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ABSTRACT
Citation counts have long been used in academia as a way

of measuring, inter alia, the importance of journals, quanti-

fying the significance and the impact of a researcher’s body

of work, and allocating funding for individuals and depart-

ments. For example, the h-index proposed by Hirsch is one

of the most popular metrics that utilizes citation analysis

to determine an individual’s research impact. Among many

issues, one of the pitfalls of citation metrics is the unfair-

ness which emerges when comparisons are made between

researchers in different fields. The algorithm we described

in the present paper learns evidence based, nuanced, and

probabilistic representations of academic fields, and uses

data collected by crawling Google Scholar to perform field of

study based normalization of citation based impact metrics

such as the h-index.
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1. INTRODUCTION
Notwithstanding various lines of criticism they have received

[1], various metrics of academic prestige, productivity, and

quality have become pervasive in the research community.

Publication and citation counts, in different forms, are widely

used to quantify the impact that a researcher or a publica-

tion venue (such a conference or a journal) has. The jour-

nal impact factor is one of the most established and longest

used metrics with journal citation reports (JCR) for peer re-

viewed journals being released annually since 1976 [11]. As

its name suggests, the broad aim of this metric is to quantify

the impact of articles appearing in a specific journal. Infor-

mally, it is often used as a proxy measure for the quality of

a journal. In recent years, and the last decade specifically,

citation based indexes for researchers have also become per-

vasive. The total citation count of all articles published by

a researcher and the so-called h-index are amongst the most

widely used indexes. Numerous others have also been de-

scribed, including the e-index [23], g-index [8], z-index [18],

and i10-index [12].

The primary argument against the use of the aforementioned

metrics is that they do not assess directly the substance of a

work itself. Instead they rely on proxy observations which,

while certainly affected by the aforementioned substance,

are confounded by numerous other factors including the vis-

ibility of the work, affected by where the work was published,

what the researcher’s institution is, the prior reputation of

the researcher is etc. Another major criticism concerns the

phenomenon of so-called honorary authorship [10] 1.

1Also see:
http://ijcai-16-pc.blogspot.co.uk/2016/04/
the-increasing-practice-of-expanding-co.html
and
http://ijcai-16-pc.blogspot.co.uk/2016/04/



Considering the inherently subjective understanding of what

‘impact’ and ‘quality’ mean in the context of academic work

and the lack of an objective basis (the ‘ground truth’) for

assessing the fairness of a particular index, unlike different

previous authors who have described and argued in favour

of different indexes in this paper we do not aim to intro-

duce a new index per se. Rather, accepting the pragmatic

standpoint that for better or worse citation indexes are being

increasingly used in academia [16], we show how a any cita-

tion count based index can be normalized to make it prima

fasciae fairer when applied to a comparison of researchers

in different fields.

1.1 Previous work
Different fields of academic research are characterized by dif-

ferent publication and citation dynamics. This is poignantly

illustrated by considering the statistics summarized in Ta-

ble 1 for fields of study recognized by the Institute for Sci-

entific Information (ISI). Certain research areas attract more

researchers, have a shorter work-to-publication turnover time,

offer a greater number of peer reviewed publication venues,

generate more articles etc. As can be observed from Ta-

ble 1, the areas of medical and biomedical research are par-

ticularly prolific in this sense. This phenomenon has been

widely acknowledged which is why already Hirsch warned

against the use of the h-index for inter-disciplinary compar-

isons [14]. The subsequent analysis of Iglesias and Pechar-

roman demonstrated this convincingly using empirical data

[15].

A major limitation with the approach of Iglesias and Pechar-

roman concerns the concept of a ‘field of study’ and the hard

delineation between these fields [15]. To give an example,

should an article published in a bioinformatics journal be

considered as being in the field of medicine, computer sci-

ence, or an entirely separate field of biomedicine? Similarly,

it may be asked if, say, pattern recognition or computer

vision should for the purposes of the problem at hand be

considered separate fields, a single field, or indeed should

they be both treated as belonging to computer science? We

argue that the answer should be evidence and data driven,

and demonstrate how this can be achieved.

The problem here is that the language used to describe dif-

ferent fields of study is not intended for use in rigorous for-

malizations such as this. The idea behind the present work

is that rather than having manually crafted academic fields

described using language not fit for purpose at hand, the

large amounts of scholarly data can be leveraged through

the use of sophisticated, automatic machine learning meth-

ods to learn nuanced descriptions of academic fields, which

can then be used to perform field specific citation normal-

ization and thus facilitate an inter-discipline normalization

of research output metrics.

the-increasing-practice-of-expanding-co.html.

2. PROPOSED APPROACH
In this section we present the main technical contributions of

the present work; experimental contributions are presented

in the next section. Herein, following an overview of our

approach, we summarize the key aspects of Bayesian non-

parametric topic models, central to the proposed algorithm.

Thereafter we describe how the hierarchical Dirichlet pro-

cess based model – a particularly powerful Bayesian non-

parametric topic model – can be used to infer automatically

nuanced descriptions of academic fields of study and thus fa-

cilitate the normalization of citation based research output

metrics, such as the h-index.

2.1 Overview
The work described in the present paper involved three key

stages. The first of these concerns the collection of vast

amounts of scholarly data from the Internet. In particular,

as we describe in the next section, we developed a tool which

given a small number of “seed” individuals, crawls Google

Scholar and collects details of articles published by a large

number of researchers. The second stage, which includes the

key technical novelty of our work, extracts nuanced descrip-

tions of academic fields of study from the collected data. In

particular we adopt the use of Bayesian non-parametric topic

models, originally introduced for text analysis. The novelty

of our approach lies in the idea of treating each researcher

as a “document” (to adopt the usual terminology from text

analysis), and different publication venues (journals and con-

ferences) as “terms” (or more colloquially “words”). The co-

occurrence statistics of different publication venues across

different researchers can then be used to infer topics – proba-

bility distributions over different publication venues – which

represent the sought after academic fields. The key technical

background on topic models is explained in the next section.

Lastly, the inferred nuanced descriptions of academic fields

are used for citation normalization by considering the like-

lihood of each article (i.e. the associated publication venue)

corresponding to a specific field and the distribution of cita-

tion counts in that field.

2.2 Technical background: probabilistic topic
modelling

In the last decade and a half so-called topic modelling has

emerged as a powerful statistical paradigm for the automatic

semantic analysis of large collections of documents. Topic

models as their name suggests can be seen as formalizations

of the colloquial understanding of ‘topics’ addressed in a

piece of text. More specifically, in this context a topic be-

comes a probability distribution over a fixed vocabulary of

words (or more generally terms). Using higher order seman-

tic understanding, a human interpreting this formal repre-

sentation of a topic may describe it as being related to a sub-

ject matter which has a high chance of co-occurrence of the

words inferred as being most probable under the represen-



Table 1: Average numbers of citations for papers published in different Institute for Scientific Information

(ISI) recognized fields of research (per annum and on average across the period 1995–2005).

Field 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Average

Agricultural sciences 8.4 8.1 7.6 7.4 6.8 6.1 4.8 3.5 2.3 0.9 0.2 4.9

Biology & biochemistry 26.5 24.5 24.4 21.8 19.5 17.4 14.1 10.5 6.8 3.0 0.5 15.4

Chemistry 13.6 12.9 12.3 11.8 10.7 9.8 7.8 6.3 4.1 2.0 0.3 8.1

Clinical medicine 19.1 17.3 16.3 15.1 13.7 12.0 10.0 7.7 4.9 2.2 0.4 10.6

Computer science 5.0 4.9 4.8 4.7 4.0 3.3 3.1 2.6 1.2 0.5 0.1 2.5

Economics & business 9.2 7.5 7.2 6.1 5.1 4.2 3.2 2.4 1.3 0.5 0.1 4.2

Engineering 5.4 5.1 5.2 4.6 4.2 3.7 3.1 2.3 1.4 0.6 0.1 3.2

Environment & ecology 14.6 13.9 13.2 12.4 10.8 9.6 7.2 5.3 3.3 1.4 0.2 7.8

Geosciences 15.1 14.1 13.2 12.2 10.3 8.5 6.9 4.7 3.0 1.3 0.3 7.6

Immunology 34.1 30.7 28.8 28.2 24.2 22.2 18.5 13.7 8.8 4.2 0.6 19.6

Materials science 7.6 7.3 6.8 6.6 6.0 5.5 4.6 3.4 2.2 1.0 0.1 4.3

Mathematics 5.2 4.9 4.4 3.9 3.6 2.9 2.3 1.7 1.0 0.5 0.1 2.7

Microbiology 24.3 22.6 22.0 20.7 18.3 15.8 13.0 9.8 6.3 2.9 0.5 14.0

Molecular biology & genetics 42.7 39.8 38.3 35.9 32.4 28.1 23.3 17.5 11.2 5.2 0.8 24.6

Neuroscience & behaviour 30.0 27.0 25.7 23.8 21.6 18.8 15.6 11.3 6.8 2.9 0.4 16.4

Pharmacology & toxicology 16.1 14.5 14.4 13.0 12.4 11.1 9.4 7.4 4.6 2.0 0.3 9.4

Physics 12.3 11.8 10.8 10.2 9.4 8.6 7.1 5.4 3.7 1.9 0.4 7.2

Plant & animal science 11.2 10.6 9.8 8.8 7.9 6.9 5.6 4.1 2.6 1.2 0.2 6.2

Psychiatry & psychology 15.2 13.8 13.4 11.9 11.0 9.0 7.3 5.0 3.1 1.3 0.2 8.2

Social sciences 6.0 5.7 5.5 5.1 4.5 3.9 3.0 2.3 1.4 0.6 0.2 3.5

Sports science 18.7 17.6 17.9 16.1 16.9 12.3 12.3 8.4 6.7 3.2 0.6 11.6

tation (although it should be noted that such interpretation

may not always be straightforward [6]).

2.3 Bayesian non-parametric topic models
Finite mixture models rely on the assumption that the ob-

served data is generated by K clusters, each cluster being as-

sociated with the parameter φk and underlain by the proba-

bility density function f (.|φk). An observation x is assumed

to be generated by first choosing a cluster k with probabil-

ity πk followed by a random draw from the corresponding

distribution described by φk. Therefore the process can be

summarized by the following:

p (x|π1:K , φ1:K) =

K∑
k=1

πkf (x|φk) . (1)

In a Bayesian setting the model parameters (i.e. mixing pro-

portions π1:K and component parameters φ1:k) are further

endowed by priors. Typically the symmetric Dirichlet distri-

bution is placed on top of π1:K and a prior on φ1:K conjugate

with f (.|φk) chosen for computational convenience.

2.3.1 Latent Dirichlet allocation
In the previous section we described how to model a group

of data points with a Bayesian finite mixture model. Latent

Dirichlet allocation adds a level of hierarchy on the mix-

ing proportions to allow for the modelling of data points in

groups that share a set of components.

Following the consensus in the literature we adopt the ter-

minology used in the analysis of textual data – which is the

context in which LDA was originally proposed [3] – and here-

after interexchangably refer to data points as words, their

groups as documents, and mixture components as topics.

The technical term ‘topic’ can be interpreted as formaliz-

ing and abstracting the colloquial notion of a topic which is

understood at a higher semantic level. Therefore the mod-

elling framework of LDA can be described by the following



generative process:

φ1:K ∼ H, (2)

πj ∼ Dirichlet (α) , (3)

zji|πj ∼ πj , (4)

xji|zji, φ1:K ∼ F
(
φzji

)
, (5)

where H is the base distribution of topics, α the hyperpa-

rameter of the prior on the distribution of topics within a

document, πj the distribution of topics in document j, and

zji the topic corresponding to the i-th word in the j-the

document. The corresponding model likelihood is:

p (wji|α) =

∫
πj

∫
φ1:K

K∑
k=1

πjkf (x|φk) dP (πj) dP (φ1:K) ,

(6)

Approximation techniques such as MCMC [13] and Varia-

tion Bayes [3] methods can be used for posterior inference.

2.3.2 Infinite mixture modelling
As mentioned earlier, LDA requires the number of topics to

be fixed in advanced which is a serious limitation in practice.

Choosing the number of topics is usually performed by ex-

amining how well the model fits a set of held-out documents.

However, if a previously unseen topic has contributed in gen-

erating the held-out data, LDA is not able to infer correct

parameters of that topic.

Bayesian non-parametric (BNP) methods place priors on

the infinite-dimensional space of probability distributions

and provide an elegant solution to this problem. Dirichlet

Process (DP) [9] as the non-parametric counterpart of the

Dirichlet distribution and the building block of BNP allows

for the model to accommodate a potentially infinite number

of mixture components. The generative likelihood for a data

point x in infinite mixture model is:

p (x|π1:∞, φ1:∞) =

∞∑
k=1

πkf (x|φk) . (7)

DP (γ,H) is defined as a distribution of a random probabil-

ity measure G over a measurable space (Θ,B), such that

for any finite measurable partition (A1, A2, . . . , Ar) of Θ

the random vector (G (A1) , . . . , G (Ar)) is a Dirichlet dis-

tribution with parameters (γH (A1) , . . . , γH (Ar)). A DP

generates imperfect atomic copies of its base measure H

with a variance governed by its concentration parameter

γ. An alternative view of the DP emerges from the so-

called stick-breaking process which adopts a constructive ap-

proach using a sequence of discrete draws [20]. Specifically,

if G ∼ DP (γ,H) then G =
∑∞
k=1 βkδφk where φk

iid∼ H

and β = (βk)∞k=1 is the vector of weights obtained by a

stick-breaking process that is βk = vk
∏k−1
l=1 (1− vl) and

vl
iid∼ Beta (1, γ).

Owing to the discrete nature and infinite dimensionality of

its draws, the DP is a highly useful prior for Bayesian mix-

ture models. By associating different mixture components

with atoms φk of the stick-breaking process, and assuming

xi|φk
iid∼ f (xi|φk) where f (.) is the likelihood kernel of the

mixing components, we can formulate the infinite Bayesian

mixture model or Dirichlet process mixture model (DPM).

Approximate methods are used for posterior inference [17].

2.3.3 Hierarchical Dirichlet process mixture models
While DPM is suitable for non-parametric clustering of ex-

changeable data in a single group, many real-world prob-

lems are more appropriately modelled as comprising mul-

tiple groups of exchangeable data. In such cases it is usu-

ally desirable to model the observations of different groups

jointly, allowing them to share their generative clusters. This

idea is known as “sharing the statistical strength” and it is

naturally obtained by hierarchical architecture in Bayesian

modelling.

Consider a collection of documents. DPM models each group

with an infinite number of topics. However, it is desired for

multiple group-level DPMs to share their clusters. Amongst

different ways of linking group-level DPMs, HDP [21] offers

an interesting solution whereby base measures of group-level

DPs are drawn from a corpus-level DP. In this way the atoms

of the corpus-level DP (i.e. topics in our case) are shared

across the documents. Formally, if x = {x1, . . . ,xJ} is a

document collection where xj =
{
xj1, . . . , xjNj

}
is the j-th

document comprising Nj words:

G0|γ,H ∼ DP (γ,H) (8)

Gj |α0, G0 ∼ DP (α0, G0) (9)

θji|Gj ∼ Gj (10)

xji|θji ∼ F (.|θji) (11)

Since Gj is drawn from a DP with base measure G0, it takes

the same support as G0. Also the parameters of the group-

level mixture components, θji, share their values with the

corpus-level DP support on {φ1, φ2, . . .}. Therefore Gj can

be equivalently expressed using the stick-breaking process as

Gj =
∑∞
k=1 πjkδφk where πj |α0, γ ∼ DP (α0, γ) [22]. The

posterior for θji has been shown to follow a Chinese restau-

rant franchise process which can be used to develop inference

algorithms based on Gibbs sampling [21].

2.4 Nuanced field of study inference and prob-
abilistic representation

The key conceptual contribution behind our method con-

cerns the way in which topic modelling can be used to infer

probabilistic representations of academic fields of study from

data. Although topic modelling was originally developed for

(and is still predominantly used for) text analysis, ingenious

analogies which treat non-textual data as ‘words’ or ‘docu-

ments’ have demonstrated their usefulness in a broad range

of domains, such as computer vision and image analysis.



For example, by considering fixed length representations of

super-pixels as ‘words’ and images as ‘documents’ containing

these ‘words’, previous work has demonstrated that abstract

visual topics such as ‘sky’, ‘grass’, or ‘aeroplane’ can be in-

ferred directly from data in an unsupervised manner. We

perform a similar paradigm abstraction in the present work

too.

In particular, we treat different peer reviewed publication

venues (journals and conferences) as ‘terms’ and each re-

searcher’s output as a ‘document’ with each article corre-

sponding to a ‘term’ defined by the venue where it was pub-

lished. By applying hierarchical Dirichlet process based in-

ference on a large data set of researchers, nuanced represen-

tations of research areas can be extracted automatically as

probability distributions over a ‘vocabulary’ over the most

frequent publication venues (as usual, the highly uncom-

mon ‘terms’ are excluded from the dictionary as they are

deemed to provide unreliable evidence). After such repre-

sentations are extracted, field based normalization is citation

counts for each article can be achieved in a straightforward

fashion. Specifically, the citation count of an article is first

distributed across different ‘topics’ according to their likeli-

hoods, each contribution scaled inversely proportionally to

the average citation count for the topic, and then added to-

gether. Lastly, the result is multiplied with the average cita-

tion count over all articles, in order to produce a meaningful

citation count (this merely adjusts the absolute scale of the

normalized counts, without affecting their relative values).

3. EMPIRICAL EXPERIMENTS
In this section we turn our attention to the empirical as-

pects of the present work. We start by describing the work-

ings of the tool we developed to crawl and collect automat-

ically scholarly data from Google Scholar, the automatic

data clean-up and pre-processing necessary to facilitate sub-

sequent robust inference, and finally present and discuss ex-

amples of the normalization achieved by our algorithm.

3.1 Data collection
The methodology described in the previous section necessi-

ties the use and availability of a large amount of scholarly

data. In particular, our algorithm requires data on the pub-

lications of a large number of authors, with the associated ci-

tation counts. While information on the publication output

for specific researcher of interest is indeed easily available

(e.g. using Google Scholar or Microsoft Academic), collect-

ing it for a large number of researchers is challenging. In par-

ticular, Google does not provide an API to access Scholar,

and there are no databases of Google Scholar user IDs of

different researchers.

Our idea was to design a crawler which uses minimal user

input to get started and thereafter amasses data at an in-

creasing rate automatically itself. In particular, we initialize

the crawler using a small number of “seed authors”. These

are particularly prolific researchers which we selected manu-

ally. From this point on the crawler performs a breadth first

search. Firstly, the crawler scrapes publication data (pub-

lication venue names for each paper and the corresponding

number of citations) of the researcher currently being consid-

ered, as well as the links to Google Scholar pages of all of the

person’s co-authors, adding them into the crawling queue.

To avoid repetition we keep track of already processed re-

searchers. In principle the crawling can then continue until

the author queue is empty. However, for the purposes of the

present paper we terminated the collection process earlier,

and used in our experiments the data of 3466 researchers.

3.1.1 Data clean-up and pre-processing
As even a cursory examination of typical Google Scholar

pages readily confirms, raw data collected by our crawler

requires significant clean-up and pre-processing before it is

used as input to a Bayesian model of a type described in

the previous section. We perform two key stages at this

point: (i) publication venue canonization, and (ii) rejection

of invalid data. The two are explained next.

Publication venue canonization.

Google Scholar references to the same publication venue,

such as a conference or a journal, exhibit a great amount

of variability. For our model to extract meaningful aca-

demic field representations, it is crucial that this variability

is eliminated, that is, that all references to the same venue

have the same form. For example, “JMLR”, “Journal of Ma-

chine Learning Research”, and “J Mach Learn Res” should

all map to the same entry i.e. the same ‘term’ in the context

of our topic modelling algorithm. We accomplish this task

using fuzzy logic as the underlying matching methodology

and data in the form of different standard abbreviations for

publication venues (these can be readily obtained from var-

ious public sources, e.g. http://library.stanford.edu/guides/

find-journal-abbreviations). To perform robust matching

between raw data and various standard forms of referring

to the same venue (full title, ISO 4 abbreviated etc) we

adopt a fuzzy matching strategy. In particular we impose a

matching penalty for each permissible transformation of the

name, such as a deletion of a word or a letter (e.g. so that a

match between ‘conf’ and ‘conference’ can be made), word

re-ordering (e.g. so that a match between ‘computer vision,

conference on’ and ‘conference on computer vision’ can be

made) etc.

Rejection of invalid publication entries.

In addition to the challenge posed by non-standardized refer-

ences to publication venues, a further difficulty is presented

by the presence of entries which can for the purposes of

this work be considered invalid. These include references to



Figure 1: Inferred probabilistic representations of

academic fields as topics, shown in the 2D principal

component subspace using multidimensional scaling

[4].

publication venues which are not peer reviewed or which are

not considered credible (the clearest example being that of

predatory journals). To remove such entries we remove all

collected data which could not be matched (using the de-

scribed fuzzy matching algorithm) with the comprehensive

list of valid publication venues.

3.2 Results and discussion
In the experiments reporter herein we used the publications

data of 3466 researchers. The number of peer reviewed ar-

ticles ranged from 7 to over 1000 per researcher. The small

number of articles found on the low end of the distribution

in our data set can be easily seen to correspond to young

academics whose publishing career is only starting. On the

other hand the extremely high number of articles published

by the individuals on the high end of the spectrum is highly

indicative of the concerning phenomenon we noted earlier,

that of so-called honorary authorship [10].

As our ‘dictionary’ of ‘words’ (publication venues) we se-

lected the 1000 most common journals and conferences in

the data set we collected. Applying our hierarchical Dirich-

let process based inference on our data set, that is, treating

researchers as ‘documents’ and their publications as ‘words’

associated with the corresponding publication venues, re-

sulted in 64 topics i.e. probabilistic representations of fields

of study. Observe that this is over three times the number

of fields used by the ISI, which are shown in Table 1. The

relationships between the inferred topics is illustrated in Fig-

ure 1 where topics are shown in the 2D principal component

subspace constructed using a multidimensional scaling based

data embedding algorithm [4]. As expected from the already

noted unevenness in the number of publications in different

fields, as illustrated by the sizes of blobs representing top-

ics in Figure 1, most of the data is explained by relatively

Table 2: Randomly selected researchers from our

database and the corresponding h-index before and

after field based normalization using the proposed

algorithm. † At the time of data collection (August

2016).

h-index

Author name Original† Field normalized†

Scott Shenker 136 41

Ramesh Govindan 82 32

Matei Zaharia 32 13

David Clark 53 29

Lixia Zhang 88 36

Ali Ghodsi 34 12

Vern Paxon 86 33

Randy Katz 108 36

Deborah Estrin 117 41

few topics (academic fields) with approximately 80% of the

publications being in the first 20 inferred research fields. We

observed a rough inverse power law distribution – observed

frequently in nature across a wide range of phenomena [19,

7, 5, 2] – in the publishing output per research field.

Finally, the performance of our method is illustrated on a

set of typical and randomly selected examples of researchers

working in different fields in Table 2, using the h-index as the

baseline metric. As expected from theory, the broad range

of values obtained using the original metric is drastically

reduced with the application of the proposed normalization.

4. SUMMARY AND CONCLUSIONS
In this paper we addressed the problem of disciplinary bias

exhibited by citation based metrics of research output, which

has been widely recognized as their major limitation. This

bias is a consequence of different publication dynamics char-

acterizing different academic fields. Our starting point was

an argument that the current state of the art, based around

ad hoc and manually defined ‘academic fields’ is unprincipled

and inadequate at capturing what is in reality a fuzzy rather

than a crisp definition of a field. To address this problem in

this paper we introduced the first truly data and evidence

driven normalization approach which leverages so-called big

data in the scholarly domain. In particular, (i) we created an

automatic tool that crawls Google Scholar and collects re-

searchers’ publication information, and (ii) proposed a topic

modelling based approach based on the hierarchical Dirich-

let process that is able to extract automatically nuanced,

probabilistic representations of academic fields. The latter

stage was achieved by adopting a paradigm whereby each

peer reviewed publication venue (journal or conference) is



considered a ‘term’, and a researcher’s publication output as

a ‘document’. Using a large data set collected from Google

Scholar, which will be made public following the publication

of the present paper, we demonstrated the effectiveness of

the proposed approach. We continue to collect more data

and will make an implementation of the algorithm freely

available for download, as well as provide an online tool

which can be used to compute a variety of normalized met-

rics for researchers with Google Scholar profiles.
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