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ABSTRACT 10 

The end-Cryogenian glaciation (Marinoan) was Earth’s last global glaciation yet its duration 11 

and character remain uncertain.  Here we report U-Pb zircon ages for two discrete ash beds within 12 

glacimarine deposits from widely separated localities of the Marinoan-equivalent Ghaub Formation 13 

in Namibia: 639.29 ± 0.26/0.31/0.75 Ma and 635.21 ± 0.59/0.61/0.92 Ma. These findings, for the 14 

first time, verify the key prediction of the Snowball Earth hypothesis for the Marinoan glaciation: 15 

longevity, with a duration of ≥4.08 ± 0.64 Myr. They also show that glacigenic sedimentation, 16 

erosion, and at least intermittent open-water conditions occurred 4 million years prior to termination 17 

of the Marinoan glaciation and that the interval of non-glacial conditions between the two 18 

Cryogenian glaciations was 20 Myr or less. 19 

INTRODUCTION 20 

The Cryogenian Period (c. 720 – 635 Ma) was marked by the two most severe glaciations in 21 

Earth history (Hoffman et al., 1998; Fairchild and Kennedy, 2007), the older Sturtian and younger 22 

Marinoan, and their association with unique lithofacies of cap carbonates (Kennedy et al., 2001; 23 

Hoffman and Schrag, 2002; Hoffman et al., 2011), stable isotope fluctuations (carbon, oxygen, 24 

boron, calcium; Halverson et al., 2005; Kasemann et al., 2005; Bao et al., 2008) and banded iron 25 

formation are evidence for global-scale environmental changes with postulated links to ocean-26 



atmosphere oxygenation and biosphere evolution (Butterfield, 2009; Och and Sjields-Zhou, 2012; 27 

Sperling et al., 2013). Creation of a unified theory explaining those phenomena, however, has been 28 

hampered by one key obstacle: a lack of temporal constraints. Recently, the Sturtian was shown to 29 

have spanned an astonishing 56 Myr, from about 716 Ma to 660 Ma (Bowring et al., 2007; 30 

Macdonald et al., 2010; Rooney et al., 2014; Rooney et al., 2015). In contrast, the duration of the 31 

Marinoan is unresolved: it terminated at c. 635 Ma (Hoffmann et al. 2004; Calver et al., 2004; 32 

Condon et al., 2005; Zhang et al., 2008) but its initiation can only be stated as being younger than 33 

interglacial strata, which in Mongolia have been dated as c. 659 Ma (Rooney et al., 2014) and in 34 

China as c. 655 Ma (Zhang et al., 2008). Here we report new dates for the Marinoan-equivalent 35 

Ghaub Formation in Namibia that provide a basis for assessing the timing and nature of Earth’s last 36 

global glaciation. 37 

GEOLOGY: SAMPLES DW-1 AND NAV-00-2B 38 

The Nosib, Otavi and Mulden Groups comprise the Neoproterozoic sedimentary record of 39 

the Congo craton in northern Namibia (Fig. 1).  The Otavi Group (and correlative rocks in the 40 

Swakop Group of the Outjo and Swakop Zones) is a 2-5 km thick carbonate platform-slope-basin 41 

succession formed in the tropics along the margin of the Congo Craton. It is punctuated by two 42 

Cryogenian glacial units (Hoffmann and Prave, 1996; Hofman and Halverson, 2008), the older 43 

Chuos and the younger Ghaub formations and their respective cap carbonates, the Rasthof and 44 

Keilberg formations. U-Pb zircon ages on igneous and volcanic units provide geochronological 45 

constraints (see Fig. 1) that bracket deposition of the glacigenic-bearing strata in the Otavi Group to 46 

between c. 756 Ma and 635 Ma.  47 

One of the most informative exposures of the Ghaub Formation in northern Namibia is 48 

along Fransfontein Ridge (Fig. 1). There, the Ghaub rocks vary in thickness from 1 to 600 m and 49 

can be traced continuously for c. 70 km; they consist mostly of stratified and massive carbonate-50 

clast-rich diamictite, minor intervals of rippled and cross-stratified dolomitic grainstone, marl and 51 

shale, and an upper unit, the 1 to 15 m thick Bethanis member (Hoffman and Halverson, 2008) 52 



typified by cm- to dcm-thick stratified diamictite and grainstone-mudstone, all with abundant 53 

variably sized dropstones. Detailed studies (Hoffman and Halverson, 2008; Domack and Hoffmann, 54 

2011) of those lithofacies have interpreted them as a succession of moraine and glacimarine 55 

sediments deposited along the margin of a repeatedly advancing and back-stepping ice-grounding 56 

line (Domack and Hoffmann, 2011). 57 

Along Fransfontein Ridge, the diamictite-dominated Ghaub Formation contains lenses, 58 

generally a few metres thick, consisting of graded grainstone and laminated to massive calcareous-59 

dolomitic marl-shale with stringers of dropstones. At Duurwater (Fig. 2) one of these lenses about 60 

15 m below the base of the Keilberg cap dolostone contains a prominent ash bed, sampled as DW-1 61 

(Fig. 3). The DW-1 is the middle of three ash beds; it is 0.18 m thick, pale tan to pale yellow in 62 

colour, characterised by sharp upper and lower contacts, displays a slight fining-upward grading, 63 

contains rare disseminated quartz spar crystals and is overlain and underlain by IRD beds (Fig. 4A).  64 

These features indicate that this bed is an air-fall tuff contemporaneous with deposition of the 65 

glacimarine sediments, hence its age would also be the age of sedimentation for this part of the 66 

Ghaub Formation. Below the DW-1 ash bed is 10-15m of massive diamictite and then a more than 67 

100-m-thick succession of carbonate rhythmite, breccia, laminated marl and shale with dispersed 68 

dropstones and isolated metre-scale and larger blocks derived from pre-Ghaub formation units. 69 

These lithofacies fill a steep-sided incision cut into the pre-Ghaub stratigraphy (Figs. 2, 3); in places 70 

along the Fransfontein outcrop belt as much as 300 m of strata have been cut out along this surface. 71 

Sample NAV-00-2B comes from an ash bed in the basinal equivalent of the Ghaub 72 

Formation c. 30 m below the contact with the Keilberg cap dolostone at Navachab in central 73 

Namibia (Fig. 3). This occurrence was reported by Hoffman et al. (2004) and readers are referred to 74 

that paper for details. 75 

METHODS AND RESULTS 76 

All zircon dates in this study were obtained using established chemical abrasion (CA) 77 

isotope dilution thermal ionisation mass spectrometry (ID-TIMS) methods at the NERC Isotope 78 



Geoscience Laboratory of the British Geological Survey (Noble et al., 2015; see Data Repository 79 

for details). U-Pb dates have been determined relative to the gravimetrically calibrated 80 

EARTHTIME mixed U/Pb tracers (Condon et al., 2015; McLean et al., 2015) and 238U and 235U 81 

decay constants (Jaffey et al., 1971; Mattinson, 2010). 82 

Sample DW-1 yielded a population of zircons with a consistent morphology (aspect ratio ~2 83 

and long axis typically 200 to 300 µm) and colour.  Ten zircons were dated by CA-ID-TIMS; U-Pb 84 

data for each analysis are concordant when the uncertainty in the 238U and 235U decay constants 85 

(Mattinson, 2010) are considered (Fig. 4B; Data Repository Table 1). All analyses yield a weighted-86 

mean 207Pb/206Pb date of 639.1 ± 1.7/1.8/5.0 (n=10, MSWD=1.08).  Of those, one analysis has 87 

dispersion beyond that expected due to analytical scatter (see Data Repository) and is an obvious 88 

outlier with a U-Pb date younger than the main population. Excepting this grain, the other nine 89 

analyses yield a weighted mean 206Pb/238U date of 639.29 ± 0.26/0.31/0.75 Ma (95% confidence 90 

interval, n=9, MSWD=2.6), which we interpret as the age of deposition.  91 

Sample NAV-00-2B is an aliquot of the sample dated previously as 635.5 ±1.2 Ma 92 

(Hoffmann et al., 2004) at the Massachusetts Institute of Technology.  Re-analysis of this sample 93 

was done to capitalise on the use of CA for the effective elimination of Pb-loss (Mattinson, 2005) 94 

and the EARTHTIME tracer and its comprehensive gravimetric calibration and uncertainty model 95 

(Condon et al., 2015; McLean et al., 2015). The 206Pb/238U date for NAV-00-2B derived in this 96 

study is 635.21 ± 0.59/0.61/0.92 Ma (95% confidence interval, n=5, MSWD=3.4; Fig. 4B, Data 97 

Repository Table 2).  This date is based upon a subset of the analyses (as explained in the Data 98 

Repository) and, even given improved analytical precision and accuracy, is indistinguishable from 99 

the date published in Hoffmann et al. (2004). 100 

DISCUSSION 101 

The 639.29 ± 0.26/0.31/0.75 Ma age for the DW-1 ash bed at Duurwater and the revised age 102 

of 635.21 ± 0.59/0.61/0.92 Ma for the NAV-00-2B ash bed at Navachab now, for the first time, 103 

confirm that the Marinoan glaciation was long-lived, lasting at least 4.08 ± 0.64 Myr. This verifies 104 



the key prediction of the Snowball Earth hypothesis for a long duration glaciation. The revised age 105 

for NAV-00-2B also refines and reconfirms that the timing of termination of the Marinoan 106 

glaciation was synchronous worldwide (i.e. within error of the age data), occurring between 635.21 107 

± 0.59/0.61/0.92 Ma and 635.2 ± 0.5 Ma, the age of an ash bed in the lower part of the cap 108 

carbonate sequence in China (Condon et al., 2005); a conclusion reinforced by the U-Pb zircon age 109 

of 636.41 ± 0.45 Ma for a volcaniclastic unit in the glacial-cap carbonate transition in Tasmania 110 

(Calver et al., 2004). 111 

Since the debut of the Snowball Earth hypothesis, debate has ensued regarding the extent of 112 

land and sea ice during Cryogenian glaciations, the causes of repetitive patterns of inferred 113 

proximal-distal and advance-retreat deposits, and the overall timing and duration of glacial 114 

sedimentation (e.g. see discussion by Spence et al., 2016, and references therein).  Further, the lack 115 

of well-defined age models has led to an array of climate state and sedimentation scenarios, ranging 116 

from surmising that the Marinoan rock record formed by glacial-interglacial-scale epochs (e.g. 117 

Allen and Etienne, 2008; LeHeron et al., 2011) to interpretations of the bulk of that record as 118 

having been deposited during a brief interval of time near to the end of the glacial state (e.g. Benn et 119 

al., 2015). Although these interpretations are not necessarily mutually exclusive, assessing them 120 

remains speculative because of the lack of constraints for the absolute timing of sedimentation. Our 121 

new geochronological data provide a better temporal framework for understanding the Marinoan 122 

glaciation. For example, the c. 639 Ma DW-1 ash bed occurring above a c. 100-m-thick glacimarine 123 

succession shows that glacial erosion and sediment accumulation concurrent with at least 124 

intermittent open-water conditions in the tropics existed more than 4 million years before the 125 

ultimate meltback phase of the Marinoan ice sheets. This impacts on a range of issues regarding the 126 

Marinoan climate state: it provides constraints and corroboration of models that yield results 127 

consistent with such conditions, including predictions of plausible CO2 levels permissive of 128 

enabling ice-line migration and associated sedimentation in the tropics, as documented for the 129 

Ghaub Formation (e.g. Domack and Hoffman, 2011), to considerations of low-latitude refugia and 130 



the survival of eukaryotic organisms within the main phase of the Marinoan glaciation. Further, 131 

given our new age that provides a minimum duration for the Marinoan glaciation and the c. 660 Ma 132 

age for the end of the older Cryogenian glaciation (Sturtian), the intervening interglacial interval 133 

and associated biogeochemical and isotopic events represent a timespan of 20 Myr or less (Fig. 4C).  134 

Determining how and why this period of non-glacial conditions punctuated an otherwise apparently 135 

consistently and largely ice-covered Earth poses an intriguing research question. 136 

 137 

CONCLUSION 138 

The 639.1 ± 1.7/1.8/5.0 Ma age obtained on an ash bed in glacimarine sediments of the 139 

Marinoan-equivalent Ghaub Formation in northern Namibia combined with a refined age of 635.21 140 

± 0.59/0.61/0.92 Ma for an ash bed in the basinal equivalent of the Ghaub Formation in central 141 

Namibia confirm that the Marinoan glaciation was long-lived, at least 4 Myr in duration, and that 142 

the preceding interval of non-glacial conditions was less than 20 Myr in duration. Our data also 143 

confirm that the sedimentary archive of the Marinoan glaciation records glacial erosion-144 

sedimentation and at least intermittent open-water conditions as much as 4 million years prior to 145 

terminal meltback at c. 635 Ma.  146 
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Figure 1.  Generalised geologic framework of northern Namibia. Ages for the Naauwpoort 256 

Formation (NF) and Oas Syenite (OS) are from Hoffman et al. (1996), for the Ombombo Subgroup 257 

from Halverson et al. (2005), and for the Ghaub Formation from Hoffmann et al. (2004) and this 258 

paper. Ages of the Damara granitoids from Miller (2008, and references therein). 259 

 260 

Figure 2. Fransfontein Ridge geology in the vicinity of sample DW-1. See Figure 1 for location. 261 

 262 

Figure 3. Simplified stratigraphy of the Fransfontein Ridge area around Duurwater and of the 263 

Navachab area (for details of Navachab see Hoffmann et al., 2004); left column is a detailed section 264 

showing the stratigraphic position of the DW-1 ash bed, the middle of three ash beds, within the 265 

diamictic interval of the Ghaub Formation (sample location: 15.14693E 20.20940S). 266 

 267 

Figure 4. A. DW-1 ash bed between ice-rafted-debris beds, Duurwater section. B. U-Pb Concordia 268 

plot of data for samples DW-1 and NAV-00-2B; solid ellipses represent analyses included in age 269 

calculation, dashed ellipses are not included (see Data Repository for explanation). C. 270 

Neoproterozoic timeline trends for key isotope proxy datasets: S isotopes after (from Och and 271 

Shields-Zhou, 2012, and references therein); Sr and C isotopes after (Halverson et al., 2005) and 272 

our own data. U-Pb age data from: 1– Lan et al. (2014), 2–Macdonald et al. (2010), 3–Zhou et al. 273 

(2004), 4–Zhang et al. (2008), 5–Condon et al. (2005). Bold ages are reported herein.  274 
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