Intermediates and enzymes involved in fluorometabolite biosynthesis in *Streptomyces cattleya*

by

Ryan McGlinchey

A thesis presented for the degree of Doctor of Philosophy in the School of Chemistry
University of St Andrews

January 2006
I, Ryan Patrick McGlinchey, hereby certify that this thesis, which is approximately 41,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

Date....01/31/02........Signature of Candidate..............

I was admitted as a research student in October 2002 and as a candidate for the degree of Doctor of Philosophy in October 2002; the higher study for which this is a record was carried out at the University of St Andrews between October 2002 and August 2005.

Date....17/3/06........Signature of Candidate..............

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the Degree of Doctor of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.

Date....17/03/06........Signature of Supervisor..
Declaration

Copyright

In submission of this thesis to the University of St. Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulation of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I understand that the title and abstract will be published and a copy of the work may be made and supplied to any bona fide library or research worker.

Date...17/3/06..........Signature of Candidate...
Acknowledgements

This work is dedicated to my family and my close friends.
Acknowledgements

Firstly, I would like to thank my supervisor Professor David O’Hagan for all of his help, support and guidance over the last three years. I am also grateful to GlaxoSmithKline (GSK) and EPSRC for financial support. Special thanks must go to the GSK team based at the PET centre, Addenbrooks hospital, Cambridge. In particular Dr Andrew Lockhart.

I would like to next thank Dr. Hai Deng, Dr Steven L. Cobb (now at the University of Alberta, Canada) and (Dr) Mayca Onega for all their help and endless discussions relating to this work. It has been a pleasure and a thorough enjoyment working with you. On the same note, special thanks must go to the O'Hagan group, both past and present for making this an enjoyable place to work.

I am extremely grateful to the following people at the University of St. Andrews for technical support. Dr Douglas Philp, Mrs Melanja Smith and Dr Tomas Lebl for the NMR service, Dr Graham Kemp and Mr Paul Talbot for N-terminus sequencing and finally Dr Catherine Botting and Mr Alex Houston for MALDI TOF analysis. Sincere thanks also go to Dr. Jack T. G. Hamilton (University of Belfast) for GC-MS analysis.

My gratitude also extends to both Andy McEwan and Gareth Williams, from Professor Jim Naismith’s group, for being great house mates.

I would like to thank Dr Vicki Bamford and (Dr) Natalie Gooseman for proof reading the thesis. I would also like to say a special thank you to Miss Amy Clark for much support and help during the last three years.

Finally, and most importantly, I would like to thank my family. Without their encouragement and support I would never have gotten this far.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Copyright</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Biological halogenation of natural products

1.1.1 Haloperoxidases

1.1.2 FADH$_2$-dependent halogenases

1.1.3 Chlorination by a non-haem α-ketoglutamate dependent enzyme

1.2 Biological fluorination

1.2.1 Fluorinated natural products from plants

1.2.1.1 Fluoroacetate
Contents

1.2.1.2 Fluorocitrate 15
1.2.1.3 Fluoroacetone 16
1.2.1.4 Fluorinated fatty acids 17
1.2.2 Fluorinated natural products from marine sources 18
1.2.2.1 5'-Fluorouracil derivatives from the sponge *Phakellia fusca* 18
1.2.3 Fluorinated natural products from bacteria 19
1.2.3.1 Nucleocidin from *Streptomyces calvus* 19
1.2.3.2 Fluoroacetate and 4-fluorothreonine from *Streptomyces cattleya* 20

1.3 Techniques used for studying the biosynthesis of natural products 20

1.3.1 Isotopic labelling 21
1.3.2 19F NMR spectroscopy 23

1.4 Fluoroacetaldehyde as a biosynthetic intermediate in *S. cattleya* 24

1.4.1 Fluoroacetaldehyde dehydrogenase from *S. cattleya* 24
1.4.2 PLP-dependent threonine transaldolase from *S. cattleya* 25

1.5 Enzymatic synthesis of Carbon-Fluorine bonds 27

1.5.1 Introduction 27
1.5.2 Nucleophilic Fluorination 27

1.6 The fluorinase 29

1.6.1 Identification of a fluorination enzyme from *S. cattleya* 29
1.6.2 Purification, crystal structure and properties of the fluorinase 34
1.6.3 Chlorination by the fluorinase 39

1.7 Positron Emission Tomography (PET) 43
2 Identification of a purine nucleoside phosphorylase (PNP) involved in fluorometabolite biosynthesis in S. cattleya

2.1 Nucleoside metabolism in biological systems

2.2 Metabolic fate of 5'-FDA in S. cattleya

2.2.1 The role of 5-fluoro-5-deoxy-D-ribose (5-FDR)

2.2.2 The role of 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP)

2.2.3 Incubation of 5-FDRP in a CFE of S. cattleya

2.2.4 Incubation of 2-deoxy-5'-FDA in a CFE of S. cattleya

2.2.5 Purine nucleoside phosphorylase (PNP)

2.3 Purification of a PNP from S. cattleya

2.3.1 Assay for PNP activity in S. cattleya

2.3.2 Step 1: Ammonium sulfate precipitation

2.3.3 Step 2: Hydrophobic interaction chromatography

2.3.4 Step 3: Ion exchange chromatography

2.3.5 PNP analysis by SDS PAGE
Contents

2.3.6 Production of 5-FDRP from the partially purified PNP 72
2.3.7 Monitoring the PNP reaction by 19F NMR 74
2.3.8 Substrate specificity of the partially purified PNP 76
2.3.9 Reversibility of the PNP 79
2.3.10 Generation of SAM analogues using the fluorinase and PNP in reverse 82

2.4 Fluorometabolite gene cluster in *S. cattleya* 85
2.4.1 PNP sequence analysis 86

2.5 Expression and purification of a PNP from *S. cattleya* 88
2.5.1 Protein expression trials 88
2.5.2 Protein purification of overexpressed PNP 91

2.6 Conclusion 95

3 Identification of an isomerase activity on the fluorometabolite pathway in *S. cattleya* 96

3.1 L-Methionine salvage pathway 96
3.1.1 5-Methylthio-5-deoxy-D-ribose-1-phosphate isomerase 98

3.2 The metabolism of 5'-FDA in a CFE of *S. cattleya* 100

3.3 The metabolism of 5-FDRP in a CFE of *S. cattleya* 103
3.3.1 Effect of iodoacetamide on fluorometabolite production 105
3.3.2 Effect of EDTA on fluorometabolite production 107
3.4 5-Fluoro-5-deoxy-D-ribulose-1-phosphate as a biosynthetic intermediate

3.4.1 Enzymatic preparation of 5-fluoro-5-deoxy-D-ribulose

3.4.2 The role of 5-fluoro-5-deoxy-D-ribulose

3.5 Purification of the isomerase

3.5.1 Assay for detection of isomerase activity

3.5.2 Step 1: Ammonium sulfate precipitation

3.5.3 Step 2: Hydrophobic interaction chromatography

3.5.4 Step 3: Size exclusion chromatography

3.5.5 Step 4: Anion exchange chromatography

3.5.6 Isomerase analysis by SDS-PAGE

3.6 Metabolic fate of 5-FDRibP in S. cattleya

3.6.1 Enzymatic preparation of 5-fluoro-5-deoxy-D-xylulose

3.6.2 The role of 5-fluoro-5-deoxy-D-xylulose

3.7 Conclusion

4 DHAP aldolases in S. cattleya

4.1 Dihydroxyacetone phosphate (DHAP) dependent aldolases

4.2 Stereospecificity of two DHAP aldolases using fluoroacetaldehyde as the substrate

4.2.1 The role of an L-fuculose-1-phosphate aldolase (L-FucA) on
the fluorometabolite pathway in *S. cattleya* 133

4.2.2 The role of an L-fructose 1,6-bisphosphate aldolase (L-FruA) on the fluorometabolite pathway in *S. cattleya* 138

4.2.3 Monitoring both aldolase activities in *S. cattleya* by 19F NMR 143

4.2.4 Effect of EDTA on DHAP dependent aldolase activity in *S. cattleya* 145

4.3 Purification of a DHAP dependent aldolase 148

4.3.1 Assay for the detection of DHAP aldolase activity 148

4.3.2 Aldolase purification by ammonium sulfate precipitation 149

4.3.3 Aldolase purification by hydrophobic interaction chromatography 150

4.3.4 Aldolase purification by size exclusion chromatography 151

4.3.5 Aldolase purification by anion exchange chromatography 152

4.3.6 Analysis of DHAP aldolase purification by SDS-PAGE 154

4.3.7 Measuring the molecular mass of the aldolase 154

4.3.8 Effect of various metal ions on aldolase activity 155

4.3.9 Sequence analysis of the aldolase 155

4.4 Conclusion 158

5 Experimental 159

5.1 Biochemical experimental 159

5.1.1 General methods 159

5.1.2 Growth and maintenance of *S. cattleya* on agar 161

5.1.3 Culture medium and growth conditions of *S. cattleya* 161
5.1.4 Media procedure for growing *S. cattleya* 162
5.1.5 Preparation of resting cell cultures of *S. cattleya* 162
5.1.6 Preparation of cell free extract (CFE) of *S. cattleya* 163
5.1.7 Assay to determine biosynthetic activity in a CFE of *S. cattleya* 163
5.1.8 Incubation of 5-fluoro-5-deoxy-D-ribose (5-FDR) in a CFE of *S. cattleya* 164
5.1.9 Chemo-enzymatic preparation of 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP) 164
5.1.9.1 Incubation of 5-FDRP with a CFE of *S. cattleya* 165
5.1.10 Incubation of 2-deoxy-5'-FDA in a CFE of *S. cattleya* 166
5.1.11 Effect of iodoacetamide on fluorometabolite production 166
5.1.12 Effect of EDTA on fluorometabolite production 167
5.1.13 Chemoenzymatic preparation and CFE incubation of 5-fluoro-5-deoxy-D-ribulose (5-FDrib) 168
5.1.14 Chemoenzymatic preparation and CFE incubation of 5-fluoro-5-deoxy-D-xylulose (5-FDXyu) 169
5.1.15 Preparation of 5-fluoro-5-deoxy-D-ribulose-1-phosphate 170
5.1.16 Preparation of 5-fluoro-5-deoxy-D-xylulose-1-phosphate 170
5.1.17 Protein purification by ammonium sulfate precipitation 171
5.1.18 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 172
5.1.19 Sample preparation for SDS-PAGE 173
5.1.19.1 Staining and destaining of SDS gels 173
5.1.20 Protein concentration determination 174
5.1.21 Fast protein liquid chromatography (FPLC) 174
5.1.22 Calibration of native protein masses by size exclusion 175
5.1.23 Partial purification of a PNP from *S. cattleya* 176
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>Approximately</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>Å</td>
<td>Ångstrom</td>
</tr>
<tr>
<td>amu</td>
<td>Atomic mass unit</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri-phosphate</td>
</tr>
<tr>
<td>5'-BrDA</td>
<td>5'-Bromo-5'-deoxyadenosine</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CFE</td>
<td>Cell free extract</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>5'-CIDA</td>
<td>5'-Chloro-5'-deoxyadenosine</td>
</tr>
<tr>
<td>5'-CIDI</td>
<td>5'-Chloro-5'-deoxynosine</td>
</tr>
<tr>
<td>Cma</td>
<td>1-Amino-1-carboxy-2-ethylcyclopropane</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>conc.</td>
<td>Concentration</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>ddd</td>
<td>Doublet of doublet of doublets</td>
</tr>
<tr>
<td>DHAP</td>
<td>Dihydroxyacetone phosphate</td>
</tr>
<tr>
<td>DHKMTpene</td>
<td>1,2-Dihydroxy-3-keto-5-methylthiopentene</td>
</tr>
<tr>
<td>DK-MTP-1-P</td>
<td>2,3-Diketo-5-methylthiopentyl-1-phosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ES-MS</td>
<td>Electrospray mass spectrometry</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td>Experiment</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide (oxidised form)</td>
</tr>
<tr>
<td>FADH<sub>2</sub></td>
<td>Flavin adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>5'-FDA</td>
<td>5'-Fluo<sub>r</sub>o-5'-deoxyadenosine</td>
</tr>
<tr>
<td>5'-FDI</td>
<td>5'-Fluo<sub>r</sub>o-5'-deoxyinosine</td>
</tr>
<tr>
<td>5-FDR</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-ribose</td>
</tr>
<tr>
<td>5-FDRP</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-ribose-1-phosphate</td>
</tr>
<tr>
<td>5-FDRibP</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-ribulose-1-phosphate</td>
</tr>
<tr>
<td>5-FDRib</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-ribulose</td>
</tr>
<tr>
<td>5-FDX</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-xylose</td>
</tr>
<tr>
<td>5-FDXyu</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-xylulose</td>
</tr>
<tr>
<td>5-FDXyuP</td>
<td>5-Fluo<sub>r</sub>o-5-deoxy-D-xylulose-1-phosphate</td>
</tr>
<tr>
<td>FF</td>
<td>Fast flow</td>
</tr>
<tr>
<td>FPLC</td>
<td>Fast protein liquid chromatography</td>
</tr>
<tr>
<td>Fr-1,6-P<sub>2</sub></td>
<td>Fructose-1,6-bisphosphate</td>
</tr>
<tr>
<td>L-FruA</td>
<td>L-Fructose-1,6-bisphosphate aldolase</td>
</tr>
<tr>
<td>L-FucA</td>
<td>L-Fuculose-1-phosphate aldolase</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine diphosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>HIC</td>
<td>Hydrophobic interaction chromatography</td>
</tr>
<tr>
<td>HK-MTPenyl-1-P</td>
<td>2-Hydroxy-3-keto-5-methylthiopentenyl-1-phosphate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HP</td>
<td>High performance</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo dalton</td>
</tr>
<tr>
<td>KMTB</td>
<td>2-Keto-4-methylthiobutyrate</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamp</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass over charge ratio</td>
</tr>
<tr>
<td>MALDI</td>
<td>Matrix assisted laser desorption ionisation</td>
</tr>
<tr>
<td>MES</td>
<td>2-Morpholinoethanesulfonic acid</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MSTFA</td>
<td>N-Methyl-N-(trimethylsilyl)-trifluoroacetamide</td>
</tr>
<tr>
<td>MTA</td>
<td>5'-Methylthio-5'-deoxyadenosine</td>
</tr>
<tr>
<td>MTAP</td>
<td>Methylthioadenosine phosphorylase</td>
</tr>
<tr>
<td>MTR</td>
<td>5-Methylthio-5-deoxy-D-ribose</td>
</tr>
<tr>
<td>MTRP</td>
<td>5-Methylthio-5-deoxy-D-ribose-1-phosphate</td>
</tr>
<tr>
<td>MTRibP</td>
<td>5-Methylthio-5-deoxy-D-ribulose-1-phosphate</td>
</tr>
<tr>
<td>NAD$^+$</td>
<td>Nicotinamide adenine dinucleotide (oxidised form)</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate (reduced form)</td>
</tr>
</tbody>
</table>
Abbreviations

NMR Nuclear magnetic resonance
O.D. Optical density
PET Positron emission tomography
PLP Pyridoxal 5’-phosphate
PNP Purine nucleoside phosphorylase
ppm Parts per million
Pm Pyrrolnitrin
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
Reb Rebeccamycin
RCY Radiochemical yield
rpm Revolutions per minute
s Singlet
SAH 5-Adenosyl-L-homocysteine
SAM 5-Adenosyl-L-methionine
sp. Species
tr triplet
td triplet of doublets
TOF Time of flight
TMS Trimethylsilyl
Tris Tris(hydroxymethyl)aminoethane
UV Ultra-violet
V Volt
Ve Elution volume
Vo Void volume
Abstract

Enzymatic halogenation occurs during the biosynthesis of more than 4,000 natural products. The presence of fluorinated natural products is much less common, with only 13 reported to date. The bacterium *Streptomyces cattleya* is known to biosynthesise two fluorinated secondary metabolites, fluoroacetate and 4-fluorothreonine. The precursor to these secondary metabolites is known to be fluoroacetaldehyde. It had previously been shown that a fluorination enzyme mediates a reaction between *S*-adenosyl-L-methionine (SAM) and \(\text{F}^- \) to generate 5’-fluoro-5’-deoxyadenosine (5’-FDA). This is the first committed step on the biosynthetic pathway. The pathway between 5’-FDA and fluoroacetaldehyde had not been investigated in detail prior to the work carried out in this thesis.

A purine nucleoside phosphorylase has been partially purified from cell-free extracts which catalyses the phosphorolytic cleavage of 5’-FDA to 5-fluoro-5-deoxY-D-ribose-1-phosphate (5-FDRP). Substrate specificity shows a profile which shares a close similarity to bacterial 5’-methylthioadenosine phosphorylases (MTAP’s). The identification of a gene cluster encoding enzymes responsible for fluorometabolite biosynthesis shows the PNP gene located adjacent to the fluorinase gene, reinforcing the involvement of this enzyme in the fluorometabolite pathway.

It is shown that 5-FDRP is converted to 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRibP) via an isomerase activity. The enzyme responsible for this transformation has been partially purified from cell free extracts (CFE’s). Another metabolite was identified as 5-fluoro-5-deoxy-D-xylulose-1-phosphate (5-FDXyuP), a diastereoisomer of 5-FDRibP, which appears to be an adventitious product in CFE’s of *S. cattleya*.

Two DHAP dependent aldolases have been identified, one of which is a putative L-fuculose-1-phosphate aldolase which catalyses conversion of 5-FDRibP to fluoroacetaldehyde. The other, an L-fructose 1,6-bisphosphate aldolase has been purified to homogeneity and catalyses an aldol reaction between DHAP and fluoroacetaldehyde to generate 5-FDXyuP. This enzyme is most probably one of primary metabolism.
Chapter 1

1 Introduction

Throughout the ages plant natural products have been used in traditional medicine. Today, with marine organisms and other living creatures as additional sources of active compounds, the biosynthesis of natural products represents a major avenue to drug discovery and development. Indeed, a large portion of today's major drugs have their origins in nature. Over 25% of all drugs have originated from natural products, and more than 80% of the world's total population rely on natural extracts for primary healthcare. It is therefore, not surprising that one of the most flourishing and rewarding frontiers in modern science is the study of the chemistry and biology of natural products.

Natural products arise from routes other than normal metabolic pathways, mostly after a phase of active growth and under conditions of nutrient deficiency. Although plants are the best known source of secondary metabolites, bacteria, fungi and marine organisms are also sources of natural product synthesis. Most low molecular weight natural products fall into the categories; alkaloids, terpenoids, polyketides, glycosides and phenolic compounds. Large natural product molecules include the ribosomal and non-ribosomal peptides. The study of these natural products has played a major part in the development of organic and medicinal chemistry and has provided an understanding of the ecological role that these compounds have. Examples of biologically active natural products which have had significant medicinal applications include taxol, camptothecin, artemisinin and shikonin. These are among the most powerful anticancer and antimalaria compounds to date (Figure 1.1).
A potent subset of natural products are the organo-halogen compounds which are diverse and have attracted interest both from manufacturers and researchers. By way of introduction, the occurrence and biosynthesis of the halogenated natural products are reviewed.

1.1 Biological halogenation of natural products

Enzymatic incorporation of chlorine, bromine or iodine atoms occurs during the biosynthesis of more than 4,000 natural products (Gribble et al. 2004). These have been isolated from a variety of organisms such as bacteria, fungi, marine algae, lichens, higher plants, mammals and insects. Brominated metabolites are the most prevalent in the marine environment, whereas chlorine-containing metabolites are more predominant in terrestrial organisms. The presence of fluorinated and iodinated natural products is much less common. The presence of halogen atoms in organic compounds has been shown to be important for biological activity. For example, it is shown that the de-chloro derivative of
the anti-tumour compound rebeccamycin 24 (see page 10) showed no antimicrobial activity towards different micro-organisms tested, in contrast to the chlorinated compound 24. Figure 1.2 shows several examples of naturally occurring halogenated products. The structural diversity is considerable, ranging from poly-chlorinated products such as nordysidenin 510,11 to the highly toxic compound fluoroacetate 8.12

![Chemical structures of halogenated natural products](image)

Figure 1.2 Examples of halogenated natural products; nordysidenin 5, diiodotyrosine 6 (\textit{G. cavolinii}),8 bromoform 7 (marine algae) and fluoroacetate 8 (\textit{S. cattleya}).

Although a large number of halogenated natural products have been isolated, it is only very recently that details have emerged on the mechanism by which the halogens, F-, Cl-, Br- and I- are incorporated into organic compounds. For the past 35 years haloperoxidases were thought to catalyse all halogenation reactions. There is some evidence supporting the involvement of haloperoxidases in the production of some organohalogens, such as bromoform 7 biosynthesis in the algae \textit{Penicillus capitatus}. The biosynthetic pathway appears to involve a bromoperoxidase.13 However, elucidation of the reaction mechanism shows that these enzymes lack substrate specificity and regioselectivity.14,15 A re-
evaluation of enzymatic halogenation has occurred in recent years with the discovery of different types of halogenating enzymes.

1.1.1 Haloperoxidases

Haloperoxidases are a group of enzymes that are able to catalyse the halogenation of organic compounds in the presence of halide ions and peroxides such as H_2O_2. The first halogenating enzyme was discovered while investigating the biosynthesis of the chlorinated metabolite caldariomycin 9 from *Caldariomyces fumago*.\(^{16}\) It was observed that the enzyme required a chloride ion and hydrogen peroxide and was thus named a 'chloroperoxidase'.\(^{17}\) In order to assay this enzyme, a spectrophotometric method was adopted which employed the synthetic substrate, monochlorodimedone 10, which is structurally similar to 2-chloro-1,3-cyclopentanedione 11, a late intermediate in caldariomycin 9 biosynthesis (Figure 1.3).

![Figure 1.3](image)

Figure 1.3 (a) Chlorinated compounds; caldariomycin 9, monochlorodimedone 10 and 2-chloro-1,3-cyclopentanedione 11. (b), Dimedone assay for the haloperoxidase reaction.

The assay has been used to identify haloperoxidases from a wide range of prokaryotes and eukaryotes,\(^{18}\) which have been further classified according to the halide source.
Chloroperoxidases can use chloride, bromide and iodide whereas bromoperoxidases use only bromide and iodide; and iodo-peroxidases only iodide. Haloperoxidases are unable to utilise fluoride as a halide source.17 These enzymes can be further characterised into three distinct classes, based on their catalytic mechanism, those which contain a haem group, those which contain vanadium and those which do not contain metal ions, namely perhydrolases.

Haem and vanadium containing haloperoxidases

The chloroperoxidase from *Caldariomyces fumago* was shown to contain a haem group. During the catalytic cycle hypohalous acid (HOCI) is generated as the halogenating agent in the presence of H\textsubscript{2}O\textsubscript{2} and halide ions. A different type of haloperoxidase was isolated from a marine algae and was found to require vanadium instead of iron for its halogenating activity.19 The reaction also produces hypohalous acid as the halogenating agent (Scheme 1.1). Vanadium-dependent chloro- and bromo-peroxidases have subsequently been isolated from lichen, algae and fungi.20

![Scheme 1.1](image)

Scheme 1.1 Enzymatic mechanism of vanadium containing haloperoxidases.
Perhydrolases

Further types of halogenating enzymes are those that contain neither a haem group nor any metal ion. Although they require hydrogen peroxide for their halogenating activity, they are not peroxidases. These have been isolated from *Streptomyces lividans* and *Pseudomonas fluorescens*. The protein structure shows a catalytic triad consisting of a serine, an aspartate and a histidine residue, indicating that they belong to the α/β hydrolase family. The reaction mechanism proceeds whereby an acyl-enzyme intermediate is formed from the reaction of a short-chained carboxylic acid with the serine residue at the active site. The addition of H_2O_2 causes the perhydrolysis of the acyl-enzyme intermediate which results in the formation of peracids. These peracids oxidise halide ions to hypohalous acids which then act as the halogenating agent (Scheme 1.2).

![Scheme 1.2 Enzymatic mechanism of a perhydrolase.](image)

Overall, the lack of substrate specificity and regioselectivity of these enzymes makes it unlikely that haloperoxidases and perhydrolases are involved in more regulated biosynthetic pathways for halometabolite formation.
1.1.2 FADH$_2$-dependent halogenases

Examination of the gene cluster involved in 7-chlorotetracycline 13 biosynthesis identified a gene coding for a halogenation enzyme. The deduced amino acid sequence showed no similarity to haloperoxidases or perhydrolases, suggesting a different type of halogenating enzyme. Studies on the biosynthesis of the anti-fungal compound pyrrolnitrin 19 (page 8) from *Pseudomonas fluorescens* have shown two related genes coding for two halogenase enzymes. These two halogenating enzymes were shown to be flavin-dependent with one of them having a sequence similarity to the halogenation enzyme involved in 7-chlorotetracycline 13 biosynthesis. Members of this family have since been identified in vancomycin 12, calicheamicin, balhimycin, as well as pyoluteorin 14 biosynthesis. Figure 1.4 shows several of these halogenated natural products in which regiospecific halogenation is most probably carried out by flavin dependent halogenases.

![Figure 1.4 Examples of halogenated natural products involving FADH$_2$-dependent halogenases.](image-url)
During the elucidation of pyrrolnitrin 19 biosynthesis, it was shown that there are two halogenating enzymes present which require FADH₂ for catalytic activity.³⁰ Both of these enzymes were shown to exhibit low sequence homology to flavin dependent monooxygenase enzymes.³¹ The first of these, a tryptophan-7-halogenase (PrnA) was shown to be responsible for the regioselective chlorination of tryptophan 15 to generate 7-chlorotryptophan 16. The second halogenase (PrnC) catalyses the regioselective chlorination of monodechloroaminopyrrolnitrin 17 in the 3-position of the pyrrole ring, generating aminopyrrolnitrin 18 (Scheme 1.3).

Scheme 1.3 Biosynthetic steps to pyrrolnitrin 19 in Pseudomonas fluorescens.

Recently, J. Naismith and co-workers³² at St Andrews University reported the crystal structure of tryptophan 7-halogenase (PrnA) along with further biochemical studies which suggested a mechanism for regioselective chlorination. It was shown from crystallographic data that the Cl⁻ ion binding site is over 10 Å from 7-chlorotryptophan 16. Furthermore,
there was no indication of large conformational changes which could bring tryptophan and flavin together. It is proposed that the Cl\(^-\) is positioned to make a nucleophilic attack on the flavin peroxide 21. This results in the formation of FAD-OH 22 and HOCl (Scheme 1.4).

Scheme 1.4 Predicted mechanism for the generation of HOCl.\(^{22}\)

The generated hypohalous acid (HOCl) is positioned in the active site where it travels along a 10 Å tunnel towards tryptophan 15 to undergo an electrophilic aromatic substitution in a controlled regioselective manner (Scheme 1.5).

Scheme 1.5 Proposed mechanism of halogenation of tryptophan 15 at the 7 position.\(^{32}\)
Chapter 1

It is conceivable that the hypohalous acid mechanism applies to all flavin-dependent halogenases. For example in rebeccamycin 24 biosynthesis the halogenation reactions occur early in rebeccamycin 24 biosynthesis involving two genes (rebF) and (rebH), which encode a NADPH dependent flavin reductase and an FADH$_2$-dependent halogenase respectively (Scheme 1.6). This halogenation is of biological significance.

\textbf{Scheme 1.6} Chlorination of tryptophan 15 as the initial step in rebeccamycin 24 biosynthesis.

The protein rebH was shown to share a 55 \% identity with the protein prnA involved in pyrrolnitrin 19 biosynthesis. It appears that RebF/RebH catalyses the regioselective chlorination of tryptophan 15 to 7-chlorotryptophan 16 in a similar manner to that shown in Scheme 1.4 and 1.5.

Overall, FADH$_2$-dependent halogenases appear to be responsible for the halogenation of aromatic substrates in secondary metabolite biosynthesis. However, for chlorinated natural products such as barbamide 25 and syringomycin E 26, a separate mechanism exists for the chlorination of the un-activated aliphatic carbon centres (Figure 1.5). This is discussed in the next section.
1.1.3 Chlorination by a non-haem \(\alpha \)-ketoglutamate dependent enzyme\(^{37} \)

There is a chlorination step during the biosynthesis of the natural product coronatine 30, a leaf toxin synthesised by the phytopathogenic bacterium \textit{Pseudomonas syringae}. Walsh and co-workers\(^{37} \) have recently identified a halogenase, CmaB in which chlorination occurs at the unactivated methyl group during the biosynthesis of this natural product (Scheme 1.7).

![Scheme 1.7](image)

\textbf{Scheme 1.7} The biosynthesis of coronatine 30, a leaf toxin. Coronatine 30 does not have a chlorine atom but it is chlorinated during the biotransformation of L-allo-isoleucine 27.

The halogenase, CmaB is shown to catalyse the chlorination of the \(\gamma \)-position of L-allo-isoleucine 27 followed by a second enzyme (CmaC) which then catalyses the formation of
a cyclopropyl ring in 29 from 28. Together, both enzymes execute γ-halogenation followed by intramolecular γ-elimination. The generated cyclopropyl ring in 29 then undergoes several further reactions before the generation of coronatine 30.

The enzyme, CmaB is shown to have sequence similarity to α-ketoglutarate (α-KG) dependent enzymes that contain non haem iron and use one Asp/Glu and two His side chains as ligands to oxygen-labile Fe$^{2+}$. These enzymes typically perform oxygenation reactions, however CmaB performs chlorination rather than oxygenation at the unactivated γ position of the amino acid substrate 27. Analogous genes have since been identified, involved in the biosynthesis of barbamide 25 and syringomycin 26 (Figure 1.5). 35,36

A mechanism has recently been proposed by Walsh and co-workers in which CmaB mediates a radical pathway involving the prototypic high-valent oxo-iron 40,41 (Fe$^{IV} = O$) (Scheme 1.8).

Scheme 1.8 Proposed mechanism of halogenation catalysed by CmaB.37

It appears that nature uses both FADH$_2$-dependent (Section 1.1.2) and non haem Fe$^{2+}$ dependent enzymes to mediate halogenation reactions. For electron rich aromatic
substrates, FADH₂-dependent halogenases are used, which generate HOCl to undergo an
electrophilic aromatic substitution in a controlled regioselective manner. For unactivated
carbon centres halogenation is carried out by a radical mechanism using highly reactive
iron-oxo species (Scheme 1.8).

1.2 Biological fluorination

Fluorine is the most abundant halogen in the Earth’s crust with fluoride ion concentrations
ranging from 270-740 ppm, compared to that of chlorine of 10-180 ppm. Although
ranked the 13th most abundant of all the elements, only 13 fluorinated secondary
metabolites have been identified to date. These have been found in both tropical plants and
microorganisms. The absence of fluorinated natural products can be attributed to fluoride
residing in an insoluble form and therefore being biologically unavailable. Fluoride exists
predominantly as insoluble minerals (e.g. fluor spar) and consequently fluoride levels in
sea water are low at 1.3 ppm. This can be compared to chloride which is present at
19,000 ppm. Other reasons for the paucity of fluorinated natural products reside in the
unique properties of fluorine (Table 1.1). Fluorine is the smallest of all of the halogens
with an atomic radius only slightly larger than hydrogen. Probably the most important
factor restricting participation of fluoride in biochemical processes is the large heat of
hydration of the fluoride ion. In the aqueous environment, fluoride is heavily solvated
precluding it as a potent nucleophile for biochemical processes. The high heat of hydration
is largely responsible for the substantial differences in redox potential between fluoride and
other halogen ions and this excludes any type of haloperoxidase mechanism.
Table 1.1 Heat of hydration and standard redox potential for the halogens.44-45

<table>
<thead>
<tr>
<th>Halogen, X^-</th>
<th>Heat of hydration, X^- [KJ mol-1]</th>
<th>Standard redox potential (E\textsubscript{0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-</td>
<td>490</td>
<td>-3.06</td>
</tr>
<tr>
<td>Cl-</td>
<td>351</td>
<td>-1.36</td>
</tr>
<tr>
<td>Br-</td>
<td>326</td>
<td>-1.07</td>
</tr>
<tr>
<td>I-</td>
<td>285</td>
<td>-0.54</td>
</tr>
</tbody>
</table>

1.2.1 Fluorinated natural products from plants

1.2.1.1 Fluoroacetate

Fluoroacetate 8 was first isolated in 1943 by Marais46,47 from the South African plant Dichapetalum cymosum.

The inhabitants of the South African province ‘Transvaal’ had long recognised this plant as a hazard to livestock and had consequently named it ‘gifblaar’ (poison leaf). The young leaves of the Dichapetalum genus were reported to contain on average up to 2500 mg kg-1 dry wt of fluoroacetate 8, with those from Dichapetalum braunii containing a staggering 8000 mg kg-1 dry wt. After the original discovery, many other species of the Dichapetalum genus have been shown to contain high levels of fluoroacetate 8 in their leaves, such as D. heudelotti,48 D. stuhlmannii49 and D. toxicarium.50 In Australia more than forty plant species from the Leguminosae genus have been shown to contain traces of fluoroacetate 8.
1.2.1.2 Fluorocitrate

The high toxicity of fluoroacetate 8 is attributed to its in vivo conversion to $(2R, 3R)$-fluorocitrate 31.

![Chemical Structure of Fluorocitrate](image)

This transformation has been termed the ‘lethal synthesis’ (Peters et al.)\(^5\). Many plants which accumulate low levels of fluoroacetate 8 have also been shown to contain trace levels of fluorocitrate 31.\(^{52,53}\) Fluorocitrate 31 is biosynthesized after in vivo activation of fluoroacetate 8 to fluoroacetyl-CoA 32.\(^{53}\) This then combines with oxaloacetate 33 catalysed by the citric acid cycle enzyme, citrate synthase.\(^{53}\) It emerges that the enzymatic reaction is highly stereospecific and generates the only toxic stereoisomer, $(2R, 3R)$-fluorocitrate 31.\(^{53}\) The metabolic product 35 is a competitive inhibitor of aconitase, the enzyme after citrate synthase on the citric acid cycle (Scheme 1.9).

![Chemical Reaction Scheme](image)

Scheme 1.9 The metabolic fate of fluoroacetyl-CoA 32 with oxaloacetate 33.
Chapter 1

The mechanism for aconitase inhibition involves a dehydration to give fluoro-cis-aconitate 34, followed by an S_N2' addition of hydroxide with loss of fluoride ion to form 4-hydroxy-trans-aconitate 35. This product is a potent competitive inhibitor of the enzyme. Additionally, it has been suggested that fluorocitrate 31 covalently binds to proteins involved in citrate transport across the mitochondrial membrane. The toxicity attributed to this latter process has been estimated to be 10^4 times more significant than aconitase inhibition alone.

1.2.1.3 Fluoroacetone

Fluoroacetone 36 was first identified by Peters and Shorthouse after a series of experiments in the late 1960's exploring fluoride metabolism in the Australian plant Acacia georginae.

![Fluoroacetone](image)

These experiments showed up to a 34% loss of the total fluoride ion (1 mM) originally present. This was attributed to the biosynthesis of volatile organofluorine compounds. Derivatisation with 2,4-dinitrophenylhydrazine gave a product which had an identical retention time on paper chromatography to that of fluoroacetone 36. However, as pointed out in the report, the derivatisation method could not distinguish between fluoroacetone 36 and fluoroacetaldehyde 48. Based on the subsequently identified role of fluoroacetaldehyde 48 in fluorometabolite biosynthesis in S. cattleya (Section 1.4), it is plausible that the hydrazone derivative was actually that of fluoroacetaldehyde 48.
1.2.1.4 **Fluorinated fatty acids**

ω-Fluorooleic acid 37 was first identified and isolated by Peters and co-workers\(^5^8-^6^0\) in 1959 from the seeds of the West African shrub *D. toxicarium*.

![Diagram of fluorinated fatty acids](image)

It was shown that ~80% of the organic fluorine present in the seed oil was ω-fluorooleic acid 37, with minor traces of ω-fluoropalmitic acid (C\(_{16:0F}\)). Re-analysis by Hamilton and coworkers\(^6^1\) using GC-MS has established a further five additional fluorinated acids, ω-fluoropalmitoleic (C\(_{16:1F}\)), ω-fluorostearic (C\(_{18:0F}\)), ω-fluorolinoleic (C\(_{18:2F}\)), ω- fluorooarachidic (C\(_{20:0F}\)) and ω-fluoroicosenoic acid (C\(_{18:1F}\)). Threo-18-Fluoro-9,10-dihydroxystearic acid has also been isolated from *D. toxicarium*, which is presumably a metabolite of ω-fluorooleic acid 37. Scheme 1.10 shows the hypothetical pathway to these fluorinated fatty acids.

Scheme 1.10 Putative biosynthetic pathway to ω-fluorofatty acids in *D. toxicarium*.

17
Chapter 1

If the plant has the ability to generate and utilise fluoroacetyl-CoA 32 then it is envisaged that the biosynthetic pathway would follow conventional fatty acid biosynthesis. It is worth noting that the fluorine atom is only ever located on the terminal carbon (ω), implying that a fluorinated analogue of a malonyl acyl carrier protein cannot be biosynthesised in this system.

1.2.2 Fluorinated natural products from marine sources

1.2.2.1 5'-Fluorouracil derivatives from the sponge *Phakellia fusca*

Chlorine and bromine containing natural products are common from marine sources. Recently, the first case of fluorine containing natural products from a marine source was reported by Xu and co-workers. Extracts of the marine sponge *Phakellia fusca* Schmidt, which had previously been reported to yield various alkaloids, were shown to contain 5-fluorouracil alkaloids 41-45 (Figure 1.6).

![Figure 1.6](image)

Figure 1.6 Fluorinated natural products from the sponge *Phakellia fusca*.

Two of these, 43 and 44 are known to possess anti-tumour activity. The other three derivatives were shown to be novel compounds, however there is some ambiguity about
the accumulation of these compounds in the sponge, suggesting the possibility that these compounds arise as a result of industrial contamination rather than de novo biosynthesis.

1.2.3 Fluorinated natural products from bacteria

1.2.3.1 Nucleocidin from *Streptomyces calvus*

The fluorinated natural product nucleocidin 46 was the first organo-fluorine compound to be isolated from a bacterial source. This anti-trypanosomal antibiotic was originally isolated in 1957 from the fermentation broth of an actinomycete, *Streptomyces calvus*. The isolated compound was initially identified as an adenine glycoside esterified with sulfamic acid, however it was not until 1969 that a re-analysis of the structure showed the presence of a fluorine atom at the 4'-position of the ribosyl ring system.

In 1976 the structure of nucleocidin 46 was confirmed unambiguously by total chemical synthesis. The site of fluorination at the C-4-position of the ribose ring makes this fluorometabolite an attractive source for a novel C-F bond forming enzyme. Unfortunately, attempts in recent years to re-isolate nucleocidin 46 from *S. calvus* have failed, possibly due to the repeated subculturing of stock strains of *S. calvus* and loss of the biosynthetic genes from the subcultured strains. It appears that we have lost the capacity to explore the biosynthesis of this natural product.
1.2.3.2 Fluoroacetate and 4-fluorothreonine from *Streptomyces cattleya*

The actinomycete *Streptomyces cattleya* is recognised for its biosynthesis of the β-lactam antibiotic thienamycin. This was the first naturally occurring β-lactam antibiotic to be discovered what has a carbapenem ring system. In 1986, Sanada and co-workers noticed that during the optimisation of thienamycin production, extracts of *S. cattleya* biosynthesised fluoroacetate 8 and 4-fluorothreonine 47.

Further examination showed that the media containing soy-bean casein had 0.7 % inorganic fluoride present. This was reinforced with control experiments in the absence of soy bean casein which showed no fluorometabolite biosynthesis. However, addition of fluoride (2 mM) restored the biosynthetic activity, showing a controlled production of fluoroacetate 8 and 4-fluorothreonine 47. During batch culturing of *S. cattleya*, fluorometabolite production was restricted to the stationary phase signifying fluoroacetate 8 and 4-fluorothreonine 47 are secondary metabolites. This observation raised the possibility of a convenient biological system for exploring enzymatic C-F bond formation.

1.3 Techniques used for studying the biosynthesis of natural products

A number of techniques have been used to study biosynthetic pathways, which comprise of both biochemical and biological approaches. The biochemical approach can be differentiated into two main categories. Firstly, biosynthesis of secondary metabolites can be blocked at different stages on the pathway by using various chemical reagents which
inhibit the enzymatic steps of interest. This in turn, leads to the accumulation of the desired metabolic intermediate. Additionally, chemically prepared compounds can be added to cell-free-extracts (CFE’s) to study substrate specificity and co-factor requirements for a particular enzyme. Alternatively, the synthesis of potential metabolic precursors which carry an isotopic label (e.g stable isotopes 13C and 2H) can be administered to an organism in order to examine the isotopic incorporation of the desired metabolite, usually by NMR spectroscopy.

A second method to elucidate secondary metabolic pathways involves mutational analysis. Here, mutants unable to express a particular gene on a pathway accumulate biosynthetic intermediates. Mutations can be induced by chemical mutagenesis, UV radiation and transposon insertion. The disadvantage with this approach is the random nature of mutagenesis. In the genomic age, one can use targeted mutagenesis to overcome the randomness (provided the DNA sequence of genes directing biosynthesis is known).

1.3.1 Isotopic labelling

Isotopic labelling has proven to be a very powerful technique for exploring biochemical pathways. Pioneering work by Schoenheimer and co-workers74 demonstrated the first use of a stable isotope (2H) in fatty acid biosynthesis. The incorporation of stable isotopes can be analysed by NMR spectroscopy and mass spectrometry, techniques which provide sensitive tools with which to resolve regiochemical and stereochemical incorporation patterns. Previously, radio-isotopic techniques had been employed. This has been demonstrated e.g. by Cowie and co-workers75 and in the extensive work of Roberts and co-workers. The main stable and radio isotopes used to study biosynthetic pathways are summarised in Table 1.2.
Chapter 1

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Relative natural abundance %</th>
<th>Radiation emitted</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>^2H</td>
<td>0.015</td>
<td></td>
<td>stable</td>
</tr>
<tr>
<td>^3H</td>
<td><0.001</td>
<td>β</td>
<td>12.1 years</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1.1</td>
<td></td>
<td>stable</td>
</tr>
<tr>
<td>^{14}C</td>
<td><0.001</td>
<td>β</td>
<td>5700 years</td>
</tr>
<tr>
<td>^{15}N</td>
<td>0.37</td>
<td></td>
<td>stable</td>
</tr>
<tr>
<td>^{18}O</td>
<td>0.2</td>
<td></td>
<td>stable</td>
</tr>
<tr>
<td>^{32}P</td>
<td><0.001</td>
<td>β</td>
<td>14.3 days</td>
</tr>
</tbody>
</table>

Table 1.2 Isotopes used in biological studies

Detection of radioisotopes is traditionally performed by decay-counting, in which radiation detection instruments can detect a β particle ejected from an atomic nucleus. However, a high degree of chemical purity is required in order to avoid errors from cross-contamination. Furthermore, this approach offers limited regiochemical information. With the improved sophistication of NMR and MS methods, stable isotopes ($^2\text{H}, ^{13}\text{C}$) are much more commonly used in biosynthesis studies. For example, the incorporation of a ^{13}C label into a secondary metabolite can be detected by enhancement of the resonances in the ^{13}C NMR spectrum. In early studies on fluoroacetate biosynthesis in $S. \text{cattleya}$, incorporations with ^{13}C and ^2H labelled glycine, glycerol, pyruvate and succinate were explored by Hamilton and co-workers. These labelling studies indicated that the glycolytic intermediates play a crucial role in fluorometabolite biosynthesis in $S. \text{cattleya}$.

22
1.3.2 ^{19}F NMR spectroscopy

^{19}F NMR is used in this thesis as a powerful analytical tool in facilitating the assay of fluorometabolite production in *Streptomyces cattleya*. The identity of fluorinated natural products (see Section 1.2.3.2) can be analysed by ^{19}F NMR spectroscopy without the need of isolating the metabolite. The coupling of fluorine (^{19}F) with hydrogen (^{1}H) allows the chemical environment of the fluorine to be determined. This can clearly be seen in Figure 1.7, which shows the two fluorinated secondary metabolites, fluoroacetate 8 and 4-fluorothreonine 47 from *S. cattleya*.

![Figure 1.7](image)

Figure 1.7 ^{19}F NMR spectra of (A), fluoroacetate 8 and (B), 4-fluorothreonine 47.

In the case of fluoroacetate 8, the fluorine of the fluoromethyl group is a triplet in the ^{19}F NMR spectrum. The corresponding spectrum B for 4-fluorothreonine 47 is a doublet of doublet of doublets arising from coupling to the ^{1}H proton. The chemical shifts of fluoroacetate 8 (-216.9 ppm) and 4-fluorothreonine 47 (-231.5 ppm) are quite distinct from one another, making it possible to distinguish between these two, and other fluorinated metabolites. Furthermore, isotopic labelling of compounds can be identified by isotope induced shifts by proton decoupled ^{19}F(^{1}H) NMR analysis.
1.4 Fluoroacetaldehyde as a biosynthetic intermediate in *S. cattleya*

The discovery of 4-fluorothreonine 47 and fluoroacetate 8 production in *S. cattleya* prompted investigations into the biosynthesis of the C-F bond. Appropriate isotopic labelling studies carried out in the mid 1990's by Reid and co-workers led to the conclusion that fluoroacetate 8 was not a precursor of 4-fluorothreonine 47 and *vis a versa*. This prompted further investigations which showed that a two-carbon fluorinated intermediate was the precursor to the fluorometabolites 8 and 47. Later, through additional isotopic labelling studies carried out by Moss and co-workers, it emerged that fluoroacetaldehyde 48 was the precursor to both of the secondary metabolites (Scheme 1.11).

![Scheme 1.11](image)

Scheme 1.11 Metabolic fate of fluoroacetaldehyde 48 in *S. cattleya*

1.4.1 Fluoroacetaldehyde dehydrogenase from *S. cattleya*

When fluoroacetaldehyde 48 and NAD⁺ were incubated in cell-free extracts of *S. cattleya*, fluoroacetate 8 was formed indicating an aldehyde dehydrogenase responsible for the final oxidative step. This was the first enzyme to be identified and purified in fluorometabolite biosynthesis (Scheme 1.12).

![Scheme 1.12](image)

Scheme 1.12 Biotransformation of fluoroacetaldehyde 48 to fluoroacetate 8.
Purification and characterisation of the enzyme revealed a tetramer with a native mass of 200 kDa and a pH optimum of 9. The enzyme was inhibited by iodoacetamide. The fact that this enzyme is expressed during the late exponential growth phase further suggests its involvement in metabolite biosynthesis. A substrate specificity study of this enzyme showed a high affinity for fluoroacetaldehyde (K_m of 0.08 mM) and interestingly acetaldehyde is a poor substrate.

1.4.2 PLP dependent threonine transaldolase from S. cattleya

Labelling studies and incubation experiments with CFE's showed that [^2H]-fluoroacetaldehyde 48 is a direct precursor of 4-fluorothreonine 47. Furthermore, the incubation of L-threonine, fluoroacetaldehyde 48 and PLP in a CFE of S. cattleya showed 4-fluorothreonine 47 production by ^19F NMR (Figure 1.8).

![Figure 1.8](image-url)

Figure 1.8 ^19F NMR spectrum recorded after a CFE was incubated with PLP, L-threonine and fluoroacetaldehyde 48.

Purification of the enzyme led to the identification of a PLP-dependent threonine transaldolase. A study on substrate specificity showed an absolute requirement for L-threonine and fluoroacetaldehyde 48 with L-serine, L-cysteine, L-aspartate, L-allo-
Chapter 1

threonine and glycine showing no activity. The absolute requirement for PLP and L-threonine indicates a novel threonine transaldolase. A proposed transaldolase type mechanism based on the requirement for PLP and L-threonine is shown in Scheme 1.13.

Scheme 1.13 Proposed mechanism of 4-fluorothreonine 47 production by a PLP dependent threonine transaldolase from S. cattleya.82

It is interesting to note from the mechanism that for every 4-fluorothreonine 47 molecule generated, a molecule of L-threonine is forfeited. This unusual occurrence poses the possibility that 4-fluorothreonine 47 may incorporate into a protein in place of L-threonine under metabolic stress. Studies on the biosynthesis of the chlorinated amino acid 4-chlorothreonine in Pseudomonas syringae83 indicated L-threonine as a precursor. Clearly a common biosynthetic pathway may occur here, however for the S. cattleya enzyme, although chloroacetaldehyde was a substrate, it was also a time dependent inhibitor.
1.5 Enzymatic synthesis of Carbon-Fluorine bond

1.5.1 Introduction

To date several types of C-X bond forming enzymes (X = Cl, Br, I), operating by different mechanisms, have been identified. Most notably haloperoxidases (Section 1.1.1), FADH$_2$-dependent halogenases (Section 1.1.2) and non-haem iron(II) and α-keto-glutarate dependent halogenases (Section 1.1.3). These halogenating enzymes catalyse electrophilic or radical reactions. In order to understand enzymatic fluorination, the nature of the fluorinating species must be addressed. Firstly, the redox potential for the oxidation of fluoride (-3.06 V) to F$^+$ renders it thermodynamically impossible for activation to F$^+$ by a haloperoxidase. Additionally, the unique properties of fluorine, in comparison to other halogens, prevent the possibility of a radical fluorination process occurring. This leaves a possible nucleophilic halogenation reaction. Despite the weak nucleophilicity of fluoride ion in an aqueous environment, a desolvated fluoride ion is a good nucleophile and would be a potent nucleophile for enzymatic C-F bond formation.

1.5.2 Nucleophilic Fluorination

Nucleophilic halogenation reactions are rare, having only been demonstrated for the methylation of Br$^-$, Cl$^-$ and I$^-$ by S-adenosyl-L-methionine methyl transferase.84 Withers and co-workers85 reported the first enzymatic C-F bond formation using mutant β-glucosidases and β-mannosidases. The mutants were generated by site directed mutagenesis after replacing the catalytic glutamate residue in Agrobacterium sp. β-glucosidase with alanine, glycine or serine. This in turn, arrested any possible glycosidic bond cleavage. However, when assayed with the appropriate 2,4-dinitrophenyl β-glycoside 49 substrate in the presence of a high fluoride conc. (2 M), it was shown that
substantial glycosidic bond activity was restored. This was rationalised by fluoride ion preventing the intermediate oxocarbenium ion, which is normally stabilised by the missing carboxylate residue in the wild type enzyme. This generated an intermediate α-glycosyl fluoride 50 (Scheme 1.14).

Scheme 1.14 Nucleophilic fluorination of 2,4-dinitrophenyl β-glucoside 49.55

The glycosidase mutants also catalysed nucleophilic halogenation of 2,4-dinitrophenyl β-glucoside 49 with chloride and bromide (2 M). The order of halide reactivity was shown to be opposite to that expected. A comparison of kcat/km values for mutated β-glucosidase showed a reactivity order of F\(^-\) > Cl\(^-\) > Br\(^-\), opposite to that expected in aqueous solution. Therefore, it is possible that desolvation occurs in the active site of the enzyme. The catalysis of C-F bond formation by mutants of glycosidases, demonstrates the feasibility of a nucleophilic fluorination mechanism.
1.6 The fluorinase

1.6.1 Identification of a fluorination enzyme from *S. cattleya*

In 2002, a series of experiments was carried out by C. Schaffrath,\(^86\) (University of St Andrews), incubating whole cells, prepared under a variety of conditions with various co-factors and fluoride ion. It was found that whole cell incubations when supplemented with glycerol and KF showed low levels of fluorophosphates in the culture medium after 5 days at 28 °C (Figure 1.9).

![Figure 1.9](image)

Figure 1.9 \(^{19}\text{F NMR spectrum of fluorophosphate production in resting cells of } S. \text{cattleya.}\(^86\)

Work by Ochoa\(^87\) in 1957 first described the enzymatic synthesis of fluorophosphates in mammalian cells when purified pyruvate kinase was incubated with ATP and fluoride ion in the presence of magnesium ions. Clearly a similar enzyme could participate in fluorophosphate formation, which may play a pivotal role in fluoroacetate 8 and 4-fluorothreonine 47 biosynthesis. Although this was a tentative proposal, it was considered that the production of fluorophosphates could overcome some of the problems associated with water solvation of fluoride and provide an activated form of fluoride ion for transport into the cell and further metabolism.
Additional experiments were carried out which involved the incubation of ATP and several other analogues (e.g., UTP, GTP, and CTP) with fluoride ion in a CFE of *S. cattleya*. It was found that only ATP gave rise to the production of fluoroacetate indicating the CFE converted inorganic fluoride to organo-fluorine in a novel biotransformation (Figure 1.10).

The triplet (t) at -216 ppm was assigned as fluoroacetate but the two remaining signals at -229.5 ppm and -229.7 ppm had never been observed in previous experiments. It was clearly possible that the first organo-fluoro compound formed is represented by one of the two unassigned fluorine signals. Both signals were shown to be triplets of doublets with coupling constants of $^2J_{HF}$ 47 and $^3J_{HF}$ 29 Hz, implying similar structures. Previous experiments with isotopically labelled [2-2H$_1$, 2-18O]-glycerol showed that the C-O bond is retained during fluoroacetate and 4-fluorothreonine biosynthesis. With these combined experimental observations a minimal structure for the two unassigned fluorine signals was established (Figure 1.11).
At this stage it appeared most reasonable that ATP 52 was converted to 5'-fluoro-5'-deoxyadenosine (5'-FDA) 54 by the action of a fluorination enzyme which could represent one of the unassigned fluorine signals. Subsequent cell free investigations showed that the amino acid L-methionine 56 enhanced fluorometabolite biosynthesis, especially the accumulation of the two unassigned fluorine signals. These results suggested that S-adenosyl-L-methionine (SAM) 53 and not ATP 52 is involved in fluorometabolite biosynthesis.

The correlation between 52 and 53 to promote cell-free biosynthesis of fluorometabolites could be rationalised by the presence of the ubiquitous enzyme SAM synthetase which mediates a reaction between ATP 52 and L-methionine 56 to generate SAM 53. Subsequent incubations involving SAM 53 and fluoride ion were conducted, which resulted in the biosynthesis of fluoroacetate 8 (Figure 1.12).
Figure 1.12 A 19F NMR time course showing fluoroacetate biosynthesis and two additional products, 5'-FDA 54 and compound A.89

The preparation of a synthetic sample of 5'-FDA 54 for analytical comparison with the product of the enzyme reaction confirmed unambiguously that the product of the fluorination enzyme was 5'-FDA 54. The identity of the other fluorine signal (compound A) was determined by further incubations of CFE’s with SAM 53 and KF in the presence of iodoacetamide (Figure 1.13). Iodoacetamide inhibited one of the enzymes on the pathway preventing fluoroacetate 8 biosynthesis, and promoting the accumulation of compound A.

Figure 1.13 A 19F NMR time course showing CFE incubated with SAM 53 and fluoride ion in the presence of iodoacetamide.86
Chapter 1

It was therefore possible by preparative HPLC using UV detection to obtain a purified sample of compound A. Analysis by 19F NMR and 1H NMR confirmed all of the NMR characteristics of 5'-FDA 54, and that compound A was clearly a 5'-fluoro-5'-deoxyribonucleoside. However, ES-MS gave a parent ion for compound A that was one atomic mass unit higher than 5'-FDA 54. This raised the possibility of an irreversible adventitious deaminase activity responsible for the transformation of 5'-FDA 54 to 5'-fluoro-5'-deoxyinosine (5'-FDI) 55. Confirmation of this was achieved by an experiment carried out in labelled water (H$_2^{18}$O) which gave a product which was now three atomic mass units higher than 5'-FDA 54 by ES-MS, showing 18-oxygen incorporation to generate $[^{18}$O]-5'-FDI 55 from 5'-FDA 54. Also GC-MS analysis, after derivatisation with MSTFA, confirmed this unambiguously (Figure 1.14).90

![Figure 1.14](image)

Figure 1.14 Silyl derivatives analysed by GC-MS (CI) of 5'-FDA 54 and 5'-FDI 55.

Furthermore, it was found that when 5'-FDI 55 was re-incubated in an active CFE of S. cattleya it remained metabolically inert with no sign of fluoroacetate 8 biosynthesis. Thus 5'-FDA 54 is an intermediate on the biosynthetic pathway, but 5'-FDI 55 is a shunt
product which cannot enter the pathway again. Scheme 1.15 shows a working hypothesis from the experiments carried out.

Scheme 1.15 Working hypothesis for enzymatic fluorination in a CFE of S. cattleya.

1.6.2 Purification, crystal structure and properties of the fluorinase

Having established a fluorination activity in S. cattleya, purification of the fluorinase was carried out by C. Schaffrath at the University of St Andrews. The enzyme was shown by gel filtration to have a native mass of 180 kDa and a subunit mass of 32 kDa as judged by SDS-PAGE. The identity and characterisation of the wild-type fluorinase on the basis of N-terminus amino acid analysis and trypsin digest led to the cloning of the fluorinase (flA) gene. Purification and over-expression of the fluorinase has allowed a fuller characterisation of the activity. Kinetic analysis of the fluorinase was carried out by H. Deng, University of St Andrews which showed a catalytic rate constant (k_{cat}) of 0.07
min$^{-1}$, a Michaelis constant (K_m) for F^- of 2 mM and a K_m for SAM 53 of 74 μM. The low affinity of fluoride ion for the enzyme indicated by its high K_m presumably reflects the difficulty of the enzyme securing desolvated fluoride ion in the active site due to the high heat of hydration. Inhibitors of SAM-dependent enzymes such as S-adenosyl-L-homocysteine (SAH) 57 and sinefungin 58 were explored as inhibitors of the fluorinase which showed a K_i of 29 μM for SAH 57 and sinefungin 58 showed weak inhibition (Figure 1.15).

![Figure 1.15](images/fluorinase_inhibitors.png)

Figure 1.15 Inhibitors of the fluorinase, SAH 57 and Sinefungin 58.

The cloning and over-expression of the enzyme allowed crystals to be obtained that were suitable for X-ray crystallography which subsequently led to a crystal structure (J. Naismith and C. J. Dong). 93,96

The fluorinase structure revealed a homohexamer composed of a dimer of trimers (Figure 1.16). The monomeric fold of the trimer was shown to have a unique quaternary structure with no obvious relationship to other protein superfamilies. The crystallised enzyme had SAM 53 bound and indicated that SAM 53 does not dissociate readily from the protein during purification. The structure also revealed that each of the trimers had three SAM 53 molecules bound at the interface between each monomer. The recognition of SAM 53 is shown to be highly specific with each of the components (adenine ring, ribose ring and methionine) forming various hydrogen bonding contacts. It seems reasonable that these
contacts between SAM 53 and both monomers would drive closure of the protein domains to form the enveloped binding site.

Figure 1.16 Structure of the fluorinase; A, monomer. B, trimer with SAM bound at the interfaces. C, native hexameric structure as a dimer of trimers.\(^9\)

The ribose ring of SAM 53 is held in an unusually planar conformation with hydrogen bonding between the 2' and 3'-hydroxyl groups and the carboxylate side group of Asp-16 (Figure 1.17).

Co-crystallisation of the fluorinase with SAM 53 and fluoride ion resulted in a trapped product complex with 5'-FDA 54 and L-methionine 56 at the active site. Comparisons of diffraction data before and after the fluorination reaction showed little difference in the binding of both structures except in the bond breaking/forming region. The sulfur atom is
displaced with the new C-F bond antiperiplanar to the old C-S bond. This suggests a substitution reaction (SN2) occurring with inversion of configuration. This stereochemical inversion was confirmed unambiguously by stereochemical studies.97,98

Figure 1.17 5'-FDA 54 and L-methionine 56 bound to the active site of fluorinase showing hydrogen bonding to the fluoromethyl group from Ser 158, and the anti relationship between the C-F bond (red) and the disconnected C-S bond (dotted red) of SAM 53 that is indicative of an SN2 reaction.93

Further analysis of the co-crystallised product structure showed the fluorine atom forming two short hydrogen bonds to the Ser158 residue. It is also of interest to note that no water molecules are detected in the vicinity of the fluorine atom, suggesting that fluoride incorporation into the active site must mean that the enzyme was able to strip the hydration sphere from fluoride as it progressed towards the reaction centre. Dehydrated fluoride ion is a potent nucleophile, the most nucleophilic of the halides, and therefore the enzyme has attained a balance between generating a sufficiently nucleophilic fluoride, and paying the full energy cost of dehydration.
Another feature of the product structure is the 3'-hydroxyl position on the ribose ring, which appears to have a role in directing fluoride ion towards the electrophilic C5' site by a hydrogen bonding interaction as illustrated in Figure 1.17. Insights into enzymatic C-F bond formation from QM and QM/MM calculations99 have recently shown that the fluorinase lowers the barrier for C-F bond formation by 39 kJ mol-1. The major contributing factor to this energy reduction is related to pre-organisation of the substrates in the active site.

Further investigations on the fluorination enzyme led to the realisation that the enzyme works in reverse and that it could catalyse the conversion of 2'-deoxy-5'-FDA 59 substrates to 2'-deoxy SAM 60 (Scheme 1.16).

![Scheme 1.16](image)

Scheme 1.16 Reversibility of the fluorinase.

Intuitively the reverse reaction appears a less achievable prospect as fluoride forms the strongest covalent bond to carbon. However, \(V_{\text{max}}\) calculations, at saturating kinetics indicate a reaction at 1/3 of the rate of the forward reaction.

The enzyme is very specific and not amenable to much structural variation in the substrate. However, the 2'-deoxy substitute 59 showed a ten-fold rate decrease by comparison with 5'-FDA 54. This confirmed that the 2'-OH position is not absolutely essential for catalytic activity, however, the rate decrease does suggest the importance of hydrogen bonding...
contacts (see Figure 1.17). In recent unpublished work the structure of the co-crystallised 2-deoxy-5'-FDA-fluorinase complex shows that 2'-deoxy-5'-FDA 59 adopts a slightly different conformation to that exhibited by 5'-FDA 54 (Figure 1.18).

![Figure 1.18](image)

Figure 1.18 Structure of the 2'-deoxy-5'-FDA-fluorinase co-complex. Shown superimposed with 5'-FDA 53. 2-deoxy-5'-FDA 59 is coloured, C yellow, N blue, O red and F light blue. Shown superimposed is 5'-FDA 54 (C white, F light blue, N blue, O red).

Additional experiments with L-selenomethionine (L-Se-met) 63 and 5'-FDA 54 show a six fold rate increase on comparison with L-methionine 56 and 5'-FDA 54. This rate increase is consistent with the increased nucleophilicity of selenium over sulfur.

1.6.3 Chlorination by the fluorinase

An interesting feature of the fluorinase is that it will accept chloride ion as a substrate also in a reversible reaction. This novel enzymatic chlorination operates by nucleophilic substitution rather than the reported electrophilic or radical mechanisms proposed for other halogenases (Section 1.1.2, 1.1.3). Early attempts to replace fluoride by chloride as a substrate with SAM 53 in the presence of the fluorinase failed to identify the product 5'
chloro-5'-deoxyadenosine (5'-ClDA) 61. Most recently, it was found that the inability to detect the chlorinated product was due to the equilibrium of the chlorination reaction lying extensively in favour of the substrate over the product. This was finally shown by adopting a coupled enzymatic strategy in order to drive the equilibrium in favour of the product. Scheme 1.17 shows two enzymatic routes which indicate that the fluorinase can process chloride ion as a substrate. Firstly, the fluorinase was coupled with an L-amino acid oxidase to remove the generated L-methionine 56 during the halide substitution reaction. This in turn led to the identification of the product 5'-ClDA 61, while inhibiting the reverse reaction. A second experiment involved the addition of adenyl acid deaminase in the presence of the fluorinase which resulted in the product 5'-chloro-5'-deoxyinosine (5'-ClDI) 62.

Scheme 1.17 Coupled enzymatic assay towards C-Cl bond formation.

Rates at saturating kinetics have indicated a preference for F⁻ over Cl⁻ by a factor of 120. 5'-ClDA 61 also emerged as a better substrate over 5'-FDA 54 in the reverse direction
with an eight fold rate increase. This rate enhancement is consistent with the C-Cl bond
being weaker than the C-F bond, and Cl⁻ being a better leaving group.

It was also demonstrated that incubation of 5'-CIDA 61 with fluoride ion and L-
selenomethionine 63 in the presence of the fluorinase resulted in the biotransformation of
5'-CIDA 61 to 5'-FDA 54 (Scheme 1.18). This trans-halogenation reaction was monitored
by analytical HPLC. It is interesting to note that Se-SAM 64 is shown to be transient
during the experiment (Figure 1.19).

Scheme 1.18 Trans-halogenation reaction mediated by the fluorinase.

Figure 1.19 Trans-halogenation reactions catalysed by the fluorinase.100
Chapter 1

The substrate 5'-ClIDA 61 was co-crystallised (J. H. Naismith and A. McEwan, St Andrews University) with over-expressed fluorinase in the absence of L-methionine 56. Figure 1.20 shows 5'-ClIDA 61 bound to the active site superimposed with the 5'-FDA 54 structure. The conformation shows that the chlorine atom is displaced by 1.3 Å relative to fluorine in 5'-FDA 54, consistent with its larger atomic radius. No significant conformational changes of the protein occurred upon 5'-ClIDA 61 binding, with only the substrate adjusting its position to accommodate the larger halogen.

![Structure of the 5'-ClIDA-fluorinase co-complex](image1)

Figure 1.20 Structure of the 5'-ClIDA-fluorinase co-complex with hydrogen bonds and polar contacts to the protein shown. 5'-ClIDA 61 is coloured, C white, N blue, O red and Cl purple. The protein is coloured as the ligand except C is yellow. Shown superimposed is 5'-FDA 54 (C green, F orange, N blue) where the Cl atom lies further away from the backbone amide of Ser 156.

This study also revealed a second conformation for 5'-ClIDA 61 on the enzyme where the chlorine has rotated out of the halogen binding pocket and adopted a conformation where it is accommodated in the empty L-methionine 56 sulfur binding site (Figure 1.21). Of course this second conformation is prohibited in the catalytic reaction when L-methionine 56 is present.
1.7 Positron Emission Tomography (PET)

1.7.1 Introduction

PET is a non-invasive imaging technique used to image metabolic activities in living tissues. The technique uses radiotracers labelled with positron emitting radionuclides with various in vivo properties which permit imaging of the distributions of ligands in metabolising tissues. The most common PET radionuclides are 11C, 18F, 15O and 13N which have half lives of 20, 110, 2 and 10 minutes respectively. 18F offers a number of advantages over the other radionuclides, due to its longer half-life (110 min). This in turn permits more time for radiochemical synthesis and purification for use in in vivo experiments.

The most widely used radiotracer is $[^{18}$F]-labelled 2-fluorodeoxyglucose (FDG) which has been routinely used in brain and tumour imaging. Other PET labelled probes which could have potential for the imaging of tumours or adenosine receptors in the brain etc. are the adenosine derivatives which are products of the fluorinase reaction. The adenosine analogue 2'-fluoro-2'-deoxyadenosine has shown promising results in the evaluation of tumour cell proliferation. Other adenosine analogues such as $[^{18}$F]-5'-fluoro-5'-
deoxyadenosine ([\(^{18}\)F]-5'-FDA) \textit{65} have been synthesised, however reported radiochemical yields were found to be less than 1 \%.104

1.7.2 Enzymatic methods for fluorine-18 labelling

The recent isolation of the fluorinase from \textit{S. cattleya} led to the exploration of this enzyme as a biocatalyst for potential fluorine-18 labelled 5'-FDA \textit{65} studies. This may be advantageous as enzymes are chemospecific with very few side products generated, unlike chemical approaches. However, there are limited examples in the literature where biocatalysts have been used to incorporate radionuclides for PET applications.

H. Deng and L. Martarello105 (GSK and Aarhus hospital, Denmark) reported the first enzymatic synthesis of \([^{18}\text{F}]\text{-5'}-\text{FDA 65}\) using purified wild-type fluorinase (Scheme 1.19).

\begin{center}
\includegraphics[width=\textwidth]{Scheme_1.19.png}
\end{center}

\textbf{Scheme 1.19} Enzymatic radio-labelling of 5'-[\(^{18}\text{F}\)]-fluoro-5'-deoxyadenosine \textit{65}.

It was shown that using mg / ml quantities of wild-type fluorinase that a total radiochemical yield of ~ 1 \% could be achieved. Although this is a low yield, it has been demonstrated more recently that use of more protein gives better yields. In recent unpublished work, the over-expressed fluorinase available now in mg’s, gave radiochemical yields (RCY) of \([^{18}\text{F}]-5'\text{-FDA 65}\) up to 95 \%. A key development in optimising the efficiency of \([^{18}\text{F}]-5'\text{-FDA 65}\) production was the positioning of the
equilibrium in favour of product over substrate. Two coupled enzymatic strategies were achieved in driving the reaction towards $[^{18}\text{F}]-5'$-FDA 65 synthesis, similar to that shown in Scheme 1.17. The first approach was the coupling of the fluorinase to an L-amino acid oxidase which removed the co-produced L-methionine and therefore suppresses the reverse reaction. The second approach involved the coupling of the fluorinase to an adenosine deaminase to generate $[^{18}\text{F}]-5'$-FDI 66 (Scheme 1.20). This second approach also provided access to another labelled purine nucleoside $[^{18}\text{F}]-5'$-FDI 66. With this type of coupled enzyme methodology other ^{18}F-labelled products were prepared. This included the enzymatic synthesis of $[^{18}\text{F}]-5'$-FDR 68, a monosaccharide. The biotransformation of SAM 53 to $[^{18}\text{F}]-5'$-FDR 68 was accomplished using a coupled enzyme strategy consisting of fluorinase, an immobilised PNP (donated by GSK) and a phytase (Scheme 1.20) giving an overall RCY of 40%.

Scheme 1.20 Potential PET labelled probes synthesised by the fluorinase mediated methods.
Chapter 1

The enzymatic approach towards the synthesis of PET labelled probes extends the use of the fluorinase as a biocatalyst.

1.8 Metabolic fate of 5'-FDA in S. cattleya

Work carried out by C. Schaffrath\(^8\) (University of St Andrews) investigated the metabolic fate of 5'-FDA \(^{54}\) in \(S.\ cattleya\). It was shown that the incubation of 5'-FDA \(^{54}\) in a CFE resulted in the biotransformation to several fluorinated intermediates including fluoroacetate \(^8\) and 4-fluorothreonine \(^{47}\) (Figure 1.22).

![Figure 1.22](image)

Figure 1.22 \(^{19}\)F NMR time course of CFE incubated with 5'-FDA \(^{54}\) at hourly intervals for 19 hrs at 25 °C.\(^8\)
Chapter 1

A ^{19}F NMR time course profile of an incubation of 5'-FDA 54 in a CFE showed a complex between fluoroacetaldehyde 48 and tris(hydroxymethyl)aminoethane 70, the constituent of Tris buffer.

![Structure of Tris buffer]

In addition it was shown that the CFE had the capacity to reduce fluoroacetaldehyde 48 to fluoroethanol 69 (Scheme 1.21).

![Scheme 1.21 Biotransformation of fluoroacetaldehyde 48 to fluoroethanol 69.]

The presence of fluoroethanol 69 is attributed to an adventitious alcohol dehydrogenase that reduces fluoroacetaldehyde 48. The conversion of 5'-FDA 54 to the shunt product 5'-FDI 55 arises from the action of a deaminase activity in S. cattleya. Some transient fluorinated intermediates are also visible in these experiments. For example, the unassigned signal at -227.2 ppm maybe an intermediate on the pathway beyond 5'-FDA 54. The elucidation of the pathway between 5'-FDA 54 and fluoroacetaldehyde 48 constitutes the major focus of this thesis. Scheme 1.22 shows the metabolites and enzymes involved in fluoroacetate 8 and 4-fluorothreonine 47 biosynthesis, prior to the work carried out in this thesis.
Scheme 1.22 Overview of known metabolites and enzymes involved in fluoroacetate 8 and 4-fluorothreonine 47 biosynthesis.
Identification of a purine nucleoside phosphorylase (PNP) involved in fluorometabolite biosynthesis in *S. cattleya*

The fluorinase which catalyses the formation of the metabolic intermediate $5'$-fluoro-$5'$-deoxyadenosine ($5'$-FDA) 54, has been identified as the first committed step on the biosynthetic pathway towards the formation of the secondary metabolites fluoroacetate 8 and 4-fluorothreonine 47. 89 Fluoroacetaldehyde 48 was already known to be a precursor to both of these fluorinated secondary metabolites 79 however, the fluorinated metabolites that exist between $5'$-FDA 54 and fluoroacetaldehyde 48 remained to be characterised. The results described in this chapter indicate that 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP) 81 is the next formed fluorometabolite after $5'$-FDA 54 on the biosynthetic pathway. 106 The enzyme responsible for the conversion of $5'$-FDA 54 to 5-FDRP 81 has been identified as a purine nucleoside phosphorylase (PNP). In order to understand the metabolic fate of $5'$-FDA 54, a short overview on biochemical processes involving nucleosides is given below.

2.1 Nucleoside metabolism in biological systems

The nucleoside, adenosine is an important intermediate in several metabolic pathways, where it arises not only from the catabolism of nucleic acids and nucleoside co-factors, but also from S-adenosyl-L-methionine (SAM) 53 after transmethylation reactions. 107 Activities of enzymes involved in adenosine metabolism have been well characterised in various organisms. Scheme 2.1 shows a selection of enzymes which contribute towards the metabolic fate of adenosine 71.
Scheme 2.1 Metabolic routes involving the biotransformation of adenosine 71.

Hydrolase enzymes such as adenosine deaminase (E.C 3.5.4.3) participate in purine metabolism where they hydrolyse either adenosine 71 or 2'-deoxyadenosine to generate inosine 72 or 2'-deoxyinosine respectively.108 These enzymes are ubiquitous in all purine catabolic pathways. Other hydrolytic enzymes such as S-adenosylhomocysteinase catalyse the reversible addition of L-homocysteine and adenosine 71 to give S-adenosyl-L-homocysteine (SAH) 57. These enzymes play a key role in regulating the intracellular levels of SAH 57 and homocysteine.109 Another degradation route involves the phosphorylation of ribofuranosyl-containing nucleoside analogues at the 5'-hydroxyl
position using ATP 52 or GTP as the phosphate donor. Such examples include the ubiquitous enzyme, adenosine kinase which functions as a salvage mechanism for returning adenosine to nucleic acids. 110 Other routes lead to the hydrolysis of the C-N glycosidic bond, for example via adenosine phosphorolysis which yields ribose-1-phosphate 73 and adenine 75 by the action of a purine nucleoside phosphorylase (PNP). 111,112 This is a common enzyme which contributes to the catabolism and recycling of nucleosides. The enzymatic reaction is specific for β-nucleosides and the catalytic mechanism proceeds in a stereospecific manner to give only the α-ribose-1-phosphate 73. Hydrolysis of adenosine 71 to ribose 74 and adenine 75 by the action of a nucleosidase represents an alternative degradative pathway. 113

If the metabolism of 5′-FDA 54 proceeds along a similar pathway to that of adenosine 71, then it follows that there are four possible biotransformations that could represent the next enzymatic step on the fluorometabolite pathway. The deamination of 5′-FDA 54 is inconsistent with our experimental observation to give 5′-FDI 55. This is due to the fact that, as discussed in Section 1.6 and 1.8, the formation of the adventitious side product 5′-FDI 55 remains metabolically inert in a CFE of S. cattleya. The phosphorylation of 5′-FDA 54 at the 5′-position by a kinase activity is clearly redundant due to the C-F bond replacing C-OH in 5′-FDA 54. This leaves two alternative routes, both involving the C-N glycosidic bond cleavage. The first of these is a phosphorolysis reaction involving a PNP enzyme to yield 5-FDRP 81 and adenine 75. The other is a hydrolysis reaction with nucleosidase activity to yield 5-FDR 80 and adenine 75. In order to delineate these metabolic routes, it is instructive to review the L-methionine salvage pathway which is known to utilise both of these enzyme activities in two independent pathways.
2.1.1 L-Methionine salvage pathway

The L-methionine salvage cycle is a ubiquitous biochemical pathway that maintains methionine levels in vivo. It involves the recycling of the thiomethyl moiety of L-methionine through a degradation pathway that leads from S-adenosyl-L-methionine (SAM) through methylthioadenosine (MTA).

Scheme 2.2 outlines part of the pathway showing the two alternative routes involved in MTA recycling.

Scheme 2.2 Section of the L-methionine salvage pathway showing two routes for the generation of MTRP from MTA.

The more energy efficient pathway involves the phosphorolysis of MTA to yield methylthioribose-1-phosphate (MTRP) and adenine, catalysed by the enzyme 5'-methylthio-5'-deoxyadenosine phosphorylase (MTAP). The existence of this metabolic route has been shown in mammals, as well as in bacteria and plants. The second pathway splits this direct transformation into two steps; the first involves MTA being
hydrolysed by the action of a nucleosidase to form adenine 75 and 5-methylthioribose (MTR) 77. The free sugar is then phosphorylated at the expense of ATP by a specific kinase to generate MTRP 78. This pathway has been characterised in the bacteria, *Klebsiella pneumoniae*114 and *Bacillus subtilis*.115 The product of both of these salvage routes, MTRP 78, is recycled back to L-methionine 56 (see detail in Section 3.1).

2.2 Metabolic fate of 5'-FDA in *S. cattleya*

The metabolism of 5'-FDA 54 by either of the routes outlined in Scheme 2.2, can be followed by UV, monitoring the release of adenine 75, in an HPLC assay. The method described below has been used throughout this chapter for detecting nucleosides and their corresponding bases. For the analysis of adenine 75 by HPLC, a C18 column was eluted with a gradient starting from 50 mM KH₂PO₄ : MeCN (95:5) to 50 mM KH₂PO₄ : MeCN (80:20) over 30 min and monitored at 254 nm116,117 (see Section 5.1.17). Using this method; it is also possible to detect 5'-FDA 54 and the shunt product 5'-FDI 55 concurrently by HPLC.

In order to detect the release of adenine 75, two key experiments were performed. Firstly, a CFE (500 μl) was prepared according to the method described in Section 5.1.6, which was incubated with synthetic 5'-FDA 54 (100 μl, 18.6 mM) at 37 °C for 16 hrs, and the assay solution was subsequently analysed by ¹⁹F NMR spectroscopy. The presence of fluoroacetate 8 and 4-fluorothreonine 47 in successful biotransformations confirmed that the CFE retained all of the biosynthetic activities. In supporting experiments, the CFE was incubated with 5'-FDA 54 at a lower concentration (1 mM) compared to the previous experiment. In these experiments the CFE (500 μl) was incubated with 5'-FDA 54 (final conc. 1 mM) for only 1 hr at 37 °C and subsequently analysed by HPLC. The chromatogram for such an analysis is shown in Figure 2.1.
Figure 2.1 HPLC chromatogram showing (a), synthetic 5'-FDA 54 (control), (b), denatured CFE (control), (c), CFE incubated with 5'-FDA 54 for 1 hr at 37°C.

The two chromatograms corresponding to a and b represent control experiments of a synthetic sample of 5'-FDA 54 and a denatured CFE respectively. The outcome of an incubation of the CFE with 5'-FDA 54 is reported by chromatogram c. The presence of 5'-FDI 55 can clearly be seen from the incubation of 5'-FDA 54 due to a deaminase activity in the CFE. This was confirmed by co-injection experiments using a synthetic sample of 5'-FDI 55. The presence of adenine 75 from the incubation of 5'-FDA 54 in the CFE confirmed that C-N glycosidic bond of 5'-FDA 54 is cleaved. This was confirmed by co-injection using a synthetic sample. Also, the presence of the purine, hypoxanthine 79 was observed, which can be attributed to deamination of adenine 75 by the presence of a possible adenine deaminase activity in *S. cattleya*. This was also confirmed by co-injection using a synthetic sample of hypoxanthine 79. Scheme 2.3 summarises the proposed metabolic fate of 5'-FDA 54 in the light of these experimental observations.
Scheme 2.3 The metabolism of 5′-FDA 54 in a CFE of \textit{S. cattleya}. Intermediate A corresponds to the next fluorinated metabolite on the pathway.

It is concluded that the next intermediate after 5′-FDA 54 arises as a consequence of C-N glycosidic cleavage of 5′-FDA 54. No further intermediates were detected by HPLC, suggesting that the next fluorinated metabolite is not UV active. With this background it became necessary to determine the identity of intermediate A.

2.2.1 The role of 5-fluoro-5-deoxy-d-ribose (5-FDR)

At the outset it appeared appropriate to explore a role for 5-FDR 80, a potential hydrolysis product of 5′-FDA 54 as a possible intermediate in fluorometabolite biosynthesis in \textit{S. cattleya}. The CFE was first assayed by 19F NMR using synthetic 5′-FDA 54 to confirm the production of fluoroacetate 8 and 4-fluorothreonine 47. This ensured all of the
biosynthetic enzymes on the pathway were active. A synthetic sample of 5-FDR 80 was prepared by S. L. Cobb, University of St Andrews. This compound was tested as a biosynthetic intermediate by incubating it with an active CFE (500 μl) of S. cattleya at a final concentration of 5.5 mM for 16 hrs at 37 °C (Section 5.1.8). Figure 2.2 shows two 19F NMR spectra at zero-time and after 16 hrs, with the first showing the 5-FDR 80 control with two characteristic fluorine signals, each a doublet of triplets corresponding to the β-anomer (-228.55 ppm, $^2J_{F,H}$ 47.0 and $^3J_{F,H}$ 26.4) and the α-anomer (-230.86 ppm, $^2J_{F,H}$ 46.9 and $^3J_{F,H}$ 26.3). The second spectrum shows the outcome after incubating 5-FDR 80 with the CFE for 16 hrs at 37 °C.

![Figure 2.2](image)

Figure 2.2 19F (1H) NMR showing 5-FDR 80 (control), overlaid with 5-FDR 80 incubated in a CFE of S. cattleya for 16 hrs at 37 °C. Expansions are 1H coupled 19F NMR spectra.

This result clearly suggests that 5-FDR 80 is not metabolised in an active CFE of S. cattleya. No new fluorinated metabolites emerged and therefore 5-FDR 80 was not able to support the biosynthesis of fluoroacetate 8 and 4-fluorothreonine 47. It is therefore
concluded that 5-FDR 80 is not an intermediate on the fluorometabolite biosynthetic pathway in *S. cattleya*. The presence of a nucleosidase activity responsible for the release of adenine 75 from 5'-FDA 54 can clearly be ruled out. The alternative route which facilitates the cleavage of the C-N glycosidic bond of 5'-FDA 54 involving a phosphorolysis reaction was thus investigated.

2.2.2 The role of 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP)

![Chemical structure of 5-FDRP](image)

In order to explore 5-FDRP 81 as a possible biosynthetic intermediate on the fluorometabolite pathway, a reference sample was required. The chemical synthesis of ribose-1-phosphates is well documented in the literature. However, a more convenient strategy towards the preparation of 5-FDRP 81 involved a chemo-enzymatic method using two commercially available enzymes. Firstly, an adenosine deaminase (EC 3.5.4.4, from *Aspergillus species*) was used for the conversion of 5'-FDA 54 to 5'-FDI 55 and then a bacterial PNP (EC 2.4.2.1 from *E. coli*) specific for 6-oxo nucleosides was used to generate the products 5-FDRP 81 and hypoxanthine 79. This enzyme showed sufficiently lax substrate specificity and could utilise 5'-FDI 55. Scheme 2.4 outlines the chemo-enzymatic route used to prepare a sample of 5-FDRP 81.
In order to monitor each enzymatic step, a HPLC method was established for the detection of 5'-FDI \(\text{55} \) and hypoxanthine \(\text{79} \). The HPLC assay is outlined in detail in Section 5.1.17. Accordingly, the deamination of 5'-FDA \(\text{54} \) (18.6 mM) to 5'-FDI \(\text{55} \) using a commercial adenosine deaminase from *Aspergillus* species in phosphate buffer (50 mM, pH 6.8) was monitored until 100% biotransformation was achieved. Typical chromatograms (a) to (b), are shown in Figure 2.3. The product 5'-FDI \(\text{55} \) was then incubated in the presence of an immobilised PNP (EC 2.4.2.1, *E. coli*) in phosphate buffer (50 mM, pH 6.8). Because the enzymatic preparation of 5-FDRP \(\text{81} \) using a PNP enzyme is a reversible process, it was not possible to obtain 100% conversion to 5-FDRP \(\text{81} \). Extended incubations at 37°C generally achieved a maximum conversion of \(~40-50\%\) (chromatogram (c), Figure 2.3). The product of this incubation was subsequently analysed by \(^{19}\text{F} \) NMR spectroscopy.\(^{118}\)
Figure 2.3 HPLC traces illustrating (a) synthetic 5'-FDA \textit{54}, (b) 5'-FDA \textit{54} incubated with adenosine deaminase and (c) 5'-FDI \textit{55} incubated with immobilised PNP.

2.2.3 Incubation of 5-FDRP in a CFE of \textit{S. cattleya}

5-FDRP \textit{81} prepared as described in detail in Section 5.1.9 was used to explore its role as an intermediate on the fluorometabolite pathway by incubating this preparation with an active CFE of \textit{S. cattleya}. As a consequence of its preparation, the 5-FDRP \textit{81} sample also contained an excess of 5'-FDI \textit{55} due to the reversibility of the PNP. However, from the control experiments it was already established that 5'-FDI \textit{55} is not metabolised in the CFE. Accordingly, a sample of 5-FDRP \textit{81} (200 \mu l) was incubated with the CFE (500 \mu l) for 16 hrs at 37 °C and the product subsequently analysed by 19F NMR to establish if organofluorine metabolism had occurred. The resultant spectrum is shown in Figure 2.4.
Figure 2.4 19F (1H) NMR spectra indicating fluorometabolite production after incubation of 5-FDRP 81 (+5'-FDI 55) in a CFE of S. cattleya.

The 19F NMR spectrum of the control experiment (zero time) shows the 5-FRDP 81, 5'-FDI 55 mixture in the presence of a denatured CFE with their characteristic chemical shifts corresponding to 5-FDRP 81 (-230.78 ppm) and 5'-FDI 55 (-230.85 ppm) respectively. It is clear that under such control conditions both fluorinated compounds are stable indicating that no chemical degradation has occurred. In the second 19F NMR spectrum, the production of the two fluorinated secondary metabolites, fluoroacetate 8 and 4-fluorothreonine 47 is obvious, confirming that 5-FDRP 81 supports the biosynthesis of these secondary metabolites in S. cattleya. The biosynthetic intermediates that exist between 5-FDRP 81 and fluoroacetaldehyde 48 are not observed by 19F NMR, suggesting that incubation for 16 hrs is sufficiently long to metabolise the remaining intermediates through to the end products, or that they are transient.

In order to reinforce this result, another experiment was conducted to show that 5-FDRP 81 is biosynthesised in S. cattleya. This involved the exogenous addition of an alkaline
phosphatase (EC 3.1.3.1 from bovine intestinal mucosa) to the CFE incubation. This phosphatase should hydrolyse any 5-FDRP 81 and result in the accumulation of the free sugar, 5-FDR 80. Synthetic 5-FDR 80 has already been shown to be metabolically inert in CFE’s of S. cattleya. Therefore, the accumulation of 5-FDR 80 as a biotransformation product of 5-FDA 54 after addition of a commercial phosphatase activity, would clearly support the intermediacy of 5-FDRP 81 (Scheme 2.5).

Scheme 2.5 Summary of 5'-FDA 54 biotransformation in CFE’s of S. cattleya with an ‘added’ alkaline phosphatase.

Control experiments were first performed in order to show that phosphorolytic cleavage of 5-FDRP 81 occurred using a commercial alkaline phosphatase from bovine intestinal mucosa. Accordingly, 5-FDRP 81 was prepared as outlined in Section 5.1.9 and the solution was supplemented with the alkaline phosphatase (20 μl, 2 mg / ml) in phosphate buffer (50 mM, pH 6.8) and incubated at 37 °C for 16 hrs.
Chapter 2

The analysis by 19F NMR spectroscopy showed a complete conversion of 5-FDRP 81 to 5-FDR 80 with the two characteristic fluorine signals corresponding to the β-anomer (-228.54 ppm, $^{2}J_{F,H}$ 47.3 and $^{3}J_{F,H}$ 25.6) and the α-anomer (-230.85 ppm, $^{2}J_{F,H}$ 47.3 and $^{3}J_{F,H}$ 26.8).

With this control established, a reaction was then performed in which an active CFE (500 µl) was incubated with 5'-FDA 54 (100 µl, 18.6 mM) in phosphate buffer (50 mM, pH 6.8) but now supplemented with the phosphatase (20 µl, 2 mg / ml). The incubation was carried out at 37°C for 16 hrs. (Figure 2.5b).

![1H coupled 19F NMR spectrum](image)

Figure 2.5 19F {1H} NMR spectra after incubation of (a) 5'-FDA 54 in a CFE of *S. cattleya* for 16 hrs at 37°C, (b) 5'-FDA 54 in a CFE supplemented with alkaline phosphatase for 16 hrs at 37°C.

The 19F NMR spectroscopy analysis (Figure 2.5b) resulted in three signals indicating the presence of three organo-fluorine compounds. Two of these signals corresponded to the two anomers of 5-FDR 80. No fluoroacetate 8 or 4-fluorothreonine 47 was produced during this biotransformation. Their biosynthesis had been arrested. This clearly
Chapter 2

confirmed the phosphorolytic cleavage of 5-FDRP 81 by the added alkaline phosphatase. In order to assign the remaining organo-fluorine signal (-230.88 ppm), HPLC analysis was carried out. This analysis indicated the presence of 5'-FDI 55 and the 19F NMR was consistent with this assignment. The presence of 5'-FDI 55 can be attributed again to adventitious deaminase activity in the CFE.

In conclusion, the results from this section have demonstrated that 5'-FDA 54 is metabolised to 5-FDRP 81 by the action of a PNP activity in a CFE of S. cattleya.

2.2.4 Incubation of 2'-deoxy-5'-FDA in a CFE of S. cattleya.

To explore the substrate specificity of the PNP in S. cattleya, 2'-deoxy-5'-FDA 59 was explored as a substrate to see if it is converted to 2-deoxy-5-FDRP 82. From previous literature it is known that 2-deoxy nucleosides can act as PNP substrates. 120 An active CFE (500 µl) was incubated with synthetic 2'-deoxy-5'-FDA 59 (100 µl, 18.6 mM) (prepared by S. L. Cobb)118 for 16 hrs at 37 °C. The resultant 19F NMR spectrum is shown in Figure 2.6.

![1H coupled 19F NMR spectrum](image)

Figure 2.6 19F {1H} NMR of a CFE incubated with 2-deoxy-5'-FDA 59. Expansions are 1H coupled 19F NMR spectrum.
Incubation of 2'-deoxy-5'-FDA 59 did not support secondary metabolite production deduced by the absence of fluoroacetate 8 and 4-fluorothreonine 47. From results obtained in Section 2.3.8, 2-deoxy-5-FDRP 82 is formed from the phosphorolytic cleavage of 2'- deoxy-5'-FDA 59 by the action of a PNP. The fluorine signal at -230.60 ppm was confirmed as 5'-fluoro-2',5'-dideoxy-inosine (2'-deoxy-5'-FDI) 84 by HPLC analysis against a reference sample of 2'-deoxy-5'-FDI 84 prepared independently by the direct deamination of 2'-deoxy-5'-FDA 59 using a commercial adenosine deaminase from *Aspergillus species*. The final fluorine signal at -227.81 ppm was identified as 5-fluoro-2,5-dideoxy-D-ribose (2-deoxy-5-FDR) 83 by comparison to a synthetic sample. Production of 2-deoxy-5-FDR 83 could arise from the presence of a phosphatase activity operating within the CFE. This adventitious activity is not present on the fluorometabolite pathway, as discussed in earlier experiments.

In order to confirm this assumption, a sample of 2-deoxy-5-FDRP 82 was prepared by incubating a synthetic sample of 2'-deoxy-5'-FDI 84 with an immobilised PNP (EC 2.4.2.1, *E. coli*). The generated product was subsequently treated with a commercial phytase enzyme (EC 3.1.3.8, *Aspergillus ficuum*) to remove the 1-phosphate group of 2-deoxy-5-FDRP 82. The sample was then re-analysed by 19F NMR and all of the 2-deoxy-5-FDRP 82 had converted to the free sugar 2-deoxy-5-FDR 83.

The fact that 2'-deoxy-5'-FDA 59 cannot support the CFE biosynthesis of the fluorinated secondary metabolites fluoroacetate 8 and 4-fluorothreonine 47 suggests that a 2-OH group on the ribose ring is essential for further metabolism of the fluorinated sugar phosphate intermediate, 5-FDRP 81. Overall, the results obtained are summarised in Scheme 2.6.
With the presence of a PNP in \textit{S. cattleya} now established the next objective was to purify the enzyme and these results are discussed in due course. Firstly however a general review on PNP enzymes is presented.

2.2.5 Purine nucleoside phosphorylase (PNP)

Purine nucleoside phosphorylases (PNP’s) catalyse the reversible phosphorolysis between inorganic phosphate and the glycosidic bond of purine ribo- and deoxyribo-nucleosides and their analogues.120 This phosphorolysis generates the free purine and a (deoxy) ribose-1-phosphate sugar. These enzymes are perhaps the most thoroughly studied members of the nucleoside phosphorylase (NP-1) family. The biochemical significance of glycosidic bond cleavage in purines by the phosphorolytic mechanism is most apparent in the purine salvage pathway, which make use of nucleobases and nucleosides as precursors in the production of nucleotides.121,122 Previous studies have shown that there are two distinct classes of purine nucleoside phosphorylases namely NP-1 and NP-2.123 Members of the
Chapter 2

NP-I class are structurally either homotrimers or homohexamers made up of subunits of ~31 kDa and ~26 kDa respectively. Enzymes belonging to the NP-I family can be further classified according to their substrate specificity and amino-acid sequences. Trimeric PNPs specific for guanine and hypoxanthine (2'-deoxy) ribonucleosides are present in mammalian species. The hexameric PNPs, accept a broader range of substrates including adenine, guanine and hypoxanthine (2'-deoxy) ribonucleosides. These are mainly prevalent in bacterial species, although Escherichia coli, Bacillus subtilis, and B. stearothermophilus appear to have both trimeric and hexameric forms. Other members of the NP-I family include uridine phosphorylase (UP; EC 2.2.2.3) and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP; EC 2.4.2.28). UP has been shown to be specific for uridine nucleosides although it also accepts its 2'-deoxy analogues. The enzyme functions as a hexamer with identical subunits corresponding to a molecular mass of approx. 27.5 kDa. MTAP, which is specific for the purine nucleoside analogue 5'-deoxy-5'-methylthioadenosine, is known to function mainly in a trimeric form with identical subunits of approx. 30 kDa. MTAP has been isolated and characterised from bacterial and mammalian species. Members of the NP-II family are those enzymes that display a dimeric quaternary structure. Members of this family accept both thymidine and uridine in lower organisms, but are specific for thymidine in higher species, including humans.

2.3 Purification of a PNP from S. cattleya

2.3.1 Assay for PNP activity in S. cattleya

In order to purify the PNP enzyme from S. cattleya CFE, a suitable enzyme assay was required. Due to the strong chromophores of 5'-FDA and adenine, a UV-HPLC
method was used to assay for PNP activity in *S. cattleya*. The method was based on the assay outlined in Section 5.1.17, and is used throughout this section when assaying for PNP activity. It was found that during the early stages, purification of the PNP activity was confounded by the fact that 5′-FDI 55 and hypoxanthine 79 were also generated due to the simultaneous presence of the deaminase activity as previously discussed. Therefore, in the initial stages, purification was assayed by monitoring the levels of hypoxanthine 79, adenine 75, 5′-FDI 55 and 5′-FDA 54 in the same HPLC chromatogram (Figure 2.7).

![HPLC chromatogram of hypoxanthine 79, adenine 75, 5′-FDI 55 and 5′-FDA 54 elution respectively.](image)

Figure 2.7 HPLC chromatogram of hypoxanthine 79, adenine 75, 5′-FDI 55 and 5′-FDA 54 elution respectively.

2.3.2 Step 1: Ammonium sulfate precipitation

In the first stage of the PNP purification, the crude cell-free extract (~4 mg / ml) was subjected to ammonium sulfate precipitation to salt out the desired protein. It was shown that addition of (NH₄)₂SO₄ to the CFE at concentrations of 35-50 % contained the desired PNP activity. No PNP activity was detected in any of the other fractions. The protein pellet could be used directly for further purification or alternatively stored at -80 °C.
Chapter 2

The assay was performed by incubating this partially purified protein extract (100 µl) with 5'-FDA 54 (1 mM) in phosphate buffer (50 mM, pH 6.8) for 7 hrs at 37 °C. The sample was then heated to 100 °C for 3 min and the precipitated protein removed by centrifugation. For HPLC analysis, the supernatant (20 µl) was automatically injected in duplicates onto a reverse phase C18 column (Figure 2.8).

Figure 2.8 PNP assay: HPLC showing the products of a partially purified fraction incubated with 5'-FDA 54 at 37 °C for 7 hrs.

The assay shows that during the initial purification stages, in addition to the PNP activity, the accumulation of the shunt products 5'-FDI 55 and hypoxanthine 79 also indicate the presence of deaminase activity in the extract.

2.3.3 Step 2: Hydrophobic interaction chromatography

The second stage of the PNP purification involved passing the protein down a phenyl HP, (40 ml) column. Separation involves exploiting a hydrophobic attraction between the stationary phase and the protein. The stationary phase consists of small non-polar phenyl groups attached to a hydrophilic polymer backbone. The sample is loaded in a buffer
Chapter 2

containing a high concentration of a non-denaturing salt (e.g. \((\text{NH}_4)_2\text{SO}_4\)). The proteins are then eluted as the concentration of the salt in the buffer is decreased.

Accordingly, the (Phenyl HP, 40 ml) column was equilibrated with phosphate buffer (50 mM, pH 6.8), supplemented with 1 M \((\text{NH}_4)_2\text{SO}_4\). Since the protein sample contained \((\text{NH}_4)_2\text{SO}_4\), prior treatment of the sample wasn’t necessary. The protein pellet was re-dissolved in the starting buffer (5 ml, \(\sim 21 \text{ mg} / \text{ml}\)) and filtered through a 0.45 \(\mu\text{m}\) filter to remove any particulate matter. The filtrate was applied by injection (5 ml) to the equilibrated phenyl HP column. The column was washed with 2 column volumes of the equilibrated starting buffer (flow rate of 2 ml / min) and subsequently eluted over a stepwise gradient from 1 M to 0 M \((\text{NH}_4)_2\text{SO}_4\) at a continuous flow rate of 2 ml / min. A typical chromatogram for such an analysis is shown in Figure 2.9.

![Chromatogram](image)

Figure 2.9 Phenyl HP (40 ml) chromatogram obtained after second stage purification.

The elution profile monitored at 280 nm in Figure 2.9 shows several protein peaks eluting at various stages during the purification protocol. The eluted fractions (4 ml) were assayed
for PNP activity by incubation of the eluent (100 µl) with 5'-FDA 54 (1 mM) at 37 ºC for 7 hrs. PNP active fractions were shown to elute at the end of the gradient (highlighted area) indicating a high affinity of the enzyme towards the hydrophobic resin. The average volume which contained PNP activity was 12 ml with a protein concentration of ~0.5 mg / ml. No activity was detected in any of the other peaks. A substantial amount of protein did not bind to the column under the described conditions showing the removal of protein contaminants. However, the majority of protein was shown to elute from the column during the stepwise gradient at a concentration of phosphate buffer (50 mM, pH 6.8), supplemented with 0.4 M (NH₄)₂SO₄. Overall, the purification using hydrophobic interaction chromatography removed a substantial amount of undesired protein, and was an effective protocol.

2.3.4 Step 3: Ion exchange chromatography

The partially purified extract from Section 2.3.3 was subjected to anion exchange chromatography. This method is based on the binding of charged proteins to oppositely charged groups attached to an insoluble matrix. It follows that to bind a protein to an anion exchange column; the pH of the mobile phase must be above its pI in order to carry a net negative charge. Protein elution is achieved by a gradient of increasing salt (e.g NaCl) concentration. The fractions containing the PNP activity after Step 2 purification were pooled together (12 ml) and concentrated to (2 ml) by centrifugation. The concentrated protein was then passed through a desalting column (HiTrap™ desalting, 5 ml, Amersham) and re-concentrated to ~2 ml by the same method.

A strong anion exchange column (Q, 5 ml, Amersham Biosciences) was equilibrated with tris buffer (50 mM, pH 7.2) and loaded with the desalted protein sample (2 ml) containing
Chapter 2

the PNP activity. The column was then eluted using a stepwise salt gradient to tris buffer (50 mM, pH 7.2) supplemented with 1 M KCl over 50 ml at a flow rate of 2 ml / min. The chromatogram in Figure 2.10 shows several protein peaks eluting at various stages during the protocol.

![chromatogram](image)

Figure 2.10 Anion exchange chromatogram, (Q column, 5 ml). The highlighted area represents PNP activity.

The resultant chromatogram shows several peaks eluting during the application of the stepwise gradient. Incubation and analysis of each fraction for PNP activity indicated the presence of active fractions eluting after 250 mM KCl gradient (highlighted area). The volume which contained the activity was ~8 ml with a protein concentration of ~ 0.3 mg / ml. No PNP activity was detected in any of the other protein fractions. It is evident that there is no base line separation between the observed peaks surrounding the active PNP fractions indicating other proteins are still present.
2.3.5 PNP analysis by SDS PAGE

The partial purification of the PNP enzyme during each of the purification steps (1-3) was monitored by SDS-PAGE. Figure 2.11 shows the protein purity progressing through the three purification steps.

![SDS PAGE gel](image)

Figure 2.11 SDS PAGE gel (4-12 % acrylamide) showing pooled active protein fractions containing PNP activity during each purification step. Lanes: 0 molecular markers, 1, ammonium sulfate precipitation (35-50 %); 2, hydrophobic interaction chromatography, 3, anion exchange chromatography.

2.3.6 Production of 5-FDRP from the partially purified PNP

The partially purified PNP (100 µl, 0.5 mg / ml) solution was supplemented with 5'-FDA 54 (1 mM) in phosphate buffer (10 mM, pH 6.8) for 16 hrs at 37 °C. The sample was then heated to 100 °C for 3 min and the precipitated protein removed by centrifugation. Analysis of the supernatant by HPLC confirmed the phosphorolytic cleavage of 5'-FDA 54.
due to the presence of adenine 75. Subsequently, the resulting supernatant was lyophilised and analysed by GC/MS after N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) treatment which was carried out (Dr. J. Hamilton, University of Belfast). The mass spectrum obtained from GC/MS analysis is shown in Figure 2.12.

![Figure 2.12 GC-MS spectrum of MSTFA derivative of 5-FDRP 85 chemical ionization (CI).](image)

The resultant mass spectrum exhibits the m/z 505 ion which indicates the loss of CH$_3$ from the persilyl derivative of 5-FDRP 85. Several of the other signals can be attributed to other ion fragments of the derivatised sample. This result indicates the presence of 5-FDRP 81 after the incubation of 5'-FDA 54 with partially purified PNP. Further analysis to support the observed result, was obtained by ESI-MS of a non derivatised sample of 5-FDRP 81. This is shown in Figure 2.13.
Figure 2.13 ESI-MS (-ve) spectrum of 5-FDRP 81 (M-H) and 5'-FDI 55 (M-H).

The analysis by ESI-MS shows an m/z signal at 231 in -ve mode. The mass of 5-FDRP 81 is 232, and therefore the m/z 231 ion is consistent with the mono anion. The strong m/z signal at 269 is assigned to [5'-FDI-H⁻] 55. This result clearly shows the simultaneous presence of the deaminase activity in the partially purified PNP extract after hydrophobic interaction chromatography. However, these activities separate after anion exchange chromatography. Overall, this analysis supports the observed result from GC-MS, further confirming production of 5-FDRP 81 from 5'-FDA 54 by this enzyme.

2.3.7 Monitoring the PNP reaction by 19F NMR

In order to study the PNP biotransformation of 5'-FDA 54 to 5-FDRP 81 in real time, a 19F NMR time course experiment was carried out in an NMR tube. Accordingly, partially purified PNP (500 μl, ~0.5 mg / ml) in phosphate buffer (50 mM, pH 6.8) was taken
Chapter 2

directly after anion exchange chromatography and was supplemented with 5'-FDA 54 (100 μl, 18.7 mM). The progress of the reaction was monitored by recording 19F{1H} NMR (470 MHz) spectra at one hour intervals over 8 hrs at 25 °C. Figure 2.14 shows the stacked 19F NMR time course resulting from the biotransformation.

![Figure 2.14](image.png)

Figure 2.14 19F{1H} NMR time course, recorded hourly for 8 hrs, of the partially purified PNP extract incubated with 5'-FDA 54 at 25 °C.

The resultant 19F{1H} NMR shows a product signal at -230.75 ppm appearing after just 1 hr of incubation. ESI-MS analysis showed this signal corresponds to 5-FDRP 81, with a steady increase in 5-FDRP 81 formation over a 5 hr period. The signal begins to level off after 5 hrs, possibly due to the reversibility of the PNP reaction. HPLC analysis showed no deaminase activity was observed from the partially purified PNP extract indicating its removal after anion exchange chromatography. Overall, the NMR data are consistent with the previously observed results from HPLC and MS.
2.3.8 Substrate specificity of the partially purified PNP

There has been a lot of interest in exploring PNP substrate specificity and developing PNP enzymes as biocatalysts for the regio- and stereo-selective synthesis of purine nucleosides. However, the number of nucleosides generated is limited due to the relatively narrow substrate specificity of PNP's. These enzymes are specific for purine nucleosides in the β-configuration and exhibit a strong preference for ribosyl-containing nucleosides relative to the corresponding analogues containing the arabinose, xylose or lyxose stereoisomers. Having a partially purified PNP from *S. cattleya* which acts on a novel substrate, it was of some interest to explore the specificity of this PNP relative to those previously described.

The substrate specificity of the PNP was evaluated using a range of substrate analogues. Firstly, the enzyme was partially purified by anion exchange chromatography as outlined in Section 2.3.4. This protein extract (100 μl, 0.3 mg/ml) was incubated with a range of different nucleoside analogues at a final conc. of 1 mM in phosphate buffer (50 mM, pH 6.8) for 16 hrs at 37 °C. After this time, the sample was heated to 100 °C for 3 min and the precipitated protein was removed by centrifugation. Control experiments were also carried out in the absence of protein, in the absence of the purine nucleoside, and also in the absence of phosphate in the buffer (50 mM, pH 6.8). For the HPLC analyses, 20 μl of the clear supernatant was injected directly onto the C18 column. In order to assess whether the individual nucleosides acted as substrates, detection of the appropriate purine provided an indication that phosphorolytic cleavage had occurred. The nucleosides were either prepared by S. L. Cobb or could be purchased commercially. The various nucleoside analogues were modified at five different sites designated R1 to R5 (Scheme 2.7). The results are highlighted in Table 2.1 and the Table indicates the range of nucleosides that were tested.
as potential substrates. Positive substrate activity is denoted with a (+), and no activity with (-).

Scheme 2.7 Schematic representation of PNP activity and substrate analogues (see Table 2.1).

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>*5'-fluoro-5'-deoxyadenosine</td>
<td>54</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>5'-fluoro-5'-deoxyinosine</td>
<td>55</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>*2,5 dideoxy-5'-fluoroadenosine</td>
<td>59</td>
<td>F</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>*2-amino-5'-fluoro-5'-deoxyadenosine</td>
<td>91</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
</tr>
<tr>
<td>*5'-chloro-5'-deoxyadenosine</td>
<td>88</td>
<td>Cl</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>*2,5-dideoxy-5'-chloroadenosine</td>
<td>86</td>
<td>Cl</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2-chloroadenosine</td>
<td>96</td>
<td>OH</td>
<td>OH</td>
<td>Cl</td>
<td>OH</td>
</tr>
<tr>
<td>*2-amino-5'-chloro-5'-deoxyadenosine</td>
<td>97</td>
<td>Cl</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
</tr>
<tr>
<td>*5'-bromo-5'-deoxyadenosine</td>
<td>89</td>
<td>Br</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>adenosine</td>
<td>71</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>2-deoxyadenosine</td>
<td>87</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>*3'-deoxyadenosine</td>
<td>99</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>*5'-deoxyadenosine</td>
<td>90</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>*2',5'-dideoxyadenosine</td>
<td>98</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2-aminoadenosine</td>
<td>94</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
</tr>
<tr>
<td>2-amino-2-deoxyadenosine</td>
<td>95</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
</tr>
<tr>
<td>adenosine monophosphate</td>
<td>92</td>
<td>PO₄³⁻</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>5'-thiomethyl-5'-deoxyadenosine</td>
<td>76</td>
<td>MeS</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>*5'-acetyl-5'-deoxyadenosine</td>
<td>93</td>
<td>OAc</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>inosine</td>
<td>72</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 2.1 Substrate specificity of the PNP for various nucleoside analogues; (+) indicates a substrate and (-) indicates no detectable activity. * Prepared by S. L. Cobb.¹¹⁸

The results from Table 2.1 show that the partially purified PNP did not accept either of the 6-oxopurine ribonucleosides, 5'-FDI 55 and inosine 72 as substrates. As discussed earlier,
5'-FDI 55 was shown to be metabolically inert in a CFE of *S. cattleya*, consistent with the result observed here. The inability of this enzyme to use 6-oxopurine nucleosides as substrates suggests that it shares a close resemblance to that of an MTAP. With nucleosides containing the 2'-deoxyribofuranose moiety such as compounds 59, 86 and 87, excellent activity was observed by HPLC. Clearly this PNP prefers a ribofuranosyl or 2'-deoxyribofuranosyl group in the β configuration, consistent with other such enzymes. The PNP from *S. cattleya* appears to be particularly permissive in terms of the substituents allowed at the C-5' position of the ribose ring, accepting the nucleosides 71, 88, 89, 90 and 76. The acceptance of OH, Cl, Br, H and MeS at this position indicates that the active site pocket receiving these residues is not particularly specific for fluorine. The various size of these substituents (e.g Br, MeS) suggests a large binding pocket. However, bulkier groups such as those on nucleosides 92 and 93, which contain a charged phosphate and an acetyl group respectively at C-5' show no phosphorolytic cleavage. Nucleoside analogues such as 91, 94, 95, 96 and 97 which are modified with NH₂ and Cl at the C-2 position of the purine ring show phosphorolytic cleavage. This observation opens up the possibility of exploring the synthesis of nucleosides such as the prodrug, 9-β-D-arabinofuranosyl-2-fluoroadenine (F-dAdo) 100 by biotransformation.

![Chemical structure](image)

This compound is used in cancer treatment that utilises gene therapy to liberate the cytotoxic base 2-fluoroadenine. In conclusion, these studies have shown that the substrate specificity of the partially purified PNP from *S. cattleya* has a significant
similarity to that of a bacterial MTAP. The wide variation of C-5' substituent tolerated, indicates that this enzyme is not particularly specific for the fluorinated substrate 5'-FDA 54.

2.3.9 Reversibility of the PNP

It is well documented that PNP enzymes catalyse reversible C-N glycosidic bond formation to generate nucleoside bases from their corresponding purine base and α-ribose-1-phosphate. In order to explore the reversibility of the PNP from *S. cattleya*, a coupled enzyme assay was utilised which consisted of the adenosine deaminase (*Aspergillus* species, EC 3.5.4.3) and two PNP enzymes, one from a commercial source and the other from *S. cattleya*. The experiments were carried out by first preparing a sample of 5-FDRP 81 from 5'-FDA 54 using the commercial adenosine deaminase and a bacterial PNP (*E. coli*, EC 2.4.2.1) (Section 5.1.9). It was anticipated that the addition of the partially purified PNP extract from *S. cattleya* to this reaction, supplemented with adenine 75 would generate the nucleoside 5'-FDA 54. Scheme 2.8 outlines the proposed route to explore the reversibility of the PNP.

![Scheme 2.8](image)

Scheme 2.8 Coupled enzyme assay exploring the reversibility of the PNP from *S. cattleya*.

79
Analytical HPLC was used to monitor the progress of each biotransformation step during the course of this assay. 5′-FDA 54 (18.5 mM) was incubated with adenosine deaminase for 16 hrs at 37 °C. The resulting HPLC chromatogram shown in Figure 2.15(a) indicated 100 % conversion to the product 5′-FDI 55. The enzymatically synthesised 5′-FDI 55 (18.5 mM) was supplemented with an immobilised bacterial PNP from E. coli (gift from Galaxo Smith Kline) and incubated for 16 hrs at 37 °C.

![HPLC chromatogram](image)

Figure 2.15 HPLC chromatogram showing (a), 5′-FDA 54 incubated with adenosine deaminase for 16 hrs at 37 °C. (b), incubation of an immobilised PNP to the enzymatically prepared 5′-FDI 55 for 16 hrs at 37 °C. (c), incubation of PNP from S. cattleya with 5-FDRP 81 (+ 5′-FDI 55) and adenine 75.

The resulting HPLC trace in Figure 2.15(b) shows the phosphorolytic reaction yielding a ~40 % conversion to hypoxanthine 79 (+5-FDRP 81). With this established, the 5-FDRP 81 product was subjected to the final step which involved the addition of the partially...
purified PNP (100 µl, 0.3 mg / ml) from *S. cattleya* to 5-FDRP 81 and adenine 75 (3.7 mM). The reaction was incubated for 16 hrs at 37 °C. The resulting chromatogram in Figure 2.15(c) clearly shows the presence of a fourth peak which was identified as 5'-FDA 54. This result was reinforced by 19F NMR spectroscopy and ES-MS, which showed that the PNP reaction is reversible.

Having demonstrated that the *S. cattleya* PNP is reversible it became interesting to explore the reversibility of the enzyme using purine analogues. Accordingly, a series of experiments was conducted by exploiting the assay outlined above. The analogues and results are shown in Table 2.2. Each of the purine bases (3.7 mM) was incubated with 5-FDRP 81 in the presence of the partially purified PNP. Analytical HPLC was used to monitor the reaction and determine the presence of newly formed nucleosides.

![Diagram](image)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R4</th>
<th>R5</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>adenine</td>
<td>75</td>
<td>H</td>
<td>NH₂</td>
</tr>
<tr>
<td>hypoxanthine</td>
<td>79</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>6-methylpurine</td>
<td>102</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>6-chloropurine</td>
<td>103</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>2-amino-6-purinethiol</td>
<td>104</td>
<td>NH₂</td>
<td>SH</td>
</tr>
<tr>
<td>2,6-diaminopurine</td>
<td>101</td>
<td>NH₂</td>
<td>NH₂</td>
</tr>
<tr>
<td>2-amino-6-chloropurine</td>
<td>106</td>
<td>NH₂</td>
<td>Cl</td>
</tr>
<tr>
<td>2,6-dichloropurine</td>
<td>107</td>
<td>Cl</td>
<td>Cl</td>
</tr>
<tr>
<td>purine</td>
<td>105</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

*Table 2.2 Substrate specificity of the PNP from *S. cattleya* with 5-FDRP 81.*

The results show that only the purine bases adenine 75 and 2,6-diaminopurine 101 were accepted as substrates. These observations were verified by co-injection experiments using
synthetic standards. The purine analogues 102, 103, 104, 105 which were all substituted at C-6, with CH₃, Cl, SH and H respectively, were not substrates. This result emphasises the importance of the NH₂ group at C-6 of the purine ring for activity. Overall, the generation of novel halogenated purine analogues was not possible due to the substrate constraints encountered with the PNP from S. cattleya.

2.3.10 Generation of SAM analogues using the fluorinase and PNP in reverse

It was shown in Section 1.6.2 that the fluorinase operates in reverse, generating SAM 53 and inorganic fluoride from 5'-FDA 54 supplemented with L-methionine 56. It was particularly interesting that the enzyme will also utilise 2'-deoxynucleoside substrates, which enables biotransformations to novel 2-deoxy-SAM 60 analogues. With this established, it was considered that the substrate specificity of the fluorinase be further explored in the reverse direction by generating halo-nucleoside substrate analogues using the PNP from S. cattleya. This would in turn, generate potential SAM 53 analogues. One such application of structural analogues of SAM 53, with modifications in the amino acid, sugar, or base portions of the molecule is their use as either inhibitors and/or substrates for the study of SAM-dependent methyltransferases.¹³⁷ In order to explore the generation of SAM 53 analogues; a coupled enzymatic reaction was used which exploited the reversible reactions of the PNP and the fluorinase from S. cattleya.

A series of halogenated nucleosides was first prepared by exploiting the method outlined in Section 2.3.9. The newly synthesised halogenated nucleosides could be tested as fluorinase substrates by incubating the enzyme with the halogenated nucleoside and L-methionine 56. Scheme 2.9 outlines the strategy taken for the generation of the modified SAM 53 analogues by exploiting the reverse reaction.²
Scheme 2.9 Coupled enzymatic synthesis for the preparation of SAM 53 analogues using both partially purified PNP and the fluorinase in reverse from S. cattleya.

Accordingly, the generated halo-nucleoside was supplemented with the fluorinase (100μl, 10 mg / ml) and L-methionine 56 (10 mM), and incubated for 16 hrs at 37 °C. After this time, the sample was denatured by heating to 100 °C for 3 min and the precipitated protein was removed by centrifugation. Analysis of the supernatant by HPLC showed that it was possible to generate 2-amino-2-deoxy SAM 114 and 2-amino SAM 115 analogues from the corresponding halogenated (chlorinated or fluorinated) nucleoside.
In addition to HPLC analysis, ESI-MS along with co-injection experiments using synthetic standards confirmed the presence of the generated SAM 53 analogues. An example of such an analysis is shown in Figure 2.16, which shows the formation of 2-amino-SAM 115 from the corresponding nucleoside, 2-amino-5'-FDA 111 using the coupled enzymatic reaction. The ES-MS analysis confirmed an \(m/z \) of 414 (M-H)\(^{-} \) corresponding to 2-amino-SAM 115 which supports the observed HPLC results.

Figure 2.16 HPLC traces showing (A) (5-FDRP 81, 5'-FDI 55) mixture incubated with 2,6-diaminopurine 101 with partially purified PNP for 16 hrs at 37 °C. (B) Supplemented with L-methionine 56 in the presence of the fluorinase for 16 hrs at 37 °C.

This was only a preliminary study. Further investigation is needed to exploit this coupled enzyme method to generate other SAM 53 analogues. One possibility is to use the *E. coli* PNP which is known to have broader substrate specificity, accepting both 6-amino and 6-oxopurine nucleosides.\(^{136}\) This could generate more potential nucleoside substrates for the fluorinase, and subsequent access to novel SAM analogues.
2.4 Fluorometabolite gene cluster in *S. cattleya*

The search for the genes encoding enzymes responsible for natural fluorine-containing metabolites has been a key challenge over the last few years. Recently, the cloning of the fluorinase gene (*flA*) in collaboration with Dr Joe Spencer and Dr Fanglu Huang at the University of Cambridge has led to the DNA sequencing of a further 11 putative open reading frames (ORFs) adjacent to *flA*. Sequence similarities/identities indicate that several of these genes may be involved in fluorometabolite biosynthesis in *S. cattleya*. Of particular interest is the gene *flB* located immediately upstream of *flA* which encodes a protein of 299 amino acids and has a high degree of sequence similarity to a purine nucleoside phosphorylase (PNP) (see Section 2.4.1). Therefore, it is likely that the first two genes of the fluorometabolite pathway are together on the chromosome in *S. cattleya*. The *flB* gene and its product are discussed in the next section. Figure 2.17 shows the cluster of genes centred around the *flA* gene, all of which have been tentatively assigned a function based on known protein sequences.

![Figure 2.17 ORFs and map of the fl locus with tentative functions assigned.](image-url)
It is noteworthy that the genes encoding the already purified fluoroacetaldehyde dehydrogenase and threonine transaldolase enzymes, which are involved in the latter stages of the fluorometabolite pathway, are absent from this gene cluster. The genes encoding these enzymes must therefore be part of another unidentified locus on the chromosome.

2.4.1 PNP sequence analysis

A database search using the BLAST program revealed that the putative PNP encoded within the fl cluster belongs to a family of 5'-methylthioadenosine phosphorylases (MTAPs). MTAP is known to be a key component in the L-methionine salvage pathway as previously discussed. Its function is to metabolise 5'-methylthioadenosine (MTA) in the methionine salvage pathway (see Section 3.1). Analysis of the sequence similarity between FlB and several homologues showed a high degree of identity with MTAPs. For example, this putative PNP shows a 53 % identity and 68 % sequence similarity to a putative MTAP from *G. metallireducens*. This putative PNP is similar to putative MTAP's present in Actinomycetes such as *S. coelicolor* and *S. avermitilis*, (52 % and 50 % identity respectively). Figure 2.18 illustrates the sequence alignment of FlB and its orthologues.
Figure 2.18 Sequence alignment of FlB with putative PNP's from bacteria. Residues that are highly conserved appear in red, and those weakly conserved in blue.

The fiB gene was cloned into the pET28a(+) plasmid with an N-terminal His-Tag at the University of Cambridge, and the gene was over-expressed. The purified enzyme was able to catalyse the phosphorolytic cleavage of 5'-FDA 54 to adenine 75 and 5'-FDRP 81 in an identical manner to the partially purified PNP from wild type in $S. cattleya$. This analysis, along with the location of the fiB gene adjacent to the fiA gene clearly suggests the involvement of this PNP in fluorometabolite biosynthesis. Although this protein was successfully overexpressed, it is largely insoluble. It became an objective in St Andrews to obtain the pET 28a(+) construct containing the fiB gene to try and increase the solubility of the desired protein.
Chapter 2

2.5 Expression and purification of a PNP from *S. cattleya*

2.5.1 Protein expression trials

For expression of the PNP, the pET28a(+) plasmid containing the \(\beta \) gene was used to transform competent *E. coli* host cells (Section 5.1.27.2). Small scale expression trials (10 ml) were first performed in order to determine optimum conditions. The transformed *E. coli* host cells were selected on antibiotic-containing LB agar plates. Single colonies were picked and grown in 10 ml of growth medium at 37 °C and shaken at 200 rpm for ~12 hrs. After this time, aliquots (100 µl) were used to inoculate fresh growth medium (10 ml) for the overexpression trials. Expression was induced using various IPTG concentrations once the cell density had reached an \(\text{OD}_{600} \) of ~ 0.5. During the protein expression trials, numerous variables were altered in order to try and optimise *in vivo* expression of soluble protein. These variables are discussed below.

The following induction temperatures were used to try to limit the insoluble aggregation of the desired protein; 30 °C, 25 °C, 18 °C, 16 °C, 12 °C and 10 °C. Reducing the temperature is a general strategy employed for the solubilisation of proteins.\(^{138}\) This can be explained by a number of important factors, including, a slower rate of protein synthesis and changes in the folding kinetics of the polypeptide chain.

Another important strategy that has shown success in production of high amounts of active proteins is the use of different growth media including e.g growth additives such as NaCl.\(^{139}\) Additionally, glucose which is present in most rich media is shown to repress induction of the lac promoter by lactose.\(^{140}\) For these reasons, the following media were used; Luria-Bertani (LB) medium, tryptone phosphate medium, terrific broth and Overnight Express™ Autoinduction System 1 (Novagen).

Inducing with lower concentrations of IPTG has also shown success in increasing protein solubility.\(^{141}\) This approach can be explained by a reduction in translation rates which leads
to an increased chance of protein folding into a native state. Accordingly, the following IPTG concentrations were used; none (leaky expression); 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM and 1 mM.

The choice of expression host can significantly increase the activity and amount of target protein present in the soluble fraction. The following strains were used; BL21(DE3), BL21Star™, BL21(DE3)pLysS, BL21(DE3)pLysE, Rosetta(DE3) and C43(DE3). All of these variables were tested and protein production was analysed by SDS-PAGE.

For SDS-PAGE analysis, cells were first harvested by centrifugation (14,000 rpm / 5 min) and the cell pellet was re-suspended in buffer (20 mM Tris-HCl, pH 7.5). The resultant re-suspended cell pellet was disrupted by ultrasonication, at 60 % duty cycle for 10 sec and the cell debris removed by centrifugation (14,000 rpm / 5 min). The insoluble fraction, along with the soluble and non-induced sample was analysed.

The results showed that under most of the conditions tested, high expression levels of PNP resulted, however, the majority of the protein was found in the insoluble cell fraction as judged by SDS-PAGE (Mw: ~36 kDa) and trypsin digest MALDI-TOF mass spectrometry.

The results presented in Figure 2.19(a) show three of the specialised host strains used to try and improve soluble expression of the PNP, however, in each case, the majority of the desired protein formed insoluble aggregates. Among these, the *E. coli* mutant strain C43(DE3) which has contributed significantly to soluble expression of difficult recombinant proteins, also proved ineffective. The results in Figure 2.19(b) show the Overnight Express™ Autoinduction System which is optimised for tight expression, control and induction at high cell density also resulted in low levels of soluble PNP over various induction temperatures and lengths of incubation. This again is observed in the insoluble protein fraction.
Chapter 2

Figure 2.19 (a) SDS-PAGE showing expression trials of the PNP using three different expression hosts, BL21(DE3), Rosetta 2(DE3) and C43(DE3). Lanes 1; SDS markers, 2; BL21(DE3) Insoluble fraction, 3; Soluble fraction, 4; Rosetta2(DE3) Soluble fraction, 5; Insoluble fraction, 6; C43(DE3) Insoluble fraction, 7; Soluble fraction, 8; SDS markers.

(b) SDS-PAGE showing Overnight Express™ Autoinduction System induced at 16 °C. Lanes 1; insoluble fraction, 22 hr, 2, soluble fraction, 22 hr, 3, soluble fraction, 25 hr, 5, insoluble fraction, 27 hr, 6, soluble fraction, 27 hr, 7, insoluble fraction, 29 hr, 8, soluble fraction, 29 hr, 9, insoluble fraction, 31 hr, 10, soluble fraction, 31 hr.

The expression trials that relied on leaky protein expression rather than IPTG induction to gain soluble protein were also unsuccessful in generating soluble protein. Additionally, E. coli strains that prevent leaky expression, such as BL21(DE3)pLysS and BL21(DE3)pLysE did not yield high levels of soluble protein. Induction temperature trials between 10 °C - 37 °C, did result in an improvement in soluble protein expression, particularly at 10 °C. The over-expressed protein is unlikely to be toxic to the bacteria as the expression did not prevent cell growth, as judged by the increase in OD₆₀₀ during protein expression.

In summary, although only low levels of soluble PNP protein could be obtained, particularly from low induction temperatures, it was considered that large scale protein
expression would yield reasonable soluble protein concentrations for further purification. Therefore, conditions were optimised after these trials, and expression was scaled up to 500 ml cultures using BL21(DE3). Section 5.1.27.3(b) outlines the protocol for larger scale expression which resulted in \(\sim 13.5 \) g of cells from 5 L, with a total soluble protein of approximately 412 mg.

2.5.2 Purification of overexpressed PNP

PNP was purified using a three step purification protocol involving a metal chelate (NiSO\(_4\) charged resin, fast flow sepharose, Amersham Biosciences) and gel filtration (Superdex 200, 60 x 16, Amersham Biosciences) chromatography. The protocol that was used is outlined in Section 5.1.27.3(c). The metal chelating column purified the N-terminal Histag protein which resulted in \(\sim 30 \) mg protein after a 250 mM imidazole elution. The resultant HisTag protein was cleaved with thrombin by incubation for 20 hrs at 4 °C and the resulting protein was reapplied to the nickel column for further purification. This resulted in approximately 4 mg protein. Figure 2.20 shows an SDS-PAGE gel highlighting various stages during PNP purification.
Figure 2.20 SDS-PAGE showing the protein after various stages during the purification of the PNP. 1; molecular markers, 2; insoluble fraction, 3; soluble fraction, 4; 250 mM imidazole elution, 5; thrombin cleavage, 6; 30 mM imidazole elution (2nd nickel column), 7; 250 mM imidazole elution (2nd nickel column).

The final step in the purification protocol used a Superdex 200, (60 x 16, Amersham Biosciences) gel filtration column, which was pre-equilibrated with tris buffer (50 mM, pH 7.5) containing 0.3 M NaCl. Fractions containing PNP were pooled and concentrated to give a total of 3 mg of purified PNP in 1 ml of tris buffer. The resulting SDS-PAGE gel and ES-MS of the purified protein are shown in Figure 2.21.
Figure 2.21 (a) SDS-PAGE showing purified FIB after gel filtration. Lanes 1; molecular markers, 2; gel filtration purification (b) ES-MS spectrum showing cleaved PNP.

The SDS-PAGE gel shows the PNP purified to homogeneity, showing an estimated mass of 33 kDa by comparison with standards. An accurate mass of the purified recombinant (Gly-Ser-His)-PNP protein was determined by ESI-MS to be 31,897 Da. This is in very close agreement to the calculated value of 31,894 Da from the gene sequence. The native mass of the enzyme was determined using a HiLoad 16/60 Superdex 200 gel filtration column which was calibrated using the reference proteins in Section 5.1.22. The native mass is approximately 80-90 kDa indicating that the enzyme is probably a homotrimer.

The method described in Section 5.1.17 was used to assay the purified PNP protein by incubating 5'-FDA 54 (1 mM) with 100 μg of purified PNP in phosphate buffer (10 mM, pH 6.8) for 30 min at 37 °C. After this time, the protein was denatured at 100 °C for 3 min and the precipitated protein was removed by centrifugation. Control experiments were carried out in the absence of 5'-FDA 54 and phosphate buffer (10 mM, pH 6.8), and also in
the absence of purified FIB. The reaction was followed by HPLC analysis of the supernatant (20 µl) by monitoring for adenine 75 release (Figure 2.22(a)). Further analysis was carried out by 19F NMR spectroscopy after incubation of 5'-FDA 54 (5 mM) with 200 µg of FIB in phosphate buffer (10 mM, pH 6.8) and incubating for 7 hrs at 37 °C (Figure 2.22(b)). Additionally, ES-MS analysis was performed on the product; ES-MS, 5-FDRP 81 m/z 231 (M-H$^-$).

![HPLC chromatogram and 19F NMR spectrum of purified FIB incubated with 5'-FDA 54 in phosphate buffer (10 mM, pH 6.8).](image)

Figure 2.22 (a) HPLC chromatogram and (b), 19F 1H NMR spectrum of purified FIB incubated with 5'-FDA 54 in phosphate buffer (10 mM, pH 6.8).

The successful over-expression and purification of the PNP has led to sufficient protein to carry out initial crystallisation trials. This work is ongoing in collaboration with Professor J. Naismith, University of St Andrews.
2.6 Conclusion

It has been shown that in *S. cattleya*, a purine nucleoside phosphorylase (PNP) is present which is able to catalyse the reversible phosphorolysis of the glycosidic bond of 5'-FDA to 5-FDRP. Investigations using a CFE have shown that the incubation of 5-FDRP by an enzymatic preparation led to the accumulation of fluoroacetate and 4-fluorothreonine. The identity of this enzyme activity has led to a partially purified PNP from *S. cattleya* after ammonium sulfate precipitation, hydrophobic interaction chromatography and ion exchange chromatography respectively.

A study with this partially purified PNP has revealed a narrow substrate specificity and a profile which shares a close similarity to bacterial 5'-methylthioadenosine phosphorylases (MTAP's). The coupling of the fluorinase and the PNP to generate SAM analogues has been achieved, and this may have utility for the preparation of novel SAM analogues.

In collaboration with Dr Joe Spencer (University of Cambridge), a gene cluster encoding enzymes responsible for fluorometabolite biosynthesis in *S. cattleya* has been identified by sequencing out from the *flA* (fluorinase) gene. The *flB* gene encoding a putative purine nucleoside phosphorylase (PNP) was identified adjacent to the fluorinase (*flA*) gene. The catalytic behaviour is identical to that purified *de novo*, and its location adjacent to the *flA* gene indicates that it is involved in fluorometabolite biosynthesis. Over-expression and purification of the PNP has been achieved and initial crystallisation trials are underway.
The metabolic conversion of 5-FDRP to fluoroacetaldehyde in fluorometabolite biosynthesis remains to be characterised at a biochemical level. The results described in this chapter show that 5-fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRibP) is the intermediate formed after 5-FDRP on the fluorometabolite pathway. The enzyme responsible for this transformation is shown to be a 5-fluoro-5-deoxy-D-ribose-1-phosphate isomerase. The biotransformation of FDRibP to fluoroacetaldehyde is unclear; however, biochemical evidence is presented which suggests that the diastereoisomer of 5-fluoro-5-deoxy-D-xylulose-1-phosphate (5-FDXyuP) is the remaining unidentified metabolite. In order to gain an insight into the potential biosynthetic pathway for the metabolism of 5-FDRP, the methionine salvage pathway is revisited.

3.1 L-Methionine salvage pathway

It was shown in Section 2.1.1 that MTA is metabolised to 5-MTRP by two independent routes. The first involves the action of a PNP activity to yield 5-MTRP from MTA. The second route involves hydrolysis of MTA by a nucleosidase activity to yield MTR which is subsequently phosphorylated by the action of a kinase to give MTRP. The next transformation involves formation of 5-methylthio-5-deoxy-D-ribulose-1-phosphate (MTRibP) via an isomerase activity. This was first unravelled by Abeles and co-workers in K. pneumoniae. Recently, the genes involved in this transformation and subsequent steps have been discovered in B. subtilis. Within this
gene cluster is the gene for MTRP isomerase148, which has a protein sequence similar to that of a eukaryotic initiation factor eIF-2B.149,150 Scheme 3.1 outlines the recycling of methionine in \textit{Bacillus subtilis}.

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{scheme3_1.png}
\end{center}
\end{scheme}

\textbf{Scheme 3.1} L-Methionine salvage pathway: Intermediates and enzymes in blue outline a proposed pathway analogous to fluorometabolite biosynthesis in \textit{S. cattleya}.

Several enzymes responsible for the transformation of MTRibP \textbf{116} to L-methionine \textbf{56} have been identified. The first of these involves the dehydration of MTRibP \textbf{116} catalysed...
by a dehydratase to yield the diketone product 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) 117. This enzyme is shown to belong to a large cluster of proteins that form Class II aldolases. Amongst this cluster is L-ribulose-5-phosphate-4-epimerase which emphasises the importance of the ribulose backbone for recognition by enzymes of this class. DK-MTP-1-P 117 is converted to 2-hydroxy-3-keto-5-methylthiopentene (DHK-MTPene) 119 via the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK-MTPenyl-1-P) 118, by an enolase/phosphatase. The final two steps in the L-methionine salvage pathway appear to be ubiquitous to all organisms that grow in the presence of dioxygen. The first involves the enzymatic oxidation of DHK-MTPene 119 by an aci-reductone dioxygenase enzyme to yield 2-keto-4-methylthiobutyrate (KMTB) 120. The final step involves the transamination of KMTB 120 to L-methionine 56 via an aminotransferase. For example, in *K. pneumoniae* this enzyme generates L-methionine 56 from KMTB 120 and tyrosine from its ketoacid precursor.115

3.1.1 5-Methylthio-5-deoxy-5-ribose-1-phosphate isomerase

A sequence alignment of the MTRP isomerase from *B. subtilis* with related protein sequences suggests that it belongs to a family of eukaryotic initiation factors, EIF-2B.114 Members of EIF-2B function as important regulators of protein translation initiation. In eukaryotic translation, the initiation factor is involved in GTP/GDP exchange and is a member of GTP-dependent regulators.151 Analysis of the sequence similarity between the MTRP isomerase from *B. subtilis* and related protein sequences from *Streptomyces coelicolor*, *Streptomyces avermitilis* and *Sacchromyces cerevisiae* (Ypr118W) are shown in Figure 3.1.
This enzyme is the yeast ortholog of the MTRP isomerase from *C. reesewae* \(152\) Isomerases. Recently, the crystal structure of a protein (Ypr118w) from *Saccharomyces cerevisiae* \(^{152}\) showed to be a MTRP isomerase related to regulatory EIF-2B subunits. This highlights a high degree of conserved residues between genes from the *Streptomyces* species assigned as putative translation initiation factor EIF-2B subunits based on sequence homology, and the *B. subtilis* MTRibP isomerase. For example, the *S. coelicolor* EIF-2B shows a 32\% identity and 52\% similarity to MTRP isomerase from *B. subtilis*. This observation tentatively suggests that the identified proteins are related to MTRibP isomerases. Recently, the crystal structure of a protein (Ypr118w) from *Saccharomyces cerevisiae* \(^{152}\) showed to be a MTRP isomerase related to regulatory EIF-2B subunits. This enzyme is the yeast ortholog of the MTRP isomerase from *B. subtilis* with a reported
3.2 The metabolism of 5'-FDA in a CFE of S. cattleya

In order to elucidate the remaining fluorinated intermediates on the biosynthetic pathway to fluoroacetaldehyde 48, the biotransformation of 5-FDA 54 to fluoroacetate 8 was examined in real time in CFE’s of S. cattleya. Accordingly, an active CFE (500 μl) was supplemented with 5'-FDA 54 (100 μl, 18.6 mM) at 37 °C and the progress of the biotransformation was followed by 19F NMR at one hour intervals over a period of 9 hrs. The resulting 19F NMR time course is shown in Figure 3.2, which clearly shows a number of organo-fluorine compounds generated from 5'-FDA 54. The secondary metabolites fluoroacetate 8 (-216.94 ppm) and 4-fluorothreonine 47 (-231.56 ppm) are shown, indicating that the CFE retains all of its biosynthetic activities. The fluorine signal emerging after 6 hrs at -224.44 ppm has previously been identified as fluoroethanol 69, which accumulates from the action of an adventitious alcohol dehydrogenase activity in S. cattleya acting on fluoroacetaldehyde 48. Expansion of the 19F NMR spectrum after 4 hr incubation reveals a further four organo-fluorine compounds. The presence of 5-FDRP 81 (-230.80 ppm) and 5'-FDI 55 (-230.88 ppm) are clear due to PNP and deaminase activities respectively (see Section 2.2). The absence of 5'-FDA 54 (-230.92 ppm) highlights its rapid conversion due to the simultaneous action of the previously mentioned enzymes. The precursor to the fluorinated secondary metabolites, fluoroacetaldehyde 48 (231.04 ppm), is also apparent after four hours from its transformation by the unknown steps after 5-FDRP 81. The remaining two organofluorine signals at -231.35 ppm and -228.21 ppm corresponding to intermediates A and B remain to be characterised. It is therefore
conceivable that these two unidentified intermediates are the remaining fluoro-metabolites between 5-FDRP 81 and fluoroacetaldehyde 48.

From the 19F NMR spectra time course in Figure 3.2 the transformation of 5-FDRP 81 to the next intermediate remains elusive. No direct relationship could be established between 5-FDRP 81 and the two unidentified intermediates. However, from the results in Section 2.2.3 it was clear that the remaining intermediates are metabolised after overnight
incubation of a CFE with 5'-FDA 54. This shows that both unidentified organo-fluorine signals are not shunt products on the pathway.

In order to study the transformation of 5-FDRP 81 to the next intermediate more closely, an experiment was conducted which involved the use of a less concentrated CFE (0.1 g cells / ml versus 0.2 g cells / ml). 19F NMR spectra were recorded in real time, after the incubation of an active CFE (500 µl, 0.1 g cells / ml) with a synthetic sample of 5'-FDA 54 (100 µl, 18.6 mM) at hourly intervals for five hrs at 37 °C. The resultant 19F NMR spectra time course is shown in Figure 3.3.

![Figure 3.3](image)

The biotransformation of 5'-FDA 54 to 5-FDRP 81 and 5'-FDI 55 is clear after 1 hr due to the simultaneous activity of the PNP and deaminase respectively. The transformation of 5-FDRP 81 is shown to proceed to intermediate A (-231.34 ppm) which appears after 2 hrs of incubation and accumulates over time. It is unclear if intermediate A proceeds directly to B in this 19F NMR time course. The intermediate fluoroacetaldehyde 48 is transient during the time course making it difficult to deduce a direct relationship between
intermediate A and fluoroacetaldehyde 48. Therefore, it was anticipated that a clearer insight to the downstream section of the pathway might be unravelled by the addition of 5-FDRP 81 to a CFE.

3.3 The metabolism of 5-FDRP in a CFE of *S. cattleya*

A cell free biotransformation of 5-FDRP 81 was explored. Accordingly, 5-FDRP 81 (200 µl) was prepared by the method established in Section 5.1.9, and was incubated with a CFE (500 µl). 19F NMR spectra were recorded at hourly intervals for six hrs at 37 °C. The resulting spectra are shown in Figure 3.4.

![Figure 3.4](image)

Figure 3.4 19F-{'H} NMR spectra time course of a CFE incubated with 5-FDRP 81.

After one hour of incubation the emergence of an organo-fluorine signal at -231.30 ppm is apparent. This signal corresponds to intermediate A which was previously observed in Figure 3.2 and 3.3 in incubations with 5'-FDA 54. During the time course the intensity of this signal increases. Although fluoroacetaldehyde 48 does not accumulate in this
experiment, presumably as it is transient, the formation of fluoroacetate 8 is apparent. No signal corresponding to intermediate B emerges suggesting that this compound is also transient in the experiment. Scheme 3.2 describes a working hypothesis of the metabolic fate of 5'-FDA 54 according to the CFE results so far.

Scheme 3.2 Working hypothesis for the metabolic fate of 5'-FDA 54 from CFE studies.

The data suggest a direct transformation of intermediate A to B, and then B is metabolised to fluoroacetaldehyde 48. Alternatively there is a transformation of intermediate A to fluoroacetaldehyde 48, and then fluoroacetaldehyde 48 generates intermediate B. It is clearly important to identify intermediate A to begin to resolve these scenarios. An important strategy towards identifying the remaining intermediates involves blocking individual steps along the biosynthetic pathway to encourage the build up of intermediates. Therefore it was anticipated that the addition of various enzyme inhibitors such as EDTA
and iodoacetamide might selectively block key steps in the latter stages of the biotransformation.

3.3.1 Effect of iodoacetamide on the fluorometabolite production

It has previously been shown that iodoacetamide inhibited fluoroacetaldehyde dehydrogenase activity, preventing fluoroacetate 8 production in CFE's. Iodoacetamide generally inhibits enzymes with free thiol groups. However it may inhibit other enzymes and result in the accumulation of A or B. Therefore, an active CFE (500 µl) was pre-incubated with iodoacetamide (final conc. 10 mM) for 25 minutes at 37 °C. After this time, 5'-FDA 54 (100 µl, 18.6 mM) was added to the reaction and incubated for 7 hrs at 37 °C (Figure 3.5(ii)).

![NMR spectra](image)

Figure 3.5 (i) 19F 1H NMR spectrum of 5'-FDA 54 incubated with CFE for 7 hrs at 37 °C. (ii) 19F 1H NMR spectrum of CFE incubated with 5'-FDA 54 for 7 hrs at 37 °C in the presence of iodoacetamide.
A control experiment, shown in Figure 3.5(i), indicates the production of fluoroacetate and 4-fluorothreonine indicating that the CFE retains all of the biosynthetic activities on the pathway. However, in the presence of iodoacetamide (Figure 3.5(ii)), fluoroacetate (-216.97 ppm) and 4-fluorothreonine (-231.61 ppm) no longer accumulate. Although the experiment arrested fluorometabolite production, there was no evidence of the accumulation of either A or B or fluoroacetaldehyde (Figure 3.5(ii)). Both 5'-FDI and 5-FDRP also accumulated in this experiment. This was confirmed by HPLC analysis (Figure 3.6).

Figure 3.6 HPLC chromatogram of CFE incubated with 5'-FDA for 5 hrs at 37 °C in the presence of iodoacetamide.

The presence of 5'-FDI was confirmed by co-injection using a synthetic sample. The presence of adenine and hypoxanthine in the sample was also obvious by HPLC and their presence can be attributed to the simultaneous action of PNP and deaminase activities (Section 2.2). The remaining signal in the 19F NMR spectrum corresponded to 5-FDRP. To firmly establish this, the experiment was repeated with the addition of 5-FDRP to a
Chapter 3

CFE. Subsequent 19F NMR analysis showed that the signal at -230.78 ppm (5-FDRP 81) was reinforced.

Overall the results from this experiment show that the next enzyme responsible for the transformation of 5-FDRP 81 is inhibited by iodoacetamide, as 5-FDRP 81 accumulates.

3.3.2 Effect of EDTA on fluorometabolite production

EDTA chelates metal ions and generally inhibits metal requiring enzymes. An active CFE (500 µl) was pre-incubated with EDTA (final conc. 30 mM) for 25 minutes. After this time 5-FDRP 81 (150 µl) was added and the reaction incubated for 16 hrs at 37 °C. The resulting 19F NMR spectrum is shown in Figure 3.7.

![1H coupled 19F NMR spectrum](image)

Figure 3.7 19F (1H) NMR spectrum of (5'-FDI 55 + 5-FDRP 81) incubated with CFE and EDTA for 16 hrs at 37 °C. Expansion is 1H coupled 19F NMR spectrum.

In the presence of EDTA, fluoroacetate 8 and 4-fluorothreonine 47 no longer accumulate. Although the experiment arrested secondary metabolite production, there was no evidence for the accumulation of fluoroacetaldehyde 48. Three fluorine signals are apparent in Figure 3.7, two of these can be assigned to 5-FDRP 81 and 5'-FDI 55 based on previous
Chapter 3

observations (Section 3.2). The third signal had the same chemical shift as intermediate A, identified in previous CFE experiments. Clearly this result suggests that EDTA inhibits the enzymes responsible for the biotransformation of intermediate A and that they require a metal ion as a cofactor. Intermediate B did not accumulate in this reaction. Scheme 3.3 summarises the developing hypothesis.

Scheme 3.3 Overview of EDTA effect on fluorometabolite production.

3.4 5-Fluoro-5-deoxy-D-ribulose-1-phosphate as a biosynthetic intermediate

If the transformation of 5-FDRP 81 to intermediate A proceeds along a similar line to that shown from the isomerisation of 5-MTRP 78 in the methionine salvage pathway (Section 3.1), then the product generated would be 5-fluoro-5-deoxy-D-ribulose-1-phosphate (5-
This is an attractive prospect as 5-FDRibP \(\text{121} \) is an ideal substrate for an aldolase (see Chapter 4). An aldolase could mediate a retro-aldol reaction to give fluoroacetaldehyde \(\text{48} \), which has already been established as a biosynthetic intermediate. Scheme 3.4 illustrates the isomerisation catalysed by such a putative isomerase.

![Scheme 3.4](image)

Scheme 3.4 Proposed biotransformation of 5-FDRP \(\text{81} \) in *S. cattleya*.

3.4.1 Enzymatic preparation of 5-fluoro-5-deoxy-D-ribulose

Aldolases have been widely used to prepare a variety of modified carbohydrates, particularly ribuloses.\(^{154}\) However, following the pioneering work by Bock and co-workers,\(^{155}\) an alternative to the aldolase based method has involved xylose isomerase (EC 5.3.1.5).\(^{156}\) 5’6-Aldofuranoses are isomerised to open-chain ketoses\(^{157-159}\) and this enzyme has been shown to catalyse the isomerisation of various aldofuranoses such as D-erythrose, as well as homologous C-5 modified D-ribose derivatives. Ebner and co-workers\(^{160}\) have shown that 5-FDR \(\text{80} \) is a substrate for the xylose isomerase (Scheme 3.5).

![Scheme 3.5](image)

Scheme 3.5 Enzymatic reaction catalysed by xylose isomerase in presence of 5-FDR \(\text{80} \).
The product 5-fluoro-5-deoxy-D-ribulose (5-FDRib) 122 is the de-phosphorylated analogue of 5-FDRibP 121, our proposed biosynthetic intermediate. Therefore, it seemed appropriate to compare the product generated from the xylose isomerase reaction, 5-FDRib 122 with the de-phosphorylated intermediate A from *S. cattleya*. If both compounds are the same, this would provide proof of structure. The addition of a phosphatase to the accumulated intermediate A will result in the hydrolysis of the phosphate ester to give 122. Scheme 3.6 outlines the experimental strategy.

Scheme 3.6 Two complementary routes towards the synthesis of 5-FDRib 122.

Xylose isomerase (EC 5.3.1.5 from *Streptomyces murinus*) was used for the production of 5-FDRib 122 from 5-FDR 80. In order to perform the reaction, a synthetic sample of 5-FDR 80 prepared by Mayca Onega, University of St Andrews, was obtained and incubated in the presence of xylose isomerase. A 19F NMR time course experiment was conducted, in real time by incubation of 5-FDR 80 (final conc. 4.7 mM) with immobilised xylose isomerase and spectra recorded at hourly intervals for six hrs at 60 °C. The resulting 19F NMR spectra are shown in a stacked format in Figure 3.8.
The results from the control experiment show the presence of the two anomers of 5-FDR 80, (β-anomer -228.47) (td, $^2J_{F,H}$ 47.3 and $^3J_{F,H}$ 25.8), (α-anomer -230.78) (dt, $^2J_{F,H}$ 47.3 and $^3J_{F,H}$ 27.3). Upon close inspection the depletion of these fluorine signals is obvious with the concomitant emergence of a third signal at -231.17 ppm (dt, $^2J_{F,H}$ 46.9 and $^3J_{F,H}$ 20.6). The identity of this signal is assumed to correspond to the isomer product, 5-FDRib 122. Incubation times longer than 6 hrs did not result in further product formation, presumably due to the reversible xylose isomerase reaction reaching equilibrium.

![1H coupled 19F NMR spectrum recorded after 5 hrs](image1.png)

![1H coupled 19F NMR spectrum recorded after 5 hrs](image2.png)

Figure 3.8 19F (1H) NMR time course of 5-FDR 80 incubated with xylose isomerase. Expansions are 1H coupled 19F NMR spectra.

A second series of experiments involved the formation of intermediate A from *S. cattleya*. An experiment was conducted in which an active CFE (500 µl) was pre-incubated with EDTA (final conc. 30 mM) for 25 minutes. After this time, 5-FDRP 81 was added to the
pre-incubated sample and the reaction was monitored at hourly intervals again for 6 hrs at 37°C (Figure 3.9).

![Figure 3.9](image)

Figure 3.9 (a) 19F {1H} NMR time course of a CFE incubated with 5-FDRP 81 and EDTA.
(b) 1H coupled 19F NMR spectrum after 6 hrs, expansion of region -230.10 ppm to -231.80 ppm.

The resulting stacked 19F NMR spectrum shows the starting material 5-FDRP 81 and residual 5'-FDI 55. A fluorine signal is apparent at -228.44 ppm in the control experiment which remains metabolically inert during the time course. The identity of this signal was
shown to be 5-FDR 80, which is probably the result of an adventitious phosphatase activity present from the crude immobilised PNP. A third fluorine signal is shown to emerge after one hour incubation, with an increase in intensity over the 6 hrs. The signal corresponds to intermediate A.

Each of the resulting 19F NMR samples from the time course in Figure 3.9 was supplemented with a phosphatase (EC 3.1.3.1, from bovine intestinal mucosa) (20 μl, 10 mg / ml) and incubated for a further 2 hrs at 37 °C. The results are presented in Figure 3.10.

![1H coupled 19F NMR spectra after 6 hrs incubation at 37 °C](image)

Figure 3.10 19F (1H) NMR time course after addition of a phosphatase to the 19F NMR samples from the time course in Figure 3.9. Expansions are 1H coupled 19F NMR spectra.

The two signals at -228.45 ppm (dt, $^2J_{F,H} 47.0$ and $^3J_{F,H} 26.4$) and -230.74 ppm (dt, $^2J_{F,H} 47.3$ and $^3J_{F,H} 26.8$) correspond to the two anomers of 5-FDR 80. This can be explained by
the hydrolysis of the phosphate ester of unreacted 5-FDRP 81. The addition of phosphatase also resulted in a small change in the chemical shift in the 19F NMR signal from -231.32 ppm to -231.18 ppm consistent with the notion that intermediate A contained a phosphate group. To confirm this unambiguously the product of the xylose isomerase reaction; 5-FDRib 122 was added to the de-phosphorylated product obtained from the CFE's from Figure 3.10. The compounds were identical as judged by 19F NMR as shown in Figure 3.11.

Figure 3.11 19F (1H) NMR spectra of (a) CFE incubated with 5-FDRP 81 and EDTA for 16 hrs at 37 °C, supplemented with phosphatase. (b) 5-FDR 80 incubated with xylose isomerase for 3 hrs at 60 °C. (c) Spectrum from (a) and (b) combined.
These results indicate that the de-phosphorylation product of intermediate A and the enzymatically prepared 5-FDRib 122 are identical. This reinforces the presence of an isomerase activity in *S. cattleya* which is responsible for the formation of the phosphorylated sugar, 5-FDRibP 121.

3.4.2 The role of 5-fluoro-5-deoxy-D-ribulose

The role of 5-FDRib 122 was explored as a possible intermediate on the biosynthetic pathway in *S. cattleya*. It was of interest to establish if 5-FDRib 122, a potential de-phosphorylated product of 5-FDRibP 121 could support the biosynthesis of fluoroacetate 8 and 4-fluorothreonine 47. A chemo-enzymatic preparation of 5-FDRib 122 was carried out using xylose isomerase (Section 5.1.13) to obtain a sample for incubation studies. Due to the reversible nature of the xylose isomerase reaction, 5-FDR 80 was also present in the reaction product. However, from control experiments it is already established that 5-FDR 80 is metabolically inert in CFE's of *S. cattleya*. Accordingly, an active CFE (500 µl) was incubated with this 5-FDRib 122 (100 µl) preparation for 16 hrs at 37 °C (Figure 3.12).

![Figure 3.12](image)

Figure 3.12 19F {^1}H NMR spectrum of 5-FDRib 122 incubated in a CFE.
Chapter 3

The resultant 19F NMR spectrum shows the control experiment with three main organo-fluorine signals corresponding to the two anomers of 5-FDR 80 and the 5-FDRib 122 product. The subsequent experiment involving the addition of 5-FDRib 122 to a CFE showed no change. It is therefore concluded that 5-FDRib 122 does not support the biosynthesis of fluoroacetate 8 and 4-fluorothreonine 47.

Overall, the results described in this section emphasize the importance of the phosphate group on 5-FDRibP 121 for fluorometabolite biosynthesis.

3.5 Purification of the isomerase

3.5.1 Assay for detection of isomerase activity

A 19F NMR assay was employed to monitor the conversion of 5-FDRP 81 to 5-FDRibP 121 catalysed by the isomerase. The assay was based on the method outlined in Section 5.1.25, and was used at each purification stage.

3.5.2 Step 1: Ammonium sulfate precipitation

The first stage of protein purification after CFE generation, involved the addition of ammonium sulfate (NH$_4$)$_2$SO$_4$ to salt out the desired protein. It was previously shown to be an important step during PNP purification (Section 2.3.2), and was considered an attractive step to initiate isomerase purification. Four (NH$_4$)$_2$SO$_4$ cuts were used for precipitations (0-35 %, 35-50 %, 50-60 %, 60-80 %). After (NH$_4$)$_2$SO$_4$ addition to the CFE, the solution was left to stir for 20 min at 4 °C. After this time the precipitated protein was removed by centrifugation (14,000 rpm / 20 min) and the supernatant used for the next (NH$_4$)$_2$SO$_4$ cut. Each of the (NH$_4$)$_2$SO$_4$ cuts was assayed in the following way.
Chapter 3

Partially purified CFE (200 μl) was supplemented with 5-FDRP 81 prepared from the method outlined in Section 5.1.9 and incubated for 16 hrs at 37 °C. The resulting samples were analysed by 19F NMR and can be seen in Figure 3.13.

<table>
<thead>
<tr>
<th>0-35 % A/S</th>
<th>35-50 % A/S</th>
<th>50-60 % A/S</th>
<th>60-80 % A/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-FDI 55</td>
<td>5-FDRP 81</td>
<td>5'-FDI 55</td>
<td>5-FDRP 81</td>
</tr>
<tr>
<td>fluoroacetate 8</td>
<td>4-fluorothreonine 49</td>
<td>fluoroacetate 8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.13 19F (1H) NMR spectra of ammonium sulfate cuts incubated with 5-FDRP 81.

The data shows that the 35-60 % cut contained all of the biosynthetic enzymes and cofactors to support fluoroacetate 8 and 4-fluorothreonine 47 biosynthesis. The isomerase activity is contained predominantly in the 35-50 % cut with a minor amount in the 50-60 % cut. No activity was detected in any of the other fractions, which only contained 5-FDRP 81 and 5'-FDI 55. The transformation of 5-FDRP 81 to 5-FDRibP 121 could not be detected in real time; therefore, an experiment was conducted in a similar manner to that in Section 3.3.2 which involved the addition of EDTA. The 35-50 % cut (100 μl) was pre-incubated with EDTA for 25 min at 37 °C. After this time, the pre-incubated sample was supplemented with 5-FDRP 81 and incubated for 16 hrs at 37 °C. Analysis by 19F NMR spectroscopy (Figure 3.14) shows the 35-50 % cut was able to support the synthesis of 5-FDRibP 121. This indicates that the addition of a metal ion cofactor is not required for isomerase activity.
Chapter 3

Figure 3.14 19F {1H} NMR spectrum of 35-50% (NH$_4$)$_2$SO$_4$ cut incubated with 5-FDRP 81 and EDTA for 16 hrs at 37 °C.

The two organo-fluorine signals apparent in the resultant spectrum are assigned to 5'-FDI 55 and 5-FDRibP 121. The presence of 5'-FDI 55 was additionally confirmed by HPLC and co-injection experiments using a synthetic sample.

3.5.3 Step 2: Hydrophobic interaction chromatography

It was shown in Section 2.3.3 that hydrophobic interaction chromatography proved to be a successful second step during PNP purification. The application of this technique towards isomerase purification was explored, based on the previous protocol. Consequently, a (Phenyl HP, 40 ml) column was equilibrated with phosphate buffer (50 mM, pH 6.8) supplemented with 1 M (NH$_4$)$_2$SO$_4$. The 35-50 % (NH$_4$)$_2$SO$_4$ precipitate was re-dissolved in equilibration buffer (6 ml, 20 mg / ml) and applied to the column and subsequently eluted according to Section 2.3.3. The resulting protein elution chromatogram is shown in Figure 3.15.
Figure 3.15 Step 2: Phenyl HP (40 ml) chromatogram obtained after a second stage purification.

The chromatogram shows several protein fractions eluting during the purification protocol. The eluted fractions were analysed by ^{19}F NMR spectroscopy after incubation of each fraction (200 µl) with 5-FDRP 81 (16 hrs at 37 °C). Isomerase activity was shown to elute at the end of the gradient (highlighted area), indicating a strong affinity to the resin. Overall, purification by hydrophobic interaction chromatography proved to be a successful technique as it removed a substantial amount of undesired protein.

3.5.4 Step 3: Size exclusion chromatography

For the next purification step, size exclusion chromatography was explored. This involves the separation of proteins according to molecular weight. Proteins that have a higher molecular weight are eluted faster than those with lower molecular weights. An advantage of using size exclusion at this stage is that the active isomerase fraction from the
hydrophobic interaction chromatography (HIC) only requires concentrating prior to injection.

The protein (2 ml, ~8 mg / ml) was applied to a pre-equilibrated Superdex 200 column at a flow rate of 1 ml / min. Figure 3.16 shows the resulting chromatogram obtained after purification by size exclusion chromatography.

Figure 3.16 Step 3: Chromatogram obtained by size exclusion chromatography using a Superdex 200 column (120 ml) after injection of 2 ml sample from HIC purification.

Fractions were assayed for isomerase activity and the activity was found to elute between 72 - 80 ml (highlighted area) with a protein concentration of ~ 0.5 mg / ml. Although baseline separation wasn’t achieved, a substantial amount of undesired protein was removed. Further purification was clearly required to move towards a pure protein.
3.5.5 Step 4: Anion exchange chromatography

Anion exchange chromatography was now explored to purify the active fractions further following the protocol in Section 2.3.4 for PNP purification. The combined active fractions from step 3 (8 ml) were concentrated (2 ml) by centrifugation. The concentrated protein was then passed through a desalting column (HiTrap™ desalting, 5 ml) and re-concentrated to ~2 ml by the same method.

The 2 ml sample was loaded onto the strong anion exchange column (Q, 5 ml, Amersham Biosciences) pre-equilibrated with tris buffer (50 mM, pH 7.2). Elution was achieved by a stepwise gradient following the PNP protocol. The elution profile is shown in Figure 3.17.

Each fraction was assayed for isomerase activity using the assay outlined in Section 5.1.25. This showed that the desired activity eluted after 250 mM KCl addition with a total protein concentration of 1.5 mg/ml. It is clear from the trace in Figure 3.17 that further...
purification is needed. Only a small proportion of undesired protein was removed in this step and it is evident that the desired protein is not yet homogenous.

3.5.6 Isomerase analysis by SDS-PAGE

Each stage of the protein purification was monitored by SDS-PAGE and is shown in Figure 3.18.

In the end a partially purified fraction that was able to catalyse the isomerisation of 5-FDRP 81 to 5-FDRibP 121 was obtained.
3.6 Metabolic fate of 5-FDRibP in *S. cattleya*

This section details work that was carried out to investigate the subsequent metabolism of 5-fluoro-5-deoxy-d-ribulose-1-phosphate (5-FDRibP) 121 within *S. cattleya*. It was previously shown that intermediate B was formed in CFE incubations from 5'-FDA 54. This led to two plausible routes to account for intermediate B formation, either from 5-FDRibP 121 or from fluoroacetaldehyde 48 (Scheme 3.7).

![Scheme 3.7](image)

Scheme 3.7 Possible relationships between 5-FDRibP 121 and intermediate B in *S. cattleya*

Firstly, it is possible that 5-FDRibP 121 undergoes enzymatic epimerization to afford its diastereoisomer (intermediate B), which is then metabolised *via* a dihydroxyacetone phosphate dependent aldolase to give fluoroacetaldehyde 48. The alternative pathway assumes that intermediate B is a shunt metabolite and not involved directly in the fluorometabolite pathway. In this case intermediate B is formed from fluoroacetaldehyde 48 by the action of an adventitious DHAP aldolase operating in the CFE. Although both routes are plausible, the identity of intermediate B as a diastereoisomer of 5-FDRibP 121 became a research focus.
3.6.1 Enzymatic preparation of 5-fluoro-5-deoxy-D-xylulose

Xylose isomerases exhibit a wide substrate tolerance and have been shown to catalyse the isomerisation of 5-fluoro-5-deoxy-D-xylose (5-FDX) to 5-fluoro-5-deoxy-D-xylulose (5-FDXyu) as shown in Scheme 3.8.

Scheme 3.8 Enzymatic reaction of xylose isomerase in the presence of 5-FDX.

A synthetic sample of 5-FDX was used (prepared by Mayca Onega, University of St Andrews) as a substrate and was incubated with xylose isomerase (EC 5.3.1.5). A time course experiment was conducted following the reaction at hourly intervals for 5 hrs at 60 °C. The resulting 19F NMR spectra are shown in Figure 3.19.

Figure 3.19 19F NMR time course of xylose isomerase incubated with 5-FDX.
The two fluorine signals at -228.49 ppm and -230.57 ppm represent the two anomers of 5-FDX 124. A third organo-fluorine signal accumulates at -228.53 ppm (dt, 2$J_{F,H}$ 47.0 and 3J_{F-H} 15.9) over the 5 hrs. This signal corresponds to the expected product 5-FDXyu 125, as deduced by comparison with the literature.154 It was envisaged that 5-FDXyu 125 could now be prepared in \textit{S. cattleya} by phosphatase activity on intermediate B. Comparison with 5-FDXyu 125 from the xylose isomerase reaction would confirm its structure. Scheme 3.9 outlines the two routes taken to identify 5-fluoro-5-deoxy-D-xyulose-1-phosphate (5-FDXyuP) 126 as intermediate B.

\begin{center}
\includegraphics[width=0.8\textwidth]{Scheme_3.9.png}
\end{center}

Scheme 3.9 Proposed routes towards the synthesis of 5-FDXyu 125.

Accordingly, 5'-FDA 54 was incubated in a CFE for 8 hrs at 37 °C. After this time the sample was heated to 100 °C for 3 minutes and the precipitated protein removed by centrifugation. 19F NMR analysis showed the presence of intermediate B (-228.22 ppm). A phosphatase from bovine intestinal mucosa was then added to the sample and the reaction was incubated for 2 hrs at 37 °C. The resulting 19F NMR spectra showed a new signal at -228.49 ppm. The identity of the dephosphorylated product from \textit{S. cattleya} was then confirmed by comparison with the reference sample of 5-FDXyu 125 produced
independently from 5-FDX \textbf{124} \textit{via} the xylose isomerase protocol. 19F NMR analysis of both reaction products showed signals with identical chemical shifts and coupling constants. To reinforce this result, the samples were admixed and again they were identical. In conclusion, it appears that intermediate \textbf{B} is the diastereoisomer of 5-FD RibP \textbf{121}.

\subsection*{3.6.2 The role of 5-fluoro-5-deoxy-D-xylulose}

5-FDXyu \textbf{125} was explored as a biosynthetic intermediate on the fluorometabolite pathway. It was shown in Section 3.4.2 that 5-FD Rib \textbf{122} remains metabolically inert in a CFE and is therefore unable to support secondary metabolite production. Having a chemo-enzymatic method for the synthesis of 5-FDXyu \textbf{125} it was of interest to see if this compound is metabolised in a CFE of \textit{S. cattleya}. Consequently, 5-FDXyu \textbf{125}, prepared as described above, was incubated in a CFE of \textit{S. cattleya}. This transformation was analysed by 19F NMR spectroscopy, however there was no change and \textbf{125} was metabolically inert (Figure 3.20).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{spectrum.png}
\caption{19F (1H) NMR spectra of CFE incubated with 5-FDXyu \textbf{125} for 16 hrs at 37 °C. Expansions are 1H coupled 19F NMR spectra.}
\end{figure}
The result clearly demonstrates that the addition of 5-FDXyu \textbf{125} to a CFE resulted in no further fluorinated metabolites. The only signals present were those corresponding to the two anomers of 5-FDX \textbf{124} and 5-FDXyu \textbf{125} in the starting material. This reinforces that the phosphorylated sugars are required intermediates in fluorometabolite biosynthesis (see Chapter 4).

\textbf{3.7 Conclusion}

It has been revealed that in \textit{S. cattleya}, a 5-fluoro-5-deoxy-D-ribose-1-phosphate isomerase in present which catalyses the transformation of 5-FDRP \textbf{81} to 5-fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRibP) \textbf{121}. The intermediate 5-FDRibP \textbf{121} was identified after comparison to a reference sample prepared by a chemo-enzymatic route using a xylose isomerase. Accordingly, the dephosphorylation of 5-FDRibP \textbf{121} from \textit{S. cattleya} by the action of a commercial phosphatase gave the free sugar, which was correlated to a reference sample. These experiments reinforce 5-FDRibP \textbf{121} as an intermediate in fluorometabolite biosynthesis.

The identity of this isomerase from \textit{S. cattleya} has led to a partially purified protein extract by ammonium sulfate precipitation, hydrophobic interaction chromatography, size exclusion chromatography and anion exchange chromatography.

The biotransformation of 5-FDRibP \textbf{121} to fluoroacetaldehyde \textbf{48} remains unclear. The experimental data presented in this chapter suggest two alternative pathways. Firstly, a direct transformation of 5-FDRibP \textbf{121} to intermediate \textbf{B}, and then \textbf{B} is metabolised to fluoroacetaldehyde \textbf{48}. The alternative pathway involves a direct transformation of 5-FDRibP \textbf{121} to fluoroacetaldehyde \textbf{48}, and then fluoroacetaldehyde \textbf{48} generates intermediate \textbf{B} in an adventitious reaction.
The identity of intermediate B was shown to be 5-fluoro-5-deoxy-D-xylulose-1-phosphate (5-FDXyuP) 126, a diastereoisomer of 5-FDRibP 121. Such sugars are well known products of dihydroxyacetone phosphate dependent aldolases and the reverse aldol reaction could clearly generate fluoroacetaldehyde 48. This is discussed in Chapter 4.
This chapter describes the identification of two dihydroxyacetone phosphate (DHAP) dependent aldolases, one of which is involved in fluorometabolite biosynthesis in *S. cattleya* and generates fluoroacetaldehyde \(48\) from 5-fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRibP) \(121\). The other, an L-fructose 1,6-bisphosphate aldolase (L-fruA) has been purified to homogeneity and appears to be responsible for the formation of 5-fluoro-5-deoxy-D-xylulose-1-phosphate (5-FDXyuP) \(126\), a diastereoisomer of \(121\), that is not an intermediate on the pathway. By way of introduction, a short review of DHAP aldolases is given below.

4.1 Dihydroxyacetone phosphate (DHAP) dependent aldolases

DHAP dependent aldolases catalyse the reversible aldol reaction of DHAP \(123\) and an aldehyde acceptor. There are four possible stereochemical outcomes all of which are catalysed by different enzymes and the four DHAP dependent aldolases have enjoyed a significant level of interest in biotransformations because of their capacity to construct two stereogenic centres in one reaction.\(^{162-166}\) Scheme 4.1 illustrates these stereochemical outcomes. All four of these aldolases possess a high specificity for DHAP \(123\), but show tolerance for a variety of different aldehyde electrophiles.
DHAP dependent aldolases are either Class I or Class II depending on their mechanism, although they catalyse identical reactions.168 Class I aldolases form a Schiff-base intermediate.169 These aldolases are generally homotetrameric enzymes found in eukaryotes or higher organisms, although Class I aldolases have been reported in prokaryotes.170 The generally accepted catalytic reaction of Class I aldolases, proceed \textit{via} the formation of an iminium intermediate between a lysyl group at the active site and the carbonyl of DHAP \textbf{123}.171,172 A general mechanism for the Class I fructose 1,6-bisphosphate aldolase is shown in Scheme 4.2.
Scheme 4.2 General mechanism for Class I L-fructose 1,6-bisphosphate aldolase (L-FruA).169

Class II DHAP dependent aldolases are generally found in prokaryotes and lower eukaryotic organisms such as yeast, fungi and algae.173 These enzymes are homodimeric and require a divalent metal ion, usually Zn2+ as an essential Lewis acid cofactor. They are inhibited by chelating compounds such as EDTA which sequester the Zn2+.174 The mechanism of the Class II enzymes which is highlighted in Scheme 4.3 is less well understood than that of the Class I enzymes.175 Scheme 4.3 shows an L-fuculose-1-phosphate aldolase (L-FucA) which catalyses the condensation of L-lactaldehyde 132 and DHAP 123.
4.2 Stereospecificity of two DHAP aldolases using fluoroacetaldehyde as the substrate

Chapter 3 discussed the identification of two diastereoisomers, 5-FDRibP 121 (Compound A) and 5-FDXyuP 126 (Compound B). Previous knowledge of the stereochemical course of DHAP aldolases with non fluorinated substrates indicate that L-FucA generates the (3R, 4R) stereoisomer 128.176-178 This would be the anticipated stereochemistry of 121, the product from the isomerase reaction in S. cattleya as shown in Section 3.4. Compound B (126), the other diastereoisomer identified equates to the stereoisomer with the (3S, 4R) 127 configuration,179 generated by L-FruA. Therefore, both aldolases could be present in the cell free extract (CFE). Scheme 4.4 outlines the predicted stereoselectivity of the two aldolases from the CFE using fluoroacetaldehyde 48 as a substrate.
4.2.1 The role of an L-fuculose-1-phosphate aldolase (L-FucA) on the fluorometabolite pathway in *S. cattleya*

L-FucA, the enzyme that would give the predicted stereoisomer, 5-FDRibP 121 is not commercially available. However, a pTrcHis C plasmid containing the Class I L-FucA gene from *E. coli* was available from LGC PromoChem. This enzyme was overproduced and purified according to the protocol outlined in Section 5.1.28. The product of this aldol reaction, 5-FDRibP 121 could be compared to the assigned 5-FDRibP 121 from *S. cattleya*. The aldol reaction was carried out in phosphate buffer (700 µl, 50 mM, pH 6.8) containing fluoroacetaldehyde 48 (20 mM + residual fluoroethanol 69) and DHAP 123 (10 mM). The reaction was initiated by the addition of L-FucA (200 µl, 0.4 mg / ml) and incubated at 37 °C for 1 hr. The sample was denatured by heating to 100 °C for 3 min and the precipitated protein removed by centrifugation. The clear supernatant was supplemented with 100 µl of D2O and analysed by 19F NMR. A typical 19F NMR spectrum of the resultant product is shown in Figure 4.1.
Figure 4.1 19F \{1H\} NMR spectra showing DHAP 123 (10 mM) and fluoroacetaldehyde 48 (20 mM) incubated with L-FucA for 1 hr at 37 °C.

19F NMR analysis of the aldol reaction with L-FucA showed the presence of fluoroacetaldehyde 48 and residual fluoroethanol 69. However, two new 19F NMR signals were observed at -228.21 ppm (dt, $^2J_{F,H}$ 47.0 Hz $^3J_{F,H}$ and 16.0 Hz) and -231.34 ppm, (dt, $^2J_{F,H}$ 47.0 and $^3J_{F,H}$ 16.0) which were absent from the control. The major -228.21 ppm signal was not anticipated during this reaction, however, it is possible that this signal corresponds to a diastereoisomer of 121. The chemical shift and coupling constants for the minor signal at -231.34 ppm clearly correlate to 5-FDRibP 121. To support this, as before
(Section 3.4), an experiment was performed, whereby the product was converted to the free sugar by the action of a phytase (EC 3.1.3.8, from *Aspergillus ficuum*).

Accordingly, the product was lyophilised to remove the majority of residual fluoroacetaldehyde 48 and fluoroethanol 69. The lyophilised sample was then incubated in 700 µl phosphate buffer (50 mM, pH 6.8) and treated with the phytase. This resulted in a small shift in the fluorine signal from -231.34 ppm to -231.12 ppm, consistent with *in vitro* phosphate hydrolysis. The organo-fluorine signal at -231.12 ppm was then correlated to 5-FDRib 122 by comparison with a reference sample. This was prepared from a synthetic sample of 5-FDR 80 by the action of xylose isomerase (see Section 5.1.13). Scheme 4.5 outlines the correlation strategy leading to 5-FDRib 122, by these two different routes.

![Scheme 4.5](image)

Scheme 4.5 Working hypothesis leading to the formation of 5-FDRib 122

19F NMR analysis of both enzymatic routes showed the presence of a signal at -231.12 ppm (dt, $^{2}J_{F,H}$ 46.9 and $^{3}J_{F,H}$ 20.6) (Figure 4.2 (a) and (b)). The samples were admixed and re-analysed by 19F NMR spectroscopy. The results confirmed that both signals were identical; indicating that 5-FDRib 122 is a common fluorinated product from both routes.
These experiments suggest that the L-FucA aldolase from *E. coli* is not stereoselective. The identity of the major isomer is possibly a diastereoisomer of 121 (or its enantiomer). The minor product appears to be, 5-FDRibP 121, the stereoisomer relevant to the fluorometabolite pathway.

The next objective was to examine further if this L-FucA produced 5-FDRibP 121 matched the *S. cattleya* product and was not for example an enantiomer (Section 3.4). A comparison of the chemical shift and splitting pattern (by 19F NMR spectroscopy) of 5-FDRibP 121 prepared using the over-expressed L-FucA aldolase with the identified metabolite 5-FDRibP 121 from the fluorometabolite pathway in *S. cattleya* showed both fluorine signals to be identical. To show that they are the same enantiomer, an experiment was conducted whereby commercial L-FucA was added to a pre-incubated CFE, which contained 5-FDRibP 121.
FDRibP 121. A reduction of the fluorine signal (-231.34 pm) assigned to 121, with an increase in fluoroacetaldehyde 48 was envisaged.

Therefore, a CFE of *S. cattleya* was incubated with 5'-FDA 54 for 6 hrs at 37 °C. The resultant denatured sample was analysed by 19F NMR which showed the CFE retained all of its biosynthetic activities. (Figure 4.3, Spectrum (a)). L-FucA (100 μl, 0.2 mg / ml) was then added to the sample recorded in Spectrum (a) and incubated for 1 hr at 37 °C. The resulting 19F NMR spectrum is shown in Spectrum (b), Figure 4.3.

Figure 4.3 1H coupled 19F NMR spectra (expansion of region -230.5 ppm to -231.8 ppm) containing CFE incubated with 5'-FDA 54 for 6 hrs at 37 °C (Spectrum a), and incubation with L-FucA for 1 hr at 37 °C. (Spectrum b).
Chapter 4

Spectrum (a) shows a 19F NMR expansion illustrating most of the fluorinated intermediates on the biosynthetic pathway. After treatment with L-FucA (Spectra (b)), it is evident that 5-FDRibP 121 (-231.34 ppm) is significantly diminished and that fluoroacetaldehyde 48 (-231.08 ppm) levels have increased, consistent with L-FucA accepting the *S. cattleya* product as a substrate.

4.2.2 The role of an L-fructose 1,6-bisphosphate aldolase (L-FruA) on the fluorometabolite pathway in *S. cattleya*

It appeared appropriate now to explore the presence of a L-FruA aldolase in CFE’s of *S. cattleya*, which would catalyse the formation of compound B, assigned as 5-FDXyuP 126. A commercial Class I L-FruA from rabbit muscle was used to prepare a reference sample of 5-FDXyuP 126. Accordingly, the aldol reaction was carried out in phosphate buffer (700 μl, 50 mM, pH 6.8) containing fluoroacetaldehyde 48 (20 mM + residual fluoroethanol 69) and DHAP 123 (10 mM). The reaction was initiated by the addition of L-FruA (20 μl, 2 mg / ml) and incubated at 37 °C for 1 hr. The sample was then denatured by heating to 100 °C for 3 min and the precipitated protein removed by centrifugation. The clear supernatant was supplemented with 100 μl of D$_2$O and analysed by 19F NMR. A typical 19F NMR spectrum of the resultant product is shown in Figure 4.4.
Figure 4.4 19F {1H} NMR analysis of L-FruA incubated with DHAP 123 (10 mM) and fluoroacetaldehyde 48 (20 mM) for 1 hr at 37 °C. Fluoroethanol 69 is a contaminant of 48.

The resulting 19F NMR spectrum clearly indicates the presence of a new fluorine signal at -228.20 ppm (dt, $^2J_{F,H}$ 46.2 Hz, $^3J_{F,H}$ and 15.3 Hz). A control reaction in the absence of the enzyme, showed only starting material indicating that the new fluorine signal is formed in the presence of L-FruA. The peak at -228.20 ppm was assumed to be the product of the aldolase catalyzed reaction, 5-FDXyuP 126. It was possible to convert this product to the free sugar by the action of a phytase. Accordingly, the product of the L-FruA reaction was lyophilised to remove the majority of residual fluoroacetaldehyde 48 (and fluoroethanol 69). A small amount of the lyophilised sample was then treated with the commercial phytase (Aspergillus ficuum, EC 3.1.3.8) (10 μl, 10 mg / ml) for 1 hr at 37 °C. This resulted in a small shift in the fluorine signal from -228.20 ppm to -228.53 ppm. This product was then compared to the 19F NMR signal of a reference sample of 5-FDXyu 125 prepared by the xylose isomerase reaction (see Section 5.1.14). Scheme 4.6 outlines the two complementary enzymatic routes leading to the formation of 5-FDXyu 125.
Scheme 4.6 Two complementary methods for the formation of 5-FDXyu 125.

The products of both enzymatic routes were identical by 19F NMR (-228.53 ppm, td, 2J$_{F,H}$ 46.2 Hz and 3J$_{F,H}$ 15.3 Hz) (Figure 4.5 (a and b)). This was also shown by admixing both samples. Of course this experiment does not formally rule out the possibility that opposite enantiomers were generated as products; however that outcome would be inconsistent with previous knowledge of the stereochemical course of these reactions with non fluorinated substrates.\(^{167}\)
A Class II L-FruA aldolase from *Bacillus stearothermophilus* (courtesy of Professor Littlechild, University of Exeter) was assayed under similar conditions to that outlined in Figure 4.4, except Zn\(^{2+}\) (1 mM) was added to the reaction. This experiment was carried out to explore further the stereoselectivity of the L-FruA reaction. The \(^{19}\)F NMR spectrum reinforced the results in Figure 4.4, showing a single organo-fluorine signal at -228.20 ppm corresponding to 5-FDXyuP 126. In summary, Class I and II L-FruA aldolases generated a common product consistent with the production of 5-FDXyuP 126 after incubation with fluoroacetaldehyde 48 and DHAP 123.
Chapter 4

The next objective was to examine if this L-FruA product 5-FDXyuP 126 matched compound B in S. cattleya. A comparison of chemical shifts and admixing of both samples showed identical fluorine signals. To further support this observation, an experiment was conducted whereby commercial Class I L-FruA was added to a pre-incubated CFE, which contained compound B (5-FDXyuP 126). A reduction of compound B and an increase in fluoroacetaldehyde 48, in a similar manner to that shown in the previous section, was envisaged.

Accordingly, an active CFE (500 µl) was incubated with synthetic 5'-FDA 54 (10 mM) for 6 hrs at 37 °C. After this time, the CFE was denatured by heating to 100 °C for 3 min and the precipitated protein centrifuged. The supernatant was supplemented with 100 µl of D₂O and analysed by ¹⁹F NMR which showed a number of organo-fluorine signals (Spectra (a), Figure 4.6) including compound B. The second experiment consisted of the addition of L-FruA to the denatured sample recorded in Spectrum (a) which was incubated for 2 hrs at 37 °C and subsequently analysed by ¹⁹F NMR. (Spectrum (b), Figure 4.6).

![Figure 4.6](image)

Figure 4.6 ¹⁹F {¹H} NMR spectra of (a), CFE incubated with 5'-FDA 54 for 6 hrs at 37 °C and (b), incubation of sample recorded in Spectrum (a) with L-FruA (2 mg) for 2 hrs at 37 °C.

The resulting ¹⁹F NMR spectrum in Figure 4.6(a) shows all of the fluorinated metabolites on the pathway including fluoroacetate 8 (-216.92 ppm) and 4-fluorothreonine 47 (-231.54...
ppm). The two major signals belong to 5-FDRP 81 (-230.79 ppm) and 5'-FDI 55 (-230.87 ppm). 5' -FDA 54 is not observed, indicating that it is completely metabolised by the simultaneous actions of PNP and deaminase activities. Fluoroacetaldehyde 48 (-231.03 ppm) and 5-FDRibP 121 (-231.33 ppm) are clearly apparent. The organo-fluorine signal at -228.21 ppm corresponds to Compound B (5-FDXyuP 126). The 19 F NMR spectrum recorded in Figure 4.6(b) shows the subsequent addition of the Class I L-FruA. Comparison of both samples clearly illustrates that the addition of L-FruA resulted in the consumption of the fluorine signal corresponding to compound B, with a corresponding increase in fluoroacetaldehyde 48 production. This confirms that compound B and 5-FDXyuP 126 are one and the same.

An experiment was conducted to further support this observation. This consisted of adding enzymatically prepared 5-FDXyuP 126 to the S. cattleya CFE for 16 hrs at 37°C. Analysis of the product by 19 F NMR showed the transformation of 5-FDXyuP 126 to fluoroacetaldehyde 48, emphasizing the presence of an L-FruA operating in S. cattleya.

L-FruA is an enzyme of primary metabolism, and therefore, there is some ambiguity about its role on this pathway. All activities are released in the CFE, and probably compound B (5-FDXyuP 126) is not a relevant intermediate in the fully constructed cells.

4.2.3 Monitoring both aldolase activities in S. cattleya by 19 F NMR

In order to study both aldolase reactions in real time, a time course experiment was performed in which a CFE (500 µl) of S. cattleya was incubated with DHAP 123 (10 mM) and fluoroacetaldehyde 48 (20 mM containing residual fluoroethanol 69). Figure 4.7 shows 19 F NMR spectra recorded every 2 hours for an 8 hr period (at 37 °C). The signal at -216.93 ppm which corresponds to fluoroacetate 8 is most obvious and arises due to the
aldehyde dehydrogenase which oxidises fluoroacetaldehyde 48 to fluoroacetate 8. 4-
Fluorothreonine 47 is also apparent at -231.51 ppm. The signals at -224.42 ppm and
-231.04 ppm belong to fluoroethanol 69 and fluoroacetaldehyde 48 respectively. The two
ardol products 121 and 126 at -228.20 ppm and -231.34 ppm are apparent after 2 hrs of
incubation. Both of these signals begin to diminish over the 8 hr period showing the
reversible nature of aldol reactions.

![1H coupled 19F NMR spectra after 2 hrs incubation]

Figure 4.7 19F {1H} NMR spectra time course of cell-free extract incubated with DHAP 123
and fluoroacetaldehyde 48. Expansions are 1H coupled 19F NMR spectra.

In conclusion, the results described in the last three sections suggest the action of L-FucA
and L-FruA activities in CFE’s of S. cattleya. The relationships between both aldolases
and intermediates are shown in Scheme 4.7, based on the experiments and results
conducted so far. The earlier idea that 121 and 126 are linked by an epimerase is now less
relevant in the light of these experiments.
4.2.4 Effect of EDTA on DHAP dependent aldolase activity in *S. cattleya*

Having established both aldolase products in the CFE, the next objective was to determine whether the enzymes that process them are Class I or II aldolases. A key experiment for determination of Class II activity involves the addition of EDTA to sequester divalent metal ions. A CFE (500 μl) was pre-incubated with EDTA (final conc. 30 mM) for 25 min at 37 °C. After this time, DHAP 123 (10 mM) and fluoroacetaldehyde 48 (20 mM) were added to the reaction which was incubated for a further 2 hrs at 37 °C. Figure 4.8 shows the resultant 19F NMR spectrum.

![Scheme 4.7 Working hypothesis of the metabolic fate of 5-FDRP 81.](image)

Figure 4.8 19F {1H} NMR spectrum showing the CFE incubated with DHAP 123 and fluoroacetaldehyde 48 for 2 hrs at 37 °C in the presence of EDTA.
It is clear from the spectrum and under controlled conditions that the addition of EDTA resulted in complete inhibition of aldolase activity. There are no 19F NMR signals corresponding to 5-FDRibP 121 (-231.34 ppm) or 5-FDXyuP 126 (-228.21 ppm). This result clearly supports the action of Class II aldolases in S. cattleya. This observation is also reinforced by the results generated in Section 3.3.2, which showed that the addition of EDTA to a CFE incubated with 5-FDRP 81 resulted in the accumulation of 5-FDRibP 121. A 19F NMR time course of this experiment is shown in Figure 4.9.

![Figure 4.9](image)

Figure 4.9 19F {1H} NMR time course recorded every hour for 8 hrs showing a CFE (500 μl) incubated with (5-FDRP 81+5'-FDI 55) and supplemented with EDTA.

It is clear from the 19F NMR spectra in Figure 4.9 that 5-FDRibP 121 accumulates and that there is no fluoroacetaldehyde 48 indicating inhibition of the aldolase by the addition of EDTA. A further experiment was conducted to show the conversion of 5-FDRibP 121 to fluoroacetaldehyde 48 by L-FucA. This involved preparing a partially purified protein extract containing PNP and isomerase activity (Section 2.3 and 3.5) from S. cattleya, which was supplemented with 5'-FDA 54. This allowed the direct transformation of 5'-
FDA 54 to 5-FDRibP 121. Addition of over-expressed Class I L-FucA to this product promoted its conversion to fluoroacetaldehyde 48. The experimental details were as follows. An ammonium sulfate cut (35-50 %) of the CFE was incubated with 5'-FDA 54 for 5 hrs at 37 °C and subsequently analysed by 19F NMR. The resulting 19F NMR spectrum is shown in Figure 4.10(a). The Class I L-FucA was added to this sample (Figure 4.10(a)) for 1 hr at 37 °C. The result is shown in Figure 4.10(b). The 19F NMR spectrum in Figure 4.10(c) shows an increase in fluoroacetaldehyde 48 and can be compared to the sample from Figure 4.10(b) which has a lower level of fluoroacetaldehyde 48.

![Figure 4.10](image-url)
1H coupled 19F NMR spectra of (a), 5'-FDA 54 incubated in a partially purified CFE for 5 hrs at 37 °C. (b), Supplemented with L-FucA and incubated for 16 hrs at 37 °C. (c), Co-injection with 48.
Chapter 4

The 19F NMR spectrum in Figure 4.10(a) shows three fluorinated compounds. Two of these correspond to 5'-FDI 55 and 5-FDRP 81. No signal for 5'-FDA 54 was observed indicating its rapid metabolism (PNP and deaminase) as discussed in Section 3.2. The third compound is 5-FDRibP 121 arising from the transformation of 5-FDRP 81 via isomerase activity. The spectrum in Figure 4.10(b) is the product after addition of the over-expressed Class I L-FucA to the sample in Figure 4.10(a). It is clear that 5-FDRibP 121 is completely consumed with a subsequent increase in fluoroacetaldehyde 48 production. To confirm the transformation of 121 to 48, Figure 4.10(c) shows a co-injection experiment with the addition of a synthetic sample of fluoroacetaldehyde 48 to the sample in Figure 4.10(b).

With the presence of Class II aldolases in S. cattleya now established, it became an objective to purify these enzymes. Progress towards this is discussed in the next section.

4.3 Purification of a DHAP dependent aldolase

4.3.1 Assay for the detection of DHAP aldolase activity

In order to purify aldolase enzymes, an appropriate assay was required. Unfortunately 5-FDRibP 121 and 5-FDXyuP 126 are not commercially available. However, due to the reversibility of the aldol reaction, a 19F NMR assay was established for the detection of aldolase activity by the incubation of DHAP 123 and fluoroacetaldehyde 48. Although NMR is a time consuming assay method, the formation of the products 5-FDRibP 121 and 5-FDXyuP 126 proved to be a sufficient assay to guide DHAP aldolase purification. The method described below has been used throughout the protein purification protocol when assaying for aldolase activity.
Chapter 4

For the analysis of 121 and 126 by ^{19}F NMR, protein fractions (200 μl) were incubated with fluoroacetaldehyde 48 (20 mM), DHAP 123 (10 mM) and Zn$^{2+}$ (1 mM) for 16 hrs at 37 °C. The sample was heated to 100 °C for 3 min and the precipitated protein was removed by centrifugation. The supernatant was lyophilised to remove the majority of residual fluoroacetaldehyde 48 and fluoroethanol 69. It was possible to detect both stereoisomers by this method (Figure 4.11).

![Spectra](image)

Figure 4.11 Aldolase assay: ^{19}F {${}^1\text{H}$} NMR showing a CFE incubated with fluoroacetaldehyde 48 (20 mM) and DHAP 123 (10 mM) for 16 hrs at 37 °C.

4.3.2 Aldolase purification by ammonium sulfate precipitation

The CFE was subjected to ammonium sulfate precipitation to salt out the desired protein. This was previously shown in Section 2.3.2 and 3.5.2 to be a critical step during the purification of PNP and isomerase activities, therefore a similar approach was taken for aldolase purification. A total of three ammonium sulfate cuts were assayed (0-35 %, 35-50 %, 50-100 %) by the ^{19}F NMR method outlined earlier. The resultant ^{19}F NMR spectra are illustrated in Figure 4.12
Figure 4.12 19F 1H NMR spectra of the ammonium sulfate cuts after the incubation with fluoroacetaldehyde 48 (20 mM) and DHAP 123 (10 mM) for 16 hrs at 37 °C.

The results show that only the 50-100 % ammonium sulfate cut had aldolase activity. Interestingly, only diastereoisomer 5-FDXyuP 126 accumulated without 5-FDRibP 121 in any of the other cuts. Therefore, at this stage it would appear that L-FucA aldolase activity has been lost. Further purification using ammonium sulfate precipitation revealed that the addition of (NH$_4$)$_2$SO$_4$ at concentrations between 60-80 % contained the majority of the aldolase activity.

4.3.3 Aldolase purification by hydrophobic interaction chromatography

The next stage of purification involved hydrophobic interaction chromatography. A Phenyl HP (40 ml) column was equilibrated with phosphate buffer (50 mM, pH 6.8) containing 1M (NH$_4$)$_2$SO$_4$. The resulting protein pellet after ammonium sulfate precipitation (Section 4.3.2) was redissolved in buffer at a final concentration of ~12 mg / ml (5 ml). The sample was injected in duplicate volumes onto the equilibrated Phenyl HP column. The column was washed at 2 ml / min for three column volumes and subsequently eluted over a stepwise gradient from 1 M to 0 M (NH$_4$)$_2$SO$_4$ at a continuous flow rate of 2 ml / min. The resulting chromatogram is shown in Figure 4.13.
Figure 4.13 Chromatogram obtained after Phenyl HP (40 ml) column elution of the ammonium sulfate (60-80 %) fraction.

The application of hydrophobic interaction chromatography proved successful as it removed a substantial amount of unwanted protein. The elution profile in Figure 4.13 shows unwanted protein eluting at the start of the chromatogram. During the stepwise gradient elution the majority of protein eluted after 0.6 M (NH₄)₂SO₄, a concentration that was maintained to elute the unwanted protein. The gradient was applied for a further 30 ml to a concentration of 0.3 M (NH₄)₂SO₄ and held until the protein peaks eluted. The majority of aldolase activity was contained within the highlighted protein peaks in Figure 4.13.

4.3.4 Aldolase purification by size exclusion chromatography

The active fractions from the hydrophobic HP column (14 ml) were concentrated (2 ml) and injected onto a size exclusion column (Superdex 200, 60 x 16, Amersham Biotech)
which was pre-equilibrated with phosphate buffer (50 mM, pH 6.8) containing 0.3 M KCl. For protein elution, a flow rate of 1 ml / min was used and the eluent collected in 2 ml fractions. The results from the chromatogram in Figure 4.14 show the presence of several protein peaks.

![Chromatogram obtained by size exclusion using a Superdex 200 column (120 ml) after injection of 2 ml sample from HIC purification.](image)

The collected fractions were assayed for aldolase activity, and activity was found in the highlighted peak, eluting between 60 and 72 ml.

Size exclusion chromatography removed a substantial amount of unwanted protein. However, there is no baseline separation between the protein peaks indicating that the protein is not homogenous. Further protein purification was needed in order to improve the level of purity.

4.3.5 Aldolase purification by anion exchange chromatography

The next stage of purification involved anion exchange chromatography. The active fractions from the size exclusion step (12 ml) were concentrated (2 ml) and desalted using a desalting column (HiTrap™ desalting, 5 ml, Amersham) and were then re-concentrated
Chapter 4

(~ 2 ml). The sample was applied to a strong anion exchange column (15Q, 5 ml) equilibrated with tris buffer (50 mM, pH 7.2). A solvent gradient was applied from 100% tris buffer (50 mM, pH 7.2) to 100% tris buffer (50 mM, pH 7.2) containing 1 M KCl over 80 ml at a flow rate of 2 ml/min. The initial results showed one main peak eluting after 300 mM KCl along with a few minor peaks. The majority of the aldolase activity was found to be contained within the major peak. Conditions were optimised in order to remove the majority of the minor contaminants by employing a step wise gradient. To achieve this, the gradient was maintained after 300 mM KCl elution for a further 10 min in order to completely elute the desired protein. After this time, the gradient was applied in a step wise fashion in order to completely elute the remainder of the undesired proteins. Fractions (4 ml) were collected and assayed according to the procedure outlined in Section 4.3.1. The highlighted area in the chromatogram in Figure 4.15 shows active aldolase activity.

![Chromatogram](image)

Figure 4.15 Chromatogram obtained using a 15Q anion (5 ml) column after injection of 2 ml protein sample from size exclusion. The highlighted area shows the active aldolase fraction.
A total protein concentration of 0.2 mg/ml was achieved from the protein purification protocol.

4.3.6 Analysis of DHAP aldolase purification by SDS-PAGE

The aldolase purity after each purification step was monitored by SDS PAGE where it became clear that one major band with a molecular subunit mass of approximately 40 kDa became increasingly prominent. Figure 4.16 shows the SDS PAGE analysis of the various fractions and indicates that the L-FruA has been purified to homogeneity.

![SDS PAGE gel](image)

Figure 4.16 SDS PAGE gel (4-12 % acrylamide) showing active protein fractions containing DHAP aldolase activity during each purification step. Lanes: 1 molecular markers, 2, ammonium sulfate precipitation (60-80 %); 3, hydrophobic interaction chromatography; 4, size exclusion chromatography; 5, anion exchange chromatography.

4.3.7 Measuring the molecular mass of the aldolase

The monomeric subunit of the fully purified aldolase analysed by SDS-PAGE showed a subunit mass of approximately 40 kDa by comparison with molecular weight markers.
The native mass of the enzyme was determined using a HiLoad 16/60 Superdex 200 size exclusion column. The column was calibrated with the following marker proteins; apoferritin [443 kDa], amylase [200 kDa], albumin [66 kDa] and cytochrome C [12.4 kDa]. Passing the purified DHAP aldolase down the same pre-equilibrated column revealed a native molecular mass of approximately 160 kDa, indicating that the enzyme is a homotetramer.

4.3.8 Effect of various metal ions on aldolase activity

A putative L-FruA has been purified to homogeneity from *S. cattleya*. The enzyme requires Zn$^{2+}$ as a cofactor. The effect of other metal ions on its activity was investigated by conducting an assay using a partially purified aldolase fraction (100 µl, 1.5 mg / ml) obtained after size exclusion chromatography. In order to remove any metal ions already present in this fraction, EDTA (10 mM) was added and the protein stirred for 20 min at 4 °C. After this time, the sample was dialysed against 4 L of tris buffer (50 mM, pH 7.2) for 16 hrs at 4 °C. The dialysed sample was then assayed after addition of various divalent metal ions including Zn$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Fe$^{2+}$ and Ca$^{2+}$. The resulting 19F NMR spectra showed aldolase activity with each of the metal ions added. Additionally, monovalent metal ions such as Na$^+$, K$^+$, resulted in no activity under the described conditions.

4.3.9 Sequence analysis of the aldolase

The purified protein was treated with trypsin. After the trypsic digest a small peptide (2059 Da) was isolated and the amino acid sequence was determined to be; –Phe-Ala-Tyr-Pro-Ala-Ile-Asn-Val-Thr-Ser-Ser-Gln-Thr-Leu-His-Ala-Ala-LeuArg-. A database search using NCBI BLAST showed a homology to a fructose 1,6-bisphosphate aldolase (L-FruA) from
Chapter 4

Streptomyces galbus. This match to a L-FruA is consistent with the stereochemical course of this enzyme which generates 5-FDXyuP 126 rather than 5-FDRibP 121. N-terminus amino acid sequence analysis of the purified L-FruA using Edman degradation showed that the first 20 amino acids (determined using an Applied Biosystems Procise 491 sequencing instrument) were: -Pro-Ile-Ala-Thr-Pro-Glu-Ile-Tyr-X-Glu-Met-Leu-Asp-Arg-Ala-Lys-Ala-Gly-Lys-Phe. The results in Figure 4.17 show a sequence alignment using MultiAlin of the first 20 N-terminus amino acids of L-FruA from *S. cattleya* related to homologues.

![Sequence Alignment](image)

Figure 4.17 Sequence alignment of the first 20 N-terminal amino acids of L-FruA from *S. cattleya* with bacterial homologues. Residues that are highly conserved are in red. Weakly conserved residues are in blue.

Sequence analysis clearly suggests that the aldolase from *S. cattleya* is an L-FruA which catalyses the formation of 5-FDXyuP 126. This may be an enzyme of primary metabolism. The L-FucA aldolase remains to be purified. In the early stages of the purification such an activity was not apparent. Perhaps this can be rationalised by a high level of dehydrogenase activity present during ammonium sulfate precipitation (35-50 %) which would prevent the reverse aldol reaction to 5-FDRibP 121. This observation is supported by the results in Section 3.5.2 which showed a 35-50 % ammonium sulfate cut containing all of the biosynthetic enzymes to support fluoroacetate 8 and 4-fluorothreonine 47 biosynthesis. Although the second aldolase has not been purified, putative L-FucA
Chapter 4

genes have been identified in other streptomycetes such as *S. coelicolor* and *S. avermitilis*. The main function of this enzyme is the involvement in the L-fucose182 and D-arabinose pathways.183

The metabolic relationships and enzymes involved in the biosynthesis of fluoroacetate 8 and 4-fluorothreonine 47 in *S. cattleya* that have been discussed throughout Chapters 2, 3 and 4 are summarised in Scheme 4.8.

Scheme 4.8 Overview of the possible routes taken by 5'-FDA 54 towards the biosynthesis of fluoroacetate 8 and 4-fluorothreonine 47.
4.4 Conclusion

It has been shown that two DHAP dependent aldolases are present on the fluorometabolite pathway in *S. cattleya*. One of these aldolases has been identified as a putative L-FucA which catalyses a retro-aldol reaction of 5-FDRibP 121 to fluoroacetaldehyde 48 and DHAP 123. This enzyme is shown to be a Class II aldolase which requires a divalent metal ion for catalytic activity, and it is inhibited by the chelating agent EDTA.

A second aldolase was shown to be L-FruA which catalyses an aldol reaction between DHAP 123 and fluoroacetaldehyde 48 to generate 5-FDXyuP 126. This enzyme is also a Class II aldolase, requiring a divalent metal ion such as Zn$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Fe$^{2+}$ and Ca$^{2+}$ for catalytic activity. This enzyme was purified to homogeneity using standard chromatography techniques. Analysis by SDS-PAGE showed a monomeric subunit mass of approximately 40 kDa, and a native mass of 160 kDa was observed by gel filtration. This L-FruA had high sequence similarity in selected regions to other bacterial L-FruA’s.

The action of this enzyme of primary metabolism in CFE’s is probably adventitious. Our current hypothesis assumes that 5-FDXyuP 126 (Compound B) is a shunt product generated during fluoroacetaldehyde 48 production. The L-FucA aldolase, most relevant to fluorometabolite biosynthesis remains to be purified.
5 Experimental

5.1 Biochemical experimental

5.1.1 General methods

All commercial reagents, chemicals or enzymes were purchased from Sigma Biochemicals, Berry and Associates (U.S.A), and Fluka unless otherwise stated. The following commercial enzymes were used. 5'-Adenylic acid deaminase (EC 3.5.4.6, from *Aspergillus* species, A 1907, 0.11 units / mg), phytase (EC 3.1.3.8, from *Aspergillus ficuum*, P 9792, 3.5 units / mg), phosphatase (EC 3.1.3.1, from bovine intestinal mucosa, ammonium sulfate suspension, P-5521, 2,000-4000 DEA units / mg), fructose 1, 6-bisphosphate aldolase (EC 4.1.2.13, from rabbit muscle, lyophilized powder, A 2714, 10 units / mg), xylose isomerase (EC 5.3.1.5, Sweetzyme T, from *Streptomyces murinus*, G-4166, 350 units / mg) and immobilised crude PNP (*E. coli*, donated by G1axoSmithKline, EC 2.4.2.1).

The L-fuculose-1-phosphate gene was obtained as a pTrcHis C construct (ATCC number 86984) purchased from Promochem. The gene was over-expressed in *E. coli* and purified by nickel chromatography (see Section 5.1.28). The competent cells BL21(DE3), C43(DE3), BL21Star™, BL21(DE3)pLysS, BL21(DE3)pLysE and Rosetta2(DE3) were purchased from invitrogen in vials containing 50 μl aliquots.

19F NMR analyses were performed on Bruker vance 500 MHz (operating at 470 MHz) or Varian unity 500 MHz (operating at 470 MHz) spectrometers. All 19F NMR spectroscopy was carried out using D$_2$O (~ 10 %) as an internal reference. Chemical shifts are given in ppm and coupling constants (J) are given in Hertz (Hz). Spectral coupling patterns are designated as follows; d: doublet and t: triplet. High performance liquid chromatography
(HPLC) analyses were carried out using a solvent delivery system (230 Prostar) with an analytical C18 column (see Section 5.1.17). Electro-spray mass spectrometry (ES-MS) was performed on a Micromass LCT time of flight instrument. Gas chromatography mass spectrometry (GC-MS) was carried out by Dr. J. T. G. Hamilton at the Queen’s University of Belfast.

HPLC was carried out using a Varian prostar system containing a solvent delivery system (230, ProStar) and equipped with a dual wavelength UV-Vis detector (325, ProStar) and a ProStar 400 autosampler. For analytical purposes, a Hypersil 5 μm C-18 column (250 x 10 mm, Phenomenex) was used. Typical flow rates were 1 ml/min and sample volumes were 100-200 μl in which 20 μl was automatically injected. All solvents were HPLC grade and filtered prior to use. The mobile phases consisted of two solvents, A, 50 mM KH2PO4: acetonitrile (95:5) and solvent B, 50 mM KH2PO4: acetonitrile (80:20). Runs were monitored at 254 nm by gradient elution over 30 min from 0% B to 100% B.

All microbiological work was carried out in a Gallenkamp flowhood under sterile conditions unless stated otherwise. Glassware, media and consumables were sterilised by autoclaving. Cell cultures were incubated at 28 °C in a Gallenkemp orbital incubator. Centrifugation (>1000 μl) was carried out either on a Beckman JA 14 instrument at 14,000 rpm, a JA 25.5 at 20,000 rpm or a JLA 9.1 at 9,100 rpm. For micro-centrifugation (20-1000 μl), an Eppendorf 5415C centrifuge was used. Cell-free extracts (CFE’s) were prepared by disrupting the cells by sonication using Sonics & Materials Inc., Vibra Cell. Aqueous solutions were prepared using Ultra-pure water generated by a USF elga maxima water supply system.
5.1.2 Growth and maintenance of *S. cattleya* on agar

Streptomyces cattleya NRRL 8057 was originally supplied by Prof. D. B. Harper at the Queens University of Belfast, Microbial Biochemistry Section, Food Science Department, Belfast. Cultures were maintained on agar plates containing soybean flour (2 % w/v), mannitol (2 % w/v), agar (1.5 % w/v) and tap water. The plates were incubated at 30 °C for 28 days or until sporulation could be detected. The resultant static cultures were stored at 4 °C for future use.

5.1.3 Culture medium and growth conditions of *S. cattleya*

Streptomyces cattleya seed and batch cultures were grown in conical flasks (500 ml) containing chemically defined medium (90 ml). The medium was prepared as follows. Sterile ultra-pure water (450 ml) was added to ion solution (150 ml), filtered carbon solution (75 ml), (see Section 5.1.4), sterile phosphate buffer (75 ml, 150 mM, pH 7.0) and sterile potassium fluoride (3 ml, 0.5 M). The seed cultures were prepared by transferring spores from a static culture as described above, and added to a conical flask (500 ml) containing chemically defined medium (90 ml). After incubation for 6 days at 28 °C on an orbital shaker (180 rpm), an aliquot (0.3 ml) of spores was used to inoculate the batch cultures. The batch cultures were incubated at 28 °C, on an orbital shaker at 180 rpm for 6-8 days.
5.1.4 Media procedure for growing *S. cattleya*

Ion solution

The following reagents were added to ultra-pure water (900 ml).

- NH$_4$Cl 6.75 g
- NaCl 2.25 g
- MgSO$_4$.7H$_2$O 2.25 g
- CaCO$_3$ 1.13 g
- FeSO$_4$.7H$_2$O 0.113 g
- CoCl$_2$.6H$_2$O 0.045 g
- ZnSO$_4$.7H$_2$O 0.045 g.

The solution was sterilised by autoclaving prior to use.

Carbon source solution

The following reagents were added to ultra-pure water (900 ml).

- Glycerol (45 g)
- monosodium glutamate (22.5 g)
- *myo*-inositol (1.8 g)
- *para*-aminobenzoic acid (450 µl of freshly prepared solution 1 mg / ml)

The solution was sterilised by filtration into pre-sterilised Schott bottles.

5.1.5 Preparation of resting cell cultures of *S. cattleya*

After 6 days of growth, cells were harvested by centrifugation (9,100 rpm / 25 min) and the resulting pellet was washed three times with phosphate buffer (50 mM, pH 6.8). After the
final wash, the bacterial pellet was stored at \(-80^\circ C\) or could be used directly for cell free extract (CFE) preparation.

5.1.6 Preparation of cell free extract (CFE) of \textit{S. cattleya}

CFE was prepared in two ways; firstly by re-suspending \(0.1 \text{ g cells / ml}\) of phosphate buffer (50 mM, pH 6.8) and left to stir for 20 minutes at 4 \(^\circ C\). The cells were then sonicated 6-10 times at 60 cycles for 1 min. After sonication, the cells were centrifuged at (14,000 rpm / 20 min) and the resultant cell pellet was discarded and the supernatant retained as a CFE. For experiments on the biosynthesis of fluorinated metabolites, a CFE was prepared under parallel conditions except by re-suspending \(0.2 \text{ g of cells / ml}\) of phosphate buffer (50 mM, pH 6.8).

5.1.7 Assay to determine biosynthetic activity in a CFE of \textit{S. cattleya}

CFE (500 \(\mu l\)) was incubated with \(5\text{'-FDA} \text{ 54 (100 }\mu l, 18.6 \text{ mM)}\) in phosphate buffer (50 mM, pH 6.8) for 16 hrs at 37 \(^\circ C\). The sample was subsequently heated at 100 \(^\circ C\) for 3 min and the denatured protein micro-centrifuged at (14,000 rpm, 5 min). The protein pellet was discarded and the supernatant retained for analysis by \(^{19}\text{F NMR spectroscopy (470 MHz, 10 }\% \text{ D}_2\text{O)}\). The production of fluoroacetate \(8, -216.97 \text{ (t, }^2J_{\text{F,H}} 48.2)\) and 4-fluorothreonine \(47 -231.60 \text{ (t, }^2J_{\text{F,H}} 46.8)\) confirmed the CFE retained all its biosynthetic activities. Reference compounds of fluoroacetate \(8\) and 4-fluorothreonine \(47\) confirmed this unambiguously. Control experiments were conducted under the same conditions except
using a denatured CFE. This showed that 5’-FDA \textbf{54} is stable over an incubation period of 16 hrs at 37 °C.

\subsection*{5.1.8 Incubation of 5-fluoro-5-deoxy-d-ribose (5-FDR) in a CFE of \textit{S. cattleya}}

Synthetic 5-FDR \textbf{80} was prepared as a reference compound by S. L. Cobb, University of St Andrews. 5-FDR \textbf{80} (100 µl, 32.9 mM) was incubated with an active CFE (500 µl) in phosphate buffer (50 mM pH 6.8) for 16 hrs at 37 °C. After this time the protein was denatured by heating to 100 °C for 3 min and the precipitated protein removed by micro-centrifugation (14,000 rpm / 5 min). D$_2$O (100 µl) was added to the supernatant and the sample analysed by 19F NMR. δ_F (470 MHz, 10% D$_2$O) 5-FDR \textbf{80} β-anomer -228. 55 (ddd, 2$J_{F,H}$ 47.0 and 3$J_{F,H}$ 26.4) and α-anomer -230.86 (ddd, 2$J_{F,H}$ 46.9 and 3$J_{F,H}$ 26.3).

Control experiments were carried out under similar conditions except using a denatured CFE. Analysis by 19F NMR concluded that 5-FDR \textbf{80} is chemically stable after 16 hrs at 37 °C.

\subsection*{5.1.9 Chemo-enzymatic preparation of 5-fluoro-5-deoxy-d-ribose-1-phosphate (5-FDRP)}

5’-FDA \textbf{54} (18.6 mM) and adenosine deaminase (2 mg) were suspended in phosphate buffer (50 mM, pH 6.8) in a total volume of 1 ml for 16 hrs at 37 °C. After incubation the sample was heated to 100 °C for 3 min and the denatured protein removed from the solution by micro-centrifugation (14,000 rpm / 15 min). Analysis by HPLC showed 100 % bioconversion to 5’-FDI \textbf{55}. The supernatant sample was incubated with immobilised PNP
Chapter 5

(2 mg resin) and incubated at 37 °C for a further 16 hrs. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by micro-centrifugation (14,000 rpm / 5 min). The sample was analysed by 19F NMR spectroscopy and HPLC (UV detection); 19F (470 MHz; 10 % D$_2$O) (5-FDRP 81, \sim 40 %) -230.75 (dt, $^{2}J_{F,H}$ 47.3 and $^{3}J_{F,H}$ 28.3) and (5'-FDI 55, \sim 60 %) -230.85 (dt, $^{2}J_{F,H}$ 47.0 and $^{3}J_{F,H}$ 28.9).

HPLC (UV, $\lambda = 254$ nm) analysis indicated the production of hypoxanthine 79 and the presence of unreacted 5'-FDI 55.

An aliquot (500 µl) was lyophilised and treated with MSTFA prior to GC-MS analysis; m/z 505 (16%), 382 (11), 353 (14), 300 (24), 299 (100) and 147 (20). ES-MS (-ve) analysis; 5-FDRP 81 m/z 231 (M-H)$^-$, 5'-FDI 55 m/z 269 (M-H)$^-$.

5.1.9.1 Incubation of 5-FDRP with a CFE of S. cattleya

5-FDRP 81 was prepared according to Section 5.1.9. The sample contained \sim60 % 5'-FDI 55. Control experiments showed that 5'-FDI 55 is not metabolised in a CFE of S. cattleya. Also incubation of a denatured CFE with 5-FDRP 81 at 37 °C for 16 hrs showed no chemical breakdown. 5-FDRP 81 (200 µl) was incubated with a CFE (500 µl) in phosphate buffer (50 mM, pH 6.8) for 16 hrs at 37 °C. After the incubation period the protein was denatured (100 °C / 3 min) and removed by centrifugation (14,000 rpm / 5 min). D$_2$O (100 µl) was added to the supernatant, which was then analysed by 19F NMR. The identities of the new fluorinated products were confirmed by co-injection with reference compounds. 19F (470 MHz, 10 % D$_2$O) fluoroacetate 8, -216.96 (t, $^{2}J_{F,H}$ 48.3), 5'-FDI 55, -230.85 (dt, $^{2}J_{F,H}$ 46.9 and $^{3}J_{F,H}$ 26.9) and 4-fluorothreonine 47, -231.58 (t, $^{2}J_{F,H}$ 46.8). HPLC (UV) analysis showed the presence of hypoxanthine 79 and 5'-FDI 55.
5.1.10 Incubation of 2-deoxy-5’-FDA in a CFE of *S. cattleya*

Synthetic 2-deoxy-5’-FDA 59 was prepared by S. L. Cobb,118 University of St Andrews. 2-deoxy-5’-FDA 59 (100 µl, 18.6 mM) was incubated with a CFE (500 µl) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and subsequently micro-centrifuged at (14,000 rpm, 5 min). The supernatant was analysed by \(^{19}\)F NMR. \(\delta_F\) (470 MHz, 10 % D\(_2\)O), 2-deoxy-5-FDR 83, -227.81 (dt, \(^2\)J\(_{F,H}\) 47.0 and \(^3\)J\(_{F,H}\) 22.9), 2'-deoxy-5’-FDI 84, -230.60 (dt, \(^2\)J\(_{F,H}\) 47.0 and \(^3\)J\(_{F,H}\) 26.4). HPLC analysis showed the presence of 2-deoxy-5’-FDI 84 and hypoxanthine which was confirmed by co-injection experiments using synthetic standards. Control experiments were carried out under parallel conditions using a denatured CFE. \(^{19}\)F NMR and HPLC analysis showed no chemical degradation of 2-deoxy-5’-FDA 59 over the same time period.

5.1.11 Effect of iodoacetamide on fluorometabolite production

Experiment 1: A CFE (490 µl) was pre-incubated with iodoacetamide (10 µl, 0.5 M) for 25 min at 37 °C. After this time 5’-FDA 54 (100 µl, 18.6 mM) was added to the pre-incubated CFE and the incubation continued for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by micro-centrifugation (14, 000 rpm / 5 min). The supernatant was analysed by \(^{19}\)F NMR. \(\delta_F\) (470 MHz, 10 % D\(_2\)O), 5’-FDI 55 230.91 (dt, \(^2\)J\(_{F,H}\) 47.0 and \(^3\)J\(_{F,H}\) 28.9) and 5-FDRP 81 -230.87 (dt, \(^2\)J\(_{F,H}\) 47.0 and \(^3\)J\(_{F,H}\) 28.7). HPLC (UV) analysis indicated the presence of 5’-FDI 55 and hypoxanthine 79.
Chapter 5

Experiment 2: A CFE (490 µl) was pre-incubated with iodoacetamide (10 µl, 0.5 M) for 25 min at 37 °C. The addition of 5-FDRP 81 (200 µl) containing an excess of 5'-FDI 55 was added to the pre-incubated CFE for 16 hrs at 37 °C. The resulting sample was then denatured at 100 °C for 3 min and the precipitated protein micro-centrifuged (14,000 rpm / 5 min). The supernatant was analysed by ¹⁹F NMR. δ_F(470 MHz, 10% D₂O), 5'-FDI 55 -230.90 (dt, ²J_{F,H} 47.0 and ³J_{F,H} 28.7) and 5-FDRP 81 -230.86 (dt, ²J_{F,H} 46.9 and ³J_{F,H} 28.6). HPLC analysis indicated the presence of 5'-FDI 55 and hypoxanthine 79.

5.1.12 Effect of EDTA on fluorometabolite production

Experiment 1: A CFE (500 µl) was pre-incubated with EDTA (final conc. 30 mM) for 25 min at 37 °C. 5’-FDA 54 (100 µl, 18.6 mM) was then added and the incubation was continued for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the denatured protein removed by micro-centrifugation (14,000 rpm, 5 min). The supernatant was analysed by ¹⁹F NMR. δ_F(470 MHz, 10% D₂O), 5'-FDI 55 -230.83 (dt, ²J_{F,H} 47.0 and ³J_{F,H} 29.8), 5-FDRP 81 -230.76 (dt, ²J_{F,H} 47.3 and ³J_{F,H} 28.3) and 5-FDRibP 121 -231.28 (dt, ²J_{F,H} 46.8 and ³J_{F,H} 20.6). HPLC analysis indicated the presence of 5'-FDI 55 and hypoxanthine 79. This was confirmed by co-injection experiments using synthetic standards. No 5’-FDA 54 was observed under these conditions.

Experiment 2: A CFE (500 µl) was pre-incubated with EDTA at a final concentration of 30 mM for 25 min at 37 °C. 5-FDRP 81 (200 µl) was then added and the incubation continued for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the denatured protein removed by micro-centrifugation (14,000 rpm, 5 min). The supernatant was analysed by ¹⁹F NMR. δ_F(470 MHz, 10% D₂O), 5'-FDI 55 -230.85 (dt,
Chapter 5

$^2J_{F,H} 47.0$ and $^3J_{F,H} 29.8$), 5-FDRP 81 -230.80 (dt, $^2J_{F,H} 47.3$ and $^3J_{F,H} 28.3$) and 5-FDRibP 121 -231.30 (dt, $^2J_{F,H} 47.0$ and $^3J_{F,H} 20.7$). HPLC analysis indicated the presence of 5'-FDI 55 and hypoxanthine 79. This was confirmed by co-injection experiments using synthetic standards.

5.1.13 Chemoenzymatic preparation and CFE incubation of 5-fluoro-5-deoxy-D-ribose (5-FDRib)

Experiment 1: Synthetic 5-FDR 80 was prepared by Mayea. Onega,2 University of St Andrews. Immobilised xylose isomerase (3 mg) was incubated with 5-FDR 80 (100 μl, 32.9 mM) in a total volume of 700 μl containing phosphate buffer (50 mM, pH 6.8) for 4 hours at 60 °C. After incubation, the enzyme was denatured at 100 °C for 3 min and microcentrifuged at (14.000 rpm / 5 min). The supernatant was analysed by 19F NMR. δ_F (470 MHz, 10% D$_2$O) 5-FDR 80, α anomer -230.78 (dt, $^2J_{F,H} 46.9$ and $^3J_{F,H} 26.3$), 5-FDR 80, β anomer -228.47 (dt, $^2J_{F,H} 47.0$ and $^3J_{F,H} 26.4$) and 5-fluoro-5-deoxy-D-ribose 122, -231.17 (dt, $^2J_{F,H} 47.0$ and $^3J_{F,H} 20.6$).

Control experiments were carried out in the absence of xylose isomerase which indicated that 5-FDR 80 was chemically inert over the time period.

Experiment 2: 5-FDRib 122 (100 μl) containing an excess of 5-FDR 80 (Experiment 1) was incubated with a CFE (500 μl) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by microcentrifugation (14, 000 rpm / 5 min). The supernatant was analysed by 19F NMR. δ_F (470 MHz, 10% D$_2$O) 5-FDR 80, α anomer -230.80 (dt, $^2J_{F,H} 47.3$ and $^3J_{F,H} 27.3$), 5-FDR 80, β
anomer -228.50 (dt, $^2\text{J}_{\text{F,H}}$ 47.3 and $^3\text{J}_{\text{F,H}}$ 25.8) and 5-FDRib 122, -231.18 (dt, $^2\text{J}_{\text{F,H}}$ 47.0 and $^3\text{J}_{\text{F,H}}$ 20.7).

5.1.14 Chemoenzymatic preparation and CFE incubation of 5-fluoro-5-deoxy-D-xylose (5-FDXyu)

Experiment 1: Synthetic 5-fluoro-5-deoxy-D-xylose (5-FDX) 124 was prepared by Mayca Onega, University of St Andrews. A synthetic sample of 5-FDX 124 (100 µl, 32.9 mM) was incubated with immobilised xylose isomerase (3 mg) in a total volume of 700 µl containing phosphate buffer (50 mM, pH 6.8) for 4 hrs at 60 °C. After incubation, the enzyme was denatured at 100 °C for 3 min and the precipitate micro-centrifuged at (14,000 rpm / 5 min). D$_2$O (100 µl) was added to the supernatant, which was then analysed by 19F NMR. δ$_F$ (470 MHz, 10 % D$_2$O) 5-FDX 124, -228.46 (dt, $^2\text{J}_{\text{F,H}}$ 47.0 and $^3\text{J}_{\text{F,H}}$ 22.9), 5-FDX 124, -230.54 (dt, $^2\text{J}_{\text{F,H}}$ 47.0 and $^3\text{J}_{\text{F,H}}$ 25.2) and 5-fluoro-5-deoxy-D-xylose 125, -228.50 (dt, $^2\text{J}_{\text{F,H}}$ 47.0 and $^3\text{J}_{\text{F,H}}$ 16.0).

Control experiments were performed in the absence of xylose isomerase which indicated that 5-FDX 124 remains chemically inert to degradation over the 16 hrs incubation at 37 °C.

Experiment 2: Enzymatically prepared 5-fluoro-5-deoxy-D-xylose (5-FDXyu) 125 (100 µl) was incubated with a CFE (500 µl) for 16 hrs at 37 °C. After incubation, the sample was denatured at 100 °C for 3 min and finally micro-centrifuged at (14,000 rpm / 5 min) to remove the denatured precipitate. Addition of D$_2$O (100 µl) to the supernatant was then analysed by 19F NMR spectroscopy, δ$_F$ (470 MHz, 10 % D$_2$O), 5-FDX 124, -228.47 (dt, $^2\text{J}_{\text{F,H}}$ 46.9 and $^3\text{J}_{\text{F,H}}$ 21.8), 5-FDX 124, -230.55 (dt, $^2\text{J}_{\text{F,H}}$ 47.0 and $^3\text{J}_{\text{F,H}}$ 24.0), 5-FDXyu 125, -228.51 (dt, $^2\text{J}_{\text{F,H}}$ 46.9 and $^3\text{J}_{\text{F,H}}$ 15.9).
5.1.15 Preparation of 5-fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDribP)

Fluoroacetaldehyde* 48 was prepared by S. L. Cobb,118 University of St Andrews. A typical protocol for preparing 5-FDribP 121 is as follows. Fluoroacetaldehyde 48 (30 µl, 140 mM) and DHAP 123 (70 µl, 55 mM) were incubated with L-FucA (200 µl, 0.4 mg / ml) in a total volume of 700 µl with phosphate buffer (50 mM, pH 6.8) for 1 hr at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated enzyme removed by micro-centrifugation (14,000 rpm / 5 min). The resulting supernatant was lyophilised to remove the residual fluoroacetaldehyde 48 and fluoroethanol 69 present. The lyophilised sample was re-suspended in H2O (700 µl) and analysed by 19F NMR. δF (470 MHz, 10 % D2O), (5-fluoro-5-deoxy-D-ribulose-1-phosphate 121, 30 %), -231.34 (dt, 2JF,H 47.0 and 3JF,H 20.7), (diastereoisomer of 121, 70 %), -228.21 (dt, 2JF,H 46.2 and 3JF,H 15.3).

Control experiments were carried under the same conditions in the absence of L-FucA. The product was subsequently analysed by 19F NMR. δF (470 MHz, 10 % D2O), fluoroacetaldehyde 48 -231.04 ppm and fluoroethanol 69 -224.50 ppm.

* The preparation of fluoroacetaldehyde 48 contained an excess of fluoroethanol 69.

5.1.16 Preparation of 5-fluoro-5-deoxy-D-xyulose-1-phosphate (5-FDxyuP)

A similar procedure to Section 5.1.15 was adopted for the preparation of 5-FDxyuP. Therefore, fluoroacetaldehyde 48 (30 µl, 20 mM) and DHAP 123 (70 µl, 10 mM) were
incubated with L-FruA (20 μl, 2 mg/ml) in phosphate buffer (580 μl, 50 mM, pH 6.8) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by micro-centrifugation (14,000 rpm / 5 min). The supernatant was subsequently lyophilised to remove the majority of residual fluoroethanol 69 and fluoroacetaldehyde 48. The freeze-dried sample was re-suspended in H2O (700 μl) and analysed by 19F NMR. δF (470 MHz, 10 % D2O) 5-FDXyP 126 -228.20 (dt, 2JF,H 46.2 and 3JF,H 15.3).

Control experiments were carried under the same conditions in the absence of L-FruA. The product was analysed by 19F NMR. δF (470 MHz, 10 % D2O), fluoroacetaldehyde 48 -231.03 ppm and fluoroethanol 69 -224.51 ppm.

5.1.17 Protein purification by ammonium sulfate precipitation

A CFE was prepared according to Section 5.1.6. According to the volume of the supernatant, ammonium sulfate was slowly added to the desired % saturation level (see Table 5.1). After all the ammonium sulfate was dissolved by stirring for 20 minutes at 4 °C, the precipitated solution was centrifuged for 20 minutes at 14,000 rpm and the supernatant either discarded or kept for further precipitation. The protein pellet could then be used directly or kept at −80 °C.
Table 5.1 Ammonium sulfate table showing grams of ammonium sulfate added to 100 ml of solution.

5.1.18 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE was performed on an Invitrogen XCell SureLock™ mini-cell apparatus connected to an Amersham Pharmacia biotech EPS 301 power supply operating at a constant current of 125 mA for 40 minutes. NuPAGE™ Bis-Tris 10 well gels were used which contained either 10 % or 4-12 % of acrylamide.
Chapter 5

5.1.19 Sample preparation for SDS-PAGE

The protein sample was prepared as follows. To 20 μl of a protein sample was added 5 μl of NuPAGE® LDS sample buffer under denaturing conditions. The solution was heated to 100 °C for 3 min and subsequently 10-20 μl was added to the sample wells of the pre-cast NuPAGE™ Bis-Tris gel. Protein markers (Mark 12™ standards, Invitrogen life technologies) used were; myosin [200 kDa], β-galactosidase [116 kDa], phosphorylase B [97.4 kDa], BSA [66 kDa], glutamic dehydrogenase [55 kDa], lactate dehydrogenase [36.5 kDa], carbonic anhydrase [31 kDa], trypsin inhibitor [21.5 kDa], lysozyme [14.4 kDa], aprotinin [6 kDa].

5.1.19.1 Staining and destaining of SDS gels

After each SDS-PAGE run, the gel was stained by soaking in a solution of Coomassie blue G250 dye for 30-60 min. After this time the gel was destained overnight in destain solution with constant agitation to remove any unbound dye. The composition of both stains was as follows,

<table>
<thead>
<tr>
<th>Stain solution</th>
<th>Destain solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coomassie blue G250</td>
<td>Methanol 400 ml</td>
</tr>
<tr>
<td>Methanol</td>
<td>Glacial acetic acid 70 ml</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>Ultra pure water 530 ml</td>
</tr>
<tr>
<td>Ultra pure water</td>
<td></td>
</tr>
</tbody>
</table>

173

5.1.20 Protein concentration determination

Protein concentrations were determined using a Bradford assay, (Bradford solution, Sigma Chemicals). In a microcuvette, the protein solution (50 μl) was added to Bradford reagent (1500 μl) and thoroughly mixed. After 5 minutes the absorbance was read at λ max = 595. The result was compared to a standard curve using BSA from known concentrations (Figure 5.1).

![Figure 5.1 Protein concentration determinations from a standard curve](image)

5.1.21 Fast protein liquid chromatography (FPLC)

Protein purification was carried out on an ACTA basic system at room temperature. The following techniques were employed; size exclusion chromatography using a High load 16/60 Superdex 200 (Amersham Biosciences), hydrophobic interaction chromatography (HIC) using Phenyl Sepharose HP, 40 ml bed volume (Amersham Biosciences), anion exchange using a Q, 10 ml bed volume (Amersham Biosciences), anion exchange, ANX
sepharose 4 FF, 1 ml bed volume (Amersham Biosciences), DEAE sepharose FF, 20 ml bed volume (Amersham Biosciences), hydroxyapatite type I and II, 5 ml bed volume (BioRad) and cation exchange 15S, 10 ml bed volume (Amersham Biosciences). Typical flow rates were between 1 ml/min and 5 ml/min.

5.1.22 Calibration of native protein masses by size exclusion chromatography

The molecular weight of native proteins was measured by size exclusion chromatography using a HiLoad 16/60 Superdex 200, (Amersham Biosciences). The column was equilibrated with phosphate buffer (50 mM, pH 6.8) and calibrated with the following reference proteins; apoferritin (443 kDa), amylase (200 kDa), albumin (66 kDa), and cytochrome C (12.4 kDa). The void volume (V_o) of 44.0 ml was determined using blue dextran. The calibration curve of the relative elution volumes ($\log \left(\frac{V_e}{V_o} \right)$) against the molecular weights ($\log \text{MW}$) of the reference proteins is shown in Figure 5.2.
Figure 5.2 Calibration curve of molecular weight proteins from HiLoad 16/60 Superdex 200.

5.1.23 Partial purification of a PNP from *S. cattleya*

CFE (150 ml, ~4 mg / ml) was prepared as described under Section 5.1.6 and ammonium sulfate precipitation was carried out as described in Section 5.1.18. The protein pellet 35-50 % was dissolved in phosphate buffer (5 ml, 50 mM, pH 6.8) containing 1 M (NH₄)₂SO₄ at a final concentration of ~21 mg / ml. Prior to further purification, the re-suspended protein pellet was filtered through a 0.45 μm HT Tuffryn™ membrane filter.

To assay for PNP activity, 100 μl of CFE or the partially purified fractions were incubated with 5'-FDA 54 (final conc. 1 mM) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and subsequently micro-centrifuged at (14,000 rpm / 5 min). The clear supernatant (100 μl) was used directly for HPLC analysis.
5.1.23.1 **Step 2: Hydrophobic interaction chromatography (HIC)**

The dissolved pellet (5 ml) was injected onto a 40 ml Phenyl sepharose HP column (Amersham Biosciences) equilibrated with 2 column volumes of phosphate buffer (50 mM, pH 6.8) containing 1 M (NH₄)₂SO₄. The column was washed with a further two column volumes of this buffer and subsequently eluted by applying a step wise gradient at 2 ml / min from 1 M to 0 M (NH₄)₂SO₄. PNP activity eluted at the end of the gradient which was collected manually (12 ml, ~0.5 mg / ml).

5.1.23.2 **Step 3: Ion exchange chromatography (IEC)**

The eluent (~12 ml) from HIC was concentrated to 2 ml using a 10 kDa Amicon Ultra-15 centrifugal concentrator. The concentrated protein was then subjected to desalting using a HiTrap™ desalting column, (5 ml) and finally re-concentrated to ~2 ml by the same method. The concentrated protein sample (2 ml) was applied to an anion exchange column (Q, 5 ml sepharose) which was pre-equilibrated with five column volumes of tris buffer (50 mM, pH 7.2). The loaded protein sample was washed with two column volumes and subsequently eluted using a step wise gradient of tris buffer (50 mM, pH 7.2) containing 1 M KCl at a flow rate of 2 ml / min. The peak containing the activity eluted after a gradient elution of 250 mM KCl, ~8 ml (0.3 mg / ml).
5.1.24 Substrate specificity of PNP from *S. cattleya*

PNP substrate specificity was assayed as follows. Partially purified PNP (100 µl, 0.3 mg/ml) after step 3, anion exchange chromatography (see Section 5.1.23.2) was incubated with each nucleoside analogue (10 µl, 11 mM) (see Table 5.2) for 16 hrs at 37 °C.

![Chemical structure of PNP substrate specificity](image)

Table 5.2 Substrate specificity of the PNP for various nucleoside analogues

<table>
<thead>
<tr>
<th>Nucleosides</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>RT (min)</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-fluoro-5'-deoxyadenosine</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>10.1</td>
<td>+</td>
</tr>
<tr>
<td>5'-fluoro-5'-deoxyinosine</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>2,5-dideoxy-5'-fluoroadenosine</td>
<td>59</td>
<td>F</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>NH₂</td>
<td>10.7</td>
</tr>
<tr>
<td>2-amino-5'-fluoro-5'-deoxyadenosine</td>
<td>91</td>
<td>F</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
<td>NH₂</td>
<td>9.5</td>
</tr>
<tr>
<td>5'-chloro-5'-deoxyadenosine</td>
<td>88</td>
<td>Cl</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>12.7</td>
</tr>
<tr>
<td>2,5-dideoxy-5'-chloroadenosine</td>
<td>86</td>
<td>Cl</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>NH₂</td>
<td>13.8</td>
</tr>
<tr>
<td>2-chloroadenosine</td>
<td>96</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>Cl</td>
<td>NH₂</td>
<td>12.1</td>
</tr>
<tr>
<td>2-amino-5'-chloro-5'-deoxyadenosine</td>
<td>97</td>
<td>Cl</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
<td>NH₂</td>
<td>11.9</td>
</tr>
<tr>
<td>5'-bromo-5'-deoxyadenosine</td>
<td>89</td>
<td>Br</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>15.2</td>
</tr>
<tr>
<td>adenosine</td>
<td>71</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>7.4</td>
</tr>
<tr>
<td>2-deoxyadenosine</td>
<td>87</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>NH₂</td>
<td>7.8</td>
</tr>
<tr>
<td>*3'-deoxyadenosine</td>
<td>99</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>8.2</td>
</tr>
<tr>
<td>*5'-deoxyadenosine</td>
<td>90</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>9.6</td>
</tr>
<tr>
<td>2',5'-dideoxyadenosine</td>
<td>98</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>NH₂</td>
<td>10.4</td>
</tr>
<tr>
<td>2-aminoadenosine</td>
<td>94</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>NH₂</td>
<td>NH₂</td>
<td>7.0</td>
</tr>
<tr>
<td>2-amino-2-deoxyadenosine</td>
<td>95</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>NH₂</td>
<td>7.7</td>
</tr>
<tr>
<td>adenosine monophosphate</td>
<td>92</td>
<td>OPO₃</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>3.5</td>
</tr>
<tr>
<td>5'-thiomethyl-5'-deoxyadenosine*</td>
<td>76</td>
<td>MeS</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>15.0</td>
</tr>
<tr>
<td>5'-acetyl-5'-deoxyadenosine</td>
<td>93</td>
<td>OAc</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>NH₂</td>
<td>14.0</td>
</tr>
<tr>
<td>inosine</td>
<td>72</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>5.3</td>
</tr>
</tbody>
</table>

RT = average retention times (min)
* Prepared by S. L. Cobb.

Table 5.2 Substrate specificity of the PNP for various nucleoside analogues; (+) indicates a substrate and (-) indicates no detectable activity.

After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by micro-centrifugation at (14,000 rpm / 5 min). An aliquot (20 µl) was
subjected to HPLC analysis. Table 2.1 shows a (+) sign indicating phosphorolytic cleavage with the generation of the “free” base. Co-injection experiments with the corresponding bases confirmed this unambiguously. A (-) sign indicates no enzyme activity. Control experiments were carried out under analogous conditions using a denatured protein extract. This indicated that all compounds were stable and resistant to chemical degradation unless the PNP was active.

5.1.24.1 Reversibility of the PNP

Experiment 1: 5'-FDI 55 (18.5 mM) was incubated with immobilised PNP (2 mg resin) in a total volume of 1 ml containing phosphate buffer (50 mM, pH 6.8) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated enzyme removed by micro-centrifugation (14,000 rpm / 5 min). The supernatant was analysed by 19F NMR δ_F (470 MHz; 10 % D$_2$O) (5-FDRP 81, ~40 %) -230.78 (dt, 2J$_{F,H}$ 47.3 and 3J$_{F,H}$ 28.3) and (5'-FDI 55, ~60 %) -230.85 (dt, 2J$_{F,H}$ 47.0 and 3J$_{F,H}$ 28.9). HPLC analysis showed production of hypoxanthine 79 and unreacted 5'-FDI 55.

Experiment 2: Partially purified PNP (100 μl, 0.3 mg / ml) from S. cattleya was supplemented with 5-FDRP 81 (100 μl) prepared from experiment 1 and incubated with each purine base (3.7 mM) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by micro-centrifugation (14,000 rpm / 5 min). An aliquot, (20 μl) of the supernatant was analysed by HPLC. Table 5.3 shows a (+) sign indicating the generation of a nucleoside analogue. Co-injection
experiments with the corresponding nucleoside confirmed this unambiguously. A (-) sign indicates no PNP activity.

![Diagram showing purine bases R4, R5, and RT](image)

<table>
<thead>
<tr>
<th>Purine bases</th>
<th>R4</th>
<th>R5</th>
<th>RT (min)</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>adenine</td>
<td>75</td>
<td>H NH₂</td>
<td>5.2</td>
<td>+</td>
</tr>
<tr>
<td>hypoxanthine</td>
<td>81</td>
<td>H OH</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>6-methylpurine</td>
<td>102</td>
<td>H CH₃</td>
<td>7.4</td>
<td>-</td>
</tr>
<tr>
<td>6-chloropurine</td>
<td>103</td>
<td>H Cl</td>
<td>8.2</td>
<td>-</td>
</tr>
<tr>
<td>2-amino-6-purinethiol</td>
<td>104</td>
<td>NH₂ SH</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td>2,6-diaminopurine</td>
<td>101</td>
<td>NH₂ NH₂</td>
<td>4.8</td>
<td>+</td>
</tr>
<tr>
<td>2-amino-6-chloropurine</td>
<td>106</td>
<td>NH₂ Cl</td>
<td>7.8</td>
<td>-</td>
</tr>
<tr>
<td>2,6-dichloropurine</td>
<td>107</td>
<td>Cl Cl</td>
<td>17.8</td>
<td>-</td>
</tr>
<tr>
<td>purine</td>
<td>105</td>
<td>H H</td>
<td>5.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.3 Substrate specificity of the PNP from *S. cattleya* with 5-FDRP 81.

5.1.24.2 Generation of SAM analogues using the fluorinase in the reverse direction

Preparation of 2-amino-SAM

Experiment 1: Partially purified PNP from *S. cattleya* (100 µl, 0.3 mg / ml) was incubated with 5-FDRP 81 (100 µl) and 2-aminoadenine 101 (final conc. 3.7 mM) for 16 hrs at 37 °C. After incubation the sample was heated (100 °C / 3 min) and the denatured protein removed by centrifugation (14,000 rpm / 15 min). HPLC analysis with a reference
compound indicated the production of 2-amino-5-FDA. ES-MS also indicated the production of 2-amino-5'-FDA; m/z 284 (M + H)+.

Experiment 2: 2-amino-5-FDA (100 µl) was incubated with the fluorinase (200 µl, 10 mg / ml) and L-methionine 56 (10 mM) at 37 °C for 16 hrs. The product was heated (100 °C / 3 min) and the denatured protein removed by centrifugation (14,000 rpm / 15 min). HPLC analysis indicated the production of a new compound with a retention time of 15.5 min. The compound was collected and lyophilised and the resultant powder dissolved in 1 ml of MeCN (1 ml) for ES-MS analysis; 2-amino-SAM; m/z 414 (M+H)+, 100 % and 313 (M + H, - C4HgNO2)+.

5.1.25 Partial purification of an isomerase from S. cattleya

CFE (150 µl) was prepared according to Section 5.1.6 and ammonium sulfate precipitation was carried out as described in Section 5.1.18. The protein pellet 35-50 % was dissolved in phosphate buffer (50 mM, pH 6.8) supplemented with 1 M (NH4)2SO4 in a total volume of 6 ml with a protein concentration of ~20 mg / ml. Prior to further purification the re-dissolved protein pellet was filtered through a 0.45 µm HT Tuffryn® membrane filter. Partially purified fractions (200 µl) were incubated with 5-FDRP 81 (100 µl) for 16 hrs at 37 °C to assay for isomerase activity. After this time the sample was denatured at 100 °C for 3 min and the precipitated protein removed by centrifugation (14,000 rpm / 5 min). The supernatant was retained and assayed by 19F NMR for isomerase activity; δF (470 MHz, 10% D2O), 5'-FDI 55 -230.84 (dt, 2JF,H 47.0 and 3JF,H 28.9), 5-FDRP 81 -230.77 (dt, 2JF,H 47.3 and 3JF,H 28.3) and 5-FDRibP 121 -231.32 (dt, 2JF,H 47.0 and 3JF,H 20.7).
5.1.25.1 Step 2: Hydrophobic interaction chromatography (HIC)

The dissolved protein pellet (6 ml) was injected onto a 40 ml Phenyl sepharose HP column equilibrated with 2 column volumes of phosphate buffer (50 mM, pH 6.8) containing 1 M (NH₄)₂SO₄. The column was washed with a further two column volumes and subsequently eluted by applying a step wise gradient at 2 ml / min from 1 M to 0 M (NH₄)₂SO₄. The isomerase eluted at the end of the gradient adjacent to the PNP fraction (Section 5.1.23.1) and was collected manually (12 ml, 1.3 mg / ml).

5.1.25.2 Step 3: Size exclusion chromatography

The eluent (~ 12 ml) from the Phenyl sepharose HP column was concentrated to 2 ml using a 10 kDa Amicon® Ultra-15 centrifugal concentrator. The concentrated protein was loaded onto a 16/60 Superdex 200 gel filtration column equilibrated with tris buffer (50 mM, pH 7.2) supplemented with 0.3 M KCl at a constant flow rate of 1 ml / min. Protein elution was carried out isocratically over 180 ml. Isomerase activity eluted between 72-80 ml with a protein concentration of 0.5 mg / ml.

5.1.25.3 Step 4: Ion exchange chromatography (IEC)

The eluent (8 ml) from the size exclusion column was concentrated to 2 ml using a 10 kDa Amicon® Ultra-15 centrifugal concentrator. The concentrated protein was then desalted using a HiTrap™ desalting column (5 ml) to remove KCl. The sample was then re-concentrated to ~2 ml by the same method.

The concentrated protein sample (2 ml) was applied to an anion exchange column (Q, 5 ml sepharose) which was pre-equilibrated with five column volumes of tris buffer (50 mM, pH 7.2).
pH 7.2). The loaded protein sample was washed with two column volumes and subsequently eluted using a step wise gradient of tris buffer (50 mM, pH 7.2) containing 1 M KCl at a flow rate of 2 ml / min. The peak containing isomerase activity eluted after a gradient of 250 mM KCl with a total protein concentration of 1.5 mg / ml.

5.1.26 Purification of fructose-1,6-bisphosphate aldolase

Cell-free extract (150 ml) was prepared as described under Section 5.1.6 and ammonium sulfate precipitation was carried out as described under Section 5.1.18. The protein pellet (60-80 %) was dissolved in phosphate buffer (50 mM, pH 6.8) containing 1 M (NH₄)₂SO₄. Prior to further purification the re-suspended protein pellet was filtered through a 0.45 µm HT Tuffryn® membrane filter. Aldolase activity was assayed according to the following procedure. The partially purified aldolase fractions (200 µl) were incubated with fluoroacetaldehyde 48 (30 µl, 20 mM) and DHAP 123 (70 µl, 10 mM) with the addition of Zn²⁺ (1 mM) for 16 hrs at 37 °C. After this time the protein was denatured at 100 °C for 3 min and the precipitate removed by centrifugation (14,000 rpm / 5 min). Analysis by ¹⁹F NMR showed; δF (470 MHz, 10 % D₂O), fluoroacetaldehyde 48, -231.05 (dt, ²JF,H 46.5 and ³JF,H 9.8), fluoroethanol 69 -224.51, 5-FDXyuP 126, -228.18 (dt, ²JF,H 46.5 and ³JF,H 15.3).

5.1.26.1 Step 2: Hydrophobic interaction chromatography

The dissolved pellet (5 ml, 12 mg / ml) from Section 5.1.26 was injected directly onto a 40 ml Phenyl sepharose HP column equilibrated with phosphate buffer (50 mM, pH 6.8) containing 1 M (NH₄)₂SO₄. The column was washed with two column volumes of the
same buffer and was then loaded with the re-suspended protein pellet in duplicates. The column was washed with phosphate buffer (40 ml, 50 mM pH 6.8) containing 1 M (NH₄)₂SO₄, and eluted using a stepwise gradient over 80 ml at a flow rate of 2 ml / min from 1 M to 0 M (NH₄)₂SO₄. The aldolase eluted after 70% of phosphate buffer containing 1 M (NH₄)₂SO₄.

5.1.26.2 Step 3: Size exclusion chromatography

The eluent (~14 ml) from a Phenyl sepharose HP column was concentrated to 2 ml using a 10 kDa Amicon® Ultra-15 centrifugal concentrator. The concentrated protein was loaded onto a 16/60 Superdex 200 gel filtration column equilibrated with phosphate buffer (50 mM, pH 6.8) at a flow rate of 1 ml / min. Protein elution was carried out isocratically over 180 ml. The aldolase was shown to elute between 62-72 ml with an average protein concentration of 0.5 mg / ml.

5.1.26.3 Step 4: Ion exchange chromatography (IEC)

The eluent (~16 ml) from size exclusion chromatography was concentrated to 2 ml using a 10 kDa Amicon® Ultra-15 centrifugal concentrator. The concentrated protein sample was applied to a 10 ml source 15 Q column which was equilibrated with tris buffer (50 mM, pH 7.2). The loaded protein sample was washed with 20 ml of the same buffer at 2 ml / min. Elution of the enzyme was carried out over a linear gradient to 1 M KCl. The desired protein eluted after 300 mM KCl addition, and the final protein concentration of the purified protein was 2 ml, 0.2 mg / ml.
5.1.26.4 Effect of various metal ions on class II L-FruA activity

After ammonium sulfate precipitation the partially purified L-FruA (6 ml, 15 mg/ml) was incubated with EDTA (final conc. 10 mM) for 20 min at 4 °C. The sample was then dialysed using dialysis tubing (MW 10 kDa cut off) against 4 L of phosphate buffer (50 mM, pH 6.8) overnight at 4 °C. The dialysed sample was assayed against the following divalent metal ions Zn$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Fe$^{2+}$, Ca$^{2+}$ and monovalent metal ions, Na$^+$. Accordingly, partially purified aldolase (100 μl, 1.5 mg/ml) was incubated with fluoroacetaldehyde 48 (30 μl, 20 mM) and DHAP 123 (70 μl, 10 mM) in the presence of each metal ion (final conc. 1 mM) for 16 hrs at 37 °C. After this time the sample was denatured at 100 °C for 3 min and was subsequently centrifuged (14,000 rpm / 5 min). The supernatant was supplemented with D$_2$O (100 μl) and analysed by 19F NMR spectroscopy.

5.1.27 Purine nucleoside phosphorylase (PNP) overexpression and purification

5.1.27.1 Expression vector

The pET28a(+) construct (supplied by Dr Joe Spencer, University of Cambridge), carries an N-terminal His Tag$^\text{®}$/ thrombin / T7 Tag$^\text{®}$ configuration plus an optional C-terminal His Tag sequence. It also encodes a gene for kanamycin resistance. As with all pET expression systems, target gene expression is induced by IPTG via a T7 promoter. The presence of this promoter requires a T7 RNA polymerase whose expression is induced by IPTG (Figure 5.3).
5.1.27.2 **Transformation of competent cells with pET28a(+) construct**

Chemically competent *E. coli* cells were purchased from invitrogen. The competent cells were in vials containing 50 μl aliquots. To transform these cells, each 50 μl aliquot was placed on ice and allowed to thaw for 2-5 min, while gently mixing to evenly re-suspend the cells. After thawing, addition of 1 μl (200 ng) of plasmid DNA was added directly to each aliquot, stirring gently and returning the vial on ice. The vial was incubated for a further 5 min. Heat shock was performed by heating the vials for exactly 30 sec in a 42 °C water bath. The vials were then placed on ice for 2 min. SOC medium (250 μl) was added to each vial on ice. The vials were then incubated at 37 °C while shaking at 250 rpm for 60 min. An aliquot (60 μl) of the transformed cells was added to the agar plates containing the antibiotic kanamycin, and evenly distributed using a plate spreader. (Note: Prior to spreading, the agar plates were pre-incubated at 37 °C). The plates were then incubated at 37 °C for 16 hrs.
5.1.27.3 Expression of \(\beta /B \) and purification of \(\beta /B \)

(a) Expression trials

Single colonies were picked and grown up in LB (10 ml) containing 50 \(\mu \)g / ml of kanamycin at 37 °C for ~16 hrs on an orbital shaker (200 rpm). After this time, aliquots (100 \(\mu \)l) were used to inoculate fresh growth media (10 ml) for the over-expression trials. The fresh inoculated LB containing kanamycin was incubated at 37 °C for a further 4 hrs. Once the cell density reached \(\text{OD}_{600} = 0.6 \), expression was induced with IPTG. The following variables were altered to optimise expression of soluble PNP from the pET 28a(+) construct.

- **Temperature**: 30 °C, 25 °C, 18 °C, 16 °C, 12 °C and 10 °C.
- **Growth Media**: Luria-Bertani, Tryptone phosphate, Terrific Broth and Overnight Express™ Autoinduction System 1 (Novogen).
- **Host strain**: BL21(DE3), BL21Star™, BL21(DE3)pLysS, BL21(DE3)pLysE, Rosetta(DE3) and C43(DE3).
- **IPTG conc.**: 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM and 1 mM.
- **Expression times**: 1-42 hrs.

For each expression trial, samples (1 ml) were taken at various intervals for analysis. Cells were harvested by centrifugation (14,000 rpm / 5 min) and the resulting pellet was re-suspended in tris buffer (1 ml, 50 mM, pH 6.8) and the re-suspended cells were then lysed by sonication at 60 cycles for 20 sec. After sonication, the cells were centrifuged (14,000 rpm / 20 min) and the resultant cell pellet and the supernatant were retained as the insoluble and soluble fractions respectively for SDS-PAGE analysis.
(b) Large scale expression of f1B

Single colonies were picked and grown up in LB (30 ml) containing 50 μg / ml kanamycin at 37 °C for ~16 hrs on an orbital shaker (200 rpm). After this time, aliquots (5 ml) were used to inoculate fresh LB medium (500 ml) using 6 x 2 L baffled flasks. The inoculated flasks were incubated at 37 °C for 4-6 hours on an orbital shaker (200 rpm) at or until an O.D₆₀₀ = 0.6 was reached. After this time the flasks were placed on ice for several minutes with subsequent addition of IPTG (final conc. 0.2 mM) to each flask. The flasks were then incubated at 10 °C for 30-36 hrs. After this time the cells were harvested by centrifugation (9,000 rpm / 20 min) and the resulting pellet was either stored at -80 °C or used directly for protein purification.

(c) Purification of f1B

Cells (0.1 g) were resuspended in 1 ml of buffer A consisting of tris buffer (50 mM, pH 6.8) supplemented with 10 mM imidazole. The resulting solution was left to stir for 30 min at 4 °C. After this time, cells were disrupted by sonication, ten times at 60 % duty cycle for 60 seconds depending on the volume. Cell debris was removed by centrifugation at (9,100 rpm / 25 min) and the clear supernatant was retained as cell-free extract (CFE). Purification was carried out on a NiSO₄ charged resin on a fast flow sepharose column using the following buffers.

<table>
<thead>
<tr>
<th>Buffer A</th>
<th>Buffer B</th>
<th>Buffer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 M NaCl</td>
<td>0.3 M NaCl</td>
<td>0.3 M NaCl</td>
</tr>
<tr>
<td>10 mM imidazole</td>
<td>30 mM imidazole</td>
<td>250 mM imidazole</td>
</tr>
<tr>
<td>20 mM tris pH 7.5</td>
<td>20 mM tris pH 7.5</td>
<td>20 mM tris pH 7.5</td>
</tr>
</tbody>
</table>
Chapter 5

The sample was loaded onto the column at a constant flow rate of 1 ml / min pre-equilibrated with buffer A. After this time the column was washed with several column volumes of Buffer B to remove any undesired proteins. The desired protein was then eluted by applying Buffer C.

5.1.28 L-Fuculose-1-phosphate aldolase (L-FucA) over-expression and purification

Expression
The following protocol was prepared by Dr Hai Deng, University of St Andrews. The pTrcHis C plasmid containing the fuculose-1-phosphate aldolase gene was purchased as a transformed E. coli stock (LGC Promochem). Gene expression was achieved by addition of cell stock (20 μl) containing 50 % glycerol to LB (20 ml) containing 0.05 % (100 mg / ml) ampicillin and incubated at 37 °C for 16 hrs. Aliquots (2.5 ml) were transferred to each 6 x 2 L flasks containing LB (750 ml) and incubate at 37 °C for 4 hours or until an O.D 0.6 was reached. After this time the cells were harvested by centrifugation at 9,100 rpm / 20 min, the supernatant discarded and the cell pellet was either stored at -80 °C or used directly for further protein purification.

Purification
Cells (0.1 g) were resuspended in Buffer A containing tris buffer (1 ml, 50 mM, pH 6.8) supplemented with 10 mM imidazole and stirred for 30 min at 4 °C. After this time the solution was sonicated six times at 60 cycles for one minute each. The cell debris was
removed by centrifugation at (9,100 rpm / 25 min) and the supernatant retained as a CFE.
Purification was carried out on a NiSO$_4$ charged resin, fast flow sepharose column using
the following buffers.

<table>
<thead>
<tr>
<th>Buffer A</th>
<th>Buffer B</th>
<th>Buffer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 M NaCl</td>
<td>0.3 M NaCl</td>
<td>0.3 M NaCl</td>
</tr>
<tr>
<td>10 mM imidazole</td>
<td>30 mM imidazole</td>
<td>250 mM imidazole</td>
</tr>
<tr>
<td>20 mM tris pH 7.5</td>
<td>20 mM tris pH 7.5</td>
<td>20 mM tris pH 7.5</td>
</tr>
</tbody>
</table>

The column was first pre-equilibrated with several column volumes of Buffer A at a
constant flow rate of 2 ml / min. After this time the protein sample was loaded onto the
column and was washed with several column volumes of Buffer A to remove endogenous
proteins. Elution with Buffer B for a further 4 column volumes was followed by elution
with buffer C (Figure 5.1).
Figure 5.1 SDS PAGE gel analysis of L-FucA after nickel purification. Lanes 1; SDS markers, (Mark 12™ standards, Invitrogen life technologies) used consisted of, myosin [200 kDa], β-galactosidase [116 kDa], phosphorylase B [97.4 kDa], BSA [66 kDa], glutamic dehydrogenase [55 kDa], lactate dehydrogenase [36.5 kDa], carbonic anhydrase [31 kDa], trypsin inhibitor [21.5 kDa], lysozyme [14.4 kDa], aprotinin [6 kDa], 2-4, L-FucA after purification via Ni-NTA affinity chromatography.
Chapter 6

References

29. P. C. Dorrestein, E. Yeh, S. Garneau-Tsodikova, N. L. Kelleher and C. T. Walsh,
Chapter 6

Chapter 6

Chapter 6

Appendix

Publications

Awards and prizes

Oral presentation (1st prize), 2nd Organic Chemistry PhD symposium, 2nd June 2005
University of St Andrews.

Poster presentation (1st prize), Annual RSC Fluorine Subject, 1st-2nd September 2005
Group Postgraduate Meeting, University of Oxford.
Appendix

Presentations

Poster presentation, Pro Bio Faraday, Biocatalysis for manufacture, Current Practice and Future Opportunities, University of Heriot-Watt. 5th-6th November 2003

Oral presentation, 4th RSC Fluorine Subject Group Postgraduate Meeting, University of Durham. 2nd-3rd September 2004

Poster presentation, Pro-Bio Faraday partnership, University of Warwick. 8th-9th November 2004

Poster presentation, 33rd RSC Scottish Organic Division Meeting, University of St Andrews. 20th December 2004

Oral presentation, Pro Bio Faraday biocatalysis research projects, Bradford. 21st-22nd July 2005

Oral presentation, ProBio Faraday Partnership Research Review Meeting, Bradford. 8th-9th June 2004

Oral presentation, 2nd Organic Chemistry PhD symposium, St Andrews University. 2nd June 2005

Poster presentation, RSC and BBSRC symposium on ‘The Chemistry and Biology of Natural Product Biosynthesis II’, University of Bristol. 15th July 2005

Poster presentation BIOTRANS 2005 –Delft, Netherlands 7th International Symposium on Biocatalysis and Biotransformations. 3-8th July 2005

Poster presentation, 5th Annual RSC Fluorine Subject Group Postgraduate Meeting, University of Oxford. 1-2nd September 2005
Appendix

Conferences attended

RSC Bio-organic postgraduate symposium, St John’s College,
University of Cambridge. 27th Nov 2002

31st Scottish Regional Perkin Division Meeting, Dundee University. 18th Dec 2002

Enzyme mechanism. A structural perspective, University of St Andrews. 12th-14th Jan 2003

14th Scottish Graduate Symposium on novel organic chemistry,
University of Aberdeen. 9th April 2003

3rd RSC Fluorine Subject Group Postgraduate Meeting,
University of St Andrews. 4th-5th Sept 2003

1st University of Glasgow/Organon Symposium on synthetic chemistry. 22nd Sept 2003

RSC Organic Division and Chemical Biology Forum,
University of Edinburgh. 31st October 2003

Pro Bio Faraday, Biocatalysis for manufacture, Current Practice and Future Opportunities, University of Heriot-Watt. 5th-6th November 2003

32nd Scottish Regional Perkin Meeting, University of Edinburgh 17th December 2003

Pro Bio Faraday biocatalysis research projects, Bradford. 8th-9th June 2004

4th RSC Fluorine Subject Group Postgraduate Meeting,
University of Durham. 2nd-3rd September 2004

14th International Isotope Society (UK group) symposium
Wellcome Genome Campus, Hinxton. 4th November 2004

Pro Bio Faraday Biocatalysis, University of Warwick. 8th-9th November 2004

33rd Scottish Organic Division Meeting, University of St Andrews. 20th December 2004

Pro Bio Faraday biocatalysis research projects, Bradford. 21st-22nd July 2005

2nd Organic Chemistry PhD symposium, University of St Andrews. 2nd June 2005

RSC and BBSRC symposium, 'The Chemistry and Biology of Natural Product
Appendix

Biosynthesis II', Bristol. 15th July 2005

BIOTRANS 2005 –Delft, Netherlands, 7th International Symposium on
Biocatalysis and Biotransformations. 3-8th July 2005

5th Annual RSC Fluorine Subject Group Postgraduate Meeting,
University of Oxford. 1-2nd September 2005