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Abstract 

S-acylation is a major post-translational modification, catalysed by the zDHHC enzyme family. S-acylated proteins can be 

modified by different fatty acids; however, very little is known about how zDHHC enzymes contribute to acyl chain 

heterogeneity. Here, we employed fatty acid azide/alkyne labelling of mammalian cells, showing their transformation into acyl-

CoAs and subsequent click chemistry-based detection, to demonstrate that zDHHC enzymes have marked differences in their 

fatty acid selectivity. This was apparent even for highly related enzymes such as zDHHC3 and zDHHC7, which displayed a marked 

difference in ability to use C18:0 acyl-CoA as a substrate. Furthermore, we identified Isoleucine-182 in the third transmembrane 

domain of zDHHC3 as a key determinant limiting the use of longer chain acyl-CoAs by this enzyme. This is the first study to 

uncover differences in the fatty acid selectivity profiles of cellular zDHHC enzymes and to map molecular determinants governing 

this selectivity.  

 

Significance Statement 

S-acylation, the attachment of different fatty acids onto cysteine residues, regulates the activity of a diverse array of 

cellular proteins. This reversible post-translational modification is essential for normal physiology and defects are linked 

to human disease. S-acylation is catalysed by a large family of “zDHHC” S-acyltransferases that use a cellular pool of 

diverse fatty acyl-CoAs as substrates. Using chemically-synthesised probes, we show that individual zDHHC enzymes 

have marked differences in fatty acid selectivity, and identify the underlying molecular basis for this. The study describes 

how acyl chain heterogeneity of S-acylated proteins is generated, and is significant because the chemical nature of the 

attached S-acyl chain can fundamentally impact protein behaviour. 
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Introduction 
S-acylation is a reversible post-translational modification 

(PTM) involving the attachment of fatty acids onto cysteine 

residues(1, 2). This PTM occurs on both soluble and 

transmembrane (TM) proteins and exerts a number of 

important effects, such as mediating membrane binding (of 

soluble proteins or soluble loops of TM proteins), regulating 

protein trafficking and targeting to cholesterol-rich 

membrane micro-domains, and modulating protein 

stability(3, 4). These actions of S-acylation on a diverse array 

of cellular proteins impact on many important physiological 

processes, and defects in this process are linked to a number 

of major diseases and disorders(2, 5). 

S-Acylation is mediated by the opposing actions of 

acyltransferases and thioesterases. S-Acyltransferase 

enzymes belong to the zDHHC protein family, which are 

encoded by twenty-four distinct genes(6-8). zDHHC enzymes 

are thought to share the same overall membrane topology, 

with 4-6 transmembrane domains and the N- and C-termini 

present in the cytosol(9). The catalytic DHHC cysteine-rich 

domain (CRD) of the enzymes lies in a cytosolic loop(9) 

allowing zDHHC enzymes to modify substrate cysteines 

present at the cytosol-membrane interface. The S-acylation 

reaction is thought to proceed through an enzyme-acyl 

intermediate, where the acyl chain is attached to the cysteine 

of the DHHC motif via a thioester linkage (often referred to as 

enzyme “autoacylation”)(10, 11). The S-acyl chain is then 

transferred to a cysteine residue of a substrate protein(10, 

11). This overall process is referred to as a “ping-pong” 

reaction mechanism. There has been progress identifying the 

zDHHC enzymes that are active against many substrate 

proteins(2), although we lack a detailed understanding of the 

protein substrate profiles of individual enzymes and how 

enzyme-substrate interaction specificity is achieved. Co-

expression experiments have suggested that individual 

zDHHC enzymes might exhibit a level of overlap in their 

protein substrate profiles, suggesting some possible 

redundancy within the zDHHC family. Nevertheless, individual 

enzymes have been linked with many disorders, including 

schizophrenia, intellectual disability, diabetes and cancer, 

suggesting that any functional redundancy is limited(2). 

In contrast to the steadily increasing knowledge about the 

specific interactions of individual zDHHC enzymes with their 

protein substrates, we know relatively little about the fatty 

acid selectivity of these enzymes. The term palmitoylation is 

often used as a synonym for S-acylation. However this does 

not reflect the potential diversity of S-acyl chains added to 

substrate proteins. Indeed, an analysis of the acyl groups 

added to S-acylated proteins in platelets revealed that 74% 

were from palmitate (C16:0), 22% from stearate (C18:0) and 

4% from oleate (C18:1)(12). Other studies have shown that S-

acylated proteins can be modified by acyl chains from 

myristic acid (C14:0), palmitoleic acid (C16:1), linoleic acid 

(C18:2) and arachidonic acid (C20:4)(12-15). Furthermore, 

mass spectrometry analysis of the S-acyl chains attached to 

influenza haemagglutinin proteins has revealed that C16:0 

and C18:0 fatty acids are attached in a site-specific 

manner(16). There is also potential for cell type specific 

differences in the fatty acid profiles of S-acylated proteins; for 

example, one study reported that in RAW26.7 cells less than 

10% of the acyl-CoAs were greater than C20, whereas in 

MCF7 cells C24:0 and C26:0 acyl-CoAs were present at similar 

amounts to C16:0 and C18:0 acyl-CoAs(17). The identity of 

the added acyl chain is central to the regulatory effects of S-

acylation as different acyl chains vary in affinity for 

membranes and for cholesterol-rich membrane micro-

domains(18). 

To-date, a single study has explored the potential role of 

zDHHC enzymes in differential protein S-acylation using 

purified recombinant zDHHC enzymes in detergent 

micelles(10). This study reported that zDHHC2 catalysed the 

S-acylation of substrate proteins with similar efficiency using 

palmitate (C16:0), stearate (C18:0) or C20 (C20:0, C20:4) fatty 

acids. In contrast, zDHHC3 displayed a marked preference for 

shorter chain length acyl-CoAs and incorporated C16:0 much 

more efficiently than either C18:0 or C20 fatty acids(10). This 

elegant study highlighted the potential for discrete patterns 

of fatty acid selectivity in the zDHHC family, but these 

questions have been challenging to address, particularly in a 

cellular context. However, recent developments at the 

chemistry-biology interface have identified new approaches 

to investigate this poorly defined area of the S-acylation field. 

Specifically, azide and alkyne fatty acid probes have provided 

novel and highly-sensitive chemical tools to interrogate S-

acylation by click chemistry(19-24). In this study, we report 

the use of chemically-synthesised azide and alkyne fatty acid 

probes to investigate fatty acid selectivity in the zDHHC 

enzyme family and determine the molecular mechanisms 

governing this specificity. 

 

Results 
Synthesised azide fatty acids are good mimics of 

endogenous fatty acids   

Fatty acid azide probes of different acyl chain length were 

synthesised as described in Supplementary Information. To 

assess their ability to be taken up by cells, the total fatty acid 

content of HEK293T cells treated with these synthesised 

azide fatty acids was determined (Figure 1). Untreated cells 

showed the expected range of saturated and unsaturated 

fatty acids, with C18:0 and C18:1 being the most abundant. 

Upon addition of the various azide fatty acids to the cells, it 

can clearly be seen that these were not only accumulated 

within the cells (with C16:0 and C18:0 azides being taken up 

significantly better than C14:0 and C20:0 azides), but also 

metabolised by the cells. For example the C16:0 azide was 

elongated to C18:0, which was subsequently desaturated to 
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C18:1, while the added C18:0 azide was also desaturated to 

C18:1 and to a very minor extent C18:2. However, C18:0 

azide was not significantly elongated to C20:0, and the added 

C20:0 azide was neither elongated, nor desaturated (data not 

shown). This is not surprising as the respective elongase has a 

high preference for C20:4 to C22:5 and the desaturase has a 

high selectivity for C18:0(25).  

As S-acylation of proteins involves acyl-CoA donors, it was 

deemed important that the impact on the cellular acyl-CoA 

pools be determined. This was achieved using a multiple 

reaction monitoring mass spectrometric method in 

conjunction with an internal non-natural (C17:0) acyl-CoA 

standard. This analysis revealed that in the untreated 

HEK293T cells, the C18:1- and C16:0-CoAs were the most 

abundant, accounting for almost half of the total acyl-CoA 

pool (Figure 2). Upon addition of the various azide fatty acids, 

a significant amount of the corresponding acyl-CoA azides 

were formed, including some of the corresponding 

metabolised (elongated and desaturated) acyl-CoAs azides, 

reflecting the total fatty acid content. It is interesting to note 

that there were decreases in the corresponding endogenous 

acyl-CoA pools, suggesting clear competition for the acyl-CoA 

synthases that have a preference for particular acyl chain 

length.  

Collectively, these data strongly suggest that the synthesised 

azide fatty acids are good mimics of the natural saturated 

fatty acids and can be used for downstream metabolic 

processes involving fatty acids, such as lipid metabolism and 

protein lipidation. 

 

zDHHC enzymes display marked differences in fatty acid 

azide selectivity in cell-based substrate S-acylation assays 

To test the ability of the synthesised azide fatty acid probes 

to reliably measure protein S-acylation, HEK293T cells were 

co-transfected with EGFP-SNAP25b and HA-zDHHC3 or an 

inactive mutant of this enzyme (C157S). Figure 3A shows that 

zDHHC3 promoted a marked increase in incorporation of the 

azide probes into SNAP25, whereas in the absence of active 

enzyme (either empty vector or the C157S mutant) only a low 

signal was detected, presumably representing SNAP25 that is 

modified by endogenously-expressed zDHHC enzymes. To 

test if the incorporated azide probes were attached to 

SNAP25 via thioester linkage, transfected cells were treated 

overnight with 1M hydroxylamine (HA) pH 7, which led to a 

marked loss of labelling, whereas incubation with 1M Tris (pH 

7) as a control had no effect (Figure 3B). 

The results presented in Figure 3 suggest that the level of 

C18:0 incorporation into SNAP25 by zDHHC3 is markedly 

lower than C14:0 and C16:0. Our previous work and others’ 

has shown that five zDHHC enzymes are active against 

SNAP25 in similar co-expression assays: zDHHC2, zDHHC3, 

zDHHC7, zDHHC15 and zDHHC17(26). Thus, we undertook a 

quantitative comparison of SNAP25 S-acylation by these five 

zDHHC enzymes to examine for the first time if zDHHC 

enzymes exhibit any differences in fatty acid selectivity when 

expressed in cells. The results shown in Figure 4A (top panel) 

confirm that zDHHC3 has a marked preference for 

C14:0/C16:0 over C18:0-azide. Interestingly, zDHHC7 which is 

highly related to zDHHC3 at sequence level (67.8% identical 

for mouse) incorporated C18:0-azide into SNAP25 more 

efficiently than zDHHC3 did, although there was still a 

significant reduction in C18:0 incorporation relative to 

C14:0/C16:0 with this enzyme (Figure 4A, top panel). zDHHC2 

and zDHHC15, also displayed interesting differences in fatty 

acid azide selectivity despite being highly related at amino 

acid level (65.4% identical): zDHHC2 exhibited no significant 

preference whereas C18:0 incorporation into SNAP25 by 

zDHHC15 was markedly lower than C14:0/C16:0 azides 

(Figure 4A, middle panel). Finally, zDHHC17 showed a 

preference for longer chain fatty acids and incorporated 

C16:0 and C18:0 with higher efficiency than C14:0 (Figure 4A, 

bottom panel). We also synthesised corresponding alkyne 

probe and assayed their incorporation into SNAP25 by 

zDHHC-3, -7 and -17, which revealed the same distinct 

profiles as seen with the azide probes (Figure 4B). To avoid 

confusion, the number of carbon groups given in the name 

for the alkyne probes reflects those of the fatty acid minus 

the alkyne group. Thus, C14:0-alkyne is a C14 fatty acid chain 

plus an alkyne group (16 carbon atoms total). Synthesis of 

these alkyne probes and their IUPAC nomenclature is given in 

the Supplementary Information. 

To generate a more comprehensive understanding of the 

limits of zDHHC fatty acid selectivity, we also examined C20:0 

and C22:0 azide probes. zDHHC3 showed no difference in 

ability to transfer C18:0, C20:0 or C22:0 (low incorporation 

for each), whereas zDHHC7 and zDHHC17 displayed a gradual 

decline in azide incorporation as chain length was increased 

(Figure 5A). We also used competition assays to test the 

ability of unlabelled fatty acids to block C16:0 azide 

incorporation into SNAP25 by zDHHC3 and zDHHC17. 

Consistent with the observation that zDHHC3 did not 

incorporate the C18:0 azide probe with high efficiency, 

neither stearic acid (C18:0) nor oleic acid (C18:1) could block 

incorporation of C16:0 azide into SNAP25 catalysed by this 

enzyme, whereas myristic acid (C14:0), palmitic acid (C16:0) 

and palmitoleic acid (C16:1) were all effective inhibitors 

(Figure 5B). In contrast to zDHHC3, stearic acid effectively 

blocked C16:0 azide incorporation into SNAP25 by zDHHC17, 

whereas myristic acid and palmitic acid had no significant 

inhibitory effect (Figure 5B). Furthermore, oleic acid and 

linoleic acid (C18:2) also blocked incorporation of C16:0 

azide, and indeed even arachidonic acid (C20:4) was effective 

at blocking C16:0 azide incorporation by zDHHC17 (Figure 

5B). The inhibitory effects of these longer chain unsaturated 

fatty acids are interesting given that significant amounts of 

the respective acyl CoAs are present in HEK293T cells (Figure 
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2). In contrast, lignoceric acid (C24:0) did not inhibit C16:0 

azide incorporation, consistent with the results presented in 

Figure 5A showing that C22:0 azide displayed a marked 

reduction in incorporation by zDHHC17 compared with 

shorter chain azide probes. Autoacylation of all zDHHC 

enzymes tested was dependent on an intact DHHC motif 

(Supplementary Figure 1). 

Different fatty acid selectivities of zDHHC enzymes 

corresponds to autoacylation status 

The S-acylation reaction proceeds via an enzyme-acyl 

intermediate (referred to as “autoacylation”) and is followed 

by transfer of the acyl chain to a substrate protein(10). We 

therefore tested if the different substrate S-acylation profiles 

observed in Figures 4 and 5 correspond with the 

autoacylation status of zDHHC enzymes. Figure 6A reveals 

that the autoacylation profile of zDHHC-2, -3, -7 and -15 were 

essentially identical to the profile observed for these 

enzymes with SNAP25 S-acylation (Figure 4). Despite 

repeated attempts, we were unable to reliably detect 

autoacylation of zDHHC17 and therefore could not compare 

the autoacylation profile of this enzyme with its substrate S-

acylation profile. As enzyme autoacylation reliably reports on 

fatty acid selectivity of zDHHC enzymes, we extended this 

analysis to provide a more comprehensive study of the 

zDHHC family. Further distinct fatty acid azide selectivity 

profiles were identified for a set of zDHHC enzymes for which 

autoacylation was readily detectable: zDHHC5 and zDHHC11 

exhibited a preference for C14:0/C16:0, zDHHC4 showed no 

preference for C14:0/C16:0/C18:0 and zDHHC23 displayed a 

marked preference for C18:0 over C14:0 and C16:0 (Figure 

6B). 

Differences in fatty acid selectivities of zDHHC3 and zDHHC7 

are linked to residues in the third transmembrane domain 

To understand how differences in fatty acid selectivity might 

be encoded at the molecular level, we undertook a 

systematic domain swapping analysis of zDHHC3 and 

zDHHC7. These enzymes are highly conserved and thus we 

reasoned that domain swapping between these two isoforms 

should be less likely to produce deleterious effects on protein 

folding than similar analyses of other zDHHC enzymes. 

zDHHC3 and zDHHC7 exhibited a marked difference in ability 

to incorporate the C18:0 azide probe (Figure 7A) and 

therefore we focused on this distinction between these two 

enzymes. This distinction was observed for SNAP25 S-

acylation (Figure 4), enzyme autoacylation (Figure 6), and we 

also confirmed it using a different substrate protein (cysteine-

string protein; Supplementary Figure 2a). Furthermore, 

endogenous proteins showed a similar pattern of labelling 

(Supplementary figure 2b). zDHHC3 and zDHHC7 consist of 

four predicted transmembrane domains with cytosolic N- and 

C-termini and a central intracellular loop containing the 51-

amino acid catalytic DHHC-CRD (See Figure 7B). Interestingly, 

replacing either the N- or C-terminal domain or the DHHC-

CRD of zDHHC3 with the same domains from zDHHC7 had no 

detectable effect on the fatty acid selectivity profile of 

zDHHC3 (Figure 7C). In contrast, replacing all four 

transmembrane domains of zDHHC3 with those from zDHHC7 

or only the second and third transmembrane domains 

resulted in a significant increase in C18:0 azide incorporation 

into SNAP25 by these mutant enzymes (Figure 7D), mirroring 

the fatty acid profile of zDHHC7 (see Figure 7A). Further 

analysis revealed that substituting only transmembrane 

domain three of zDHHC3 with the same domain from zDHHC7 

was sufficient to change the C18:0 selectivity profile of 

zDHHC3 (Figure 7E). 

To pinpoint the specific features of TMD3 that are important 

for dictating the fatty acid selectivity profile of zDHHC3, we 

compared the amino acid sequences of this domain from 

zDHHC3 and zDHHC7 (Figure 8A). There are four differences 

in amino acid sequence between zDHHC3 and zDHHC7 in this 

region and thus we generated two mutants containing either 

I182S/L184V or M189L/V190C mutations. Figure 8B shows 

that the I182S/L184V mutation led to a marked increase in 

C18:0 azide incorporation into SNAP25 by zDHHC3, whereas 

the M189L/V190C mutations had no effect. Thus, we 

subsequently generated single I182S and L184V mutations, 

which clearly showed that the I182S mutation in zDHHC3 

significantly enhanced the level of C18:0 incorporation by 

zDHHC3 whereas the L184V mutation had no effect (Figure 

8C). It is interesting to note that zDHHC7 in Danio rerio has an 

isoleucine rather than a serine residue at this position (see 

Figure 8A). When autoacylation profiles of zDHHC3 and 

zDHHC7 from this species were examined, we found no 

significant difference in C18:0 azide incorporation 

(Supplementary Figure 3), further supporting the important 

role played by the I/S residues in determining the fatty acid 

selectivity profiles of zDHHC enzymes. 

Finally, to exclude the possibility that any findings with the 

fatty acid azide probes were related to the presence of the 

azide/alkyne group, we examined incorporation of 3H-

palmitic acid and [3H]stearic acid into SNAP25 by zDHHC3, 

zDHHC7 and the zDHHC3 (I182S) mutant. Figure 9 shows that 

the level of incorporation of [3H]palmitic acid catalysed by 

these zDHHC enzymes was similar. In contrast, zDHHC7 more 

effectively incorporated [3H]stearic acid than zDHHC3, and 

the zDHHC3 (I182S) mutant displayed a significant increase in 

[3H]stearic acid incorporation compared with wild-type 

zDHHC3 and to a similar level as seen with zDHHC7. Thus, the 

results of these experiments fully support the results 

obtained with the fatty acid azides. 

 

Discussion 
This study provides the first analysis of zDHHC enzyme fatty 

acid selectivity within a cellular context. The only other study 

to examine how zDHHC enzymes handle acyl CoA substrates 

explored S-acylation by purified zDHHC2 and zDHHC3 in 
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detergent micelles(10). Jennings and Linder demonstrated 

that zDHHC3 has a strong preference for C16:0 over C18:0 

acyl CoA, whereas zDHHC2 displays no overt preference(10). 

Importantly, this present study has shown that these 

differences are also seen when zDHHC2 and zDHHC3 are 

expressed in mammalian cells. zDHHC3 is Golgi-localised(27), 

whereas zDHHC2 associates with the plasma membrane and 

endosomes(28). Therefore, the acyl CoA selectivity profiles of 

zDHHC2/3 are preserved irrespective of whether the enzymes 

are in detergent micelles or native membranes and 

irrespective of localisation to distinct membrane 

compartments. 

S-acylation occurs via a two-step process involving enzyme 

“autoacylation” and subsequent transfer of the acyl chain 

onto the substrate protein. zDHHC autoacylation provides a 

robust measure of fatty acid selectivity as we clearly showed 

that the autoacylation profile of zDHHC2, -3, -7 and -15 

closely matched their respective substrate S-acylation 

profiles. This allowed us to investigate the acyl CoA selectivity 

of an additional set of enzymes by measuring autoacylation 

activity. Overall, the results of this part of the study showed 

that zDHHC-3, -5, -7, -11 and -15 prefer C14/C16 over C18, 

zDHHC-2 and -4 display no clear fatty acid preference, 

zDHHC17 prefers C16/C18 over C14, and zDHHC23 exhibits a 

strong preference for C18. These observations re-emphasise 

the point made above that acyl CoA specificities do not show 

any correlation with intracellular localisation, for example, 

zDHHC-3, -7, -15, -17 and -23 all localise to the Golgi region of 

cells(27, 29), whereas zDHHC-2 and -5 are localised to the 

plasma membrane(26), and zDHHC4 is ER-localised(30). 

zDHHC-3 and -7 are highly related at the sequence level, co-

distribute on Golgi membranes and share many common 

protein substrates. Yet these enzymes have a significant 

difference in acyl CoA selectivity, with zDHHC7 having an 

increased ability to incorporate C18:0 chains relative to 

zDHHC3. The high sequence conservation of zDHHC-3 and -7 

provided an opportunity to undertake a comprehensive 

domain swapping analysis to pinpoint features that underpin 

acyl CoA selectivity. This analysis identified a single amino 

acid in the third transmembrane domain of zDHHC3 as a 

critical determinant limiting the use of longer chain fatty 

acids by this enzyme. When Ile-182 was replaced by the 

serine present at the same position in zDHHC7, a significant 

increase in the ability of the mutant protein to incorporate 

C18:0 was noted. We confirmed the importance of this 

residue using both C16:0/C18:0 azides with click chemistry 

detection and [3H]palmitic acid/stearic acid labelling. In this 

regard, it is interesting that neither the azide or alkyne group 

present on the probes appeared to influence acyl chain 

selectivity, perhaps suggesting that these chemical groups 

have a flexible character that does not impede association 

with the zDHHC enzyme. Consistent with this notion, we also 

found that the fatty acid azides selectively competed for the 

formation of endogenous acyl-CoA of the same chain length 

when added to HEK293T cells. This shows that the azide 

probes compete with and are very good mimics of 

endogenous fatty acids, and are therefore excellent chemical 

biology tools with which to interrogate aspects of fatty acid 

biology such as S-acylation.  

Although we performed a comprehensive domain-swapping 

analysis between zDHHC3 and zDHHC7, the high similarity of 

these two enzymes means that other factors that are 

important for acyl chain selectivity could have been missed 

(since these other factors could be conserved between 

zDHHC-3 and -7). Nevertheless, the approach taken here 

provides an important first step towards understanding the 

basis for acyl CoA selectivity in the zDHHC family, and clearly 

shows the importance of TMDs in this regard. Interestingly, a 

lysine was identified in the transmembrane domain of an 

elongase component of the yeast very long-chain fatty acid 

synthase complex that was also a key determinant of the final 

length of fatty acyl CoA chain synthesised by this enzyme 

complex(31). In addition, a subsequent mutational analysis of 

the related rat elongases Elovl2 and Elovl5 also highlighted 

the importance of the transmembrane domains of these 

enzymes in setting the substrate specificity profiles. Elovl2 is 

required for synthesis of omega-3 docosahexaenoic acid 

(DHA; 22:6n-3) as this elongase (but not Elovl5) can elongate 

docosapentaenoic acid (22:5n-3) to 24:5n-3, a precursor of 

DHA. This difference in substrate specificity between Elovl2 

and Elovl5 was shown to involve a region encompassing 

transmembrane domains 6 and 7, with a cysteine-to-

tryptophan switch in transmembrane domain 7 proving to be 

particularly important in setting specificity(32). 

It is tempting to speculate that the transmembrane domains 

of zDHHC enzymes form “channels” that accommodate 

specific acyl CoA molecules. This could involve different 

transmembrane domains in the same zDHHC molecule or 

might require dimerization and multimerisation of zDHHC 

enzymes(33). As isoleucine occupies more space that serine, 

it is possible that this amino acid in TMD3 of zDHHC3 limits 

the length of acyl chain that can be accommodated by 

blocking the acyl-CoA channel. This idea is consistent with the 

position of the isoleucine residue in zDHHC3, which is present 

in the middle of TMD3. Indeed, the catalytic DHHC-CRD of 

zDHHC enzymes is present immediately preceding TMD3, 

suggesting that the cysteine in the DHHC active site could be 

positioned close to the channel opening. 

Mass spectrometry-based analysis of the lipidation profile of 

haemaglutinin (HA) from influenza has shown site-specific 

attachment of palmitate or stearate chains onto this 

protein(34). Interestingly, C18:0 is added specifically to a 

cysteine present in the transmembrane domain whereas 

C16:0 is attached to cysteines in a membrane proximal 

domain. It is not clear how this highly selective process is 

achieved but our results suggest that the modified cysteines 
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in this protein might be targeted by different zDHHC enzymes 

with distinct acyl CoA specificities. It is also possible that 

there is sometimes a contribution made by the substrate in 

determining which fatty acids are attached at specific sites. 

Thus, for transmembrane proteins, S-acylated cysteines are 

often adjacent to transmembrane domains and it is possible 

that the sequence of the substrate transmembrane domain 

affects which fatty acids can be attached to the adjacent 

cysteine in a similar way as seen here for zDHHC enzymes. 

There are two major properties of S-acylation that are 

thought to be central to its various effects on modified 

proteins: increased hydrophobicity and affinity for 

cholesterol-rich membranes(3, 35). Hydrophobicity is 

fundamental to the effects of S-acylation on reversible 

membrane binding of many soluble proteins and in regulating 

the membrane association of soluble loops of 

transmembrane proteins(3). Association with cholesterol-rich 

membranes is thought to influence aspects of protein 

trafficking and membrane compartmentalisation. It is well 

established from in vitro studies that saturated phospholipids 

cluster together with cholesterol, whereas unsaturated 

phospholipids are excluded from these domains(36). 

Although the effects of saturated versus unsaturated S-acyl 

chains have not been studied in such detail, it is clear that S-

acylation is a major signal for association with cholesterol-

rich domains at least in vitro(37). It is likely that the addition 

of saturated versus unsaturated acyl chains onto proteins 

have distinct influences on membrane partitioning and 

subsequent trafficking and function in the cell. Furthermore, 

the acyl chain added to S-acylated proteins is also likely to 

affect the strength of membrane association. Although it is 

clear that two tandem lipid modifications (e.g. 

myristoylation/palmitoylation or prenylation/palmitoylation) 

provides a strong membrane anchor, a single lipid group (e.g. 

myristoyl or prenyl) is not sufficient for membrane 

association in the absence of other signals such as a polybasic 

region(38). However, single myristate (C14:0), palmitate 

(C16:0) or stearate (C18:0) groups added to an S-acylated 

protein could have markedly different effects on membrane 

association. Indeed, it was suggested that stearate has a 

significantly enhanced strength of interaction with 

phospholipid membranes compared with palmitate(12). 

 This study has identified clear differences in the fatty 

acylation profiles of different zDHHC enzymes and their 

substrates expressed in HEK293 cells. In future work it will be 

important to further advance understanding of this area and 

the functional significance of fatty acid heterogeneity by 

investigating fatty acid selectivity of endogenous proteins and 

how this is impacted by a dynamic and heterogeneous acyl 

CoA pool. The distribution of different pools of acyl-CoAs and 

their availability for use in S-acylation reactions is unclear at 

this time, and this will be an important area of future 

investigations. 

 

Materials and Methods 
Materials 

Mouse monoclonal GFP antibody was from Clontech (CA, 

USA). Rat high-affinity HA antibody was from Roche (West 

Sussex, UK). IR-dye conjugated secondary antibodies and 

alkyne/azide probes were purchased from LI-COR (Cambridge 

UK). [9,10-3H] palmitic acid and [9,10-3H] stearic acid (specific 

activity for each 1.11-2.22 TBq/mmol) were from Hartmann 

Analytic (Braunschweig, Germany). Lipofectamine 2000 was 

from Invitrogen (Paisley, UK). Oligonucleotide primers were 

purchased from Sigma (Poole, UK). 

Cell culture and transfection 

HEK293T cells (obtained from ATCC) were cultured in DMEM 

supplemented with 10% fetal bovine serum at 37 0C and in a 

humidified atmosphere containing 5% CO2. Cells were plated 

on 24-well plates and transfected the following day using 

Lipofectamine 2000 according to the manufacturer’s 

instructions. For substrate S-acylation assays, 0.8 g of EGFP-

SNAP25 were co-transfected with 1.6 g of zDHHC plasmid 

(in pEF-BOS-HA backbone). For autoacylation assays, 3 g of 

zDHHC plasmid was used. Cells were labelled and processed 

the day after transfection. 

Quantification of fatty acids and acyl-CoAs 

Cells were collected by centrifugation and washed with 

serum free DMEM, prior to incubation at 37ºC for 15 min 

with DMEM only, followed by the addition of defatted BSA 

coupled to the appropriate fatty acid azide (100 µM final 

concentration) and incubated for 4 hours at 37ºC.  Cells were 

then harvested by centrifugation and either washed in ice 

cold PBS and freeze-dried for total fatty acid determination or 

processed for acyl-CoA extraction (see below).  

For total fatty acid determination, the freeze-dried cells were 

subjected to acid hydrolysis using constant boiling HCl (6 M, 

200 μL) vortexing/sonication followed by incubation for 16 h 

at 110ºC. After cooling, the samples were spiked with 100 

pmoles of C17:0 fatty acid (as an internal control) and 

processed and derivatised to fatty acid methyl esters 

(FAMEs), prior to analysis by gas chromatography-mass 

spectrometry (GC-MS) as described previously(39). The 

individual azide fatty acids were also converted to their 

corresponding FAMEs and analysed by GC-MS to determine 

retention time and fragmentation patterns (data not shown). 

For acyl-CoA extraction and quantification, the absolute 

number of cells was determined (typically between 2-4 x 107 

cells). Cells were harvested by centrifugation at 15,000 x g for 

1 min at room temperature and the supernatant media 

removed.  The pellet was washed briefly with 200 l of ice-

cold PBS and completely lysed with ice-cold TCA (100 l, 1M) 

and vortexing, and stored on ice to prevent sample 

hydrolysis. 
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The internal standard C17:0-CoA (150 pmol) was added to the 

lysate and the sample centrifuged (15,000g, 10 min, 4C).  

The resulting supernatant was transferred to a fresh pre-

cooled tube. EDTA (25 l, 10 mM, pH 7.0) was added 

followed by chloroform (50 L) triethylammonium acetate 

(50 l), and the mixture was vortexed and centrifuged 

(15,000 x g, 10 min, 4C). The upper phase was carefully 

removed to a fresh Eppendorf tube, flash frozen in liquid 

nitrogen and freeze dried. The dried sample was kept at -

80C prior to analysis by electrospray-mass spectrometry (ES-

MS), using multiple reaction monitoring (MRM) similar to the 

method of Haynes et al(17). 

Samples were suspended in 15 μl of a 1:2 (v/v) chloroform / 

methanol and 5 μl of acetonitrile / isopropanol / water (6:7:2) 

and delivered using a NanoMate (Advion) to a AB Sciex 4000 

QTRAP triple quadrupole mass-spectrometry with a 

nanoelectrospray source, using nitrogen as the collision gas. 

A MRM approach was utilized to quantify acyl CoA. MRM 

mass transition (Supplementary Table) for the acyl-CoAs was 

determined in positive ion mode, (EP 8 eV, CXP 12 eV, an 

interface temperature of 30°C , gas pressure 0.5 psi and a tip 

voltage of 1.25-1.5kV, dwell time 500 mS), spectra were 

acquired for 2 minutes. All MRM data were normalized 

relative to the internal standard before generating standard 

curves (0.1-500 pmoles) for the acyl-CoAs (C14:0. C16:0, 

C17:0, C18:0, C20 and C20:4) which were obtained from 

either Sigma or Avanti Polar Lipids (Alabaster, AL), allowing 

their own response factor to be determined. Samples were 

analysed in the same manner, allowing quantification of the 

extracted acyl-CoAs. 

Cell labelling with fatty acid azide and alkyne probes for 

analysis of S-acylation 

HEK293T cells were incubated with 100 M of the fatty acid 

azide probes (in DMEM with 1 mg/ml defatted BSA) for 4 

hours at 37 OC. For competition experiments, transfected 

cells were labelled with 100 µM of the C16:0 azide probe in 

the presence of a 3-fold excess (300 µM) of the relevant fatty 

acid. For cell labelling with [3H]palmitic acid and [3H]stearic 

acid (Hartmann Analytic), transfected cells were incubated in 

DMEM/BSA containing 0.5 mCi/ml of the tritiated fatty acid 

probes for 4 hours at 37 OC. 

Detection of fatty acid azide and alkyne probes in S-acylated 

proteins 

Cells were washed twice in phosphate-buffered saline (PBS) 

then lysed on ice in 100 l of 50mM Tris pH 8.0 containing 

0.5% SDS and protease inhibitors (Roche, West Sussex UK). 

Conjugation of azide or alkyne IR-800 Dye (LI-COR, Cambridge 

UK) to fatty acid azide or alkyne probes was carried out for 1 

hr at room temperature with end-over-end rotation by 

adding an equal volume (100 l) of freshly mixed click 

chemistry reaction mixture containing 10 M IRDye® 800CW 

azide or alkyne Infrared Dye, 4 mM CuSO4, 400M Tris[(1-

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine  and 8 mM 

ascorbic Acid in dH20. Proteins were isolated by acetone 

precipitation and resuspended in 100 l SDS sample buffer 

(50mM Tris pH 8.0, 10% glycerol, 2% SDS and 0.1% 

bromophenol blue) containing 25 mM DTT. Samples were 

incubated at 95°C for 5 minutes and 10-15 l of each sample 

was resolved electrophoretically on 12% Tris-glycine SDS-

PAGE gels.  

For detection of [3H] fatty acid probes, cell lysates were 

resolved by SDS-PAGE and transferred to duplicate 

nitrocellulose membranes. One membrane was 

immunoblotted with antibodies recognising the GFP- and HA- 

tags. The other membrane was exposed to light-sensitive film 

in the presence of a Kodak Biomax Transcreen LE intensifier 

screen for detection of [3H] fatty acid probe incorporation. 

Generation of mutant zDHHC constructs 

The zDHHC3 chimeras containing the N- and C-terminal 

domains (zDHHC3/CN7) or intracellular domain including the 

zDHHC cysteine-rich domain of zDHHC7 (zDHHC3/CRD7) were 

generated within the HA-tagged constructs by inserting Nhe1 

and Sal1 restriction sites at the boundaries of the domains 

that were swapped (upstream of C47 and F235 in zDHHC3 

and C50 and F238 in zDHHC7 for zDHHC3/CN7, and S93 and 

T176 in zDHHC3 and S96 and T179 in zDHHC7 for 

zDHHC3/CRD7) by site-directed mutagenesis. The regions 

were then swapped by restriction/ligation and the Nhe1/Sal1 

restriction sites removed using site-directed mutagenesis. 

The zDHHC3 chimeras containing the transmembrane 

domains of zDHHC7 were constructed using GeneArt gene 

synthesis services (Thermo Fisher Scientific) and sub-cloned 

into pEF-BOS-HA vector using BamH1 restrictions sites. The 

transmembrane domains predicted by UniProt were defined 

as follows: zDHHC3 A48-V68 (TMD1), Y73-S93 (TMD2), F172-

F192 (TMD3), I215-F235 (TMD4); zDHHC7 A51-L71 (TMD1), 

F76-S96 (TMD2), F175-G194 (TMD3), I218-F238 (TMD4). Site-

directed mutants were generated using PCR. The validity of 

all clones was confirmed by sequencing. 

Data Quantification and Statistical Analysis 

Quantification of all click chemistry experiments was 

performed by expressing the click signal relative to the 

corresponding protein signal (immunoblot). For substrate S-

acylation assays, this was then normalised to control (empty 

pEF-BOS-HA plasmid). Statistical analysis was performed 

using a one-way ANOVA with a Tukey post-test using 

Graphpad Prism software. 
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Figure Legends 

 
Figure 1: Relative percentage of the total fatty acid content of cells with and without treatments of azide-fatty acids. 

HEK293T cells were incubated with or without fatty acid azides. Fatty acids released from cellular lipids and protein by acid were 

then converted to methyl esters and analysed by GC-MS as described in material and methods. Values shown are means ± SEM 

(n=3). 

 

Figure 2: Quantification of the acyl-CoA content of HEK293T cells with and without treatments of azide-fatty acids. 

HEK293T cells were incubated with or without fatty acid azides and acyl-CoAs were then quantified as described in materials and 

methods. Values shown are means ± SEM (n=3). 

 

Figure 3: S-acylation of EGFP-SNAP25B by zDHHC3. 

HEK293T cells were transfected with EGFP-SNAP25b and pEF-BOS-HA (vector), HA-zDHHC3, or HA-zDHHC(C157S), or were left 

untransfected. Cells were then incubated with C14:0, C16:0 or C18:0 fatty acid azides for 4h at 37 ºC. Incorporated fatty acid azides 

were detected by click chemistry using an alkyne-800 infrared dye. Isolated proteins were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes. Representative images are shown. (a) Upper panel: click chemistry signal. Middle panel: anti-GFP 

immunoblot. Lower panel: anti-HA immunoblot. Arrowheads denote the position of the EGFP-SNAP25 band (top and middle panels) 

and hA-zDHHC3 band (lower panel). (b) Following click chemistry, samples were incubated in hydroxylamine (+) or Tris (-) to a final 

concentration of 1M overnight prior to SDS-PAGE. Upper panel: click chemistry signal. Lower panel: anti-GFP immunoblot. Position 

of molecular weight markers is shown. 

 

Figure 4: S-acylation of EGFP-SNAP25B by different zDHHC enzymes. 

HEK293T cells were transfected with EGFP-SNAP25B and pEF-BOS-HA (vector), HA-zDHHC-2, -3, -7, -15 or -17. Cells were then 

incubated with C14:0, C16:0 or C18:0 fatty acid azides or alkynes as indicated for 4h at 37 ºC. Fatty acid azides/alkynes were labelled 

by click chemistry using an alkyne- or azide-800 infrared dye. Isolated proteins were then resolved by SDS-PAGE and transferred to 

nitrocellulose membranes. (a) S-acylation analysis of EGFP-SNAP25B using fatty acid-azides. Representative images are shown in the 

left panel with position of molecular mass standards indicated; graphs showing mean ± SEM shown are in the right panel. zDHHC3: n 

= 46; zDHHC7: n = 26; zDHHC2: n= 10; zDHHC15: n = 9; zDHHC17: n = 22. **p < 0.01; ***p < 0.001. (b) S-acylation analysis of EGFP-

SNAP25B in HEK293T cells labelled with fatty acid-alkynes. Graphs show mean ± SEM (n=10). ns = not significant; **p < 0.01; ***p < 

0.001. 

 

Figure 5: S-acylation of EGFP-SNAP25B by longer-chain saturated and unsaturated fatty acids.  

(a) S-acylation analysis of EGFP-SNAP25B by HA-zDHHC3, HA-zDHHC7 and HA-zDHHC17 in HEK293T cells with C14:0, C16:0, C18:0, 

C20:0 and C22:0 fatty acid-azides. Representative images are shown and position of molecular mass standards indicated. Upper 

panel: click chemistry signal. Middle panel: anti-GFP immunoblot. Lower panel: quantified data. n ≥ 3, mean ± SEM. (b) Competition 

analysis of EGFP-SNAP25b S-acylation by HA-zDHHC3 (upper panel) or HA-zDHHC17 (lower panel) in HEK293T cells labelled with 

C16:0-azide in the presence of 3-fold excess of the indicated unlabelled (u) fatty acids. Position of molecular mass standards is 

shown. Graphs show mean values ± SEM (n ≥ 3). ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001. 

 

Figure 6: Autoacylation of zDHHC enzymes by fatty-acid azides.  

HEK293T cells transfected with HA-tagged zDHHC constructs were incubated with C14:0, C16:0 or C18:0 fatty acid azides for 4h at 37 

ºC. Fatty acid azides were then labelled by click chemistry using an alkyne-800 infrared dye. Isolated proteins were resolved by SDS-

PAGE and transferred to nitrocellulose membranes.  Representative click signals and western blots with position of molecular mass 

standards indicated, together with quantified data (mean ± SEM) are shown for each zDHHC enzyme. (a) Autoacylation of zDHHC 

enzymes active against SNAP25B. zDHHC2: n = 6; zDHHC3: n = 14; zDHHC7: n = 11; zDHHC15: n = 6. (b) Autoacylation of additional 

zDHHC enzymes. n ≥ 6. ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001. The arrowhead on the zDHHC5 blot indicates the 

zDHHC5 band. 

 

Figure 7: S-acylation of EGFP-SNAP25B by zDHHC3/zDHHC7 chimeras. 

HEK293T cells were transfected with EGFP-SNAP25B and pEF-BOS-HA (vector) or the indicated wild-type or mutant zDHHC 

constructs. Cells were then incubated with C14:0, C16:0 or C18:0 fatty acid azides for 4h at 37 ºC. Fatty acid azides were labelled by 

click chemistry using an alkyne-800 infrared dye. Isolated proteins were then resolved by SDS-PAGE and transferred to nitrocellulose 

membranes for analysis. (a) Quantification of the relative levels of C14:0-, C16:0- or C18:0-azide incorporation into EGFP-SNAP25B 
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by zDHHC3 or zDHHC7 (mean ± SEM). n ≥ 26. (b) Schematic illustration detailing the zDHHC3/zDHHC7 chimeras that were 

constructed. (c-e) Analysis of EGFP-SNAP25B S-acylation by zDHHC3 chimeras with fatty acid-azides. Representative images are 

shown on the left, graphs showing mean ± SEM are on the right. (c) n ≥ 4. (d) n = 6. (e) n ≥ 12. ns = not significant, ***p < 0.001. 

 

Figure 8: S-acylation of EGFP-SNAP25B by zDHHC3 TMD3 mutants. 

HEK293T cells were transfected with EGFP-SNAP25B and pEF-BOS-HA (vector) or the indicated wild-type or mutant zDHHC 

constructs. Cells were then incubated with C14:0, C16:0 or C18:0 fatty acid azides for 4h at 37 ºC. Fatty acid azides were labelled by 

click chemistry using an alkyne-800 infrared dye. Isolated proteins were resolved by SDS-PAGE and transferred to nitrocellulose 

membranes. (a) Sequence alignment of amino acids in the third transmembrane domain of zDHHC3 and zDHHC7; the blue boxes 

highlight Isoleucine-182 in zDHHC3 and Serine-185 in zDHHC7. (b) and (c) Analysis of EGFP-SNAP25B S-acylation by zDHHC3 TMD3 

mutants with fatty acid-azides. Representative images are shown on the left, graphs showing mean ± SEM are on the right. (b) n ≥ 6. 

(c) n ≥ 8. ns = not significant, ***p < 0.001. 

 

Figure 9: Incorporation of [3H]palmitic and [3H]stearic acid into EGFP-SNAP25B by zDHHC3 and zDHHC7. 

HEK293T cells were transfected with pEGFPC2 or EGFP-SNAP25B together with pEF-BOS-HA (vector), HA-zDHHC3, HA-zDHHC7, or 

HA-zDHHC3(I182S). Cells were labelled with either [3H]palmitic acid (Left panel) or [3H]stearic acid (Right panel), lysed, and resolved 

by SDS-PAGE. Top panel: [3H] fatty acid incorporation. Upper middle panel: expression levels of EGFP-SNAP25B. Lower middle panel: 

zDHHC protein expression. Molecular weight markers are shown on the left. Lower panel: Quantification of [3H]fatty acid 

incorporation normalised to EGFP-SNAP25B protein levels expressed as mean ± SEM. n = 3, ns = not significant. **p < 0.01; ***p < 

0.001. 
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