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ABSTRACT 

We begin our study of amalgamations by examining some ideas 

which are well-known for the category of R-modules. In particular 

we look at such notions as direct limits, pushouts, pullbacks, 

tensor products and flatness in the category of S-sets. 

Chapter II introduces the important concept of free extensions 

and uses this to describe the amalgamated free product. 

In Chapter III we define the extension property and the notion 

of purity. We show that many of the important notions in semigroup 

amalgams are intimately connected to these. In Section 2 we deduce 

that 'the extension property implies amalgamation' and more 

surprisingly that a semigroup U is an amalgamation base if and only 

if it has the extension property in every containing semigroup. 

Chapter IV revisits the idea of flatness and after some 

technical results we prove a result, similar to one for rings, 

on flat amalgams. 

In Chapter V we show that the results of Hall and Howie on 

perfect amalgams can be proved using the same techniques as those 

used in Chapters III and IV. 

We conclude the thesis with a look at the case of rings. 

We show that almost all of the results for semi group amalgams 

examined in the previous chapters, also hold for ring amalgams. 



DECLARA TIONS 

CERTIFICATE 

ACKNOWLEDGEMENTS 

ABSTRACT 

INTRODUCTION 

CHAPTER I 

Preliminaries 

2 Indecomposable 

3 Direct limits 

4 Tensor Products 

5 Flat U-sets 

6 Absolutely flat 

CONTENTS 

U-sets 

semlgroups 

CHAPTER II FREE PRODUCTS AND AMALGAMATION 

Free extensions 

2 Amalgamated free products 

CHAPTER III EXTENSIONS AND AMALGAMA nONS 

The extension property and pure sub U-sets 

2 The extension property and amalgamations 

CHAPTER IV FLATNESS AND AMALGAMATION 

Flatness, quasi-flatness and free extensions 

2 Flatness and amalgamations 

Page 

i 

i i 

iii 

iv 

6 

6 

17 

21 

41 

51 

66 

69 

69 

73 

82 

82 

99 

106 

106 

116 



CHAPTER V PERFECT SUBMONOIDS AND AMALGAMA nON 119 

CHAPTER VI EXTENSION AND AMALGAMA nON IN RINGS 126 

Direct limits, pushouts and pullbacks 

2 Extensions and free extensions 

3 Free products with ,amalgamation 

4 Extensions and amalgamations 

REFERENCES 

12e 

129 

137 

139 

142 



-1-

Introduction 

Let K be a class of algebras all of the same type. The 

definition of an amalgam will be considered more carefully in 

Section 1 but for the moment we may think of it as a family 

(B.). E I of algebras in K intersecting in a common sub-algebra 
l l -

A, called the core of the amalgam. It is clear that U 
iEI 

B. need 
l 

not be a member of K. The main question is: can we embed the 

'partial algebra' U B. in an algebra C E~? If we can we say that 
i Ell 

the amalgam is weakly embedded (or embeddable) in C. If in 

addition this embedding can take place 'without collapse', that 

is to say the intersection of the algebras B. in C is isomorphic 
l 

to A, then we say that the embedding is strong. If every amalgam 

from K can be (weakly, strongly) embedded then K has the (weak, 

strong) amalgamation property. A recent paper by Kiss, M~rki, 

Prohle and Tholen gives a comprehensive description of a wide 

class of algebras with or without the amalgamation property. 

For example, the classes 

(1) groups, 

(2) abelian groups, 

(3) finite groups, 

(4) R-modules, 

(5) S-sets, 

(6) lattices, 

(7) Boolean algebras, 

all have the strong amalgamation property, while the classes, 
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(8) fields, 

(9) distributive lattices, 

(10) Banach spaces, 

have the weak but not the strong amalgamation property. 

There are however some classes which do not have even the weak 

amalgamation property, notably rings and semigroups. For example 

let U = {u,v,w,O} be a four element null semigroup. Let S = U u {a}, 

with au = ua = v and all other products equal to O. Let T = U u {b}, 

with bv = vb = w and all other products equal to O. Then Sand Tare 

semi groups with a common sub-semi group U. Suppose that this amalgam 

could be embedded in a semigroup P, say. Then in P we have 

w = bv = b(ua) = (bu)a = O.a = 0 

and so we have a contradiction. We can of course confine our 

attention to a subclass of the class of all semigroups. A great deal 

of work in this area has been done by, for example T E Hall and 

G Clarke. In fact Clarke [£] has effectively managed to reduce 

the problem of determining which varieties of semigroup have the 

weak (strong) amalgamation property, to a group theoretic one. 

The question thus arises: under what circumstances is a 

semigroup/ring amalgam embeddable in a semigroup/ring? 

The problem for rings was first tackled by P M Cohn in 1959. 

His results and techniques were of a homological nature, using 

R-modules and tensor products of R-module·s. He proved among other 

things, that if (\) i E I is a collection of rings with a common 

subring R, and if each S./R is flat as an R-module then the 
l 

amalgam lS strongly embeddable. Probably one of the most 
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important parts of this work was an extremely useful description of 

the amalgamated free product in terms of tensor products of 

modules. 

The amalgamated free product, which had earlier been used by 

Schreier in 1927 to prove that the class of groups had the strong 

amalgamation property, was also the main tool of J M Howie in his 

early work on semi group amalgams. Howie extended Schreier's result 

by proving that any semigroup amalgam with an almost unitary core 

is strongly embeddable (among the almost unitary subsemigroups are 

the subgroups). An alternative proof of one of Howie's results on 

unitary amalgams was given in 1976 by G B Preston who introduced 

to the theory of semigroup amalgams the techniques of representations 

of semigroups. This work was taken up by T E Hall in 1978 and 

later recast in terms of S-sets by Howie. 

Our approach to the problem will be a homological one. We 

aim to carryon where Cohn, Hall and Howie left off and hope to 

show that the techniques and results involved in the study of ring 

and semi group amalgams are very closely linked. 

After preliminaries, we begin our investigation by looking 

at various constructions which will be of use in later chapters. 

In particular the notions of pushout, pullback and tensor product 

will playa central role in most of our work. The results in 

Chapters 1.3 and 1.4 are probably well-known in other categories. 

However, there does not appear to be any concise reference 

available for the category of S-sets and so we prove most of the 

results in detail. Chapter 1.5 is the first of two chapters on 
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flatness and we confine ourself at this stage to study results of a 

more fundamental nature, for example we study connections between 

flatness and notions such as direct limits, injectivity and 

dominions. 

Chapter II introduces the important concept of free-extensions 

and uses this to describe, in a similar manner to that for rings, 

the amalgamated free product. Some necessary and/or sufficient 

conditions for embeddability of an amalgam are then deduced. 

In Chapter III we define the extension property and the notion 

of purity, first introduced for rings by P M Cohn. We show that 

many of the important notions in semi group amalgams either imply 

the extension property or are intimately connected with it. In 

Section 2 we prove that an amalgam of semi groups S. in which the 
l 

core'U has the extension property in each S., is strongly 
l 

embeddable. Many of the principal results on amalgamation can be 

deduced from this. Even more surprisingly we show that a semigroup 

U is an amalgamation base if and only if it has the extension 

property in every containing semigroup. 

Chapter IV revisits the idea of flatness and after some 

technical results we prove a result similar to Cohn's on flat 

amalgams. 

In Chapter V we show that the results of Hall and Howie on 

perfect amalgams can be proved using the same techniques as those 

used in Chapters II and IV. 

Finally, we examine the case of rings in Chapter VI. Almost 

all of the results for semigroup amalgams examined in the previous 
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chapters, hold for ring amalgams. In particular the notion of the 

extension property is just as important for rings as for semigroups. 

One of the more surprising results in this chapter is that the ring 

theoretic version of the perfect amalgams of Hall and Howie are 

precisely the flat amalgams of Cohn. Although the theories of ring 

amalgams and of semigroup amalgams have developed independently, 

it would seem that their paths have converged. 
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CHAPTER I 

1. Preliminaries 

Let K be a class of algebras of some fixed type. An amalgam 

in ~ consists of an algebra A, called the core of the amalgam, a 

family of algebras {B. 
l 

: i E!} and a family of monomorphisms 

{cpo : A-+ B. : iE!}. 
l l 

The amalgam is denoted by [A; B. ,cp. Ci E 1) J 
l l 

or simply [A;B.J. 
l 

We shall say that the amalgam [A;B. ,cpo (i E 1)J 
l l 

is weakly embeddable (in an algebra C E ~) if there exists 

monomorphisms ~. 
l 

B. -+ C such that the diagram 
l 

cpo 
J 

A 
CPi 

----> B. 
l 

'1/ '1/ 

B. ---=-0.--> C 
J -v. 

J 

~. 
l 

commutes for all i i j in I. If, in addition, we have that for all 

i i j in I, 

~.(B.) n ~.(B.) = (~."cp.)(A), 
l l J J l l 

then we say that the amalgam is strongly embeddable (in C). 

We shall be dealing with the case when K is the class of all 

semigroups or the class of all monoids. In the final chapter we 

shall look at the case for rings. 

Given a semigroup amalgam [Ui S., cp.], is there a natural 
l l 

candidate in which to embed the amalgam? The answer is of course 

yes, the amalgamated free product which we shall now describe. 
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Let {So : i E I} be a family of disjoint semigroups. 
1 

IfaE US., 
iEI 1 

then there is a unique k in I such that a E Sk. Following Howie [22], 

we shall refer to this k as the index of a and write k = o(a). 

Consider the collection of all finite 'words' 

where m ..::: 1, ar E US. and o(a ) f. o(a 1). Define a binary 
i Ell r r+ 

operation on this collection of words by the rule that 

Then this family of words together with this binary operation form 

a semigroup, called the free product of the semigroup S., and 
1 

denoted by n*{S. 
1 

i E I}. It is clear that the maps 

"'(. : S. -t- n*{S. : i E I} defined by 
111 

are monomorphisms. 

"'(.(s.) = (s.), 
111 

i E I, 

Now let [U; S., ~.] be an amalgam of semi groups and let p be 
1 1 

the congruence on n*{S. : i E I} generated by the relation 
1 

R = {( y. ~. (u), y.~. (u)) : u E U, i, j E I}. 
1 1 J J 

We shall denote the quotient n*{Si : i E I}/p by nU{Si : i E I} 

or nU Si (or simply S1 * S2 * S3 * ... * Sr if III = rEIN) and call 

it the free product of the amalgam [U; S., ~.J or the amalgamated 
1 1 

free product. It comes equipped with natural mappings 
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,9-. =p9 0 y. , i E I, 
1 1 

and it is clear that the diagram 

cpo 

U 
1 S.· -> 

1 

cpo ,9-. 
J 1 

'1/ '1/ 

S. > lTU Si J ,9-. 
J 

commutes for all i t j in I. 

LEMMA 1.1 [Howie, 22, Proposition VII.1.2J. Let IT*S. be 
l-

the free product of a family of semigroups S .. Then IT*S. is the 
1 l---

coproduct in the category of semigroups of the family {So 
1 

That is to say, if T is a semi group for which homomorphisms 

~. : S. ~ T exist, then there exists a unique homomorphism 
1 1 

~ : IT*S. ~ T such that ~ 0 y. = ~. (i E I). 
1 1 1 

i E I}. 

LEMMA 1.2 [Howie, 22, Proposition VII.1.10J. If[U;S.,cp.J 
- 1 1 

is an amalgam, then lTt \ is the pushout in the category of semi-

groups of the diagram {U ~ S.} . That is to say, if Q is a 
1 i E I 

semigroup for which homomorphisms T. : S. ~ Q. (i E I) exist such 
1 1 1 

that T. 0 cpo = T. 0 cp., (i t j in 1), then there exists a unique 
-- 1 1 J J 

homomorphism <5 : IT *U 5. ~ Q such that <5 0 ,9-. = T. CiE 1). 
1 - 1 1 

THEOREM 1.3 [Howie, ~, Theorem VII.1.11J. The amalgam 

[U; 5., cp.J is embeddable in a semigroup if and only if it is 
1 1 

embeddable in lTt \ . 
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AssociCJtivity of free product \'lith amalgamation lS provided 

by 

THEORE[vj 1. Lj [Howie, 20, Theorem 1.3J. Let [Ui Si' CjJi : i E IJ 

be an amalqam, Suppose th:Jt the inde>: set I is ))arti tioned into 

disjoint subsets J
k 

(k E f<) and that thE:' amalgam [U; \' CjJj ; j E JkJ 

is embeddable for each k. Let Pk = TIU{Sj : j E J k}. Let 

-&[ (= -&. 0 cp. for every j in J k ) be the natural monomorphism from U 
< J J - , 

into P k and sUPiJose that the amalgam 

is embeddable. The the amalgam 

lS embeddable and 

TI7:{S 
U i 

THEOREH 1.5 

[U; S., cp., l E 1] 
l l 

[Howie, fg, Theorem 1.4J. 

k E I<}. 

such that every amalgam [U; S, T] of tI~o semigr_m'r~vJith LJ as core 

is embeddable then every amalgam [U; S.J of arbitrarily many scml-
l -------.-. 

groups with U as core is embeddable, 

A semi group U satisfying the conditions of Theorem 1.5 will be 

called an amalgamation base. 

A slight modification of the proof of the abovo theorem allows 

us to deduce::: 
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THEOREM 1.6 Let U be a semigroup and let K be a class of 

semigroups which contain U as a sub semi group and suppose that K 

satisfies 

(1) for all S,T E K, the amalgam [U; S,T] is 

embeddable, and 

(2) for all S,T E ~, S*UT E ~. 

If {So : i E I} is an arbitrary collection of semi groups in ~, 
l 

then the amalgam [U; S.] is embeddable. 
l 

Informally we have: Suppose that P is a property that a 

semigroup U may have in some of its containing semigroups and 

suppose that whenever U has property P in semi groups Sand T then 

the amalgam [U; S, T] is embeddable and U has property P in S *U T. 

If {So : i E I} is an arbitrary collection of semigroups such that 
l 

U has property P in each S. then the amalgam [U; S.] is embeddable. 
l l 

1 Let U be a semigroup. We shall denote by U, the monoid 

obtained from U by adjoining an identity 1, whether or not U 

already has one. 

The following easily proved results will be of us~ later. 

THEOREM 1.7 Let [U; S, T] be an amalgam. Then 1S *1 1T = 
U 

1 (S *U T), where 

1 
[U; S; T] and S 

[1U; 1S, 1T]. 

S *U T is the SEMI GROUP free product of the amalgam 

* 1T is the MONOID free product of the amalgam 
1U 
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THEORDfJ 1.8 The am81g2111 [U; S, 1] is embedd8bJe if and only 

if the amalgam [1U; 15 , 'TJ is embeddable. 

Let U be a sub semi group of a semigroup S. We say that U 

domirJates an element d of S if for all semi groups T and for all 

homomorphisms S,y : S ~ T, 

[(~u E U) S(u) = y(u)] implies S(d) = y(d). 

The set of elements dominated by U is called th9 dominion of U in 5 

and is written DomS(U). If DomS(U) = U we say that U is closed in 

S and if U is closed in every containing semi group we say that U 

is absolutely closed. 

THEOREM 1.9 [HmJie, 22, VII.2.3J. Let U be a subsemigrollp 

of a semigroup S. Let 5' be a semi group disjoint from 5 and let 

cx:S -+ 51 be an iso~orphism. Let ].1,].1' be the natural maps from 

5, 5', respectively into the free product of the amalgam 

[U;S,S1,i,cxIUJ. Then 

].1 ( S) n ]J' (S 1) = ].1 (DarnS ( U ) ) . 

It can be shown that the maps ].1, ].1' above are always 1-1 and 

so we 'see that U is closed in S if and only if the amalgam 

[U; S,S'; i,alUJ is strongly embeddable. An alternative and more 

useful description of the dominion will be given later. 

Let U be a monoid with identity 1. A set X together with a 

map f : X x LJ -+ X is called a riqht U-set if 

(i) f(x,1) = x, for all x jn X, and 

(ii) f(x,uv) = r(f(X,li),V), for aU )( in X, u,v in U. 
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As is usual we shall denote f(x,u) by xu and simply refer to X as 

the U-set. 

If X and Yare right U-sets and if a:X 4 Y is a map, then we 

say that a is a (right) U-map if for all x in X, u in U, 

f(xu) = f(x)u. 

The collection of right U-sets and right U-maps forms a 

category which we shall denote by ENS-U. Notice that ENS-{1} 

is naturally equivalent to ENS, the category of sets. The dual 

notions of left U-sets and left U-maps are obvious and the 

category of left U-sets will be denoted by Q-ENS. If X is a right 

U-set and also a left S-set and if in addition 

s(xu) = (sx)u, for all x in X, u in U, s in S, 

then we say that X is an (S,U)-biset. The category of (S,U)-bisets 

will be denoted by 2-ENS-U and its maps called (S,U)-maps. 

Let X E ENS-U and let a be an equivalence on X. We say that 

a is a (right) U-congruence on X if 

(x,y) E a, u E U implies (xu,yu) E a. 

It is clear that the quotient X/a becomes a right U-set if 

we define 

(xa).u = (xu)a, for all x in X, u in U. 

EXAMPLE 1.10. Let f:X 4 Y be a right U-map. Then 

kerf = {(a,b) E X x X: f(a) = feb)}, the kernel of the map f, is 

a right U-congruence on X and imf ~ X/kerf. 
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Let f:X --)- Y be a right U--rnclnofllorphism. Define 

Then P
f 

is a right U-congruence on Y. We shall normally denote the 

quotient Y/P
f 

by Y/X and an element YP
f 

by ~. 

The following is easy to prove. 

LEHHP, 1.12. Let f:X -t- Y ~nd g:Y -)- Z be right U-monomorphisms. 

Then there exists a right U-monolwJrphism h : Y IX -t- z/X ane Z/Y ~ 

(Z/X) I (y IX L 

We have mentioned the term monomorphism to mean 1-1 map. An 

obv ious, related question is II are the epimorphisms in ENS-U onto?" 

The answer is not surprisingly, yes. 

Let f:X Y be a right U-epimorphism. Then f 

is onto. 

Proof. Consider the diagram 

__ 9_> 
F 

X ---> Y Y /imf 
--,---> 

h 

where 9(Y) = ~ and hey) = f(xT, for some x in X, Then it is clear 

that h 0 f = g 0 f and so h = g. Hr~nce Y ~ imF anci f is orlto. 

A useful result concerning U-monomorphisms l8: 

TII[OR[~l 1.1 t:. Let f:A -t- 8 and 0:8 -t- C he rioht U-maos. 
--' --~.- ---' -
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Proof. Suppose that 9 0 f is 1-1. Then clearly f is 1-1 and 

18 ~ kerg n Pf · Suppose then that (x,y) E kerg n Pf • Then either 

x=y, giving us the required result, or x = f(a), y = f(a') for 

some a,a' in A. Hence gf(a) = gf(a') -and so a = a', since go f is 

1-1. 

Conversely, suppose that (g 0 f)( a) = (g 0 f)( a' ). Then 

([(a),f(a')) E kerg n Pf = 18 , Hence a=a', since f is 1-1. 

We end this section by mentioning a few of the main results 

on amalgamations to date. 

Let U be a subsemigroup of a semigroup S. We say that U is 

unitary in S if for all u in U, s in S 

us E U or su E U implies s E U. 

A related concept is that at almost unitary subsemigroups. 

A subsemigroup U of a semigroup S is said to be almost unitary 

[Howie, 22], if there exist mappings A:S 4 S, p:S 4 S such that 

(1) A2 = A, p2 = P 

(2) A(St) = (AS)t , (st)p = s (tp) , for all s,t E S 

(3) A(SP) = (AS)p, for all s E S 

(4) s(At) = (sp)t, for all s,t E S 

(5) Alu = plU = 1U 

(6) U is unitary in ASp. 

Notice that for notational purposes we have written A on the 

left and p on the right. It is easy to see that 'unitary' implies 

, almost unitary' (take A = p = 1 U) . It is also easy to show that if 
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U is a group with identity e, then U is almost unitary in every 

containing semigroup (take A(S) = es, sp = se, s E S). 

THEOREM 1.15. [Howie, 22, VII.3.11']. The amalgam [U;S.J 
l 

is embeddable if U is almost unitary in each S .. 
l 

In particular we see that every group is an amalgamation base 

in the class of all semigroups. 

Say that a subsemigroup U of a semigroup S is relatively 

unitary if for all u in U, s in S 

(1) us E U implies us E uU u {u}, 

(2) su E U implies su E Uu u {u}. 

It is easy to see that if U is almost unitary in S then U is 

relatively unitary in S. 

If U is a subsemigroup of a semigroup S, then we say that 

the pair (U,S) is a (weak) amalgamation pair if every amalgam of 

the form [U; S,TJ is (weakly) embeddable. 

THEOREM 1.16 [Howie, 12, Theorem 4.3J. 1.! (U,S) is a 

. weak amalgamation pair then U is relatively unitary in S. 

The following definition is due to T E Hall [12J, the notation 

and terminology being due to Howie [~J. Let U be a submonoid of a 

monoid S. Say that U is right perfect in S if for all X E ENS-2, 

all Y E ENS-U and all right U-monomorphisms f:X ~ Y, there exists 

Z E ENS-~, aU-monomorphism g:Y ~ Z and an S-monomorphism 

h:X ~ Z such that 
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z' 

commutes. 

THEOREM 1. 17 [Hall, 12; Howie, ~]. Let [U;S.] be an 
-- 1 

amalgam such that U is right perfect in each 5 .. Then the amalgam 
1 

is strongly embeddable. 

It is known, Hall Ell], Howie [23], that if U is an inverse 

monoid i.e. a monoid such that every principal left and right 

ideal is generated by a unique idempotent, then U is right perfect 

in every containing monoid. Hence 

THEOREM 1.18 [Howie, Il, ~; Hall, ll]. Every inverse 

semigroup is an amalgamation base in the class of all semigroups. 

Say that a monoid U has the right extension property in a 

containing monoid 5 if for all X E ENS-Q, there exists Y E ENS-S 

and aU-monomorphism f:X ~ Y. It can be shown (see Hall [ll, 

Theorem 3]) that if U is right perfect in 5 then U has the right 

extension property in S. 

THEOREM 1.19 [Hall, ll, Theorem 7]. li (U,S) is a weak 

amalgamation pair then U has the right extension property in S. 
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2. Indccompcsahle U-sets 

Let U be a monoi d cmd let X E [}~S-U. V.,fc say that X is 

decomposable iF there exists non-empty su~ U-sets of X, Xl and X2 

say, such that X = X1 0 X2' Otherwise we say that X 18 

indecompos(jb~~., \'/e say that X is eye] ic if X = xLi, for some x in X. 

LEI'iHP.2.1 [Knauer, 2.t, Lemms 2.1]. If X is a cyclic right 

U-set tht'll X is .indecomposable, 

[Knauer. 28, Lemma 2.2J. 
~ ~~ 

family of illdeeornposable U-sets with n 
i E I 

is indecomposable, 

LEtvlHA 2.3 [I<nauer, I§' , Lemma 2.3]. 

Let (X.) 
1 i E I 

X. f. cpo Then 
1 

be a 

U 
i E I 

p, monoid U has the 

x. 
1 

property that every indecomposable U-set is cyclic if and only if 

U is a group. 

Let X E ENS-U. We say that x,y E X are connected and write 

x ~ y if there exists u" ... ,un' v l' ••• , v n in U, xl"'" xn i;-I X such 

that 

x = x1u
1

, 

XlVI = x2u2 , 

xnVn = y. 

It is easy to verify th~t - is an equivalence relation on X. We 

say that X lS cOilllected if x ~ y for 811 ~. \/ 
/'. , ) In X" 
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LEMMA 2.4 Let X E ENS-U. Then X is indecomposable if and 

only if X is connected. Moreover every U-set can be decomposed, 

in a unique way, into a disjoint union of indecomposable sub 

U-sets. 

Proof. Suppose that X is connected and suppose that 

X = Au B for some A,B E ENS-Q. Let a E A, b E B. Then since X 

is connected there exists a set of equations in X 

a = 

x v = b. n n 

Since A and B are disjoint we see that x
1 

E A. Similarly 

x2 , ..• ,xn E A and so b = xnvn E A giving us the required 

contradiction. 

Conversely, suppose that X is indecomposable but not connected. 

Define aU-congruence p on X by 

( x , y) E p if and only if x ~ y. 

It is clear that for each x in X, the congruence class xp is a sub 

U-set of X and that X is the disjoint union of these U-sets. But 

if X is not connected, then there are at least two U-sets in this 

union, contradicting the fact that X is indecomposable. 

Now let X be any U-set. Define p as above and notice that 
. 

X = Uxp and each xp is connected and hence indecomposable. Suppose 

there exists a family (Ai) i E I of indecomposable U-sets such that . 
X = U A.. Let i E I. 

i E I 1 

Then A. is connected and so for all x t y 
1 
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in A. we have that (x,y) E p. Hence we see that A. c xp. Suppose 
l. l. -

that A. i xp. Then xp\A. is a U-set since if z E xp\A. then we 
l. l. l. 

must have z E A. for some j i i in I. Hence for all u in U we 
J 

see that zu EA .. But zu E xp and so zu E xP\A. since A. n A. = cpo 
J l. J l. 

Consequently xp A. .. xp\A. contradicting the fact that xp is = U 
l. l. 

indecomposable. Hence A. = xp and the decomposition is unique. 
l. 

The following concept will prove useful later. Let U be a 

semigroup. Say that U is left reversible if any two principal right 

ideals of U intersect. The definition of right reversible is dual. 

Let U be a monoid and let X E ENS-U. Say that X is reversible if 

any two cyclic sub U-sets of X intersect. 

The following is easy to prove. 

LEMMA 2.5 Let U be a monoid and let X E ENS-U be reversible. 

Then X is connected. 

LEMMA 2.6 [Bulman-Fleming and McDowell, ~, Lemma 2.4J. 

The following are equivalent 

(1) U is left reversible, 

(2) every connected right U-set is reversible, 

(3) every sub U-set of a connected right U-set is connected. 

COROLLARY 2.7 Let U be a left reversible monoid. Let 

A : A ~ B be a right U-monomorphism and suppose that there exists a, a' 

in A such that A(a) A(a') in B. Then a ~ a' in A. 

Proof. 

A(a) and A(a'). 

Let B be the equivalence class modulo ~ containing 
o 

Then B is a connected sub U-set of B. From Lemma 
o 

2.6 (3) we see that B n im A is a connected sub U-set of B. It 
o 0 
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is also clear that "connectedness" is preserved under isomorphisms 

-1( ) and so A B n im A is a connected sub U-set of A containing a o 

and a I • 

From Lemmas 2.4, 2.5 and 2.6 we deduce 

COROLLARY 2.8 Let U be a left reversible monoid and let 

X E ENS-U. Then X is indecomposable if and only if X is reversible. 

We can also deduce 

COROLLARY 2.9 Let U be left reversible and let X E ENS-U. 

Then X is indecomposable if and only if there exists a set I such 

that X = U aU and aU n bU -j cp for all a,b E I. 
aEI 

Proof Suppose that X is indecomposable. Then X = U xU 
xEX 

and by Corollary 2.8 we see that xU n yU -j cp for all x,y E X. 

Conversely, suppose that X = U aU and that aU n bU -j cp for 
aEI 

all a,b E I. Let x,y E X. Then x = au and y = bv for some a,b E I 

and some u,v E U. But there exists u
1

,u
2 

E U such that aU
1 

= bU
2 

and so we have 

x = au 

aU1 = bU2 

bv = y. 

Hence x - y and X is indecomposable by Lemma 2.4. 
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3. Direct Limits 

The concept of direct limit in the category ~-ENS-I is identical 

to that for R-modules. Since, however, there does not appear to be 

any concise reference for the following results, we prove them in 

detail. 

Let I be a quasi-ordered set (i.e. a set with a relation ~ 

which is reflexive and transitive). A direct system is a collection 

i 
of (S,T)-bisets (Xi)iEI together with (S,T)-maps CPj: Xi -+ Xj for 

all i ~ j E I such that 

(1) i 
1 (i E 1), cpo = , 

1 x. 
1 

(2) j i i 
i~j~ k. CPk o cpo = CPk whenever 

J 

The direct limit of the system ex., cp~) is an (S,T)-biset X together 
1 J 

with (S, T) -maps ct. : X. -+ X such that 
1 1 

(3) 

(4) 

i S.ocp.= 
J J 

a . 0 

J 
i 

CPj = ai' whenever i ~ j, 

If Y E S-ENS-T and B. : X. -+ Yare (S, T) -maps such that 
- - 1 1 

B. whenever i < j, then there exists a unique (S,T)-map 
1 -

~ : X -+ Y such that the diagram 

B· 1 

commutes for all i in I. 

a. 
1 X. -----> X 

1 

'1/ 

Y 

Direct limits, if they exist, are obviously unique up to 

isomorphism. That they do indeed exist follows from 
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THEOREM 3.1 Direct limits exists in S-ENS-T. 

Proof Let (X.,~~) be 
1 J 

a direct system in S-ENS-T. Let a be 
• 

the (S,T)-congruence on U X. generated by the relation 
1 iEI 

R = {(A.~~(X.), A.(X.» 
J J 1 1 1 

X. EX., i,j E I}, 
1 1 

• 
where Ak : Xk -+ U 

iEI 
X. are the natural inclusion maps. 

1 

Let X = 0 X.fa and define a. : X. -+ X by a. = at 0 A .• 
iEI 1 1 1 1 1 

Then it is clear that a. is a well-defined (S,T)-map. Let i < j E I 
1 

and suppose that x. EX .• 
1 1 

Then we have 

a.~~(x.) = 
J J 1 

= (A.(x.»a, by definition of a, 
1 1 

= a.(x.). 
1 1 

i Hence a. 0 ~. = 0.
1
. whenever i ~ j. 

J J 

Now there exists Y E S-ENS-T and (5, T) -maps B. : X. -+ Y such 
1 1 

i that B. 0 ~. = B. if i < j. Define 1.J.! : X -+ Y by 
J J 1 -

Then 1.J.! is well-defined. For suppose that (Ak(xk»a = (Ai(xi»a for 

some i,k E I. Then (Ak(xk), Ai(x i » E a and so we can find a 

sequence of elementary R-transitions 

••• -+b =A.(X.). 
n 1 1 

Now we see that for each 1 < j ~ n, we have either 

(*) 
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(6) 

(a.,b.) E R, or 
J J 

(b.,a.) E R. 
J J 
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Suppose that (A (x ), A (x )) E R for some n,m E I. Then we see that m m n n 
n x = ~ (x ) and consequently, 8 (x ) = 8 (x). Applying this idea m m n m m n n 

a finite number of times to the sequence (*), tells us that 

8k(xk) = 8i (xi ), as required. 

It is clear that 1jJ is an (S,n-map and that 1jJ 0 CL. = 8. for all 
1 1 

i E I. Lastly, it is easy to verify that 1jJ is unique with this 

property. 

EXAMPLE 3.2 Let I be a set with quasi-order given by i ~ j 

if and onl y if i = j . If (X.,~~) is a direct system with index set 
1 J 

I, then the direct limit, usually called the coproduct, is simply 

() 
iEI 

X .• 
1 

EXAMPLE 3.3 Let I be a set with a 'special' element o. Let 

the quasi-order ~ be given by i ~ j if and only if either i = j or 

i = o. If (X., ~~) is a direct system with index set I, then the 
1 J 

direct limit, usually called the pushout, is isomorphic to 

o X./p, where p is the (S,T)-congruence generated by 
i E I\{o} 1 • 

{(~~(x ),~~(x )) : x EX, i,j E I\{o}}. 
1 0 J 0 0 0 

(This is not the construction given in Theorem 3.1.) 

In the above example, we shall almost always be dealing with 

the case III = 3, in which case we see that the pushout of the 

diagram 
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A----> B 

'1/ 

C 

is isomorphic to (B 
. 
u C)/p where p is generated by 

{(a.(a),S(a)) a E A}. 

EXAMPLE 3.4 i Let (X.,cp.) be a direct system in 2-ENS-i. We 
1 J 

see from Theorem 3.1 that the direct limit, X, of this system is 

• 
given by, X = U X./p, where p is the (S,T)-congruence generated 

iEI 1 

by 

R = {(A.cp~(X.),A.(X.)) 
J J 1 1 1 

i < j E I, x. EX.}. 
1 1 

It is reasonably clear that p is in fact the equivalence 

generated by R. Hence the direct limit in S-ENS-T of the system 

(X.,cp~), is infact the direct limit in ENS. 
1 J 

As a particular consequence of this example we have 

COROLLARY 3.5 Let U be a submonoid of a monoid S. Let 

(X.,cp~) be a direct system in ENS-S. Then the direct limit of the 
1 J 

system (X. ,cp~) in ENS-S is the direct limit of (X.,cp~) in ENS-U. 
1 J - - 1 J 

LEMMA 3.6 Let U be a monoid and consider the following 

pushout diagram in ENS-U. 



g 
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f 
A----> B 

'1/ '1/ 

C ----:S=---> P 

(1) If f is 1-1 then so is S. 

(2) l! g is onto then so is a. 

Proof Suppose that f is 1-1. We see that P ~ (B u C)/a where 

a is generated by 

R = {([(a) ,g(a)) a E A}. 

Suppose then that S(c) = S(c'), i.e. that (c,c') E a. Then either 

c = c' in B u C and hence in C, or there exists a sequence of 

R-transitions 

(n > 1). 

We can assume that the above sequence is of minimal length. Now, 

we have either (Y1'x1) E R or (x1 'Y1) E R. But since Y1 E C, we 

see that (x1,y1) E R, i.e. that 

Y1 = g(a) and x1 = f(a), for some a E A. 

Similarly, we see that 

Y2 = f(a') and x2 = g(a'), for some a' E A. 
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But f is 1-1 and so a = a'. Hence c = Y1 = x2 and we have a sequence 

contradicting the minimality of the length of the original sequence. 

Suppose now that g is onto and let pEP. It is clear that 

either 

(1) p = a(b) for some b E B, or 

(2) p = S(c) for some c E C. 

In case (2) we have that p = Sg(a) = af(a), for some a in A. 

Hence in either case p E ima and so a is onto. 

later. 

The following description of pushouts shall prove useful 

LEMMA 3.7 Let 

g 

f 
A----:> B 

'1/ '1/ 

C -----S,.--->· P 

be a pushout diagram in ENS-U and suppose that g is onto and that 

f is 1-1. Then P ~ 8/p where p = R u 18 and 

R = {(f(a),f(a')) : (a,a') E kerg}. 

Proof It is straightforward, though tedious, to show that 

the relation R above is transitive and that B/p acts as a pushout 

for the diagram 
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A f 
> B 

g 1 
C 

LEMMA 3.8 Let 

A f 
> B 

g 1 la 
\If 

C 
B > D 

be a pushout diagram in ENS-~. If a(b) = B(c) for some b in Band 

c in C, then there exists a, a' in A (not necessarily unique) such 

that b = f(a), c = g(a'). 

Proof The proof is a straightforward consequence of Example 

3.3. 

LEMMA 3.9 Let 

be a pushout diagram in ENS-~ and suppose that f and g are 1-1. If 

a(b) = BCe) for some b in B and c in C, then there exists a unique 

a in A such that b = f(a), c = g(a). 

Proof This follows from Lemma 3.8 and Lemma 3.6 (1). 

We can of course consider the notion dual to that of direct 

limit, namely that of the inverse limit. We shall, however, have 
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cause to consider only one kind of inverse limit, the pullback. We 

say that the commutative diagram 

c > D 
g 

in ENS-Q, is a pullback if for all Q E ENS-U and all U-maps 

cp:Q-+B,.& Q -+ C such that f 0 cp = g 0 .&, there exists a unique 

U-map ~ : Q -+ A such that 

Q 

\Z:~A ), 
> B 

.& 

S f 

'i/ 'i/ 

C > D g 

commutes. 

The following is straightforward to prove. 

LEMMA 3.10 Let 

C > D 
g 

be a pullback diagram in ENS-U. Then 

A ~ {(b,c) E BxC feb) = g(c)} 

and the maps a A -+ Band S A -+ C are given by 
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o.(b,c) = b, 6(b,c) = c. 

The following is now easy to prove. 

LEMMA 3.11 Let 

c > D 
g 

be a pullback diagram in ENS-~. 

(1) If f is 1-1 then so is 6, 

(2) if g is onto then so is o. • 

. LEMMA 3.12 The commutative diagram 

A a 
> B 

6 1 1 f 
C > D g 

is a pullback if and only if whenever feb) = g(c) for some b in B, 

c in C then there exists a unique a in A such that b = o.(a), c = 6(a). 

Proof The proof is an easy consequence of Lemma 3.10. 

We can now see from Lemmas 3.12 and 3.9 that if 

f A ---> B 

g 1 1 a 

C > P 
6 
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is a pushout in ENS-U and if f and g are both 1-1, then it is also a 

pullback. 

LEMMA 3.13 Let 

f A -----> B 

'1/ '1/ 

C ---;:;---:> P 

o 

be a commutative diagram of U-sets and U-monomorphisms and suppose 

that P is the pushout of 

f A ---.> B 

Y 1 
c 

We know there exists a unique map 0 : P-+ o such that oa = sand 

oS = 1jJ. Then o is 1-1 if and only if the diagram 

A f 
> B 

Y 1 I s 
'1/ 

C 1jJ > 0 

is a pullback. 

Proof. Suppose that 0 : P -+ 0 is 1-1, and suppose that 

s(b) = 1jJ(c) for some b in B, c in C. Then we see that oa(b) = oS(c) 

and so a(b) = Sec). From Lemma 3.9, there exists a unique a in A 
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such that b = f(a), c = yea). Hence from Lemma 3.12, 

f A ---.> B 

y 1 1 € 

C -1V;--:> D 

is a pullback. 

Conversely, suppose that o(p) = o(p'). We see from Example 3.3 

that there are three cases to consider: 

(1) p = a(b), 

(2) p = B(C), 

(3) p = a(b), 

P' -- ~(b'), b b' l"n B u. , , 

P' -- D(C'), c c' l"n C iJ , , 

p' = B(c), b in B, c in C. 

In case (1) we see that €(b) = €(b') and so, b = b' since € is 1-1. 

Henc~ p = p' as required. Case (2) is similar to case (1). In 

case (3) we have €(b) = 1V(c) and so by Lemma 3.12, there exists a 

unique a in A such that b = f(a), c = yea). Hence p = a(b) = 

af(a) = By(a) = B(c) = p' as required. 

Recall that if f : X ~ Y is a U-monomorphism then 

P f = imf x imf u 1 Y 

is a U-congruence on Y and we write Y/P f as Y/X. 

THEOREM 3.14 Consider the following commutative diagram in 

ENS-U. 
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A 
f 

> B 

Y e: 

VI VI 

C \jJ > D 

cp a 

VI VI 

E 
8 

> F 

where the top square is a pullback and the bottom square is a pushout. 

Suppose also that cp is onto and that \jJ is 1-1. Then the following 

are equivalent: 

(1) ae: is 1-1 , 

(2) e: is 1-1 and Ker a n Pe: = 1B, 

(3) e: is 1-1 and Ker cp n P = 1C' y 

(4) e: and cpy are both 1-1 . 

Proof We see from Theorem 1.14 that (1) and (2) are 

equivalent. 

(2) implies (3). Suppose that (x, y) E Ker cp n P • 
Y 

have either x = y as required, or 

Then we 

x = yea), y = yea') and cp(x) = cp(y), a,a' E A. 

Hence a\jJ(x) = 8cp(x) = 8cp(y) = a\jJ(y) and so (\jJ(x),\jJ(y» E Kera. But 

\jJ(x) = \jJy(a) = e:f(a) and \jJ(y) = \jJy(a') = e:f(a'). Hence (~)(x),¢(y») 

E Pe: and so \jJ(x) = \jJ(y). But \jJ is 1-1 and so x = y. 

(3) implies (4). From Lemma 3.11 (1) we see that y is 1-1 and 

so from Theorem 1.14, cpy is 1-1. 
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(4) implies (1). Suppose that a€(b) = a€(b'). We see from 

Lemma 3.7 that either €(b) = €(b') and so b = b' as required, or 

there exists (c,c') E Ker~ such that €(b) = ~(c) and €(b') = ~(c'). 

Hence from Lemma 3.12 there exists a unique a in A and a unique a' 

in A such that 

f(a) = b, yCa) = c, 

and 

f( a') = b', yea') = c', 

consequently, ~y(a) = ~(c) = ~(c') = ~y(a') and so a = a' since 

~y is 1-1. Hence b = b' as required. 

The following rather technical lemma will help to simplify 

some of the later arguments. 

LEMMA 3.15 Suppose we have a commutative diagram 

A 
f 

> B 

Y a 
€ 

'1/ '1/ 

C 
>p~ 

0 

of U-sets and U-monomorphisms where P is the pushout of 

f A ----> B 

y 

'1/ 

C 
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Suppose also that there exists aU-set E and aU-epimorphism 

~ : D ~ E such that 

(2) im ~¢ c im ~€, and 

(3) ~€is1-1. 

Then E/B ~ DIP. 

Proof Define ~ : DIP ~ E/B by ~(dp~) = ~(d)p . Suppose that 
u ~€ 

dpo = d'po in DIP. Then we have two possibilities 

d = d', in which case ~(d)p = ~(d)p , or 
~€ ~€ 

(ii) d = o(p), d' = o(p') for some P,P' E P. Now if P E im a 

we see that ~(d) c im ~oa = im ~€, while if P E im B, then ~(d) E im ~oB 

= im ~¢ c im ~€, by (2). Hence we see that (~(d),~(d')) E p and so 
~€ 

~ is well-defined. 

It is clear that ~ is onto and is a U-map. To show that ~ is 

1-1 we suppose that (~(d),~(d')) E p~€. We have two cases to consider: 

(iii) ~(d) = ~(d'), or 

In case (iii) we see that (d,d' ) E Ker ~ c P¢ by (1). But ¢ = oB and 

so im ¢ c im o. Hence P¢ c Po and so (d,d') E Po' as required. In 

case (iv) we have ~(d) = ~db) and ~(d' ) = ~db') for some b,b' in B. 

Hence (d, db) ), (d', db' )) E Ker ~ cPo. But € = oa and so p c p~. 
€ - u 

We deduce that (€(b),€(b')) E Po and so by transitivity of Po we have 

(d,d') E Po. 
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A useful corollary to this result is: 

COROLLARY 3.16 Consider the following pullback diagram in 

ENS-U 

f 
A ---> B 

Y 1 1 € 

C \)! > D 

where € and \)! are 1-1. Suppose that the map y : A ~ C splits i.e. 

suppose that there exists a map -& : C ~ A such that -& 0 y = 1 A . Let 

f A ---> B 

Y 1 1 a and 

C -=13-'> P A ---.> E 

be pushout diagrams. Then the map cp 0 € B ~ E is 1-1 and E/B ~ Dip. 

Proof That cp 0 € is 1-1 follows from Theorem 3.14. It is readily 

seen that -& lS onto and so from Lemma 3.7 we see that if (d,d') E Ker cp, 

then d,d' E im \)!. Hence Ker cp c p\)!O Also it is easy to s.ee that if 

c E C then (c,y-&(c)) E Ker -&. Hence, by Lemma 3.7, we see that 

cp\)!(c) = cp\)!(y-&(c)). But \)!y = €f and so cp\)!(c) = cp€f-&(c). Hence we have 

shown that im cp\)! c im cp€. The result now follows from Lemma 3.15. 

Let I be a quasi-ordered set. Say that I is directed if for all 

i,j in I, there exists k in I with k ~ i, k ~ j. 

We can show 

THEOREM 3.17 Let (X. ,cp~) be a direct system in ~-ENS-I with 
l J 

directed index set and let (X,a.) be the direct limit of this system. 
l 



Then a. (x .) = 
-- 1 1 

i 
that CPK(xi ) = 

a. (x.) in X 
J J -

CP~ (x j). 
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if and only if there exists K ~ i,j such 

Proof Suppose that there exists K ~ i,j such that 

CP~(xi) = cp~(Xj). Then aKcp~(xi) = aKcp~(xj) and so ai(xi ) = aj(x j ). 

Conversely, suppose that a.(x.) = a.(x.). Consider the (S,T)-
1 1 J J 

U• biset B = X.lp where p is defined by the rule that (A.(X.), 
iEI 1 1 1 

Aj(Xj )) E p if and only if there exists K > i,j with CP~(xi) = cp~(Xj). 

Define S. X. -+ B by S. = p.v 0 A.. Then S. are well-defined (S, n-
1 1 111 

i maps and S.cp. 
J J 

(S, n-map \f! : 

= S. whenever i < j. Hence there exists a unique 
1 -

X -+ B such that \f! 0 a. = S., (i in 1). (It can be shown 
1 1 

that \f! is infact an isomorphism, but we will not require this.) We 

now see that S.(x.) = \fla..(x.) = \fla..(x.) = S.(x.). Hence 
1 1 1 1 J J J J 

(A.(X.),A.(X.)) E p and the result follows. 
1 1 J J 

The following corollary is now immediate. 

COROLLARY 3.18 Let (X.,cp~) be a direct system in S-ENS-T with 
-- 1 J ---

directed index set and let (X,a.) be the direct limit. Then for all 
1 

i in I, the map a i : Xi -+ X is 1-1 if and only if the maps CP~ 

are 1-1 for all K > i. 

We shall need the following result later. 

THEOREM 3.19 Let (X.,cp~) be a direct system in S-ENS-T with 
-- 1 J ---

directed index set and let (X,a.) be the direct limit. For each i 
1 

in I let a. be an (S,T)-congruence on X. and suppose that there exists 
-- 1 - 1 ---'-'-----------

an (S,T)-map ~~ X.la. -+ X.la. whenever i _< j, such that the 
- --J 11 JJ----

diagrams 
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i 
<po 

X. J > X. 
1 J 

a~ ir a. 
1 J 

'1/ '1/ 

X./a. 
1 1 ~~ 

> X./a. 
J J. 

J 

commute for all i ~ j. Then there exists an (S,T)-congruence a on 

X and (S,T)-maps S. : X./a. ~ X/a such that (X/a,S.) is the direct 
-- ---111 1 

limit in S-ENS-T of the system (x./a.,~~). 
1 1 J 

Proof We see from the construction of the direct limit that 

if x E X, then x = ex. (x. ) for some i in I, x. in X .. Define a on X 
1 1 1 1 

by (0'.. (x . ) ,0'. . (x .)) E a if and only if there exists K ~ i,j such that 
1 1 J J 

(<P~(Xi)' <p~(Xj)) E aK' It is easy to check that a is an (S,T)-

congruence on X. The only point we would stress is that a is well-

defined. To see this, first notice that ~~ is given by 
J 

~~(x.a.) = 
J 1 1 

(<p~(x. ))a., 
J 1 J 

whenever i < j. 

Suppose then that a.(x.) = ex (x ), a.(x.) = 0'. (x ) and that 
11m m J J n n 

(a.(x.),a.(x.)) E a. From Theorem 3.17 we see that there exists 
1 1 J J 

p ~ i,m such that <pi(x.) = <pm(x ) and s > j,n such that <pj(x.) = <pn(x ). 
p 1 P m - s J s n 

We also know that there exists K ~ i,j such that (<P~(xi)'<P~(Xj)) E aK' 

Since I is directed, there exists r ~ K,p,s and we deduce 
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Now (~~(Xi)' ~~(Xj)) E aK and so on applying the map ~~ we see that 

(~i(x.), ~j(x.)) Ea. Hence since a is a well-defined congruence 
r l r J r r 

we see that (~m(x ), ~n(x )) E a and so (a (x ), a (x )) E a. 
r m r n r m m n n 

Now define S. : X.la. -+ Xla by S.(x.a.) = (a.(x.))a. Then S. 
l l l l l l l. l l 

is a well-defined (S,T)-map and it is clear that if i ~ j then 

i S. o~. = S .• Suppose that Q is an (S,n-biset and that f. : X.la. -+ Q 
J J l l l l 

i are (S,T)-maps such that f. o~. = f. whenever i ~ j. Then we have a 
J J l 

commutative diagram 

a~ 
l 

X. 
l 

(i 
_---'J<--_> X . 

J 

a~ 
J 

'if 'if 

X.la. . > X./a. 

:i,\:j/fj

J 

Q 

whenever i ~ j. Since X is the direct limit of the 

exists a unique (S,T)-map ~ X -+ Q such that ~ 0 a. 
l 

X. then there 
l 

=f.oa.1 . 
l l 

Define cp : Xla -+ Q by cp(xo-) = ~(x). Then it is straightforward to 

show that cP is a well-defined (S,n-map, that cpoS. = f. for all 
l l 

i and that cP is unique with this property. 

We end this section with a result that will prove useful in 

Section 5. 

LEMMA 3.20 Let I be a directed quasi-ordered set. Let 

(X.,~~) and (y.,~~) be directed systems in ENS-Q (sharing the same 
l J -- l J 

index set) and suppose that there are monomorphisms f. 
l 

such that 

X. -+ Y. 
l l 
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i 
cpo 

X. J > X. 
1 J 

f. f. 
1 J 

'i/ 'i/ 

Y. > Y. 
1 ~~ J 

J 

commutes whenever i < j. Suppose also that (X,a.) and (Y,S.) are 
1-- 1--

the direct limits of these systems. Then there exists aU-monomorphism 

f : X ~ Y such that 

commutes for every i. 

f. 
X. _---=1=--_> Y. 

a i 1 
X 

1 1 

'i/ 

--f--"> Y 

S· 1 

Proof We have a commutative diagram 

X. ----> X. 
1 i J 

CPj 

Let x = a.(x.) E X. Define f : X ~ Y by fex) = S.f.(x.). We need to 
1 1 111 

show that f is a well-defined U-monomorphism. Suppose then that 
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a.Cx.) = a.Cx.) for some i,j E I. From Theorem 3.17 we see that 
1 1 J J 

i c ) j ) there exists K 2 i,j such that ~K xi = ~KCXj. Hence 

S.f.Cx.) = SKfK~KiCx.) = SKfK~KjCx.) = S.f.Cx.), as required. 
111 1 J J J J 

Suppose then that S.f.Cx.) = S.f.Cx.). From Theorem 3.17 again we 
111 J J J 

see that there exists K 2 i,j such that 

But ~nf = f rnn for all n < m and so we see that m n mYm 

Since fK is 1-1 we deduce that ~~Cxi) = ~~CXj) and so by Theorem 3.17, 

a.(x.) = a.(x.) and f is 1-T~ 
1 1 J J 
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4. Tensor Products 

We shall now describe what is essentially a non-additive version 

of the classical tensor product construction in modules, see for 

example Rotman [35]. This construction has been used by various 

authors, including Stenstrom [39], Howie [£2] and Bulman-Fleming 

and McDowell [~], and, as we shall see, is intimately connected with 

amalgamated free products of semigroups. 

Let X E ENS-U and Y E U-ENS. The tensor product of X and Y 

over U is a set T together with a map f : X x Y -+ T with the 

properties 

(1) f(xu,y) = f(x,uy), x in X, y in Y, u in U, 

(2) If G is a set and g : X x Y -+ G a map such that g(xu,y) 

= g(x,uy) for all x in X, y in Y, u in U, then there exists a unique 

map I/i : T -+ G such that I/i 0 f = g. 

Being a universal construction, the tensor product, if it 

exists, is essentially unique. To see that it does indeed exist, 

consider the equivalence relation T on X x Y generated by the relation 

{(xu,y),(x,uy)) x E X, u E U, y E V}, 

and the map /1: X x Y -+ (X x Y) IT. Then it is easy to check that the 

pair (( X x y) IT, if) is a tensor product of X and Y over U. We 

usually denote the tensor product by X ®U Y, or simply X ® Y and 

denote an element (X,y)T of X ®U Y, by x ® y. 

The following are easy to prove and will be used later without 

reference. 
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LEMMA 4.1 Let U be a monoid and X E ENS-U. Then X ®U U ~ X. 

LEMMA 4.2 Let f : A ~ B be a right U-map and 9 : C ~ D a left 

U-map. Then there exists a map f ® 9 A ~U C ~ B ®U D given by 

(f~g)(a®c) = f(a) ® g(c). 

The tensor product of X and Y is normally only a set. However, 

if X E S-ENS-U and Y E U-ENS-T then X ®U Y becomes an (S,T)-biset 

if we define 

s(x®y) = sx®y and (x®y).t = x®yt. 

THEOREM 4.3 Let U and S be monoids. Let A E ENS-U, 

B E U-ENS-S and C E S-ENS. 

Proof The proof is essentially the same as that for R-

modules. See for example Rotman [22J, Excercise 1.10. 

The question naturally arises: When are two elements in a 

tensor product equal? The following result will prove useful. 

LEMMA 4.4 [Bulman-Fleming and McDowell, ~, Lemma 1.2J. 

Let U be a monoid, A E ENS-U, a,a' E A, B E U-ENS and b,b' E B. 

Then a ® b = a:" ® b' in A ®U B if and only if there exists a1,···, an 

in A, b2 , ... ,b in B, u1, ... ,u ,v1 , ... ,v in U such that - n- n n-

a = a1u1 , 

a1v1 = a2u2, u1b = v1b2, 

......... 

a v = a' , u b = V b' . n n n n n 



A set of equations of the above fornl will be called a (U-) 

Recall that if X E ENS-LJ clild x j x' EX, then x is connected 

to x', and vie Vlri te x ~ x' if there exiE3ts a set 0 f equations 

The following 1S now clear. 

x v = x'. n n 

LEH~lA 4.5 Let X E E~~S-~, Y E ~-Et\JS and suppose that 

x ® Y = x' ® y' in X ®U Y. Then x ~ x' in X and y ~ y' in Y. 

In order to study connections between tensor products and 

direct limits, the following theorem, which is certainly well-known 

in other categories, will be useful. 

THEOREtvJ Li.6 (Adjoint Isomorphism). If A E [NS-~, B E U-CNS-S 

and C E ENS-S then there 1S D bijection 

If A E U-E~JS, B E S-ENS-~ a~ C E S-Ei\JS then there is a bijectiorl 

Proof VIe shaH di~,cuss onI)' the fj rst isornol'phism. The 

second can be treated simi18rly. 
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Notice that HomS (B, C) E EI\lS-Q if vJe define 

(ku)(b) = k(ub), k E HomS(B,C), u E U, b E B. 

Now define the map f by 

f(k)(a)(b) = k(a0b), k E HomS(A ®U B, C), a E A, b E B. 

Then it is straightforward to check that f is a well-defined map 

and that f( k) E HomU (A, HomS (B, C) ). To show that f is a bi j ection 

we construct an inverse f' : HOl1lU(A, HomS(B,C)) -+ HornS(A ®U B, C), 

by 

f I (h)( a ® b) = h (a) (b), h E HomU (A, HornS (B, C) ), a ® b E A ®u B. 

It is again straightforward to check that f' is a well-defined map 

and that f I (h) E HornS (A ®u B, C). It is clear that f and f I are 

mutually inverse bijections. 

Notice that if S = {1} the theorem reduces to the existence 

of a bijection f: Hom(A ®u B, C) -+ HomU(A, Hom(B,C)), for all 

A E Er~S-Q, B E Q-ENS, C E ENS. 

THEOREM 4.7 Let U be a monoid and let (X. ,~~) be a direct 
l J 

system in EI\lS-Q with direct limjt (X,C\). Let B E U-Ei~S. Then 

(X ®U B, a i ® 1) is the direct limit in ENS of the direct system 

(Xi ®U B, ~~ ® 1). 
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It is clear that for all i < J in I, the diagram 

x 0 B 
U 

a. @1 
J 

commutes. Suppose then there exists Y E ENS and S. 
l 

such that the diagram 

Y 

commutes whenever i ~ j. Then S. E Hom(X. 0 U B,Y) and so we see from 
l l 

Theorem 4.6 that there exists~. E HomUeX., Hom(B,Y)) given by 
l J. 

~.(x.)(b) = S.(x.0b), 
l l l l 

x. E X., b E B. 
l l 

Now if i < j then we have 

(~. 0 cp j: )( x . ) ( b ) 
J J l 

= S.(cp~(x.)@b) 
J J l 

= S.(x.0b)~ 
l l 

=1\.(x.)(b). 
l l ' 
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- i for all x. EX., b E B. Hence 8. 0 cp. = S.. Consequently, there 
l l J J l 

exists a unique U-map ~ : X ~ Hom(B,Y) such that 

a.. 
X. __ l_> X 

l 

s. 
l 

'1/ 

Hom(B,Y) 

commutes for all i in I. From Theorem 4.6 we see that there exists 

a map ~ E Hom(X @U B, y) such that 

~(xi8lb) = ~(x)(b). 

Now the diagram 

commutes for all i in I, since 

(~o (a.. i8l1))(x. i8lb) = ~(a..(x.))(b), 
l l l l 

= S.(x.)(b), 
l l 

= 8.(x.i8lb). 
l l 

Lastly, it is easy to check that ~ is unique with this property. 

From Example 3.2 we can thus deduce 

LEMMA 4.8 Let U be a monoid, let A E U-ENS and let 

Then ( U X.) i8lU A ~ U (X. i8lU A). 
iEI l iEI l 
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From Theorem 4.7 and its dual, we see that the following 

Corollary holds. 

COROLLARY 4.9 

direct limit (X,a.). 
l 

Let (X.,~~) be a direct system in ~-ENS-U with 
l J 

Let A E ENS-S and B E U-ENS. Then 

(A ®S X ®U B, 1 ® a i ® 1) is 

i 
(A ®S Xi ®U B, 1 ® ~j ® 1). 

the direct limit in ENS of the system 

Recall that if f X ~ Y is a right U-monomorphism then 

Y/X = Y/P f where 

Pf = imfximf u 1y • 

LEMMA 4.10 Let f : X ~ Y be a right U-monomorphism and let A 

be a left U-set. Then y®a = y' ®a' j.n (Y/X) ®U A if and only if 

either y®a = y' ®a' in Y ®U A or there exists x1 ,x1 in X, a1~a1' 

in A such that 

Proof Suppose that y®a = y' ®a' in (Y/X) ®U A. From Lemma 

4.4 we have a set of equations 

y = Y1 u1' 

Y1 v1 = Y2u2' 

-y v = -y' 
n n ' ua =va'. n n n 

For each equation ~ = y u we have two possibilities: 
l l i+1 i+1 

(i) 

(ii ) y. v., y. 1 u. 1 E imf. 
l l l+ l+ 



-48-

I f case (i) holds for. all i) then yO a = y 'Oa' in Y CS:'U P.: 

otherwise, suppose that j is the smallest value of i such that (ii) 

holds. Then y02 = Y1 u1®a = Y1 0u 1a = ... = y/ j ®a j +1 = f(x 1 )®3 j +1 , 

for some x
1 

EX. P. similar result holds f.or y' ® a'. Thus, changing 

the notation, y®a = f(x1)®a~1 and y'®a' - f(x l )08 ' for sonts - 1 1 

XI' x1 EX, a1' a1 E P.. Also since a ~ () I then \'Ie see that 8
1 
~ 3 1" 

Conversely, if y@a = y' 0a' in Y 0
U 

A) then it is clear that 

y0a = y' 0a' in (Y/X) ®U A. Suppose then that there exists )(1'><1 E X, 

and al~a1 in ~\ such that y®a = f(x.j )0a'·
1 

and y'0a' = f(x1)0a1" 
Then we have a set of equations 

where u. ,v. E U, a. E P.. 
l l l 

Hence, 

= 

The following Corollary is now immediate. 

COROLU\f1Y ll.11 Let f x -) Y be a ric]ht U-rYionomorphisrn CJrI.~_ 

let A E U-EiJS. Them r-ZX)0a - f(x') 0a' in (y/X) 0
U 

P. if and only if 

a~a' in A. 

COROLU'.!W il.12 Let LJ be a subr.1onojd of a monoid 5 and let 

A E U-ENS. Theil lOa = T <29 a' in (S/Ll) ('''U 1-\ j f and onl y if a~' a' 

in A. 
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COflOLLARY LJ.13 Let Y E ENS-~, I~ E ~-ENS and suppose that U 

is a submonoid of a monoi d S. If. yO sO a = y' (9 T ° a' if2. 

Y 0 U (S/U) 0 U A then there exists Y1 E Y, a , E A such that 

Proof From Lemma 4.4 we deduce that there exists equations 

Y v = y', n n us 0a =V 0a'. 
n n n n 

For each equation ~ ° a. = v. s. 1 (9 a. l' we see from Lemma L!.10 
1 1 1 1 1+ 1+ 

that we have two cases: either 

(i) u. s. ° a. = v. s. ,oa. ,; 
1 1 1 1 1+ 1+ 

or (ij) u.s. ° a. = 1 ° a", v.s. 1 0a . 1 = 10 a'" , for some 
1 1 J. 1 J.+ 1+ 

a" ,a'" E A. 

I f case (i) holds for al1 i then we have yO sO a = y' 12) 1 (9 a' , 

othervJise the existence of a smallest i such that case (ii) ho] ds 

gives us yO S0a = y,01031 for some Y, E Y, a
1 

E A in a similar 

manner to the proof of LemmCl LI. 10. Hence the result. 

LE~1~1A 4. 1 Lr 

a left U-set. 

in (Y/X) 0
U 

B. 
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Proof From Corollary 4. 1'l vie see that f( x) @ b = f( >J @ b' . 

Hence y0b = f(x) 0 b' = TeXT (g) b. 

From Corollary 4.13 we can deduce 

LEt1MI~ Lf • 15 Let U be a submonoid of a monoid S. Let Y E ENS-U 

and B E U-E~JS. li. y ® :::: 0 b = y' 0 1 0 b' in Y 0
U 

S 0
U 

B, then 

y0s0b = y' 010b in YOU (SjU) 0 U B. 

Proof Since b ~ b' in B vie see from Corullary !~. 12 that 

To b = T ° b' in (sjU) 0
U 

B. Hence 

y @ S 0 b = y' ° T ° b' = y' <29 T ° b in Y 0 U (S/U) 0 U B. 

Vve end this sectior) by mentioning an aHernati ve description 

of the dominion. Recall that if U is a subsemigroup of a semigroup 

S then U is said to dominate an element d of S if for all semi groups 

T and for all homomorphisms S,y : S ~ T, 

[(~u E U) S(u) = y(u)] implies SCd) = y(d). 

The set of elements dominated by U is called the dominion of U in 5, 

and i~ written DOiTIS(U), 

The follcMillg \vas first proved by Stenstrom [39J. 

TIIEOREi~ LI.16 [HOC-Jie, 22, Theorem VII.2.5J. If U is a 

subsemigI'DUp of a. semigroup S and if dES, then d E DomS(U) if and. 

1 1 
oilly if d01 = 10d in S 01 S. 

U 
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5. Flat U-Sets 

Let U be a monoid and let X E ENS-U. We shall say that X is 

(right) flat if for all A,B E U-ENS and all U-monomorphisms 

f : A -* B, the induced map 1 ® f : X ®U A -* X ®U B is 1-1. Left 

flat U-sets are defined dually. 

We shall have occasion to make use of the following result. 

THEOREM 5.1 [Bulman-Fleming and McDowell, 4, Lemma 2.2J. 

Let U be a monoid and let X E ENS-U. Then X is flat if and only if 

for all B E U-ENS and all b,b' E B the map 

X ® (Ub u Ub') -* X ® B 

is 1-1. 

LEMMA 5.2 [Bulman-Fleming and McDowell, ~, Lemma 2.4J. Let U 

be a monoid. Then U is left reversible if and only if the one element 

U-set Z = {z} is left flat. 

The following easily proved result will also prove useful. 

LEMMA 5.3 Let S,T be monoids and suppose that X E ENS-2, 

Y E S-ENS-T are such that X is flat as a right S-set and Y is flat 

as a right T-set. Then X ®S Y is flat as a right T-set. 

From Lemma 4.8 we can deduce 

LEMMA 5.4 Let U be a monoid and let X. E ENS-U for i E I. 
.. 

Then U 
iEI 

l ---

X. is flat if and only if each X. is 
l l 

flat. 
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Proof Let f : A ~ B be a left U-monomorphism. Then by 

Lemma 4.8 we see that 

( u x.J 
iEI l 

-U 
iEI 

and ( () x.J 
iEI l 

• 
U 

iEI 

The result is now clear. 

Let U be a monoid and let X E U-ENS. We say that X is (left) 

injective if for all left U-monomorphisms f A ~ B and all left 

U-maps ~ : A ~ X, there exists a left U-map ~ : B ~ X such that 

f A ---> B 

~w/ 
X 

commwtes. 

THEOREM 5.5 Let U be a monoid and X E U-ENS. Then X is 

injective if and only if the following two conditions hold: 

(1) X contains a fixed element i. e. an element x such that 

ux = x for all u in U, 

(2) for all U-monomorphisms f : A~ B with B cyclic and all 

U-maps ~ A~ X, there exists a U-map ~ B ~ X such that ~ = ~ 0 f. 

Proof Suppose that X is injective. Then it is clear that 

condition (2) holds. Let {z} be the one element U-set and consider 

the diagram 
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x ---.> Xu {z} 

'i/ 

X 

Since X is injective we see that there exists aU-map cp : Xu {z} -+ X 

such that cplx = 1X' Hence we see that 

ucp(z) = cp(uz) = cp(z), u E U, 

and so cp(z) is a fixed element in X. 

Conversely, let f: A -+ B be any U-monomorphism and let 

-& : A -+ X be any U-map. To simplify notation we shall consider 

f as an inclusion map. 

Consider all pairs (A.,cp.) with the properties 
l l 

(1) A c A. c B, and 
- l-

(2) cp. : A. -+ X and cp. 1 A = -&. 
l l l 

Then the collection of these pairs is non-empty since (A,-&) is such 

a pair. Order this collection by 

(A. , cp.) < (A., cp . ) if and only if A. cA. and cp·1 A = cp .. 
l l - J J l- J J. l 

.l 

By Zorn's lemma there is a maximal such pair (A , cp ), say. I f A = B 
000 

the theorem is proved. Otherwise let b E BIA and consider the set 
o 

I = {u E U ub E A }. 
o 

Then I is either empty or is a left ideal of U. 
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If I = ~, then consider the diagram 

A cAe A U Ub 

&1t0° 
X 

where ~ : A U Ub ~ X is given by ~(a ) = ~ (a ) and ~(ub) = x 
o 000 0 

where x is a fixed element of X chosen once. for all. This 
o 

contradicts the maximality of (A ,~ ) and so A = B. 
o 0 0 

On the other hand if I i ~ then consider the well-defined 

U-map ~ : Ib ~ X given by ~(vb) = ~ (vb) (v E I). By property (2) 
o 

there exists aU-map € : Ub ~ X such that 

commutes. Now define ~ : A u Ub ~ X by ~(a ) = ~ (a ) and ~(ub) = 
o 000 

€( ub ) (u E U). Then ~ is well-defined since if a = ub for some 
o 

a E A, u E U then clearly u E I. Hence 
o 

~(a ) = ~ (a ) = ~ (ub) = ~(ub) = €(ub) = ~(ub). 
000 0 

Since Ub ¢ A we again contradict the maximality of (A ,~ ) and so 
- 0 0 0 

the theorem is proved. 

We shall now proceed to deduce a connection between flatness 

and injectivity similar to that for R-modules. 

Let XE ENS-U and let I be any set. Let X* = Hom(X,I), the 

. collection of all maps from X to I. Then X* is a left U-set if 
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if we define (uf)(x) = f(xu). 

Suppose a : X -+ Y is a right U-map. Then a induces a left U-

map a*: y* -+ X* given by a*(f) = f 0 a. 

From now on we will assume that III > 2. 

LEMMA 5.6 Suppose that a : X -+ Y is a right U-map. Then 

(1) a is 1-1 if and only if a* is onto, 

(2) a is onto if and only if a* is 1-1. 

Proof (1) Suppose that a is 1-1. Let 9 E X* and define 

f E y* by 

{

g(X)' 
f( y) = 

i , o 

if Y = a(x), 

if y ~ im a. 

(Here i E I is chosen once for all.) Since a is 1-1 then f is 
o 

well-defined and a*( f) = f 0 a = g. Hence a* is onto. 

Conversely, suppose that a* is onto. Let a(x) = a(x ' ) and 

assume that x ~ x'. Then since III > 2 we can find 9 E X* such 

that g(x) ~ g(x ' ). Hence, since a* is onto, there exists f E y* 

such that a*(f) = g. But a(x) = a(x ' ) implies (foa)(x) = (foa)(x ' ), 

i.e. g(x) = g(X') giving the required contradiction. Hence a is 

1-1. 

(2) Suppose that a is onto and let a*(f) = a*(fl). Then 

f 0 a = fl 0 a and so f = fl since a is onto. Hence a* is 1-1. 

Conversely, suppose that a* is 1-1 and suppose that a is not 

onto. Then there exists y' E Y with y' ~ ima. Let i ~ j E I and 

define f,f' E y* by 
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f(y) = t y E im a u {y I} 

otherwise 

{

i : y E im a 
fl(y) = 

j : otherwise. 

Then f -/. fl since f(y') = i-/.j = fl(yl). But foa = fl oa i.e. 

a*(f) = a*(fl). This contradicts the fact that a* is 1-1 and so 

a is onto as required. 

LEMMA 5.7 Let Y be a flat right U-set. Then Y* is an 

injective left U-set. 

Proof Let f: A -+ B be a left U-monomorphism and let 

9 : A -+ Y* be a left U-map. Since 9 E Hom
U 

(A, Hom (Y ,I) ) • We see 

from Theorem 4.6 that there exists 9 E Hom CY ®U A,I) given by 

g(y®a) = g(a)(y). So we have a diagram 

g 

I 

where 1 ® f is 1-1 by flatness of Y. Define h : Y ®U B -+ I by 

{

g(YI ®a) : if y®b = y' ®f(a) 
h(y®b) = 

i : otherwise 
o 

. where i E I is chosen once for all. Then h is well-defined, since 
o 

1 ® f is 1-1 and it is clear that h 0 (1 ® f) = g. By Theorem 4.6 we 
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see that h E Hom(Y®UB,!) induces a map hi E HomU(B, Hom(Y,!)) given 

by hi (b) (y) = h (y ® b) . It is easy to check that hi 0 f = 9 and so 

y* is injective as required. 

As a corollary we have 

COROLLARY 5.8 Let Y be a flat right U-set such that IYI > 2. 

Then T(Y), the full transformation semigroup over Y, is an injective 

left U-set. 

Proof Simply take I = Y in Lemma 5. 7 . 

As one would expect, the converse of Lemma 5.7 is also true. 

THEOREM 5.9 Let Y E ENS-U. Then Y is flat if and only if 

y* is injective in U-ENS. 

Proof Suppose that y* is injective in Q-ENS and let 

f : A -+ B be a left U-monomorphism. Then the map f* : HomU(B, y*) -+ 

HomU(A,Y*) given by f*(g) = go f, is a U-epimorphism. To see this, 

suppose that h E HomS(A,Y*). Then we have a diagram 

h 

f A ---> B 

'V 

y* 

Since y* is injective we see that there exists 9 E HomU(B,Y*) such 

that 9 0 f = h, i.e. such that f*(g) = h. We now have a commutative 

diagram 
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f* -----.> HomU(A,Y*) 

~ ~ 

Hom ( Y 18> B ,1) -'( -=-1 -=-18>-;f"')7.*-> Hom ( Y 18> A , 1) 

where the vertical maps are the isomorphisms of Theorem 4.6. Hence 

(118) f)* is onto and so 118> f is 1-1 by Lemma 5.6. 

A rather interesting corollary is 

COROLLARY 5.10 Let Y E ENS-U and suppose that IYI > 2. 

Then Y is flat if and only if T(Y) is injective in U-ENS. 

If IYI = 1 then the above corollary fails, since in this case 

IT(Y)I = 1 and hence T(Y) is injective while Y is flat only if U 

is right reversible (Lemma 5.2). 

THEOREM 5.11 Let Y E ENS-U. Then Y is flat if and only 

if for all left U-sets A, all cyclic left U-sets B and all U-

monomorphisms f: A -+ B, the induced map 

1 18> f Y 18> A -> Y 18> B, 

is 1-1. 

Proof One way round is obvious. Suppose then that f: A -+ B 

is any left U-monomorphism with B cyclic and let g : A -+ y* be a 

left U-map. We use Theorem 5.5 to show that y* is injective. First 

notice that y* contains fixed elements e. g. the maps [i] : Y -+ I 

given by [i](y) = i for all y E Y. Since g E HomU(A,Hom(Y,I)), we 
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see from Theorem 4.6 that there exists 9 E Hom (Y 0 A, 1) given by 

9(y0a) = g(a)(y). 50 we have a diagram 

10f Y 0
U 

A ----.> Y 0
U 

B 

9 

\1/ 

I 

where 1 0 f is 1-1 by assumption. Define h : Y 0 B -+ I by 

{

g(y, 0a) : if y0b = y' 0f(a) 
h(y0b) = 

i : otherwise o 

where i E I is chosen once for all. Then h is well-defined since 
o 

1 0 f is 1-1 and clearly h 0 (1 0 f) = .s. By Theorem 4.6 there exists 

h' E Hom
U

(B,Hom(Y,1)) such that h'(b)(y) = h(y0b). Hence h' 0 f = 9 

and so Y* is injective by Theorem 5.5. From Theorem 5.9, Y is 

flat. 

The following results will play an important role when we 

examine the connections between flatness and amalgamations. 

LEMMA 5.12 Let I be a directed quasi-ordered set. Let 

(X. , cp~) be a' direct system in EN5-U with direct limit (X ,CY..) and 
1 J - 1 --

let f: A -+ B be a left U-monomorphism. I f the maps 1 0 f : Xi 0 U A -+ 

\ 0 U B are 1-1 for all i in I, then the map 1 0 f : X 0 U A -+ X 0 U B 

is 1-1. 

Proof Let A. = X. 0 A and B. = X 0 B. Then X 0 A and X 0 B 
111 

are the direct limits of the systems (A. ,cp~ 01), 
1 J 

respectively. The result now follows from Lemma 

i (B.,cp.01) 
1 J 

3.20. 
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The following concept will prove useful later. A right U-set 

X is said to be (right) quasi-flat if for all left U-sets A, all 

flat Ie ft U-sets B and all U-monomorphisms f: A -+ B, the induced 

map 1 ® f : X ® A -+ X ® B is 1-1. Clearly flat implies quasi-flat. It 

is not known whether the converse is true or false. 

From Lemma 5.12 we have 

THEOREM 5.13 Let U be a monoid and I a directed quasi-

ordered set. Let (X.,~~) be a direct system in ENS-U with direct 
-- l J 

limit (X,a.). If each X. is [quasi-] flat then so is X. 
l l ----~----~----------------

We now proceed to show that I needs to be directed in the 

above theorem. First we need a few lemmas. 

LEMMA 5.14 Let U be a submonoid of an abelian group S. Then 

S is flat as aU-set. 

Proof We 

a®s = a' ® s' in 

use Theorem 5. 1 • 

A ®U S. We have 

a = a1u1 

a1v1 = a2u2 , 

a v = a', n n 

Let A E ENS-U and suppose that 

aU-scheme 

u1s = v1s 2, 

u s = V s' n n n' 

over A and S joining (a,s) to (a' ,s'). We need to find aU-scheme 

over (aU U a'U) and S joining (a,s) to Ca' ,s'). 
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NOTATION Define 

xo = 1 , x1 = v1, x. 1 = x. v. l' i = 1 ,2, .•.. ,n-1 , l+ l l+ 

YO = 1 , Y1 = u1 ' Yi+1 = y. u. l' i = 1 ,2, .•• ,n-1 , l l+ 

-1 
z1 = x1, z. = x.x. 2' l l l-

-1 i 2,3, ••• ,no w1 = Y 1 ' w. = y.y. 2' = l l l-

Observe first that 

(n 

(3) 

(4) 

x. 2z. = x. = x. 1v., l- l l l- l 

-1 v.x. 
l l 

-1 -1 = x. 1 = z. 1x . l' l- l+ l+ 

y. 1 u. = y. 2w., l- l l- l 

-1 w.y. 
l l 

It is also clear that x.,y. E U and since z. = v.v. 1 while l l l l l-

Wi = ui ui _1 as is easily checked, we deduce that zi,wi E U. Also, 

we have 

ax = a1u1v1v2 v n' n 

= a2u1u2v2 v n' 

= 

= a nU1u2 
u v n' n 

= a'u1u1 u 1 u , n- n 

= 

= a'y . n 
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Consider now the following equations 

(ax. 2)z. = 
1- 1 

a = a.x o 

(ax. 1) v. 
1- 1 

(ax 2)Z = (a'y 2)w n- n n- n 

( -1) (-1 v1 sX1 = z2 sX2 ) 

v2(sx;1) = Z3(sx;1) 

v. (sx -:-1) = 
1 1 

Z. 1 (sx -:-11 ) 
1+ 1+ 

v 1(sx-1
1) = Z (sx-1) 

n- n- n n 

w (sx-1) = u 1(s'y-1
1

) 
n n n- n- * 

w n-1 w 1(s'y-
1

1) n- n-
( -1 = un_2 s'Yn_2) 

(a'y. 1)u. = 
1- 1 

(a'y. 2)w. 
1- 1 

a'y = a' o 

= u. 1(s'y-:-11) 
1- 1-

y s' 
o 

It is straightforward to check that these equations give us the 

required scheme. The only point we would like to stress is the 

validity of the equations marked (*). Notice that x 2z = x by n- n n 

(1) above and that y 2w = Y 1u = Y by (3). But ax = a'y as n- n n- n n n n 

already noted above. A similar procedure will hold for the 

equation w (sx-1) = u 1(s'y-1
1

). 
n n n- n-

We now record a fairly straightforward result about dominions 

(see Sections 1 and 4). 
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LEMMA 5.15 Let U be a submonoid of a group S. Then DomS U is 

the subgroup generated by U. 

THEOREM 5.16 

the pushout diagram 

Let U be a submonoid of a monoid S, and consider 

U ---> S 

~ ~ 

S ---'S"---'> P 

in ENS-U. If P is flat then U is closed in S. 

P S . 1S 1S d roof uppose that d 1811 = 1 I8l d In 1811 I8l an suppose 
U 

that dES. It is easy to check that if e is the identity of U 

(and hence of S) then d I8l e = e I8l d in S I8lU S. Hence we have 

a(d)l8le = a(e)l8ld 

= See) I8l d 

But, P is flat and so P -+ P l8lu S is 1-1 and so we see that a(d) = B(d) 

in P. By Lemma 3.9 d E U, and U is closed in S. 

We now see that if U is a submonoid of an abelian group S but 

is not a subgroup of S, then S is flat as a U-set but the pushout 

of the diagram 

U ----> S 
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is not flat. This shows that Theorem 5.13 cannot be generalised to 

the case when I is not directed. Notice also that if S is flat as 

a U-set then U need not be closed in S. However, there are flatness 

conditions associated with closure. 

LEMMA 5.17 Let U be a submonoid of a monoid S, and let 

f : X -+ V be aright U-monomorphism. Suppose that V /X ®U U -+ V /X ®U S 

is 1-1. l...f. y ® 1 = f( x) ® s in V ®U S, then y E imf. 

Proof We see from Lemma 4.14 that y ® 1 = fCxT ® 1 in 

V/X ® S and hence in V/X ® U. It now follows that y E imf. 

COROLLARV 5.18 Let U be a submonoid of a monoid S and let 

S/U be (right,left) flat as a U-set. Then U is closed in S. 

Alternatively if S is flat and S/U is quasi-flat then U is closed 

in S. 

Proof In Lemma 5.17, take X = U, V = Sand f = i : U -+ S. If 

s ® 1 = 1 ® s in S ®U S then by Lemma 5.17 we see that s E U. Hence 

DomS U = U and U is closed in S. 

LEMMA 5.19 Let f: X -+ V be a left U-monomorphism and suppose 

that X ~~. If V/X is quasi-flat, then U is left reversible. 

Proof Let u,v E U, x E X. We have 

u ® TIXT = 1 ® r( ux) = 1 ® f(vx) = v ® TIXT in U ®u (V /X). 

Since V /X is quasi- flat, then u ® TIXT = v ® TIXT in (uU u vU) ~ (V /X) . 
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Hence from Lemma 4.5 we see that u ~ v in uU u vU from which we 

easily deduce that uU n vU ~ ~. 

The following corollary will be used later without reference. 

COROLLARY 5.20 Let U be a submonoid.of a monoid S. If S/U 

is flat then U is reversible. 
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6. Absolutely flat semi groups 

Let U be a monoid. Then U is said to be right absolutely flat 

if every right U-set is flat. Left absolutely flat monoids are 

defined dually, while U is said to be absolutely flat if U is both 

right and left absolutely flat. A semi group U is said to be 

(right,left) absolutely flat if the monoid'U is (right,left) 

absolutely flat. 

LEMMA 6.' [Bulman-Fleming and McDowell, 4] A monoid U is 

absolutely flat as a semigroup if and only if it is absolutely flat 

as a monoid. 

From Corollary 5.20 we see 

LEMMA 6.2 [Bulman-Fleming and McDowell, 4, Lemma 2.4] If U 

is left absolutely flat then U is left reversible. 

Kilp proved the following. 

LEMMA 6.3 [See Bulman-Fleming and McDowell, ~, Proposition 2.5] 

If all cyclic left U-sets over a monoid U are flat, then U is 

regular. 

THEOREM 6.4 [Bulman-Fleming and McDowell, ~, Theorem 4.2] 

Inverse semigroups are absolutely flat. 

Bulman-Fleming and McDowell [~] have given examples of 

absolutely flat semi groups which are not inverse and regular semi groups 

which are not absolutely flat. 
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LEMMA 6.5 [Bulman-Fleming and McDowell, ~, Lemma 1.1] Let 

U be a monoid. Let A E ENS-U and let u,v E U, a,a' E A. Denote by 

~(u,v) the smallest left U-congruence on U which identifies u and 

v. Then a@T = a' @T in A @U (U/~(u,v)) if and only if either 

a = a' or there exists a1,·.·,an E A, x1,··.,xn , Y1' ... 'Yn E U where 

{x.,y.} = {u,v} for i = 1,2, .•. ,n such that 
1 1 

Let U be a semigroup. Denote by R (respectively L) the 

1 collection of all non-empty right (left) ideals of U. Say that 

U is left R-reductive if for all I in R and for all a,b in I, 

[xa = xb for all x in I] implies a = b. 

This is equivalent to saying that every right ideal of 1U is a left-

reductive semigroup. 

THEOREM 6.6 If a semi group U is left absolutely flat, then 

U is left R-reductive. 

Proof Let us assume that U is left absolutely flat but not 

left R-reductive. Then there is a right ideal of 1U , I say, and a,b 

in I such that a f. b, but xa = xb for all x in I. Now the left 

1 1 
U-set U/~(a,b) is flat, by assumption and so the map 

1 
I @ 1 U/~(a,b) 

U 

1 1 
-> U @1 U/~(a,b) 

U 

is 1-1. We have 
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a®1 = 1®a = 1®b = b®1 

U/~(a,b) and hence in I ®1 
U 

1 
U/~(a,b). By Lemma 6.5 we 

see that either a = b, giving a contradiction, or there exists 

1 . 
c1,···,cn E I, x1 , •.. ,xn , Y1""'Yn E U wlth {xi,Yi } = {a,b} for 

i = 1, ••• ,n such that 

But since {x.,y.} = {a,b} and since ca = cb for all c E I it follows 
l l 

that c.x. = c.y. for i = 1, ... ,n and so a = b, giving the required l l l l 

contradiction. 

COROLLARY 6.7 If U is right (left) absolutely flat then U 

is right (left) reductive. 

The converse to Theorem 6.6 is false. In fact Bulman-Fleming 

and McDowell [~, Corollary 5.3J have shown that the semigroup 

MO[G;I,A;PJ where G = {e,x} is the group C2 ' I = A = {1,2} and 

P = [: :J, is neither left nor right absolutely flat. It is not 

too difficult however to show that this semi group is both right 

L-reductive and left R-reductive. 

Finally, we summarise the properties of absolutely flat 

semigroups in a theorem. 

THEOREM 6.8 Let a semigroup U be left absolutely flat. Then 

U is (1) Regular 

(2) left reversible 

(3) left R-reductive 

(4) absolutely closed (Corollary 5.18). 
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CHAPTER II FREE PRODUCTS AND AMALGAMATION 

In [2], P M Cohn constructed the free product of a ring 

amalgam using direct limits and tensor products of R-modules. In 

Section 2 we make the analogous construction for semigroups. First 

we introduce a concept which will prove extremely valuable in later 

sections. Except where otherwise indicated, all tensor products 

will be over U. 

1. Free extensions 

Let U be a submonoid of a monoid S. Let X E ENS-~, Y E ENS-~ 

and let f: X -+ Y be a right U-map. The free S-extension of X and Y 

is a right S-set F(SiX ,V) together with an S-map h : X -+ F(SiX ,V) 

and aU-map g : Y -+ F (S iX, y) such that: 

(1) gof=hi 

(2) Whenever there is an S-set Z, an S-map S : X -+ Z and a 

U-map a : Y -+ Z such that a 0 f = S, there exists a unique S-map 

1jJ: F(SiX, Y) -+ Z such that 

X 
f ------> Y 

f 
S F(SiX,Y) a 
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commutes. 

As with all universal constructions the free-extension if it 

exists, is essentially unique. 

THEOREM 1.1 Free 5-extensions exists~_ 

Proof Let f: X -+ Y be a right U-map, where X E EN5-~, 

Y E EN5-U. Let 0 be the equivalence on Y ®U 5 generated by the 

relation 

R = {(f(x) ® s, f(x') ® s') xs = x's', x,x' E X, s,s' E 5}. 

Then 0 is a right 5-congruence on Y ®U 5. Define 9 : Y -+ 

(Y ®U 5)/0 by g(y) = (y®1)0. Then 9 is a U-map and h = go f: X-+ 

(Y ®U 5)/0 is an 5-map. It is now routine to verify property (2) 

above. 

NOTE If X E !-EN5-~, Y E T-EN5-U and f is a (T,U)-map then 

F(5;X,Y) E T-EN5-5. 

It is possible to characterise the free 5-extension in another 

way. Consider the map cp : X ®U 5 -+ X given by cp( x ® s) = xs. Then 

cp is an 5-epimorphism. Also the map f ® 1 : X ®U 5 -+ Y ®U 5 is an 

5-map. 

THEOREM 1.2 Let X E EN5-~, Y E EN5-~ and let f: X -+ Y be a 

map. Then the free 5-extension, F(5;X,Y) ~ X and Y is the pushout 

in EN5-5 (and hence in EN5-U) of the diagram 



cp 

'.V 

X 

-71-

Proof Consider the map & : Y ®u S ~ F(S;X,Y) given by 

&( y ® s) = g (y) . s. Then & is a well-defined S-map and the diagram 

cp 

'.V 

X 
'.V 

---:-h--'> F(S;X, y) 

commutes, where g and h are as in the definition of F(S;X,Y). 

Suppose now that there exists an S-set Z and S-maps a : Y ®u S ~ Z, 

S : X ~ Z such that a 0 (f ® 1) = S 0 cp. Then we have a commutative 

diagram 

X f > Y 

s\ /Y 
Z 

where y( y) = a( y ® 1 ) . Hence there exists a unique S-map 

1jJ : F(S;X, Y) ~ Z such that 1jJ 0 g = y and 1jJ 0 h = S. It is now routine 

to verify that 
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a 
'1/ '1/ 

X > F(S;X'Y)~ 

z 

commutes. 

THEOREM 1.3 Let U be a submonoid of a monoid S. Let I be a 

quasi-ordered set and let (X.,~~) and (y.,~~) be direct systems in 
l J -- l J 

ENS-~ and ENS-Q respectively with direct limits (X,ai ) and (Y,Si). 

Suppose that there exist U-maps f. : X. ~ Y. such that whenever i < j 
-- l l l ---------

in I, f.~~ = ~~ 0 f., and let Z. = F(S;X.,Y.). Then there exists 
- J J J l l l l 

S-maps Iji : Z. ~ Z. (i < j), aU-map f: X ~ Y and S-maps 
--J l J - --- ----

\jJ~: Z. ~ F(S;X,Y) such that (F(S;X,Y),y.) is the direct limit in 
J l l 

ENS-S of the system (Z. ,\jJ~). 
l J 

Proof The result is straightforward enough to prove directly, 

but it follows almost immediately from Theorem 1.2 and Rotman [lZ, 

Theorem 2.21], which states that any two direct limits, perhaps with 

different index sets, commute. 

Since disjoint unions (coproducts) are direct limits, we can 

deduce, 

COROLLARY 1.4 Let U be a submonoid of a monoid S. Let 

A,B E ENS-~, C,D E ENS-Q and let f: A ~ C and g : B ~ D be U-maps. 

Then F(S;A u B,C u D) ~ F(S;A,C) u F(S;B,D). 



-73-

The following easily proved result will prove useful later, 

and will be used wilhout reference. 

LO'JHA 1.5 Let U be a submonoid of a monoid 5. Let A E EN5-S 

and B E EN5-U. Then F (5; A, A u B) '" A u (B 0 U S). 

2. Amalgamated free products 

We now proceed to construct the free product of a semigroup 

amalgam [U;S1,S2 J, as a direct limit of U-sets. All tensor products 

will be over U. First of all, recall the definition of the free 

product. The free product of the amalgam [U;S1,S2 J is the semi group 

51 *U 52 = (S1 * 5
2

)/p where p is the congruence on the free 

product S, * 52' generated by 

u E U}, 

where a i : 5i ~ 5, *U 52 (i = 1,2) are the natural monomorphisms. A 

typical element of 5, *U 52 will be written as 

(s" ... ,s ), n 

This is not the standard notation (see Hovlie [n.J) but will prove 

more useful here. 

and defj_ne f, : 'itJ ~ Iv by f (s) s (9' '2 . 1 1 = 1 • Then f 1 

(5
1

,U)-map. 
f 

Suppose we have constructed a sequence 

n-2 ---> Vl
n

_ 1, and suppose that 1\ is 

is a well-defined 
f 1 f 2 

\tf ---> vI -=--> 
1 2 
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i = k (mod 2) and fk is an (51 ,U)-map• Let i = n (mod 2) and define 

W = F(5.;W 2'W. 1)' From Theorem 1.1 we see that W = n 1 n- n- n 

(W 1 ® 5.)/0 2' where 0 2 is generated by n- 1 n- n-

R 2 = {(f 2(w 2) ® s., f (WI ) ® s!) : w s. = WI s!} n- n- n- 1 n-2 n-2 1 n-2 1 n-2 1 

and we have an (51 ,U)-map f 1 : W 1 ~ W given by f 1(w 1) = n- n- n n- n-

(w 1®1)0 2' n- n-

We shm'i 

THEOREM 2.1 Let [U;51,52J be a monoid amalgam. Then 51 *U 52 

is the direct limit in U-EN5-U of the system (W ,f) l' ---------- - - n n n> 

Proof First of all we have monoid homomorphisms .& i : \ ~ 51 *U 52 

(i = 1,2). Define ~n: Wn ~ 51 *U 52 inductively as follows. Let 

~1 = '&1 and put ~2(s1 ®s2) = ~1(s1).&2(s2)· Then it is easy to see 

that ~1 and ~2 are well-defined, that ~1 is an (51 ,5 1)-map, that ~2 

is an (51,52)-map and that ~2 0 f1 = ~1' 5uppose we have defined 

~k: Wk ~ 51 *U 52 (k = 1, ... ,n-1) such that 

and (2) ~k 0 f k_1 = ~k-1' k = 2, •.. ,n-1. 

Then we have a commutative diagram 

f 
n-2 Wn_2 ---...;;:....--> \~n-1 

\ /-
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Hence since W = F(5.;W 2'W 1) we have a unique (51 ,5
1
·)-map 

n 1 n- n-

- n (mod 2), such that cp 0 f 1 = cp 1. n n- n- Hence 

by induction we have a commutative diagram 

, f 
W 1 

1 

f f 
. [1-1 > W __ n_> 

n 

Now let Q be a (U,U)-biset and suppose that there exists 

E : W -+ Q for each n, such that E 0 f 1 = E 1 (n > 2). We need n n n n- n- -

to find a unique (U,U)-map \jJ : 51 *U 52 -+ Q such that \jJ 0 CPn = En 

en > 1). We see that W has the rather complicated structure 
n 

To simplify notation we shall write a typical element of W as 
n 

[s1'···'s.u,s. 1'· •. 's J = [s1'···'s.,us. 1'···'s J, 1 1+ n 1 1+ n 

[s1'···'S J = ([s1'···'s 1J ® s)o 2' n n- n n-

and 

cP [s1'···'s J = (s1'···'s )p. n n n 

LEMMA 2.2 For all i > 2 

[s1'···'s. 1,1,s. 1J = [s1'···'s. 1s . 1,1,1J. 1- 1+ 1- 1+ 
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[s1'···'s. 1,1,s. 1J = ((w. 1 ®ncr. 2 ® s. 1)cr. l' 1- 1+ 1- 1- 1+ 1-

= (f. 1(w. 1) ® s. 1)cr. l' 1- 1- 1+ 1-

= (f. 1(w. 1s . 1) ® ncr. l' 1- 1- 1+ 1-

= ((w. 1s . 1 ® ncr. 2 ® ncr. l' 1- 1+ 1- 1-

= [s1'···'s. 1s . 1,1,1]. 1- 1+ 

A simple inductive argument then gives us 

COROLLARY 2.3 For all i > 2 

[s1'···'s. 1,1,s. 1""'s J = [s1'···'s. 1s . 1""'s ,1,1J. 1- 1+ n 1- 1+ n 

. Now define \jJ : 51 * U 52 -+ Q by 

e: [s1""'s ], n n 

e: 1[1,s1""'s J, n+ n 

Assume for the moment that \jJ is well-defined. Then ,it is 

clearly a (U,U)-map and the diagrams 

commute, since 
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Lastly it is clear that ~ is unique with this property. 

Hence to prove Theorem 2.1 we require to prove 

LEMMA 2.4 The map ~ given above is well-defined. 

Proof In [12], Howie showed that wp = W'p in 51 *u 52 if and 

only if w can be connected to w' by a finite sequence of I-, ~- and 

M-steps. We explain these terms in turn and show in each case that 

if w ~ w' by a single step then ~(wp) = ~(W'p). 

First we say that w is connected to w' by an ~-step if 

w = (s1'··.'s. 1'u,s. 1'···'s), w' = (s1'···'s. 1us . 1'···'s ). 
~- ~+ n ~- ~+ n 

Hence if s1 E 51 then 

1jJ(wp) = E [s1'···'s. 1'u,s. 1'···'s ] n ~- ~+ n 

= E [s1"."s. 1u,1,s. 1'···'s ], n ~- ~+ n 

= E [s1""'s. 1us. 1""'s ,1,1] by Corollary 2.3, n ~- ~+ n , 

= E 0 f 1 0 f 2[s1'·'·'s. 1us . 1""'s ] n n- n- ~- ~+ n 

= E 2[s1'···'s. 1us . 1'···'s ] n- ~- ~+ n 

= 1jJ(w ' P). 

A similar conclusion holds if s1 E 52' 

5inceM-steps are the reverse of ~-steps, the same conclusion 

applies to this case. 
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For I-steps it is convenient to list six cases separately: 

(a) w = (s1'···'s.u,s. 1'···'s ), WI = (s1'···'s.,us. 1'···'s ), 1.:::.i<n; 1 1+ n 1 1+ n 

(b) w = (s1'···'s.,us. 1'···'s ), WI = (s1'···'s.u,s. 1' ..• 's ), 1.:::.i<n; 1 1+ n 1 1+ n 

(c) w = (s1,···,snU)' WI = (s1,···,sn'u); 

(d) w = (s1,···,sn'u), WI = (s1'··· ,snu); 

(e) w = (us1,···,sn)' WI = (u,s1,···,sn); 

cases (a) and (b) are trivial. As for case (c), if s1 E S1 then 

\jJ(wp) = E: [s1' ... 's U], n n 

= E: 1of[s1' ..• 'su], n+ n n 

= E: 1[s1' ... 's u,1], n+ n 

= E: 1[s1' •.• 's ,u], n+ n 

= \jJ(wlp). 

If s1 E S2 the procedure is similar. Case (d) is similar to case (c). 

In case (e), if s1 E S1' 

\jJ(wp) = E: [US1 ' ... ,S ], n n 

= E: 2 ° f 1of [US1 ' ..• , s ], n+ n+ n n 

= E: 2[1,1,us1, ... ,s], by Corollary 2.3 n+ n 

= E: 2[1,u,s1' ... 's], n+ n 

= \jJ(Wlp), 
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while if s1 E 52' we have 

\jJ(wp) = e:: 1 [ 1 , uS1 ' •.• , s ], n+ n 

= e:: 1[u,s1' ... 's], n+ n 

= \jJ(w'p). 

Case (f) is similar to case (e). It is now clear that if w is 

connected to w' by a finite sequence of E-, 5- and M-steps then 

\jJ(wp) = \jJ(w'p). Thus \jJ is well-defined and so the proof of 

Theorem 2.1 is complete. 

In order to make use of Theorem 2.1 later, we require some 

further observations. 

Denote by f(n-1) the map (f 1 0 f 2 0 ••• 0 f 1) : W1 -+ W , by n- n- n 
(1) 

9 the map 52 -+ W2 given by (1) ( ) 1 .0. d b (n-1) (n > 2) 9 s2 = ~s2 an y 9 

th ( f 0 f2 0 9 (1) ) e map 1 0 ••• n-
We have 

THEOREM 2.5 The amalgam [U;51 ,52] is weakly embeddable if 

and only if for all n > 1 the maps fen) and g(n) are 1-1. 

Proof From Theorem 1.1.3 the amalgam is weakly embeddable 

if and only if the maps ~i 5i -+ 51 *U 52 are 1-1. By Theorem 

1.3.17 and Corollary 1.3.18, these maps are 1-1 if and only if fen) 

(n) 
and 9 are 1-1 for all n > 1. 

Notice that Theorem 2.5 is saying that the monoid amalgam 

[U;51,52J is weakly embeddable in 51 *U 52 if and only if the 

U-set amalgam [U;51,52J is weakly embeddable in each Wn (n > 2) 

(n) (n) 
(with respect to the maps f and g above). 
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We can in facl show 

THEOREH 2.6 The monoid amalqarn [U;S1)S2 J is strongly 

embeddable if 2nd onl y if the U-se t Dn!algam [U; S1 ,S2 ] is strorlql y 

embeddable in each W (n > 2) (with respect to the ~~os fen) and n "c ,. 

g(n) defined above). 

Proof Suppose that the monoid amalgam is strongly embeddable. 

From Theorem 2.5 we see that the maps fen) and g(n) are 1-1 (n > 1). 

Suppose then that f(n)(s ) (n) 
for = 9 (s2) 1 

some s1 in S1 and s 
2 

J.n 

Sr Then en) (n) ( ) in S1 S2' cp 1of (s1) = Ciln+1 * l.e. n+ ° 9 s2 U 

CP1(s1) 
(1) 

But CP1 .- -& and 
( 1 ) 

-&2 and = CP20 g (s2). cP 0 g = so - 1 2 

embeddable. 

Conversely suppose that the U-SRt amalgam is strongly 

(n) (n) 
embeddable in each W (n> 2). Then f and 9 are 1-1 (n 2 1), n -

and so the monoid amalgam is weakly embeddable from Theorem 2.5. 

(1) = Cfi 2 0 g (s2 ) 

and so from Theorem 1.3.17 there exists k > 2 such that 

in Wk+1' Hence s1 = s2 E U as required. 

The follO\\fing lemma will be of use later. 

LEHHA 2.7 Suppose thclt the mOiloid amEilgam [U;S1,S2 J is 

is 1-1. Then the amDlcprn is strong}y embeddable if and only. if 
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Proof The direct half follows from Theorem 2,6, Conversely, 

suppose that -&1(s1) = -&2(s2) in 51 *u 52' Then we have CJl2 of1(s1) = 
(1) 

CJl2 ° g (s2) , since CJl2 ° f 1 = CJl1 = -&1 and CJl
2 

° g (1 ) = -&2' But CJl2 is 

1-1 and so f 1 (s1 ) 
(1) 

i.e, s1 ® 1 = 1 ® s2 in W2 = 51 ® 52' = g (s2) , 

Hence s1 = s2 E U and the amalgam is strongly embeddable, 
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CHAPTER III EXTENSIONS AND AMALGAMATIONS 

1. The extension properties and pure sub U-sets 

In 1978 T E Hall [ll] introduced four extension properties for 

U-sets (the representation extension property, the free representation 

extension property, the strong representation extension property and 

the orbit preserving representation extension property) which are 

intimately connected with amalgamation. We introduce another in 

this section and provide a connection not only with the above 

extension properties but also with the almost unitary property of 

Howie. 

Let U be a submonoid of a monoid S. We say that U has the 

right extension property in 5, if for all X E ENS-Q the map 

X ~ X ®U 5, given by x 1-+ x ® 1 is 1-1. The left extension property 

is defined dually. We shall say that U has the extension property 

in 5 if for all X E ENS-U and all Y E U-ENS, the map X ®U Y ~ 

X ®U 5 ®U Y, given by x ® Y 1-+ x ® 1 ® y, is 1-1. We shall say that 

a monoid U is (right,left) absolutely extendable if U has the (right, 

left) extension property in every containing monoid. 

THEOREM 1.1 Let U be a submonoid of a monoid S. If U has 

the extension property in 5 then U has both the right and left 

extension properties in S. 
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Proof Take Y - U for the right extension property and X = U 

for the left. 

L[H~I\A 1.2 Let U be a submonoid of a monoid 5, let 5 be a 

submonoid of a monoid T and let 5 !leva the extem,ion property jn T. 

Then U has the extension pl'op2;rl'i._~!~ 5 if and only if U has the 

extension property in T. 

Proof Using Theorem 1.4.3 we see that if X E EN5-U and 

Y E Q-ENS, then 

and 

Since S has the extension property in T, then we see that 

x 0
U 

S @LJ Y-l- X 0 U 1 0
U 

Y is 1-1. Now consider the commutative 

diagram 

X ° U 
y > X 0

U 
S 0

U 
Y 

I / t (:( 

X 0U T 0U Y 

It is novi clear that X 0
U 

Y -)- X 0
U 

S 0
U 

Y is 1--1 If a!ld Drily if 

X 0U Y ~ X 0U T ®u Y is 1-1. Hence the result. 

The fol10'.\lim] result is fa.il'lyimrnediate. 
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THEOREM 1.3 Let U be a monoid. If U is absolutely flat then 

U is absolutely extendable. 

Proof Let X E ENS-Q, Y E Q-ENS and suppose that U is 

absolutely flat. Then for every monoid S containing U as submonoid 

the map U ®U Y 4 S ®U Y is 1-1, since Y is left flat. Since X is 

right flat, the map X ®U U ®U Y 4 X ®U S ®U Y is 1-1. But 

X ®U U ®U Y~ X ®U Y and so U is absolutely extendable. 

Let U be a submonoid of a monoid S. Recall that U is said 

to be right perfect in S, (Howie [23]) if for all X E ENS-~, Y E ENS-U 

and all U-monomorphisms f: X 4 Y there exists Z E ENS-~, a U-mono-

morphism g : Y 4 Z and an S-monomorphism h : X 4 Z such that 

f 
X -----> Y 

Z 

commutes. 

Notice that U is right perfect in S if and only if whenever 

X E ENS-~, Y E ENS-Q and f: X 4 Y is a U-monomorphism the map 

g : Y 4 F (S; X, y) is 1-1. 

Say that U is (right,left) absolutely perfect if U is (right, 

left) perfect in every containing monoid. From [12] Theorem 3, we 

have: 

THEOREM 1.4 Let U be a submonoid of a monoid S. Then U is 

right perfect in S if and only if U has the right extension property 

in Sand S is left flat. 
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We also have: 

LEMMA 1.5 [5, Proposition 1.1] A monoid U is (left,right) 

absolutely flat if and only if every containing monoid of U is (left, 

right) flat. 

THEOREM 1.6 (1) If U is right absolutely perfect then U is 

left absolutely flat. 

(2) U is absolutely perfect if and only if U is absolutely 

flat. 

(3) If U is (left,right) absolutely perfect then U is 

absolutely extendable. 

Proof (1) This follows from Theorem 1.4 and Lemma 1.5. 

(2) The 'only if' follows from (1) and its dual. Suppose 

then that U is absolutely flat. From Theorems 1.1 and 1.3 we see 

that U is both right and left absolutely extendable, and hence 

absolutely perfect from Theorem 1.4. 

(3) Suppose that U is right absolutely perfect. Let X E ENS-U 

and Y E U-ENS. The map X -+ X @U S gi ven by x f+ x @ 1 is 1-1 by 

Theorem 1.4. Hence, since Y is left flat, X@Y -+ X@S@Y is 1-1. 

NOTE The converses of (1) and (3) are not true. First, by 

[11, Theorem 25 (iii)] and Lemma 1.5 the three element right zero 

semi group is left absolutely flat, but is not right absolutely 

perfect by [11, Theorem 25 (ii)]. Also, from [11, Theorem 20] any 

finite cyclic semigroup is an amalgamation base and so from 
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Theorem 2.14 below is absolutely extendable. But no cyclic semigroup 

which is not a group is right absolutely perfect [11, Theorem 24]. 

Reinterpreting a definition of Hall [13], we say that U has the 

(right) orbit-preserving extension property in S if for all X E ENS-U 

there exists Z E ENS-~ and aU-monomorphism f: X -+ Z such that 

yu E Z\imf whenever y E Z\imf and u E U. It is easy to prove that 

if A is a U-orbit of X, then f(A) is a U-orbit of Z. (A is aU-orbit 

of X if A is a minimal (w.r.t. c) subset of X with the property that 

for all u in U, x in X, x E A if and only if xu EA.) 

THEOREM 1.7 Let U be a submonoid of a monoid S. If U has the 

orbit preserving extension property in S then U has the extension 

property in S. 

Proof Let X E ENS-U and Y E U-ENS and suppose that U has the 

orbit-preserving extension property in S. By assumption there exists 

Z E ENS-~ and aU-monomorphism f : X -+ Z. Now, since Z\imf is a sub

U-set, the U-set Z may be identi fied with X u Z\imf and so Z ® Y = 

X ® Y U [( Z\imf) ® Y] from Lemma 1. 4.8. Hence the map f ® 1 : X ® Y -+ 

Z ® Y is 1-1. Now define the map cp : X ® S ® Y -+ Z ® Y by cp( x ® s ® y) = 

f(x).s®y, and check that cp(x®1®y) = f(x)®y. Thus X®Y -+ X®S®Y 

is 1-1 as required. 

Let U be a subsemigroup of a semigroup S. Say that U is 

1 1 1 1 quasi-unitary in S if there exists a ( U, U)-map cp: S -+ S such 

that 

(1) 2 
cp = cp, cpC 1) = 1; 

(2) for all u in U, cp(s) E U whenever su E U or us E U. 

It is easy to see that cp(u) = u for all u E U. 
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It is of interest to compare this with Howie's definition 

[15, 22] of almost unitary. Recall that a subsemigroup U of a 

semi group 5 is almost unitary if there exist mappings A : 5 -+ 5 

(written on the left), p: 5 -+ 5 (written on the right) such that 

(1) 1..
2 = A, p2 = p; 

(2) A(st) = A(s)t; (st)p = s(tp); 

(3) A(sp) = (As)p; 

(4) sCAt) = (sp)t; 

(5) AIU = plU = 1U; 

(6) for all u E U, ASP E U whenever us E U or su E U. 

Then we have 

LEMMA 1.8 If U is an almost unitary subsemigroup of a semi-

group 5 then U is quasi-unitary. 

Proof Define cp:15-+ 15 by cp(1) = 1 and cp(s) = ASP for all 

s E 5. It is now easy to check that cp has the required properties; 

the only point we would make is that cp is indeed a 1U-map since 

cp(us) = A(us)p = (A(us))p; by (3) 

= (A(u)s)p; by (2) 

= (us)p; by (5) 

= u.(sp); by (2) 

= (up)(sp) ; by (5) 

= u.A(sp); by (4) 

= u.cp(s), 
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and similarly ~(su) = ~(s).u. 

The converse of Lemma 1.8 is not true. This follows from an 

example in [12, Section 3]. 

LEMMA 1.9 Let U be a quasi-unitary subsemigroup of a semi-

group S. Let X E ENS-U and suppose that x ® 1 = x' ® su in X ®1 

1 Then ~ ( s) E U and x = x' ~ ( s ) u . 

Proof In the notation of Lemma 1.4.4 'we have 

x = 

xv =x', 
n n 

u s = v (su) . 
n n n 

1 
We see that ~(s2) E U and u1 = ~(u1) = v1~(s2)' Also, 

\. 
U 

1 
u2s 2 = v2s 3 implies u2~(s2) = v2~(s3) and so ~(s3) E U. Continuing 

in this fashion we see that ~(si) E 1U, ~(s) E 1U and we have 

= x u ~(s ) = x v ~(s)u ~ 1 ~(s)u. n n n n n 

THEOREM 1.10 Let U be a quasi-unitary subsemigroup of a 

semigroup S. 
1 1 

Then U has the extension property in S. 

Proof 
1 1 

Let X E ENS- U and Y E ~-ENS and suppose that 

x®1®y = x'®1®y' in X® 1S ®Y. From Lemma 1.4.4 we have a set 

of equations 
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x0sv =x'01, n n n 

From Lemma 1.9, CP(s1) E 1U and x = x1CP(s1 )u1 . 50 applying 1 0 cP to 

both sides of equation X1 0S1v1 = x2 0s2u2 we obtain X1 0cp(s1)v1 = 

X 2 0cp(s2)u2, i.e. 

1 
us CP(s2) E U and 

x1CP(s1)V1 01 = X 2 0cp(s2)uZ- Lemma 1.9 again gives 

x1CP(s1)v1 = x2CP(s2)u2. Continuing in this way we 

see that 1 
cp(s.) E U and that x.cp(s.)v. = x. 1CP(s. 1)u. l' We thus 

l l l l l+ l+ l+ 

obtain a set of equations 

x cp( s ) v = x', n n n uy =vy'. n n n 

and so from Lemma 1.4.4 we have x 0 y = x' 0 y' in X 0 Y as r'equired. 

We have defined the extension property in the category of 

monoids. It will be useful to extend the definition to the category 

of semigroups. To this end, let U be a sub semi group of a semigroup 

5. We shall say that U has the extension property in 5 if 1U has 

the extension property in 15 (as monoids). When necessary we can 

distinguish between the semigroup extension property and the monoid 

extension property. However it is not normally necessary to make 

this distinction, by virtue of 
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THEOREM 1.11 Let U be a submonoid of a monoid 5 with identity 

e. Then U has the monoid extension property in 5 if and only if U 

has the semi group extension property in S. 

Proof Suppose that U has the semi group extension property in 

S and suppose that X E ENS-U and Y E U-ENS. 
1 

Then X E ENS- U and 

Y E 1U_ENS if we define 

x.1 = x, 1.y = y, for all x ih X, Y in Y. 

It is easy to check that X ®U Y ~ X ®1 Y. Also the map X ®U S ®U Y 
1 U 

4 X ®1 S ®1 Y is well-defined and we have a commutative diagram 
U U 

X ®1 
U 

Hence X ®U Y 4 X ®U S ®u Y is 1-1 as required. 

Conversely, suppose that U has the monoid extension property 

1 1 
in S and let X E ENS- U and Y E U-ENS. Notice that X ~nd Y need 

not be U-sets since we may have xe ~ x and ey ~ y. However, if 

we let X' = XU and Y' = UY, then X' and yl are U-sets. Now suppose 

that 

1 

x®1 ®y = x' ®1 ®y' in X ® 's 0.., Y. 
1U 'u 

If x ~ X' and y ~ yl then it is clear that x = x' and y = y', and 

hence x ® y = x I 0 y! in X 0 1 Y as required. A similar conclusion 
U 

holds if x' ~ X' and y' ~ Y'. We are therefore left with four 

possibilities: 
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(1) x,x l E XI; (2) x E XI, yl E yI; 

(3) y E yI, Xl E XI; (4) y,yl E yl. 

It is easy to check that the following maps are well-defined 

(a) 
1 
S 0

1 
Y -+ XI 0

U 
S 0

U 
yI, given by x0s0y f+ xe0ese0ey, 

U 

(b) XI 0
U 

yl -+ X 0
1 

Y, given by x0y f+ x0y. 
U 

1 ' 
F or example in (a), the map cp : X x S x Y -+ X I 0 S 0 Y I given 

U U 
1 

by cp( x, s, y) = xe 0 ese 0 ey, is "trilinear" with respect to U, in 

that 

cp(xu,s,y) = (xu)e 0 ese 0 ey, 

= (x (eu) ) e 0 ese 0 ey, 

= ( ( xe ) u ) e 0 ese 0 ey , 

= (xe) u 0 ese 0 ey , 

= xe 0 u (ese) 0 ey, 

= 

= xe 0 e(us)e 0 ey = cp(x,us,y). 

Similarly cp(x,s,uy) = cp(x,su,y). 

The four cases above can now be taken separately to deduce 

that x0y = Xl 0 y ' in X 0
1U 

Y. For example, in case (1) we have, 

on applying the map in (a) above, 

xe 0 e 0 ey = x I e 0 e 0 ey I in X I 0
U 

S 0
U 

Y I . 

Since U has the monoid extension property in S we see that 

xe 0 ey = x I e 0 ey I in X I 0
U 

Y I and hence in X 0 1 Y on applying 
U 

'the map given in (b) above. That is, xe 0 y = x I e 0 y in X 0 1 Y 
U 
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(since e 2 = e). But x,x' E X' implies xe = x, x'e = x'. Hence the 

result. 

As a consequence we have 

COROLLARY 1.12 Let U be a quasi-unitary subsemigroup of a 

semigroup S. Then U has the extension property in S. 

Let f: A -+ B be a monomorphism. Say that f splits if there 

exists a map 9 : B -+ A such that 9 0 f = 1 A • 

LEMMA 1.13 Let U be a sub semi group of a semigroup S. 

Suppose that the map U -+ 5 splits either (1) in the category of 

semi groups , or (2) in the category U-EN5-~. Then U is quasi-unitary 

in 5. 

Proof Notice that if U -+ 5 splits in the category of semi-

groups then it splits in U-EN5-~. Hence we need only consider case 

(2). Define cp: 15 -+ 15 by cp(1) = 1, cp(s) = f(s) where f: 5 -+ U is 

the splitting map. It is straightforward to check that U is quasi-

unitary in 5. 

Let X E EN5-U. Then it is easy to see that if X is injective 

then every monomorphism X -+ Y splits. 

Let K be a class of semigroups and let U E K. 5ay that U 

is ,!S.-injecti ve if for all monomorphisms f: 5 -+ T with 5, T E ,!S. and 

all morphisms 9 : 5 -+ U, there exists a morphism h : T -+ U such that 

h of = g. The next theorem is an easy consequence of Theorem 1.10 

and Lemma 1.13. 
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THEOREM 1. 14 (1) Let U be a monoid and suppose that U is 

injective in U-ENS-U. Then U is absolutely extendable. 

(2) Let U < S E K where U is ~-injective. Then U has the 

extension property in S. 

Let f: X -+ Y be a right U-map and A : A -+ B a left U-map, and 

consider the diagram 

1X 0 A 
X0A---->X0B 

'1/ '1/ 

Y 0 A -::--~-> Y 0 B 
1y 0 A 

We shall say that the pair (f,A) is stable if 

It is clear that (f, A) is stable if and only if whenever y 0 A (a) = 

f(x) 0 b in Y 0 B, then there exists x
1 

E X, a
1 

E A such that 

y0A(a) = f(x
1

) 0A(a
1

). We see from Lemma 1.3.12 that (f,A) is 

stable if and only if 

im(f0 A) 

'1/ '1/ 

im(1y0 A) ---> Y 0 B 

is a pullback. 

Let X, Y E ENS-~ and let f: X -+ Y be aU-monomorphism. ~~e S3Y 

that f is right pure if for all B E U-ENS the map f 181 1": X 0 B -+ Y 0 8 



-94-

is 1-1. Left purity is defined dually. Let X,Y E U-ENS-Q and let 

f : X -+ Y be a (U, U) -monomorphism. We say that f is pure if for 

all A E ENS-U and for all B E U-ENS the map 1 ® f ® 1 : A ® X ® B -+ 

A ® Y ® B is 1-1. The following are clear. 

LEMMA 1.15 If f: X -+ Y is a pure monomorphism then f is 

both right and left pure. 

LEMMA 1.16 If U is a submonoid of a monoid S then U has the 

(right,left) extension property in S if and only if the inclusion 

U -+ S is (left,right) pure. 

Let f: X -+ Y be a left U-monomorphism. Then we shall say that 

f is stable if for all right U-monomorphisms A : A -+ B, the pair 

(A, f) is stable. 

THEOREM 1.17 Let f: X -+ Y be a left pure monomorphism. Then 

f is stable. 

Proof Let A : A -+ B be a right U-monomorphism and consider 

the pushout diagram 

A A ----> B 

ex 

'1/ '1/ 

B --=6=---> P 

By Theorem 1.4.7, 
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A®1 A®X---->B®X 

A®1 a®1 

~ ~ 

B 181 X -S:::-"®--:"1-'> P 181 X 

is also a pushout. Suppose then that 

b®f(x) = A(a)®y in B®Y. 

Then a(b) 181 f(x) = aA(a) 181 y, 

= SACa) 181 y, 

= S(b)®f(x) in P®Y. 

But f is left pure and so the map P 181 X -+ P 181 Y is 1-1. Hence 

a(b)®x = S(b)®x in P®X. It follows from Lemma 1.3.8 that there 

exists a' 181 x' in A 181 X such that b 181 x = A (a' ) 181 x' in B 181 X. Hence 

b®f(x) = A(a')®f(x') in B®Y and (A,f) is stable. 

COROLLARY 1.18 Let U be a submonoid of a monoid Sand 

suppose that U has the right extension property in S. Let. A : X -+ Y 

be a right U-map and suppose that y®1 = A(X)®S in Y®S. Then 

y E imf. 

Proof By Theorem 1.17, y®1 = A(x
1

)®1 in Y®S for some 

x
1 

EX. Hence, since Y -+ Y ® S is 1-1, we see that y E imA. 

COROLLARY 1.19 Let U be a submonoid of a monoid S and suppose 

that U has the right extension property in S. Then U is closed in S. 
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Proof Suppose that s@! = 1 0s in \ G
1U 

1 
S. Then if e is 

the identity of U it is easy to check that s0e = e0s in S G
U 

S. 

Hence from Corollary 1.18 we see that s E U (take X = U, Y = Sand 

A = i : U -+ 5). Hence Dom
5

U = U ond U is closed in 5. 

It is of interest at this point to note that if U is a 

submonoid 5, then U is closed in 5 if and only if s E U whenever 

s G 1 = 1 0 S ii-I S 0 U S. An interesting and e(Jsily proved consequence 

of this is: 

THEORG1 1.20 Let U be a submonoid of a monoid S and let 

i : U -+ S be the inclusioll. Then U is closed in 5 if and only if 

the pair (i,i) is stable. 

Let A C B E U-ENS. Say that" A IS (left) relatively unitary 

in B if for all non-empty right ideals 1 of U, A n rB = lA. The 

definition of right relatively unitar~ is dual. 

The following is reasonably clear." 

THEOREi'-1 1.21 

imf is left relatively unitary in Y if and only if fC!.~~"ll right 

ideals I of U, ..the pair (ir I f) !..S slahlc,_h'h_ere ir : r -+ U is th~ 

inclusion. 

From Theorem 1.17 we can therefore deduce 

COf<DLLPJ;Y 1.22 (i) Let f: X -)- Y be 0 left pure rnrJr-lolfiorpilisll!. 



-97-

U has the extension property in S. Then U is relatively unitary in 

S. 

The following connection between purity and direct limits will 

p~ove useful later. 

THEOREM 1.23 Let U be a monoid and let (Xi'~}) be a direct 

system in ~-ENS-~ with directed index set and direct limit (X,a.). 
l 

Then a. is (right) pure if and only if ~ki is (right) pure for all 
---- l --~--~--~------------~---

k > i. 

Proof The result follows from Corollary 1.3.18 and Corollary 

1.4.9. 

THEOREM 1.24 Let U be a monoid and let f: A -+ B and 9 : C -+ D 

be (U, U) -monomorphisms. Then the induced monomorphism f u 9 : A U C -+ BuD 
is pure if and only if f and 9 are pure. 

Proof The proof is immediate from Lemma 1.4.8. 

We end this section with a connection between free extensions 

and the extension property which will prove extremely useful in the 

next section. Later we shall provide a similar connection between the 

perfect property and free extensions. 

THEOREM 1.25 Let U be a submonoid of a monoid S. Then U has 

the extension property in S if and only if for all X E U-ENS-~, all 

Y E U-ENS-~ and all pure (U, U) -monomorphisms f: X -+ Y, there exists 

Z E ~-ENS-~, ~ (U, S) -monomorphism h : X -+ Z and a pure (U, U) -mono-

morphism 9 : Y -+ Z such that 9 0 f = h. 
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Proof Suppose that U has the extension property in S. Let 

Z = F(S;X,Y) and let g: Y -+ Z, h: X -+ Z be as in the proof of 

Theorem 11.1.1. We use Theorem 1.3.14. Let A E ENS-U and 

B E U-ENS and consider the commutative diagram 

---->. A®Y®B 

~ ~ 

A®X®S®B---->A®Y®S®B 

Notice that since both f: X -+ Y and i : U -+ S are pure we can deduce 

that 

( 1 ) X ® S -+ Y ® S is pure, 

( 2 ) Y -+ Y ® S is pure, 

and (3) B -+ S®B is left pure (and hence stable by Theorem 1.17). 

Using (3) and Lemma 1.3.12 it is an easy matter to deduce that the 

above diagram is a pullback. But by Theorem 1I.1.2 and Theorem 1.4.7 

the diagram 

A®X®S®B---->A®Y®S®B 

~ ~ 

A ® X ® B ----> A®Z®B 

is a pushout. Hence by Theorem I. 3.14 we see that the map A ® Y ® B -+ 

A ® Z ® B is 1-1, for all A E ENS-U and B E U-ENS, i. e. Y -+ Z is a 

pure monomorphism. 
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Conversely, consider the pure monomorphism S 4 S U U. By 

assumption, there exists an S-set Z, an S-monomorphism B : S 4 Z 

and a pure U-monomorphism a : S U U 4 Z such that 

S > S U U 

s\/a 
Z 

commutes. From Lemma II .1.5 we see that F(S;S,S u U) :::: SuS and so 

there exists a unique S-map \(J : SuS 4 Z such that 

SuS 

commutes. Consequently, we deduce that S u U 4 SuS is pure and so 

from Theorem 1.24, U 4 S is pure as required. 

2. The extension property and amalgamations 

We proceed in this section to show that the extension property 

"implies amalgamation". From this we are able to deduce many of the 

principal results on semigroup amalgams (See Section 1.1). We 

conclude with a rather surprising characterisation of amalgamation 

bases. 
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THEOREM 2.1 Let [U;51,52J be a monoid amalgam. If U has the 

extension property in 51 and 52 then the amalgam is strongly 

embeddable and U has the extension property in 51 *U 52' 

Proof Construct the sequence (W ,f )..as in Theorem 11.2.1. n n 
(1) 

Then 9 : 52 -+ 51 ® 52 is 1-1 by the left extension property in 51 

and f 1 : 51 -+ 51 ® 52 is 1-1 by the right extension property in 5Z

Also f1 : W1 -+ W2 is pure since, if X E EN5-Q and Y E Q-EN5, then 

X ® 51 ® Y -+ X ® 51 ® 52 ® Y is 1-1 by the extension property in 52' 

Hence by Theorem 1.25, f : W -+ W 1 is a pure monomorphism for all n n n+ 

n > 1 (since W = F(5.,W 2'W 1)' i = n(mod 2)). By Theorem 11.2.5 n l n- n-

the amalgam is weakly embeddable and by Corollary 1.3.18 the map 

<r2 : W2 -+ 51 *U 52 is 1-1. 5uppose then that s1 ® 1 = 1 ® s2 in 

51 ®U 52' From Corollary 1.18 it follows that s1 E U. (Take X = U, 

Y = 51 and A as the inclusion from U to 51') Hence 1 ® s2 = 1 ® s1 in 

51 ® 52 and so s2 = s1 E U. By Lemma 11.2.7 the amalgam is strongly 

embeddable. By Theorem 1.23 we see that in particular the map 

<r1 : 51 -+ 51 *U 52 is pure. But the map U -+ 51 is pure and so 

U-+ 51 *U 52 is pure and U has the extension property in 51 * 52' U 

The result extends from monoids to semigroups. 

THEOREM 2.2 Let [U;51,5
2
J be a semigroup amalgam if U has 

the extension property in 51 and 52 then the amalgam is strongly 

embeddable and U has the extension property in 51 *U 52' 

Proof This is a consequence of Theorems 2.1, 1.11, 1.1.7 

and 1. 1.8. 
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From Theorem 1.1.6 we can extend the result to 'special' 

amalgams with more than two semigroups. 

COROLLARY 2.3 Let [U; {S. : i E I}] be an amalgam such that U 
l 

has the extension property in each S .. Then. the amalgam is strongly 
l 

embeddable. 

Also by virtue of Theorem 1.7 we have 

COROLLARY 2.4 (See [Hall, 13]). Let [U;S.] be an amalgam suc~ 
-- l 

that U has the orbit preserving extension property in each S .• Then 
l 

the amalgam is strongly embeddable. 

Since unitary subsemigroups have the orbit preserving extension 

property [Hall, 13, Theorem 2.9] we could deduce Howie's result on 

unitary amalgams. Alternatively this will follow from Lemma 1.8 and 

COROLLARY 2.5 Let [U;S.] be an amalgam such that U is quasi-
-- l 

unitary in each S .. Then the amalgam is strongly embeddable. 
l 

Proof A direct consequence of Corollary 1.12. 

Using Lemma 1.13 we then obtain 

COROLLARY 2.6 Let [U;S.J be an amalgam such that the maps 
-- l 

U ~ S. split (either in the category of semi groups or the category 
l ~~~~~~~--~--~~~~----~--~~--~--------~~~ 

of (U,U)-bisets). Then the amalgam is strongly embeddable. 

From Theorem 1.14 we have 
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COROLLARY 2.7 (1) Let ~ be a class of semi groups and let 

U < S. E K, with U an injective element of K. Then the amalgam 
- 1 ~--

[U;S.] is strongly embeddable. 
1 

(2) If U is injective in Q-ENS-U, then U is an amalgamation 

base. 

From Theorem 1.6 (3) we have 

COROLLARY 2.8 [Hall, 1l, Howie, 23J Let U be (right,left) 

absolutely perfect. Then U is an amalgamation base. 

From [Bulman-Fleming and McDowell, ~] we have that inverse 

semigroups are absolutely flat and hence by Theorem 1.3 they are 

absolutely extendable, and so we have 

. COROLLARY 2.9 [See Howie Il, ~; Hall 1l]. Every inverse 

semigroup is an amalgamation base in the category of semigroups. 

T E Hall [13] gave the following definition. Let U be a 

subsemigroup of a semi group S. Say that (U,S) is a (weak) 

amalgamation pair if every amalgam of the form [U;S,T] is (weakly) 

embeddable. He proved that if (U,S) is a weak amalgamation pair 

then U has both the right and left extension properties in S. 

(See Theorem 1.1.19). In fact we have: 

THEOREM 2.10 (cf. P M Cohn 7, Theorem 5.1). Let (U,S) be a 

weak amalgamation pair in the category of monoids [semigroups]. 

Then U has the extension property in S. 
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Proof We prove the theorem for the category of monoids. The 

semigroup case is similar. Let X E ENS-U and Y E U-ENS. We need to 

show that the map X @ Y -+ X @ S @ Y is 1-1. 

Let W = Xu Y and make W a (U,U)-biset by defining ux = x, 

yu = y for all x in X, y in Y and u in U. Let W(O) = u, w(1) = W 

and Wen) W(n-1) @ W • v/ n ) = for n > 2. Put T = U (the tensor U n>O 

algebra over W) and define a multiplication on T by 

u ( w 1 @ ... @ w r ) = ( uw 1 ) @ ..• @ w r 

Then T is a monoid with U as submonoid. 

The following are obvious 

LEMMA 2.11 (1 ) The map X @U Y -+ T given by x @ Y f+ xy is 1-1. 

(2) The map X @U S @U Y -+ T @u S @U Y g2. ven by x @ s @ Y f+ 

x @ s @ Y is well-defined. 

By assumption we have a commutative diagram of monomorphisms 

U----> S 

a. 

'1/ '1/ 

T --:::--> S * T S U 

Consider the well-defined map cp : T @U S 0U T -+ S * U T given by 

cp(t@s@t') = S(t)a.(s)S(t'). Suppose that x®1 ®y = x' @10y' in 

X @ S @ Y. Then by Lemma 2.11 (2) we see that B(x)a(1)S(y) = 



-104-

S(x')a(1)S(y') in S *u T, i.e. Sexy) = S(x'y'). Since S is 1-1 

then we deduce by Lemma 2.11 (1) that x ® y = x' ® y' in X ®u Y. 

COROLLARY 2.12 [Hall, 11] If (U,S) is a weak amalgamation pair, 

then U has the right and left extension prop.e.rties in S. 

From Corollary 1.22 we have 

COROLLARY 2.13 [Howie,~] If (U,S) is a weak amalgamation pair, 

then U is relatively unitary in S. 

From Theorems 2.10 and 2.1, we have the following rather 

surprising result. 

THEOREM 2.14 Let U be a monoid [semigroup]. Then U is an 

amalgamation base in the category of monoids [semigroups] if and 

only if U is absolutely extendable in this class. 

Finally, C J Ash [1] gave the following definition and theorem. 

Let M be a class of semi groups with subclass M. Then M is co final 
-0 -0 

in M if for all S E M, there exists T E ~ with S < T. 

THEOREM 2.15 [See, 1, page 171, Theorem 3.3]. If M is 
--0-

cofinal in M then U E M is an amalgamation base for M if and only 
------ - -- -0 -0 -----"---

if it is an amalgamation base for M. 

We now have 

THEOREM 2.16 Let M be a co final subclass of the class of all 

semigroups. Then U E M is an amalgamation base for M if and only if 

it is absolutely extendable in M. 
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Proof The direct half is an immediate consequence of Theorems 

2.15 and 2.14. 

Conversely, let S be any semi group containing U. Then there 

exists T E M with U < S < T. By assumption, U has the extension 

property in T and hence in S, i.e. U is absolutely extendable in the 

class of all semigroups. The result now follows from Theorems 2.15 

and 2.14. 

Since the class of regular semi groups is cofinal in the class 

of all semigroups we thus have 

COROLLARY 2.17 Let U be a regular semigroup. Then U is an 

amalgamation base in the class of regular semigroups if and only 

if it is absolutely extendable in this class. 
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CHAPTER IV FLATNESS AND AMALGAMATION 

1. Flatness, quasi-flatness and free-extensions 

In this section we provide a collection of results on flat and 

quasi-flat U-sets which will enable us in Section IV.2 to deduce 

results on flatness and amalgamations. 

LEMMA 1.1 Let f: X -+ Y be aright U-monomorphism and suppose 

that X and Y/X are quasi-flat. Then Y is quasi-flat. 

Proof Let \ : A -+ B be a left U-monomorphism with B flat and 

suppose that y®\(a) = y' ®\(a') in Y ®U B. Then y®\(a) = y' ®\(a') 

in (Y/X) ® B and so, since Y/X is quasi-flat, y®a = y' ®a' in 

(Y/X) ® A. From Lemma 1.4.10 we see that either y®a = y' ®a', as 

required, or there exists x
1

, x
2 

E X, a1 , a
2 

E A such that y ® a = 

f(x
1
)®a

1 
and y'®a' = f(x

2
)®a

2
. Hence f(x

1
)®\(a

1
) = f(x

2
)®\(a

2
) 

in Y ® B. Since B is flat, the map f ® 1 : X ® B -+ Y ® B is 1-1, and 

since X is quasi-flat, the map 1 ®\: X®A -+ X®B is 1-1. Hence we 

see that x
1 

® a
1 

= x
2 

® a 2 in X ® A and so y ® a = y' ® a' in Y ® A. 

THEOREM 1.2 Let U be a right reversible monoid. Let 

. f : X -+ Y be a right U-monomorphism and \ : A -+ B a left U-monomorphism. 

Suppose that the map 1 ® \ : Y ® A -+ Y ® B is 1-1. Then the map 

1®\: (Y/X)®A -+ (Y/X)®B is 1-1 if and only if (f,\) is stable. 

Proof Suppose that 1 ®\: (Y/X) ®A -+ (Y/X) ®B is 1-1. Suppose 

also that y®\(a) = f(x)®b in Y®B. From Lemma 1.4.14 we see that 
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y0A(a) = fTX)0A(a) in (Y/X) 08. Hence, we have y0a = fTX)08 

in (Y/X) 0 A. From Lemma I.4.10 we deduce that there exists x
1 

E X~ 

a
1 

E A such that y0a = f(x
1
)0a

1 
in Y0A. Hence y0\(a) = 

f(x
1

)0A(a
1

) and (f,A) is stable. 

Conversely, suppose that y0A(a) = y' 0A(a') in (Y/X) 0B. 

From Lemma 1.4.10 we have two cases to consider: either 

(i) y0A(a) = y'0A(a') in Y0B, or 

(ii) y0A(a) = f(X
1
)0b

1
, y'0A(a') = f(X

2
)0b

2
, for some 

x
1

,x
2 

E X and b
1

,b
2 

E B. 

In case (i) we see that since Y 0 A -+ Y 0 B is 1-1, then 

y0a = y' 0a' in Y0A. Hence y0a = y' 0a' in (Y/X) 0A, as required. 

In case (ii) we deduce, by stability of (f,A) that there 

exists x
3

,x
4 

in X, a
3

,a
4 

in A such that 

(n y0A(a) = f(x
3

)0A(a
3
), and 

(2) y' 0A(a') = f(x
4

) 0A(a
4

). 

Since Y 0 A -+ Y 0 B is 1-1, we have 

(3) y0a = f(x
3
)0a

3
, and 

(4) y'0a' = f(x
4
)0a

4
. 

Now by Lemma 1.4.5 A(a) - A(a') in B and so we see that A(a3 ) - \(a4 ) 

in B, from (1) and (2). By the dual of Corollary 1.2.7, a3 - a4 in A 

and so by Lemma I.4.10, y0a = y'0a' in (Y/X)0A. 

If f: X -+ Y is a right U-monomorphism then we shall say that f 

is right quasi-stable if for all left U-sets A, all flat left U-sets 



-108-

B and all U-monomorphisms A : A ~ B, the pair (f,A) is stable. We 

can now deduce 

COROLLARY 1.3 Let f: X ~ Y be a right U-monomorphism. Suppose 

that Y is [quasi-J flat. Then Y/X is [quasi-J flat if and only if 

U is right reversible and f is [quasi-] stable. 

Proof Suppose that Y/X is [quasi-] flat. Then we see from 

Lemma 1.5.19 that U is right reversible. Hence from Theorem 1.2 f 

is [quasi-J stable. 

The converse follows immediately from Theorem 1.2. 

We also have connections between flatness and purity. 

LEMMA 1.4 Let f: X ~ Y be a right pure monomorphism and let 

Y be right [quasi-J flat. Then X is right [quasi-J flat and f is 

[quasi-] stable. 

Proof Let A : A ~ B be a left U-map [with B flat], and 

consider the commutative diagram, 

X ® A __ 1_®_A_-.:> X 0. B 

f®1 f®1 

~ ~ 

Y ® A --::-1 -®-';A--> Y ® B 

Then f®1: X®A ~ Y®A is 1-1 by right purity of f, and 1®A: Y®A ~ 

Y®B is 1-1 by right flatness of Y. Hence we see that 1 ®A: X®A ~ 

X ® B is 1-1 and X is right [quasi- J flat. 
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Suppose then that y ® :\ (a) = f( x) ® b in Y ® B, we see that 

f(x) ® TI8) = f(x) ® b in Y ® (B/A), by the dual of Lemma 1.4.14. 

Hence, since f is right pure, x®TI8) = x®b in X ® (B/A). From 

Lemma 1.4.10, we deduce that there exists x' E X, a' E A such that 

x®b = x' ®:\(a') in X®B. Hence y®:\(a) = f(x) ®b = f(x') ®:\(a') 

and f is [quasi-] stable. 

THEOREM 1.5 Let f: X -+ Y be aright pure U-monomorphism. 

Then X and Y/X are [quasi-] flat if and only if Y is [quasi-] flat 

and U is right reversible. 

Proof Suppose that X and Y/X are [quasi-] flat. Then U 

is right reversible by Lemma 1.5.22. If X and Y/X are quasi-flat 

then Y is quasi-flat by Lemma 1.1. Suppose then that X and Y/X are 

flat. Let:\: A -+ B be a left U-monomorphism and suppose that 

y®:\(a) = y'®:\(a') in Y®B. Theny®:\(a) =y'®:\(a') in (Y/X)®B 

and so, since (Y/X) is flat, y®a = y' ®a' in (Y/X) ®A. From 

Lemma 1.4.10 we see that either (i) y ® a = y' ® a' in Y ® A as required, 

or (ii) y®a = f(x
1

)®a
1

, y'®a' = f(x
2

)®a
2 

and a
1 

- a2 .· In this 

case we have f(x
1

)®:\(a
1

) = f(x
2

)®:\(a
2
). Now f®1: X®B -+ Y®B is 

1-1 by purity and 1 ®:\: X®A -+ X®B is 1-1 by flatness of X. Hence 

x
1 

® a
1 

= x
2 

® a
2 

and so y ® a = y' ® a' as required. 

The converse follows from Lemma 1.4 and Corollary 1.3. 

Let X E ENS-U. Say that X is weakly flat if for all non-empty 

left ideals I of U, X ® I -+ X ® U is 1-1. Notice that X is weakly 

flat if and only if X® I ~ XI for all left ideals I of U. 
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THEOREM 1.6 Let X be a sub U-set of aU-set Y, and suppose 

that Y is weakly flat. Then Y/X is weakly flat if and only if U 

is right reversible and X is relatively unitary in Y. 

Proof Let I be a non-empty left ideal of U and consider the 

maps a: (Y/X) @ I -+ (Y/X)!, B: (Y/X) @ I -+ VI/XI and y: (Y/X)! -+ 

(YI)/(X()YI), given by a(y@i) = Y.i, f3(y@i) = yi and y(Y.i) = yi. 

It is not too difficult to show that a and B are well-defined U-

epimorphisms and that y is a well-defined U-isomorphism. We 

therefore have a commutative diagram 

Y/X @ I _~B __ > VI/XI 

VI VI 

CY /X)! ----> vI/eX () vI) 

where o(yi) = yi for y E Y, i E I. It is reasonably straightforward 

to show 

(1) Y/X is weakly flat if and only if a is an isomorphism for 

every left ideal I of U; 

(2) a is an isomorphism if and only if Band 0 are isomorphisms; 

(3) 0 is an isomorphism for all left ideals I of U if and only 

if X is relatively unitary in Y. 

The result will therefore follow if we can show 

LEMMA 1.7 The map B is an isomorphism for all left ideals I 

of U if and only if U is right reversible. 



-111-

Proof Suppose that S is an isomorphism for all left ideals 

I of U. Let u,v E U and let I = Uu u Uv. Then it is clear that if 

x E X then x.u = x.v in VI/XI and so x0u = x0v in Y/X 0 I since S 

is 1-1. Hence u ~ v in I = Uu u Uv and from this we easily deduce 

that Uu n Uv t ~ and so U is right reversible. 

Conversely, suppose U is right reversible and let I be any 

left ideal of U. Suppose that yi = y'j in VI/XI. Then we have two 

possibilities: either (i) yi = y'j in YI or (ii) yi = xk, y'j = x'k' 

for some x, x' EX, k, k' E I. In case (i) we see that y 0 i = y' 0 j 

in Y 0 I, since Y is weakly flat. Hence y 0 i = y' 0 j in Y /X 0 I as 

required. In case (ii) we have by weak flatness of Y that 

y0i = x0k and y' 0 j = x' 0 k ' in Y 0 I. 

But s"ince U is right reversible we see that k ~ k' in I (in fact 

k ~ k' in Uk u Uk' C 1). Hence by Lemma 1.4.10, y0i = y'0j as 

required. 

The following results will be of use in the next section. 

THEOREM 1.8 Let U be a submonoid of a monoid S, and suppose 

that S is flat. Let f: X -+ Y be a right U-monomorphism and suppose 

that Y/X is [quasi-] flat. Then the map f01: X0S -+ Y0S is [quasi-] 

stable. 

Proof We deal with the case where Y/X is quasi-flat. The 

other case is similar. Let A : A -+ B be a left U-monomorphism with 

B flat.· Suppose that y0s0A(a) = f(x)0s'0b in Y0S0B. By 

Lemma I. 4.14 we see that y 0 s 0 A (a) = TW 0 s 0 A (a) in (y /X) 0 S 0 B. 
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Since S 0 B is flat and Y /X is quasi-flat we deduce that y 0 s 0 a = 

"'fCx)0s0a in Y/X0S0A. From Lemma 1.4.10 we see that there exists 

x
1 

EX, s10a1 E S0A such that y0s0a = f(X
1
)0s

1
0a

1
• Hence 

y 0 s 0 A.(a) = f(x
1

) 0 s1 0 A.(a
1

) and f 01 is quasi-stable. 

THEOREM 1.9 Let U be a submonoid of a monoid S and suppose 

that Sand S/U are flat. Let Y E ENS-~ be [quasi-J flat. Then the 

map Y ~ Y 0 U S is a [quasi-J stable monomorphism. 

Proof We deal with the case Y quasi-flat. The other case 

is similar. First of all notice that the map Y ~ Y 0
U 

S is indeed 

1-1, since Y0U ~ Y0S is 1-1 by quasi-flatness of Y and Y ~ Y 0
U 

U. 

Let A. : A ~ B be a left U-monomorphism with B flat and suppose that 

y 0 s 0 A. (a) = y' 01 0 b in Y 0 S 0 B. Then y 0 s 0 A. (a) = y' 0 T 0 A. (a) in 

Y 0 (S/U) 0 B by Lemma 1.4.15. But the map Y 0 (S/U) 0 A ~ 

Y 0 (S/U) 0 B is 1-1 since Y is quasi-flat and (S/U) 0 B is flat. 

Hence y0s0a = y'0T0a in Y 0 (S/U) 0 A and so from Corollary 1.4.13 

there exists y 1 E Y, a 1 E A such that y 0 s 0 a = y 1 0 1 081 . Hence 

the result follows. 

LEMMA 1.10 Consider the following commutative diagram in ENS-U 

g 

f A----:> B 

VI VI 

C ----,..---> P 

e: 



where P is the pushout of 

g 
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f A----> B 

'IV 

C 

Let A : E -+ F be a left U-map and suppose that the pairs (E:, A) and 

(~,A) are stable. Then (0,1..) is stable. 

Proof Suppose that d ® A(e) = o(p) ® x in D ® F. Then from 

example 1.3.3 we see that there are two cases: 

(1) p = a(b), 

(2) p = S(c), 

b E B, 

c E C. 

In case (1) we have d®:\(e) = oa(b)®x = db)®x. Since (s,A) 

is stable, there exists b1 E B, e1 E E such that d ® 1..( e) = 

db
1

)®A(e
1

). Hence d®A(e) = OCa(b1))®A(e
1

) and (o,a) is stable. 

Case (2) is similar to case (1). 

From Corollary 1.3 we deduce 

THEOREM 1.11 Let U be right reversible. Consider the 

following commutative diagram of U-sets and U-monomorphisms 

g 

f 
A----> B 

a 
E: 

D 



where P is the pushout of 

g 
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f A----> B 

'V 

C 

If D is [quasi-J flat and if € and ~ are [quasi-J stable then D/B, 

DIC and Dip are an Tquasi-J flat. 

We now provide a connection between free extensions and quasi-

flatness similar to that between purity and free extensions 

(Theorem 111.1.25). 

THEOREM 1.12 Let U be a submonoid of a monoid S and suppose 

that .S and S/U are flat. Let f: X -+ Y be a U-map with X E ENS-~, 

Y E ENS-U and suppose that the following is a free S-extension 

diagram 

f X ----> Y 

~~ 
Z 

Suppose also that (1) f is 1-1 and (2) X and Y/X are quasi-flat. Then 

(a) g is 1-1 and (b) Y and Z/Y are quasi-flat. 

Proof First Y is quasi-flat by Lemma 1.1. Consider the 

commutative diagram 
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f -----> Y 

'1/ f® 1 '1/ 
X®S---->Y®S 

'1/ 

X 
'1/ 

-----> Z 

By Theorem 11.1.2, the bottom square is a pushout. The map 

f®1 : X®S -+ Y®S is 1-1 by flatness of S and the map Y -+ Y®S is 

1-1 by quasi-flatness of Y, and flatness of S. Also from Lemma 

1.3.12 and Lemma 1.5.17 we easily deduce that the top square is 

a pullback. Hence by Theorem 1.3.14 (4) we see that g: Y -+ Z is 1-1. 

We now require to show that Z/Y is quasi-flat. Let P be the 

pushout of the diagram 

f 
X ----> Y 

'1/ 

X ® S 

Then by Lemma 1.3.13 we see that there exists a unique U-monomorphism 

o : P -+ Y ® S such that 

y 

X 

'1/ 

f -----> Y 

X ® S ----,:---, 

f®1 
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commutes, where y( x) = x ® 1 and -&( y) = y ® 1 • We use Lemma 1.3.15 

to show that Z/Y ~ (Y ® S) /P • First, consider the U-epimorphism 

(/1: Y ® S -+ Z. Then by Lemma 1.3.7 we see that 

Secondly, im(afo (f®1)) C im(ai'o-&), since the diagram 

f®1 X®S----->Y®S 

'II 

X 
'II 

---:-h--> Z 

commutes and so a~f(x) ®s) = h(xs) = (g 0 f)(xs) = (aero -&)(f(xs)). 

Lastly, we have already demonstrated that 0'90 -& (= g) is 1-1. 

Hence by Lemma 1.3. 15, Z/Y ~ (Y ® S) /P . But U is reversible 

(Corollary 1.5.20) and so by Theorems 1.8 and 1.9, the maps f®1 

and -& are quasi-stable. Hence by Theorem 1.11, (Y ® S) /p is quasi-

flat. 

2. Flatness and amalgamation 

THEOREM 2.1 Let [U;S1,S2 J be a monoid amalgam and suppose 

that S. and S./U are flat (i = 1,2). Then the amalgam is strongly 
--l--l 

embeddable. 

Proof Construct the sequence (W ,f ) as in Theorem 11.2.1. 
n n 

(1) 
The map f1 : W1 -+ W2 is 1-1 by flatness of S1 and the map g :S2 -+ W2 
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is 1-1 by flatness of 52. W1 is quasi-flat, since it is flat and by 

Theorem 1.9, f1 is quasi-stable (in fact it is stable). By Corollary 

1.3 and Corollary 1.5.20 we see that W2/W1 is quasi-flat. We now 

deduce from Theorem 1.12 that for all n > 1, f is 1-1 and Wand 
- n n 

W 1/W are quasi-flat. By Theorem 11.2.5 the amalgam is weakly 
n+ n 

embeddable and by Corollary 1.3.18 the map ~2: W2 ~ 51 *U 52 is 1-1. 

Suppose then that s1 ® 1 = 1 ® s2 in 51 ®U 52. We see from Lemma 1.5.17 

that s1 E U (take X = U, Y = 51 and f = i : U ~ 51). Hence 1 ® s2 = 

1 ® s1 and s2 = s1 E U, since g (1) is 1-1. By Lemma II. 2. 7 the amalgam 

is strongly embeddable. 

Notice that in Theorem 2.1, S. and S./U must be both right and 
1. 1. -- --

left flat. This follows from Hall [ll, Theorem 25 (ii) and (iii)J 

where he shows that right absolutely flat semi groups need not be 

amalgamation bases. 

From Lemma 1.1 and Lemma 1.1.12 we can deduce 

LEMMA 2.2 1.!. [U;S1,S2J is as above then Wn and Wn/U are 

quasi-flat for all n > 1. 

Proof From Lemma 1.1.12 we see that W /W ~ n n-1 

(Wn/Wn_2)/(Wn_,/Wn_2). By Lemma 1.1 we see that Wn/Wn_2 is quasi

flat. Similarly, Wn/Wn_3, ... ,Wn/W1 are quasi-flat. Hence Wn/W1 = 

(W /U)/(W1/U) and so W /U is quasi-flat. 
n n 

From Theorem 1.5.13 and Theorem 1.3.19 we can deduce immediately 
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COROLLARY 2.3 Let [U;51,52J be a monoid amalgam with 5i and 

5i /U flat (i = 1,2). Then 51 *U 52 and (51 *U 52)/U are quasi-flat. 

We do not know whether 51 *U 52 and (51 *U 52)/U are flat. 
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CHAPTER V PERFECT 5UBMONOID5 AND AMALGAMATION 

In view of the techniques described in Chapters II, III and IV 

we intend, in this section, to review some of the work concerning 

the perfect property. We shall provide a new proof that 'perfect 

implies amalgamation', similar in character to these of Theorems 

111.2.1 and IV.2.1. We shall also deduce as a corollary that U is 

perfect in 51 *U 52· 

Recall ([Theorem III.1.4J), that a submonoid U of a monoid 

5 is said to be right perfect if U has the right extension property 

in 5 and 5 is left flat as aU-set. 

We mention at this stage that Hall [llJ has given an example 

of an amalgam [U;S,TJ such that U is right perfect in S, U has the 

orbit preserving extension property in T (and hence the extension 

property in T) but such that the amalgam [U;S,TJ is not weakly 

embeddable. Hence we see that the extension property and the 

perfect property are independent, in that neither implies the other. 

We shall need the following rather technical lemma. 

LEMMA 1.1 Let 

A 
a. 

> B D > E 
I 

cp cr and .a- T 

\V \V \V \V 

C 
f 

> P F 
k 

> Q 

be push outs in ENS-U and suppose that there exists monomorphisms 

f3 : A -+ D, y: B -+ E and g : C -+ F, such that the diagram 
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A -------> B 

~ 
D > E 

1 
---> P 

F -----> Q: 

commutes. Suppose also that the top square 

a 
A----> B 

'1/ '1/ 

D --0=---> E 

y 

is a pullback and that -& : D -+ F and cp : A -+ C are both onto. Then 

these exists a unique monomorphism h : P -+ Q such that the completed 

'cube' commutes. 

Proof Notice first that by Lemma 1.3.7, P = B/p and Q = E/s. 

where p = {(a(a),a(a')) : (a,a') E Kercp} u 18 and s = {(0(d),6(d ' ) 

(d,d') E Ker-&} u \. Define h: P -+ Q by h(bp) = (y(b))s. Then it 

is clear that h is a well-defined U-map which will complete the above 

'cube'. Suppose then th2t (y(b),y(b')) E s. Then either (i) y(b) = 

y(b'), in which case b = b' and so bp = b'p as required, or (ii) 

y(b) = oed), yeb') = oed') for some (d,d') E Ker-&. In this case we 



see that since 

-121-

A----> B 

VI VI 

D --6"--> E 

y 

is a pullback, then there exists unique a,a' E A such that 

b = o:(a), d = Sea), b' = o:(a'), d' = Seal). 

Now we have gcp( a) = .&S (a) , 

= .&(d), 

= '&(d'), 

= '&S(a') = gcp(a'). 

But g is 1-1 and so (a,a') E Kercp. Hence bp = b'p as required. 

Let f: X -+ Y be a right U-monomorphism. Say that f is perfect 

if f is right pure and Y is right flat. We readily see 

LEMMA 1.2 Let U be a submonoid of a monoid S. Then U has the 

left perfect property in 5 if and only if the inclusion U -+ S 

(considered as a right U-map) is perfect. 

THEOREM 1.3 Let U be a submonoid of a monoid S. Then U is 

left perfect in 5 if and only if the following two conditions hold: 

(1) there exists A E ENS-S such that A is flat in ENS-U, 

(2) for all X E ENS-2, all Y E ENS-Q and all perfect mono-

morphisms f: X -+ Y, the natural map 9 : Y -+ F (S; X, Y) is a perfect 

monomorphism. 
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Proof Let U be left perfect in S. Then S is right flat as a 

U-set and so condition (1) holds. 

Suppose that f: X -+ Y is a perfect monomorphism, where 

X E ENS-~, Y E ENS-U. Let Z = F(S;X, Y) and let g : Y -+ Z and 

h: X -+ Z be as in the proof of Theorem 11.1.1. We use Theorem 1.3.14 

to show that g is pure. Let A E U-ENS and consider the commutative 

diagram 

X ® A -----> Y ® A 

~ ~ 

X®S®A---->Y®S®A 

Notice that all the maps in this diagram are 1-1, the only difficult 

case being the map X ® A -+ X ® S ® A. But this is 1-1 since A -+ S ® A 

is 1-1 (U has the left extension property in S) and X is right flat 

(Lemma 1V.1.4). Since f is right pure and hence stable, by the 

dual of Theorem 111.1.17, it is easy to deduce from Lemma 1.3.12 

that the above diagram is a pullback. By Theorem 11.1.2 and 

Theorem 1.4.7 the diagram 

X®S®A---->Y®S®A 

~ 

X ® A 
~ 

----> Z ® A 

is a pushout. Hence by Theorem 1.3.14 we see that the map g : Y -+ Z 

is right pure. We now require to show that Z is flat. Let 
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A : A -+ B be a left U-monomorphism and consider the incomplete 'cube' 

X ® 5 ® A > Y ® 5 ® A 

~ ~ 
X ® 5 ® B > Y ® 5 ® B 

'1/ 1 
X ® A > Z ® A 

~ V '1/ 

X ® B > Z ® B 

It is not at all difficult to check that the conditions of 

Lemma 1.1 are satisfied. Hence there exists a unique U-monomorphism 

Z ® A -+ Z ® B which will complete the cube, and so Z is right flat 

as required. 

Conversely, suppose that conditions (1) and (2) are satisfied. 

Let A E EN5-~ be flat in EN5-Q and consider the perfect monomorphism 

A -+ Au U. We see from Lemma 11.1.5 that F(5;A,A U U) ~ Au 5 and 

hence we have that the map Au U -+ Au 5 is a perfect monomorphism. 

It is now easy to deduce that U -+ 5 is perfect as required. 

We are now in a position to deduce 

THEOREM 1.4 [Hall, 11; Howie, ~J. Let [U;51,52J be a monoid 

amalgam and suppose that U is left perfect in 51 and 52. Then the 

amalgam is strongly embeddable and U is left perfect in 51 *U 52· 
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Construct the sequence (W ,f) 1 as in the proof of n n n> 

Theorem 11.2.1. Then f1 : W1 ~-W2 is 1-1 since 51 is right flat and 

(1) 
g : 52 ~ W2 is 1-1 since U has the left extension property in 51. 

Also, W2 is right flat since 51 and 52 are and f1 is right pure since 

if A E U-EN5 then f1 ®1 : 51 ®A ~ 51 ®52 ®A is 1-1 by right flatness 

of 51 and by the left extension property of U in 52. Hence by 

Theorem 1.3, we deduce that f is a perfect monomorphism for each 
n 

n > 1. From Theorem 11.2.5, the amalgam is weakly embeddable and 

by Corollary 1.3.18 the map ~2: W2 ~ 51 *U 52 is 1-1. 5uppose then 

that s1®1 = 1®s2 in 51 ® 52. By the dual of Corollary 111.1.18, 

s2 E U and so s1 ® 1 = s2 ® 1 in 51 ® 52. Hence s1 = s2 E U since f 1 

is 1-1 and so the amalgam is strongly embeddable by Lemma 11.2.7. 

Also, by Theorem 111.1.23 and Theorem 1.5.13 we see that 

~1 : W1 ~ 51 *U 52 is perfect and so the map U ~ 51 *U 52 is perfect, 

i.e. U is left perfect in 51 *U 52· 

From Theorem 1.1.6 we can now deduce 

COROLLARY 1.5 Let [U;5.J be an amalgam such that U is left 
-- 1 

perfect in each 5 .. Then the amalgam is strongly embeddable. 
1 

We end this chapter with a rather interesting connection with 

Chapter IV. 

THEOREM 1.6 Let U be a right reversible monoid. Let 

x, Y E EN5-U and suppose that f: X ~ Y is a perfect monomorphism. 

Then X,Y and Y/X are right flat. 
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Proof The proof follows immediately from Theorem 1V.1.5. 

COROLLARY 1.7 Let U be a left perfect submonoid of a monoid 

5 and suppose that U is right reversible. Then 5 and S/U are right 

flat. 

The converse of Corollary 1.7, and hence of Theorem 1.6 is 

false. This follows from the dual of the example given in the note 

after Theorem 111.1.6, where it is shown that left absolutely flat 

monoids are not necessarily right absolutely perfect. 
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CH!',PTER VI 

In this final chapter we eXDfYliil8 the case of rings. All rillgs 

will be associative rings with 1 and all maps will be 1-preserving 

ring homomorphisms. We shall denote the category of right R-modules 

(R,S)-bimodules will be denoted by R-MOD-S and its maps called (R,S)-

Many of the resuJts in this chapter have already been proved 

for the semigroup case. Consequently, we shall omit some of the 

proofs and simply refer the reader to an earlier section for more 

details. 

1. Direct Jimits, pushouts and pullbacks 

THEOREH 1.1 [RotmC:ln,,22, Corollmy 2.20J Let (X .• rn~) be a 
l' '; J 

direct systr~ln in R-I'lDD-S \!~ith direct limit (X ,0'..) and let A E IvlOD-R ~ 
l 

B E S-~10D. Then (A @R X @S B, 1 @ (ti @ 1) is the dj.rect hmit of 

. i 
(A 0 R Xi @S B, 1 ° cP j 0 1). 

LEMMA 1.2 [cf. Corollary 1.3.5J 

s. Then ~ny pushout in MOD-S is aJso a pushout in MOD-R. 

LEMMA 1.3 [cf. Lemmas 1.3.8 and J.3.9J Let 



-127-

f 

'1/ 

C ----:::---> 0 

be a pushout diagram and suppose that a(b) = B(c). Then there exists 

a E A such that b = g(a), c = f(a). 

LEMMA 1.4 [cf. Lemma 1.3.12] The commutative diagram 

B 

a 0----:> C 

'1/ '1/ 

B ----:f=--->' A 

g 

is a pullback if and only if whenever g(c) = feb), there exists a 

unique d E 0 such that c = a(d), b = B(d). 

THEOREM 1.5 [cf. Theorem 1.3.14] Consider the commutative 

diagram 

A 
f 

> B 

Y e: 

'1/ '1/ 

C > 0 

qJ a 

'1/ '1/ 

E 
B 

> F 
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in MOD-B., where the top square is a pullback and the bottom square 

is a pushout. Suppose that ~ is onto and that \/J is 1-1. Then a 0 E: 

is 1-1 if and only if E: and ~ 0 y are 1-1. 

THEOREM 1.6 [cf. Lemma V.1.1J Let 

A > B D 0 
> E 

~ a and ~ T 

'1/ '1/ '1/ '1/ 

C f > P F k > Q 

be pushouts in MOD-R and suppose that there exist monomorphisms 

S : A -+ D, y: B -+ E and 9 : C -+ F, such that the diagram 

A :> B 

~D I~ 
;:, E 

v v 
C 

> P 

~v v 

F > Q 

commutes. Suppose also that the top square 

A 
a > B 

S Y 

'1/ '1/ 

D 0 
> E 

is a pullback and that ~ : D -+ F and ~: A -+ C are both onto. Then 

there exists a unique monomorphism h : P -+ Q such that the completed 

'cube' commutes. 
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2. Extensions and free extensions 

Let R be a subring of a ring S. We say that R has the right 

extension property in S if for all X E MOD-~, the map X ~ X ®R S, 

given by x f+ x ® 1 is 1-1. The left extension property is defined 

dually. We say that R has the extension property in S if for all 

X E MOD-~ and all Y E ~-MOD, the map X ®R Y ~ X ®R 5 ®R Y, given 

by LX®Y f+ Lx®1 ®y is 1-1. We shall say that a ring R is (right, 

left) absolutely extendable if R has the (right,left) extension 

property in every containing ring. 

THEOREM 2.1 Let R be a subring of a ring S. If R has the 

extension property in S then R has both the right and left extension 

properties in S. 

The next result will prove useful later. 

LEMMA 2.2 [cf. Corollary 111.1.18] Let R be a subring of a 

ring S and suppose that R has the left extension property in S. 

Let f: X ~ Y be a left R-monomorphism and suppose that 1 ® Y =. 

Ls®f(x) in S®Y. Then y E imf. 

A ring R is (von-Neumann) regular if for all a E R, a E aRa, 

or equivalently, [35, Theorem 4.16] if every (right) R-module is 

flat. 

We can in fact show 
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LEHr'lA 2.3 A commutative r1ng R is regular if and only if 

every containing ring of R is flat as an R-module. 

Proof The fonly iff part is clear. Suppose then that every 

containing ring of R is flat. Let X E MOD-R and let T be the 

tensor algebra over X. It is straightforward to show that X lS 

flat if and only if T is flat. Since T is a containing ring of 

R, then X is in fact flat. Hence the result. 

THEOREM 2.4 

extendable. 

If R is a regular ring, then R 1S absolutely 

Let R be a subring of a ring S. Let X E MOD-~, Y E HOD-B. and 

let f: X -r Y be an R-map. The free S-extension of X and Y, is a 

right S-module F(S;X,Y) together with an S-map h: X -+ F(SiX,Y) and 

an R-map g: Y -+ F(SiX,Y) such that: 

(1) gof=h; 

(2) vvhenever there is an S-module Z, an S-map S : X -+ Z and an 

R-map a : Y -+ Z such that a 0 f = S, then there exists a unique S-map 

~:F(S;X,Y) -r Z such that ~og = 0: and ~oh = S. 
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THEOREM 2.5 [cf. Theorem 11.1.2J 

and let f: X ~ Y be 82 R--mc3p. 1 hen the pushout in 1'100-5 (and hence 

in MOO-R) of the diagram 

'i/ 

X 

where q)(L:x0S) = LXS, is isomorphic to F(S;X,Y). 

Let R be a subring of a rlng S. We say that R is right level 

in S if for all X E t~OD--S, all Y E 1-100-~ and all R-monomorphisms 

f : X ~ Y, there exists Z E MOO-.2, an R-monomorphism 9 : Y ~ Z such 

that h = g 0 f : X ~ Z is an S-monornorphisrn. Left level sub rings are 

defined dually. A ring R is (right,left) absolutely level if it 

is (righl,left) level in every containing ring. 

THEOREM 2.6 [cF. Theorem 111.1.4J ~et R be a subring of a 

extension property in Sand S is left flat in MOD-R. 

Proof Suppose that R is a right level subring of S. Let 

X E HOD-E and set Y = X 'J) S. Then Y E t'1DO-R and the map f : S ~ Y 
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given by f(s) = (D,s) is an R-monomorphism. By assumption, there 

exists Z E S-MOD and an R-monomorphism g : Y -+ Z. Define B : X -+ Z 

and <5 : X ®R S -+ Z by B (x) = g (x,D) and <5 (x ® s) = B (x) • s. Then B 

is an R-monomorphism, <5 is well-defined and the diagram 

Z 

commutes. Hence X -+ X ®R S is 1-1 and R has the right extension 

property in S. 

Suppose now that f: X -+ Y is a right R-monomorphism and 

consider the following pushout diagram in MOD-~, 

X _---.:f __ :> Y 

B 
'{I '{I 

X ®R S --0.--> P 

Since f is 1-1, then so is a. and hence there exists Z E MOD-S and 

an R-monomorphism g : P -+ Z such that h = goa. is an S-monomorphism. 

Define cp: Y ®R S -+ Z by cp(y®s) = (g ° B)(y).s. Then cp is a well-

defined S-map and 

(cpo (f®1))(x®s) = (goB°f)(x).s, 

= (g o a.)(x®1).s, 

= h(x®1).s, 

= h(x®s) • 

. Hence cp ° (f ® 1) = h and so f ® 1 is 1-1 as required. 
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Conversely, let f: X ~ Y be D right R-monomorphism with 

X E MOD-S and Y E MOD-R. We see that the maps X ~ X ®R 5, Y ~ Y @k 5 

and X ®R 5 ~ Y ®R 5 are all 1-1. From Lemma 1.4 and the dual of 

Lemma 2.2 we can easily deduce that 

x f >. Y 

\!I \!I 

X 0 R 5 ---------> Y 0 5 
R 

is a pullback. Hence from Theorem 1.5 arid Theorem 2.5 we see that 

the map 9 ; Y ~ F(S;X, Y) is 1-1. The result nm, follows. 

From Lemma 2.3 and Theorems 2.4 and 2.6 we can deduce 

COROLU\.RY 2.7 Let R be a commutative r1nq. Then the following 

are equivaJent: 

(i) R is ( von-Neumcmn) rcC]uJar, 

(ii) R is right absolutely level, 

(iii) R is left absolutely level. 

Let f: X ~ Y be a right R-monornorphism. Vie say that f is 

right pure if for all left R-rnodules B, the map f ® 1 : X 0 R G ~ 

Y 0
R 

B is 1-1. Let f : X -)- Y be an (R, R) -monomorphism. Then v>!e say 

that f 1S pure if for all A E lviOD-R and 811 G E [~-I\'1OD, the map 

1 ° f 01 : A @R X ®R B ~ A ®R Y cg'R 8 is 1-1. The following are 

clear. 

1 f i~: X -)- Y is a pure rnonon!orphiE;rn then f is b_otl~ 

right and left pure. 
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LEMMA 2.9 If R is a subring of a ring S, then R has the 

(right,left) extension property in S if and only if the inclusion 

R ~ 5 is (left,right) pure. 

LEMMA 2.10 [Rotman, 35, Theorem 2.7] Let f: A ~ B be an 

R-monomorphism. Then f splits if and only if B ~ A ~ C for some R-

module C. 

We can now deduce: 

THEOREM 2.11 Let A,B E MOD-~ [respectively ~-MOD-~] and let 

f : A ~ B be a split R-monomorphism. Then f is right pure 

[respectively pure] • 

. Proof The proof follows from Lemma 2.10 on noticing that 

C ®R (DE9E) ~(C®R D) ffl (C ®R E) for all C E MOD-~, and all 

D,E E ~-MOD. 

THEOREM 2.12 [cf. Theorem 111.1.23] Let (X. ,<p~) be a 
1 J 

direct system with directed index set I and suppose that (X,a.) 
1 

is the direct limit. 1! k E I, then ak is a [right] pure 

monomorphism if and only if <P~ is a [right] pure monomorphism for 

all Q, > k. 

The definition of stability of R-module maps is the same as 

that for S-set maps. See section 111.1. 

THEOREM 2.13 [cf. Theorem 111.1.17] Let R be a ring and 

let f: X ~ Y be a left pure monomorphism. Then f is stable. 
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The following characterisation of the extension property is 

similar to that in the semigroup case. 

THEOREM 2.14 [cf. Theorem 111.1.25] Let R be a subring of 

a ring S. Then R has the extension property. in S if and only if 

for all X E ~-MOD-2' for all Y E R-MOD-R and for all pure R-

monomorphisms f: X -+ Y, there exists Z E ~-MOD-2' an (R, S)-

monomorphism h : X -+ Z and a pure (R, R) -monomorphism g : Y -+ Z such 

that g 0 f = h. 

We now return to the notion of level subring. In view of 

Theorem 2.6, the following definition seems reasonable. Let 

f: X -+ Y be a right R-monomorphism. Say that f is level if f is 

right pure and Y is right flat. The following is easy to prove. 

LEMMA 2.15 Let f: X -+ Y be a level monomorphism. Then X 

is flat. 

THEOREM 2.16 Let f: X -+ y be a right R-monomorphism and 

suppose that Y is flat. Then the following are equivalent: 

(1) Y/X is flat, 

(2) f is pure, 

(3) f is level, 

(4) f is stable, 

(5) for all left R-monomorphisms A : A -+ B, the diagram 

X®A----.>Y®A 

'Il' 'Il' 

X®B---->Y®B 

is a pullback. 
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Proof (1) implies (2). Let A E R-MOD and consider the 

exact homology sequence 

• .. TOR 1 (Y /X, A) -+ X ® A -+ Y ® A -+ (Y /X) ® A -+ 0 

Since Y/X is flat, then TOR
1

(Y/X,A) = 0 and so exactness implies 

that f is pure. 

(2) and (3) are clearly equivalent. 

(2) implies (5). The proof follows from the dual of Theorem 

2.13 and Lemma 1.6 on noting that all the maps in the above diagram 

are 1-1. 

(5) implies (4). This follows immediately from Lemma 1.6. 

(4) implies (1). Consider the commutative diagram 

X ® A 
f®\ 

> Y ® A ----:> (Y/X) ® A 

1X ® A 1y ® A 

'1/ '1/ '1/ 

X ® B 
f® 1B 

> Y ® B ----> (Y/X) ® B 

Consider also the well-defined map Y /X ® B -+ (Y ® B) /im(f ®, 1 B) 

gi ven by L (y + imf ® b) f+ L (y ® b + im ( f ® 1 B) ) • Suppose that 

L(y+imf®A(a)) = 0 in Y/X ® B. Then LY®A(a) E im(f®1
B

) on 

applying the above mentioned map. Hence, by stability of f and 

flatness of Y we deduce that LY ® a E im( f ® 1 A)' and so 

L(y,+imf®a) = 0 in Y/X ® A. 

COROLLARY 2.17 Let f: X -+ Y be a right R-monomorphism and 

suppose that Y/X is flat. Then X is flat if and only if Y is flat. 
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Proof The proof follows from the exact homology sequence. 

COROLLARY 2.18 Let f: X ~ Y be a right R-monomorphism. Then 

f is level if and only if X and Y/X are flat. 

As a special consequence of the above result, we have 

COROLLARY 2.19 Let R be a subring of a ring S. Then R is 

left level in S if and only if SiR is right flat. 

THEOREM 2.20 [cf. Theorem V.1.3] Let R be a subring of a 

ring S. Then R is left level in S if and only if 

(1) there exists C E MOD-S such that C is flat in MOD-~, and 

(2) for all X E MOD-~, all Y E MOD-~ and all level R

monomorphisms f: X ~ Y, the natural map g : Y ~ F (S; X, Y) is a level 

monomorphism. 

Finally, recall that a ring R is normally said to be (right) 

perfect if every flat right R-module is projective. We have the 

following rather interesting result. 

THEOREM 2.21 [Fieldhouse, 2, Proposition 10.2] A ring R 

is right perfect if and only if every level R-monomorphism splits. 

3. Free products with amalgamation 

We describe a construction, first given in Cohn [2] and derive 

a necessary and sufficient condition for a ring amalgam to be 

embeddable. 
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Let [R;S1,S2J be an amalgam of rings. Let W1 = S1' W2 = 

S1 ®R S2 and define f1 : W1 -+ W2 by f1 (s1) = s1 ® 1. Suppose, by way 

of induction, that we have a sequence of R-modules and R-maps 

and suppose that 

k = 1, .•. ,n-2. 

Let i = n(mod 2) and define W = F(S.;W 2'W 1). Then we have n l n- n-

an (S1,R)-map f . W -+ Wand so by induction we have a direct n-1 . n-1 n 

system (W ,f ) of R-modules and R-maps. n n 

The following was proved by Cohn [ZJ. See also [f, pages 324-

325J and Theorem 11.2.1. 

THEOREM 3.1 Let [R;S1,S2 J be an amalgam of rings and construct 

the system (Wn,fn) as above. Then S1 *R S2' the free product of the 

amalgam, is the direct limit in R-MOD-R of the system (W ,f ). 
n n 

Notice that the direct limit, S1 *R S2' comes naturally 

equipped with maps ern : Wn -+ S1 *R S2 such that 

n = 2,3, .... 

Let f(n-1) = f 1 
n-

o f n_2 0 ••• 0 f1 : W1 

b . b (1)( ) e glven y g s2 
(n-1) = 1 ® s2 and let g 

(1) 
-+ Wn ' Jet g : S2 -+ W2 

f 0 
~ (1) 

= n-1 ... 0 r 2 0 9 
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THEOREM 3.2 [cf. Theorem II.2.5] Let [R;S1,S2] be an 

amalgam of rings. Then the amalgam is weakly embeddable if and 

only if the maps fen) and g(n) are 1-1 for all n > 1. 

THEOREM 3.3 [cf. Lemma II.2.7] 

amalgam of rings. Suppose that the amalgam is weakly embeddable 

and suppose that the map cr2 : W2 -+- S1 * R S2 is 1-1. Then the 

amalgam is strongly embeddable if and only if whenever s1 <2l1 = 1 <2l s2 

in S1 <2l S2' then s1 = s2 E R. 

4. Extensions and amalgamations 

THEOREM 4.1 [p M Cohn, 7, Theorem 4.4] Let [R;S1,S2] be an 

_a_m_a_l.;:.g_a_m_o_f_r_l_" n~g=,-s_a_n_d_s_u~p..!..p_o_s_e_t_h_a_t S i/R _i_s_f_l_a_t_in_ MOD-B., (i = 1,2). 

Then the amalgam is strongly embeddable and (S1 *R S2)/R is again 

flat. 

Proof Construct the system (W ,f) 1 as in Theorem 3.1. n n n> 

Notice that g (1) : S2 -+- W 2 is 1-1 since R has the Ie ft extension 

property in S1 (Corollary 2.19). Also, since S1 is right flat and 

since R has the left extension property in S2' then it is easy to 

check that f1 : S1 -+- S1 <2l S2 is a right pure monomorphism. But 

S1 <2lR S2 is flat, since both S1 and S2 are, and so by Theorem 2.20 

we deduce that f : W -+- W is level, for all n > 1. By Theorem n n n+1 

3.2 the amalgam is weakly embeddable. Suppose then that s1 <2l1 = 

1 <2l s2 in S1 <2lR S2. Then by Lemma 2.2 we see that s2 E R, (take 

X = R, Y = S2 and f = i : R -+- S2). Hence s1 <2l1 = s2 <2l1 and so 
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s2 =s1 E R, since f1 is 1-1. By Theorem 3.3, the amalgam lS strongly 

embeddable. From Theorem 2.12 we see that ~1 : W1 4 S1 *R S2 is 

right pure and since direct limits of flats are flat [Rotman, 35, 

Theorem 3.47J we see that S1 *R 52 is flat. That is to say, the 

map ~1 : W1 4 51 *R 52 is level. But R 4 S1 ~~ W1) is level and so 

the inclusion R 4 51 *R 52 is level and (51 *R 52)/R is flat by 

Corollary 2.19. 

By the associativity of free products with amalgamation (see 

Theorem 1.1.6) we can deduce 

THEOREM 4.2 [P M Cohn, Z, Theorem 4.5J Let [R;5.J be an 
--- l 

amalgam of rings and suppose that 5./R is right flat for all i. 
l 

Then the amalgam is strongly embeddable. 

THEOREM 4.3 [cf. Theorem 111.2.1J Let [R;51 ,52J be an 

amalgam of rings and suppose that R has the extension property in 

51 and 52. Then the amalgam is strongly embeddable and R has the 

extension property in 51 *R 52· 

THEOREM 4.4 [cf. Corollary 111.2.3J Let [R;5.J be an 
--- l 

amalgam of rings and suppose that R has the extension property in 

each 5 .. Then the amalgam is strongly embeddable. 
l 

From Theorem 2.4 we deduce 

COROLLARY 4.5 [Cohn, Z, Theorem 4.7J Let R be a regular 

ring. Then R is an amalgamation base. 
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Theorem 2.11 gives us 

COROLLARY 4.6 Let [R;S.] be an amalgam of rings such that 
--- 1 

the inclusions R ~ S. split in R-MOD-R. Then the amalgam is 
1 ~------

strongly embeddable. 

An immediate corollary of this is 

COROLLARY 4.7 Let R be an injective (R,R)-bimodule. Then 

R is an amalgamation base. 

THEOREM 4.8 [Cohn, 2, Theorem 5.1] Let (R,S) be a weak 

amalgamation pair. Then R has the extension property in S. 

We can now deduce the rather surprising result 

THEOREM 4.9 [cf. Theorem 111.2.14] A ring R is an amalgamation 

base if and only if it is absolutely extendable. 
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