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Abstract Consider a set of categorical variables where at least one of them is binary.
The log-linear model that describes the counts in the resulting contingency table
implies a specific logistic regression model, with the binary variable as the outcome.
Within the Bayesian framework, the g-prior and mixtures of g-priors are commonly
assigned to the parameters of a generalized linear model. We prove that assigning
a g-prior (or a mixture of g-priors) to the parameters of a certain log-linear model
designates a g-prior (or a mixture of g-priors) on the parameters of the corresponding
logistic regression. By deriving an asymptotic result, and with numerical illustrations,
we demonstrate that when a g-prior is adopted, this correspondence extends to the
posterior distribution of the model parameters. Thus, it is valid to translate inferences
from fitting a log-linear model to inferences within the logistic regression framework,
with regard to the presence of main effects and interaction terms.
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M. Papathomas

1 Introduction

Consider observations v = {v1, . . . , vn}, parameters θ = {θ1, . . . , θn}, and known
quantities or nuisance parameters φ = {φ1, . . . , φn}. Following standard notation,
vi , i = 1, . . . , n, follows a distribution that is a member of the exponential family
when its probability function can be written as,

f (vi |θi , φi ) = exp

{
wi

φi
[viθi − b(θi )] + c(vi , φi )

}
,

where w = {w1, . . . , wn} are known weights, and φi is described as the dispersion or
scale parameter.With regard to first- and second-order moments,μi ≡ E(vi ) = b

′
(θi )

and Var(vi ) = wi
φi
b

′′
(θi ). The variance function is defined as V (μi ) = b

′′
(θi ). A

generalized linear model relates μ = {μ1, . . . , μn} to covariates by setting ζ(μ) =
Xdγ , where ζ denotes the link function, Xd the covariate design matrix, and γ a
vector of parameters. For a single μi , we write ζ(μi ) = Xd(i)γ , where Xd(i) denotes
the i th row of Xd . So, ζ is defined as a vector function ζ ≡ {ζ1, . . . , ζn} with n
elements.

Denote with P a finite set of P categorical variables. Observations from P can be
arranged as counts in a P-way contingency table. Denote the cell counts as ni , i =
1, . . . , nll . We use the ‘ll’ indicator to allude to the log-linear model that will describe
these counts. A Poisson distribution is assumed for the counts so that E(ni ) = μi .
A Poisson log-linear interaction model log(μ) = Xllλ is a generalized linear model
that relates the expected counts to P . Assuming that one of the categorical variables,
denoted with Y , is binary, a logistic regression can also be fitted with Y as the outcome,
and all or some of the remaining P − 1 variables as covariates. We write, logit( p) =
Xltβ, p = (p1, . . . , pnlt ), using the ‘lt’ indicator for the logistic model. Here, pi
denotes the conditional probability that Y = 1 given covariates Xlt (i), and β is a
vector of parameters.

Within the Bayesian framework, a prior distribution f (γ ) is assigned to the parame-
ters of the log-linear or logistic regression model. This can be an informative prior that
incorporates prior information on themagnitude of the effect of the different covariates
or interactions. Eliciting such a prior distribution is not straightforward, especially for
the coefficients of interaction terms (Consonni and Veronese 2008). Typically, lack of
information for the parameters of a generalized linear model leads to a relatively flat
but proper prior distribution, so that model determination based on Bayes factors is
valid (O’Hagan 1995). A popular choice among Bayesian statisticians is the g-prior or
a mixture of g-priors, described in detail in Sect. 2. These are flexible priors designed
to carry very little information so that inferences are driven by the observed data. See,
for example, Wang and George (2007), Sabanès Bovè and Held (2011), Overstall and
King (2014a, b) and Mukhopadhyay and Samantha (2016). This type of prior was first
proposed by Zellner (1986) for general linear models. In this context, it is known
as Zellner’s g-prior. Other priors have been proposed, especially for analyses where
the focus is on model comparison and variable selection. For example, Jeffreys prior
(Liang et al. 2008), the generalized hyper-g prior (Sabanès Bovè and Held 2011), and
the expected-posterior priors and power-expected-posterior priors (Fouskakis et al.
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2015). Our manuscript concerns the g-prior and mixtures of g-priors. After data are
collected, the prior f (γ ) is updated to the posterior distribution f (γ |Data) via the
conditional probability formula and Bayes Theorem, so that,

f (γ |Data) = f (Data|γ ) f (γ )

f (Data)
.

For the prior distributions discussed above, closed-form expressions for the posterior
distribution f (γ |Data) do not exist. The posterior is typically calculated usingMarkov
chain Monte Carlo stochastic simulation, or Normal approximations (O’Hagan and
Forster 2004).

It is known (Agresti 2002) that when P contains a binary Y , a log-linear model
log(μ) = Xllλ implies a specific logistic regression model with parameters β defined
uniquely by λ. The logistic regression model for the conditional odds ratios for Y
implies an equivalent log-linear model with arbitrary interaction terms between the
covariates in the logistic regression, plus arbitrary main effects for these covariates.
We provide a simple example to illustrate this result and clarify additional notation.
Assume three categorical variables X,Y , and Z , with Y binary. Let i, j, k be integer
indices that describe the level of X,Y , and Z , respectively. For instance, as Y is binary,
j = 0, 1. Consider the log-linear model,

log(μi jk) = λ + λX
i + λYj + λZ

k + λXY
i j + λXZ

ik + λY Z
jk , (M1)

where the superscript denotes the main effect or interaction term. The corresponding
logistic regression model for the conditional odds ratios for Y is derived as follows,

log

(
P(Y = 1|X, Z)

P(Y = 0|X, Z)

)
= log

(
P(Y = 1, X, Z)

P(Y = 0, X, Z)

)

= log(μi1k) − log(μi0k)

= λY1 − λY0 + λXY
i1 − λXY

i0 + λY Z
1k − λY Z

0k .

This is a logistic regression with parameters, β = (β, βX
i , βZ

k ), so that, β = λY1 −
λY0 , βX

i = λXY
i1 − λXY

i0 , and βZ
k = λY Z

1k − λY Z
0k . Considering identifiability corner

point constraints, all elements in λ with a zero subscript are set to zero. Then, β =
λY1 , βX

i = λXY
i1 and βZ

k = λY Z
1k . This scales in a straightforward manner to larger

log-linear models. For instance, if (M1) contained the three-way interaction XY Z ,
then the corresponding logistic regression model would contain the X Z interaction,
so that, βXZ

ik = λXY Z
i1k − λXY Z

i0k , and under corner point constraints, βXZ
ik = λXY Z

i1k . If a
factor does not interact with Y in the log-linear model, then this factor disappears from
the corresponding logistic regression model. To demonstrate that the correspondence
between log-linear and logistic models is not bijective, it is straightforward to show
that, for example, the log-linear model, log(μi jk) = λ+λX

i +λYj +λZ
k +λXY

i j +λY Z
jk ,

implies the same logistic regression as (M1). More generally, the relation between β

and λ can be described as β = Tλ, where T is an incidence matrix (Bapat 2011).
In the context of this manuscript, matrix T has one row for each element of β, and
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one column for each element of λ. The elements of T are zero, except in the case
where the element of β is defined by the corresponding element of λ. The number
of rows of T cannot be greater than the number of columns. To simplify the analysis
and notation, for the remainder of this manuscript we consider models specified under
corner point constraints. Then, every logistic regression model parameter is defined
uniquely by the corresponding log-linear model parameter, and the correspondence
from a log-linear to a logistic regression model is direct.

The contribution of ourmanuscript is twofold. First, Theorem1 states that assigning
to λ the g-prior that is specific to log-linear modelling implies the g-prior specific to
logistic modelling on the parameters β of the corresponding logistic regression. The
log-linear model has to be the largest model that corresponds to the logistic regres-
sion, i.e. the model that contains all possible interaction terms between the categorical
factors in P\{Y }. Second, under the reasonable assumption that an investigator who
chooses a g-prior for λ would also choose a g-prior for β if they were to fit a logis-
tic regression directly, inferences on the parameters of a log-linear model translate
to inferences on the parameters of the corresponding logistic regression. Closed-form
expressions for the posterior distributions do not exist.Wang andGeorge (2007) utilize
the Laplace approximation for generalized linear models, focusing on the approxima-
tion of the marginal likelihood for the purpose of variable selection. Theorem 2 shows
that, asymptotically, the matching between the prior distributions of the corresponding
parameters extends to the posterior distributions. It is then demonstrated by numerical
illustrations that the presence or absence of interaction terms in the log-linear model
can inform on the relation between the binary Y and the other variables as described
by logistic regression. For example, assume that after fitting the log-linear model, the
credible interval for an element of λ contains zero. When fitting the corresponding
logistic regression model, the investigator will anticipate that the credible interval for
the corresponding element of β will also contain zero. Importantly, for this translation
to hold, it is essential that the prior distribution for β implied by the prior on λ is
the same to the distribution the investigator would assign to β if they were to fit the
logistic model directly. If the implied prior on β is not the same as a directly assigned
prior then, with regard to β, the correspondence from the Bayesian log-linear analysis
to the logistic one becomes dubious. In both illustrations in Sect. 4, we observe that
the credible intervals of the corresponding λ and β parameters are virtually identical
considering simulation error.

In Sect. 2, we provide the definition of the g-prior and mixtures of g-priors and
describe how the g-prior is derived for log-linear and logistic regression models. Sec-
tion 3 contains themain contributions in thismanuscript. In Sect. 4, the correspondence
from a log-linear to a logistic regression model is illustrated using simulated and real
data. We conclude with a discussion.

2 The g-prior and mixtures of g-priors

A g-prior for the parameters γ of a generalized linear model is a multivariate Normal
distribution N (mγ , gΣγ ), constructed so that the prior variance is a multiple of the
inverse Fisher informationmatrix by a scalar g. See Liang et al. (2008) for a discussion
on the choice of g. In accordance with Ntzoufras et al. (2003) and Ntzoufras (2009),
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the g-prior for the parameters of log-linear and logistic regression models is specified
so that, mγ = (mγ1, 0, . . . , 0)

�, where mγ1 corresponds to the intercept and can be
nonzero, and,

Σγ = V (m∗)ζ ′
(m∗)2

[
X�
d diag

(
1

φi

)
Xd

]−1

,

where diag(1/φi ) denotes a diagonal n × n matrix with nonzero elements 1/φi , and
m∗ = ζ−1(mγ1).

The unit information prior is a special case of the g-prior, obtained by setting
g = N , where N denotes the total number of observations. It is constructed so that
the information contained in the prior is equal to the amount of information in a single
observation (Kass and Wasserman 1995). Assuming that g is a random variable, with
prior f (g), leads to a mixture of g-priors, so that,

γ |g ∼ N (mγ , gΣγ ), g ∼ f (g).

Mixtures of g-priors are also called hyper-g priors (Sabanès Bovè and Held 2011).

Log-linear regression Consider counts ni i = 1, . . . , nll . Now, N = ∑nll
i=1 ni , and,

f (ni |μi ) = e−μi μ
ni
i

ni ! ,

with θi = log(μi ), b(θi ) = eθi and c(ni , φi ) = −log(ni !). Also, wiφ
−1
i = 1, so that

wi = 1 implies φi = 1. Note that,

μi = b
′
(θi ) = eθi , Var(ni ) = φiw

−1
i b

′′
(θ) = eθi , and V (μi ) = μi .

For the log-linear model, log(μ) = Xllλ, and ζ(μi ) = log(μi ) so that ζ
′
(μi ) = μ−1

i .
The g-prior is constructed as N (mλ, gΣλ), where mλ = (log(n̄), 0, . . . , 0). Here, n̄
denotes the average cell count. The prior mean for the log-linear model intercept is
also often set to zero (Dellaportas et al. 2012). (Note that altering the prior mean for
the log-linear model intercept does not affect the validity of the theoretical results
in Sect. 3. This is straightforward to deduce from the proof of Theorem 1 given in
‘Appendix’, as the prior mean for the log-linear intercept does not affect the implied
distribution of the logistic regression parameters.) In addition,

Σλ = n̄
1

(n̄)2

(
X�
ll Xll

)−1 = 1

n̄

(
X�
ll Xll

)−1 = nll
N

(
X�
ll Xll

)−1
.

Logistic regression Assume that yi , i = 1, . . . , nlt , is the proportion of successes out
of ti trials. Now, N = ∑nlt

i=1 ti , and,

f (ti yi |pi ) =
(

ti
ti yi

)
pti yii (1 − pi )

ti−ti yi ,
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where θi = logit(pi ), b(θi ) = log(1 + eθi ), and c(yi , φi ) = log
( ti
ti yi

)
. Also, wiφ

−1
i =

ti , so that wi = 1 implies φi = t−1
i . Note that,

E(yi ) = b
′
(θi )= eθi

1 + eθi
= pi , Var(yi ) = φi

wi
b

′′
(θi ) = 1

ti

eθi

(1 + eθi )2
= pi (1 − pi )

ti
,

and,

V (pi ) = pi (1 − pi ).

The logistic regression model is defined as logit( p) = Xltβ, so that Xlt is a nlt × nβ

design matrix, and ζ(pi ) = logit(pi ) so that ζ
′
(pi ) = [pi (1 − pi )]−1. The g-prior is

N (mβ, gΣβ), where mβ = (0, 0, . . . , 0), and,

Σβ = p∗(1 − p∗) 1

[p∗(1 − p∗)]2
[
X�
lt diag(ti )Xlt

]−1 = 1

0.25

[
X�
lt diag(ti )Xlt

]−1
.

Here, p∗ corresponds to m∗ in the general definition of the g-prior at the start of this
section, so that p∗ = ζ−1(mγ1), where mγ1 is the first element of mβ which is zero.
Thus, we obtain that p∗ = e0/(e0 + 1) = 0.5. By approximating each ti with the
average number of trials t̄ , as suggested by Ntzoufras et al. (2003),

Σβ � 4
1

t̄

(
X�
lt Xlt

)−1 = 4
nlt∑nlt
i=1 ti

(
X�
lt Xlt

)−1 = 4
nlt
N

(
X�
lt Xlt

)−1
.

3 Correspondence from log-linear to logistic regression models

Consider a set of categorical variables P that includes a binary variable Y . Assume
a log-linear model that, in addition to the terms that involve Y , contains all possible
interaction terms between the categorical factors in P\{Y }. We show that, given that
a g-prior is assigned to the log-linear model parameters λ, the implied prior for β

is a g-prior for logistic regression models, i.e. the one that would be assigned if the
investigator considered the logistic regression model directly.

Theorem 1 Assume a g-prior λ ∼ N (mλ, gΣλ) on the parameters of a log-linear
model log(μ) = Xllλ, that contains all possible interaction terms between the cate-
gorical factors inP\{Y }. This prior implies a g-prior N (mβ, gΣβ) for the parameters
β of the corresponding logistic regression logit( p) = Xltβ.

Proof The proof is based on rearranging the rows and columns of Xll , and partitioning
so that one part of Xll consists of the logistic design matrix Xlt , or replications of Xlt .
We then show that the prior mean and variance of the elements of λ that correspond to
β are the prior that would be assigned to β if the logistic regression was fitted directly.
The complete proof is given in ‘Appendix’. �	
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Corollary 1 A unit information prior λ ∼ N (mλ, NΣλ) implies a unit information
prior N (mβ, NΣβ) for the parameters β of the corresponding logistic regression.

Corollary 1 follows directly from Theorem 1 by setting g = N . The following
Corollary concerns mixtures of g-priors. It is implicitly assumed that the investigator
would adopt the same prior density f (g) for both modelling approaches.

Corollary 2 A mixture of g-priors so that λ|g ∼ N (mλ, gΣλ), g ∼ f (g), implies a
mixture of g-priors for the parameters β of the corresponding logistic regression, so
that β|g ∼ N (mβ, gΣβ), g ∼ f (g).

This also follows from Theorem 1, which states that when λ|g ∼ N (mλ, gΣλ), the
conditional prior for β is β|g ∼ N (mβ, gΣβ).

When the g-prior is utilized, it is common to assign a locally uniform Jeffreys prior
(∝ 1) on the intercept, after the covariate columns of the design matrix have been
centred to ensure orthogonality with the intercept (Liang et al. 2008). If one decides to
adopt the approach where a flat prior is assigned to the intercept in both log-linear and
logistic formulations, the correspondence between log-linear and logistic regression
breaks, but only with regard to the intercept of the logistic regression. The prior on
the log-linear intercept does not have a bearing on the implied prior for the logistic
regression parameters, because the log-linear intercept does not contribute to the for-
mation of the logistic regression parameters, as described in Sect. 1. After assigning
a flat prior on the intercept of the log-linear model, all β parameters (including the
intercept) are still Normal as linear combinations of Normal random variables, and
the distribution of β is the one given by Theorem 1. For details, see the additional
material in the proof of Theorem 1 in ‘Appendix’. For an illustration, see Table 3 in
Sect. 4.2.

Closed-form expressions for the posterior distribution of the parameters of a gen-
eralized linear model do not exist. However, it is known (O’Hagan and Forster 2004)
that a Normal approximation applies. Consider a g-prior for the parameters γ of the
generalized linear model, ζ(μ) = Xdγ , so that, for fixed g,

γ ∼ N (mγ , gΣγ ).

Given observations v = {v1, . . . , vn}, the posterior distribution of γ is approxi-
mated by a Normal density, so that,

γ |v ∼ N

([
g−1Σ−1

γ + I(γ̂ )
]−1 ×

[
g−1Σ−1

γ mγ + I(γ̂ )γ̂
]
,
[
g−1Σ−1

γ + I(γ̂ )
]−1

)
.

(1)

Here, γ̂ is the maximum likelihood estimate of γ , and I(γ̂ ) is the information matrix
X�
d VXd . For the log-linear model, the diagonal matrix V (denoted by Vlog-linear) has

diagonal elements exp{Xll(i)λ̂}, i = 1, . . . , nll . When the logistic regression is fit-
ted, Vlogistic has diagonal elements tiexp{Xlt (i)β̂}exp{1 + Xlt (i)β̂}−2, i = 1, . . . , nlt .
Within the Bayesian framework, when fitting a generalized linear model, a large sam-
ple (n → ∞) will swamp the prior distribution, rendering it irrelevant for deriving
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posterior inferences (O’Hagan and Forster 2004). In practice, this can be true even for
moderate sample sizes (say, of order 102 or larger), especially when the prior is not
informative, which is typically the case with g-priors.

Theorem 2 Consider a g-prior λ ∼ N (mλ, gΣλ) on the parameters of a log-linear
model log(μ) = Xllλ, that contains all possible interaction terms between the cate-
gorical factors in P\{Y }. Consider also the analogous g-prior N (mβ, gΣβ) for the
parameters β of the corresponding logistic regression logit( p) = Xltβ. For fixed g,
and for a large sample, the posterior distribution of β, as given in (1), is approximately
equal to the posterior distribution of the elements of λ that correspond to β.

Proof A partitioning similar to the one adopted for the proof of Theorem 1 is utilized.
First, we show that, asymptotically, the posterior variance of β is the posterior variance
of the elements of λ that correspond to β. Then, we do the same for the posterior
means. The proof is based on the crucial assumption that for a large sample the
contribution of the prior in deriving the posterior moments can be ignored. A standard
result utilized in the proof is that, asymptotically, the Binomial distribution for a data
point can be approximated by a Poisson distribution. The complete proof is given in
‘Appendix’. �	

In the next section, we demonstrate with numerical illustrations that, for fixed g,
the correspondence between the priors extends to posterior distributions, so that the
posterior distribution of the logistic regression parameters matches the one of the
corresponding log-linear model parameters. This is true even for relatively moderate
sample sizes N , say a few hundred, and for standard choices of g such as g = N .

4 Illustrations

Unit information priors were adopted for the model parameters (g = N ). The size of
the burn-in sample was 104, followed by 5 × 105 iterations.

4.1 A simulation study

We simulate data from 1000 subjects, on six binary variables {Y, A, B,C, D, E}.
Probabilities that correspond to the cells of the 26 contingency table are generated in
accordance with the log-linear model, log(μ) = Y AB + YCD + Y E . Adopting the
notation in Agresti (2002), a single letter denotes the presence of a main effect, two
letter terms denote the presence of the implied first-order interaction and so on and so
forth. The presence of an interaction between a set of variables implies the presence
of all lower-order interactions plus main effects for that set. Cell counts are simulated
according to the generated cell probabilities. Parameter values and the designmatrix of
the log-linear model used to generate the cell probabilities are given in Supplemental
material, Section S2.

We fit to the simulated data the log-linear model,

log(μ) = Y AB + YCD + Y E + ABCDE . (M2)
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According to the discussion and results in Sects. 1 and 3, the corresponding logistic
regression where Y is treated as the outcome only contains the first-order interactions
AB and CD plus the main effect for E ,

logit( p) = AB + CD + E . (M3)

In Table 1, we present credible intervals (CIs) for the parameters of (M3) and the
relevant parameters of (M2). The CIs for the corresponding λ and β parameters
are almost identical, considering simulation error. For example, the CI for λYCD

1,1,1 is

(−2.01,−0.85), whilst the CI for βCD
1,1 is (−2.00,−0.84).

In Table 2, we present minimum, maximum and quantile values for the ti observa-
tions, for the logistic regression in Table 1. It is clear that the simulated data do not
represent balanced Binomial experiments where ti = t̄ . The credible intervals listed
in Table 1 demonstrate that the correspondence studied in this manuscript is very
robust to departures from ti = t̄ . This is also demonstrated in the real data analysis
presented in the next subsection, where the collected data do not represent balanced
Binomial experiments when one of the factors is treated as the outcome. In Sup-
plemental material, we present additional analyses on simulated data sets, including
results on smaller samples, roughly one quarter the size of the data set analysed in this
section. Inferences on the correspondence between the posterior distributions remain
unchanged.

4.2 A real data illustration

Edwards and Havránek (1985) presented a 26 contingency table in which 1841 men
were cross-classified by six binary risk factors {A, B,C, D, E, F} for coronary heart
disease. The data were also analysed in Dellaportas and Forster (1999), where the top
hierarchical model was, log(μ) = AC + AD + AE + BC + CE + DE + F , with
posterior model probability 0.28. In Table 3, we present CIs for the parameters of the
log-linear model,

AC + AD + AE + BCDEF. (M4)

We also present CIs for the parameters of the corresponding logistic regression model
when A is treated as the outcome,

logit( p) = C + D + E . (M5)

We performed this analysis twice. Once after considering the g-priors described in
Sect. 2 (g = N ), as in the previous illustration, and after adopting a g-prior with a
locally flat prior for the intercept. Under the g-prior described in Sect. 2, the CIs for
the corresponding λ and β parameters (including the intercept) are almost identical,
considering simulation error. For instance, the CI for both the coefficient of A in the
log-linear model and the intercept in the logistic regression is (−0.59,−0.24). Under
the flat prior for the intercepts, the correspondence breaks down with regard to the
intercept in the logistic regression model. The CI for the coefficient of A in the log-
linear model is (−0.59,−0.24), whilst the CI for the intercept of the corresponding
logistic regression model is (−0.17, 0.02). Concurrently, the credible intervals for the
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Table 2 Simulated data illustration

Outcome Minimum 25% quantile Median 75% quantile Maximum

Y 11 17 21 41.5 124

A 12 19 23 30 144

B 10 18 22.5 31 165

C 12 18.5 23 26.5 151

D 11 19.5 23 27.5 147

E 10 17.5 22 27 191

Maximum, minimum, and quantiles for ti , i = 1, . . . , nlt , for different outcomes for the simulated data in
Sect. 4.1

coefficients of C, D and E in the logistic regression model are almost identical to the
corresponding CIs for AC, AD and AE in the log-linear model, with differences due
to simulation error.

5 Discussion

The correspondence we investigated is not unexpected, given the results in Agresti
(2002) discussed in Introduction, and also the link between the g-prior and Fisher’s
information matrix (Held et al. 2015), although this link is stronger for general linear
models. Our investigation is also related to Consonni and Veronese (2008), where
specifying a prior for the parameters of one model, and then, transferring this speci-
fication to the parameters of another is discussed. Of the four strategies considered in
Consonni and Veronese (2008), the one directly linked to our manuscript is ‘Marginal-
ization’, as the derived prior for the parameters of the logistic regression is the one
that is the marginal prior of the relevant parameters of the log-linear model. Results
on the relation between different statistical models are of interest, as they improve
understanding and enhance the models’ utility. Often, developments for one mod-
elling framework are not readily available for the other. For example, Papathomas and
Richardson (2016) comment on the relation between log-linear modelling and vari-
able selection within clustering, in particular with regard to marginal independence,
without examining logistic regression models.

Our numerical illustrations concern the g-prior, where the parameter g is fixed.
To further explore the correspondence between the two modelling frameworks, we
also considered the two hyper priors that are prominent in Liang et al. (2008). This is
the Zellner–Siow prior [IG(0.5, N/2)], and the prior introduced in the aforementioned
manuscript in Sect. 4.2, with the suggested specification α = 3. Furthermore, the two
data sets were analysed after adopting a mixture of g-priors such that, g ∼ IG(ag, bg).
We considered ag = 2 + mean(g)2/var(g) and bg = mean(g) + mean(g)3/var(g),
in accordance with the specified prior moments mean(g) and var(g). We considered
distinct Inverse Gamma densities with markedly different expectations and variances,
as well as the vague prior IG(0.1, 0.1). We observed that the correspondence does not
hold exactly when amixture of g-priors is adopted. This seems to be because the poste-
rior distribution for g is different under the twomodelling frameworks, something that
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affects to a small, but noticeable degree, the posterior credible intervals for the model
parameters. For more details, see the analyses presented in Supplemental material.

Theoretical results in this manuscript refer to a specific log-linear model and the
corresponding logistic regression model, for a given set of covariates. Therefore, our
results should not be misinterpreted as licence to readily translate log-linear model
selection inferences to inferences concerning logistic regression models. When per-
forming model selection in a space of log-linear models, the prominent log-linear
model describes a certain dependence structure between the categorical factors, includ-
ing the relation of the binary Y with all other factors. The logistic regression that
corresponds to the prominent log-linear model describes the dependence structure
between Y and the other factors that is supported by the data in accordance with
the log-linear analysis. Therefore, under reasonable expectation, results from a single
log-linear model determination analysis may translate, at the very least, to interesting
logistic regressions for any of the binary factors that formed the contingency table.
However, the mapping between log-linear and logistic regression model spaces is
not bijective. Furthermore, posterior model probabilities depend on the prior on the
model space, with various different approaches for defining such a prior discussed
in Dellaportas et al. (2012). For the simulated data analysed in Sect. 4.1, log-linear
model Y AB + YCD + Y E has posterior probability 0.98, whilst the posterior prob-
ability of the corresponding logistic regression model (M3) is 0.59. Similar results
from analysing the real data in Sect. 4.2, not presented here, also support this note of
caution. In all model determination analyses, the Reversible Jump MCMC algorithm
proposed in Papathomas et al. (2011) was employed. All possible graphical log-linear
models were assumed equally likely a priori, as were all possible logistic graphical
models for some given outcome.

Acknowledgements The author wishes to thank Professor Petros Dellaportas and Dr. Antony Overstall
for useful discussions during the preparation of this manuscript. We would also like to thank two reviewers
and the editors for comments that helped to improve the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proof of Theorem 1 To facilitate the proof, the following notation is introduced. Using
the incidence matrix T discussed in Sect. 1, write the mapping between β and λ as
β = Tλ, where

T =
⎛
⎜⎝

λ(1)
...

λ(nλY )

⎞
⎟⎠ ,

and λ(k), k = 1, . . . , nλY , is a vector of zeros with the exception of one element that
is equal to one. This element is in the position of the kth λ parameter with a Y in
its superscript. With nλY we denote the number of parameters in λ with a Y in their
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superscript. This is a more rigorous definition of T compared to the more descriptive
definition in Sect. 1. To ease algebraic calculations, and without any loss of generality,
rearrange the columns of λ, creating a new vector λr , so that T changes accordingly
to, T r = (

I 0
)
, where I is an nβ × nβ identity matrix and nβ is the number of

elements in β. The rows and columns of Xll are also rearranged accordingly to create
Xrll , so that,

Xrll =
(
X∗
lt Xll-lt

0 Xll-lt

)
(2)

Xll-lt is a square (nll/2× nll/2) matrix. This is because we consider the log-linear
model that, in addition to the terms that involve Y , contains all possible interaction
terms between the categorical factors in P\{Y }. The number of parameters that cor-
respond to the intercept, main effects and interactions for P\{Y } is nll/2.

Denote with j1 = 2 the number of levels of the binary factor Y that becomes the
outcome in the logistic regression model. With j2 to jq , 1 ≤ q ≤ P − 1 denote the
number of levels of the q − 1 factors that are present in the log-linear model but
disappear from the logistic regression model as they do not interact with Y . Then,
nll = 2 × j2 × · · · × jq × nlt . When q = 1, all factors other than Y remain in the
logistic regression model as covariates. When q = P − 1, the corresponding logistic
regression model only contains the intercept. For instance, for a 2P contingency table,
nll = 2q × nlt , and for q = 1, nll = 2 × nlt . Furthermore, X∗

lt is a nll/2 × nβ

matrix. By rearranging the rows of Xrll when necessary, we can write X∗
lt as X∗

lt =
(X�

lt X
�
lt . . . X�

lt )
�, where X�

lt is repeated ( j1 −1)× j2 ×· · ·× jq times. For example,
for q = 1, X∗

lt = Xlt . For q = 2, Xlt repeats j2 times within X∗
lt .

We can now write β = T rλr . For example, assume the log-linear model (M1)
describes a 3 × 2 × 2 contingency table. Then, q = 1, and the standard arrangement
of the elements of λ would be such that,

Xll =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0 1
1 1 0 1 1 1 0 1 0 1
1 0 1 1 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ

λX
1

λX
2

λY1

λZ
1

λXY
11

λXY
21

λXZ
11

λXZ
21

λY Z
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T =

⎛
⎜⎜⎝
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎠
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After rearranging,

Xrll =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 1 0 0
1 1 0 1 1 1 0 1 1 0
1 0 1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, λr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λY1

λXY
11

λXY
21

λY Z
11

λ

λX
1

λX
2

λZ
1

λXZ
11

λXZ
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T r =

⎛
⎜⎜⎝
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎠

For another example, where q = 2, consider again model (M1) but now assume
that the interaction Y Z is not present in the log-linear model. Then, the Z factor will
disappear from the corresponding logistic regression model, and after rearranging,

Xrll =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0
1 0 1 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 1 0
0 0 0 1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, λr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λY1

λXY
11

λXY
21

λ

λX
1

λX
2

λZ
1

λXZ
11

λXZ
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T r =
⎛
⎝ 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎞
⎠

The g-prior,

λ ∼ N (mλ, gΣλ) ≡ N

(
(log(n̄), 0, . . . , 0)� ,

gnll
N

(
X�
ll Xll

)−1
)

,
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translates to,

λr ∼ N (mλr , gΣλr ) ≡ N

(
(0, . . . , 0, log(n̄), 0, . . . , 0)� ,

gnll
N

(
X�
rll Xrll

)−1
)

,

where log(n̄) is the (nβ + 1)th element in the mean vector. Then,

E(β) = E(T rλr ) = T r E(λr ) = (
I 0

)× μλr
= 0.

Furthermore,

Var(β) = gT rΣλr T
�
r = gnll

N
T r

(
X�
rll Xrll

)−1
T�
r .

From (2),

(
X�
rll Xrll

)−1 =
(

X∗�
lt X∗

lt X∗�
lt Xll-lt

X�
ll-lt X

∗
lt X�

ll-lt Xll-lt + X�
ll-lt Xll-lt

)−1

=
(

X∗�
lt X∗

lt X∗�
lt Xll-lt

X�
ll-lt X

∗
lt 2X�

ll-lt Xll-lt

)−1

.

From Lutkepohl (1996, p. 147), the submatrix H that is formed by the first nβ rows
and columns of (X�

rll Xrll)
−1 is,

H =
(
X∗�
lt X∗

lt

)−1 +
(
X∗�
lt X∗

lt

)−1
X∗�
lt Xll-lt

[
X�
ll-lt

(
2I − X∗

lt

(
X∗�
lt X∗

lt

)−1
X∗�
lt

)
Xll-lt

]−1

× X�
ll-lt X

∗
lt

(
X∗�
lt X∗

lt

)−1
.

Now, Plt ≡ X∗
lt (X

∗�
lt X∗

lt )
−1X∗�

lt is the projection matrix for X∗
lt . It is straightforward

to verify that for a projection matrix Plt and a constant c,

(cI − Plt ) ×
(
1

c
I + 1

c(c − 1)
Plt

)
= I .

Therefore, (2I − Plt ) = (0.5I + 0.5Plt )−1, and consequently,

H =
(
X∗�
lt X∗

lt

)−1 +
(
X∗�
lt X∗

lt

)−1
X∗�
lt Xll-lt

[
X�
ll-lt (0.5I + 0.5Plt )

−1 Xll-lt

]−1

× X�
ll-lt X

∗
lt

(
X∗�
lt X∗

lt

)−1
.

Xll-lt is a square matrix of full rank. If Xll-lt was not full rank, then some of its

columns would be linearly dependent. In turn, some of the columns of

(
Xll-lt
Xll-lt

)
would
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be linearly dependent, implying the same for columns of Xrll (see Eq. 2). This is not
possible as Xrll is a design matrix of full rank. Thus, X−1

ll-lt exists and,

H =
(
X∗�
lt X∗

lt

)−1 +
(
X∗�
lt X∗

lt

)−1
X∗�
lt Xll-lt

[
X−1
ll-lt (0.5I + 0.5Plt ) X

�−1

ll-lt

]

× X�
ll-lt X

∗
lt

(
X∗�
lt X∗

lt

)−1

=
(
X∗�
lt X∗

lt

)−1 +
(
X∗�
lt X∗

lt

)−1
X∗�
lt (0.5I + 0.5Plt ) X

∗
lt

(
X∗�
lt X∗

lt

)−1

=
(
X∗�
lt X∗

lt

)−1 + 0.5
(
X∗�
lt X∗

lt

)−1 + 0.5
(
X∗�
lt X∗

lt

)−1

= 2
(
X∗�
lt X∗

lt

)−1

= 2
(
j2 × · · · × jq X

�
lt Xlt

)−1

Therefore,

Var(β) = gnll
N

T r

(
X�
rll Xrll

)−1
T�
r

= gnll
N

(
I 0

) (
X�
rll Xrll

)−1
(
I
0

)

= 2g2 j2 × · · · × jqnlt
N j2 × · · · × jq

(
X�
lt Xlt

)−1

= 4gnlt
N

(
X�
lt Xlt

)−1

Thus,

β ∼ N

(
0,

4gnlt
N

(
X�
lt Xlt

)−1
)

,

which is the g-prior for the parameters of a logistic regression, as described in Sect. 2.
This completes the proof. �	

Placing a flat prior on the intercept Assume that a flat prior is placed on the intercept of
the log-linear model, after the design matrix has been centred to induce orthogonality
between the intercept and the factors that form the contingency table. This does not alter
the prior on the parameters of the corresponding logistic regression model. The proof
follows along the lines of the proof of Theorem 1, if we express the parameters of the
logistic regression model as β = T r−1λr−1, where T r−1 denotes matrix T r without
the first column with all elements zero, and λr−1 denotes the vector of parameters
λr without the intercept λ. The proof proceeds as above, replacing Xrll with Xrll−1,
where Xrll−1 is the former matrix without the column with all elements one. It is also
required to replace Xll-lt with Xll-lt−1, where Xll-lt−1 is the former matrix without the
column with all elements one.
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Proof of Theorem 2 The proof utilizes quantities defined earlier in Sect. 3 and in the
proof of Theorem 1. First, we will show that, asymptotically, the posterior variance
of β is identical to the posterior variance of the elements of λ that correspond to β.
Then, we will do the same for the posterior means.

Consider a vector of cell counts n = {n1, . . . , nll}, and the log-linear model
log(μ) = Xllλ. Then, asymptotically,

Var(λ|n) �
[
g−1Σ−1

λ + I(λ̂)
]−1

=
[

N

gnll
X�
ll Xll + X�

ll V(λ̂)Xll

]−1

,

where λ̂ denotes the maximum likelihood estimate (MLE). After rearranging the rows
and columns of Xll , consider the log-linear model with linear predictor Xrllλr , for
cell counts nr , where nr is n rearranged to correspond to Xrll . Now,

Var(λr |nr ) �
[
g−1Σ−1

λr
+ I

(
λ̂r

)]−1

=
[

N

gnll
X�
rll Xrll + X�

rllV(λ̂r )Xrll

]−1

=
[
X�
rll

(
N

gnll
+ V(λ̂r )

)
Xrll

]−1

=
⎡
⎢⎣
⎛
⎝
(

N
gnll

I + V1V2 0
0 N

gnll
+ V2

)1/2 (
X∗
lt Xll-lt
0 Xll-lt

)⎞⎠
�

×
(

N
gnll

I + V1V2 0
0 N

gnll
+ V2

)1/2 (
X∗
lt Xll-lt
0 Xll-lt

)⎤⎥⎦
−1

.

V1 denotes a diagonal matrix with nonzero elements exp(X∗
lt (i)(T r λ̂r )), i =

1, . . . , nll/2. V2 denotes a diagonal matrix with nonzero elements exp(Xll-lt(i)λ̂ll-lt ),

i = 1, . . . , nll/2, where λ̂ll-lt denotes the MLE for λr\T rλr . Now,

Var(λr |nr ) �
(

X∗�
lt A12X∗

lt X∗�
lt A12Xll-lt

X�
ll-lt A12X∗

lt X�
ll-lt (A12 + A2)Xll-lt

)−1

,

where A12 = N
gnll

I +V1V2 and A2 = N
gnll

I +V2. From Lutkepohl (1996, p. 147), the
submatrix H that is formed by the first nβ rows and columns of Var(λr |nr ) is,

H =
(
X∗�
lt A12X

∗
lt

)−1 +
(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12Xll-lt
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×
[
X�
ll-lt (A12 + A2)Xll-lt − X�

ll-lt A12X
∗
lt

(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12Xll-lt

]−1

× X�
ll-lt A12X

∗
lt

(
X∗�
lt A12X

∗
lt

)−1

=
(
X∗�
lt A12X

∗
lt

)−1

+
(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

[
(A12 + A2) − A12X

∗
lt

(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

]−1

× A12X
∗
lt

(
X∗�
lt A12X

∗
lt

)−1

=
(
X∗�
lt A12X

∗
lt

)−1

+
(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

[
(I + A−1

12 A2) − X∗
lt

(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

]−1

× X∗
lt

(
X∗�
lt A12X

∗
lt

)−1

=
(
X∗�
lt A12X

∗
lt

)−1

+
(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

[
I −

(
I + A−1

12 A2

)−1
X∗
lt

(
X∗�
lt A12X

∗
lt

)−1
X∗�
lt A12

]−1

× X∗
lt

(
X∗�
lt A12X

∗
lt

)−1
.

From Lutkepohl (1996, p. 29, line 6), the expression above simplifies to,

H =
(
X∗�
lt A12X

∗
lt − X∗�

lt A12

(
I + A−1

12 A2

)−1
X∗
lt

)−1

=
[
X∗�
lt

(
A12 − A12(I + A−1

12 A2)
−1
)
X∗
lt

]−1
.

Within the Bayesian framework, a large sample (N → ∞) will swamp the prior
distribution, rendering it irrelevant for deriving posterior inferences (O’Hagan and
Forster 2004). This can be viewed as equivalent to considering a flat non-informative
prior, in our case assuming that g → ∞. For a sample size large enough to justify
ignoring the contribution of the prior distribution in Var(λ|n), i.e. assuming that A12 =
V1V2 and A2 = V2, asymptotically,

H �
[
X∗�
lt

(
V1V2 − V1V2(I + V−1

1 V−1
2 V2)

−1
)
X∗
lt

]−1

=
[
X∗�
lt

(V1V2 − V2
1V2(I + V1)

−1) X∗
lt

]−1

=
[
X∗�
lt

[(V1V2(I + V1) − V2
1V2

)
(I + V1)

−1] X∗
lt

]−1

=
[
X∗�
lt

(V1V2(I + V1)
−1) X∗

lt

]−1

=
[
X�
lt (V1,reduced(I + V1,reduced)

−1 [V2,1 + V2,2 + · · · + V2,( j1−1)× j2×···× jq

]
Xlt

]−1
.
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V1,reduced denotes a diagonal matrix with elements exp(Xlt (i)(T r λ̂r )), i =
1, . . . , nlt . V2,k, k = 1, . . . , ( j1 − 1) × j2 × · · · × jq , denotes a diagonal matrix with
elements exp(Xll-lt(nlt (k−1)+i)λ̂ll-lt ). This expression simplifies as q becomes smaller,
i.e. the fewer times Xlt is containedwithin X∗

lt . For example,when X∗
lt = Xlt , i.e.when

q = 1 and all factors other than Y remain in the logistic regression, V1,reduced = V1.
We now utilize the standard result (see, for example, Rohatgi 1976, p. 200)

that, asymptotically, the Binomial distribution Bin(ti ,
exp(X∗

lt (i)(T rλr ))

1+exp(X∗
lt (i)(T rλr ))

) of a data

point ti yi , i = 1, . . . , nlt , can be approximated by a Poisson distribution Poisson

(ti
exp(X∗

lt (i)(T rλr ))

1+exp(X∗
lt (i)(T rλr ))

). The Binomial observation ti − ti × yi is formed by adding

( j1 − 1) × j2 × · · · × jq independent Poisson cell counts. Considering the Poisson
log-linear model, ti − ti yi follows the Poisson distribution,

Poisson(exp(Xll-lt(i)λ̂ll-lt ) + · · · + exp(Xll-lt(nlt (( j1−1)× j2×···× jq−1)+i)λ̂ll-lt )).

Therefore, approximately,

ti
1

1 + exp(Xlt (i)(T r λ̂r ))

� exp(Xll-lt(i)λ̂ll-lt ) + · · · + exp(Xll-lt(nlt (( j1−1)× j2×···× jq−1)+i)λ̂ll-lt ). (3)

In matrix notation, we can now write that, asymptotically,

Var(T rλr |nr ) = T r (Var(λr |nr ))T�
r

= (
I 0

)
(Var(λr |nr ))

(
I
0

)

�
[
X�
lt

(
tV1,reduced(I + V1,reduced)

−2
)
Xlt

]−1

=
(
X�
lt VlogisticXlt

)−1
,

where t is a diagonal matrix with diagonal elements the number of trials ti , and
Vlogistic has diagonal elements tiexp{Xlt (i)β̂}exp{1 + Xlt (i)β̂}−2, i = 1, . . . , nlt .
(X�

lt VlogisticXlt )
−1 is, asymptotically, the posterior variance of β when the logistic

regression is fitted directly, and thus, we have shown that the posterior variance of β

is identical to the posterior variance of the elements of λ that correspond to β.
Wewill now show that, asymptotically, the posteriormean E(β|t, y) is the posterior

mean of the elements of λ that correspond to β. For a sample large enough to justify
ignoring the contribution of the prior in (1), we obtain that, E(λ|n) � I(λ̂)−1I(λ̂)λ̂ =
λ̂. Similarly, E(β|t, y) � β̂. Therefore, E(T rλr |n) � T r λ̂r , and it is sufficient to
show that β̂ = T r λ̂r . Closed-form expressions for themaximum likelihood estimators
of the parameters of a generalized linearmodel do not exist. As a result, wewill base the
derivation of this result on the Iterative Re-weighed Least Squares (IRLS) algorithm.
This is the standard procedure for maximizing the likelihoodwhen a generalized linear
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model is fitted. See Wood (2006) for more details. For a linear predictor Xdγ , this
iterative process is based on the formula,

γ i t+1 = γ i t +
(
X�
d V(γ i t )Xd

)−1
X�
d V(γ i t )ζ i t .

For a log-linear model, ζ i t is denoted by ζ i t
log-linear, and its i th element, i = 1, . . . , nll ,

is,

ζlog-linear(i) = ni
exp(Xrll(i)λ

i t
r )

− 1.

For a logistic regression model, ζ i t is denoted by ζ i t
logistic, and its i th element, i =

1, . . . , nlt , is,

ζlogistic(i) = ti yi
(
1 + exp(Xltβ

i t )
)− tiexp(Xltβ

i t )

ti

1 + exp(Xltβ
i t )

exp(Xltβ
i t )

.

For the log-linear model, the IRLS procedure is written as,

λi t+1
r = λi tr +

(
X�
rllVlog-linear(λ

i t
r )Xrll

)−1
X�
rllVlog-linear(λ

i t
r )ζ i t

log-linear,

where Vlog-linear is a diagonal matrix with diagonal elements exp{Xrll(i)λ̂r }, i =
1, . . . , nll . Algebraic operations similar to the ones carried out earlier show that
(X�

rllVlog-linear(λ
i t )Xrll)

−1 partitions as,

⎛
⎜⎜⎝
(
X�
lt VlogisticXlt

)−1 − [
X∗�
lt V1V2X∗

lt

]−1
X∗�
lt V1 × [V1 + I − V1V2X∗

lt

× [
X∗�
lt V1V2X∗

lt

]−1
X∗�
lt V1

]−1
X�−1
ll-lt


1 
2

⎞
⎟⎟⎠ ,

where 
1 and 
2 are matrices not relevant to this proof. Furthermore, X�
rllVlog-linear

(λi tr ) partitions as,

(
X∗�
lt V1V2 0

X�
ll-ltV1V2 X�

ll-ltV2

)
.

For the log-linear model, we write ζ log-linear = (ζ ∗�
lt ζ�

ll-lt )
�, where ζ ∗

lt corresponds
to the first nll/2 rows of Xrll . Now, the first nβ elements of (X�

rllVlog-linear(λ
i t )Xrll)

−1

X�
rllVlog-linear(λ

i t
r )ζ log-linear, i.e. the ones that correspond to the logistic regression

parameters, are given by,
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(
X�
lt VlogisticXlt

)−1
X∗�
lt V1V2ζ

∗
lt −

[
X∗�
lt V1V2X

∗
lt

]−1
X∗�
lt V1

×
[
V1 + I − V1V2X

∗
lt

(
X∗�
lt V1V2X

∗
lt

)−1
X∗�
lt V1

]−1

× [V1V2ζ
∗
lt + V2ζ ll-lt

]
.

The i th element of ζ ∗
lt , i = 1, . . . , nll/2, is,

ζlt (i) = ni
exp

(
Xlt (i)T rλ

i t
r

)
exp

(
Xll-lt(i)λ

i t
ll-lt

) − 1.

The i th element of ζ ll-lt , i = 1, . . . , nll/2, is,

ζll-lt(i) = ti − ni
exp

(
Xll-lt(i)λ

i t
ll-lt

) − 1.

It is straightforward to show that [V1V2ζ
∗
lt + V2ζ ll-lt ] is, approximately, a vector of

zeros. To show this, consider, without loss of generality, the i th element of this vector,

exp
(
Xlt (i)T rλ

i t
r

)
exp

(
Xll-lt(i)λ

i t
ll-lt

)
×
[

ni
exp

(
Xlt (i)T rλ

i t
r

)
exp

(
Xll-lt(i)λ

i t
ll-lt

) − 1

]

+ exp
(
Xll-lt(i)λ

i t
ll-lt

)
×
[

ti − ni
exp

(
Xll-lt(i)λ

i t
ll-lt

) − 1

]

= ti − exp
(
Xll-lt(i)λ

i t
ll-lt

)
×
[
1 + exp

(
Xlt (i)T rλ

i t
r

)]
.

Due to the Poisson approximation to the Binomial distribution,

exp
(
Xll-lt(i)λ

i t
ll-lt

)
� ti

1

1 + exp
(
Xlt (i)T rλ

i t
r

) .

Thus, the elements of vector [V1V2ζ lt + V2ζ ll-lt ] are all approximately zero, and the
first nβ elements of (X�

rllVlog-linear(λ
i t )Xrll)

−1X�
rllVlog-linear(λ

i t )ζ log-linear are approx-
imately equal to,

(
X�
lt VlogisticXlt

)−1
X∗�
lt V1V2ζ

∗
lt

=
(
X�
lt VlogisticXlt

)−1
X�
lt V1,reduced

(V2,1 . . .V2,( j1−1)× j2×···× jq

)
ζ ∗
lt .
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Using the Poisson approximation to the Binomial distribution, for the i th element of
ζ ∗
lt , and assuming without any loss of generality that i < nlt ,

ζ ∗
lt (i) � ni

exp
(
Xrll(i)λ

i t
r

) − 1 = ni
exp

(
Xlt (i)T rλ

i t
r

)
ti

1
1+exp(Xlt (i)T rλ

i t
r
) − 1

= ni
(
1 + exp(Xlt (i)T rλ

i t
r )
)− tiexp

(
Xlt (i)T rλ

i t
r

)
tiexp

(
Xlt (i)T rλ

i t
r

) .

Thus,

ζ ∗
lt (i) �

(
1 + exp

(
Xlt (i)T rλ

i t
r

))−1
ζlogistic(i).

Therefore, the updating step for T rλr is,

T rλ
i t+1
r = T rλ

i t
r +

(
X�
lt VlogisticXlt

)−1
X�
lt

×V1,reduced
(
I + V1,reduced

)−1 (V2,1 . . .V2,( j1−1)× j2×···× jq

) (
ζ i t�
logistic . . . ζ i t�

logistic

)�
.

= T rλ
i t
r +

(
X�
lt VlogisticXlt

)−1
X�
lt

×V1,reduced
(
I + V1,reduced

)−1 (V2,1 + · · · + V2,( j1−1)× j2×···× jq

)
ζ i t
logistic.

If the logistic regression was to be fitted directly, obtaining the MLE would be
based on the IRLS algorithm,

β i t+1 = β i t +
(
X�
lt Vlogistic(β

i t )Xlt

)−1
X�
lt × Vlogistic(β

i t )ζ i t
logistic.

By replacing the sum of the elements of the V2,k matrices with the approximate val-
ues given in (3), we observe that, asymptotically, the updating step is the same for both
T rλr and β. Thus, if the starting point for T rλr is the same as the starting point for β,
the iterative algorithm would give the same MLE for the logistic regression parame-
ters and the corresponding log-linear model parameters. The IRLS algorithm is robust
to different starting values when the likelihood is not flat. Therefore, asymptotically,
β̂ � T r λ̂r and the proof is complete. �	
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