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1. Introduction

This paper is a methodological contribution to the empirical investigation of decision

making under risk and under uncertainty. At least since Allais (1953), there has been a large

literature developing models of choice under risk or under uncertainty that seek to give a

better account of observed behavior than the expected utility (EU) model. An empirical

literature that tests the EU and other models on experimental data has also emerged along-

side these theoretical developments. These experiments often employ elicitation procedures

in which subjects are in effect making repeated choices between two risky or uncertain out-

comes; the data obtained in this way consist of a finite number of binary choices, which can

then be used to partially recover a subject’s preference. A more recent strand of experiments

employs a different elicitation procedure, which we shall call the budgetary choice procedure.

In this case subjects are asked to choose a preferred option from a potentially infinite set

of alternatives. For example, a subject could be presented with a portfolio problem where

she has to allocate her budget between two assets with state-contingent payoffs. An early

and influential experiment of this type, the data from which we analyze in this paper, is

Choi, Fisman, Gale, and Kariv (2007).1 Other examples include Loomes (1991), Gneezy

and Potters (1997), Bayer et al. (2013), Choi et al. (2014), Ahn et al. (2014), Hey and Pace

(2014), Cappelen et al. (2015), and Halevy, Persitz, and Zrill (2016).

The main contribution of this paper is to develop an empirical test that could be used to

analyze data collected from portfolio decisions; it is applicable to experimental data where a

budgetary choice elicitation procedure is employed and also to suitable non-experimental or

field data. Our test allows us to determine whether a data set is consistent with the EU model

or some of its generalizations, without making parametric assumptions on the Bernoulli index

or other features of the model. It is worth noting that models of decision making over time

(such as the discounted utility model), as well as models of decision making involving both

time and risk, are formally very similar to the EU model and its generalizations. Budgetary

choice procedures are increasingly used in experiments for studying these types of models,2

and budgetary choices involving time preferences may occur naturally in the field as well; it

1 See this paper also for an account of the advantages of such an approach.
2 See Andreoni and Sprenger (2012) and, for a comprehensive list of papers employing such procedures

to study time preferences, Imai and Camerer (2016).
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is clear that the tests developed in this paper could be used with little or no modification in

these contexts.

1.1 Testing EU and other models on a finite lattice

A feature of the budgetary choice procedure, and a reason why it is sometimes favored

over binary choice procedures, is that instead of requiring the subject to pick one alternative

or another, it allows her to calibrate her response and pick something ‘in between.’ But this

feature is also the crucial reason why a new empirical tool is needed to analyze nonpara-

metrically data collected from a budgetary procedure, whereas no such method is necessary

for binary choices. Indeed, suppose we make a finite number of observations, where at ob-

servation t an agent chooses a lottery that gives a monetary payoff xts in state s over one

that gives yts in state s (for s “ 1, 2, . . . , s̄), where the probability of state s is known to

be πs ą 0. Imagine that we would like to test if this data set is consistent with the EU

model. Ignoring the issue of errors for the time being, checking for consistency with the EU

model simply involves finding a strictly increasing Bernoulli function u : R` Ñ R such that
řs̄
s“1 πsupx

t
sq ě

řs̄
s“1 πsupy

t
sq holds at every observation t. This amounts to solving a finite

set of linear inequalities, and it is computationally straightforward to ascertain if a solution

exists. However, it is clear that this method is no longer applicable when choices are instead

made from a classical budget sets at every observation t, since even a single observed choice

from a budget set reveals an infinite set of binary preferences.

The empirical test that we develop for solving this problem is very simple, and it is worth

giving a short explanation here. Consider a data set with three observations and two states,

as depicted in Figure 1. The subject chooses the contingent consumption bundle p2, 5q from

budget set B1, p6, 1q from B2, and p4, 3q from B3. Assuming that the probability of state s

is commonly known to be πs, consistency with the EU model would require the existence of

a strictly increasing Bernoulli function u such that π1up2q`π2up5q ě π1upxq`π2upyq for all

px, yq in B1, and similarly at the other two observations.

In our main methodological result (Theorem 1), we show that this data set can be ratio-

nalized by the EU model if it can be rationalized on an appropriately modified consumption

set. Specifically, let X be the set of consumption levels that are observed to have been cho-

sen at some observation and in some state, plus zero; in this example X “ t0, 1, 2, 3, 4, 5, 6u.
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Figure 1: Constructing the finite lattice

Then for the data set to be EU-rationalizable, it is sufficient (and obviously necessary) for

it to be EU-rationalizable on the reduced consumption set X 2, i.e., there is an increasing

function ū : X Ñ R such that the expected utility of p2, 5q is greater than any other bundle

in B1XX 2, and so forth. The set X 2 is a finite lattice, depicted by the open circles in Figure

1. Therefore, checking for EU-rationalizability involves checking if there is a solution to a

finite set of linear inequalities, a problem which is computationally feasible.3

This lattice method turns out to be very flexible: it can be used not just to check for

EU-rationalizability, but also for consistency with other models of choice under risk (such as

the rank dependent utility (RDU) model (Quiggin, 1982)) and under uncertainty (such as

the maxmin expected utility model (Gilboa and Schmeidler, 1989)). The basic idea is always

to convert an infinite collection of revealed preference pairs into a finite number involving

only bundles on a finite lattice. Note also that the method does not require linear budget

sets: it works for any type of constraint set, so long as it is compact.

1.2 Empirical implementation and findings

We implement our empirical method on a data set obtained from the well known portfolio

3 This example is EU-rationalizable on X 2 and thus EU-rationalizable. One solution is ūp0q “ 0, ūp1q “ 1,

ūp2q “ 4, ūp3q “ 6, ūp4q “ 7, ūp5q “ 8, and ūp6q “ 9.
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choice experiment in Choi, Fisman, Gale, and Kariv (2007), in order to demonstrate that the

lattice method works at a practical level, and also for its own sake. In this experiment, each

subject was asked to purchase Arrow-Debreu securities under different budget constraints.

There were two states of the world, and it was commonly known that states occurred either

symmetrically (each with probability 1/2) or asymmetrically (one with probability 1/3 and

the other with probability 2/3). In their analysis, Choi et al. (2007) first checked whether a

subject’s observations were consistent with the maximization of a locally nonsatiated utility

function by performing the familiar GARP test (prescribed by Afriat’s (1967) Theorem).

Those subjects who passed or came sufficiently close to passing GARP were then fitted to

a parametric version of the disappointment aversion (DA) model (Gul, 1991), which is a

special case of the RDU model when there are two states of the world.

The lattice method developed in this paper makes it possible for us to evaluate other

models of choice under risk (beyond basic utility maximization) using a completely nonpara-

metric approach. We test whether a subject’s choices are consistent with the EU, DA, and

RDU models by applying the lattice method. We also test for consistency with the maxi-

mization of a utility function that is stochastically monotone, in the sense that if a bundle

dominates another with respect to first order stochastic dominance, then it must have higher

utility. The EU, DA, and RDU models are all special cases of the SMU model, which is in

turn more stringent than basic utility maximization.

With 50 observations collected on each subject, it is unsurprising that hardly any subject

would be exactly rationalizable by even the the most permissive model of utility maximiza-

tion. It is possible to quantify a data set’s departure from a particular notion of rationality

using the critical cost efficiency index (Afriat (1972, 1973)); this index is widely used in the

empirical revealed preference literature, including Choi et al. (2007).4 This index runs from

1 to 0, with the index equal to 1 if the data set passes the test exactly. We adopt the same

measure of rationality in this paper. Given the data obtained from a particular subject, and

for each of the models that we consider, it is possible to calculate this index; in the case of

the EU, DA, and RDU models, this calculation again relies upon the lattice method.

4 For a recent paper that implements a variant of this index and discusses its merits, see Halevy, Persitz,

and Zrill (2016).
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In comparing the performance of different models, it is necessary to go beyond comparing

(approximate) pass rates since a very permissive model will have a very high pass rate but also

little restrictive and predictive power. A standard way of measuring power in the empirical

revealed preference literature is to estimate the probability of a randomly generated data set

failing the test for a given model (Bronars, 1987); a model has high power if this probability

is high. When one is investigating nested models, it is also natural to examine relative power:

for example, if we randomly select a data set which passes GARP, what is the probability

that it is also consistent with the EU model? Even though the power of different models

of choice under risk has been investigated in other contexts, we provide the first systematic

investigation of this issue in the context of budgetary choice data.

So models can be compared in at least two dimensions: their pass rates and their power.

One way of combining these into a single index is to evaluate the difference between the

pass rate and the model’s precision, which is the probability of a random data set passing

the test for that model (in other words, 1 minus the power). Selten (1991) provides an

axiomatization of this index and calls it the index of predictive success. We evaluate the

performance of different models according to this index.

The following is a brief summary of our empirical findings:5

• At a cost efficiency threshold of 0.9, more than 80% of subjects pass GARP and are

therefore consistent with the maximization of a locally nonsatiated utility function.

• Among this group of subjects more than half are rationalizable by the EU model.

• The SMU and RDU models explain a sizable proportion of subjects whose behavior is

not captured by the EU model. This is not true of the DA model, even though it is in

principle a more permissive model than EU.

• If we randomly generate a data set which passes GARP, the probability of it being

consistent with the RDU model, and hence the more stringent DA and EU models,

is effectively zero. In other words, the power of these models is close to perfect, even

among subjects who are consistent with utility maximization.

• After conditioning on passing GARP, the SMU and RDU models have the highest

5 These findings are broadly consistent with results from earlier studies (see Section 4 for details).
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indices of predictive success. These models perform well because they capture signifi-

cantly more of the population than the EU model, without sacrificing power.

1.3 Relationship with the revealed preference literature

Our paper is related to the revealed preference literature originating from Afriat’s (1967)

Theorem, which characterizes consumer demand observations that are consistent with the

maximization of a locally nonsatiated utility function (see also Diewert (1973) and Varian

(1982)). Afriat’s Theorem has theoretical significance in the sense that its intuitive behavioral

characterization of basic rationalizability (through GARP) provides a justification for utility

maximization in the consumer demand context, but it also provides a viable empirical method

for testing rationalizability, which is why it has given rise to a large empirical literature.

A natural follow up to Afriat’s contribution is to characterize those data sets which

are rationalizable by more specialized utility functions. Among these papers are those which

characterize observations of contingent consumption demand that are consistent with the EU

model and (in more recent papers) some of its generalizations; these include Varian (1983a,

1983b, 1988), Green and Srivastava (1986), Diewert (2012), Bayer et al. (2013), Echenique

and Saito (2015), Chambers, Liu, and Martinez (2016), and Chambers, Echenique, and Saito

(2016).6 The principal difference between our results and this literature is that we do not

rely on the methods of convex optimization; this means, in particular, that we do not require

(or guarantee) the concavity of the Bernoulli function, and our results are applicable to data

sets with general constraint sets rather than just linear budget sets. For reasons which we

make clear later in the paper, the fact that we allow for nonlinear constraint sets means that

our method can also be used to calculate Afriat’s efficiency index.

It is worth mentioning that not all revealed preference results (involving budgetary ob-

servations) that flow from Afriat’s Theorem have the feature of providing both theoretical

insight and an empirical method. There are papers where the emphasis is on providing a

characterization that offers theoretical insight; in other cases the emphasis is on providing

an empirically viable method of model testing.7 Our main methodological result (Theorem

6 There is also a closely related literature on recovering expected utility from asset or contingent con-

sumption demand functions, where, in effect the data set is assumed to be infinite (see, for example, Dybvig

and Polemarchakis (1981) and Kubler, Selden, and Wei (2014)).
7 For example, Chambers, Liu, and Martinez (2016) provides a characterization of the former type, and
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1) says that, for a broad class of models, to check for rationalizability it suffices to check for

rationalizabilty as if the subject’s consumption space is some finite lattice (constructed from

the data). By itself, the result does not furnish us with any theoretical motivation for one

model or another; its principal value is in providing us with an empirical tool.

1.4 Organization of the paper

Section 2 provides a description of the lattice method and explains how it can be used to

test the EU, DA, and RDU models in a budgetary choice environment. Further applications

of the lattice method, including to models of decision making under uncertainty, can be

found in the Online Appendix. In Section 3 we explain Afriat’s efficiency index and how the

lattice method can be used to calculate this index. The empirical application to the portfolio

choice data collected by Choi, Fisman, Gale, and Kariv (2007) can be found in Section 4.

2. The lattice method

We assume that there is a finite set of states, denoted by S “ t1, 2, . . . , s̄u. The contingent

consumption space is Rs̄
`; for a typical consumption bundle x P Rs̄

`, the sth entry, xs, specifies

the consumption level in state s.8 There are T observations in the data set O “ tpxt, BtquTt“1;

by this we mean that the agent is observed choosing the bundle xt from Bt Ă Rs̄
`. We assume

that Bt is compact and that xt P BBt, where BBt denotes the upper boundary of Bt.9 The

most important example of Bt is the classical linear budget set under complete markets, i.e.,

Bt
“ tx P Rs̄

` : pt ¨ x ď pt ¨ xtu, (1)

with pt " 0 denoting the vector of state prices. In this case, we may also write the data set

as O “ tpxt,ptquTt“1. The experiment conducted by Choi et al. (2007), the data from which

we analyze in Section 4, involves subjects choosing from linear budget sets.

they point out this distinction clearly in the introduction to their paper.
8 Our results do depend on the realization in each state being one-dimensional (which can be interpreted

as a monetary payoff, but not a bundle of goods). This case is the one most often considered in applications

and experiments and is also the assumption in a number of recent papers, including Kubler, Selden, and

Wei (2014), Echenique and Saito (2015), and Chambers, Echenique, and Saito (2016). The papers by Varian

(1983a, 1983b), Green and Srivastava (1986), Bayer et al. (2013), and Chambers, Liu, and Martinez (2016)

allow for multi-dimensional realizations but (like the three aforementioned papers) they also require the

convexity of the agent’s preference over contingent consumption and linear budget sets.
9 An element y P Bt is in BBt if there is no x P Bt such that x ą y. (For the vectors x, y P Rs̄, we write

x ě y if xs ě ys for all s, and x ą y if x ě y and x ‰ y. If xs ą ys for all s, we write x " y.) For example,

if Bt “ tpx, yq P R2
` : px, yq ď p1, 1qu, then p1, 1q P BBt but p1, 1{2q R BBt.
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Bear in mind, however, that our formulation only requires Bt to be compact and, in

particular, it does not have to be a linear budget set. A crucial application requiring Bt to

be nonlinear is found in Section 3, where we define approximate rationalizability. Another

natural example of a nonlinear budget set is when a subject chooses contingent consumption

through a portfolio of securities in an incomplete market; in this case, the budget set will be

compact so long as the security prices do not admit arbitrage.10

Let tφp¨, tquTt“1 be a collection of functions, where φp¨, tq : Rs̄
` Ñ R is continuous and

strictly increasing.11 The data set O “ tpxt, BtquTt“1 is said to be rationalizable by tφp¨, tquTt“1

if there exists a continuous and strictly increasing function u : R` Ñ R`, which we shall

refer to as the Bernoulli function, such that

φpupxtq, tq ě φpupxq, tq for all x P Bt, (2)

where upxq “ pupx1q, upx2q, . . . , upxs̄qq. In other words, xt maximizes φpupxq, tq in Bt. It is

natural to require u to be strictly increasing since we typically interpret its argument to be

money. The requirements on u guarantee that φpup¨q, tq is continuous and strictly increasing

in x. Note that continuity is an important property because it guarantees that the agent’s

utility maximization problem always has a solution on a compact constraint set.12

Expected utility. This model clearly falls within the framework we have set up. In-

deed, suppose that both the observer and the agent know that the probability of state s at

observation t is πts ą 0. If the agent is maximizing expected utility (EU),

φpu1, u2, . . . , us̄, tq “
s̄
ÿ

s“1

πtsus, (3)

and (2) requires that
s̄
ÿ

s“1

πtsupx
t
sq ě

s̄
ÿ

s“1

πtsupxsq for all x P Bt, (4)

10 Indeed, there is pt " 0 such that Bt “ tx P Rs̄
` : pt ¨ x ď pt ¨ xtu X tZ ` ωu, where Z is the span of

assets available to the agent and ω is the agent’s endowment of contingent consumption. Both Bt and xt

will be known to the observer, if he knows the asset prices, the agent’s holding of securities, the asset payoffs

in every state, and the agent’s endowment of contingent consumption ω.
11 By strictly increasing, we mean that φpz, tq ą φpz1, tq if z ą z1.
12 The existence of a solution is obviously important if we are to make out-of-sample predictions. More

fundamentally, a hypothesis that an agent is choosing a utility-maximizing bundle implicitly assumes that

the utility function is such that an optimum exists for a reasonably broad class of constraint sets.
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i.e., the expected utility of xt is greater than that of any other bundle in Bt. When there

exists a Bernoulli function u such that (4) holds, we say that the data set is EU-rationalizable

with the probability weights tπtuTt“1, where πt “ pπt1, π
t
2, . . . , π

t
s̄q.

If O is rationalizable by tφp¨, tquTt“1, then since the objective function φpup¨q, tq is strictly

increasing in x, the rationalizability condition (2) could be strengthened to

φpupxtq, tq ě φpupxq, tq for all x P Bt, (5)

where Bt is the downward extension of Bt, i.e.,

Bt
“ ty P Rs̄

` : y ď x for some x P Btu.

Furthermore, the inequality in (5) is strict whenever x P Bt
zBBt (where BBt refers to the

upper boundary of Bt). We define X “ tx1 P R` : x1 “ xts for some t, su Y t0u; besides zero,

X contains those levels of consumption that are chosen at some observation and in some

state. Since the data set is finite, so is X . Given X , we may construct L “ X s̄, which

consists of a finite grid of points in Rs̄
`; in formal terms, L is a finite lattice. Let ū : X Ñ R`

be the restriction of the Bernoulli function u to X . Given O, the following must hold:

φpūpxtq, tq ě φpūpxq, tq for all x P Bt
X L and (6)

φpūpxtq, tq ą φpūpxq, tq for all x P
`

Bt
zBBt

˘

X L, (7)

where ūpxq “ pūpx1q, ūpx2q, . . . , ūpxs̄qq. Our main theorem says the converse is also true.13

Theorem 1. Suppose that for some data set O “ tpxt, BtquTt“1 and collection of continuous

and strictly increasing functions tφp¨, tquTt“1, there is a strictly increasing function ū : X Ñ

R` that satisfies conditions (6) and (7). Then there is a Bernoulli function u : R` Ñ R`
that extends ū and guarantees the rationalizability of O by tφp¨, tquTt“1.14

13 Note that Bt cannot be replaced with Bt in (6) and (7). For example, suppose there are two observa-

tions, where x1 “ p1, 0q is chosen from B1 “ tpx1, x2q P R2
` : 2x1 ` x2 “ 2u and x2 “ p0, 1q is chosen from

B2 “ tpx1, x2q P R2
` : x1`2x2 “ 2u. This pair of observations cannot be rationalized by any increasing utility

function (even though the ‘budget sets’ are just lines) and, in particular, cannot be rationalized in the sense

of Theorem 1 (with φ constant across t). However, since L “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu, B1 X L “ tp1, 0qu
and B2 X L “ tp0, 1qu, so conditions (6) and (7) are vacuous. On the other hand

`

B1
zBB1

˘

X L contains

p0, 1q and
`

B2
zBB2

˘

X L contains p1, 0qu, so (7) requires φpūpx1qq ą φpūpx2qq and φpūpx1qq ă φpūpx2qq,

which plainly cannot happen. This allows us to conclude, correctly, that the data set is not rationalizable.
14 The increasing assumptions on φ and ū ensure that we may confine ourselves to checking (6) and (7)

for undominated elements of Bt
XL, i.e., x P Bt

XL such that there does not exist x1 P Bt
XL with x ă x1.

10

                            11 / 53



 

What Theorem 1 achieves is domain reduction: checking the rationalizability of O is

equivalent to checking rationalizability in the case where the agent’s consumption space is

considered to be L rather than Rs̄
`, which (crucially) reduces the rationality requirements

to a finite number of inequalities, each involving the observed choice and an alternative (see

(6) and (7)), and with the Bernoulli function defined on X rather than R`.

The intuition for Theorem 1 ought to be strong. Given ū satisfying (6) and (7), we

can define the step function û : R` Ñ R` where ûprq “ ū prrsq, with rrs being the largest

element of X weakly lower than r, i.e., rrs “ max tr1 P X : r1 ď ru. Notice that φpûpxtq, tq “

φpūpxtq, tq and, for any x P Bt, φpûpxq, tq “ φpūprxsq, tq, where rxs “ prx1s, rx2s, . . . , rxs̄sq in

Bt
X L. Clearly, if ū obeys (6) and (7) then O is rationalized by tφp¨, tquTt“1 and û (in the

sense that (2) holds). This falls short of the claim in the theorem only because û is neither

continuous nor strictly increasing; the proof in the Appendix shows how one could in fact

construct a Bernoulli function with these additional properties.

2.1 Testing the expected utility model

Theorem 1 provides us with a very convenient way of testing EU-rationalizability. The

theorem tell us that O “ tpxt, BtquTt“1 is EU-rationalizable with the probability weights

tπtuTt“1 if and only if there is a collection of real numbers tūprqurPX such that

0 ď ūpr1q ă ūprq whenever r1 ă r, (8)

and the inequalities (6) and (7) hold, where φp¨, tq is defined by (3). This is a linear program

and it is both formally solvable (in the sense that there is an algorithm that can decide within

a known number of steps whether or not there is a solution to this set of linear inequalities)

and also computationally feasible.

At this point it is worth emphasizing that requiring a data set to be EU-rationalizable is

certainly more stringent than simply requiring it to be rationalizable by a locally nonsatiated

utility function. Indeed, while a data set with a single observation pxt,ptq must be consistent

with the maximization of a strictly increasing (and hence locally nonsatiated) utility function,

even a single observation can be incompatible with the EU model.

Example 1. Suppose that there are two equiprobable states of the world, and at the

price vector pt “ ppt1, p
t
2q such that pt1 ą pt2, the agent purchases a bundle xt such that
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xt1 ą xt2. We claim that this is not EU-rationalizable, or in other words, the agent cannot

buy strictly more of the more expensive good. Indeed, such an observation is not compatible

with the maximization of any symmetric and strictly increasing utility function on R2
`: with

symmetry, the bundle py1, y2q, where y1 “ xt2 and y2 “ xt1, is strictly cheaper than xt but

gives the same utility, so xt is not optimal. Such an observation will also fail the lattice test,

since py1, y2q is in LX pBt
zBBt

q but the condition (7) is not satisfied. l

On the other hand, our test is strictly less stringent than a test of EU-rationalizability that

also requires the Bernoulli function to be concave (such as Green and Srivastava (1986));

imposing concavity on the Bernoulli function has observable implications over and above

those which flow simply from the EU model, as the following example demonstrates.

Example 2. Suppose an agent maximizes expected utility and has the Bernoulli function

upyq “ py ´ 4q3, which is strictly concave for y ă 4 and strictly convex otherwise.15 There

are two states of the world, which occur with equal probability. At pt “ p1, 3{2q and with

wealth 1, the agent chooses x1 P r0, 1s to maximize fpx1q “ px1 ´ 4q3 ` r2p1´ x1q{3´ 4s3.

Over this range, the Bernoulli function is strictly concave and so is f ; one could check that

f 1p1q ă 0 so that there is unique interior solution which we denote xt (see Figure 2).16 At

the prices pt
1

“ p1, 1q with wealth equal to 64, the agent chooses x1 P r0, 64s to maximize

gpx1q “ px1 ´ 4q3 ` p60´ x1q
3 . It is straightforward to check that g is strictly convex on

r0, 64s and it is thus maximized at the two end points p0, 64q and p64, 0q.

Now consider a data set consisting of two observations: the bundle xt chosen at pt “

p1, 3{2q and xt
1

“ p64, 0q chosen at pt
1

“ p1, 1q. This data set is EU-rationalizable and it will

pass the lattice test, but it cannot be rationalized by a concave Bernoulli function. Indeed,

upxt1q ` upx
t
2q ě up1q ` up0q (9)

since p1, 0q is affordable to the agent when xt is chosen. If we further assume that u is concave,

up1q´ upxt1q ě up64q´ upxt1` 63q; substituting this into (9), we obtain upxt1` 63q` upxt2q ě

up64q ` up0q. The bundle ppxt1 ` 63q, xt2q is strictly cheaper than xt
1

“ p64, 0q at pt
1

(see

Figure 2), so xt
1

cannot be optimal. To conclude, while O “ tppt,xtq, ppt
1

,xt
1

qu is indeed

15 A Bernoulli function with a concave region followed by a convex region is used by Friedman and Savage

(1948, Figure 2) to explain why an agent can simultaneously buy insurance and accept risky gambles.
16 Solving the (quadratic) first order condition gives xt « p0.83, 0.11q.
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Figure 2: EU-rationalizable but not concave EU-rationalizable data set

EU-rationalizable, it is not EU-rationalizable with a concave Bernoulli function. l

We have shown that a data set is EU-rationalizable if and only if it is EU-rationalizable

on L and the latter is in turn equivalent to the existence of a function ū obeying conditions

(6), (7), and (8) (with φpu, tq “
řs̄
s“1 π

t
sus). Conditions (6) and (7) generate a finite list

of preference pairs between some chosen bundle xt and another bundle x in Bt
X L or

`

Bt
zBBt

˘

XL. Condition (8) can also be reformulated as saying that the bundle pr, r, . . . , rq

is strictly preferred to pr1, r1, . . . , r1q whenever r ą r1, for r, r1 P X . We gather these together

in a list tpaj,bjquMj“1, where for all j ď N (with N ăM), the bundle aj is weakly preferred

to bj (so the pairs are drawn from (6)) and for j ą N , aj is strictly preferred to bj (so the

pairs are drawn from (7) and (8)). Each bundle aj can be written in its lottery form âj,

where âj is the vector with |X | entries, with the ith entry giving the probability of ith ranked

number in X ; similarly, bj can be written in its lottery form b̂j. For example, in the example

given in the introduction, X “ t0, 1, 2, 3, 4, 5, 6u and the two states are equiprobable, so the

bundle p2, 5q chosen from B1 has the lottery form p0, 0, 1{2, 0, 0, 1{2, 0q.

We know from Fishburn (1975) that the list tpaj,bjquMj“1 is rationalizable by EU (i.e.,

there is ū that solves (6), (7), and (8) with φpu, tq “
řs̄
s“1 π

t
sus) if and only if there does not
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exist λj with
řM
j“1 λ

j “ 1, λj ě 0 for all j, and λj ą 0 for some j ą N , such that

M
ÿ

j“1

λjâj “
M
ÿ

j“1

λjb̂j. (10)

This condition is very intuitive: assuming that the agent has a preference over lotteries, the

independence axiom says that the lottery
řM
j“1 λ

jâj must be strictly preferred to
řM
j“1 λ

jb̂j,

and therefore (10) is excluded.17 Put another way, a violation of Fishburn’s condition must

imply a violation of the independence axiom.

To summarize, we have shown that a data set O “ tpxt, BtquTt“1 is EU-rationalizable

with probability weights tπtuTt“1 if and only if it is EU-rationalizable with probability weights

tπtuTt“1 on the domain L and this in turn holds if and only if the preference pairs on L (as

revealed by the data) do not contain a contradiction of the independence axiom of the form

(10). Example 3, to be explained later in the paper, gives an example of a data set which

violates Fishburn’s condition on L and is therefore not EU-rationalizable.

2.2 Other applications of the lattice method

So far, we have considered tests of EU-rationalizability in the case where the probability

of each state is known to both the agent and the observer. The testing procedure extends

to the case where no objective probabilities can be attached to each state. A data set O “

tpxt, BtquTt“1 is rationalizable by subjective expected utility (SEU) if there exist probability

weights π “ pπ1, π2, . . . , πs̄q " 0, with
řs̄
s“1 πs “ 1, and a Bernoulli function u : R` Ñ R`

such that, for all t “ 1, 2, . . . , T ,

s̄
ÿ

s“1

πsupx
t
sq ě

s̄
ÿ

s“1

πsupxsq for all x P Bt.

In this case, φ is independent of t and instead of being fixed, it is required to belong to

the family of functions ΦSEU such that φ P ΦSEU if φpuq “
řs̄
s“1 πsus for some π " 0. By

Theorem 1, the data set O “ tpxt, BtquTt“1 can be rationalized by some φ P ΦSEU if there is a

strictly increasing ū such that (6) and (7) holds and it is clear that these conditions are also

17 To be precise, suppose that the agent has a preference over lotteries with prizes in X . The independence

axiom says that if lottery â is preferred (strictly preferred) to b̂, then γâ ` p1 ´ γqĉ is preferred (strictly

preferred) to γb̂` p1´ γqĉ, where ĉ is another lottery and γ P r0, 1s. Repeated application of this property

and the transitivity of the preference will guarantee that
řM

j“1 λ
j âj is strictly preferred to

řM
j“1 λ

jb̂j .
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necessary. These conditions form a system of bilinear inequalities with unknowns tπsu
s̄
s“1

and tūprqurPX .

For many of the standard models of decision making under risk or uncertainty, the ratio-

nalizability problem has a structure similar to that of SEU in the sense that rationalizability

by a particular model involves finding a Bernoulli function u and a function φ belonging to

some family Φ that together rationalize the data, and this problem can in turn be transformed

(via Theorem 1) into a problem of solving a system of bilinear inequalities. In the Online

Appendix, we show how tests for various models, including choice acclimating personal equi-

librium (Köszegi and Rabin, 2007), maxmin expected utility (Gilboa and Schmeidler, 1989),

and variational preferences (Maccheroni, Marinacci, and Rustichini, 2006), can be devised

using Theorem 1.

Even though solving a bilinear problem may be computationally intensive, the Tarski-

Seidenberg Theorem tells us that this problem is decidable, in the sense that there is a

known algorithm that can determine in a finite number of steps whether or not a solution

exists. Nonlinear tests are not new to the revealed preference literature; for example, they

appear in tests of weak separability (Varian, 1983a), in tests of maxmin expected utility and

other models of ambiguity (Bayer et al., 2013), and in tests of Walrasian general equilibrium

(Brown and Matzkin, 1996). Solving such problems can be computationally demanding,

but some cases can be computationally straightforward because of certain special features

and/or when the number of observations is small. In the case of the tests that we develop,

they simplify dramatically and are implementable in practice when there are only two states

(though they remain nonlinear). The two-state case, while special, is very common in applied

theoretical settings and laboratory experiments. For example, to implement the SEU test,

simply condition on the probability of state 1 (and hence on the probability of state 2), and

then perform a linear test to check whether there is a collection of real numbers tūprqurPX

solving (6), (7), and (8) (with φp¨, tq is defined by (3)). If not, choose another probability

for state 1, implement, and repeat (if necessary). Even a uniform grid search of up to two

decimal places on the probability of state 1 will lead to no more than 99 linear tests, which

can be implemented with little difficulty.18

18 While we have not found it necessary to use them in our implementation in this paper, there are solvers

available for mixed integer nonlinear programs (for example, as surveyed in Bussieck and Vigerske (2010))
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Rank dependence and disappointment aversion. The rank dependent utility (RDU)

model (Quiggin, 1982) is a prominent model of choice under risk. In Section 4, we report

the findings of a test of this model, so we explain it here in greater detail. Let πs ą 0

be the objective probability of state s.19 Given a contingent consumption bundle x, we

can rank the entries of x from the smallest to the largest, with ties broken by the rank

of the state. We denote by rpx, sq, the rank of xs in x. For example, if there are five

states and x “ p1, 4, 4, 3, 5q, we have rpx, 1q “ 1, rpx, 2q “ 3, rpx, 3q “ 4, rpx, 4q “ 2, and

rpx, 5q “ 5. A rank dependent expected utility function gives to the bundle x the utility

V pxq “
řs̄
s“1 δpx, squpxsq where u : R` Ñ R is a Bernoulli function,

δpx, sq “ g
´

ř

ts1:rpx,s1qďrpx,squ πs1
¯

´ g
´

ř

ts1:rpx,s1qărpx,squ πs1
¯

,

and g : r0, 1s Ñ R is a continuous and strictly increasing function. (If ts1 : rpx, s1q ă rpx, squ

is empty, we let g
´

ř

ts1:rpx,s1qărpx,squ πs1
¯

“ gp0q.) The function g distorts the cumulative

distribution of the bundle x, so that an agent maximizing rank dependent utility can behave

as though the probability he attaches to a state depends on the relative attractiveness of

the outcome in that state. Since u is strictly increasing, δpx, sq “ δpupxq, sq and therefore

V pxq “ φpupxqq, where for any vector u “ pu1, u2, . . . , us̄q,

φpuq “
s̄
ÿ

s“1

δpu, squs.

Note that the function φ is continuous and strictly increasing in u. So V has the form

assumed in Theorem 1, and we can use that result to devise a test for RDU-rationalizability.

We discuss a multiple-state version of the RDU test in the Appendix; at this point it

suffices to explain the two-state case, which is the one relevant to the implementation in

Section 4. Let ρs “ gpπsq be the distorted value of πs (the true probability of state s, for

s “ 1, 2). Then φpu1, u2q “ ρ1u1 ` p1 ´ ρ1qu2 if u1 ď u2 and φpu1, u2q “ p1 ´ ρ2qu1 ` ρ2u2

if u1 ą u2; by Theorem 1, a sufficient (and obviously necessary) condition for a data set

O “ tpxt, BtquTt“1 to be RDU-rationalizable is for there to be a solution to (6) and (7),

with this formula for φ. This test involves solving a set of inequalities that are bilinear in

that are potentially useful for implementing bilinear tests more generally.
19 To keep the notation light, we confine ourselves to the case where π does not vary across observations.

There is no conceptual difficulty in allowing for this.
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the unknowns tūprqurPX and tρ1, ρ2u. In our implementation, we simply let ρ1 and ρ2 take

different values on a very fine grid in r0, 1s2, subject to ρ1 ď ρ2 (if and only if π1 ď π2) and

(for each case) perform the corresponding linear test.

It is worth emphasizing at this point that for certain values of ρ1 and ρ2, the function

φ is clearly not concave or even quasiconcave, and therefore we cannot guarantee the qua-

siconcavity of the agent’s utility over contingent consumption, even if we restrict ourselves

to concave Bernoulli functions. While the lattice method still works in these cases, it is

not possible to formulate a test for rationalizability that allows for non-quasiconcave utility

functions using concave optimization methods (such as those cited in Section 1.3) because

the first order conditions are no longer sufficient for optimality.

We also implement a lattice test of Gul’s (1991) model of disappointment aversion (DA).

When there are two states, the DA model is a special case of the RDU model with a further

restriction on ρ1 and ρ2. Specifically, there is some β P p´1,8q such that, for s “ 1, 2,

ρs “
p1` βqπs
1` πsβ

. (11)

Note that this restriction has bite only if ρ1 ‰ ρ2, so in fact the RDU and DA models

are identical when π1 “ π2. If β “ 0, the agent simply maximizes expected utility. If

β ą 0, we have ρs ą πs, so the agent attaches a probability on s that is higher than the

objective probability when s is the less favorable state; in this case, the agent is said to be

disappointment averse. If β ă 0, then ρs ă πs, and the agent is said to be elation seeking;

this is an instance where the function φ is not quasiconcave. As in the RDU model, we test

the DA model by letting β take on different values and performing the associated linear test.

While it is well known that the RDU and EU models lead to different predictions, it

not immediately clear that they are observationally distinct in the context of observations

drawn from linear budgets. We end this section with an example of a data set that is

RDU-rationalizable but not EU-rationalizable.

Example 3. Suppose the data set consists of three observations pxt,ptq, for t “ 1, 2, 3,

where p1 “ p1, qq, x1 “ pa, aq; p2 “ p1, 1{qq, x2 “ pb, bq; and p3 “ p1, p1{q2q ` εq, x3 “

pa ` pa ´ bq{q, b ` pb ´ aqqq, with q ą 1 and a ă b, and ε ą 0 is a small number. The three

observations are depicted Figure 3, where c “ a` pa´ bq{q and d “ b` pb´ aqq.
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Figure 3: RDU-rationalizable but not EU-rationalizable data set

We claim that these observations are not EU-rationalizable if the two states are equiprob-

able. Suppose that they are, for some Bernoulli function u. Then the first observation tells

us that 2upaq ě upbq`upcq, since pb, cq is available when pa, aq is chosen. Similarly, from the

second observation, we know that 2upbq ě upaq ` updq. Together this gives

upbq ´ updq ě upaq ´ upbq ě upcq ´ upaq,

from which we obtain upaq ` upbq ě upcq ` updq. On the other hand, it is straightforward to

check that, with ε ą 0, the bundle pa, bq is strictly cheaper than pc, dq at p3, which leads to

a contradiction since pc, dq is chosen over pa, bq at the third observation.20

We claim that these observations are RDU-rationalizable; in fact, they can be rationalized

with a smooth and concave Bernoulli function. Suppose V px1, x2q “ ρupx1q ` p1 ´ ρqupx2q

when x1 ď x2 and V px1, x2q “ p1´ρqupx1q`ρupx2q when x1 ą x2, with ρ “ q{pq`1q. Since

ρ ą 1{2, the agent displays disappointment aversion. So long as u is strictly concave, the

agent’s utility is maximized at x1 “ x2 whenever p1 “ 1 and p2 P r1{q, qs. So V rationalizes

the first two observations. To justify the third, it suffices to find u such that u1 ą 0 and

20 Equivalently, note that there is a violation of Fishburn’s condition. The bundle/lottery pa, aq is preferred

to pb, cq, pb, bq is preferred to pa, dq, and pc, dq is strictly preferred to pa, bq. However, the compound lottery

where pa, aq, pb, bq and pc, dq each occur with probability 1/3 is stochastically equivalent to the compound

lottery where pb, cq, pa, dq and pa, bq each occur with probability 1/3.
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u2 ă 0 satisfying the first order condition

ρu1pcq

p1´ ρqu1pdq
“ q

u1pcq

u1pdq
“
p3

1

p3
2

“
q2

1` q2ε
.

If ε is sufficiently small, this is possible since the price ratio p3
1{p

3
2 is greater than q.21 l

3. Goodness of fit

The revealed preference tests presented in the previous section are ‘sharp’, in the sense

that a data set either passes the test for a given model or it fails. This either/or feature of

the tests is not particular to our results but is true of all classical revealed preference tests,

including Afriat’s. It would, of course, be desirable to develop a way of measuring the extent

to which a certain class of utility functions succeeds or fails in rationalizing a data set, and

the most common approach adopted in the revealed preference literature to address this

issue was developed by Afriat (1972, 1973) and Varian (1990).22, 23 We now give an account

of this approach and explain why implementing it in our setting is possible (or at least no

more difficult than implementing the exact tests).

Suppose that the observer collects a data set O “ tpxt, BtquTt“1; following the earlier

literature, we focus attention on the case where Bt is a classical linear budget set given by

(1). For any number et P r0, 1s, we define

Bt
petq “ tx P Rs̄

` : pt ¨ x ď etpt ¨ xtu Y txtu. (12)

Clearly Btpetq is smaller than Bt and shrinks with the value of et. Let U be a collection of

utility functions defined on Rs̄
` belonging to a given family; for example, U could be the family

of locally nonsatiated utility functions (which was the family considered by Afriat (1972,

1973) and Varian (1990) in their work). We define the set EpUq in the following manner: a

vector e “ pe1, e2, . . . , eT q is in EpUq if there is some function U P U that rationalizes the

21 If it were smaller than q, this would not be possible since the concavity of u requires u1pcq ě u1pdq.
22 For examples where Afriat-Varian type indices are used to measure a model’s fit, see Mattei (2000),

Harbaugh, Krause, and Berry (2001), Andreoni and Miller (2002), Choi et al. (2007, 2014), Beatty and

Crawford (2011), and Halevy, Persitz, and Zrill (2016), and Pastor-Bernier, Plott, and Schultz (2017).

Echenique, Lee, and Shum (2011) develops and applies a related index called the money pump index.
23 For an account of why such measures may be more suitable then other measures of goodness-of-fit,

such as the sum of squared errors between observed and predicted demands, see Varian (1990) and Halevy,

Persitz, and Zrill (2016).
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modified data set Opeq “ tpxt, BtpetqquTt“1, i.e., Upxtq ě Upxq for all x P Btpetq. Clearly, the

data set O is rationalizable by a utility function in U if and only if the unit vector p1, 1, . . . , 1q

is in EpUq. We also know that EpUq must be nonempty since it contains the vector 0, and it

is clear that if e P EpUq then e1 P EpUq, where e1 ă e. The closeness of the set EpUq to the

unit vector is a measure of how well the utility functions in U can explain the data. Afriat

(1972, 1973) suggests measuring this distance with the supnorm, so the distance between e

and 1 is DApeq “ 1´min1ďtďT te
tu, while Varian (1990) suggests that we choose the square

of the Euclidean distance, i.e., DV peq “
řT
t“1p1´ e

tq2.

Measuring distance by the supnorm has the advantage that it is computationally straight-

forward, and it is also the measure most commonly used in the empirical revealed preference

literature, so this is the approach that we adopt in our implementation (see Section 4). Note

that DApeq “ DApreq where re is the vector with identical entries equal to min te1, e2, . . . , eT u,

where e “ pe1, e2, . . . , eT q. Since re ď e, we obtain re P EpUq whenever e P EpUq. Therefore,

minePEpUqDApeq “ mineP rEpUqDApeq, where rEpUq “ te P EpUq : et “ et
1

for any t, t1u, i.e.,

in searching for e P EpUq that minimizes the supnorm distance from p1, 1, . . . , 1q, we can

focus our attention on the set rEpUq, which consists of those vectors in EpUq that shrink

each observed budget set by the same proportion. Given a data set O “ tpxt,ptquTt“1, Afriat

refers to sup te : pe, e, . . . , eq P EpUqu as the critical cost efficiency index; we say that O is

rationalizable in U at the efficiency index/threshold e1 if pe1, e1, . . . , e1q P EpUq.

Suppose that for a given data set, the critical cost efficiency index is 0.95. In that case,

while we cannot guarantee that xt is optimal in the true budget set, we know that there is

some utility function in U for which xt is optimal in Btp0.95q at every observation t. With this

utility function, there could be bundles in Bt which the subject prefers to xt, but choosing

such a bundle (instead of xt) will not lead to savings of more than 5%. Furthermore, this

number is tight in the following sense: given any ε ą 0, then for every utility function in U ,

there is at least one observation t where the subject could indeed have saved p5´ εq% of her

expenditure.24 We can interpret this index as a characteristic of the subject and, specifically,

a measure of her bounded rationality; the bounded rationality could have arisen because she

is simply incapable of better decision making, or it could be that she has consciously or

24Formally, for every U P U there is t such that max tUpxq : pt ¨ x ď pt ¨ xtp0.95` 0.01εqu ą Upxtq.
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otherwise judged that it is not, from a broader perspective, rational for her to expend the

mental powers needed for exactly rational portfolio decisions.

Calculating the efficiency index (or, more generally, an index based on the Euclidean

metric) will require checking whether a particular vector e “ pe1, e2, . . . , eT q is in EpUq, i.e.,

whether Opeq “ tpxt, BtpetqquTt“1 is rationalizable by a member of U . When U is the family

of all locally nonsatiated utility functions, Afriat (1972, 1973) provides a necessary and

sufficient condition for the rationalizability of Opeq “ tpxt, BtpetqquTt“1 (which we describe in

greater detail in the Online Appendix).

More generally, the calculation of the efficiency index will hinge on whether there is a

suitable test for the rationalizability of Opeq “ tpxt, BtpetqquTt“1 by members of U . Even if a

test of the rationalizability of O “ tpxt, BtquTt“1 by members of U is available, this test may

rely on the convexity or linearity of the budget sets Bt; in this case, extending the test so

as to check for the rationalizability of Opeq “ tpxt, BtpetqquTt“1 is not straightforward since

the modified budget sets Btpetq are clearly nonconvex. Crucially, this is not the case with

the lattice method, which is applicable even for nonconvex constraint sets, so long as they

are compact. Thus extending our testing procedure to measure goodness of fit in the form

of the efficiency index involves no additional difficulties.

3.1 Approximate smooth rationalizability

While Theorem 1 guarantees that there is a Bernoulli function u that extends ū : X Ñ R`
and rationalizes the data when the required conditions are satisfied, the Bernoulli function

is not necessarily smooth (though it is continuous and strictly increasing by definition). Of

course, the smoothness of u is commonly assumed in applications of expected utility and

related models and its implications can appear to be stark. For example, suppose that it is

commonly known that states 1 and 2 occur with equal probability and we observe the agent

choosing p1, 1q at a price vector pp1, p2q, with p1 ‰ p2. This observation is incompatible

with a smooth EU model; indeed, given that the two states are equiprobable, the slope

of the indifference curve at p1, 1q must equal ´1 and thus it will not be tangential to the

budget line and will not be a local optimum. On the other hand, it is trivial to check that

this observation is EU-rationalizable in our sense. In fact, one could even find a concave
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Bernoulli function u : R` Ñ R` for which p1, 1q maximizes expected utility. (Such a u will,

of course, have a kink at 1.)

These two facts can be reconciled by noticing that, even though this observation cannot

be exactly rationalized by a smooth Bernoulli function, it is in fact possible to find a smooth

function that comes arbitrarily close to rationalizing it. Indeed, given any strictly increasing

and continuous function u defined on a compact interval of R`, there is a strictly increasing

and smooth function ũ that is uniformly and arbitrarily close to u on that interval. As such,

if a Bernoulli function u : R` Ñ R` rationalizes O “ tpxt, BtquTt“1 by tφp¨, tquTt“1, then for

any efficiency threshold e P p0, 1q, there is a smooth Bernoulli function ũ : R` Ñ R` that

rationalizes O1 “ tpxt, BtpeqquTt“1 by tφp¨, tquTt“1. In other words, if a data set is rationalizable

by some Bernoulli function, then it can also be rationalized by a smooth Bernoulli function,

for any efficiency threshold arbitrarily close to 1. In this sense, imposing a smoothness

requirement on the Bernoulli function does not radically alter a model’s ability to explain a

given data set.

4. Implementation

We examine the data collected from the well known portfolio choice experiment in Choi,

Fisman, Gale, and Kariv (2007). The experiment was performed on 93 undergraduate sub-

jects at the University of California, Berkeley. Every subject was asked to make consumption

choices on 50 decision problems under risk. The subject divided her budget between two

Arrow-Debreu securities, with each security paying one token if the corresponding state was

realized, and zero otherwise. In a symmetric treatment applied to 47 subjects, each state of

the world occurred with probability 1{2, and in a (balanced) asymmetric treatment applied

to 46 subjects, the probabilities of the states were 1{3 and 2{3. These probabilities were

objectively known. Lastly, income was normalized to one, and the state prices were chosen

at random and varied across subjects.

In their analysis, Choi et al. (2007) first tested whether each subject could have been

maximizing a locally nonsatiated utility function by performing a GARP test (or, strictly

speaking, an extended version of the GARP test that characterizes rationalizability at a given

efficiency threshold). Those subjects who passed GARP at a sufficiently high efficiency
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threshold were then fitted individually to a two-parameter version of the disappointment

aversion model of Gul (1991). The lattice method developed in this paper makes it possible

for us to re-analyze the same data using purely revealed preference techniques, without

appealing to any parametric assumptions. In this section we evaluate different models of

decision making with these newly developed tests according to three criteria: (1) the ability

of the model to explain the observed data; (2) the precision of the model’s predictions (in

various senses that we shall define); and (3) an index combining (1) and (2).

We consider five nested models in our empirical analysis. The most stringent of these is

the expected utility (EU) model, followed by the disappointment aversion (DA) and rank

dependent utility (RDU) models. (Recall from Section 2, however, that the RDU and DA

models are identical when the two states are equiprobable.) We test these three models

using the lattice method developed in Sections 2 and 3. In addition we test for basic ratio-

nalizability, i.e., consistency with locally nonsatiated utility maximization. A more stringent

criterion is rationalizability by a stochastically monotone utility (SMU) function; this is a

utility function that gives strictly higher utility to the bundle x compared to y whenever x

first order stochatically dominates y (with respect to the objective probabilities attached to

each state) and gives them the same utility whenever they are stochastically equivalent.

A test of consistency with a stochastically monotone utility function (at a given efficiency

threshold) was recently developed by Nishimura, Ok, and Quah (2017); this test has features

similar to GARP and we shall refer to it as F-GARP (see the Online Appendix for details). In

the Choi et al. (2007) experiment, there are just two states. In this case it is straightforward

to check that when π1 “ π2 “ 1{2, a utility function is stochastically monotone if and

only if it is strictly increasing and symmetric, and when π2 ą π1, a utility function U is

stochastically monotone if and only if it is strictly increasing and Upa, bq ą Upb, aq whenever

b ą a. Notice that the RDU, DA, and EU models all obey this property; in fact, it is well

known that these three models respect first order stochastic dominance, even when there are

more than two states of the world.

4.1 Exact pass rates and efficiency indices

We first test all five models on the Choi et al. (2007) data, and the results from these

exact tests are displayed in Table 1, where each cell contains a pass rate. Across 50 decision
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π1 “ 1{2 π1 ‰ 1{2 Total

GARP 12/47 (26%) GARP 4/46 (9%) GARP 16/93 (17%)

F-GARP 1/47 (2%) F-GARP 3/46 (7%) F-GARP 4/93 (4%)

RDU/DA 1/47 (2%)
RDU 2/46 (4%) RDU 3/93 (3%)

DA 1/46 (2%) DA 2/93 (2%)

EU 1/47 (2%) EU 1/46 (2%) EU 2/93 (2%)

Table 1: Pass rates

Figure 4: Distribution of efficiency indices for utility maximization

problems, 16 out of 93 subjects obey GARP and are therefore consistent with basic utility

maximization; subjects in the symmetric treatment perform distinctly better than those in

the asymmetric treatment. Of the 16 subjects who pass GARP, only 4 pass F-GARP; still

fewer subjects are rationalizable by the RDU, DA, and EU models.

Given that we observe 50 decisions for every subject, it may not be intuitively surprising

that so many subjects should have violated GARP (let alone more stringent conditions). We

next investigate the efficiency thresholds at which subjects pass the different tests. First, we

calculate the efficiency index at which each of the 93 subjects passes GARP; this empirical

distribution is depicted in Figure 4. (Note that this figure is essentially a replication of

Figure 4 in Choi et al. (2007).) We see that more than 80% of subjects have an efficiency

index above 0.9, and more than 90% have an index above 0.8. A first glance at these results

suggest that the data are largely compatible with the locally nonsatiated utility model.

To better understand what the observed distribution of efficiency indices says about the
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(a) π1 “ 1{2 (b) π ‰ 1{2

Figure 5: Distributions of efficiency indices

success or failure of a particular model to explain the data collected, it is useful to see what

distribution of efficiency indices will arise if we postulate an alternative form of behavior.

We adopt an approach first suggested by Bronars (1987) that simulates random uniform

consumption, i.e., which posits that consumers are choosing randomly uniformly from their

budget frontiers. The Bronars (1987) approach has become common practice in the revealed

preference literature as a way of assessing the power or precision of revealed preference tests.

We follow exactly the procedure of Choi et al. (2007) and generate a random sample of

25,000 simulated subjects. Each simulated subject chooses randomly uniformly from 50

budget lines that are selected in the same random fashion as in the experimental setting.

The dotted curve in Figure 4 corresponds to the distribution of efficiency indices for the

simulated subjects. The experimental and simulated distributions are starkly different. For

example, while 80% of subjects have an efficiency index of 0.9 or higher, the chance of a

randomly generated data set passing GARP at an efficiency index of 0.9 is negligible. In

other words, even though the locally nonsatiated utility model could accommodate much of

the choice behavior observed in the experiment, it is also precise enough to exclude behavior

that is simply randomly generated, which lends support to basic utility maximization as an

accurate and discriminating model of choice among contingent consumption bundles.

Going beyond Choi et al. (2007), we then calculate the distributions of efficiency in-

dices associated with the SMU, RDU, DA, and EU models among the 93 subjects. These
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distributions are shown in Figures 5a and 5b, which correspond to the symmetric and asym-

metric treatments, respectively. Since all of these models are more stringent than basic

utility maximization, one would expect their efficiency indices to be lower, and they are.

Nonetheless, at an efficiency threshold of 0.9, around half of all subjects are consistent with

the EU model, with the proportion distinctly higher under the symmetric treatment. In the

symmetric case, the performance of the EU, RDU/DA,25 and SMU models are very close; in

fact, their efficiency index distributions are almost indistinguishable. In the asymmetric case,

the distinctions between models are sharper. The RDU and SMU models appear to perform

considerably better than the EU and DA models, with their distributions of efficiency indices

close to the distribution for the locally nonsatiated utility model. We have not depicted any

efficiency index distributions for the SMU, RDU, DA, or EU models using randomly gen-

erated data, but plainly these will be even lower than for basic utility maximization and

therefore very different from the distributions for the experimental subjects.

4.2 Pass rates

In order to compare the pass rates for different models more closely, we now concentrate

on their performance at the 0.9 and 0.95 efficiency thresholds. These efficiency levels seem

like reasonable standards that one might set in order to consider whether a model is consistent

with the data; exact rationalizability is too stringent and anything less than 0.9 may be too

permissive. The pass rates at these thresholds are presented in Table 2, where the models are

arranged according to their generality, with the most permissive at the top. Assuming that

the experimental subjects are a random sample drawn from a larger population of decision

makers, we can use the sample pass rate for a model to estimate its expected population

pass rate; these confidence intervals can be calculated exactly using the Clopper-Pearson

procedure and are displayed in the Online Appendix.

We see from Table 2 that, at the 0.9 threshold, around 80% of all subjects pass GARP.

Among this group, about half in turn display behavior that is consistent with the EU model

(and, in fact, significantly more than half under the symmetric treatment). There is some

evidence that the RDU model explains a significant number of subjects not captured by

the EU model. In particular, in the asymmetric case, almost 90% of subjects who pass

25 Recall that in the symmetric case, the RDU and DA models are identical.
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π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

GARP 38/47 (81%) 32/47 (68%) GARP 37/46 (80%) 29/46 (63%)

F-GARP 30/47 (64%) 23/47 (49%) F-GARP 33/46 (72%) 26/46 (57%)

RDU/DA 30/47 (64%) 23/47 (49%)
RDU 33/46 (72%) 24/46 (52%)

DA 20/46 (43%) 12/46 (26%)

EU 30/47 (64%) 18/47 (38%) EU 18/46 (39%) 12/46 (26%)

Table 2: Pass rates by efficiency level

GARP at the 0.9 threshold are also consistent with the RDU model, which appears to be a

significantly better performance than for the EU model. Indeed, there is very little room for

the RDU model to perform better, since it manages to accommodate almost every subject

who passes F-GARP at the same threshold. On the other hand, the DA model, which lies

strictly between the RDU and EU models under the asymmetric treatment, does not perform

significantly better than the EU model.26

We should be more precise on what we mean by a model performing ‘significantly better’

than another. We do not simply mean that the difference between the true (population)

pass rates is distinct from zero; such a statistical claim is not meaningful when two models

are nested.27 We adopt a more stringent notion of ‘significant’ difference: we test the null

hypothesis that the difference in expected pass rates between model A and model B is equal

to 5%, against an alternative hypothesis that this difference is greater than 5%; since model B

is nested within A, we are checking whether the additional data sets which are accommodated

by model A but not B significantly exceeds 5%. The findings of these tests are reported in

Table 3. For example, at the 0.95 threshold under the symmetric treatment, Table 2 tells us

that the sample proportion of subjects who pass the test for RDU/DA but fail the test for

EU is 5/47; this gives a p-value of 0.085, which is not statistically significant, i.e., we fail to

reject the null hypothesis of a 5% difference at the 0.05 significance level.

The performance of the RDU model under the asymmetric treatment is quite different.

26 While the contexts and methods are very different, the relatively poor performance of the DA model

has been noted in some other studies, for example, Hey and Orme (1994) and Barseghyan et al. (2013).
27 Suppose model A contains model B. Denoting the expected pass rates of model A (B) by µA (µB), the

null hypothesis that µA “ µB is rejected if there is one data set which passes A but not B. Indeed, given

that B is a special case of A, we are effectively testing the proportion of data sets which pass A and fail B;

we conclude that the proportion of data sets of this type is nonzero as long as one such data set is observed.
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π1 “ 1{2 π1 ‰ 1{2

e
“

0
.9

5
GARP F-GARP RDU/DA

e
“

0.
95

GARP F-GARP RDU DA

F-GARP 0.000 ¨ ¨ F-GARP 0.406 ¨ ¨ ¨

RDU/DA 0.000 1.000 ¨
RDU 0.079 0.677 ¨ ¨

DA 0.000 0.000 0.000 ¨

EU 0.000 0.085 0.085 EU 0.000 0.000 0.000 1.000

e
“

0
.9

0

GARP F-GARP RDU/DA

e
“

0.
90

GARP F-GARP RDU DA

F-GARP 0.002 ¨ ¨ F-GARP 0.197 ¨ ¨ ¨

RDU/DA 0.002 1.000 ¨
RDU 0.197 1.000 ¨ ¨

DA 0.000 0.000 0.000 ¨

EU 0.002 1.000 1.000 EU 0.000 0.000 0.000 0.677

Note: Each cell contains a p-value.

Table 3: Pairwise 5%-differences in pass rates

First, while the stochastically monotone utility model is theoretically more general, its pass

rate is not significantly higher than 5% of that for the RDU model (at both efficiency

thresholds). On the other hand, the pass rate for the RDU model compared to the EU

model does significantly exceed 5%. Another way of saying the same thing is that if we are

to form a 90% confidence interval on the expected proportion of subjects who are RDU-

rationalizable but not EU-rationalizable, the lower bound of that interval exceeds 5%. What

is that lower bound? At the 0.9 and 0.95 efficiency thresholds it is, respectively, 21% and

16%, which is sizeable by any reckoning. The RDU model generalizes the EU model by

permitting a distortion of the objective probabilities; the Online Appendix contains more

information on the type of distortions which are consistent with the data.

There is a large empirical literature that evaluates the performance of different models of

choice under risk using experimental or field data and our results appear to be broadly in line

with the findings obtained in earlier studies, even though the very different empirical methods

employed make formal comparisons difficult. In particular, other papers have also found that

the RDU model performs well (see, for example, Bruhin, Fehr-Duda, and Epper (2010) and

Barseghyan et al. (2013) and their references). We find that the EU model captures a

significant portion of subjects, though by no means everyone, which is broadly consistent

with the fairly common finding that the EU model puts in a respectable performance (see,

for example, Hey and Orme (1994)). The pass rate that we report for the EU model is higher

than that in some other papers (for example, Bruhin, Fehr-Duda, and Epper (2010) reports
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a pass rate of 20% for the EU model), but it is worth bearing in mind that our formulation

of the EU model is about as permissive as it could get. We require the Bernoulli function

to be increasing in money, but it is estimated nonparametrically and with no curvature

assumptions (such as concavity), so we have given the EU model the greatest possible scope

to capture a subject’s behavior.

4.3 Power

To examine more closely the power of different models, we adopt and then adapt the

approach first suggested by Bronars (1987). We first generate data sets where on each budget

set, the bundle is randomly chosen based on a uniform distribution on the budget frontier.

The power of the model (or its Bronars power) is then given by the probability of such a data

set being inconsistent with (say) utility maximization, which is synonymous with it failing

GARP. As we have already pointed out in Section 4.1, when the data set consists of uniform

bundles on 50 randomly chosen budget sets, the Bronars power is approximately 1 at both

the 0.9 and 0.95 efficiency thresholds; in other words, the probability of such a randomly

generated data set passing GARP at either threshold is vanishingly small. Obviously, the

Bronars power of the other models we consider is also roughly equal to 1, since all of them

imply locally nonsatiated preferences.

When we consider a model that is theoretically more stringent than basic utility max-

imization, it is natural to investigate the power of the model in the context of observed

behavior that is already consistent with GARP. In other words, we would like to know the

sharpness of the model’s predictions relative to basic utility maximization. For example, to

check the relative power of the EU model in this sense, we randomly generate a large number

of data sets that pass GARP at a given efficiency threshold, and then test if they obey EU

at the same threshold. (See the Online Appendix for details.) Since the EU, DA, and RDU

models are consistent with stochastic monotonicity, it is also natural to investigate the power

of these models, relative to the SMU model; this would give us a sense of how stringent are

the restrictions imposed by (say) the EU model, over and above those imposed by F-GARP.

Table 4 presents the power of the different models, conditional on passing GARP. The

most obvious and important feature in this table is the ubiquity of numbers close to 1: even

29

                            30 / 53



 

π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

F-GARP 1.00 1.00 F-GARP 0.88 0.92

RDU/DA 1.00 1.00
RDU 1.00 1.00

DA 1.00 1.00

EU 1.00 1.00 EU 1.00 1.00

Table 4: Power (conditional on GARP)

π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

RDU/DA 0.75 0.99
RDU 0.99 1.00

DA 1.00 1.00

EU 0.87 0.99 EU 1.00 1.00

Table 5: Power (conditional on F-GARP)

after conditioning on passing GARP, all of the models remain very precise. For example,

the probability of a data set which obeys GARP also passing the EU test at the 0.9 or

0.95 threshold is effectively zero. The only partial exception is for the SMU model in the

asymmetric case, where the power is around 90%.

Table 5 tells us that all the models remain very precise relative to the SMU model when

the treatment is asymmetric. But in the symmetric case, the relative power of the RDU/DA

and EU models is noticeably lower than 1; for example, a quarter of all subjects who pass F-

GARP at the 0.9 threshold are also consistent with the RDU/DA model. A possible reason

for the loss of relative power in the symmetric case is that stochastic monotonicity itself

is very restrictive in this context since it is synonymous with an increasing and symmetric

utility function. However, we should emphasize that the relative power of the RDU, DA,

and EU models remains high.

4.4 Predictive success

The index of predictive success proposed by Selten (1991) (or the Selten index, for short)

combines pass rates and power into a single measure. This index is defined as the difference

between the pass rate and the size of the set of predicted outcomes (the imprecision), with

the latter typically measured by a uniform measure on all outcomes. Selten provides an
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axiomatic foundation for this index. The index varies between 1 and ´1. It is close to 1

when the pass rate is close to 1 and the imprecision is close to zero; in other words, even

though the model is very precise in its predictions (i.e., has a high power), the data collected

are very often consistent with the model. On the other hand, an index close to ´1 occurs

when the pass rate is close to zero even though the model is very imprecise (i.e., has a low

power). An index above zero indicates that the model has some predictive success. Our use

of the Selten index to evaluate different models is not novel. In the context of consumer

demand (which formally is very similar to ours), it has been used by Beatty and Crawford

(2011); it has also been used by Harless and Camerer (1994) to compare the performance of

different models of choice under risk.

As we have emphasized, with 50 observations on every subject, the locally nonsatiated

utility model has a power that is almost indistinguishable from 1 at the 0.9 and 0.95 efficiency

thresholds. The same is true of course of all the other models, since they are more restrictive

than basic utility maximization. In other words, all the models have an imprecision of zero,

so that the Selten indices for the different models are effectively given by their pass rates,

as displayed in Table 2. Note also that because the different models are nested within one

another, any observed differences (from zero) in the pass rates/Selten indices in Table 2 are

all statistically significant. One conclusion to be drawn from this table is that the best model,

as evaluated by the Selten index, is the locally nonsatiated utility model. This observation

may be simple but it is not without interest: while a great deal of academic discussion is

often focussed on comparing different models that have been tailor-made for decision making

under risk, we should not take it for granted that such models are necessarily better than

basic utility maximization in explaining choice behavior. In environments where state payoffs

vary while state probabilities are fixed, one should not exclude the possibility that the locally

nonsatiated utility model does a better job in explaining the data, even after accounting for

its relative lack of specificity.28

28 This observation is not an argument against the value of models of choice under risk, such as the SMU,

RDU, and all other models considered here. In particular, these other models provide a theory of choice

across all lotteries, allowing even for comparisons between lotteries where the same outcomes occur with

different probabilities. In environments where agents are making choices among lotteries of this type, all the

other models are still potentially applicable, but it is not clear how one could naturally generalize the locally

nonsatiated utility model to accommodate such a context.
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π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

F-GARP 0.79 0.72 F-GARP 0.77 0.81

RDU/DA 0.79 0.72
RDU 0.89 0.83

DA 0.54 0.41

EU 0.79 0.56 EU 0.49 0.41

Table 6: Predictive success (conditional on GARP)

Our next objective is to investigate conditional predictive success. We first turn to the

case where we condition on basic rationalizability. The conditional pass rate of each model

can be calculated from Table 2. A model’s imprecision is simply 1 minus the Bronars power

(conditional on GARP) and this is supplied in Table 4. The Selten indices, constructed by

taking the difference between the conditional pass rate and the conditional imprecision, are

displayed in Table 6. For the symmetric treatment, all of the models have a conditional power

of approximately 1 (see Table 4), so the Selten indices are nearly completely determined by

the conditional pass rates and, as such, the differences between the SMU, RDU/DA, and EU

models are not large. For the asymmetric treatment, the best performing model is RDU;

this is driven by two factors: its pass rate is higher than all models except SMU and its

power is higher than SMU. In the Online Appendix, we show that this difference between

RDU model and the more restrictive DA and EU models are statistically significant.

Lastly, we investigate the predictive success of the EU, DA, and RDU models when

we condition on passing F-GARP. The Selten indices displayed in Table 7 are obtained by

taking the difference between the conditional pass rates (constructed from Table 2) and con-

ditional power (from Table 5). Focussing firstly on the symmetric treatment, an interesting

phenomenon is that, according to the Selten index, the EU model is now better than the

RDU/DA model at the 0.9 efficiency threshold; this is entirely driven by the greater power

of the EU model in this context. That said, the difference between the indices is not large

and it is also reversed at the 0.95 threshold. For the asymmetric treatment, we notice that

the RDU model performs well relative to the other models, because its pass rate is high

and because the model continues to have high power, even after conditioning on passing

F-GARP; we show in the Online Appendix that this difference is statistically significant.
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π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

RDU/DA 0.75 0.99
RDU 0.99 0.92

DA 0.61 0.46

EU 0.87 0.78 EU 0.55 0.46

Table 7: Predictive success (conditional on F-GARP)

Appendix

The proof of Theorem 1 uses the following lemma.

Lemma 1. Let tCtuTt“1 be a finite collection of constraint sets in Rs̄
` that are compact and

downward closed (i.e., if x P Ct then so is y P Rs̄
` such that y ă x) and let the functions

tφp¨, tquTt“1 be continuous and increasing in all dimensions. Suppose that there is a finite set

X of R`, a strictly increasing function ū : X Ñ R`, and tM tuTt“1 such that the following

holds:

M t
ě φpūpxq, tq for all x P Ct X L and (13)

M t
ą φpūpxq, tq for all x P pCtzBCtq X L, (14)

where L “ X s̄ and ūpxq “ pūpx1q, ūpx2q, . . . , ūpxs̄qq. Then there is a Bernoulli function

u : R` Ñ R` that extends ū such that

M t
ě φpupxq, tq for all x P Ct and (15)

if x P Ct and M t “ φpupxq, tq, then x P BCt X L and M t “ φpūpxq, tq. (16)

Remark: The property (16) needs some explanation. Conditions (13) and (14) allow for

the possibility that M t “ φpūpx1q, tq for some x1 P BCt X L; we denote the set of points in

BCt X L with this property by X 1. Clearly any extension u will preserve this property, i.e.,

M t “ φpupx1q, tq for all x1 P X 1. Property (16) says that we can choose u such that for all

x P CtzX 1, we have M t ą φpupxq, tq.

Proof: We shall prove this result by induction on the dimension of the space containing the

constraint sets. It is trivial to check that the claim is true if s̄ “ 1. In this case, L consists

of a finite set of points on R` and each Ct is a closed interval with 0 as its minimum. Now
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let us suppose that the claim holds for s̄ “ m and we shall prove it for s̄ “ m ` 1. If, for

each t, there is a strictly increasing and continuous utility function ut : R` Ñ R` extending

ū such that (15) and (16) hold, then the the same conditions will hold for the increasing

and continuous function u “ mint u
t. So we can focus our attention on constructing ut for a

single constraint set Ct.

Suppose X “ t0, r1, r2, r3, . . . , rIu, with r0 “ 0 ă ri ă ri`1, for i “ 1, 2, . . . , I ´ 1. Let

r̄ “ max tr P R` : pr, 0, 0, . . . , 0q P Ctu and suppose that pri, 0, 0, . . . , 0q P Ct if and only if

i ď N (for some N ď I). Consider the collection of sets of the form Di “ ty P Rm
` : pri,yq P

Ctu (for i “ 1, 2, . . . , N); this is a finite collection of compact and downward closed sets in

Rm
` . By the induction hypothesis applied to tDiuNi“1, with tφpūpriq, ¨, tquNi“1 as the collection

of functions, there is a strictly increasing function u˚ : R` Ñ R` extending ū such that

M t
ě φpūpriq,u˚pyq, tq for all pri,yq P Ct and (17)

if pri,yq P Ct and M t “ φpūpriq,u˚pyq, tq, then pri,yq P BCt X L and M t “ φpūpri,yq, tq.

(18)

For each r P r0, r̄s, define

Uprq “ tu ď u˚prq : maxtφpu,u˚pyq, tq : pr,yq P Ct
u ďM t

u.

This set is nonempty; indeed ūprkq “ u˚prkq P Uprq, where rk is the largest element in

X that is weakly smaller than r. This is because, if pr,yq P Ct then so is prk,yq, and (17)

guarantees that φpūprkq,u˚pyq, tq ďM t. The downward closedness of Ct and the fact that u˚

is increasing also guarantees that Uprq Ď Upr1q whenever r ă r1. Now define ũprq “ supUprq;

the function ũ has a number of significant properties. (i) For r P X , ũprq “ u˚prq “ ūprq (by

the induction hypothesis). (ii) ũ is a nondecreasing function since U is nondecreasing. (iii)

ũprq ą ūprkq if r ą rk, where rk is largest element in X smaller than r. Indeed, because Ct is

compact and φ continuous, φpũprq,u˚pyq, tq ďM t for all pr,yq P Ct. By way of contradiction,

suppose ũprq “ ūprkq and hence ũprq ă u˚prq. It follows from the definition of ũprq that, for

any sequence un, with ũprq ă un ă u˚prq and limnÑ8 un “ ũprq, there is pr,ynq P C
t such

that φpun,u
˚pynq, tq ą M t. Since Ct is compact, we may assume with no loss of generality

that yn Ñ ŷ and pr, ŷq P Ct, from which we obtain φpũprq,u˚pŷq, tq “ M t. Since Ct is

downward closed, prk, ŷq P Ct and, since ūprkq “ u˚prkq, we have φpu˚prk, ŷq, tq “M t. This
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can only occur if prk, ŷq P BCt X L (because of (18)), but it is clear that prk, ŷq R BCt since

prk, ŷq ă pr, ŷq. (iv) If rn ă ri for all n and rn Ñ ri P X , then ũprnq Ñ u˚priq. Suppose to

the contrary, that the limit is û ă u˚priq “ ūpriq. Since u˚ is continuous, we can assume,

without loss of generality, that ũprnq ă u˚prnq. By the compactness of Ct, the continuity of

φ, and the definition of ũ, there is prn,ynq P C
t such that φpũprnq,u

˚pynq, tq “ M t. This

leads to φpû,u˚py1q, tq “M t, where y1 is an accumulation point of yn and pri,y1q P Ct. But

since φ is strictly increasing, we obtain φpu˚priq,u˚py1q, tq ąM t, which contradicts (17).

Given the properties of ũ, we can find a continuous and strictly increasing function ut

such that ut extends ū, i.e., utprq “ ūprq for r P X , utprq ă u˚prq for all r P R`zX and

utprq ă ũprq ď u˚prq for all r P r0, r̄szX . (In fact we can choose ut to be smooth everywhere

except possibly on X .) We claim that (15) and (16) are satisfied for Ct. To see this, note

that for r P X and pr,yq P Ct, the induction hypothesis guarantees that (17) and (18) hold

and they will continue to hold if u˚ is replaced by ut. In the case where r R X and pr,yq P Ct,

since utprq ă ũprq and φ is increasing, we obtain M t ą φputpr,yq, tq. QED

Proof of Theorem 1: This follows immediately from Lemma 1 if we set Ct “ Bt, and

M t “ φpūpxtq, tq. If ū obeys conditions (6) and (7) then it obeys conditions (13) and (14).

The rationalizability of O by tφp¨, tqutPT then follows from (15). QED

Description of the RDU-rationalizability test for multiple states: Suppose that

πs ą 0 is the objective probability of state s. To develop a necessary and sufficient test

for RDU-rationalizability, we first define Γ “ t
ř

sPS πs : S Ď t1, 2, . . . , s̄uu, i.e., Γ is a finite

subset of r0, 1s that includes both 0 and 1 (corresponding to S equal to the empty set and

the whole set, respectively). Suppose there are strictly increasing functions ḡ : Γ Ñ R and

ū : X Ñ R` such that (6) and (7) are satisfied, with φpuq “
řs̄
s“1 δpu, squs and

δpu, sq “ ḡ
´

ř

ts1:rpu,s1qďrpu,squ πs1
¯

´ ḡ
´

ř

ts1:rpu,s1qărpu,squ πs1
¯

.

By Theorem 1, this guarantees that O is RDU-rationalizable, with g : r0, 1s Ñ R chosen

to be any strictly increasing extension of ḡ. This test involves finding a solution to a set

of inequalities that are bilinear in the unknowns tḡpγquγPΓ and tūprqurPX . It is also clear

that these conditions are necessary for RDU-rationalizability since they will be satisfied if

we simply let ḡ and ū be the restrictions of g and u to Γ and X respectively. QED
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Online Appendix

to

Revealed preferences over risk and uncertainty

Matthew Polisson, John K.-H. Quah, and Ludovic Renou

A1. Introduction

This Online Appendix consists of six parts. In Section A2, we discuss further applications of

the lattice method which are not covered in the Main Text. In particular, we cover the choice

acclimating personal equilibrium (CPE) model (Köszegi and Rabin, 2007), the maxmin ex-

pected utility (MEU) model (Gilboa and Schmeidler, 1989), the variational preference (VP)

model (Maccheroni, Marinacci, and Rustichini, 2006), and a model with budget-dependent

reference points. The other sections provide additional information on the empirical imple-

mentation in the main paper.

A3. Description of GARP and F-GARP Tests

A4. Confidence intervals on pass rates

A5. Bronars power calculation

A6. Probability distortions in the RDU model

A7. Statistical analysis of Selten index differences

A2. Further applications of the lattice method

Theorem 1 in the Main Text can also be used to test the rationalizability of many other

models of choice under risk and under uncertainty. Formally, this involves finding a Bernoulli

function u and a function φ belonging to some family Φ (corresponding to the particular

model at hand) which together rationalize the data. In the subjective expected utility

(SEU) case that was discussed in the Main Text, the lattice test involves solving a system of
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inequalities that are bilinear in the utility levels tūprqurPX and the subjective probabilities

tπsu
s̄
s“1. Such a formulation seems natural enough in the SEU case; what is worth remarking

(and perhaps not obvious a priori) is that the same pattern holds across many of the common

models of choice under risk and under uncertainty: they can be tested by solving a system of

inequalities that are bilinear in tūprqurPX and a finite set of variables specific to the particular

model in question. It is known that bilinear systems are decidable, in the sense that there is

an algorithm that can determine in a finite number of steps whether or not a solution exists.

In the Main Text, we have already explained how the expected utility (EU), disappointment

aversion (DA), and rank dependent utility (RDU) models can be tested using the lattice

method. In this section we further illustrate the flexibility of the lattice method by applying

it to several prominent models of decision making under risk or uncertainty.

A2.1 Choice acclimating personal equilibrium

The choice acclimating personal equilibrium (CPE) model (Köszegi and Rabin, 2007)

(with a piecewise linear gain-loss function) specifies utility as V pxq “ φpupxq,πq, where

φppu1, u2, . . . , us̄q,πq “
s̄
ÿ

s“1

πsus `
1

2
p1´ λq

s̄
ÿ

r,s“1

πrπs|ur ´ us|, (A.1)

π “ tπsu
s̄
s“1 are the objective probabilities, and λ P r0, 2s is the coefficient of loss aversion.1

We say that a data set O “ tpxt, BtquTt“1 is CPE-rationalizable with the probability weights

π “ pπ1, π2, . . . , πs̄q " 0 if there is φ in the collection ΦCPE of functions of the form (A.1),

and a Bernoulli function u : R` Ñ R` such that, for each t, φpupxtq,πtq ě φpupxq,πtq for

all x P Bt. Applying Theorem 1 in the Main Text, O is CPE-rationalizable if and only if

there is λ P r0, 2s and a strictly increasing function ū : X Ñ R` that solve (6) and (7) in

the Main Text. It is notable that, irrespective of the number of states, this test is linear

in the remaining variables for any given value of λ. Thus it is relatively straightforward to

implement via a collection of linear tests (running over different values of λ P r0, 2s).

A2.2 Maxmin expected utility

1 Our presentation of CPE follows Masatlioglu and Raymond (2016). The restriction of λ to r0, 2s guar-

antees that V respects first order stochastic dominance but allows for loss-loving behavior (see Masatlioglu

and Raymond (2016)).
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We again consider a setting where no objective probabilities can be attached to each state.

An agent with maxmin expected utility (MEU), first presented by Gilboa and Schmeidler

(1989), evaluates each bundle x P Rs̄
` using the formula V pxq “ φpupxqq, where

φpuq “ min
πPΠ

#

s̄
ÿ

s“1

πsus

+

, (A.2)

where Π Ă ∆`` “ tπ P Rs̄
`` :

řs̄
s“1 πs “ 1u is nonempty, compact in Rs̄, and convex.

(Π can be interpreted as a set of probability weights.) Given these restrictions on Π, the

minimization problem in (A.2) always has a solution and φ is strictly increasing.

A data set O “ tpxt, BtquTt“1 is said to be MEU-rationalizable if there is a function φ in

the collection ΦMEU of functions of the form (A.2), and a Bernoulli function u : R` Ñ R`
such that, for each t, φpupxtq,πtq ě φpupxq,πtq for all x P Bt. By Theorem 1 in the Main

Text, this holds if and only if there exist Π and ū that solve (6), (7), and (8) in the Main

Text. We claim that this requirement can be reformulated in terms of the solvability of a

set of bilinear inequalities.

This is easy to see for the two-state case where we may assume, without loss of generality,

that there is π˚1 and π˚˚1 P p0, 1q such that Π “ tpπ1, 1 ´ π1q : π˚1 ď π1 ď π˚˚1 u. Then it is

clear that φpu1, u2q “ π˚1u1 ` p1 ´ π˚1 qu2 if u1 ě u2 and φpu1, u2q “ π˚˚1 u1 ` p1 ´ π˚˚1 qu2 if

u1 ă u2. Consequently, for any px1, x2q P L, we have V px1, x2q “ π˚1 ūpx1q ` p1´ π
˚
1 qūpx2q if

x1 ě x2 and V px1, x2q “ π˚˚1 ūpx1q ` p1´ π
˚˚
1 qūpx2q if x1 ă x2 and this is independent of the

precise choice of ū. Therefore, O is MEU-rationalizable if and only if we can find π˚1 and

π˚˚1 in p0, 1q, with π˚1 ď π˚˚1 , and an increasing function ū : X Ñ R` that solve (6) and (7)

in the Main Text. The requirement takes the form of a system of bilinear inequalities that

are linear in tūprqurPX after conditioning on π˚1 and π˚˚1 .

The result below covers the general case. The test involves solving a system of bilinear

inequalities in the variables π̄spxq (for all s and x P L) and ūprq (for all r P X ). Note that

π̄pxq “ pπ̄1pxq, π̄2pxq, . . . , π̄s̄pxqq is used to construct the set of priors Π (in (A.2)) and that

π̄pxq is the distribution in Π that minimizes the expected utility of the bundle x (see (A.6)).

Proposition A.1. A data set O “ tpxt, BtquTt“1 is MEU-rationalizable if and only if there

is a function π̄ : LÑ ∆`` and a strictly increasing function ū : X Ñ R` such that

π̄pxtq ¨ ūpxtq ě π̄pxq ¨ ūpxq for all x P LXBt, (A.3)
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π̄pxtq ¨ ūpxtq ą π̄pxq ¨ ūpxq for all x P LX pBt
zBBt

q, and (A.4)

π̄pxq ¨ ūpxq ď π̄px1q ¨ ūpxq for all px,x1q P Lˆ L. (A.5)

If these conditions hold, O admits an MEU-rationalization where Π (in (A.2)) is the convex

hull of tπ̄pxquxPL, the Bernoulli function u : R` Ñ R extends ū, and

V pxq “ min
πPΠ

tπ ¨ ūpxqu “ π̄pxq ¨ ūpxq for all x P L. (A.6)

Proof: Suppose that O is rationalizable by φ as defined by (A.2). For any x in the finite

lattice L, let π̄pxq be an element in arg minπPΠ π ¨ upxq and let ū be the restriction of u to

X . Then it is clear that the conditions (A.3)–(A.5) hold.

Conversely, suppose that there is a function π̄ and a strictly increasing function ū obeying

the conditions (A.3)–(A.5). Define Π as the convex hull of tπ̄pxq : x P Lu; Π is a nonempty

and convex subset of ∆`` and it is compact in Rs̄ since L is finite. Suppose that there exists

x P L and π P Π such that π ¨ ūpxq ă π̄pxq ¨ ūpxq. Since π is a convex combination of

elements in tπ̄pxq : x P Lu, there must exist x1 P L such that π̄px1q ¨ ūpxq ă π̄pxq ¨ ūpxq,

which contradicts (A.5). We conclude that π̄pxq ¨ ūpxq “ minπPΠ π ¨ ūpxq for all x P L. We

define φ : Rs̄
` Ñ R by φpuq “ minπPΠ π ¨ u. Then the conditions (A.3) and (A.4) are just

versions of (6) and (7) in the Main Text, and so Theorem 1 in the Main Text guarantees

that there is Bernoulli function u : R` Ñ R` extending ū such that O is rationalizable by

V pxq “ φpupxqq. QED

A2.3 Variational preferences

A popular model of decision making under uncertainty which generalizes maxmin ex-

pected utility is variational preferences (VP), introduced by Maccheroni, Marinacci, and

Rustichini (2006). In this model, a bundle x P Rs̄
` has utility V pxq “ φpupxqq, where

φpuq “ min
πP∆``

tπ ¨ u` cpπqu (A.7)

and c : ∆`` Ñ R` is a continuous and convex function with the following boundary condi-

tion: for any sequence πn P ∆`` tending to π̃, with π̃s “ 0 for some s, we obtain cpπnq Ñ 8.

This boundary condition, together with the continuity of c, guarantee that there is π˚ P ∆``
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that solves the minimization problem in (A.7).2 Therefore, φ is well-defined and strictly in-

creasing.

We say that O “ tpxt, BtquTt“1 is VP-rationalizable if there is a function φ in the collection

ΦV P of functions of the form (A.7), and a Bernoulli function u : R` Ñ R` such that, for

each t, φpupxtq,πtq ě φpupxq,πtq for all x P Bt. By Theorem 1 in the Main Text, this holds

if and only if there exists a function c : ∆`` Ñ R` that is continuous, convex, and has the

boundary property, and an increasing function ū : X Ñ R` that together solve (6) and (7)

in the Main Text, with φ defined by (A.7). The following result is a reformulation of this

characterization that has a similar flavor to Proposition A.1; crucially, the necessary and

sufficient conditions on O are formulated as a finite set of bilinear inequalities.

Proposition A.2. A data set O “ tpxt, BtquTt“1 is VP-rationalizable if and only if there

is a function π̄ : L Ñ ∆``, a function c̄ : L Ñ R`, and a strictly increasing function

ū : X Ñ R` such that

π̄pxtq ¨ ūpxtq ` c̄pxtq ě π̄pxq ¨ ūpxq ` c̄pxq for all x P LXBt, (A.8)

π̄pxtq ¨ ūpxtq ` c̄pxtq ą π̄pxq ¨ ūpxq ` c̄pxq for all x P LX pBt
zBBt

q, and (A.9)

π̄pxq ¨ ūpxq ` c̄pxq ď π̄px1q ¨ ūpxq ` c̄px1q for all px,x1q P Lˆ L. (A.10)

If these conditions hold, then O can be rationalized by a variational preference V , with φ

given by (A.7), such that the following holds:

(i) c : ∆`` Ñ R` satisfies cpπ̄pxqq “ c̄pxq for all x P L;

(ii) the Bernoulli function u : R` Ñ R satisfies ūprq “ uprq for all r P X ; and

(iii) π̄pxq P arg minπP∆``tπ ¨ upxq ` cpπqu, leading to V pxq “ π̄pxq ¨ ūpxq ` c̄pxq, for all

x P L.

Proof: Suppose O is rationalizable by φ as defined by (A.7). Let ū be the restriction of

u to X . For any x in L, let π̄pxq be an element in arg minπP∆``tπ ¨ upxq ` cpπqu, and let

c̄pxq “ cpπ̄pxqq. Then it is clear that the conditions (A.8)–(A.10) hold.

2 Indeed, pick any π̃ P ∆`` and define S “ tπ P ∆`` : π ¨ u ` cpπq ď π̃ ¨ u ` cpπ̃qu. The boundary

condition and continuity of c guarantee that S is compact in Rs̄ and hence arg minπPStπ ¨ u ` cpπqu “

arg minπP∆``
tπ ¨ u` cpπqu is nonempty.
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Conversely, suppose that there is a strictly increasing function ū and functions π̄ and c̄

obeying conditions (A.8)–(A.10). For every π P ∆``, define c̃pπq “ maxxPLtc̄pxq ´ pπ ´

π̄pxqq ¨ ūpxqu. It follows from (A.10) that c̄px1q ě c̄pxq ´ pπ̄px1q ´ π̄pxqq ¨ ūpxq for all x P L.

Therefore, c̃pπ̄px1qq “ c̄px1q for any x1 P L. The function c̃ is convex and continuous but

it need not obey the boundary condition. However, we know there is a function c defined

on ∆`` that is convex, continuous, obeys the boundary condition, with cpπq ě c̃pπq for

all π P ∆`` and cpπq “ c̃pπq for π P tπ̄pxq : x P Lu. We claim that, with c so defined,

minπP∆``tπ ¨ ūpxq ` cpπqu “ πpxq ¨ ūpxq ` c̄pxq for all x P L. Indeed, for any π P ∆``,

π ¨ ūpxq ` cpπq ě π ¨ ūpxq ` c̃pπq ě π ¨ ūpxq ` c̄pxq ´ pπ ´ π̄pxqq ¨ ūpxq “ ūpxq ` c̄pxq.

On the other hand, π̄pxq ¨ upxq ` cpπ̄pxqq “ π̄pxq ¨ upxq ` c̄pxq, which establishes the claim.

We define φ : Rs̄
` Ñ R by (A.7); then (A.8) and (A.9) are just versions of (6) and (7) in the

Main Text, and so Theorem 1 in the Main Text guarantees that there is a Bernoulli function

u : R` Ñ R` extending ū such that O is rationalizable by V pxq “ φpupxqq. QED

A2.4 Models with budget-dependent reference points

So far in our discussion we have assumed that the agent has a preference over different

contingent outcomes, without being too specific as to what actually constitutes an outcome in

the agent’s mind. On the other hand, models such as prospect theory have often emphasized

the impact of reference points, and changing reference points, on decision making. Some of

these phenomena can be easily accommodated within our framework.

For example, imagine an experiment in which subjects are asked to choose from a con-

straint set of state contingent monetary prizes. Assuming that there are s̄ states and that

the subject never suffers a loss, we can represent each prize by a vector x P Rs̄
`. The subject

is observed to choose xt from Bt Ă Rs̄
`, so the data set is O “ tpxt, BtquTt“1. The standard

way of thinking about the subject’s behavior is to assume his choice from Bt is governed by

a preference defined on the prizes, which implies that the situation where he never receives a

prize (formally the vector 0) is the subject’s constant reference point. But a researcher may

well be interested in whether the subject has a different reference point or multiple reference

points that vary with the budget (and perhaps manipulable by the researcher). Most obvi-

ously, suppose that the subject has an endowment point ωt P Rs̄
` and a classical budget set
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Bt “ tx P Rs̄
` : pt ¨ x ď pt ¨ ωtu. In this case, a possible hypothesis is that the subject will

evaluate different bundles in Bt based on a utility function defined on the deviation from

the endowment; in other words, the endowment is the subject’s reference point. Another

possible reference point is that bundle in Bt which gives the same payoff in every state.

Whatever it may be, suppose the researcher has a hypothesis about the possible reference

point at observation t, which we shall denote by et P Rs̄
`, and that the subject chooses

according to some utility function V : r´K,8qs̄ Ñ R` where K ą 0 is sufficiently large

so that r´K,8qs̄ Ă Rs̄ contains all the possible reference point-dependent outcomes in the

data, i.e., the set
ŤT
t“1 B̃

t, where

B̃t
“ tx1 P Rs̄ : x1 “ x´ et for some x P Btu.

Let tφp¨, tquTt“1 be a collection of functions, where φp¨, tq : r´K,8qs̄ Ñ R is increasing in

all of its arguments. We say that O “ tpxt, BtquTt“1 is rationalizable by tφp¨, tquTt“1 and the

reference points tetuTt“1 if there exists a Bernoulli function u : r´K,8q Ñ R` such that

φpupxt´etq, tq ě φpupx´etq, tq for all x P Bt. This is formally equivalent to saying that the

modified data set O1 “ tpxt´ et, B̃tquTt“1 is rationalizable by tφp¨, tquTt“1. Applying Theorem

1 in the Main Text, rationalizability holds if and only if there is a strictly increasing function

ū : X Ñ R` that obeys (6) and (7) in the Main Text, where

X “ tr P R : r “ xts ´ e
t
s for some t, su Y t´Ku.

Therefore, we may test whether O is rationalizable by expected utility, or by any of the mod-

els described so far, in conjunction with budget dependent reference points. Note that a test

of rank dependent utility in this context is sufficiently flexible to accommodate phenomena

emphasized by cumulative prospect theory (see Tversky and Kahneman (1992)), such as a

Bernoulli function u : r´K,8q Ñ R that is S-shaped (and hence nonconcave) around 0 and

probabilities distorted by a weighting function.

A3. Description of GARP and F-GARP tests

In addition to the expected utility (EU), disappointment aversion (DA), and rank de-

pendent utility (RDU) models which we implement in the Main Text, there are other more
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basic notions of rationalizabiity that we also test. In this section, we describe these models

and their revealed preference tests.

A3.1 Locally nonsatiated utility

The locally nonsatiated utility model is the most permissive of the models that we con-

sider in the sense that all others are special cases. A utility function U : Rs̄
` Ñ R is

locally nonsatiated if at every open neighborhood N of x P Rs̄
`, there is y P N such that

Upyq ą Upxq. We say that a data set O “ tpxt,ptquTt“1 is rationalizable if it can be rational-

ized by a continuous and locally nonsatiated utility function.

Afriat’s (1967) Theorem tells us that O is rationalizable if and only if it obeys a con-

sistency condition known as the generalized axiom of revealed preference (GARP).3 Afriat

(1972, 1973) also shows that there is natural generalization of GARP that characterizes ratio-

nalizability at some efficiency index e, which we now describe. Let D “ txt : t “ 1, 2, . . . , T u;

in other words, D consists of those bundles that have been observed somewhere in the data

set. For bundles xt and xt
1

in D, xt is said to be revealed preferred to xt
1

at the efficiency

index (or threshold) e (we denote this by xt ě˚
e xt

1

) if xt
1

P Btpeq, where Btpeq is given by

(12) in the Main Text;4 xt is said to be strictly revealed preferred to xt
1

(and we denote this

by xt ą˚
e xt

1

) if xt
1

P Btpeq and pt ¨xt
1

ă ept ¨xt. O is rationalizable at the efficiency index e

if and only if, whenever there are observations ppti ,xtiq (for i “ 1, 2, . . . , n) in O satisfying

xt1 ě˚
e xt2 , xt2 ě˚

e xt3 , . . . , xtn´1 ě˚
e xtn , and xtn ě˚

e xt1 , (A.11)

then we cannot replace ě˚
e with ą˚

e anywhere in this chain; in other words, while there can

be revealed preference cycles in O, they cannot contain a strict revealed preference. This

property is a generalization of GARP, which is the special case where e “ 1. Checking

for this property is computationally undemanding: the (strict) revealed preference relations

on D can be easily constructed; once this has been established, we can apply Warshall’s

3 This term and its acronym were coined by Varian (1982), who also provides a proof of Afriat’s Theorem.

To be specific, the theorem says that GARP is necessary whenever the data set is rationalizable by a locally

nonsatiated utility function (continuity is not needed); conversely, when a data set obeys GARP, then it is

rationalizable by a continuous, strictly increasing, and concave utility function.
4 Our terminology differs a little from the standard, which refers to ě˚e as the direct revealed preference

relation and uses revealed preference to refer to the transitive closure of this relation. Since our exposition

avoids any discussion of the transitive closure, we have adopted the simpler terminology here.
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algorithm to compute the transitive closure of the revealed preference relations and then

check for the absence of cycles containing strict revealed preferences.

A3.2 Stochastically monotone utility

For x and y in Rs̄
`, we write x ěFSD y if x first order stochastically dominates y (given

the payoffs and the objectively known probabilities) and write x ąFSD y if x ěFSD y and

the two distributions are distinct. One way of sharpening the locally nonsatiated utility

model is to require that the utility function U : Rs̄
` Ñ R is stochastically monotone. By this

we mean that Upxq ą pěqUpyq whenever x ąFSD y (x ěFSD y). Note that the RDU, DA,

and EU models all obey this property.

In the Choi et al. (2007) experiment, there are two states; it is straightforward to check

that when π1 “ π2 “ 1{2, a utility function is stochastically monotone if and only if it

is strictly increasing and symmetric; when π2 ą π1, a utility function U is stochastically

monotone if and only if it is strictly increasing and Upa, bq ą Upb, aq whenever b ą a.

A data set O “ tpxt,ptquTt“1 is said to be rationalizable by the stochastically monotone

utility (SMU) model if there is a continuous and stochastically monotone utility function U

that rationalizes the observations. Since a utility function U that is stochastically monotone

will be strictly increasing, it is also locally nonsatiated. Hence any SMU-rationalizable data

set is also rationalizable by utility maximization but the converse is not true. Indeed, the

single observation given in Example 1 passes GARP trivially, but it cannot be rationalized

by any symmetric and strictly increasing utility function.

Nishimura, Ok, and Quah (2017) have recently developed a test for rationalizability by

the SMU model. The test can be thought of as a version of GARP, but with suitably modified

revealed preference relations. We say that the bundle xt is SMU-revealed preferred to xt
1

at

the efficiency threshold e (for xt and xt
1

in D) if there is a bundle y such that y P Btpeq

and y ěFSD xt
1

; this revealed preference is strict if y can be chosen to satisfy y ąFSD xt.

Nishimura, Ok, and Quah (2017) show that a data set is rationalizable by the SMU model

at a threshold e if and only if it does not admit SMU-revealed preference cycles (such as

(A.11)) containing strict SMU-revealed preferences; we call the latter property F-GARP (at

the efficiency threshold e), where ‘F’ stands for first order stochastic dominance. Clearly this
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result is analogous to the characterization for basic rationalizability, except that the revealed

preferences are defined differently. With two states, the SMU-revealed preference relations

are easily obtained, and therefore checking F-GARP is also easy to implement.

A4. Confidence intervals on pass rates

π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

GARP 0.81 r0.67, 0.91s 0.68 r0.53, 0.81s GARP 0.80 r0.66, 0.91s 0.63 r0.48, 0.77s

F-GARP 0.64 r0.49, 0.77s 0.49 r0.34, 0.64s F-GARP 0.72 r0.57, 0.84s 0.57 r0.41, 0.71s

RDU/DA 0.64 r0.49, 0.77s 0.49 r0.34, 0.64s
RDU 0.72 r0.57, 0.84s 0.52 r0.37, 0.67s

DA 0.43 r0.29, 0.59s 0.26 r0.14, 0.41s

EU 0.64 r0.49, 0.77s 0.38 r0.25, 0.54s EU 0.39 r0.25, 0.55s 0.26 r0.14, 0.41s

Note: Each cell contains a pass rate and exact 95% confidence interval (in square brackets),

where the latter is obtained using the Clopper-Pearson procedure.

Table A.1: Pass rates and 95% confidence intervals

π1 “ 1{2 π1 ‰ 1{2

e “ 0.90 e “ 0.95 e “ 0.90 e “ 0.95

F-GARP 0.79 r0.63, 0.90s 0.72 r0.53, 0.86s F-GARP 0.89 r0.75, 0.97s 0.90 r0.73, 0.98s

RDU/DA 0.79 r0.63, 0.90s 0.72 r0.53, 0.86s
RDU 0.89 r0.75, 0.97s 0.83 r0.64, 0.94s

DA 0.54 r0.37, 0.71s 0.41 r0.24, 0.61s

EU 0.79 r0.63, 0.90s 0.56 r0.38, 0.74s EU 0.49 r0.32, 0.66s 0.41 r0.24, 0.61s

Note: Each cell contains a pass rate and exact 95% confidence interval (in square brackets),

where the latter is obtained using the Clopper-Pearson procedure.

Table A.2: Pass rates and 95% confidence intervals (conditional on GARP)

A5. Bronars power calculation

In order to calculate the Bronars (1987) power, we need to generate random data sets.

As we described in the Main Text, this involves first producing budget sets in the same

random fashion as in the Choi et al. (2007) experiment itself, and then randomly selecting

bundles from these budget sets. In the case where we are interested in power unconditionally,

our algorithm simply selects bundles randomly uniformly from the frontiers of these budget

sets. While the unconditional procedure needs little explanation, the method for calculat-

ing conditional power, i.e., power conditional on passing the generalized axiom of revealed

preference (GARP) or F-GARP, requires further explanation.
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The process of generating a random data set obeying GARP (F-GARP) at a given ef-

ficiency threshold is as follows. First, we generate 50 budget sets as in Choi et al. (2007).

Next, we select a budget line and randomly (uniformly) choose a bundle on that line. Then

we select a second budget line and randomly choose a bundle from that part of the line which

guarantees that this observation, along with the first, obeys GARP (F-GARP) at the given

efficiency threshold. A third budget line is then selected and a bundle randomly chosen from

that part of the line so that all three observations together obey GARP (F-GARP). Note

that such a bundle must exist; indeed, the demand (on the third budget line) arising from

any locally nonsatiated (stochastically monotone) utility function rationalizing the first two

observations will have this property. We then choose a fourth budget line and a bundle on

that line randomly so that the first four observations obey GARP (F-GARP), and so on.

We generate 30,000 data sets (with 50 observations each) which pass (GARP) F-GARP at

each of the two efficiency thresholds (0.9 and 0.95) in this manner,5 before subjecting each

data set to a test for a given model. By the Azuma-Hoeffding inequality, in order to be

100p1´δq percent confident that the sample pass rate resulting from a simulation is within ε

of the true probability of passing the test, we require at least N “ p1{2ε2q log p2{δq samples;

with 30,000 samples, we can be 99.5 percent sure that our estimate of the Bronars power is

within 0.01 of the true value.

A6. Probability distortions in the RDU model

The RDU model generalizes the EU model by permitting a distortion of the objective

probabilities. With two states, the probability of the less favorable state is distorted to

be gpπq when π is the true probability. In the asymmetric treatment of Choi et al. (2007)

analyzed in the Main Text, π is either 1/3 or 2/3. It turns out that, at the 0.9 threshold, all of

the 15 subjects who fail EU but pass RDU continue to do so if we restrict gp2{3q P r0.55, 0.75s

and gp1{3q P r0.25, 0.45s. (Note that g may differ across subjects.) At the 0.95 threshold,

the same restrictions on the distorted probabilities capture 11 of the 12 subjects who pass

RDU and fail EU. So it seems that those who pass RDU do so with fairly modest distortions

of the true probabilities.

5 So there are four distinct collections of data sets, with each collection containing 30,000 data sets.
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Furthermore, there is some evidence that subjects deflate the probability of the less

favorable state when it is objectively 2/3 and inflate the probability when it is 1/3, so

that the cumulative probability weighting function has the shape favored by cumulative

prospect theory. Indeed, if we restrict ourselves to choosing gp2{3q P r0.55, 2{3s and gp1{3q P

r1{3, 0.45s, we still manage to capture every subject who passes the RDU test at the 0.9

threshold and all but two who pass at the 0.95 threshold. On the other hand, the mirror

restriction performs very badly: if we insist on choosing gp2{3q P r2{3, 0.75s and gp1{3q P

r0.25, 1{3s, the RDU model captures no subject at either efficiency threshold other than

those who are already EU-rationalizable. (Note that for any subject who passes RDU,

there will typically be more than one set of distorted probabilities at which the subject is

rationalizable.)

We know from Table 2 in the Main Text that, for the symmetric treatment the pass rates

of the EU and RDU/DA models differ only at the efficiency threshold 0.95, where 5 subjects

pass RDU/DA but fail EU. All 5 subjects pass the RDU test for some gp1{2q ă 0.5, which

is consistent with disappointment aversion, and 4 of them pass with values of gp1{2q chosen

from the interval r0.45, 0.5q.

A7. Statistical analysis of Selten index differences

A statistical analysis of the differences in the Selten indices conditional on GARP is

provided in Table A.3. (Table A.4 provides the same analysis after conditioning on F-

GARP.) Each entry in the table gives the p-value of the test of null hypothesis that the two

models have the same Selten index, with the alternative hypothesis that they do not. To

illustrate how this test is carried out, consider a test of the equality of the Selten indices

between the EU and SMU models, under the asymmetric treatment and at the efficiency

threshold 0.9. As shown in Table 4, the SMU model has a power of 0.88 and the EU model

has a power of 1; we take this as given. The null hypothesis that the Selten indices are equal

is equivalent to the hypothesis that µSMU ´µEU “ 1´0.88 “ 0.12, where µEU and µSMU are

the expected conditional pass rates for the EU and SMU models. The alternative hypothesis

is µSMU ´µEU ‰ 0.12. The sample estimate of µSMU ´µEU has a binomial distribution and

its realized value is p33 ´ 18q{37; according to Table A.3, the probability of obtaining this

sample estimate or something more extreme if µSMU ´ µEU “ 0.12 is effectively zero.
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π1 “ 1{2 π1 ‰ 1{2

e
“

0.
9
5 F-GARP RDU/DA

e
“

0
.9

5 F-GARP RDU DA

RDU/DA 1.000 ¨
RDU 0.432 ¨ ¨

DA 0.000 0.000 ¨

EU 0.000 0.000 EU 0.000 0.000 1.000
e
“

0.
9
0 F-GARP RDU/DA

e
“

0
.9

0 F-GARP RDU DA

RDU/DA 1.000 ¨
RDU 0.005 ¨ ¨

DA 0.002 0.000 ¨

EU 1.000 1.000 EU 0.000 0.000 0.000

Note: Each cell contains a p-value, with values below 0.05 italicized.

Table A.3: Pairwise differences in predictive success

(conditional on GARP)

π1 “ 1{2 π1 ‰ 1{2

e
“

0
.9

5 RDU/DA

e
“

0.
95 RDU DA

DA 0.000 ¨

EU 0.000 EU 0.000 1.000

e
“

0
.9

0 RDU/DA

e
“

0.
90 RDU DA

DA 0.000 ¨

EU 0.003 EU 0.000 0.000

Note: Each cell contains a p-value.

Table A.4: Pairwise differences in predictive success

(conditional on F-GARP)

Notice that, in the asymmetric case, the differences in Selten indices between the RDU

model and the more restrictive DA and EU models are all statistically significant. This is

true after conditioning on GARP, and also after conditioning on F-GARP (see Tables A.3

and A.4 respectively).
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