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IXTTRODUCTIQN.

Since the time when, in 1921 Ramsauer* discovered
the effect of the cross sections of certain atoms, for
electron impact, decreasing with the energy of the
colliding electrons at low energies, much work, both
experimental and theoretical,has been done on the collisions
of electrons with atoms. Interest in this line received
a further stimulus when some nine years later, diffraction
maxima and minima were discovered in the angular
distribution curves for electrons scattered by atoms.

On the theoretical side, the new wave mechanics
was found necessary to explain all the observed facts.
The agreement obtained with experiment was found to be
good, especially as more and more comi'.licating factors
were allowed for in the theory.

Most of the experimental work on the direct
measui'ement of the cross sections of atoms has been
confined to the case where all types of collisions are
included. An electron may however make elastic or
inelastic impacts with an atom. Practically the only
knowledge so far of the elastic cross sections of gas
atoms has been derived from a numerical integration of
angular scattering curves; while for Inelastic impacts,
both collective and discrete, the majority of results
have been obtained by indirect optical methods. In

addition, most measurements of discrete inelastic cross



section”) '"by electrical methods, have been confined to
electrons scattered through one definite angle, usually
zero angle. Theory has shown, and it has been confirmed
by experiment, that the excitation cross sections for
such angles vary very differently with the energy from
the cross sections obtained when all angles are included.
It is therefore important to study the variations of the
inelastic cross sections with energy for electrons
deflected through large angles.

This thesis is divided into two parts; the first
containing theoretical work and discussions; and the
second the exicrimental work. Section 1 contains a
discussion of the stationary states in an atom and the
ivinetic theory expression for the mean free path of an
electron in a gas, leading up to the formula for the %)asseg
of a beaia of electrons through a gas. In section 2,
the previous methods of obtaining cross sections, both
total and inelastic, are dealt with and the results
discussed. An outline of the wave mechanical theory
of collision processes is given in section 5, with
indications of the agreement obtained with experiment
by different methods. The results of some approximate
theoretical calculations of phases and an angular scatt-
ering curve for krypton are given in section 4. The
results of this section have already been published
by Or,P.L.Arnot and the author.

Section 0, the first of Part II, contains a



description of a new ax”“paratus designed to obtain
measurements of the total , elastic and inelastic cross
sections in gases. The method of using the apparatus

and a number of tests of its working are described in
section 6. The last section, 7, contains the results
obtained with the api:»aratU8 for the total, elastic

and inelastic cross sections of the mercury atoia,

along with the cross sections for bhe ionisation,

S'"P*» S”"Do states. It concludes with an interesting

test of the wording of the a%)paratu3 and a discussion

of the i“ossibie errors of Wiu method.



PART 1. THKORY.

SECTION 1.
DISCUSSION OF COLLISIONS OF ELECTRONS AND ATOMS.

Before proceeding with a discussion of the types of
collisions, something must be said about the structure of
the atom.

What may be temed the accepted classical conception
of an atom was that of a hard, smooth, elastic sphere.
Now however, research has shown that this is by no means
true. Instead the atom is known to have a very openwork
structure of electric charges. Most of the mass of the
atom is concentrated in the nucleus, which carries a net
positive charge equal to the atomic number of the element.
Round the nucleus revolve a number of electrons again equal
in number to the atomic number of the element, so that the
net charge of an atom, in its noz*mal state, is zero. Each
of these electrons revolves round the nucleus in a certain
clearly defined orbit, each orbit having, corresponding to
it, a certain definite amount of enmergy. The orbits, or
levels, or stationary states as they are called, are
quantised, in that there are only certain discrete amounts
of energy allowed ; a continuous variation of energy is not
possible. These electrons round the nucleus are arranged

in shells; for each shell there is a maximum number of



electrons which it can contain®* The electrons with which
we shall be concerned mostly are those in the outemost
shell; these are called the valency electrons, and are
obviously the most loosely bound to the atom*

Consider one of the valency electrons moving In its
normal or ground state round the nucleus. If a certain
amount of energy is given to this electron it might be
possible for it to move up into another orbit of higher
energy. This is however only possible if the amount of
energy given to the electron is a certain discrete value,
equal to the difference in energy between the two levels,
since there is not an infinity of levels corresponding to
all levels but only quantised, distinct orbits. The energy
given to the electron may come in various ways, either
thermally or by impact with another atom or electron, or
by impact of a quantum of light of the correct frequency.
When an electron in an atom has been raised in any manner
to a level above its normal state the atom is said to be
in an excited state* The electron in the higher orbit in
general falls back to a lower orbit in a very short time,
usually of the order of 10 sec. The difference in
energy between the two orbits has then to be given up, and
it usually appears as radiation of a frequency given by
Bohr *s second postulate Wi - W A h% ~

where Who- Wg is the difference of energy and h is Planck’s



constant* Again, it is possible to raise the electron
from its normal state to higher and hifjber levels till
finally. It may be lifted ri*ht out of the atom altogether.
The minimum amount of energy necessary to do this is again
found to be a constant. When the electron, which Is
negatively charged, has been removed from the atom, the
atom Is left positively charged and is then called a
positive lIon. The process of removing an electron from
an atom is called ionisation of the atom and the atom is
said to be Ionised,
This discussion is summarised very well by Darrow
(1) in the statement that: ”An atom or a molecule Is
capable of existing in any one of various distinct, discrete
and definite stationary states or levels, for each of which
its internal energy has a specific and distinctive value."
The first level above the normal or ground state
which combines with the normal state, is usually called
the resonance level, and the quantum or photon emitted by
the atom on returning from this level to the normal state
is called the resonance radiation. Occasionally all the
excited states are spoken of as resonance levels, but
usually this term only refers to the state of lowest energy
above the ground state, which combines with it. This latter
phrase is added because there are certain states, called

metastable states, which can be excited by normal means



but from which the atom cannot return by emission of a
quantum of radiation. The only way in which an atom can
leave a metastable state is by giving up its energy to
another atom or electron in a collision, or by being
excited by a further impact with an electron to a still
higher state not metastable from which it can then return
by emitting a photon. AIll atoms except hydrogen and
helium have several ionisation levels as well as excitation
levels. These various ionisation levels correspond to
the removal of an electron from the different shells of
the atom.

It has been said that an atom can be excited or
ionised in a number of ways, one of which was by impact
with an electron. This is the method which concerns us
chiefly here. It has also been said that to excite an
atom to a specific level requires a definite and specific
amount of energy. Now an electron moving with a certain
velocity has a definite kinetic energy. On colliding with
an atom it may give up some of its energy to the atom and s
raise an electron in the atom frok one orbit to a higher on
or even right out of the atom, so ionising it. The electro
then goes on with decreased energy and possibly a change
in direction also. Such a type of collision, where a
transfer of energy takes place between the electron and

the internal structure of the atom is called an inelastic



collision, The other type of collision Is also possible,
in which the only transfer of energy between the electron
and atom Is that necessary for tixe conser'vatlon of energy
and momentum. Such a collision is called an elastic coll:
fislon. It should be ncticed that a collision in which
the incident electron is exchanged with an electron in
the atom without any change of internal energy, is still
an elastic collision.

In an elastic collision between an electron and an
atom it is quite easily seen that the electron lo<"ses very
little energy on account of the very small mass of the elect:
:ron In comparison with that of the atom. For suppose that
an electron of mass moving with a velocity *v', strikes
an atom of mass assumed at rest, and that after the
collision the electron and atom have velocities v’ and V
respectively, and their directions make angles * and 0

with the original path of the electron thus :~

Then, resolving momenta and taking the Kinetic Energy
equation, we have -«

mv = mv* cosf MW cos * (1).

0 = ravvy sin 9~— MV sin B



Froa (1) we get -
which with (2) gives
AVA-VAUN(9 = (5),

(3) can be written as

Thus v/e liave, sub”tracting (5) and (6) and cancelling

N &V

M= % % A (*7),
Thus _1-AWAM L Go'"d fe..
wilich is ANELm A / Q \
where is the kinetic energy of the atom, which is the

loss in kinetic energy of the electron and E@ is the origins
kinetic energy of the electron¢ Now in the case of hydrogen
the lighest atom, mM=1:1835, so that equation (9) can be
written as, taking the average value of cos"<9 as §,
EHyn EOe« 2m/M (10).

Again using the above ratio of mM it is seen that the
energy lost by the electron is only 1/918 of its initial
energy inthe case of an impactwith ahydrogen atom, and
in the case of any other atom thefraction will be much
less.

For the case when the atom of mass Mis moving, and

m is much smaller than M, and the speed of the impacting



particle 1? fairly large, K*T. Compton (2) hap shown that
the fraction f of the average energy of the electron lost
at a collision Is given by
f ~ 2mAi* (1 - Ey/3o0) (11).

where KM and are the average energies of the atom and
electron respectively. A further addition to this theory
was made by Cravath (3) who extended the argument to the
general case of particles with Maxwellian distributions
of velocities, no stipulation being made as to the relative
magnitudes of the masses. His result Is

t= 8/5-mM/(m+M)2-(1 - Th/T.). (12).
T™ and Te are the absolute temperatures denoting the
energies of the atoms and electrons respectively, while
f is defined as above.

Both these expressions reduce to much the same thing
for m"M and E”~. It is therefore quite obvious that
the result is unaltered, that the loss of energy by an
electron in an elastic collision with an atom Is very
sm all.

In discussing the stationary states of an atom It
was said that to each state there corresponded a definite
energy. In measuring or referring to this energy. In
general, no absolute value can be fixed ; al|% that can be
done Is to refer the energy of the levels to the energy

of one taken as standard. Usually the energies are referred



a.

to the normal state as zero; so that the energy which
is used, is the difference between the energy of the
state under consideration and the energy of the normal
state. Sometimes the energies are referred to the
energy of the state of iomnisation as zero, since this Iis
the way in which the energies result from spectroscopic
data. In this method the lower states come out with a
negative energy, so that the former method will be used
here, in which they are positive.

Since an electron has a negative charge, energy can
be imparted to it by letting it fall through an electro :
:static field. If the electron starts from rest and
falls through a difference of potential V, then the Kkinetic
energy it will have acquired will be eV where e is the
charge on the electron. However, if the mass of the
electron is m and its velocity after falling through the
field is v, then its kinetic energy is also imv*.

Thus Jmv = eV Vin electrostatic units
= eV/500, V in volts. (13).

From this equation it is easily seen that the energy
of an electron can be expressed as the number of volts
through which the electron would have had to fall from
rest to have obtained the given energy. Thus the volt
can be used as a unit of energy, the unit being called

the electron volt. This unit is very commonly used in



all work dealing with electrons and stationary states.
The unit is equal to the enerfry acquired by an electron
in falling from rest through a potential of one volt,
U.-'ing the value of e given by Blrge (4) i,e,
e = 4.770 X 10*~ E,S*IJ. we see that one electron volt
is equal to 1,590 x 10~""ergs.

Again from equation (13) it is seen that the velocity

of an electron having anenergy of V equivalent electron

1 .
volts 1s V = A /so) cms. per sec.

5,946 % 10" x erne, per sec. (14).
Thus the velocity of an electron in cms, per sec, 1is
proportional to the square root of the potential through
wliich the electron has fallen from rest. Therefore, in
presenting results in which tho electronic velocityis
one of the variables, itlIs usual to use the square root
of the potential through which the electron has fallen,
for this variable, instead of the actual velocity of the
electron in cias. per sec,

Returning to the discussion of the excitation of
stationary/ states by electron impact, we know that the
electrons must have a definite energy before they can
excite a certain level, and now we have shown that we can
express this ener.gy as so many volts. Thus, as we increase

the energy of the impacting electrons from zero, only
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elastic Impacts rill occur till the energy of the
electiXins Is sufficient to excite the resonance level.
The potential, througn wiiich the electrons must have
fallen from rest to have just sufficient energy to excite
this level is called the resonance potential. Similarly,
for the other stationary states, we have excitation
potentials and ionisation potentials. Resonance, exclt:
:ation and ionisation potentials are all included in the
term critical potentials.

however, it is not necessary for the impacting
electron to have an enercy just equal to the energy of
the state into which it is going to excite the atom; any
energy greater than the excitation is allowed; the excess
is than carried av/ay by the colliding électron as Kinetic
energy, When ionisation takes place, the excess energy
may be shared between the impacting electron and the
ejected electron.

Since the energy of the electron which can excite
a certain state can be expressed as so many electron volts,
so it Is often convenient to denote the energy of a state
by the critical potential corresponding to it. Thus it is
usual to speak of the resonance level in the mercury atom,
as the 4.80 volt level, or state. In addition, since the
life of an excited atom is very short and it returns to

a lower state by the emission of the excitation energy as
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a quantum of radiation of froquency V given by 3o0ohx*"s
relation, 16 is possible to determine the critical
potentials accurately from spectroscopic data, since

Bi - E2 = hv . (15).
and V can be detorwined with great accuracy spectre:
iscopically. Therefore, since tho difference of enerc”
is eV/500 whore V la the excitation potential In volts,

V= (300/0)*hV. (16).
from which V can bo found, Imo”vlng V
Thus each level can bo denoted either by its critical
potential referred to the normal state as zero, or by the
frequency of the line emitted by the atom in falling from
the excited state to the normal state.

Finally, mention should be made of the notation used

by spectroccopists to denote the various levels. They
use a symbol such as wlilch is derived from a
knowledge of tho quantum states of the atom. In this

symbol, S denotes the aximutlml quantum number of the
state, the subscript denotes the inner quantum number, the
superscript denotes the multiplicity of the level and the
spin quantuiTi number, and the n depends on the total quantum
number.

A diagrammatic representation of tho lower stationary
states of the mercury atom is given in Pig. I,

On the left of the figure the numbers are the energies
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13.

of the different levels In equivalent volts. On the right
are the spectroscopic symbols for the transition. The
numbers on the arrows are the wavelengths of the lines
emitted by the atom in passing spontaneously from the.
higher state to the lower. The two levels from which

the dotted lines are drawn are metastable states.
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CROSS SECTIONS Aim PATHS.

-rom the standpoint of the Kinetic Theory the ideas
of a mean free path and an atomic radius are well known
facts. The mean free path of any particle moving amongst
other particles is defined as the average distance moved
between collisions. It is here necessary to define a
collision more precisely. For the case of smooth elastic
spheres, that is the ideal ;"as, where only purely mechanics]
effects are considered, a collision takes place when two
particles approach each other within a distance equal to
the sum of their radii. This is the definition from the
standpoint of the Kinetic Theory. However, an atom is
known not to be a smooth, elastic sphere. In fact it more
probably has an open-work structure consisting of a nucleus
surrounded by electrons revolving in orbits round it.
Therefore a more rigid definition of a collision is
necessary, th usif the relative distance between two
particles is at first decreased and then increased a coll:
jision is said to have occurred if any physical change can
be detected during the process. This definition is seen
to include all physical effects, electrical, magnetic or
mechanical and so on. It thus includes such cases as where
an electron is deflected by the field of an atom, even

although the electron may not have approached sufficiently
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close as to come Into contact with the atom.
Returning to a consideration of Kinetic Theory
results, some useful information can be obtained about
the motion of electrons in gases.
The mean free path of particles of a type 1,
moving among particles of a type 2, has been shown by

the Kinetic Theory (5) to be given by

TF <2
(17)
where r* and r”* are the respective radii of the
hypothetical smooth elastic spheres, and n” is the number
of particles of type 2 per unit volume. and G are
the respective root mean square velocities. If the atoms

are all of one type this fomula reduces to:-

1
[Z sl A
(18)

where d is the diameter of the atom.

For the case of electrons moving in a gas it is
legitimate to neglect the radius r* of the electron in
comparison with the radius of the atom, since the
classical radius of the electron is of the order of
10« cms,, while the average atomic radius is of the
order of 10*® cms. Again the root mean square velocity

02 of a gas atom at room temperatures expressed in
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equivalent volts is of the order of 1/30 volt, while

the velocities of electrons used in experiments is seldom
. lo)

less than one volt, so that (Cg/C")"" can also be neglected*

Therefore for the mean free path of an electron In a gas

we obtain;

77"

(19)

Thus the Flnotlc Theory mean free path of an electron is
4J2 times the mean free path of the atom amongst which
it is moving. This argument assumes that the gas kinetic
diameter of the atom or molecule and hhe diameter for
electron impact are equal*®

?/hile the valu© of the electron mean free path obtains
from Kinetic Theory considerations cannot be rigidly
accurate, since the assumption of a smooth, spherical,
elastic sphere is not correct, yet It is Justifiable to
take this value of ths mean free path as somewhere near
the truth.

Continuing with the haid. spherical atom of diameter

2 will represent its cross sectional area A, and thus
a, Ilg
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y ( d*) n=nA. (20).
Ai = (-T-)

Here nA is seen to be ttie product of the cross sectional
area of a single atom and the number of atoms in a unit
volume, that is nA is the total effective cross section
of all the atoms in unit volume, That is, the reciprocal
of the mean free path represents the total effective
cross section,
From the most reliable values of Avogadro”s number
N, and the volume of the granroe molecule, as given by
Birge, and the value of the gas kinetic cross section
of mercury vapour atoms, obtained by viscosity measure:
rraents In the gas, and given in lisndolt-Bomstein, it
is possible to find a numerical value for the Kinetic
Theory mean free path "Isc of electrons in mercury vapour,
Birge gives 6*064 x 10" mole"** at O"C and

760 nsn. pressure and the volume V of the gram molecule
as 22*414 X 10" cc/mcle at 0°C and 760 mm, pressure.
Thus the value of n, the nizmber of molecules in one
cubic centimetre at one mr:; pressure is given by

n™ vTRo"

_6.064 X

- 28TIT4irT53 X 700

= 3.562 X

The value given for the gas kinetic cross section A
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of mercury vapour Is 10%2 x 10

Tlius the value of the electronic mean free path is

J. 54" Xlo"N X/

- 0'0 3 ycTg om# at 0”0 and one mm, pressure,
of mercury.
At room temperatures the vapour pressure of mercury
Is approximately 10 mn# of mercury; so that the value

of at room temperatures becomes

Nr — Ay s Cs,
/0"3

This value Is very important slTice later on, in the
oxperlmental work it is applied to indicate v/Juat dimensions
of apparatus and wiiat gas pressure %ay he used sc that
the mean free path of the eleotroms in the gas in the
apparatus, may be such that the probability of an electron
making mci-e than one collision in the apparatus shall
remain quite small.

The gas kinetic cross sections for argon and helium

are given by the same source as G40 x 10“16cms,P and

2*BZ X A respectively, Pro'i- these figures
the electron mean free patlisfor thee gases calcul:
rated to be 43,46 cms. an® 99 19 respectively for

-3
a pressure of 10 mm. of mercury.

Thus it is seen that for mercury the electronic mean
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mean free path Is much smaller than for the rare gas
argon and helium, so that, for these latter gases,
a much higher pressure than for mercury could be used

without the probability of multiple collisions becoming

appreciable.
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PASSAGE OF AN ELECTRON BEAM THROUGH A GAS.

We w ill now proceed to consider the case of what
happens to electrons moving In a gas. Suppose that we
have a parallel beam of electrons of uniform velocity
passing through a gas at a pressure of p mm, of mercury,
where p is so low that in the region under consideration
the probability that any one electron will make more than
one collision la very small. Thus If an electron makes
a collision and leaves the beam it is highly improbable
that it will return to the beam, before the beam leaves
the scattering region.

Considering a length dx of the beam, we see that
the beam w ill loose intensity In this length dx due to
collisions, the amount of this loss being -dl, This loss
w ill obviously be proportional to the pressure p and to
dx and to I the Intensity, and to no other variable;
so that , Including a constant of it Is possible to write

-d1= o pidx (21).

However the loss In intensity should obviously
depend on the total effective cross section of the gas
atoms through which the gas atoms are passing. Thus,
by suitable arrangement, ci is defined as the total effect:
five cross section for interception of electrons by the

gas atoms, or the absorption coefficient.
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Integrating the above eqimtion, we obtain:

logwl- -dpx constant (22).
If It is now assumed that at the point where the beam
enters the gas I=1Q and x * 0, then we obtain the
result that:

I = (23)
which gives the intensity I of a beam of electrons
after passing u distance x through 't gas at a pressure p.

To justify the definition of oL as the total effect:
live cross section, it is necessary to show the relation
between o and the mean free path”

From the equation I = by multiplying each
side of it by ¢ the charge in the electron we see that
I is the number of electron paths that have extended from
X -0 to X—X uninterrupted. The number of these paths
which stop between x and x #dx is -dl which from above

is
-dl = po(Idx = dx. (24).

Multiplying this equation by x gives the suili of the
lengths of all these paths. If this equation is now
integrated from x% 0 to x= oo, the total length of all
the paths of all electrons entering the gas at x=0 is
obtained. Dividing this by 1 will then give the mean

free path of an electron, \,In the gas. Thus:-



2P.

A xha(JgJd2.
A g -%
= “ci
By Integrating
n 7 by parts.
= -L 25).
el (25)

Comparing tills with 7“=1/nA and knov/ing that p is
proportional to n, we see that the definition of d as
the total effective crocs section is Justified.

' dimencions of ¢" are Uiat is LAL*Y, 1*e.
cm.?/cr.i,”, which is the total area 6f all the molJ.ecules
in one oublc centimetre. Usually * is reduced to its
value at 0®C. and a pressure of one mm. of mei'cury.

&€ here is the total effective cross section but
it is possible to find the cross section for other types
of collisions, "“or eramnle, we may measure the cross
section for elastic or inelastic impacts.
In particular the cross sections may be found for ionls :
satlon or excitation to certain levels.

Again, the reciprocal of the moan free path is the
nijmber of collision made per unit path length, and it
is therefore a measure of the probability of a collision
However the absorption coefficient (k is the reciprocal

of the mean free path apart from a constant, so that
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the absorption coefficient is also a measure of the
probability of a collision. The probability of a coll:
cision is defined by Brode (6) to be the number of
collisions made, per unit electron current, per unit
path length, per unit pressure at O”C*, which is seen
to be exactly wimt (X in equation (21) represents.

Thus in experimental work the curves for total
effective cross sections really represent the probability
of a collision apart possibly from some constant numerical
factor. In order to find the probability that a collision
shall be of a certain type, it is only necessary to
divide the cross section for that type of collision, as
determined experimentally, by the total cross section
for all types of collisions.

Although an atom cannot have a sharp outer boundary
and so that cross section cannot be ascribed to any
particular part of the atom, yet it is often convenient
to speak of the effective cross section of an atom for
collision. For a single atom this cross section *q* is
giveJi by q - "/n cm.” where, as before, n is the number of

atoms in unit volume at unit pressure (one mm of mercury)

at 0*C.
. . A P
This gives q 08807 x 10 X .cm.
The radius r of a circle of this area is then given by,

r =0%2989 x 10"® x *. cm. (26).
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For values of oi between 1 and 100, this value of r
Is seen to be in general agi'eement with values of r
as found from kinetic theory measurements,

Methods of presenting the results for the probabj
sillty of collision are somewhat various. Some authors
use the effective cross section, ¢, of a single atom;
others use q, divided by the gas Kkinetic cross section
A, for the gas used In the experiment, or by some other
arbitrary standard area. Others still, use the total
effective cross section d , I.e. q x n. The first and
the last of the above methods will be the ones used here.
The cross section, q, of a single atom will be expressed
In atomic units, that Is In units of , where
Is the radius of the first Bohr orbit In the hydrogen atom
In dealing with the probabilities of specific types of col
:Islons, the results are often expressed as a ratio to
the probability of all collisions oi * That Is they thus
represent directly the area of the atom that must be hit
In order that a collision of the desired type shall be
a certainty.

Returning to equation (7) we see that It can be
written as

IoSol/Iq”* -o”xp
or as log I = log 1IQ -cApx. (27).

Here 1 Is a constant and x can be kept constant, so
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tli&t If p is varied, and the various values of
logl/1Q or log I so obtained are plotted against the
values of p, then the graph obtained should be a straight
line, and its slope should give the value of oC
Similarly p can be kept constant and x varied by
suitable means; the slope of the resulting straight line
again giving the value of oL » Both the methods have
been used experimentally by various workers to find
values of X . The advantage of this method is that
equation (23) can be written as

I = k lo e-°PY (28)
where k is the fraction of the original beam that would
reach the collector if there were no gas present in the
apparatus.. That is, the equation gives the practical
state of affairs in the apparatus moi’e accurately, since
it allows for the spreading of the beam and any other
such losses from it, otherwise than by impacts with
gas atoms. On taking logs. as before, this becomes

log 1= log ktlogi¢c * (jtpx. (29).
Log I1Q and log k are both constants so that variation
of Xor p will still give a straight line but the
slope of it will represent more accurately than
previously. This latter method has been used by many
workers on this subject, and it is the intention of the

author to use the principle of it in dealing with
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gases”™ Buch'as helium, for which the pressure can be
varied easily. The method will be to take two sets of
observations for pressures p and p', then from equation

(29) it is easily seen that;

Here it is at once seen tlmt k has disappeared and

with it all background scattering. c¢L then represents
the total cross section for impacts with the gas atoms
only. In the experimental part of the thesis it will
be explained why it was not possible to use this method

in dealing with mercury vapour*
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SECTION 2.

TOTAL EFFECTIVE CROSS SECTION MiASIIREMSNTS.

In the previous section an equation was derived for
the passage of a beam of electrons through a gas. In this
equation there was a certain constant C , variously
described as the total effective cross section, or the
absorption coefficient or the probability of collision.
From Kinetic Theory considerations a numerical value was
found for this constant. However, whenever attempts were
made to find values for this constant experimentally for
different gases, it was found that (X was not a constant
but that it varied with the velocity of the impacting
electrons in the beam. The ways in which o varied for
different gases and for different velocities were often
very different. Much work has been done in determining
this variation of of with velocity and gas, especially in
the last ten years.

The earliest attempts to determine a value of were
made by Lenard in 1895 (7) and in 1903 (8). At first he
used cathode rays of high energy, about 30 kilovolts. Later
he used an apparatus in which the electrons were derived
photoelectrically from a zinc plate 2 by shining ultra

violet light on it. By means of a potential applied between
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the plate and a grid iTnmedlatély in front of it, the
electron» were accelerated to the desired speed. The
bea?n so obtained then passed throug-h a field free space
and Into a collecting chamber S at the end. By measuring
the current to this chamber and the total current leaving
the plate, Lenard was able to find a value for o . His
apparatus, which has since been used In modified forms by
many workers, is shown in fig, (2) liis measurements were
for energies extending from 4 to 30,000 electron volts.
The conclusions he reached from his results were that at
high velocities, the cross section wc¢s only a few per cent
of the kinetic theory value; as the energy of the electrons
in the beam was decreased, Lenard found that the cross
Section increased steadily at first and then more slowly
at low voltages, where also its value was of the same
order as the kinetic theory value. IIc concluded that the
cross section was approaching this value as a limit. Also,
at high voltages, the cross section was found to be proport:
tional to the atomic number of a nonatomlc gas and to the
sum of the atomic numbers of the atoms of a polyatomic
gas. In addition, at the same voltages, the cross section
of a polyatomic molecule was found to be the sum of the
cross sections of its constituent atoms,

Becker (9) and Silbermann in 1905 extended these

researches and especially verified the fact that for
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fast electrons the cross section of polyatomic molecules
is the sum of the cross sections of its atoms. They used
a large number of organic compounds, some of whose
molecules contained as many as twenty atoms and found
that the relation held accurately.

None of these workers made accurate measurements
at low voltages so that they were unable to disprove
Lenard*s assumption that the cross section tended to the
kinetic theory value as a limit at these voltages.

The earliest detailed work at low voltages was done
by Kkesson with the same type of apparatus as Lenard used.
His results, although presented in a different way,
showed that the cross section did not Increase to a constant
value as the energy of the electrons was decreased, but
that for most atoms which he studied, maxima and minima
appeared. He called this effect In his curves a selective
absorption. Although he did not actually plot cross section
curves he was able to make the statement that in a number
of cases - ”the slower electrons were more penetrating
than the faster." Akesson*s work has since been verified
by a number of other workers, using the same and other
methodse

In this Lenard type of apparatus, as used by Mayer,

Jones and others, only those electrons are lost from the
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beam and ao contribute to the cross section, which have
suffered an appreciable change in direction, say a
deflection greater than 6°. Any electrons which make a
collision and loose energy, but do not have their direct:
tiens much altered, still pass on and are collected, and
so do not contribute to the probability of a collision.
Thus the probability as measured by this type of apparatus
may not necessarily be the correct one.

In 1921, Hamsauer (10) working in Lenard*s laboratory
designed an apparatus which should give the cross section
more accurately. His apparatus and a modification of it
as used by Brode, are shown in Pig. (3). In the original
apparatus, electrons were deribed from a zinc plate * by
means of ultra violet light as in Lenard*s apparatus. The
desired velocity was then given to the beam by accelerating
it up to the first slit 1. Then, by means of a magnetic
field, normal to the plane of the paper, the beam was bent
into a circular path, and passed through the slits 2 to
8. The magnetic field Hnecessary to bend a beam of
electrons of velocity v into a circle of radius r is given

by H= SZS. where ¢ and m are the charge and mass of the
re

electron respectively and c¢ is the velocity of light.
The currents collected by the chambers labelled V
and H are measured by galvanometers or electrometers, and

from these the probability of collision can be calculated.
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since the total current leaving slit 5 is given by

V-+H, and the current leaving at slit 7 after passing
through a distance x, is R. It will be seen that only
those electrons can reach H which have suffered no coll:
fision in any form. For if at a collision, the electron
changes its direction it is immediately lost from the beam,
or if it changes energy without change of direction, it

w ill be at once removed from the beam by the magnetic
field, or if it attaches itself to an atom or molecule,
the resulting ion will have a much larger mass than the
electron and so will be removed from the beam. Again if
the electron ionises the atom and so ejects an electron,
the velocities of both electrons will be too small for
them to remain in the beam, since the net energy available
to them will be the original energy of the electron less
the energy of ionisation. Also the velocity distribution
of the electrons in the beam due to their varying initial
velocity on leaving the plate, will be much narrower,
since all electrons with velocities larger or smaller than
a certain mean will be deflected out of the beam by the
magnetic field and will be unable to enter the scattering
region. On account of the gas pressure being so low that
the mean free path of the electrons is large compared
with the dimensions of the apparatus, no electron which

has once left the beam can return to it, since this would
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require at least two collisions, which we have arranged
to be very improbable.

In the modified form of the apparatus as used by
Brode (11), the electrons are derived thennionioally from
a filament, and are accelerated to the desired velocity by
a potential between the filament and a coaxial cylinder.
The chamber V is dispensed with, the currents entering B
and leaving SQ being the only ones measured. The current
IQ at the start of the path, is assumed proportional to
the latter current 0, so that lo- kO. I is the current
recorded by B. The equation (28) of section (1) is then
used to calculate the probability of collision.

An important advantage of this type of apparatus is
that the velocity of the electrons in the beam can be
deteiroined accurately knowing the magnetic field necessary
to bring them into the required circular path. If their
velocity is taken as the accelerating potential applied
between their source and the first slit, as is done in the
case of experiments wi%h H)g Lenard apparatus, there may
be quite large errors present due to contact potentials
and the potential drop along the filament due to the fila ;
:ment heating batteries.

A number of workers, among whom were Jones (12),
Mayer (13) and Maxwell (14) have used a modified Lenard

type of apparatus. The electrons are generally derived
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from a fllament and tJie beam Is defined by a succession
of slits all In a straight line. Two chambers are provided,
one for collecting the electrons wliich leave the beam in
the length x, and the other for collecting all those
electrons which have passed straight through the first
chamber without making a collision. It will be seen that
this type of apparatus takes no account of electrons which
have suffered loss of energy only. It might therefore be
expected that the two types of apparatus would give very
different results for the probability of collision; the
Lenard type giving the smaller probability since in it,
fewer scattered electrons are collected. However, Jones
(12) used both methods in an investigation of the cross
section of mercury vapour. His results show that the
difference in cross section as obtained by the two methods
is fairly small, and that the Ramsauer method gives the
smaller value, a rather surprising result. Comparing,
however, the results obtained by Jones by the Lenard method
with tiiose obtained by Brode (11) by the Ramsauer method,
the author finds that the agreement between the curves
is almost perfect, so that it may be assumed that results
obtained by either method will represent accurately the
probability of collision.

Using his apparatus, Ramsauer (10) made a number of

measurements for hydrogen, nitrogen, helium and argon at
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low velocities, below one volt, and fotind for argon a
mlnimnm value at about 0#75 volt. This work was extended
and verified by Mayer using the Lenard type of apparatus,
who found a maximum at about 12 volts, The result was
also verified by Townsend and Bailey (15) by an entirely
different method. Later Ramsauer (16) further extended
his observations to the rare gases, and found that, in the
case of argon, krypton and xenon, the probability showed
a maximum at from 7 to 12 volts. This effect of slower
electrons being more penetrating than faster ones is known
as the Ramsauer effect. It will be noticed that gkesson
had, in point of fact, actually observed this effect some
years before, although his results were so presented as
not to demonstrate the fact clearly. Brode (6), in discussing
Lenard*s results, points out that the probability curve
which he gives for argon shows a maximum at low voltages,
although Lenard himself drew his argon curve parallel to
his other curves so that it did not show the effect.

More recent work by Ramsauer and hoHath (17), which
has been confirmed by Erode, and Normand (18), indicates
that at still lov/er velocities the cross section rises again.

The curves for argon, kryptonxenon and neon are shown in

Fig, (4). At the maxima the values of the cross sections
are much larger than the kinetic theory values, while at

the minima they are much smaller. There is no indication
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that the cross section approaches the kinetic theory value
as a limit, which was Lenard*s original assumption.
Following on the discovery of the Hamsauer effect
by Ramsauer and his co-workers, numerous other invest:
ilgators have studied the effect in different gases and
vapours, using both the methods outlined above. In
addition to the rare gases, several other gases have been
found to show the effect; the maxima in polyatomic gases
usually appear at lower energies than for the rare gases.
A notable polyatomic gas which shows the effect is methane,
CH”. The cross section-velocity curve as obtained by
Brilche (19) for methane is very similar to the curve for
xenon. The explanation semns to be that the four hydrogen
atoms in the methane molecule may form a closed shell with
the four valency electrons of the carbon atom, which shell
is then similar to the outer shell of the rare gases.
Brode has further extended the subject to the study
of the monatomic metal vapours; among them the cadmium,
mercury and zinc group (20) has received special attention.
In each of the curves obtained for these metals, there
is a slight hump but no pronounced maximum as in the case
of the rare gases. Erode*s curves for these vapours are
shown in figure (5). The group of alkali metal vapours,

sodium, potassium, rubidium and caesium has also been
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has also been studied by hin0_). All these four curves
show a sharp maximum at about 1 to 2 volts energy.
The noteworthy feature of the cross sections of the
elements of this group Is their very large magnitude,
especially at low voltages; the value being between
1000 and 2000 cmi/cra at about 2 volts energy, as compared
with 300 In the case of mercury, and 10 In the case of
argon. The cross section ¢< given here Is the cross
section of all the molecules In one cubic centimetre
at one ran, pressure and O*C. Taking the number of the
molecules in this volume at this temperature and pressure
as 3*S X 10**"® and c<as 1050, the cross section q of a
single molecule can be calculated to bo 3 x 10"*"* cms?
and thus r the radius of the atom is approximately 10"7
cms. or 10 Angstroms, which Is a surprisingly large figure.
From a comparison of the different curves for the
various atoms, it is at once apparent that there is a
distinct similarity In form between the curves for elements
which are In the same group of the periodic table, for
electrons of average and low velocities. The curves for
the rare gases are similar to each other as are the curves
for the alkali metals, and so on; but the curves for the
rare gases are in no way similar to the curves for the

alkali metal vapours. Since the members of a group have
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sliailai'- electronic sti'uctiires. It seenie likely that there
la a relation betv/een electronic stmcture and probability
of (O lieion. This postulate is further atrenpthened by
tiie fact that tho cur“ve for methane is similar to that

for the rare gases, since its structure can be considered
as similar to that of the rare gases as explained above.
The similarity is also found in the case of nitrogen, Hg,
and carbon monoxide, CO, which can be considered as having
similar electronic sti'uctures. The nitrogen molecule has
fourteen external electrons, while the carbon monoxide
molecule also has fourteen, six from the carbon atom and
eight frozn the oxygen atom. Their cross section curves

as determined by Normand (18) are aliRost identical. Briiche
(22) has studied a large number of molecules with similar
electronic structures and has found good agreement in the
curves for such molecules.

The results of the above paragraph lead to the
suggestion that the cross section for low velocity electrons
is determined, for the most part, by the potential field
of the external aloctrons of the atom or molecule. For
molecules with similar outer shells of electrons, the cross
section will be similar even although tho nuclei may be
very different.

At relatively large energies, above 100 volts, all the



41.

curves for the monatomic gases and vapours are decreasing
uniformly. If a comparison Is made of the values of the
cross sections at a given velocity, they are found to be
approximately inversely proportional to the lIonisation
potentials of the different elements. It Is also known
that the ionisation potentials are, approximately,
periodic functions of the atomic numbers of the elements
so that the cross sections at high velocities are also
periodic fimctlons of the atomic numbers of the elements.

For the very fast electrons recent experiments have
proved Lenard*s original conclusion, that the cross
section is mainly determined by collisions with the nucleus
at these velocities.

The causes and explanations of the Ramsauer effect
w ill be discussed fully in a later section.

In addition to the direct experimental methods of
obtaining the probability of collision, as described above,
there is another less direct method, Numerous workers
such as Amot, Bullard, and Massey, Tate and Palmer, Dymond
and others, have made investigations of the distribution

In direction, or angular scattering of electrons at coll:

fislons with atoms, using ar apparatus consisting of an
electron gun and a collecting chamber; the gun can be
rotated about an axis through the electron beam and perpen:

rdlcular to It. If the eti“rent recorded by the collector.
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when Uie an le hetwoen its direction of collection end
the direction Ox the, electron bean la * , is 1(0) per
unit solid an,"“le, per unit electron current, per unit
path length, per unit pressure at O"C., which can be

divided into the Intensities scattered elestically and
inelastlcally, and. li respectively, then the cross
section or probability of collision is given by the

integral over a complete sphere of the scattered intensity,

1.0 . T
d - X
A (M.

The letter integral does not extend right to zero as
the lower limit but only to a small angle a , since if
it were extended to zero it would include the part of
the beam which had made no collisions. In practice and from
the quantum theory, it is found that I@sin G tends to zero
with 9 so that the integral can be extrapolated to zero
as a lower limit without bringing in the original beam.
Numerical integration of an angular scattering curve for a
given velocity, will then g”e the cross section for that
particular velocity.

'The scattered intensity I /&) is easily seen to have
the dimensions of an area per unit wolwne, so that it is
also a measure of a cross section. Thus it is defined as

the differential cross section.
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This method he.8 been employed by a nimber of workers
to find values for the total cross section and also for
the cross section for specific types of collisions, in
particular for elastic collisions, since the cross section
for elastic collisions will be given by

0O(e= \ Tg' A 6

4 (8),
Results obtained by this method are in general not very
reliable, and also little comparison with results by
K¢finsauer*8 method is possible since absolute values of the
cross section can be rarely obtained from an angular
scattering cur've. The reason why the results are not
reliable is that In practice it is reldom possible to obtain
values of 1(0) over the whole angular range 0 to 1800#
Thus it is necessary t& extrapolate the experimental
curves for I(69)sin6) to the limits at both ends. This
however may introduce consldereble errors, since, in
nearly all experimental cui®as, diffraction effects are
present, so that jaaxiria and minima may occur between the
last experimental point and either end point. A uniform
extrar)olation might thus be mucli In error. Results have
been obtained however, by this method which do show a
qualitative agreement with results by the direct methods.

So far the direct methods liave given values for the

total effective cross sections, tliat is for all types of
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collisions at once, elastic and Inelastic. The only
results for the elastic collisions alone have been obtained
by the above method of Integration of angular scattering
curves. For the probability of collision for certain
specific types of inelastic Impacts, namely excitation to
a specified level or Ionisation, curves have been obtained
by indirect optical motliods or by aimlysln of the positive
ions produced in the labter case. For excitation, a very
few curves have been obtained by direct electrical methods.
A discussion of the previous work on the cross sections

for excitation and ionisation nou xollows.
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PROSACILITIKS OF EiCGITATIOK I0TfISATION.

In a study of tiie cross sections for excitation
and Ionisation by electron iitipact, there are two possible
methods of approach. The first is to study what happens
to the atoms at the collision, and the second is to
study what happens to the electrons. For both excitation
and ionisation it has been seen that enerfrj is necessary
for the process, which Is obtained from the kinetic ener”
of the colliding electrons. After the collision, the
electron moves off with its energy decreased by a definite
amount if excitation has occurred, or by any amount greater
than a certain minimum if ionisation has occurred. In
the latter case, the impacting electron ionises the atom
so using up a definite amount of energy, and in the
ps*ocess knocks an electron out of the atom. To this
ejected electron it may give any fraction of Its own
remaining energy. Thus in the case of ionisation, the
impinging electron may loose any amount of energy greater
than a certain minimum.

From the above discussion it is seen that a study
of the number of electrons which have lost certain
definite amounts of enmergy in collisions, will lead to
a knowledge of the probability of excitation to a certain

level, or of ionisation.
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An Investigation of what happens to the atoms after
a collision may also lead to a value of the probability
of excitation or ionisation, not necessarily the same as
from tile previous method however. The reasons for this
w ill be discussed later.

Villen ionisation takes place, the atom looses one
or more electrons and so becomes a positive ion. By suitable
application of a potential it can be drawn to a collector
and 80 the number of positive ions can be recorded. Most
writers define this number of positive ions foimied in the
gas per unit path length, per unit electron current, per
unit pressure at O"C,, as the efficiency of ionisation.
The probability of a collision resulting in ionisation,
can thon be found by dividing the efflcienoy by the total
nunbor of collisions; which latter figure can be calculated
from the kinetic theory cross section or frcan the total
cross section curves. It is also well known tliat an atom
may be doubly or trebly ionised and so on, corresponding
to the removal of two or more electrons from it. This if
the probability of multiple ionisation to a degree n is
represented by ?xii and the efficiency of ionisation, which
is really the number of electronic charges recorded, by

El thon tlie relation between the *¢ and the is
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In recording the number of ions and defining the efflc:
siency of ionisation, each multiply charged ion is counted
as so many singly cliarged ions. Thus it Is seen that the
efficiency of ionisation or the probability calculated
from it, may not be the same as the probability obtained
by investigations of the number of electrons which have
lost a certain amount of energy in ionising the atom in
one particular way. In addition, an atom may be singly
ionised in a number of different ways corresponding to

the removal of elections from different shells ; the singly
charged ion resulting is indlstinguisliable from any other
singly cxiarged ion, but the electron which has ionised

the atom has lost an amount of energy corresponding to

the way in which it lias singly ionised the atom, since the
ionisation potentials for ele% rons in different shells are
not tlie same.

When atoms are excited by impacts of electrons there
is no means by which the excited atoms can be drawn out
of the gas and recorded, since they arc not charged.

The only way in wiiich infom ation can be obtained about the
probability of excitation by studying the atoms, is to
make use of the fact that an excited atom returns spontan:
leously to a lower state and, in :io doing, eiidts the

surplus energy as a quantum of radiation, of a definite
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frequency. By measuring the Intensity of light emitted
by the gas on being bombarded by electrons of a known
energy, and by converting this intensity to the equivalent
number of quanta, the number of atoms excited per unit
path length, per unit electron current, per unit pressure
at 0®C. may be calculated; .which then gives a measure of
the probability of excitation of the atoms to that state
from which they descended in emitting the quantum of
radiation. It Is assumed here that the wave length
measured is one corresponding to a transition from an
excited state to the normal state. 1In dealing with this
method a number of reservations are necessary.

Firstly the method assumes that no atoms have reached
the given excited state except by a single impact of an
electron with an atom in its normal state; and secondly it
is assumed that no atom leaves the excited state except
by falling into its normal state in one transition with
emission of the desired quantum. Thirdly, it is assumed
that none of the radiation emitted is absorbed in the
gas before it reaches the instrument recording the intensity
of radiation. If all these assumptions were true, it
would then be reasonable to expect that the probability,
obtained by this method, would be in agreement with the

probability as obtained by observations on the electrons
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which have excited the desired state. None of the assumpt:
:lons, however, can be taken as completely true. In the
case of the first, atoms may have reached the given state

by first being excited to a higher state and then falling

to the given state emitting a quantum of another wavelength.
Again, an lIonised atom may have combined with a free
electron, and then the resulting neutral, but excited, atom
may have fallen to the given state. Finally the atom may
have reached the given state by a collision of the second
kind with another atom. A collision of the second kind may
be defined here, as a collision In which an excited atom
collides with another atom and passes on to It, some or all
of Its excltatlotg: energy, thereby raising the second atom to
an excited level or Increasing Its kinetic energy, while
the first atom falls to a lower excited state or its normal
state without emitting a photon.

The second assumption as to all the atoms leaving the
excited state by emission of the desired quantum may also
be far from true. A collision of the second kind may cause
the atom to leave the state without emission of the desired
quantum ; or the atom may be struck again by an electron and
so raised to a higher state from which it may fall direct to
the normal state. Finally, should the given excited state

not be the one next to the nomal state, metastable states
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excepted, the atom may first fall to a lower state and then
to the normal state; thus not emitting the desired quantum.

Absorption of the radiation emitted in a transition
may be quite strong in many cases such as the absorption
of the 2537 line of mercury vapour in a hot mercury arc.

It is thus seen that results for the probability of
excitation of a given state, as obtained from study of the
intensity of the radiation emitted by the atoms in falling
from that state to the normal, may be far from correct.
Further it is apparent that only in exceptional oases can
results be obtained by this optical method for the absolute
probability of excitation of a certain state, since, for
this to be possible, the effects discussed above must all
be allowed for and,in general, only relative measurements
of the intensity of a spectral line can be obtained. Relative
measurements of the probability can however be obtained and
these in themselves are very interesting and in most cases
ex”bit a certain similarity to the results obtained by the
electrical method.

The general result by all methods is that the
excitation function starts from the excitation potential
and rises to a maximum at some higher value of the energy,
and then falls steadily as the energy of the electrons is
further increased.

Very few results have been obtained for excitation
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probabilities by the electrical method.

The earliest observations were made on the 23 1
states of mercury by Sponer (23) whose results were
recalculated by Hertz (24). The method used was to
analyse the electrons with a retarding field after they
had passed through a region containing gas. As the energy
of the primary electrons was varied, the variation of the
probability of excitation to the given states, with
velocity could be determined, bjp the change in current
collected by the plate. The result of these observations
was that the probability curve showed a maximum at about
6 volts. Sponer actually believed that on account of the
velocity spread of the electrons in the beam, the result
was inaccurate, and that the maximum should appear exactly
at the excitation potential. EBridge (25) also invest:
sigated the 4*%9 volt state in mercury vapour and concluded
that the probability rose to a maximum almost at the
excitation potential and then fell as the energy was
increased.

Both EBridge,and Brattaln (26) studied the 6%67 volt
level in mercury vapour. The former concluded that the
probability increased from a small value as the energy
was Increased to a few volts above the excitation potential

Brattaln with an improved form of apparatus, found that

the probability showed a maximum about a tenth of a volt
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above the excitation potential. In his paper he suggests
that the probability may not fall continuously after this
maximum but that it may rise again to another maximum at
a considerably higher voltage, as optical methods have
suggested.

The only other notable work on probabilities of
excitation by a direct electrical method has been done
on the state of helium , whose energy is 19*77 volts,
by Dymond (27) and Glockler (28). Dymond*s method depended
on finding the difference in current to a collector with
and without a retarding potential slightly larger than the
excitation potential, Glockler*a results were derived
from a study of the effect of the inelastic collisions on
the current-voltage curves of his appar*atus. Both workers
concluded that the probability showed a maximum a few tenths
of a volt above the excitation potential. The magnitudes
of their maxima are not in very good agreement,

A somewhat less direct method has also been developed.
It consists in spreading out the electron beam into an
energy spectrum by means of an electrostatic or magnetic
field. The states which have been excited can be determined
from the positions of the different groups of electrons in
the spectrum, and the probability of excitation of the

state can be found from an integration of the area below
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each peak. By variation of the velocity, curves of the
probability against velocity can be obtained. This method
has been used by a number of workers, among them, Whitney
(29) and Tate and Palmer (30) in mercury vapour, and Van
Atta (31) and Hughes and McMlllen (32) end WhiddIington
and Taylor (33) in the rare gases. In some cases the
probability has been measured only for all the Inelastic
collisions and not for a definite state. In addition this
latter method has only been applied to electrons scattered
through one definite angle, or to those which liave suffered
loss of energy without change of direction. The results
are therefore not strictly comparable with results where
the electrons scattered through all angles are Included.
Finally In some eases the pressure of the gas has been so
high that the electrons have made many collisions before
reaching the collector. This will certainly effect the
observed probability since an atom may reech the desired
level by more than one transition caused by successive
Impacts with electrons.

The optical method studying probabilities Is to
focus the light from a certain part of the path of the
electron beam on to the slit of a spectrograph. The
intensities of the different lines so obtained can be
measured either with a microphotometer or by using a photo:

selectric cell. Thus the relative probabilities of the
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excitation of the different levels is obtained, or what
Darrow (34) more accurately calls the probability of
stimulation of a certain spectral line.

Numerous workers have used this method but few have been
able to obtain an absolute value for the probability. For
the 4*9 volt state in mercury, Bricout (35) has obtained
an absolute value of 6cin”/cm” at the maximum, A considerable
amount of work 1ms been done by the optical method on
mercury vapour, especially for the 2 atate, of energy
4#86 volts, by Schaffemicht (36) and otherse The general
conclusion is that the probability of excitation of this state
has a sharp maximum at fi*om 6 to 7 volts. Schaffemicht
examined some sevmty lines in the various spectra of mercury
and found an agreement between his results for similar types
of lines. For the triplet lines he found tiiat a sharp
ipaximum followed by a sliarp fall was present at a very few
volts above the excitation potentials, approximately between
9 and 12 volts, while for singlet lines there is a broad
maximum, at about 30 volts, followed by a slow fall. |In
the case of Intercombination lines, he finds that the char:
tacter of the line is determined by the Initial level of the
transition. Certain linos give curves which show two maxima,
one of the singlet type and one of the triplet type. The
curves for linss belonging to similar series or arising from

similar terms show a similarity.
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Since results for the probability of excitation by
electrical methods are very few, it is fiardly possible
to compare the results by the two methods; but it may be
noticed that Sponer*s conclusions for the 4*9 volt state
of mercury are in fair agreement with the optical results,
but that in the case of the 6%67 volt state there is
practically no agreement. The optical method has failed
to confiiiTi the maximium found by Brattaln close to the
excitation potential.

In a determination of the efficiency of ionisation,
as defined previously, the commonest method is one in
which the positive ions formed by collisions, are drawn
out of the gas and than recorded, A number of variations
of the method have been used in which there are modificat:
:idns to lessen tho distortion of the beam and other
sources of error, caused by the potential applied to the
ions, One such Ic to use a magnetic field parallel to
the beam; this 1ms the effect of keeping any electrons
scatterad from the beam moving in spirals round it, and
also of preventing the escape of secondary electrons from
the plate which photoelectric action of radiation from the
beam or collisions of metastable atoms, with the plate
'might tend to release, Tlie magnetic field has little effect
on the heavier positive ions which can thus be drawn to

the plate by a small applied potential.
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Much work has been done by mcKlifications of this
method on a number of gases. For mercui® vapour results
have been obtained by Compton and Van Voorhis (37), Jones
(58), Blealmey (S9), Smith (40), and hughes and Klein (41),
for the efficiency of ionisation. The results are in
general agreement, namely a steady rise from zero at the
lowest ionisation potential to a broad maximum at between
80 and 120 volts, and then a slow uniform fall as the
energy is increased.

In order to obtain measurements cf the probability
of ionisation in a particular manner, for example, single
Ionisation or double ionisation, it is necessary to make
an analysis of tho charge on the ions as they are drawn
out of the collision region. Tiiis can be done either by
a magnetic field or by an electrostatic field or by a
combination of both. Blealmey has used a combination of
both in his work on mercury vapour, and, by plotting the
current to the analyser collector against the electrostatic
field strength, has been able to obtain a curve showing
each type of ionisation as a sharp peak. By measuring
the area below each peak, and repeating the observations
for a number of velocities, he was able to obtain curves
representing the percentage of the different types of
Ionisation present at the different velocities. Finally

by multiplying the total ionisation or efficiency of
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ionisation by each percentage in turn and dividing by the
number of charges on the ion, he was able to obtain the
probabilities of the different types of ionisation. In
all this work the gas pressure was kept so low that the
probability of an atom suffering more than on© collision
with an electron was very small. Each case of multiple
ionisation was thus caused by a single electron knocking
two or more electrons out of the atom in one collision.

In a study of the probability of single ionisation
of the atom, no evidence can be obtained by the above method
as to the manner in which the atom has been ionised;
whether the ionisation is due to the removal of the least
securely bound electron or whether an electron belonging
to an inner shell has been removed, Haturally at low
energies, the ionisation will be due mostly to the removal
of the valency electron, since the Impinging electron
will not have sufficient energy to remove an inner electron
for which the ionisation potentials are known to be greater
than for the valency electron. In addition to the removal
of an inner electron instead of the outer valency electron,
it might also be possible for the impacting electron to
excite the atom as well as ionise it, if it had sufficient
energy. This could occur for all kinds of ionisation
provided the total ener™” od| the colliding electron was

sufficiently lar*“e. Ko evidence of this effect could
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be found, by the method of positive ion analysis.

Now, after ionisation has taken place, it should
be possible to examine what has happened to the imping ing
electrons. However, after ionisation, there will also
be present the ejected electrons, and the two types of
electrons are obviously experimentally indistinguishable.
Nevertheless, analysis of the velocity distribution of
the electrons after collision should lead to some informat ;
tion as to the probability of ionisation of the atom to
particular degrees and in particular manners. Knowing
the ionisation potential for the removal of a valency
electron, i.e. 10%38 volts in mercury vapour, it should
be possible to study these electrons which have lost this
amount of energy. However the electrons may have handed
over some of their energy to the ejected electrons so that
it would be necessary to include in the measurements all
electrons which had energies up to lialf the available
energy, that is up to half the original energy of the
electrons in the beam less the ionisation energy. This
could be done by a suitably arranged retarding potential.
Some work by Eldridge (25) and by Langrauir and Jones (42)
and by Hughes and McMillan (43) has indicated that it is
more probable that the available energy will be almost
entirely retained by one of the ejected or impacting

electrons than that it should be evenly divided.
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Langmulr and Jones* work has been done by collecting

the positive ions from a gas at a relatively high pressure
so that the effects of multiple ionisation should be taken
into account. It should thus be possible to obtain a
fairly accurate estimate of the probability of single
ionisation from a method in which half the available
electrons were collected, as outlined above; the electron
which is removed being the valency electron. However

if excitation of the atom takes place at the same time as
ionisation, this will not be detected by this method
provided the remaining energy is greater than the retarding
potential applied to analyse the electrons. So far as the
author has been able to discover few, if any, observations
have been made by this method yet. Some measurements have
been made by Eldridge but they are confined to a region close
to the ionisation potential. Results obtained by the author
by an attempt to apply this method will be given in the

experimental section.



SECTIOK 3.

WAVE MECmm es OF COLLISION PROCESSES.

A theoretical derivation th.e probabilities of
collision is an exceedingly difficult problem since there
are so many effects which must be taken into considérat:
lion and methods of allowing for them are in general very
difficult to derive. It has been seen that the classical
kinetic theory predicts a value of the cross section or
probability, constant with velocity. Experiment has
shown that this Is Incorrect, so that a new theory is
necessary. Such a theory is the wave meciianics put
forward by Heisenberg, Dirac and otliers about 1926. Under
this theory a beam of electrons is regarded as a beam of
waves. Experiment confimed this Idea and from the work
of G,P, '"“honaon on tho diffraction of electrons by crystal
surfaces, it was verified that tho wave length A of the
electron wave is given by where h is Planck’s
constant and rav is the momentum of the electron, m and
v being Its mass aSjd velocity respectively. From a
relation discussed previously, tho .vave length of the
electron can be given in terms of the accelerating potential

V, in volts, applied to it, as -
/cTO

wlich gives A= A XV (1).
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For ordinary values of V, say 0 -100volts, the wave
length is seen to be approximately of the same order of
magnitude as the diameter of an atom; so that, comparing
the analogy of light waves falling on particles of a
diameter approximately equal to their wave length, for
which a wave length theory is necessary to explain the
resulting effects, we see tliat it is reasonable to expect
that a wave theory would also be necessary in the case
of the electron to give a correct result.

Before any theoretical results can be obtained, we
must have a knowledge of the potential field of the atom
and tho variations of this when tho atom is in its
different states, nciroal, excited and ionised.

The various effects which can take place at a collls:
:ion between an electron and an atom, and which must be
allowed for in any complete theory,are the variations of
the potential field, as discussed above, and the effect
on this field of the colliding electron, i.e. polarisation
Secondly the effect of the exchange of electrons between
the beam and the atoms must be allowed for. This is
especially difficult since electrons are completely
indistinguishable from each other. An ejected electron
cannot be distinguished from the one which ejected it,
and the electron which leaves an atom in anexcited state

may not be the one which excited it to that state. It
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Is quite conceivable and in some cases necessary to
comply with quantum theory rules, that an electron
colliding with an atom and exciting it to the n*"' state,
should itself go into the n*"* level of the atom, at the
same time handing over its excess energy to the electron
in the ground state, which then flies out of the atom and
behaves as if it were the original electron. As mentioned
in Section (1), exchange effects can also be present in
elastic scattering.

On account of the various complicating factors it is
easily seen that an exact solution of the problem is
seldom possible. For the most part the only suintions
possible are approximate ones, the degree of approximation
varying with the allowances that are made for the different
complications, A discussion of the wave mechanics treat:
:ment of the problem will now be given, on the lines of
tiiat given by Mott and Massey (44).

In wave mechanics the amplitude and phase of the
motion of a wave are represented by a function
usually complex, of position and time, called the wave
function. In all the following discussion the time factor,
which is usually of the type where a is a constant,
will be omitted. Also tliroughout the work it will be
assumed that the velocity of the electrons under consid:

reration is small compared to the velocity of light, so
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that no relativity correction is necessary. This will
certainly be tho case for the velocities in all the
actual experiments considered, namely for velocities up
to about 1000 volts. The wave function is such that
the square of its amplitude at any point at any
time gives the probability of an electron being at that
point at that time.

Suppose the electrons in a beaia are accelerated
from rest to a velocity v in cms. per sec., by the
application of an electrostatic potential ~ , then the

E of the electrons in the befim Is given by the
sum of their potential and kinetic energies, V and
respectl'frely. %re the kinetic energy is given by
Egzz |rmv”, and the potential eiiei%y by Vs* -ey , where

o is the charge on the electron.

Thus E= ~ 'V (2).
Therefore v=/~(E - V) (3),
Nm
But the wave length has been shown to be 7) " -Ji
mv
so that HN™ h 2m(E * V) A (4).

The wave equation for any monochromatic train of waves

in a homogeneous medium is of the usual form

\y/ *- 'All-
y (5)

With the above value of % this becomes

(6)
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which is Schrodlnger*s wave equation*

To solve any collision problem it is then necessary
to solve this equation. In the application of this wave
equation there are certain difficulties. The first is
that, since, under the uncertainty principle, the product
of the uncertainties in the moirent;.” and position of a
particle, at a given instant, is constant, it is not
possible to determine the potential 7 exactly, since V
is the change in the kinetic energy of the particle which
depends on its velocity. 1In practice, what is done, is
that a likely value is assumed for 7, and it is taken as
satisfactory if, on suostitutior in the wave equation, it
gives results in agreement with experiment. A further
difficulty is that the wave equation has virtually been
deduced from experimental observations in tho case of
slowly varying fields. To apply this equation to atomic
fields which may be very large and may vary very rapidly,
may not be justified. Agreement with experiment is again
the only test of accuracy.

In considering the scattering of a beam of electrons
by a field of force such as the potential field of an
atcmi, we must find a solution of the wave equation which,
at large distances from the scattering centre, represents

the incident and the scattered waves. We will deal with
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elastic scattering only. Such a solution is * =
where Is the incident wave and Y'"/ the scattered wave.

The wave equation can be written as

it"”’ (7)

where , and k= A &77

o h A
In general it is convenient to chcosc the original wave
as a plane monochromatic wave moving along the s axis.
Its form is then given by /["0-
The amplitude of the wave scatteied through an angle B
at a distance r can then be represented by ((9)errA,
In order to find the scattered intensity, that is the
number c¢f electrons scattered into a given solid angle
per unit tine through an angle 6 , v/e must find f(6").
We know that the probability of scattering is given by
the square of the modulus of the scattered wave, which

then is 80 that the scattered intensity is given by

If» s, {p f

The solution of the wave equation that we require is then

of the form

(9).
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If we consider the equation A0 we see that

Qikz ig a solution of it.AAlso a solution is -

r\A
(10)
where is the n*** Legendre coefficient, and f*" is
a solution of the differential equation -
'Z | Mr/ . f
(11).

Then if f*(r) is the particular solution of this equation
-vliicli is bound 3d at the origin, then it can be shown

that el-- can be expanded as

(12).
By a similar method it can be shown that the wave

function representing the incident and scattered waves

Ir "
N .C
fA=0
(13)
where is the solution which is finite at the origin of
£+ j-V-9 7 /- =0
(14)
and where the are constants depending on k and on V,

which can in general only be determined by numerical
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integration. In a later section (4) an approximate
method of deteiminlng thei*e phase constants will be
discussed and some results obtained by applying the
method to krypton will be presented.

The solution of the above equation (14) which is
finite at the origin can be shown to have the asymptotic
form -

(kr )**~sln(kr-Jn7r-f- ) (15)
which can be written as

(2krl)-~~ ¢Kkr - &T7fL ) ~*-iOcr -in/7-f-k *

The corresponding form of fn(r) la similarly -

A j 77/\
which is -
/ u -1 (~kr-
jn 'v /1 -j.

(17).
By substracting equation (12) from equation (13) and
dividing by r"-*e***, and using (16) and (17) the required
asymptotic form of the amplitude o” the scattered wave

is obtained as -

(18).
Then the intensity scattered through an angle 5 is given
by the square of the modulus of this function. But since
f(G) is complex, the square of the modulus is equal to

the sum of the squares of its real and Imaginary parts,
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so that

X(&) » -i- |

Both these foimulae (16) and (IS) are exact, but to solve
them requires a knowledge of the 6x > exact values for
which it is in general very difficult to obtaine

Since we now liave the intensity scattered elastically
through an angle 9 Into unit solid angle from a beam of
unit current intensity, it is possible to obtain the total
elastic cross section Qby integration of this scattered
intensity tliroueh all values of (9 from 0 to * and all

azimuths. Coing this we obtain -

nrr A

Q= 2TT T(6) slnQdB (SO)
rova/ I
A?n(cos 6 ) sin (9 d6>= - —

2n -»l

we can at once reduce this to

00
(21)

The method of this develonment Is due to Faxen and
Holtsmark (46).

For the case of a Coulomb field, that is where the
potential V is proportional to r"l, r{&) can be determined

exactly and it is found that it leads to a value of 1(G) -
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Tfo)" | NoN'a

/ /

" ' (22)
which is the Rutherford scattering formula for
particles by nuclei-» For electrons and atoms this formula
does not agree with exnerlmont except at high velocities,
the explanation being that the field in an atom falls off
much more rapid 12" than 1/r.

Tho scattered intensit”r can be calculated somewhat
more easily from an approximate formula due to Bom (46),
outlined as follows -

Starting with the same asymptotic form of the
solution -

cj Ji 9
(23)

he applies the we*1 Imo'm theorail that the most geneina.l

sol’itlon of (24)
(25)
whem is the general solution of
(26)

Thus writing the wave equation as

A AN (27)
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and making the solution of this equation have the
asymptotic form of the equation (23), we see that the
scatttered wave Is represented by

= — jii' Mp( it -J ) y//

(28).

Prom this latter equation It can be seen that the
amplitude of the wave at a distance R scattered by the
volume element dx dy dz Is - * V dx dy dz, multiplied
by the amplituae of the original wave, that is. It is
proportional to the potential field ¥e

Born*s approximation is obtainea from the equation
(28) by making the assumption that the original wave Is
not much diffracted by the scattering centre, that Is,
he replaced *» In the above equation (28) by the original
wave"e-;’!ﬁ' .
Then for large r the following expression can be

obtained for f(<9), -
d”.

(29).
By transforming to polar coordinates and Integrating the

O and )> variables, we obtain -
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Ip)~ - f
J” A* AN

(30)

where = 4>"sln Oyg * which is Bornas approximation.

Using the atomic fields worked ont by methods due to
Thomas (47), Fermi (48), and Hartree (49) it is possible
to obtain theoretical scattering curves from the above
equation which can be compared with the experimental curves.
These fields are only approximate and are very laborious
to calculate; the fields for hydro”on and helium being the
most easily and accurately calculated. I"ost oC the work
therefore on the comparison of theory and oxperiment has
been done on the latter atoms.

3Jorn*s formula gives a scattering curve which falls off
montonically with increasing angle for all velocities. The
agreement between theory and experiment is quite good for
velocities above about 400 volts. The formula is found
to be accurate over a larger angular range for light atoms
such as neon, than for heavier atoms such as krypton or
xenon. The angular range of agreement decreases as the
energy is decreased. In no case does the Bom formula
predict the diffraction effects which have been experiment:
:ally observed by many workers. When the exact formula of

Faxen and Holtsmark is used the diffraction effects appear
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In the theoretical curves and the agreement with
experiment is good down to much lower velocities. At
still lower velocities where the agreement is not so good,
more accurate results can be obtained by using a more
accurate potential field, in which allowances are made
for the polarisation of the atomic field by the electron
waves, and for electron exchange. For heavy atoms, it has
been shown by A llis and Morse (50) that exchange effects
are not important so that better agreement would be
expected there, which la what is found. The same authors
find that exchange effects are not important for electron
energies greater than about 30 volts for elastic scatter;
ling, and th&t even below this value exchange does not
effect much the total cross section curves but only the
angular scattering curves¢

In deriving the expiression

Q=21 X jr (e)j sin<9 d® (31)
for the cross section, we chose f(S) so tli&t it was
finite at 0- 0, Theoretically it should be impossible to
extend the integration right to (9- 0, since then the
original unscattered beam would be included. But since
f(0) is finite at (9- 0, Qwill vary little with * as (9
is decreased from a finite small value to 0. It is in

this definition of f(6") as finite at 0 that the main
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difference lies between the classical theory and the
wave mechanics theory. Under the classical theory, f(*)
becomes infinite at = (0, so that the differential cross
section 1(5) will be infinite at 5= 0, while under the
wave mechanics theory it remains finite, as seen above.
The differential cross section per unit angle is
2r/1(5)sin” which is infinite from the classical theory
and zero from the wave mechanics theory at <9= 0. Here
experiments decide between the theories. The experimental
scattering curves per unit angle at small angles are
found to bend over so as to pass through the origin.

Again the classical theory leads to a value of the
total cross section which is infinite, since under this
theory no matter how far from an atom an electron passes,
it is affected by the atom and should therefore be included
in the Cross section. The finite cross sections actually
observed would then bo due solely to an insufficiency of
resolving power in the apparatus. Under the wave mechanics,
tho cross section is finite provided the field of the
atom falls off sufficiently rapidly with distance, which
is the case for all atoms. The finite observed values are
then in agreement with the%‘y. This difference really
depends on the fact that * I/r” is infinite for n " 1
(classical theory) and finite for n * 1 (wave mechanics),

since the field is of the general form -L
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THEORETICAL EXPLANATION OP TIB RAMSAUER EFFECT,

On the classical theory the Rarssauer effect of a
decrease in the cross section at low energies, for certain
rare gases, is quite unexplainable. Wave mechanics,
however, affords a simple explanation. For the rare gases,
the outer shell has its full number of electrons so that
it is reasonable to suppose that field will be symmetrical
and will fall off wore rapidly with the distance from
the atom than for an atom with uncompleted external shell.
Thus tlie rare gas atom will appear to have a smaller size
th”in the other atoms. velocity electrons, that is
electrons of long wave length, will then pass over the atom
unaffected as in the analogous cas© of a very small
obstacle in the path of light of long wave length. Alter:
matively, it may be said that the electi*on wave at the
atom meets a region where the potential field increases
rapidly, so that the refractive index changes rapidly,
consequently the wave length decreases rapidly. Thus it
may be that a whole number of waves can be fitted into the
region occupied by the scattering field. The electron
wave is thus unaffected by the field and the small cross
section results,

A mathematical explanation wliich depends on the same

assumptions can be obtained as follows -
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It has been seen that the cross section Q can be written

as

O All | AN
yk* AL (32)

This may be put as

SO

" (34)

Op is then called the partial cross section of order n.

It can be shown that, for low velocity electrons, and
light atoms, the most important partial cross section

is the one of zero order, Q is then determined for the
most part by Qo* Thus to explain the Bsmsauer effect,

the conditions must be found for which becomes small

as the wave length increases to infinity. This is done by
expanding the original wave in a aeries of spherical
harmonics, as has alread;/ been shown, in equation (12)

of this section, Vinien the wave length tends to Infinity,
k tends to zero. Thus the first term only of this expan:
ision need be taken. This term is (sinkr)/kr. Since the
scattered wave is spherically symmetrical and small outside
the atom it may be taken as Cor'""*e”at a distance r.
Thus outside the atom but for small r, the complete wave

function for incident and scattered waves is -
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Inside the atom the wave function is taken as Po(r),
where PQ is the solution, finite at the origin of the

differential equation «

The quantity can thus be determined where the

dash denotes differentiation with respect to r. The
method then is to fit to the same quantity derived
from equation (35) above, at a point where r R consid °
sering R as the value of r at the outer boundary of the
atom at which point is zero, k,which Is inversely
proportional to the wave length is then allowed to tend
to zero. The deduction, which is on the lines of one
given by Mott and Massey (51) with however a slight

variation, proceeds as follows -

From equation (35) has the form -
y- rw
(37).
Therefore
-f-yCo
(38).
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If we now let k tend to zero and put r = R this becomes -

/
Llm JL »  &— -
Ao 7 -'R+Cii fo
(39).
Solving for c¢”, we obtain -
& - R’
(40).

xlvas vio see that if P;) becomas zero at r = R. thon |

Is also zero; that is tho scattered wave vanishes and so
the ¢z*03z section vanishes. Thus the decrease of cross
section with velocity is explained” i.o. the Hamsauor
effect.

The theory can also be used to explain the variations
in the cross section with velocity and also the similarity
in cross section for atoms belonging to the same column
in the periodic table.

Prom the formula for the partial cross sections,
we obtain that the maximum value of (j is -

On= (4/Vk)(2n * 1) (41).
for values of (2s + 1) '/2.
Now it is known that the phases D*decrease monotonically
as n is increased. The value of depends therefore on

the rate of convergence of the series of partial cross
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sections. For low velocities the convergence is known to
be quite rapid, so that the partial cross sections for
which is nearest to (2B "~ 1)*/2 will determine the
total cx”ss section Q. From the above maximum value of
Qn it is seen, since k is proportional to the velocity,
that Qn will be larger the larger n becomes and the
smaller the velocity becomes. But the rate of convergence
of the series of partial cross sections wlich determines the
number of terns of the series which it is necessary to
take to get a reasonably correct result, depends on the
extent of spread of the atomic field. Now the fields for
the alkali metals are known to extend the farthest so that
we would expect these atoms to have the largest cross
sections, and such is actually observed. Slater (52) has
developed some empirical rules for che effective nuclear
charges of atoms. From these we can find the distance

79 from the centre of the atom at which the radial cliarge
density due to the outer shell electrons is a maximum.
This has been defined as the diameter of the atom for

the purposes of this discussion, and has been used as a
measure of the distance to which the field of the atom
extends. W see that for potassium this distance is

To ~ 6*1 atomic units, while for the rare gases it is of
the order of one atomic unit; these latter being the

least values recorded; so tliat the rare gases would be
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expected to have the smallest cross section values.
This also verifies the explanation of the Ramsauer effect.
The explanation of the similarity of the cross
section curves for atoms in the same columns of the
periodic table is not so simple. For similar elements,
such as sodium and potassium, the number of the valency
electrons is one, so that it would be reasonable to
expect timt the fields of these atoms would be similar
and so their cross sections would be similar. Allis and
Morse (53) demonstrated that the periodicity of the cross
sections followed that of thepeiiodic table, byusing
a simplified atomic field. They assumed that the field
was given by the follov/inr’ ~
VE 277{l/r - 1/r5) r N Tq

Ao (42)
where r” is defined as above, and % is a constant depending
on the atom used. Z can be calculated from Slater’s
rules. In using tliis assumption they defined two further
quantities ~ and x, such that -

= (Zro)/2 and x = kr* (43).
TQ is a function of the field of the atom, and k is
propo|*tional to the velocity. The method of demonstrating
the periodicity of the cross sections was to plot the
partial cross sections for all elements as functions of

, for a number of different values of x. The functions
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were foimd to have an approximate poriod of unity in
for all X. By suitably adjusting the constant Z, this period
of one in f~ can be found to correspond to a whole period
in the periodic table; tliab is by increasing”by unity, we
pass from one olenient in the periodic table to the next
in the same column, i.e. sodium to potassium.

With the above potential field, and values of 3 and
TQ determined by Slater*s rules, theoretical cross section
curves have been calculated by Allis and Morse for quite
a number of atoms. The agreement is in general very good.
The main differences betvreen theory and experiment lie at
low voltages, and are explained by iihe neglect in Allis and
Morsemethod of the field of the atom beyond r*. A more
acGUI'Ste result is obtained by uein”: some such potential
field as that calculated by Hartree*3 or Perml*s methods,
and then evaluating, by numerical integration, the phases
8K , which appear in the exact foriirula given previously.
This method gives very good agreement for the total cross
section in those cases for wliica tho potential field is
known. For most atoms comparison has usually been confined
to comparison of the differential cross sections or angular
scattering curves, since there are much more sensitive to
the accuracy of the method of calculation. For mercury
Henneberg (54) and Massey and Mohr (55) have carried out

calculations of the phases 8,, using a Thomas-Permi field.
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The agreement with Arnot’s experimental curves (56) is

very good. In general the agreement is better for heavy
atoms, such as mercury. Per light atoms, such as helium
and hydrogen, the method breaks down. It is then necessary
to include the effects of electron exchange. In certain
cases it is also necessary to include the effects of the
polarisation of the elastically scattered wave by the
inelastically scattered wave. Allowances for each of these
latter effects tends towards a greater agreement between
theory and experiment, but as they are relatively unimport:

jant for heavy atoms such as mercury, they will not be

discussed here.
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THEORY OF INELASTIC SCATTERING,

A theoretical discussion of the inelastic scatter:
:ing of electrons by atoms is much more difficult than
for elastic scattering, since, in the elastic case,
the interaction between the electron and the atom is
negligible except at particular velocities and in
particular cases. For inelastic scattering, however,
the interaction cannot be neglected. Thus in most cases
only approximate solutions of the problem are possible.
Using the Born Approximation, which is valid only for
tiigh velocities, quite good agreement can be found with
experiment in the region of validity.

In considering an atom which has been excited from
a state m to a state n, v/e use a scattered intensity
Ara,n**)* Usually v/e change the variable from 6‘to a
quantity K such that 4 I? ™ 2KKYQ y*cos 6
where k , (27rmv)/h and A t v and
Vi’n being the initial and final velocities of the
colliding electron. Instead of using limits of intégrat:
:ion 0 and If for Q , we use %k - k* and
Apnax - A for K, The effective cross section
for excitation of the atom from state m to state n is

then given by -

(44).
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In using the greatest difficulty is in determining
the wave functions of the atom In the two excited states.
Tfee most usual method of solving the problem is to use

a matrix development first proposed by Dirac.

The method can be applied to the calculation of the
probabilities of excitation of discrete levels and also
to the probability of ionisation. The differential cross
section for all inelastic collisions can then be found
by summation. Thus if the initial state in each case
is the ground state, the differential cross section is

n
21 This formula Is only applicable to the case

n=1
of hydrogen. For a complex atom, such as mercury, the
Inelastic differential cross section is given by a

complicated double summation of the type

(45)
where nl and n*1* refer to the different shells of the
atom.

A considerable amount of work has been done on
helium for which the wave functions can be determined
with a fair degree of accuracy. The agreement v/lIth
experiment is usually quite good for high velocity
electrons. Much of the experimental work done on the

probabilities of excitation of discrete levels has been
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confined to the study of electrons which have been
deflected through small or ssero angles. A rigid compar:
:ison between such results and cross section curves in
which all angles are included is thus not possible.

In the case of ionisation, after the collision, two
electrons are present, the impacting electron and the
ejected electron. The remaining energy of the impinging
electron after ionising the atom. Is available to these
two electrons In any proportions. It is obvious that
thece two electrons are quite indistinguishable. However
it is a coinmon practice to label the slower electron, the
ejected electron, and the faster, the impacting electron.
From theoretical considerations Massey and Mohr (57)
have shown that the velocity distribution curves of the
ejected electrons show a maximum at a low velocity;
that is, it is highly probable that the available energy
is divided between the two electrons after ionisation
so that one electron gets most of the energy and the
other very little. This work has been confirmed exper:
jimentally by Tate and Palmer (58) working on mercury
vapour,

%hen we come to eonsider the case of slow electrons
for which Born’s approximation is not valid, we find

that there are many more effects which must be considered.
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Born's theory falls to show the diffraction maxima

and minima in the inelastic angular scattering curves
at low velocities which have been observed by Mohr

and Nicoll (59) and others. Born's theory also predicts
too high a value of the inelastic scattering at small
angles and also of the inelastic cross section generally.
These discrepancies show that the distortion of the
incident and scattered waves by the fields of the atom
in its normal and excited states must be allowed for.
These latter are the effects which Eom's approximation
neglects, as negligible at high velocities.

In a previous section it has been seen tliat the
experimentally detexmindd.probabilities for excitation
of singlet and triplet levels are quite different. The
singlet levels give curves which rise to a broad maximum
some 20 volts above the excitation potential and then
fall slowly, while the triplet levels give curves which
rise to a sharp maximum close to the excitation potential
and then fall rapidly. Intercombination lines give
similar curves to triplets in general, if the higher
state is triplet. Born's approximation demonstrates
that the probability of such an intercombination transit:
:ion is very small at high velocities, since the wave
functions for the two states are antisymmetrical. Thus

id integrating their product, along with other



synmetrical functions, to obtain the probability , the
integral vanishes. This only holds for high velocities;
for low velocities the effect of electron exchange has to
be taken into account, and so the probability of such a
transition can become quite large.

To explain the difference between the singlet and
triplet curves, the quantum theory inust be used. For
a singlet state of the atom, the spin quantum number is
zero, while for triplets it is equal to unity. For the
valency electrons in an atom the spin vectors are always
equal to J, If they are opposed in direction, as they
are for singlets, their resultant is zero. But If, as
for triplets, their directions ar"e the same, then their
Zcsuitant is unity. Thus to pass from a singlet state
to a triplet or vice versa, requires that the spin vectors
shall be changed relative to each other. In cases where
the coupling between the spin and orbital motions of the
electrons in the atom is small, which is the case for
light atoms such as helium, this transition cannot occur
spontaneously. The only method by wliich it can occur,
is when electron exchange takes place; the impinging electron
goes into the triplet level and the valency electron in
the singlet level flies out of the atom taking the excess
energy of the impacting electron with it. Now it has

been stated previously that the probability of electron
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exchange decreases very rapidly with increase in the
velocity, so that the probability of such a transition
will also fall off rapidly with increasing velocity.

But for excitation of a singlet from a singlet, or a
triplet from a triplet initial level, electron exchange

is not necessary; so that we would expect the probabilities
of such transitions to fall off more slowly with increas:
fing velocity, as is actually obsei’ved experimentally.

In the case of heavy atoms however, such as mercury,
the coupling between the spin and orbital motions becomes
appreciable, so that spontaneous transitions between
singlet and triplet levels car take place, and also these
ti’ansitions can be excited electron impact without
electron exchange. Thus we would expect the probabilities
of such transitions to persist to higher velocities in
such cases. Penney (60) has derived theoretical curves
for the excitation of the P states in mercury by using
wave functions in which this interaction was allowed for.
He finds that the probability of excitation of the ZKP"
state (4*86 volts) from the groimd state has a small but
finite value at large velocities, since his wave functions
are now not alitisymmetrical. The 2*% transition fpom
the ground state is found to be by far the most probable

at high voltages, and even down almost to its excitation
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Volts
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potential. Penney'a curves are shown In Pig. (6). The
experimental results for the excitation functions for
the 4»86 and 6%67 volt states will be compared with
these curves, in the experimental section.

In the cases of certain simple atomic fields, such
as tliat of hydrogen or helium, theoretical excitation
cross section curves can be obtained which are in very
good agreement with experiment especially for triplet S
levels. 1Aassey and Mohr (57) have obtained such curves
for helium, in which the variations of the differential
cross section with velocity and angle is shown for
different levels in the atom. An interesting feature
is tliat, at zero angle, the differential cross section
increases with the velocity, for nearly all transitions.
This result has been confinned experimentally by Whlddlng :
:ton and Taylor (53), and also by Van Atta (61). The
theoretical method is to obtain two functions f and
g; f is virtually the result obtained by the Bom approx:
:lmation, and g is tne correction due to electron
exchange. A combination of these two functions gives
the cross section in the fom of tv/o terms, one being
the directly scattered wave and the other the electron
exchange wave. Each is in the form of the integral of
the interaction energy over the initial and final wave

functions of the atom. From the resulting equations
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it can easily be shown tliat the probability of excitation
of triplet levels decreases as v“” for S states, as
V*® for P.states and as v*® for D states; while the probab:

lilities for singlet S,P, and D states decrease as V«'P

)
v'"*og(xv and v*" respectively; v being the velocity of
the incident electrons andg(a constant.

For the inelastic angular scattering in raemury vapour
of electrons which liave excited the most probable transit ;
tzion, the 2"?2"" level, Mohr and Kicoll have discovered a
number of maxima and minima. The positions of these maxima
and minima agree for moderate and large velocities with
similar ones obtained for elastically scattered electrons.
k theoretical explanation of this iias been derived by Mott
and Massey (62). Neglecting exchange, they derive an

expression for the differential cross section for excitation

to the state, in the form -

T"ce) =

+ 24 fKv, Ks [-T J 1

where (k"h)/(2fTm ) is the electron velocity after exciting
the n*""* state, and (kh)/(2nm) is its original velocity.
'~on element of a matrix and represents the potential
field of the atom in its excited state. Hg is a
complicated function of the polar coordinates, r*, o' , (f,

/
dT is the element of volume. In the above
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expression the first terra under the nodulus is the Bom
expression, which is approximately zero for all angles
greater than about 30"* Thus for larger angles the
scattering depends almost entirely on the series part
which will exhibit maxima and minima on account of the
Legendre coefficients Pg. For large velocities, and
k will be approximately equal, and the fields and
VQJ of the normal and excited atom can be taken as
approximately equal so that the elastic scattering and the
Inelastic scattering due to the 8"?* transition will also
agree. As mentioned above, this is tho experimental
result. For low velocities, however, the two sets of
results diverge, owing to the non equality of k and k*,
and VQO and VQJJ.

Following on the results of the above theory, Massey
and Mohr (57) and Kicoll and Mohr (65) have developed
a suggestion to explain qualitatively the fact that the
elastic scattering predicted by the Bom theory falls
off less '"tapldly at small angles than does the experimental,
and also to explain the similarity between elastic and
and inelastic curves at moderate and high velocities.
Their assumption is that an electron can make a double
collision with the same atom. They suggest that this
can occur in different ways. Firstly the electron may

excite the atom without much change in direction; it then
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passes on through the field of the aton and is possibly
slightly deflected by the field in so doing; finally,
while it is still in the field, tlie atom returns to its
normal state giving the energy of excitation back to the
electron, again possibly v;ith little deviation. The
result is that the electron leaves v/ith practically its
original velocity but with a distribution in direction
corresponding to inelastic scattering; the total
deflection of the electron being quite small. Thus it
will be seen that the number of electrons observed to

be scattered elastically at small angles will be greater
than that predicted by Born*s theory, which is the
experimental result obtained by Hughes and MoMlllen (64),
When such a superelastic collision occurs with frequency,
the elastic scattering will increase and the inelastic
scattering will decrease. Actually for ionisation and
elastic impacts in helium Massey and if'ohr have found that
too large and too small values respectively are predicted
by Born*3 theory. Also it should be noticed that the
total cross section for all types of collisions will

be unaltered, since in obtaining such a cross section,
both elastically and inelastically scattered electrons
are added together and no account is taken of the angle
through which they are scattered or of the number in each

group.
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Secondly the electron may be first diffracted
elastically by the atom and then” later, excite or
Ionise It, possibly without further deflection. Or
converssly, the inelastic Impact without deflection may
come before the elastic impact with deflection. Thus
the inelastic scattering so obtained will resemble the
elastic scattering of electrons of the original energy,
provided that the original energy of the electrons Is
large In comparison with the energy lost in the inelastic
impact.

ror lower energies, comparable with the energies
lost in the inelastic impacts, it is probable that such
double collisions are not so likely, so that agreement
between elastic and inelastic curves cannot be expected.

Also it has been shown from theory that the differences
in the fields of the atom in its normal and excited states
have more effect at these velocities. It has also been
shown that exchange effects become prominent at low
velocities for light atoms, so that they must also be

considered.
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SECTION 4.

APPROXIMTS METHODS OF CALCULATING PHASES AND
THEORETICAL SCATTERING CURVES.

The results given in this section have already been
published in a Joint paper by the author and Dr. F.L.
Amot in the Proceedings of the Royal Society of London
(35).

In a previous section an expression for the intensity
of electrons elastically scattered through an angle (9,

by a spherically symmetrical field was derived to be -

(X).
In tills expression P" is the n*""* Legendre coefficient
and k is given by k = 2R/ 2m*/h - (2r7/h)(eVm/150 )",
where V is the velocity of the electrons in volts.
The following differential equation derived from the general

wave equation -

iL A Ajur- V- 1f = o

(2)

was found to have a solution zero at the origin of the

(3)
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where as before V(r) is the potential field of the atom,
and the 6”7 are phase constants, previously defined.
If we substitute in the above equation (2),

we obtain -

(4)
or
(3)
where a
A (6).

9
This equation can then be shown to have the asymptotic

solution A -Xyijj -4-hy” (7)
if for large r, V(r) tends to zero faster than l/r,
that is faster than the Coulomb fleld. This will be the
case for most atoms so that the asymptotic form will
then hold .
If V(r) becomes zero in equation (4), the solution of
(4) which is zero at the origin has the fom

Y
where Jji-f e the Bessel function of order n. It is
then known from the theory of Bessel functions that the

asymptotic form of this is -

(8)
Comparing equations (7) and (8) we see that the phases
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are the difference in phase between the asymptotic
solutions of equation (4) when V(r) is zero and when
V(r) has its value corresponding to the position of the
electron in the atomic field. Also if V(r) is zero
will also be zero.

To solve equation (4) exactly in almost impossible
except for a few particular and simple potential fields.
The only method of solution is in general one of numerical
integration. An approximate solution has however been
developed by Jeffreys (66), for cases in which a in
equation (5) does not vary rapidly with r.

For a constant' the solutions of (5) are given by -

\Lz= f)i™b (£ i )
" (9)
A being a constant, Jeffreys assumes that A and a are

functions of r and writes his solution as -

(10).

Substituting back in equation (5), we obtain -

57 4 AP B M(aVr Q
(11).
Both A and a are assumed to vary very slowly with r so

that can be neglected in comparison with the first

differentials.



Thus we have nA  ~h R 0O (12)
oi’

Integrating this we get A" Ba" '

where 8 is an arbitrary constant.

Thus the approximate solutions of equation (5) are -

(13).
We now have to determine the limits of the integral in
tliis expression.

If in a, r is zero, a will be infinite and negative,
provided n>0 and V(r) is positive, or if negative, it
falls off as r'"'® where s<2. If r is infinite, a will
be positive, being equal to k”. So that *a* will have
a positive zero r”, such that a is negative for 0*r<r*
and positive for r>r** Thus the expression for y- will
be exponential in the range 0<r<r””, and oscillatory in
the range r>r”. Jeffreys has shown that the solution

which is zero at the origin has the asymptotic foxm

(14).

Similarly if V(r) Is zero we get -
@

(16)

where b - - n(n 1)

r ~ (16)

the zero of this latter being rl
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Since, by previous deductions, we found that * is the
phase difference between (14) and (13), we thus have -
ul.
(17)

TQ and are here the zeros of tlie respective integrands.

In deriving this expression, we hsve found that it
is necessary that a and b should have positive zeros.
This will be the case under certain conditions as given
above. These conditions hold generally with the exception
of the stipulation n>0. It is possible for n to be equal
to zero. In tiie case of n=0 the folloring method must
be used.

For ’a* in the case of an attractive field for which
V(r) will be negative, there is no zero and a will remain
positive, b also will Imve no zero for n= 0. This will
be the case for electrons and atoms. To determine the
lower limits for a and b in such a case we must then
choose from equation (13) the solution which Is zero at

the origin. This will be

which has the asymptotic foim

\h r\j xicxi I C /U
A (18).



Similarly for V(r) zero we get the form

a

(19).
Thus we obtain for So the expression -
K - — I h' W
(20)
which is the same as the expression for with the lower

limits of the Integration replaced by zeros.

A dffference exists however in the case of a repulsive
field; here V(r) is positive and thus'a'has a zero, b Is
of course unaffected by the type cf field, since in any
case the field Is zero, for b. To obtain for such a
field we must co”ibine equations (14) and (19). The

result is that -

o (21)

for a I'epulsive field.

iflhen V(r) Is zero, the error between the asymptotic
form of the solution of equation (5) and Jeffreys’
approximation can be found as follows - The two express:

lions for are -

(4 t'- j-yiJl) {22)
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The Integral can be evaluated thus -

Consider the expression -

'-fit J (24)
where s”» and r"* is the zero of l-s*/r*,

i.e. r*= s, and Ris a quantity which will be eventually
allowed to tend to infinity.

The integral can be evaluated simply by putting r=s sec6;

we then get -

~ "ft5he-G] - 1'f],
ysl / ~"N1
's[ * § ]
mZZwv p —O ~ —> -
% —00
Pifultiplying (24) by k and putting 6"- - or
6 = rz,*we obtain -

A
Integrating the k under the bracket from r* to r which
is assumed large, and letting R tend to infinity, we

obtain the result -
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\ c>»"\J JL
(2G)

If this value of the Integral is substituted In equation

(85) the result Is -

pljoytid il —r sl U # )T
(26)

A comparison of this result with the exact asymptotic
form of equation (22) shows that Jeffrey’s result Is

greater by the amount -

-*{ )

(27).

The values of this for n - 1 and n = 2are 0*15 and 0%08
respectively. For larger n It becomesvery small, so
that the error Is seen not to be large for n* 0.

For n = 0 the error appears to be /4, but It has
been shown above that In this case instead of equation
(25) we must use equation (19) for which the phase Is
seen to be less than that of equation (25) by " 4.
Hence the error Is zero for n= 0 and V* 0, and Jeffrey
value of Is then exact, as would be expected since b
Is then a constant.

This discussion only determines the error In the

second part of the expression (17) for the phases, not

0

S*
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the complete error in the phases. The complete error
depends also on the error in the part which may-
be much more in error than the second part, since here
we have the field V(r) and for a small error its rate
of variation with r must be small.

Starting from the some equation (4), and taking
a solution in the form of the sum of the bounded solution
Ofyd ANer=0 and a further function » whose product
with V could be neglected, and also neglecting terms
involving the squares of the phases, Mott (67) deduced
an expression for the phases which is valid for small

values of the phases 57 .

His expression is -

A LA Jo A (28).

The J*s, as before, are the Bessel functions.
This expression is called the Bom Approximation, since
it involves Born’s assumption that the effect of the
atomic field on the wave function is small and can be
neglected.

We thus have two expressions for the phases,
Jeffrey6’ and Born’s, which are -

Qf‘
Jeffreys’ _ £ poir 1

formula
. AA w) o] (29)
where A vy J
and 6 = T
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and Tq and are the greatest positive zeros of the
respective integrands. For n - 0, both r* and r”* are
zero. This approximation should give reasonable results
provided a does not vary rapidly with r; the error in b
has already been shown to be small.
Born*s formula is -
00 .
= U V/ 27,1
V/ Jo 1

(30).

Calculation of Phases.

Holtsmark (68) by a method of numerical integration
has been able to calculate a number of exact phases for
krypton. He used an atomic field calculated originally by
Hartree, to which he applied a correction for the polaris:
sation of the field by the incident and scattered waves.
The effect of this polarisation correction is to make the
field fall off more slowly with r. The field is thus
effective up to much larger values of r. By means of his
calculations he was able to get a tiieoretical cross section
curve which agreed very well with Ramsauer and Koliath* s
experimental curve. Both the experimental and theoretical
curves show the Ramsauer effect. This exact method of
Holtsmark*s is however very laborious. It was therefore

decided to calculate the phases by applying Jeffreys* and
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Born *s approximate methods, and by a comparison with
Holtsmark*s exact values, find the range of validity
and the extent of the errors in the approximate methods.
The atomic field with the same polarisation correction
as Holtsmark used, vi;as employed; it is the field which
he calls No. 2 in his paper.

In performing the calculations all the quantities
in the formulae were converted to atomic units. The
atomic unit of length is the radius of the first
Bohr orbit of the hydrogen atom, which is given by
&o- 0*53 X 10~" eras. The unit of energy is the ionis:
latlon potential of the hydrogen atom, which is 13«56
volts, 1i.e. 3ao in atomic units, Kk is given by

A Vo » where V is in volts, k is
measured tn units of 1/a”, so that we have -

‘A 1/50 "

= o0-HINV

The atomic field is expressed in the form *

(31)
where Zp is a function of r, values for which for various
r have been given by Hartree, The negative sign is
included since the field is attractive. Holtsmark¥s

field with polarisation correction is in the form



8jr
=3 -
AT V=% [=<l (32).
A is also a function of r, which for large r falls
off asymptotically as

The phases can now be written as e

Bom's - wv IT (34).
‘0

The values of k run from 0 to 3 for energies from 0 to

121 volts.

To determine the values of the a method of
numerical Integration Is used. Values of the Integrands
are calculated for the values of r for which the field
is known. A graph Is then drawn In which these values
of the integrands are plotted against r. By means of a
planimeter the area under the graph is determined and so
the value of Is deteiTilned. 1In special cases, certain
modifications were employed. For the case of & Jeffreys’

formula reduces to -
O

(36).
ISlien r is amxlX, that la r<?0*0l, the field la large

so that k and P can be neglected in comparison with It.
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Thus In deteiwinlng * , the method is to divide the

Integral into two parts as follows ~
P

—+

Jo Jjo[Ol

The second part can be evaluated graphically, while the
first is given by, neglecting * which is zero for small

0-U

r. -

O"p5>rv

o UZXy-[00:""

which can then be determined directly from the value of
the field at r ~ 0%01,

In the determination of foi" n 0, by Jeffreys*
method, the greatest positive roots of the two integrands
have to be found. For the second integrand the root
is given by r"=+.V . By plotting a graph of the field
against r the value of the field can then be found at

this point. This value will be seen to be the value of

2 b

a’ at r = r*, the root of b, since at this point

, which is b, is zero. For the first integrand
however, the root has to be determined graphically. If
the first integrand is zero we may write it as

.K(MI) _ -i-f) _ Ji'p
(36).
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By inspection of columns of values for and %

the region of the root can be found., 3y plotting the
difference of these two columns against r, the root can be
found exactly. It is always found, tlmt is less than

Thus in calcul©ting the phases, the formula can be

written as -

S
Ko "0 w [t/
"
=r*> 7% 'AD"l
t/fo / J (37).
The integrands are then determined for different
r, the gra”*h plotted and the phase found as before,

by numerical integration.

In calculating the phases by the Born method, tables
of Bessel functions are used and gi"apl\8 to Interpolate
Intensediate values, for various kr. As before the integrands
are plotted against r, and the areas determined. In this
case the phase is given bj JI x area.

A number of pliases have been calculated for k" 1
and for k= 2, by both Born’s and Jof-freys’ methods.

They are given In table I, along with Holtsmark’s exact
phases for the same values of k. It should be noticed
that s for k- 2 has boon omitted. Holtsmark did not

give a value for this phase. So for k * 0 is also given

in the table.



Table 1
je -k
volts atomic Phase
units
0 0 bo
bo
b,
13%54 1
5.
So
b.
s,
54*15 2 So
h

Exact
phase
minus
Jeffi
Exact Jeffrey*s Born's treys'
phase approx. approx.approx.
12*568 15*310 -2%742
10*996 12*%024 -1*%028
8*%439 8*781 -0%292
4*368 4*880 -0*512
0*%226 0*%286 0%242 —0 *040
0-107 0.107 0,107 0%000
9696 10*612 -0*916
7*%452 7*710 -0%258
4.46S 4*748 -0%279
1 'SKSic 1*41:) 0*779 -0*172
0*%445 0-557 0*414 -0*112
0%143 0%190 C-144 -0%047
shown In the table

An Oxainination of the results

- Exact and Approximate i“hases
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for Krypton.

Exact
phase
minus
Bom *s

approx<

-0*016
0*%000

0*%459
0%031
-0%001

Indicates that the difference between the exact phases

and Jeffreys*

case of zero order phases.

method are always the higher.

In the case of the phases calculated by the Bom

approximate phases Is

small except In the

The values by the approximate

method the error Is small In all cases where the phase
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Is reasonably snail, i.e. less than 0%*6. The sign of the
error varies, and in the case of phases less than 0%*S5,
the error is less than by Jeffreys’ method.

It should be noticed that it is the actual error
which is Important, and not the percentage error, since
the addition of multiples of Il to the piiase does not affect
the scattered intensity as given by formula (1).

The abnormally large error that appears in for
k*1 is probably due to a mistake In Holtsmark's calculation
since the approximate value was carefully checked.

An important conclusion which can be found from a
study of table I is that the error between Jeffreys' phase
and the exact pliase decreases as the order of the phase
increases. Previous workers have always assumed that
Jeffreys* method is only valid for phases of low order
liaving a value greater than unity. Massey and Mohr (69)
have found that for a repulsive field, as in the case of
a collision between two helium atoms, the values of the
phases less than unity are far too low. Table I, however,
shows that for a heavy atom such as krypton, in the case
of an attractive field, the method is applicable tfown to
very low values of the phases. For the lowest values
actually determined, 86= 0.107, k=" 1, the error was zero
by both Jeffreys' and Born's methods.

The largest errors found were in the case of
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the sero order phases and for zez'o velocity, l*e*
kt=0. The na”Tiitude of these errors was rather surprising,
so tiiat phases were calculated for k 0, for the four
rare gases, krypton, argon, neon and helluni, for which
the Kartree fields are known. The field for argon Is given
by Holtsmark (70), for neon by Bro%n f71), and for Helium
by McDougall (723,

The results are given in Table 11, in which the
elements are arranged in order of decreasing atomic
numbers. It is known that the exact phase in each case

is an exact multiple of TL

Table II - Phaaea for k — 0 for the Rare QOases.
Sxact Jeffreys*®
Atom. Phase. Approx. Phase.
Kr. 47 4mn”™ 2.742
Ar. ZiT 3 4 1.040
Ne. 27 2T) 4 0*852
He. il M4 0,180

The table shows that Jeffreys* approximation gives
too high a value in each case and that the error decreases
with the atomic number of the element.

A further calculation was carried out to study the
variation of the error in & with k, for krypton, by

Jeffreys* method, for all the values of k for which



"o?wtsmark gives exact phases. The results are given in

Table III and fig. (7).

Table III - Exact and Approximato Values of in Krypton.

k in Exact Jeffreys *
atomic units. value, Approx. Difference,

0 12.566 15*%310 2%742

0*1 12*%709 14%418 1*709

C-2 12*%579 1372950 1*359

0-5 11*975 13.050 1*075

0.7 11.536 12%620 1084

1.0 10.996 12*C24 1028

2%0 9%696 10612 0*%916

The range of k is seen to be 0 to 8. In fig* (7)
are the exact and approximate phases against k, and also
the difference between them plotted against c¢. The latter
graph shows that the error in Jeffreys’ phase at first
decreases rapidly as k increases from zero, and then
becomes almost constant above a value of k = 0*5. It
thus seems fairly reasonable to extrapolate the graph
to higher k to obtain the correction in &.

An explanation of the large error in So can be
obtained if we consider our original assumption in deriving
Jeffreys* approximation, which was that

V) -
(38)
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should val'y slowly with r. The potential energy V(r)
varies as eome Inverse power of the distance r, so that

the rate of variation of a with r depends on the second

two terms of the above expression. The rate of variation
of V(r) varies with r, becoming less as r increases. In
determining , we integrate a” from its greatest positive

zero ro to infinity. Now r” increases with n. Thfts, as
n increases, the integration of ’a* extends over a region
in which it varies more and more slowly with r, that is,
over a region in which our original assumption holds more
and more closely, W would thus expect the higher order
phases to be more accurate than the lower, which is what
is seen to be the case from Table I,

For tlie special case of the zero order phase, the
integration has to extend right to r = 0, that is into a
region in which the field varies very rapidly with r.
Thus our original assumption is not fulfilled and a large
error may be expected.

For atoms of low atomic number the field is not so
powerful and its rate of variation with r is less than
for atoms of higher atomic number. Our original assumption
is thus more nearly fulfilled and we would therefore
expect a better approximation. Both these latter effects
are verified by an examination of Table II,

In the special case of a repulsive field, V(r) is
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positive so that the second and third terms in equation
(38) have the same sign. In this 08se the third term
will Increase the i*ate of variation of a with r as n
increases. Instead of diminishing it as in the case of
an attractive field. Thus v/e may expect the error In
such a case to Increase with n, as was found by Massey
and Mohr. Again for V(r) positive, and n = 0, a has a
positive zero, so that for the case of io the Integration
would not then extend to r = 0. The error in this case
woiild then probably bo less than for an attractive field.
From equation (1) we find that by treating [{<9)
as a function of (00s2Sk - D)*-f sIn”S AT(6) has its
maximum value for *x — (2s-f 1) ~/2; that Is the phases
which are nearest (2s * 1) */2, will have the most effect
on the scattered intensity. The error in So should then
not be serious provided So Is not of the order of
(2s -f 1) /i/2. For krypton So is seen to be Afi for k = 0,
which is as far from the given values (2s + 1) */2 as
possible. The effect of a large error in So will thus not be
serious in this case, since there will be phases of higher
orders which will be close to 37/2 and /2. The effect of
these on 1(6) will be so large, that the error in So will
not be important. The same argument applies to any case
in which 8o is large, say greater than 2/T, which is the

case for small values of k, as seen fi‘om Table III. For



Scattered intensity in atomic units

So in radians

Cu
Error in radians



115.

large values of k and a heavy atom, ¢év might be the

most important phase; the error in it would then be
important and might even alter the shape of the scattering
curve completely. A more accurate method of calculation
would then be necessary.

For phases of small value, i.e. less then 0*5, either
Jeffreys* or Born*s method gives results which are almost
exact.

Previous workers on the calculation of phases by
approximate methods have used Jeffreys* method for phases
greater tlian unity and Born *a for pliases less than 0%S5,
since these were the supposed regions of validity. Inter:
:mediate phases were obtained by drawing phase-order
diagriima.yi*and interpolating on them for those phases not
otherwise calculated.

This method was probably very inaccurate since the
slope of such a diagram varies very rapidly in just the
region of interpolation. The above work has shown that
this is not necessary, at least in the case of krypton,
for which Jeffrey*s method gives results which increase
in accuracy with the order of the phase, and with
decrease in value of the phase. Prom general considérat:
lions of the field and the assumptions involved in the
method, it seems reasonable to expect that this conclusion

will hold for other similar atoms in the case of collisions

with electrons.



TTISORETICAL ANGULAR SCATTKRIHG CURVE FOR 122
VOLT ELECTRONS IN KRYPTON

In order to test the general accuracy of the phases
by the approximate methods, it was decided to calculate
the angular scattering cuz*ve for a certain velocity and
compare the result with an experimental curve® The
velocity ehosen was that for which k » 3, which corres:
;ponds to a beam velocity of 121*6 volts. The phases
were calculated using the same field as in the previous
part of this section. For the phases to Jeffreys’
method was used, and for and 5 Bom’s method. The
scattered intensity I(6?), as defined in a previous section
was calculated from equation (1), It will be In atomic
units, since k and the phases arein these units. The
phases are given in Table IV, andthe scattered intensity,

for each angle, in Table V.

Table IV. « Phases for ka 3for Kr”rPton.
N Si M
9*824 7%003 4*411 1*830 0%980 0*430 0%302
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Table V - Scattered Intensity I(<9) in Atomic Units

for 122-VOIt Electrons In Krypton.

e 0 10 20 30 40 50 60

1«9) 75%21 55*76 22*%18 5*%35 0608 1*57 2*13

70 80 90 100 110 120
1(2) 2-CO 0*%749 0*007 0%*293 0%721 0%*335
6° 130 140 150 160 170 180
1{0) 0*%218 0*%122 0009 0%076 2*56 3*83

In fig. (8) the theoretical curve is plotted as a
continuous linee The region from 20® to 180® is also
plotted to a larger ordinate scale. The circles on the
latter curve are Arnot*s experimental points (73), for
scattering of 121 volt electrons in krypton. The
experimental curve is fitted to the theoretical curve
at one point, since the ordinates of the experimental
cur*ve are in arbitrary units. The agreement is seen to
be very good. Both theoretical and experimental curves
exhibit maxima and minima at practically identical angles.
The theoretical curve also shows & pronounced intensity
of backvvai® scattering between angles of 160® and 180®.
"'Uis effect has actually been found experimentally in
another gas, merciirj” vapour, by Amot (74) where the

angular range of investigation was extended almost to 180®.
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The general conclUY%ions arrived at from the results
of this section are that Jeffreys* approxlmatlon gives
values of the phases which are sufficiently accurate for
all values of n greater than zero; the accuracy increasing
with n. The error in the zero order phase decreases with
the atomic nuinher of the element, and is shown to be
relatively unimportant if 8) is large and not equal to
(2s =+ 1) II/72, Bom *8 approximation Is valid for phases
whose value is loss thon 0*5. Phases calculated by these
methods are shc-wn to give an angular distribution curve
which is in very good agreement with the experimental
curve for the same velocity. The nw.ber of phases required

to detemine the cuiire for 121.6 volt electrons is seven.
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PART 1I1I. EXPERIMNETNTAL.

SECTION S.
DESCRI PTIO" OF THE  APPARATLUS.

The apparatus used in the experiaiental part of
this thesis is essentially of the modified Lenard
type ; that is the beam passes In a strsl*”*t line
through the defining holes, into the scntterlng region
and then into the collecting chamber. In the original
Lenard aoparatua and in the Rainsuucr apparatus, as
used by Brode, the only measurements taken arc chose
of the currents in uhe beron at the bsginnlng and end
of its path. No actuel meusuramants are taken of the
current scattered frou a certain lIcn”,th of the beam.

In the modified form of the Lenard apparatus as used by
Jones and others, this current is measured. Observat:
lions on this scattered cui*rent, in cases where measure:
:ments of the cross section have been made, have been
confined to otudying the total current scattered by all
possible types of collisions, elastic and inelastic.
The cross secti({n obtained in this way is the total
effective cross section, or uhe probability of a coll:
tislon of any type, no particular type being specified
or excluded. 1In cases, however, where the differential
cross section has been measured, that is the intensity

scattered through a certain angle, methods have been
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employed to analyse the scattered electrons. Into
groups with different velocity distributions, thus
separating groups such as the elastically or inelastic :
tally scattered electrons. There are three main methods
of analysis which have all been used by ciffOrent
workers.

Firstly, there is the method or using retarding
potentials to separate out electrons which havo lost
certain amounts of energy. This method has been used
by krnot, In his work on el?stic nryular scattering in
many gaaesy and by Tate and P«!mer and others.

Secend.ly, there le the mothod used by Nicoll and
Mohr, and. by *iUghea and lien and others, of résolut:
fion by .applying an electrostatic field between two
ciuved plates. The electrons p&saing between the plates
are then separated out into groups with the same velocity
any desired group can then be made to pass through the
slits at the end of the analyser and into the collecting
chambor .

Finally there is the magnetic resolution method,
as used frequently for the separation of positive ions
of various velocities by Smyth and. others, and by
Whiddlngton and his co-workers in separating electrons
of different velocities. In this method a magnetic

field is applied in a direction perpendicular to the
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direction of the beam, which is then bent Into the

arc of a circle of radius depending on the velocity and
the magnetic field strength, exactly as In the Ramsauer
apparatus, except tliat In VVhlddington*s apparatus the
electrons are recorded photographically.

In most of these methods, measurements are confined
to electrons scattered through a certain angle; the
total cross section Is then obtained from a number of
angular scattering by numerical Integration. As mentioned
previously the results of this metliod may thus be far
from accurate. Little work seems to have been done on
the direct determination of the cross sections for
particular types of collisions by a method of resolution
of all the scattered electrons at once Into velocity
groups.

Such a method has been devised in the apparatus
to be used here, The method of resolution Is one
employing the first method of above, namely a method of
resolution by grids and retarding potentials.

A scale drawing of the apparatus Is given In fig, (9),
while a photograph of It mounted on its supporting glass
tube Is given In Plate I, All the metal parts of the
apparatus, which was constructed entirely In the
"aboratory workshops, were made of copper with the

exception of the grids, which were of nickel gauze.
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and the filament which was of tungsten. All Joints

on the copper parts of the apparatus were silver soldered;
many of them being rivetted as well. The Joints on the
grids were spot-welded where possible. All the wire

leads to the apparatus were of nickel, except the filament
leads which were of copper, on account of its greater
conductivity and tlie large currents these leads would
have occasionally to carry. The leads to the two outer
grids were of copper for the first few inches, and then
of nickel. This was done since nickel leads were found
to be not sufficiently flexible and also too brittle

to use in places where it was necessary to bend them
frequently. Nickel leads were originally used but they
were found to break easily; considerable dismantling of
the apparatus was then hecessary to effect repairs.

Some considerable time was spent in experimenting
with various types of electron gun. In the first one
constructed, the filament was arranged so as to be across
a diameter of a cylindrical box, with the first defining
hole of the beam at the centre of one of the plane end
plates. The filament itself was carried on two thick
copper wires, which were always as close together as
possible. In tiiis way it was hoped to minimise any
effects due to the magnetic field of the filament heating

current, which might be quite large as, at times.
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filament currents up to five amperes were used. With
this type of gun however it was found impossible to
obtain an electron beam for any energy below 40 volts.
This must liave been partly due to the difficulty of
getting the filament exactly over the gun hole; but there
must have been other causes since experiments with
focussing cylinders round the filament, and variations
of the position of the filament in its containing
cylinder failed to effect any Impz*OTement. This same
effect has also been noticed by other workers with this
type of gun.

As it was desJred to obtain beams of much lower
energy than 40 volts, anothor gun was constructed on the
same lines as that used by Amot (74), The diagram of
the apparatus is given in fig. (9). In this type the
filament is placed along the axis of a cylinder T; the
first beain defining hole being then at the middle of the
length of the curved surface. The potential necessary to
accelerate the electrons to the desired speed is applied
between the filament and the box surrounding it. It
should be noticed that this type of gun is probably much
more efficient than the one described previously, since
there is much less chance of electrons escaping from the
ends of the tube T, while also, since the ends are quite

open, gas will escape easily from the cylinder, and so
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the life of the filament will be longer, and there will
be less chance of low voltage arcs between the filament
and the case.

The dimensions of the filament containing box T
are, diameter 4 21im, and length 2 cms., while in the
first gun the dimensions were, diameter 2 cms., and
length 1 cm. The filament in this new gnn was of
tungsten, 0*2 mn% in dicneter, end about 10 mm. long.
The tungsten was carefully cleaned with fine emery paper
before use. Each end of the filament was spot-welded
to a short length of thick nickel wire. These nickel
ends are clpmued by set screws, in copper posts at each
end c¢cf the filffunont box, so that the filament lies
exactly along the axis of the box and also exactly in
the centre of the length of the box, With this arrangement,
the centre of the filament which is the hottest part and
will thus emit electrons most freely, will be exactly
over the first gun hole. In each of the copper posts
there is a further hole in which the wires leading to
the external batteries can be clamped by set screws.
Each post is itself clamped to a short piece of quartz
tubing which is independently clamped to the main frame
of the apparatus. Again, behind each post, mica plates
are fixed to the frame of the apparatus to act as

insulation should theymove so as to touch the frame.
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The filament is thus well insulated from the rest of the
apparatus,
Three holes Hg, and Hj, each of one mm diameter,

and with bevelled edges, are present in the tube D,
which is silver soldered to the tube T and at right
angles to it. These holes define the beam. The tube D
is 2,cms. in length so that the holes are 1 cm. apart.
The diameter of this tube is also 4 iiau* To the end of
this tube is soldered the first grid The apace inside
this grid forms the field free scattering region. A fter
passing through this space the beam enters the tube E
and the collecting chamber B. The tube E is again 4 mm
in diameter. The electron trap 3 is about 3 cms. long
and one cm. in diameter. The outlet from it is quite
wide but the outlet tube is bent twice, and placed at
the opposite end of the cylinder to that at which the
electrons enter, so as to Insure that B is as good a
collector of electrons as possible, but also gives free
passage in and out to the gas in the apparatus. The grid

stops about 1 mm, short of the tube E, so that they
are electrically insulated from each other. The distance
between the end of tube D and the beginning of tube E
is equal to 2«2 cms., which is then the length x of the

beam for scattering.
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In section (1), the moan free path for electrons
in mercury vapour at a pressure of 10_3 mm. was calculated
to be about 20 cms. A comparison of this value with the
above value of x, namely 2*8 eras, and the dimensions of
the apparatus shows that the probability of an electron,
which has made a collision, making another collision
before it reaches a collector is very small. We can thus
assume that all the results siiown in the experimental
section (7) are due to single collisions.

Coaxial with the grid 0" and the electron beam, are
the two grids Gg and Gg and the collecting cylinder 0,
In the original apparatus the three grids were all made
of fine copper gauze, the wire of which was about 0*1 mm,
thick, while the open spaces of the gauze were also about
0*1 Hm square. Besides being very difficult to construct
with such fine gauze, tlie grids were found on testing not
to pass a current of sufficient intensity to be measured.
Calculations from the dimensions of the meshes of the gauze
showed that the open area was only 25” of the total area
so that the actual intensity collected by C was only
1/64 of the intensity scattered from the beam, which was
much too small to permit of accurate measurement. Three
new grids were therefore constructed of nickel gauze woven
from 36 s.w.g, wire, with a mesh of 20 per inch. The

apertures of the gauzes were found to be 1*08 x 1¥08 mm,,
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so that the transmission or "sifting” area is 71%*. The
grids Gg and 3 which are complete cylinders, are fastened,
by copper rings, into slots cut in Insulating sleeves of
sindanyo. These sleeves slide over the tubes D and E.
The thickness of these s3.eeves is about 1*5 ram., and the
distance between successive grids and between the grid
Gj and the collector C, is 5 ram The leads to the grids
Gg and G are Insulated by thin quarts tubes which can
be easily slipped over the wires, as shown in the figure.
The collecting cylinder C was also originally insulated,
on sindanyo sleeves but the insulation of this was found
to be insufficient when dealing with small currents and
high sensitivity galvanometers. Those sindanyo sleeves
were therefore replaced by quartz insulators which fitted
tightly over the tubes D and E. The right end plate of
the box C was removable, being secured by two small screws
and nuts, in order that the two outer grids could be
slipped inside. The tube & and the collecting box B were
supported by the main frame of the apparatus but were
insulated from it by bushes of sindanyo. A further case
was constructed to fit completely round the frame of the
apparatus so as to shield the cylinder C externally from
any stray electrons from the gur casing.

The apparatus was supported on a Pyrex glass tube

with a large ground glass joint at the end, by means of
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which the whole apparatus could be fitted Into a large
pyrex tube; the diameter of the tube and ground joint
being 5 cms. All the leads to the apparatus, of which
there were seven, entered through tungsten-pyrex seals,
with the exception of the copper filament leads which
were waxed in. The nickel leads were spot-welded to the
tungsten at each end. All the leads were Insulated from
each other by long sleeves of pyrex tubing, while close to
the apparatus the leads were frequently Insulated by
quartz tubing. By means of the ground glass joint the
w||lolo apparatus could easily be removed from the tube for
adjustments and repairs to the filament. The ground
Joint was kept well greased with a hard oacuum grease of
veiy low vapour pressure.

The earth* s magnetic field was balanced out by means
of tv/o pairs of large fielmlioltz colls, 48 cms. In diameter.
One pair was adjusted to equalise the horizontal component
of tho field and the other the vertical component. The
number of turns of wire on the colls necessary to do this
with a current of 0*2 amperes in the coils was first
calculated; the nearest exact number of turns to the result
was then put on each coll. By calculating back and testing
with a small magnetometer, the exact current was found
for each pair of coils. The centre of the four coils

was arranged to be exactly at the position of the scattering
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region where there should then be no field due to the
earth*s field, over quite an appreciable region.

The general arrangemeof the apparatus, coils
and circuit can be seen in Plates (Ii) and (III).

By Means of a side limb in the siain glass chamber
a connection was made through a liquid air trap to a
sensitive McLeod gauge for which the calibration had
been accurately determined. # further side Ilnb, which
was never used during the course of the exnmerimonts on
mei*cury vapour, was provided through which a supply of
another gas might be allcv/ed to enter the collision
ciisppber. This tube can be seen in the Plate (III ) with
an arrangement for letting in a small quantity of a gas,
connected to it. This the author has been constructing
for work on neon and helium.

Thi'OUM:h a small 2 cm. ground glass joint at the
opposite end of the main glass tube to the large joint
a connection was made to the evacuating system through
a liquid air trap again. The pumping system consisted
of an electrically heated, steel Kaye mercury diffusion
pump, backed by an ordinary Hyvac. A trap bottle with
phosphorus pentoxide as a drying agent, was included
between the two pumps. Taps were also included between
the pumps and on each side of the trap bottle. A further

tap beside the Hyvac served to emit air when it was






desired to let down the apparatus. Vithen this had to
be done the air was always let in through a drying tube
so that only dry ait got in. Thus on pumping down again
little trouble was experlanoed due to the presence of
much water vapour, The McLeod could also be cut off
by means of a tap, which was always closed when air was
let in to the apparatusso tliat the mercury in the gauge
had as little chance aspossible of becoming contaminated,
Asmall electrical furnace was constructed to fit
round the oyrex chamber at the position of the apparatus,
so that gas could be removed from the metal of the
apparatus and the glass walls by baking out at a high
temperature. This was done originally at 4500 but later
at about 360*"0. since at tho higher temperature a
metallic vapour, probably zinc was found to come off
the silver solder and settle on the insulation, thus
rendering it conducting. Colls of composition piping
were fitted round the outsides of the two ground joints
so that, by passing water through the pipes, the joints
could be kept cool during baking out and so prevented
from cracking or sticking.
The apparatus was baked out until the pressure became
less than 10"® mm, of mercury with the furnace still on;
the filament was then switched on with the highest

possible accelerating potential applied to it, and the
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furnace was kept on till the pressure again fell bo the
above value. By this means all gas was effectively
removed from the filament box C. If this was not done
it was found that the heat of the filament brought off
a lot of gae from the box C during a xmm, and quite an
appreciable pressure would build up in the apparatus.

A ftir baking out, a pressure in the apparatus, when cold,
of the order of 10*" n&n of mercury or leas, could be
obtained with the filament off, i.e. a sticking vacuum.
During a run the pressure was of the order of 1().4 lum.
of mercury, due to the foreign gas, which was negligible
compared to the pressure of tlie mercury vapour.

When a new filament was put in, it was first of all
run for some two minutes at about 2 to 5 mlllaaraps emission
with the full potential on; and then for a short time at
a large emission, of the order of 100 ma. This was done
in order to remove from the filament.

In the case of the experiments on mercury vapour,
described later In this thesis, no liquid air was used
on the traps. A plentiful supply of mercury vapour was
obtained from the McLeod gauge and the diffusion pump.
The pressure of the mercury vapour was obtained fiom a
knowledge of the temperature of the scattering chamber as
determined by a sensitive thermometer placed as close as

possible to it. The vapour pressure was obtained from
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the Internmational Critical Tables Vol. 111, page 206.
The range of pressures was approximately from 1*0 x 10
to 1*S X 10** mm of mercury.

A diagram of the electrical circuit used is given
in fig. (10), The potentials used were read on a Weston
standard voltmeter. The total emission from the filament
v/as obtained from a mllliamimter (ma.) provided with a
built-in shunt. This instrument was protected by a fuse
from an overload, due to tin electrical short between
the filament and its case C, or due to an arc between
the filament and its ease. The galvanometer which
recorded the scattered current as received by the collector
C was a Leeds and Northrup instrument having a sensitivity
originally of 3 x 10**" amps per millimetre at one metre ;
but a breakage of the suspension caused the sensitivity
to decrease to 5%37 x 10“*"" amps per mm. at which value
most of the results later on were obtained. To measure
the unseattered primary beam reaching the collector B,
a Garabrell galvanometer Gg was used whose sensitivity was
10*4 X 10**" amperes per mm. at one metre. Both
galvanpmeters were used in conjunction with universal
shunts. Protecting fuses were also used. The average
value of the current in the beam was of the order of 10_8
amperes, while the total emission from the filament was

seldom greater tiilan 1 ma, and usually of the order of
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0-1 ma* 3y passing a known current through the galvan:
:omet©Ors from a potential divider, graphs were obtained
of the current against the defleetien for each Instrument,
In both cases the relation was found to be accurately
linear over the whole experimental range, i.e. 0 to

85 cms,, on the galvanometer scales. The sensitivities
of the instruments were obtained exactly from the slopes
of these graphs. In the experimental work the galvanometer
readings were corrected for the sensitivities by multiply:
:ing the readings of one instrument by tlie ratio of the
sensitivities of both*

The current to the filament was controlled by two
resistances, one of a large value and one of a small
value, connected in parallel so as to give a fin© control.
These resistances were kepc cool by oeing immersed in
a bath of oil so as to prevent fluctuaticna in the
filament current and so in the emission fi‘on the filament.

The arrangeaient of the various potentials applied
between the grids etc. is as follows:-

The potential applied to the primary electrons as
they leave the filament is denoted by VQ. It varied
betvjoen 4 and 180 volts. It was derived from a block
of accumulators of 4000-6000 ma, hour capacity. The
filament is heated by a six volt block of large capacity

accumulators, denoted in the diagram by Vf, A potential



V2, obtained from two blocks of dry cells giving about

9 volts, is maintained between grids and 3g, Gg being
positive, so as to stop any positive ions from passing
Gg and reaching the collector C. It lias been shown by
Arnot (75) that the velocity of the positive ions
diffusing from the path of an electron beam is never
greater than about 3 volts. Between the grids Gg and

G%’ a retarding potential V-* for electrons is applied,
By means of the mercury switch S%, this retailing potential
could be changed rapidly from one value to another. Pin:
(ally between the grid G and the collector C there was
a potential Vjj of 20 volts, with Gg negative. In order

to prevent the escape of secondary electrons from C.
These secondary electrons might be brought off either by
impact of the scattered electrons, or by impact of meta;
(Stable atoms, or of photons arising from transitions due
to excitation of the gas atoms by the electrons in the
beam.

The values given to the retarding potential Vp varied
with the objectat' the experiment. %ion it is desired to
obtain measurements of the elastic and total scattering
simultaneously, the two values of Vp obtainable by means
of the switch are adjusted to be (V*-Vp - 4) volts
and I"CVq - )4~ Vp volts respectively where Vi is the

ionisation potential of the gas atoms. With the first
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of these values all electrons are stopped between (g
and. Gg except those which have lost less than 4 volts
energy. The electi*ons collected by C will then be all
the elastically scattered electrons but none of those
inelastlcally scattei“ed, since the first excitation
potential is at 4*83 volts, and any electrons which have
excited this state will have lost this amount of enoxgy
and will therefore be stopped.

For a value of )+ Vp volts it will be
seen tliat both the elastically and inelastlcally scattered
electrons are collected, aa follows -

The energy of all electrons which have excited an
atom in an> way will be (Vg-f volts when they reach
tho grid Gg, v/her© ic tiie excitation potential of the
state which the electron has excited in the atom. Since
V is always less than V, all these electrons will be able
to reach the collector C. Whan ionisation takes place,
however, we have a different result, in such a case there
are two electrons after the collision” the impacting
electron and the ejected electron, wiiere there was only
one before the collision. How we wish to collect only
one of these electrons and since ail the electrons are
Indistinguishable from each other it does not matter which
one we collect. The total energy available to be divided

between them immediately after the collision will be
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VQ- where as before Is the ionisation potential.
Now for every electron with energy greater than half

this amount, there will be one with energy less than
half; therefore if we make the grid Gg, «(VQ-VI) positive
with respect to the filament, the probability is that we
will collect half the electrons available after ionisation
that is® we will collect the sane number of electrons as
those which have ionised atoms. Thus a value of

Vp = |[*I(VQ ¢« Vi) + W'l volte between grids Gg and Gg will
insure that we will collect all the electrons which have
been scattered, elastically and inelastlcally.

k second mercur*” switch Sg Is used to obtain the
value of the potentials Vq, Vp or V» rapidly. The amount
which is to be subtracted off V*+ Vp to get VA is denoted
in the wiring diagram by V#, ?:;hich should not be confused
with an excitation potential.

The switch is necessary when it is desired to
obtain results for the inelastic cross section by
subtracting the elastic cross section from the total,
since if the elastic and total curves were not taken
simultaneously small variations of gas - pressure, filament
emission and position, and potentials of the batteries,
might cause considerable errors in the difference curve,
especially at low voltages where space charge effects

might come in. Such errors had been found to occur when
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taking elastic and total curves consecutively before the
switch was included in the circuit.

In passing thix)ugii the various grids, soifie of the
scattered electrons nay bring off secondary electrons
frora the gauzes. These liiiglit cause considerable errors
in the results if they were included in the scattered
current. However it ic known that uo”it of tliese secondary
electrons iiavo very lev; energies. The ones brought off
from the first and second grids will tlierefore .be stopped
by the retarding potential Vp. Cecondarles brought off
from the thir'd grid would be bble to reach the collector
C. In the case of th': elastic scattering, the energy
of the scattered electrons wien they reach G- is only
4 volts at the most so that they will not bring off many
secondary electrons. Thi, error in tho result should then
not be appreciable. Wiien the Inelastlcally scattered
electrons are being collected, the retarding potential
between Gg and le mu'h less tlisn for elastic scattering,
so that some electrons will reach G« with quite a large
energy. In this case we might expect the secondary
electron emission to be large. However it is shown in
a later section tliat the error in the inelastic curves
is never greater than at low velocities and 10% at
large velocities; most of this is probably caused by

secondary electron emission from Gg but even then tlie error

is not serious.



Any secondary electrons liberated from C as mentioned
before, will be prevented from leaving, by the potential
VH, since these electrons In general have low energies.

Since.~the apertures In the grids are approximately
one millimetre square, and the distances between the grids
are 5 mn,, it is unlikely that there will be any errors
in the results due to the Interpenetration of the electro:
istatic fields between the grids,

A correction is however necessai®y for the stopping
area of the grids. The transmission area has already been
given as 71Jo of the total area, so thct at each grid, the
current will be reduced by the factor 71/100. Therefore
after passing throe grids,'the current will only be
(71/10C)" of its original value. It is therefore necessary
to multiply the current collected by t by this factor
(100/71)~, which works out to be 2*9, to get the original
scattered current. This has been done in calculating the
results for the total cros3 section* it will be seen later
that this effoet does not alter the elastic or inelastic
cross sections. The correction factor is probably only
approximate since electrons may be deflected past the meshes
of the grids and so not be lost from the scattered current,
or vice versa, they may be drawn on to the meshes by the
lines of force. These effects will almost certainly vary

with the velocity, so that they cannot be allowed for.
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We can therefore only use the factor given above, which
on the average,will probably be fairly correct.

Knowing the scattering distance x and the radius
of the tubes D or E with the insulation on them, we can
find the minimum angle through which an electron can be
scattered and still be received by tlie collector C,
Since the thickness of the sindanyo insulation is 1*5 mm,,
and the diameter of the tubes is 4 mm, this angle is
tan*"{0«35/2«2), which is equal to 972%, The largest
angle Is then ISo" - 9° 2' = 170° 58». It should be
noticed that these angles are for scattering just at the
beginning and end of the length x, respectively. Also
at these minimum and maximum angles, the maximum and
minimum angles respectively are 90®, By the integration
method of averaging, the avcr*age angular scattering range
over the whole distance x. Is found to be 25® to 155®,
This however assumes that the scattering is unifom along
the distance x. In practice the scattered intensity
decreases with increasing x, since the beam decreases
exponentially with x. Again since more electrons will
be scattered at the beginning of the path length x than
at the end, and since the majority for most velocities
are scattered in the forward direction, for which for
small X the limiting angle is small, this effective
angular scattering range is probably too small.

No correction has been employed for the fact that
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electrons scattered through certain angles will pass
through the grids obliquely, so that even although

their velocity might be sufficient to overcome the
retarding field, their direction is such that the
component of their velocity in the direction of the field
is not. Thus such electrons which should get through

and be collected, are stopped® The agreement between

the results and the work of other investigators, which

is shown later, indicates that any errors due to this
cause must be quite small. For very few scattering qngles
will the angle between the electron*s path and the direct:
:ion of the field be sufficiently large as to cause a

serious error, due to this cause.
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SECTION 6.

EXPERIMENTAL PROCEDURE AND TESTS OF THE APPARATUS.

The theory of the passage of a beam through a gas
has been given in a previous section (1) where the
following formula was obtained -

(1)
bein”: the Intensity of the bean when it enters the

distance x and I the intensity when it leaves it, and

p the g&s pressure. was shown bo be the cross section
of all the molecules In unit volume unit pressure and
at C”C, The unit if pressure is 1 iiis. of maroury»

is variously called the cross section, tlie absorption
coefficient and the probability of collision.

From the above expression the cross section is
obtained as — 1/xp elosQlg/I™ (2)
This expression gives the total cross section for all
types of collisions denoted by oLA.

In order to determine any specialised type of cross
section, this formula cannot be used. The reason for

this is that neither I nor are effected ANT

by the manner in which the electrons leave the beam, nor
by any velocity analysis which may be applied to the
scattered electrons. In practice IO is determined by

adding the beam current and the scattered current. This
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This cannot give a ccriect result wiien the measurements
of the elastic cross section or the discrete Inelastic
cross sections are being made, since it is equivalent
to neglecting from the beam, Iq, all those electrons
which liglVe made collisions other than of the specified
type. This is obviously wrong since we require to know
the fraction or the total number of elections, which had
started on the oath, which vmc scattered in a certain
manner; and not the fraction of the nimber given by the
sum of tho unscnfctorecl electrons anl the number scattered
i4 the given manner.

The cori'ect which nuct bo used to obtain

the elastic cross sootlor». g 13 -

\ (3)
where is the nuiaber of electrons scattered elastically
from the beam and is the number scattered by all types

of collisions, in the path length x. Multiplying each of
these by the charge on the electron, we obtain the
scattered intensities Ig and .  Thus

ole = (4).
This relation is exact. If Ig and 1" weresmallcompared
to I, equation (2) could be used togive oC @since it
can be shown that It reduces to the above expression.
However for low velocities, I@ and 1" are not small

compared to I, so that the exact relation must be used.
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The exact relation is more simple to calculate than the
approximate one, but it requires a knowledge of the total
cross section OCf

Tho inelastic crosssection can then be found
from the difference of thetotal and the elastic cross
sections, as -

dXY ~ "t (5).

If I- is the intensity scattered duo to electrons which

have excited the atom to ar;® particular energy level,

then the cro?s section A -tr excitation of th? 3 level
is -
or = — (9.
~t
Similarly if and piare the scattered Intensity and

cross section respectively for ionisation to be a certainty,

we get - il o
le

or =2A (Lt
It (7).

The values of Vp used In the determinations of the
elastic and total cross sections have already been riven.
The experimental method is, at each velocity VQ to take
consecutive readings of the two galvanometers, with the
two different values of Vp as obtained by the switch S*.

let the readings of the scattered current be 8@ and St,



147.

with the switch in the elastic and total positions
respectively. If the two readings are done rapidly the
beam current should not vary appreciably; however it was
found that the beam current did Vary, so that we read also
the two values and of the primary unscattered beam
current. The scattered currents are obtained from
galvanometer Gr and the beam ciu»rents from Gg* This
procedure is repeated at each value of VQ.

Suppose that tlie currents st jand are all
in the same units, that is they have been corrected for
the galvanometer sensitivities.

To obtain the total cress section, we see that
I is given by and Iq by 4- 38 where the factor
2*8 is the correction foetor for the stopping power of

the grids as previously explained.

Bt; S*8 Sfc
Thus - At I/xpelog” Bt (8).

From this equation the value of olt c«n be calculated
for various values of VQ, and so the required cross section
curves can be obtained.

The elastic cross section was determined from the

equation (4). It can easily be seen to be given by -

8e» 8t .,

The presence of the B*s in this equation will be discussed

later.



The inelastic cross section is then obtained as
in equation (5).

The method of detemining the discrete inelastic
cross sections was as follows. The switch 8” was used
to obtain tv/o values Vp” and Vpg of the retarding potential
between the grids Gg and 3. The tv/o values used to
obtain an excitation function were Vg-f- Vp-6,, and
Vrg=V q-*-Vp-In these expressions, S, is chosen
to be just below the critical potential of tho level
being studied and is chosen to be just above the critical
potential# The difference between the two scattered
currents and 8" , received by the collector C with the
two values of should then be due to electrons which had
excited the given state and lost energy equal to the energy
of excitation of the given level. For these values of

we have the values and of the primary beam

current. The values of & and Si used in studying the
excitation function of the 4*86 volt state in mercury,
were 4 volts and 5%7 or 6*3 volts respectively. Both
values of #* gave practically identical results within the
limits of experimental error. For the 6*67 volt state 47
and were 6 volts and 7%4 volts respectively.

In studying the cross section for ionisation,
was made equal to (V*+ Vp - 9*5) volts, while for Vpg

was used the value for the total cross section, i.e.
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i-(Vo - VjhD f VA, The difference betnrreen the scattered
currents in these cases should be due to electrons
which have ionised atoms, generally in the simplest
possible manner, with loss of 10'38 volts energy.

The excitation cross sections can then be calculated

(6) in elthei form.

Bax 3..J 5/

(10)
. x 3¢ 44
3, x 5.

or

oimilarly the ionisation cross section Is given by -

“¢- T kK > B.J 5. (11).
since Sio and B,- are the values vWtb V,p the same
as for the total cross section, this expression reduces

further to -

(12).
From these equations a]l the required cross
sections can be calculated.
9
All the results which were averages of a var*&n#
number of readin/*s. were ”“educed to their values at a

pressure of one ram of mercury and temperature of

0°G, The correction factor for temperature and pressure
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I 275
whenever It was used, .was p (275”7 ) where p Is the

vapour pressure In npn, of mercury corresponding to a
temperature of T°G. In cases where the galvanometer
readings had to be corrected directly as In equation
(10) it should be noticed that S/B must be multiplied
by the factor, not S and B sonarately. In all the above
equations for ej*lt& tlon and ionisation cross sections,
X Q oroif® must also be corrected for temperature and
pressure independently of the factor 1% ,l/le,t by which
it is multiplied. In cases such as equation (12) where
the expression is symmetrical 2.nl 3.11 the readings have
been taken tcyethor at esne temperature, the first
factor 1? independent*of temnereture end pressure.

"Ine]ly It shonV be noticed thrt of as obtained
Jfrom equation (2 ) im.tst be corrected for the base of
the logarithms by multiplying by 2505.

In section (7), the left haftd ordinate scale gives
the cross section of all the atoms in one cubic centimetre
in units of while the right hand scale gives

the cross section of a single atom in atomic units**



TESTS ON THE WORKING OF THE APPARATUS.

During the early part of the work before the apparatus

in its final form was evolved, the most usual method

of testing was to connect the second and third grids to
the collector C, thus eliminating all the fields Vp,

VA, and The apparatus could then be used as a simple
Lenard apparatus and measurements could be taken of the
total cross section directly, 3y comparing the results
with Brodefor the same effect in meicuiy vapour (76),
an idea could be formed of the faults in the working
*of the apparatus. By this means the faults in the
original gun were detected. Attempts to obtain total
cross section curves by using the grids and the appropriate
value of the retarding potential, showed that the original
grids were of tOo fine a mesh to pass a current of
sufficient intensity to be measured. For this reason the
new grids of nickel gauze were constructed. Variations
of the value of VQ without the filament on, showed that
there were considerable zero shifts in the galvanometers
due to leaks, across the insulation of the apparatus, and
to earth across the cases of the galvanometers. Great
care had to be taken with the insulation of the galvanom ;
leters. They were finally placed on small ebonite discs

which had a ring of sulphur let into them. The VQ
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accimrulators and the filament batteries were insulated
in the same way. This has been found to be one of the
most effective methods of insulation. Much of the pyrex
and sindanyo Insulation of the apparatus had to be
replaced by quartz® since the insulating properties of
both the forr.ier were found to deteriorate considerably
with rise in temperature and also with time, the latter
being probably due to the deposition of a film of
mercury vapour on them. These effeots (ffo not appear
to oe present to the same extent with quartz, which can
also be cleaned easily by burning off the impurities,
with a blow-pipe flame.

An Interesting fact which was noticed was that
even when the insulation of the v/hcle apparatus and
circuit was as good as possible, there were slight zero
shifts with VQ on the galvanometers, The extent of this
zero shift was found to vary with the state of the
atmosphere. On dry days it was negligible, while on wet
days it was quite appreciable. The effect was worse in the
summer than in the winter. It was concluded that it
was due to leaks over the galvanometer casings to earth
through the atmosphere. This was verified by the fact
a connection to earth on the circuit side of the high
sensitivity galvanometer completely cured the effect in

that instrument. The variation v/ith summer and winter
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must have been due to the greater amount of ionisation,
present In the atmosphere in the sum ler, due to the heat
of the sun.

With the actual apparatus as used to obtain
measurements of the cross sections, a number of tests
of the working were applied.

Velocity distribution curves of the electrons in
the main beam were obtained by applying a retarding
potential between the tube E and the grid Tlie
readings obtained were corrected for variations in the
initiol bean current by employing a mercury switch
similar to 8", by means of which the retarding potential
could be rapidly snitched in and out. The results for
beans of 12 and 100 volts energies are given in fig, (11),
together with curves obtained by differentiating the
velocity distribution curves. Prom these curves it is
seen that the bears are very homogeneous. For the 12
volt beam, the curves shov/ that 90% of the electrons have
energies witMn a 2 volt rangej while for the 100 volt
beam 96" have energies within a range of 1 g volts.

The results of this test were thus very satisfactory.

It was not possible to obtain velocity distribution curves
for the scattered current, showing the various critical
potentials, on account of the background of fast and

slow electrons, which had not been scattered by gas atoms.
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This background effect will be discussed later.

A further test applied was based on the following
argument. The intensity of the beam entering the length
X is proportional to 3-¢'S, while the scattered intensity
is proportional to S. Wow for a given velocity V#, the
scattered intensity should obviously be proportional to
the intensity in the beam at x*0. Thus SoCB”S, which

B+8 A jef

can be written as S where k* is constant for
given VQ. Thus B/S«k* - 1 or S/B«l/(k*- L) Kk where
k is also a constant. This relation should hold for

all types of scattered currents S, elastic, inelastic and
so on. Thus for a given value of S should vary
linearly with B, By varying the filaucnt heating current
and so the emission from the filament, curves can be
obtained for the variations of S with B. Such curves for
a 10 volt beam and a 40 volt beam are given in fig. (12).
The graphs marked (li are for the total scattering, and
those marked i 2) for the elastic scattering. The curves
are seen to be quite good straight lines, in agreement
with the discussion given above. The region of linearity
of the curves is the region in which measurements were
made in determining the experimental cross sections.

A further test which was applied was to connect the
third grid Gg to the collector C, and then apply potentials

between grids and Gg and the collector C in the manner of
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Davis and Goucher”s nfethod for detezmining critical
potentials (77). By this means curves similar to the
results of these two workers were obtained, knowing the
ionisation potontlal of mercuzy to be 10*38 volts, the
correction to the experimental voltage scale necessary
to bring the observed ionisation potential to the correct
value, was found. This correction was caused by the
potential drop along the filament and also by stray
contact potentials in the apparatus. The correction was
fount- experimentally by this mothod. to be only a few
tenths of a volt, which value is within the limits of
experimental error, so that no value of the correction
is apparent from tliis"method. A coivcction of about one
volt is applied to tho excitation and ionisation curves,
having been indicated by the retarding potential curves,
and being necessary to make them extrapolate to their
appropriate critical potentials.

Tost runs made with liquid oxygen on the traps,
showed that there was a background scattered current of
qyite large magnitude at moderate and low velocities.
Tills background, the effects of which on the experimental
results will be discussed fully in a later section, is
apparently due to slov/ secondary electrons brought off
from various p#arts of the apparatus by the primary'

electrons in the beam and scattered current, and alsW to



167.

electrons which reach the collector U due to tho

spreading of the beam. A number of tests were carried

out to try and reduce this effect due to the spreading

of the beam. The final hole of the gun was carefully
bevelled and smoothed to remove rougimecs ; the filament
was tried at various positions In Its box, in atteinpts

to obtain a focussing effect; and finally the final gun
hole and the first grid v/ere coated v/Ith soot as this

had been found, by many workers to reduce secondary emission.
None of the modifications produced any Improvement however.
The sooting was especially troublesome since it was
difficult to keep it from the Irsnlfttion of the grids and
collectors on which it formed conducting layers, wliich

were excoedlngly difficult to remove.
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SECTION 7.

EXPERIMENTAL RESULTS PGR THE CRBSS SECTIONS
OF THE MERCURY ATOM

For the total cross section of the mercury atom
some thirty results extending over a number of months
were reduced to unit pressure at O®C. and then averaged.
The range of energies was 4 to 100 volts. The results
are shown In fig. (13) along with Brode*s curve also
for the total cross section. It will be seen that the
experimental curve agrees in absolute magnitude with
Brode*8 curve at 60 volts, but that above this value
It falls off more rapidly, and below this value It rises
more steeply. The value of the total cross section at
180 volts Is approximately lialf that obtained by Brode,
while at 4 volts the value Is some eight times Brode *s
value.

This large difference Is almost certainly due to
the beam spreading at low energies and not entering the
tube E. This would have the effect of increasing
IQ 1 In equation (2), Section 6, by substractlng an equal
amount from both numerator and denominator of this
fraction since Io”I*in addition the beam may become so
diffuse that some of It may pass through the grids and

reach the collector C, thus further increasing IQ and so
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since Iq 1s experimentally determined by being
given by Ig4- X, where is the scattered’ intensity.
This explanation was further substantiated by the tests
made with liquid oxygen on the traps. When this was done,
theoretically a negligible scattered current should be
obtained, actually in practice, zero current is obtained
down to about 50 - 60 volts, below this a scattered intensity
increasing with decrease in Vq 1s obtained. It had been
hoped to be able to apply a correction to the total cross
section curves by substractlng the cross section obtained
with liquid oxygen frorr- the experimental total cross
section. This however was found not to be possible since
with liquid oxygen, the beam spreads at low voltages even
more than with gas in the apparatus. As has been explained
in a previous section, most workers overcame this difficulty
bybusing an equation for the intensity I of tho beam
in the form I** k1Q k being a factor depending
on the velocity. By using two or more different values
of p, k can be eliminated and the correct total cross
section determined. This method was not possible in the
case of these experiments on mercury~ since to vary the
pressure of mercury requires a change in temperature. A
rise in temperature, however, as explained previously,
causes the insulation of the grids and collectors to

deteriorate, and thus cannot be used.
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The more rapid fall of the cross section at higher
energies than 60 volts was probably due to the loss of
a number of electrons scattered forward through small
angles, since angular distribution experiments have
shown that at energies of ICC volts and over, the
scattering per unit angle shows a large maximum at small
angles, less than about 30”". The angle decreases with
Increasing velocity, so that we would expect the agree:
:raent to become steadily less as the energy is increased.

On account of the wide deviations of the experimental
values of the total cross section from Prode*s result,
which has been found to be in good agreement both in
siiape and absolute magnitude v/ith the results of annumber
of other workers, it was decided to use Brode’s values
for the total cross section as n basis in calculating
the elastic and inelastic cross sections.

In the calculation of tho elastic cross section
from equation (4), section (6), Brode*s values for A
have been used, and also the average of eighteen sets
of values for the elastically and totally scattered
intensities and 1", at each voltage. Since the values
of Iq and It i.e. S¢/BQ and St/Bt, are always taken at
the same temperature and pressure for each set, no
correction is necessary in le/lt for these latter. An

error might be introduced into cL " due to the spreading
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of the beam but this Is discussed later and it is shown
there that the error is probably quite small.

The elastic cross section curve obtained by this
method is shown in fig. (14), along with Brode*s total
cross section curve and the inelastic cross section
curve obtained from their difference. The interesting
features of the elastic cross section curve are, that
it shows a monotonie decrease of cross section with
increasing velocity, and that the simll maximum which is
present in the total cross section curve at 35 volts
does not appear In it. Brode has postulated that this
maximum is due to a rapid increase of the probability
of ionisation at this energy; tho above results further
strengthen this view. A very slight change of slope
at 14 volts energy in the elastic curve is probably due
to experimental error.

The inelastic cross section rises from zero at about
the first excitation potenti»1l, to a broad maximum at
about 40 volts and then falls steadily as the energy
of the electrons is further increased. The small maximum
and klnimum at low voltages may be due to experimental
error, or they may be due to the sudden onset or rapid
increase of the excitation of discrete levels in the
atom at these particular energies. It is interesting to

note that if, at each of these points at low energies.
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where an upward change of slope occurs as the energy Is
increased, the direction of the curve be extrapolated

to zero cross section, the value of the energy obtained
lies at one of the main critical potentials of the
mercury atom, lliis, liovvever, may only be an interesting
coincidence. Too much attention siiould not, therefore,
be paid to it.

The only other experimental results for the inelastic
cross section which can be obtained, are to be had from
Tate and Palmer’s work (7B). They have integrated their
angular disti’ibution curvee for excitation and ionisation
and so obtained curves for the excitation cross section
and the ionisation cross section. By adding these curves,
wo obtain the inelastic cross section. Their energy
range is BO to 700 volts, so that not much comparison
is possible. The solid points appearing in fig. (14) are
Tate and PaLaer’s values for the inelastic cross section
at 80, 100 and 180 volts. The agreesient is seen to be
quite good, especially in the case of the 180 volt point

which lies exactly on the author’s curve.
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IONISATION AND EXCITATION CROSS SECTIONS.

In figure (15) la given the curve for the
probability of Ionisation obtained from equation (12),
section (6), using Brode*s values for the total cross
section. The curve for the efficiency of ionisation
as determined by Bleakney (79) is also given, A number
of workers have obtained curves for the efficiency of
Ionisation with quite good agreement between their
results; Bleakney’s being a typical curve* The method
used by him. Is one in which the positive lons are
recorded. It has been fully discussed In a previous
section, and the differences between the method and the
one used here have been fully dealt with. The conclusion
arrived at was that since , author’s method Involved
measurements of the number of electrons which Ionised
the atom, by ejecting the most loosely bound electron,
while Bleakney*s method Included Ionisation by ejection
of any electron, or more than one electron, the results
might differ considerably.

The agreement between the curves In fig. (15) la
then possibly as good as can be expected from two such
totally different methods. It chould be noticed that the
method used In this work would Include electrons which

liad lost about 10 volts energy by exciting an atom twice
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This however would probably require two separate
collisions which has been made very unlikely by suitable
choice of the gas pressure, Agaln® it should be noticed
that the method might Include at high velocities some

of the electrons which had ionised ar atom by ejecting

an electron other than the most loosely bound one, or by
ejecting more than one electron In one collision. The
next Ionisation potential for single Ionisation Is of the
order of 30 volts, and since It has been shown by Tate
and Palmer and others that, when ionisation takes place,
it is most probable that the available energy will be
divided between the impacting electron and the ejected
electron so that one of them takes the most of it, we
would expect to collect some of tho electrons which had
ionised the atom in this way v/hen, *v4‘*"0 ~ 20%4)"VQ - 30
i.e. when VQ* 50 volts. Since the probability of ionisat:
:ion in this way is quit© small at moderate velocities and
since owing to the division of the available energy
between two electrons we are not collecting them all with
a retarding potential of j*§(Vg - 10) volts, the
effect of ionisation In this manner can be neglected in
the experimental results obtained by the method used here,
at least in the energy range up to 180 volts. To cause
double or treble ionisation of an atom will require

even more energy than for the above method of single ion;
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!isation and so any error due to this effect Is also
quite negligible in the given velocity range. It is
thus seen that we are here most probably measuring the
probability of single ionisation by ejection of the most
loosely bound elootron, which process requires an amount
of energy equal to 10*08 volts.

Prom a comparison of the experimental curve with
Bleakney*s curve, it may be conoluded that the apparatus
is working verj® satisfactorily, especially in the method
of analysing tho scattered electrons into energy groups
by means of the system of grids, and also in the method
of collecting the electix>ns, both seattoz*ed and unscattered

The experimental ionisation ciuve shows a steady
rise from the ionisation potential to a broad maximum
at about 65 volts of about 33 cni®*/cm” value. Beyond
the maximum tho curve falls again fairly steadily. The
email maximum at about 15 volts energy will be discussed
later, where it will be shown tfiat it la not due to
ionisation. Bleakney*s curve exhilbits a broad maximum of
about 25 cm”/em® at 80 volts energy. The difference
between the curves at low energies is very small, and
also at high energies, between 150 and 180 volts the
difference Is seen to be decreasing. Both these facts
will be seen to be important when the error in the

experimental curve is discussed later.
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The experimental results for the cross sections
for excitation of the (4*86 volt) state, and the
22?X {6%67 volts) state from the noz”sal state are shown
in fig* (16). They have been calculated from equation
(10), section (S), It should be noticed that the scale
of electron energies has been cliangod at 30 volts. In
both these curves and in the lIonisation cross section
curve a correction of one volt has boen applied to the
voltage scale; one volt being added to the experimental
energy values. This correction was obtained from the
velocity distribution curves shown In fig. (11), it
being found that in general the voltage spread of the
main beam was approximately 2 volte, the upper limit of the
energy being the point corresponding to the actual
potential applied to tlie beam as measured by the voltmeter,
so trial the average energy of the beam was one volt less
than this recorded value. With tills correction the
excitation and ionisation curves v/cre all found to extra:
rpolate to the correct critical potential. No correction
has been applied for the velocity distribution of the
electrons in the beam, since the results of the retarding
potential curves as given in fig. (11) show that tho
beam is sufficiently homogeneous to make this coreection
unnecessary. If a correction were applied for this

effect it would have the effect of making the maxima
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maxima In the curves slightly more sharp, and possibly
of making them move in to slightly smaller energies.
For the triplet state, the 4*So volt level,
the crocs section curve rises fairly quickly to a
maximmi at 7 volts of about 15 ecm'"/ecm” and then falls
sl'iarply to a value of about 4 remaining fairly
constant at tnis value as tue electron energy Increases
up to about 40 volts. “>oyond tnis poinu it ateaciily
decreases v/ith increasing energy. Comparing this curve
with the theoretical curve for the same state given by
Penney (80) and shown in fig. (6> In a previous section,
we see that the agreement is remarkably good. Penney’s
curve shows the finite and appreciable probability of
excitation of this level at relatively large velocities,
which is actually shown in the experimental curve.
Excitation of intercombination transitions such as the
i state from the IISQ ground state has been discussed
in a previous section, where it was shown that they could
only take place by electron exchange, if the interaction
between the orbital and spin motions was small as in
the case of light atoms, and since the effects of electron
exchange are only appreciable at low energies, the
excitation probability falls rapidly to zero for such
levels in light atoms. In the case of the mercury atom,

the interaction between the spin and orbital motions is
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strong, so that excitation of the triplet state from
the singlet ground state has a flnice probability at
relatively large energies, since electron exclmnge is
not necessary. This effect is aiiown in tne experimental
curve.

Larche (31) by an optical method has obtained the
excitation function fort lie corresponding triplet state
2% In cadmium, v/hich is a similar anom to mercury.

His curve agrees well v/ith the curve suovori in fig. (13)
except tliat his maximum Is more shai’p. In A previous
section the probable cause of difference between the
results by the optical and el”'jctrical methods were
discussed and it was concluded that the two methods would
not necessarily give the same result. The agreement
between these curves is then very interesting.

Most of the work done on the excitation function of
this state in mercury has been done by tlie optical method.
The results of other workers by this method are reviewed
by Ostensen (82) who concludes that the agreement is
quite good as to the shape of the curve; some variation
in the absolute magnitude is however found. The general
result is that a tall sharp maximum is found between 6
and 7 volts energy. Whitney (83) by an electrical method
found the maximum to occur at about 7 volts. The
experimental value of 7 volts found by the author, is

in good agreement with most of the previous work. As
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mentioned above this value would be slightly less for a
perfectly homogeneous beam.

The excitation function for the 27?" state, 6%67
volts energy, is also given id fig. (16). An interesting
feature of this curve is a marked change in slope at
about 13 volts. A study of Whitney’s experimental curve
for this state and also Larche*s curve for the same state
in cadmium, shows the same Inflexion at about the same
position. Comparing the experimental curve with the
theoretical curve obtained by Penney, we see that Penney*s
curve shows a broad flat maximum at about 15 to 20 volts,
while the experimental curve shows a sharp maximum. If,
however, the experimental curve is treated as having a
broad flat maximum with a sharp maximum Imposed on it, as
shown by the dotted line in tho figure, the agreement
between theory and experiment Is much better. Doing this
removes the inflexion at 13 volts. Both the sharp maximum
and the broad maximum occur at 15 volts. Returning now
to the lonisation curve, we see that a small maximum and
minimum were obtained there also at approximately 15 volts.
The height of tiie maximum above the mlIn curve Is seen to
be approximately 7 cm”/cin®, from both the excitation and
the Ionisation curves. This It seems likely that in both
these curves we have a sharp maxlmimi imposed on the main

curve at about 15 volts energy.
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A further argument in favour of this can be obtained
from a study of the experimental procedure. The energy
losses corresponding to the two curves considered in
tile last paragraph are 6*67 and 10*38. If this subsidiary
sharp maximum is to occur in both curves, it must be due
to a transition having energy lying somewhere between
these two values® For a strictly homogeneous beam only
those electrons which had lost 667 and 10*38 volts
energy would be collected, in deteminlng the respective
curves. But in making the experimental readings, all *
electrons with energies between 6 and 7*4 volts are coll:
cected for the singlet excitation function, and all those
which have lost more than 9%6 volts energy for the ionisat:
sion function. Tlie energy spread of the beam has already
been aliown to be about 2 volts, willoh would thus bridge
the gap between the tv/o values 7.4 and 9%5 volts, so that
some electrons which had excited a transition midway
between these values would be collected in both curves.
This seems to explain the irregularity in both curves at
about 15 volts. An examination of the lower stationary
states in the mercury atom shows that there is an important
state at 8*8 volts energy, the 5 Dg level. It therefore
seems likely that the subsidiary sharp maximum at 15 volts
energy is due to excitation of this level. At 8*8 volts

there is also present the triplet state, 3 1)3,2,1» hut it
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Is unlikely that the peak is due to excitation of this
level, since it has already been shown that triplet states
have a maximum probability of excitation ver*y close to
the excitation potential.

The sharpness of the peak is probably due to the
fact that singlet D states in general shew a sharper
maximum than do singlet P states, in results obtained by
optical methods.

If we adopt the assumption tiiat this maximum is due
to this singlet D state, we can derive the general trend
of the excitation function for this level. It must rise
fairly sharply to a maximum at about 15 volts energy and
then fall again fairly sharply beyond this point. The
height of the maximum is also seen to be about 7 cm”/cm”.

The shape of the 6*67 volt state is then seen by
the dotted curve. It has a broad flat maximum at about
15 volts, and falls off slowly beyond the maximum. The
height of the maximum is about 15 cm”/cq?”.

Again, a comparison of the experimental curve*and
Penney*s theoretical curve, shows quite a good agreement
at least up to the maximum, which is at approximately
the same position in both curves. Beyond the maximum the
theoretical curve falls off more slowly than the experiment:
:al. As has been mentioned before this can be explained
by the fact that at higher velocities the majority of

electrons are scattered forward through small angles after
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exciting the given state. Many of these electrons
w ill not be collected on account of tho lower limit of the
angular collecting range being too large.

The relative magnitudes of the maxima for the
23 and the 21 states are by no means in agreement
with the values obtained by Penney, In the experimental
work they are almost the same, while in the theoretical
paper the singlet transition has a maximum about four
times the value of the triplet maximum.

Finally a comparison may be made of tho absolute
magnitudes of the cross sections at the maxima of the
various experimental curves, with the values obtained
by other workers.

For the 2 P» state the result obtained by lanle (84)
and also by Sponer as calculated by Hertz (85) from
her results, is 1«1 cm”?/cm”, Whitney however finds a
value of 34 cm /cm”* The author*s result is 14%6
cm”/cm”, which being midway between the twp previous sets
of results does not decide In favour of either.

In the case of the singlet state 2*P%, //hltney
gives a value of 7 cmz/gm?’, while Brattain (86) does
not give an exact value but estimates it at between

4*3 and 13 cm”/cm”. The result obtained in this work

is 15 cm'*em”.,, which is in fair agreement with both



the above.
Whitney*s value for the 37"Dg state ia 3*4
while the experimental value Is of the orier of

7 om”/om*.
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A FURTHER TEST ON TIB WORKING 0.? THK APPARATUS AND

A DISCUSSIOK OF THE POSSIBLE ERRORS.

Using the various experi.nontal results given above
for the ionisation and excitation cross sections, we can
obtain a very interesting and conclusive test of the
satisfactory working of the apparatus. We have excitation
functions for the states which we
know from Penney’G theoretical work, and the experimental
results of many other investigators, such as Schaffer;
rnicht and others, who have studied the excitation
functions for a great number of transitions in the mercury
atom, tviat these transitions along with the Ionisation
transitions are by far the most probable in the energy
range used in this work. If therefore the cross sections
for excitation of these states, and the ionisation cross
section be added together, we should obtain a curve for
the inelastic cross section. This curve can then be
compared with the inelastic cross section curve as obtained
previously by substracting the elastic cross section from
the total cross section. It should be noticed that all
the component excitation and ionisation cross sections
for the former inelastic cross section curve are obtained
independently; so tliat if they add up to give a result in
agreement with the inelastic cross section obtained by

the other, entirely different method, the result should
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be very conclusive of the accuracy and reliability of
the method.

The results for the inelastic cross section as
obtained by the two methods are given in fig. (17); the
upper curve being the inelastic cross section determined
by the difference of the total and elastic cross sections,
and the lower curve, the sunriation of the excitation and
ionisation curves. It should be noticed that the excitation
function for the state must only be included once,
although it is present In both the singlet excitation
function curve and also in the lIonisation curve. The
figure shows that the curves are Ir. excellent agreement,
the only differences being a small vertical displacement
throughout the entire energy range, and a small horizontal
siilft of less tlian lialf a root volt.

It can be shown as follows, that this vertical
displacement is in all probability due to the ejection
of slow secondary electrons fron the grids and final hole
of the gun.

The formula used to obtain the elastic cross section
was -

e - leAt "4 (1)
Nov; consider the case of what happens to any slow electrons
moving towards the collector C from the scattering

region inside the grid or from the grids or Gg.



N

£.i.ecr/<u/v i/atoc/ry, 'a/ M/b%

ei/iST/c ¢ /?0is Si-¢TiOfv

SuM of 6itc/T/9T/OA/

ANo I O/V>8* o/v

179.



180.

3y slow electrons we mean electrons which are considerably
slower than the electrons in the beam; and when we speak
of fast electrons during this discussion we mean electrons
which have practically the saume energy as the electrons

in the beam.

Tho slow electrons may arise from secondary emission
from the grids or the final gun hole, or they may be due
to the beam spreading ao much as to strike the grid
directly, in which case a number of electi'ons both
primai’y and secondary would be scattered with low energies
towards grid Gg. When these slow electrons passed into
the field between the second and third grids they would
be stopped if the retarding field was large enough. This
would be the case if the elastic cross section was being
measured. However when the field has its value for the
total cross section measurements, some of these slow
electrons would have sufficient energy to overcome the
field and roach the collector G. Thus would be
increased by these electrons and would be larger than it
ought to be. Therefore as given by the above equation

would be too small, and the inelastic cross section
, A f would be too large. Throughout this
n At A
discussion A is Brode*s value which is of course assumed

unaffected by any of these experimontal discrepancies.

Again consider the effect of these slow electrons
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on the excitation and ionisation cross sections. These
latter cross sections can be both represented by the
single equation ar A I/r~t *~ t* (2).
Since in determining the field between 3™ and "3
only varied by a small amount from its value for the
elastic measurements, and since is the difference
between two scattered currents for which the retarding
potentials are oractically identical, will be pract:
tically unaffected by the presence of slow electrons.
They will be included in however as before so that
tho experimental values of 'X” will be smaller than they
ought to be. A

The effect of these slow electrons on the ionisation
cross section ia not so simple. The ionisation cross

section can be v/ritton as

i= (3)

whore 9% 5 is the current to the collector C when a
retarding potential of (VA" Vp - 9*5) volts was applied
between grids Gg and Gg. JiOV if is increased by the
presence of slow electrons, then the part in brackets
will be increased so that the value of * ”~ will be too
large. The retarding potential used is however consider:

jably smaller than for elastic scattering so that we

would expect some secondary electrons to be included in
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Ag *s5 * the number of secondaries in Ig.5 is increased,
it is easily seen that the error in (C will first of
all decrease to zero and then increase on the other side.
Now from an examination of the results given in fig. (15)
for the ionisation cross section along with Bleakney’s
value, it is soon that the difference between the curves
is small at lev/ velocities end also at high velocities j
the large difference at Intermediate velocities seems
unexplainable, but It appears reasonable to expect that
it is not due to slow secondary electrons, but rather to
some difference inherent in the methods of measurement.
Involving possibly the types of Ionisation included by
éach method. Thus we conclude that the effects of slow
secondaries are small in the case of the ionisation cross
section.

Now consider the case of secondaries brought off
from the third grid. All these electrons will reach the
collector C since there is the field Vg drawing them to
C. It is well known that the number of secondaries
increases with the velocity of the primaries up to a
velocity of a few hundred volts, and also that the energy
of the secondaries is always small. In the cases when
Ig or I" are being measured, the velocity of the primaries
on reaching the third grid is small, i.e. always less

than 7*4 volts so that they will not bring
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off many secondaries. In the case of the velocity
of the primaries is appreciable ; they may therefore bring
off a considerable number of secondaries. The net effect
of this, is that the elastic and excitation cross sections
will be further decreased by the secondary electron
emission. The same argument will apply to the ionisation
cross section except that Ig.g will again include some
secondaries, since the velocities of the primaries on
reaching Gg will be larger than for the elastic and
excitation cases. Thus the ionisation cross section may be
further increased or decreased according as tho number of
secondaries included In y«(/)\ varies.

If we now study the curves given in fig. (17), we
w ill see the extent of the errors due to secondaries.
kt low energies, say less than 16 volts, most of the
inelastic curve is due to excitation cross sections, since
the ionisation cross section is small and decreasing
there. We find that the inelastic curve, obtained by
adding the discrete cross sections is sm;aller than the
curve obtained from the difference of the elastic and
total cross sections by about 11,. Above we have shown
that excitation cross sections are too small, and the
inelastic cross section by the difference method, too
large due to slow secondaries. The true inelastic curve

might therefore be expected to lie between the two curves
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In fig. (17), The error due to secondary electron
emission at low energies is thus not greater than 6%,
which is quite a reasonable value.

At high energies, the inelastic cross section is
mostly due to the ionisation transition. At these high
energies, the retarding potential between the second and
third grids will be sufficiently large even when is
being measured to atop all secondary electrons, which
required to pass through it to get to the collector C,

The only secondaries which could reach C in this case

would be those brought off from The energy of the
electrons reaching in the case of measuring will be
much greater than in the case of measuring so that

the secondary emission from Gs will be much greater for
Ij., and so as shown above the ionisation cross section will
be increased due to secondary emission. From fig. (15),
we see that at high energies the difference between the
experimental ionisation cross section and Bleakney*s curve
is only about 10/t. We therefore conclude that at high
energies the error due to secondary electron emission is
not greater than 10”, Thus over the whole energy range
the error due to secondary electrons increased from about
6/ at the lowest energies to about loy at the highest
energies of the experimental range. Neither of these

values amounts to a serious error.
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The difference between Brode*s total cross section
and the experimental cross section has already been
discussed. The conclusion was that the difference at
low energies was probably due to the spreading of the
beam, which prevented some electrons from reaching the
collector B, and also brought more into the collector
C. Most of these extra electrons which leave the beam,
not due to a collision but simply due to diffusion,
owing to the mutual repulsion of electrons for each other,
will be fast elections, so that if they pass through
the grids without hitting anything, they will reach
tho collector C and be included in the scattered current
no matter how It was being measured.

In the case of I*"I” since I3 is always less than
It, the effect of the addition of a constant quantity
to both the n”mierator and the denominator will be to
increase the fraction. Thus Q@ will be increased due
to the presence of these fast electrons. Previously it
was shown that the presence of slow electrons decreased
oCo* 1t can now be shown that the combined effect of
these slow and fast electrons together will probably be
quite small, for deteiminations of

Measurements taken with liquid oxygen on the traps
have shown that there is a certain ”background”

scattering when both elastic and total cross section
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measurements are being taken; this backgi®ound is of
course due to the faet and slow electrons mentioned
above. Now if the scattered intensities actually
measured with gas in the apparatus for the elastic and
total cross sections are ¢ and t respectively, while
those measured with liquid oxygen on the traps are

and and if the true scattered Intensities due

€ t
to gas only are Ij, and Ip, then we have that -

I* = 1Ip 12 and la ~r A 4).
Now suppose that for a given velocity, I" = k¥*I®
and I;_= k'I:T (5) where k is a factor depending on the
velocity. It really represents the fact that at a given
velocity the background is proportional to the total
intensity passed by the corresponding retarding potential*

Substituting back we obtain -

= Ir/O-k) and I* = "jC*(1-k) (6).
Therefore I*/la = (7).
That is the ratio actually used in calculating the

value of ocg is the same as the true ratio I*1Ip,
without background. 3y using the liquid oxygen curves
and the experimental curves with gas, the relation (5)
was tested and it was found to hold approximately. Thus
the error in calculating oC” is probably not so serious

as might at first appear.



For the cases of both excitation and ionisation

cross section measurements, these fast electrons will

increase denominator in every case but will not

effect the numerators at all since in each case the

numerator is the difference of two currents, each of

which will include the fast electrons,

so that on

substraction the effect of these electrons will disappear.

The general effect of tho fast electrons will be to

reduce the value of the excitation and ionisation cross

sections. From the comparison of the ionisation curve

with 3leakney*s we see that the expoilmental curve gives

larger cross sections than Bleakney’s.
concluded that the effect of these fast
small. They probably leave the beam at

that they are stopped by the sleeves on

It is therefore
electrons is
such small angles

which the grids

are supported and thus do not get into the scattered

current,
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