameter redundant model in Section
5.2.

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0)

• The 36 ααα vectors with 131 parameters for the parameter redundant model in Section
5.4. Each column represents a vector.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

• The 3 ααα vectors with 62 parameters for the parameter redundant model in Section
5.4.4.

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)

• For the example presented in Section 5.4, observations (yi) of 243 possible cross-
classification of the five variables are as follows:

rs9306859_A rs11128775_G rs6803988_T rs4975616_G rs7748167_C y_i
0 0 0 0 0 436

1 69
2 5

1 0 511
1 85
2 7

2 0 133
1 25
2 1

1 0 0 300
1 51
2 5

1 0 374
1 64
2 2

2 0 115
1 17
2 0

2 0 0 74
1 10
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2 1
1 0 64

1 13
2 0

2 0 20
1 3
2 1

1 0 0 0 87
1 24
2 2

1 0 146
1 15
2 2

2 0 25
1 9
2 1

1 0 0 84
1 14
2 0

1 0 94
1 22
2 0

2 0 25
1 3
2 0

2 0 0 14
1 5
2 1

1 0 17
1 3
2 1

2 0 6
1 0
2 0

2 0 0 0 4
1 2
2 0

1 0 7
1 2
2 0

2 0 0
1 0
2 0

1 0 0 4
1 2
2 0

1 0 5
1 0
2 0

2 0 4
1 0
2 0

2 0 0 0
1 0
2 0

1 0 0
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1 0
2 0

2 0 0
1 0
2 0

1 0 0 0 0 117
1 22
2 0

1 0 124
1 19
2 1

2 0 28
1 11
2 0

1 0 0 92
1 16
2 1

1 0 79
1 16
2 2

2 0 40
1 4
2 0

2 0 0 10
1 1
2 0

1 0 17
1 4
2 0

2 0 7
1 1
2 0

1 0 0 0 27
1 8
2 0

1 0 31
1 12
2 0

2 0 5
1 2
2 1

1 0 0 26
1 8
2 1

1 0 20
1 2
2 0

2 0 7
1 0
2 0

2 0 0 5
1 0
2 0

1 0 2
1 3
2 1
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2 0 3
1 0
2 0

2 0 0 0 2
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0

1 0 0 2
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0

2 0 0 0
1 0
2 0

1 0 2
1 0
2 0

2 0 0
1 0
2 0

2 0 0 0 0 7
1 0
2 0

1 0 11
1 3
2 0

2 0 1
1 2
2 0

1 0 0 2
1 0
2 0

1 0 5
1 0
2 0

2 0 1
1 2
2 0

2 0 0 0
1 0
2 0

1 0 1
1 0
2 0

2 0 1
1 0



146

2 0
1 0 0 0 1

1 0
2 0

1 0 3
1 0
2 0

2 0 0
1 0
2 0

1 0 0 0
1 0
2 0

1 0 3
1 0
2 0

2 0 0
1 0
2 0

2 0 0 0
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0

2 0 0 0 0
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0

1 0 0 0
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0

2 0 0 0
1 0
2 0

1 0 0
1 0
2 0

2 0 0
1 0
2 0
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