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Abstract

The idea of proof-theoretic validity originated in the work of Ger-
hard Gentzen, when he suggested that the meaning of each logical
expression was encapsulated in its introduction-rules, and that the
elimination-rules were justified by the meaning so given. It was de-
veloped by Dag Prawitz in a series of articles in the early 1970s, and
by Michael Dummett in his William James lectures of 1976, later pub-
lished as The Logical Basis of Metaphysics. The idea had been attacked
in 1960 by Arthur Prior under the soubriquet ‘analytic validity’. Log-
ical truths and logical consequences are deemed analytically valid by
virtue of following, in a way which the present paper clarifies, from
the meaning of the logical constants. But different logics are based
on different rules, confer different meanings and so validate different
theorems and consequences, some of which are arguably not true or
valid at all. It seems to follow that some analytic statements are in
fact false. The moral is that we must be careful what rules we adopt
and what meanings we use our rules to determine.

Keywords: harmony, inferentialism, analytic, valid, introduction-rules, elimi-
nation-rules, negation, tonk; Gentzen, Prior, Prawitz, Dummett.

1 Analyticity

Could analytic statements be false? An analytic statement, or analytic
truth, is often characterized as one which is true in virtue of the meaning of
the words. So it seems to follow that analytic statements are ipso facto true.

∗This work is supported by Research Grant AH/F018398/1 (Foundations of Logical
Consequence) from the Arts and Humanities Research Council, UK.
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But must they be true? That question is many-ways ambiguous. To begin
with, there are, of course, analytic falsehoods, statements which are false
simply in virtue of their meaning, But that aside, analytic truths are often
thought to be necessarily true. Yet even necessary truths could have been
false, on some accounts of necessity. In S4, what is necessary, is necessarily
so; but in other modal systems, like T, that does not follow, and some
necessary truths might not have been necessary. In this sense, the question
is whether analytic truths, though in fact true, might have been false.

But these are not the issue I want to address. For the question whether
analytic statements must be true has a further sense. Consider Tarski’s dis-
cussion of semantically closed languages, for example. Tarski (1956a, p. 164-
5) claimed that natural languages are universal and semantically closed, and
that semantic closure leads to inconsistency, that is, that natural language
is inconsistent. This seems at first rather puzzling. How can a language, a
set of sentences or statements, be inconsistent? Is it not theories, based on
languages, that are consistent or inconsistent? The fact which Tarski was
invoking is that natural languages are interpreted languages—they consist
not just in a set of sentences, but of interpreted, meaningful sentences.1 In
virtue of that meaning, some of those sentences may force themselves on us,
for example, the Liar sentence, ‘This sentence is not true’ (call it L). Why
is L true in virtue of its meaning, that is, of what it says? Because we can
prove it true. Suppose L were not true. Then things would be as it says
they are. So it would be true. Hence, by reductio (if it weren’t true it would
be true), L is true. But if L is true then L is also not true (since that is
what it says), and so the meanings of certain terms in natural language, in
particular, the word ‘true’, commit their users to assenting to contradictory
sentences. Yet the meaning of ‘not’ also commits its users to refusing to
assent to contradictory sentences. Hence, simply in virtue of the meanings
of words, users of such a language are subject to contradictory and incon-
sistent demands. The language itself is inconsistent. In this sense, certain
statements may, although analytic, be false. ‘L is true’ and ‘L is not true’
are both analytic, but they cannot both be true, so one of them is false.
Analytic statements can be false.

Boghossian (1997, p. 334) makes a useful distinction between metaphys-
ical and epistemic analyticity:

“On [one] understanding, ‘analyticity’ is an overtly epistemologi-
cal notion: a statement is ‘true by virtue of its meaning’ provided
that grasp of its meaning alone suffices for justified belief in its
truth. Another, far more metaphysical, reading of the phrase

1Tarski (1956a, p. 166). Note that even his formalized languages are interpreted
(loc.cit.): “we are not interested here in ‘formal’ languages and sciences in one special
sense of the word ‘formal’, namely sciences to the signs and expressions of which no ma-
terial sense is attached.”
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‘true by virtue of meaning’ is also available, however, according
to which a statement is analytic provided that, in some appro-
priate sense, it owes its truth-value completely to its meaning,
and not at all to ‘the facts’.”

Boghossian believes that the metaphysical conception was undermined by
Quine’s arguments, but that the epistemic conception, grounding a notion
of the a priori, survives them. Nonetheless, it seems, pace Boghossian that
meaning does not confer knowledge, since some statements to which the
speaker is committed a priori are false. Indeed, Boghossian says only that
knowledge of meaning leads to a justified belief in the resulting statements.
For without the metaphysical underpinning, that belief and its justification
cannot make the statement true. Some analytic statements are false.

But if analytic commitments are not guaranteed to be true, wherein lies
their truth when they are true? In particular, what makes logical truths
true, when they are true, if not the meaning of the logical constants? It
is their necessity, their being true come what may. If one does not reject
Quine’s arguments against metaphysical analyticity, one will be condemned
to endorse whatever one’s concepts dictate. But those concepts may be con-
fused or otherwise mistaken. That is where metaphysics and epistemology
come apart.

Azzouni (2007) and Patterson (2007) have inferred from Tarski’s obser-
vation that natural language is inconsistent that it is in fact meaningless,
if not trivial. Eklund (2002) and Scharp (2007), however, have drawn the
more reasonable conclusion that inconsistent languages can be meaningful
and useable, but stand in need of revision. The constitutive principles on
which they are based, in particular, those for truth, pick out, for Scharp, in-
consistent concepts which need further elucidation, like the pre-relativistic
concept of mass. For Eklund, semantic competence “exerts pull” (as he
puts it): speakers’ semantic competence disposes them to accept the untrue
premises or invalid steps in arguments concerning inconsistent concepts. To
reject those premises or inferences would indicate lack of competence with
the concepts concerned.

Scharp cites another example, Dummett’s discussion of the term ‘Boche’.
Dummett (1973, p. 454) claims that simply using this term in a language
commits its practitioners to inferring that Germans are barbaric and prone
to cruelty. Simply as a consequence of using a word with a certain meaning,
one is committed, analytically, to assert falsehoods. That someone is Ger-
man warrants the claim that he is a Boche, and that he is Boche implies that
he is barbaric. It follows that Germans are barbaric, by the very meaning
rules of the term ‘Boche’. But that is false. So analytic statements can be
false.
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This doctrine may sound reminiscent of dialetheism, the doctrine that
there are true contradictions. But it adds a further twist to dialetheism.
From the fact that the meanings of certain expressions have the consequence
that they commit their users to assenting to contradictory statements, di-
aletheists infer that those contradictions are true. In contrast, the position
I am exploring reverses this inference. Anyone who uses such expressions
would indeed be committed to asserting contradictory statements. But since
contradictory statements cannot both be true, it is clearly a mistake to use
such expressions. Indeed, this was surely Tarski’s response. What he effec-
tively claimed was that both ‘L is true’ and ‘L is not true’, as formulated in
a natural language, are analytic; that is, users of such languages are com-
mitted to assenting to them both. That is precisely the respect in which
natural languages are, in Tarski’s eyes, inconsistent. Consequently, Tarski’s
response was to “abandon . . . the language of everyday life and restrict
[himself] entirely to formalized languages.”2

There are three positions one might adopt about a concept such as ‘true’:

1. that of Eklund and others (perhaps including Tarski): that the seman-
tic paradoxes show that the concept encapsulated in natural languages
is inconsistent and needs to be revised;

2. that of the dialetheists: that the concept we have is indeed inconsis-
tent, but we must accept this fact and its consequences; and

3. my own position: that the paradoxes reveal that our theory of truth
is mistaken, and more work is needed to find out how our concept of
truth really works.3

My contention is that adopting certain logical conceptions commits one to
analytic consequences some of which are mistaken and unacceptable. Only
the right conceptions of conjunction, implication and so on yield the right
account of analyticity. If we are not careful, our analysis may over-generate,4

declaring invalid arguments to be valid.

What, then, is the advantage of proof-theoretic validity over model the-
ory? The one is fallible, the other hollow. Proof-theoretic validity cannot
guarantee truth-preservation, but it does reveal immediately from the in-
ference rules we use what the meaning of the constituent concepts is, and
how they commit their user to their consequences. Model theory is hollow
in that it either invokes essentially modal concepts, or deflates that modal-
ity by reduction to extensional terms. But Etchemendy showed that the
reduction is conceptually confused:

2Tarski (1956a, p. 165).
3See, e.g., Read (2008, 2009).
4In Etchemendy’s phrase: Etchemendy (1990, p. 8).
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“Tarski’s analysis [of logical consequence] involves a simple, con-
ceptual mistake: confusing the symptoms of logical consequence
with their cause. Once we see this conceptual mistake, the
extensional adequacy of the account is not only brought into
question—itself a serious problem given the role the semantic
definition of consequence is meant to play—but turns out on
examination to be at least as problematic as the conceptual ad-
equacy of the analysis. . . . Suppose we have an argument form
all of whose instances preserve truth, just as the reductive ac-
count requires, but suppose that the only way to recognize this
is, so to speak, serially—by individually ascertaining the truth
values of the premises and conclusions of its instances . . . [T]he
premises would provide no justification whatsoever for a belief
in the conclusion. For, by hypothesis, knowing the specific truth
value of the conclusion in question would be a prerequisite to
recognizing the ‘validity’ of the argument.” (Etchemendy, 2008,
p. 269)

Alternatively, one might try to accept the modal criterion at face value: an
argument is valid if and only if it is impossible that the premises be true
and the conclusion false. However, that puts validity beyond our reach:
who knows what is possible and what is not? Proof-theoretic validity shows
directly what inferences a concept permits. It is fallible, in that it may
permit too much or too little. So conceptual revision (by rule revision) may
be necessary in the light of (logical) experience. But that only serves to
make it human.

2 Analytic Validity

We see, then that adopting a certain language may not only commit a
speaker to believing certain statements, it may also commit a speaker to
making certain inferences. Prior in his famous ‘Runabout Inference Ticket’
(Prior, 1960) described such a commitment as “analytic validity”. He didn’t
like it, and argued that validity must instead be based on truth-preservation,
not on meaning. Others claimed instead that the flaw lay in supposing that
arbitrary rules can confer meaning on the relevant expressions. Arguably,
‘tonk’ had not been given a coherent meaning by Prior’s rules. Rather,
whatever meaning tonk-introduction had conferred on the neologism ‘tonk’
was then contradicted by Prior’s tonk-elimination rule. But if rules were
set down for a term which did properly confer meaning on it, then certain
inferences would be “analytic” in virtue of that meaning. The question is:
what constraints must rules satisfy in order to confer a coherent meaning
on the terms involved?
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Dummett introduced the term ‘harmony’ for this constraint: in order
for the rules to confer meaning on a term, two aspects of its use must be
in harmony. Those two aspects are the grounds for an assertion as opposed
to the consequences we are entitled to draw from such an assertion. Those
whom Prior was criticising, Dummett claimed, committed the “error” of
failing to appreciate “the interplay between the different aspects of ‘use’, and
the requirement of harmony between them.”5 All aspects of an expression’s
use reflect its meaning. But when they are in harmony, each of the aspects
contributes in the same way.

Dummett is here following out an idea of Gentzen’s, in a famous and
much-quoted passage where he says that “the E-inferences are, through
certain conditions, unique consequences of the respective I-inferences.”6 The
idea was that the meaning encapsulated in the introduction- or I-rule serves
to justify the conclusions drawn by the elimination- or E-rule. But in fact,
Dummett has loftier ambitions than this. He introduces the idea of the
proof-theoretic justification of logical laws.7 Not only does the I-rule justify
the E-rule: the I-rule serves to justify itself.

Dummett distinguishes three grades of proof-theoretic justification. The
first is familiar, namely, the notion of a derived rule, that one can reduce a
complex inference, and so justify it, by articulating it into a succession of
simpler, more immediate, inference-steps. Then the simpler steps of imme-
diate inference justify and validate the indirect consequence.

The second grade of proof-theoretic validity rests on another familiar
notion, namely, that of an inference being admissible. We may not be able
to derive the conclusion from the premise or premises, but it may be that
if the premises are derivable, so is the conclusion. The classic example of
such a justification is cut-elimination, established by Gentzen for his se-
quent systems LJ and LK in his famous Hauptsatz. As a theorem about
the elimination of Cut, this result takes a calculus which includes the Cut
principle:

Γ⇒ Θ, D D,∆⇒ Λ

Γ,∆⇒ Θ,Λ
Cut

and shows that any derivation can be transformed into a derivation of the
same end-sequent in which no application of the Cut rule is made. As a
result about the admissibility of Cut, in contrast, one takes a calculus which
does not include the Cut rule and shows that if the premises of the Cut rule
are derivable in the system, then so is the conclusion.

5Dummett (1973, p. 396). Cf. Dummett (1978, p. 221): “If the linguistic system as a
whole is to be coherent, there must be a harmony between these two aspects.” See also
Dummett (1991, p. 215). He also put constraints on the introduction-rules. See §4 below.

6Gentzen (1969, p. 81)
7Dummett (1991, ch. 11).
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There is a crucial difference between derived rules and an admissible rule
like Cut, which reflects the difference between axiomatic and sequent calculi
on the one hand and natural deduction systems on the other. What is pur-
portedly “natural” about natural deduction systems is that they work from
assumptions, as Gentzen claimed was the natural method of reasoning in
mathematics.8 Sequent calculi, by contrast, consist of apodeictic assertions,
starting with axioms (aka basic sequents) and such that the end-sequent
of a derivation is asserted categorically. Thus, whereas natural deduction
derivations may be open, that is, contain open assumptions, sequent calculus
derivations are always closed. The premises of a Cut inference can be inter-
preted as saying that their succedent-formulae follow from their antecedent-
formulae as assumptions (given the tight connection between sequent calculi
and the corresponding natural deduction system), but they say this categor-
ically. In general, an admissible inference is one whose conclusion is prov-
able (from closed assumptions) when its premises are provable. This will
be generalized to the case of open assumptions in Dummett’s third grade of
proof-theoretic justification, but first let us concentrate on the second grade.

When transferring the concept of an admissible inference from sequent
calculus (or axiomatic systems) to the natural deduction case, caution is
necessary; and at its heart is the notorious Fundamental Assumption. The
Fundamental Assumption makes its first appearance in Dummett (1991, p.
252) in this form:

“Whenever we are justified in asserting [a] statement, we could
have arrived at our entitlement to do so by [direct or canonical]
means.”

Dummett attributes the Fundamental Assumption to Prawitz in this form:

“Prawitz expressly assumes that, if a statement whose principal
operator is one of the logical constants in question can be estab-
lished at all, it can be established by an argument ending with
one of the stipulated introduction rules.” (loc.cit.)

The reference is to a series of articles on the “foundations of a gen-
eral proof theory” which Prawitz published in the early 1970s. (Recall that
Dummett’s book, though not published until 1991, had been originally given
as the William James lectures at Harvard in 1976.) Prawitz’ idea was to
find a characterization of validity of argument independent of model theory,
as typified by Tarski’s account of logical consequence. Whereas Tarski’s
analysis deems an inference valid when it preserves truth under all re-
interpretations of the non-logical vocabulary, Prawitz, following Gentzen’s

8Gentzen (1969, p. 74 ff.). Cf. Gentzen (1932, p. 2 ff.).
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lead in the passage cited earlier, accounts an argument or derivation valid
by virtue of the meaning or definition of the logical constants encapsulated
in the introduction-rules. The idea is this: we take the introduction-rules
as given. Then any argument (or in the general case, below, any argument-
schema) is valid if there is a “justifying operation” (Prawitz, 1973, p. 233)
ultimately reducing the argument to the application of introduction-rules to
atomic sentences:

“The main idea is this: while the introduction inferences repre-
sent the form of proofs of compound formulas by the very mean-
ing of the logical constants when constructively understood and
hence preserve validity, other inferences have to be justified by
the evidence of operations of a certain kind.”9

The operations are essentially the reduction steps in the proof of normaliza-
tion, and depend on the Fundamental Assumption. An argument is valid
if either it reduces to a non-logical justification of an atomic sentence, or
it reduces to an argument whose last inference is an introduction inference
and whose immediate subarguments are valid.10

The connection between the second grade of justification and the reduc-
tion to an atomic base is usefully spelled out by Humberstone (2011, §4.13).
Take a natural deduction system in which no rule discharges assumptions
(or closes open variables), e.g., with the sole connectives ∧ and ∨. Say that
an argument from Γ to A is proof-theoretically valid if for any atomic base Π
(i.e., set of propositional variables, justified by what Dummett (1991, p. 204)
calls “boundary rules”) for which, for each B ∈ Γ, B can be derived from
Π by I-rules alone, so can A. Then (Humberstone, 2011, Theorem 4.13.3)
“all and only the provable sequents of [the] natural deduction system for
∧ and ∨ are proof-theoretically valid.” That is, the E-rules extend what
can be proved by the I-rules alone only to infer what can be “introductively
derived” from an atomic base of closed assumptions if their premises can be
so derived.

Following Prawitz, Dummett’s third grade of proof-theoretic justification
generalizes this account from closed arguments to open arguments, that is,
argument-schemata.11 Argument-schemata either have open assumptions
which will later be closed by rules which discharge those assumptions, or
free variables which will later be the eigenvariables of a quantifier rule. In

9Prawitz (1973, p. 234). Prawitz (nd, p. 21) justifies the I-rules as follows: “To make an
inference is to apply a certain operation to the given grounds for the premisses, and that
the inference is valid is now defined just to mean that the result of applying this operation
to grounds for the premisses is a ground for the conclusion, and hence it justifies the
person in question in holding the conclusion true.”

10See Prawitz (1973, p. 236).
11Prawitz (2006, p. 511) calls them “argument skeletons”.
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Prawitz’ discussion, these two cases are exemplified just by→I and ∀I. Such
an argument-schema is valid if, besides the earlier cases, the result of closing
the assumption (by a closed proof) or the eigenvariable (by substitution of
a closed term) is valid.

Let us consider a couple of examples, in this section, implication, and in
§ 3, negation. First, →I:

[A]
....
B

A→ B
→ I

inferring (an assertion of the form) A→ B from (a derivation of) B, permit-
ting the optional discharge of (several occurrences of) A. But A and B may
themselves contain occurrences of ‘→’, so we need not only to infer (assert)
‘→’-wffs, but also, as Dummett noted, to draw consequences from assertions
of the form A→ B. Consequently, we need a further rule of→E, which will
tell us when we may do so. Accordingly, all further inferences should reduce,
by the first grade of proof-theoretic justification, to application of →I and
→E. The crucial task now is to identify the form of→E which is justified by
→I by the second and third grades of proof-theoretic justification, so that all
inference involving ‘→’ reduces to and is justified by the meaning conferred
on ‘→’ by →I.

Whatever form →E has, there must be the appropriate justificatory op-
eration of which Prawitz spoke. That is, we should be able to infer from an
assertion of A→ B no more (and no less) than we could infer from whatever
warranted assertion of A→ B. We can represent this as follows:12

A→ B

[
[A]
B

]
....
C

C
→ E

That is, if we can infer C from assuming the existence of a derivation of B
from A, we can infer C from A→ B. Then by the Fundamental Assumption,
assuring us that there is a derivation α of A → B which terminates in an
application of →I, we can apply the justifying operation:

[A]
α

B
A→ B

→ I

[
[A]
B

]
....
C

C
→ E

reduces to

 A
α
B


....
C

12Cf. Schroeder-Heister (1984, p. 1294).
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inferring C directly from the grounds (the actual derivation α of B from A)
for asserting A→ B. Here we have replaced the assumption of a derivation

of B from A, marked by

[
[A]
B

]
, with the actual derivation α of B from A,

written

 A
α
B

.13

So much for the general theory. What, however, is the rule →E which
has here been justified? In particular, what does the minor premise actually
say? It speaks of whatever (C) can be inferred from the assumption that B
can be inferred from A. In other words, if we had a proof of A, we could
infer B (and continue to infer whatever, C, from B):14

A→ B A

[B]
....
C

C

Other things being equal,15 we can permute the derivation of C from B with
the application of the elimination-rule, to obtain the familiar rule of Modus
Ponendo Ponens (MPP):

A→ B A
B

MPP
....
C

Following Francez and Dyckhoff (2012), I dub the general procedure
by which we obtain the →E-rule from the I-rule, “general-elimination har-
mony”. It is the inverse of Prawitz’ justifying operation. The crucial idea is
distilled by Negri and von Plato (2001, p. 6):

“Inversion Principle: Whatever follows from the direct grounds
for deriving a proposition must follow from that proposition.”

Given a set of introduction-rules for a connective (in general, there may be
several, as in the familiar case of ‘∨’), the elimination-rules (again, there

13This notation is inspired by, but extends further, that introduced in Gentzen (1932),
in passages which did not appear in the published version Gentzen (1935) (translated in
Gentzen (1969)). See also von Plato (2008). Note that in both proofs, the assumption
A is closed, in the first being discharged by the application of →I, in the second by its
derivation or discharge within the overall derivation of C.

14See Dyckhoff (1988) and Negri and von Plato (2001, p. 8). For limits to the legitimacy
of this procedure, see Schroeder-Heister (2012) and Read (2014).

15In a particular case, we need to check that the permutation preserves the conditions
on being a proof. For an example where that condition may fail, see § 4 below.
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may be several, as in the case of ‘∧’) which are justified by the meaning
so conferred are those which will permit a justifying operation of Prawitz’
kind. Each E-rule is harmoniously justified by satisfying the constraint that
whenever its premises are provable (by application of one of the I-rules, by
the Fundamental Assumption), the conclusion is derivable (by use of the
assertion-conditions framed in the I-rule).

Elsewhere (Read, 2010), I have discussed the application of the general-
elimination procedure to ‘∧’ and ‘∨’. The I-rules for these connectives differ
from the I-rule for ‘→’ in three ways: no assumptions are discharged, ∧I
has two premises, and ∨I has two cases. The general conclusion reached was
that, where there are m I-rules each with ni premises (0 ≤ i ≤ m), there
will be

∏m
i=1 ni E-rules. Take a formula $ ~A with main connective ‘$’ and

immediate subformulae ~A. Then the E-rules have the form :

$ ~A

[π1j1 ]
....
C . . .

[πmjm ]
....
C

C
$E

where each minor premise derives C from one of the grounds, πiji for assert-

ing $ ~A. πiji may be a wff (as in ∧I), or a derivation of a wff from certain
assumptions (as in →I). Then the justifying operation permits one to infer
C from one of the grounds for assertion of $ ~A whenever one can infer C
from $ ~A itself:

α1
πi1

. . . αn
πini

$ ~A
$I

[π1j1 ]
β1
C

. . .

[πmjm ]
βm
C

C
$E

reduces to

[
αji

πiji

]
βi
C

Having one minor premise in each E-rule drawn from among the premises
for each I-rule ensures that, whichever I-rule justified assertion of $ ~A (here
it was the i-th), one of its premises can be paired with one of the minor
premises to carry out the reduction.16

3 The Fundamental Assumption

Before we turn to the second example, we need to give further consideration
to the Fundamental Assumption. This is the claim that if there is a proof of

16The point carries over to the quantifier rules, and vindicates what was said in Read
(2000, §§2.5-2.6) about the quantifier rules: the multiplicity of cases of ∀E (one for each
term) matches the multiplicity of premises in the real introduction-rule for ‘∀’, and simi-
larly for ‘∃’. Note that the justifying procedure not only ensures that the E-rule does not
permit inference of more than is warranted by the I-rule; it also ensures that it is strong
enough, in permitting inference of everything that is so warranted. See Read (2014).
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$ ~A, there is a proof of $ ~A in which the final step is an application of $I. In
the case of open arguments, this is false. Given a derivation of $ ~A by means
of an open argument (i.e., an argument-schema), with open assumptions or
free variables, there is no such guarantee. However, proof-theoretic justifi-
cation of the third grade reduces to the second grade by closing those open
assumptions and free variables. This is reflected in Prawitz’ theorem on the
form of normal deductions.17 Define a thread as a sequence of successive
formulae in a derivation running from an assumption to the end-formula,
and let a branch be an initial segment of a thread which ends in the mi-
nor premise of an application of an E-rule (or in the end-formula if there
is no such minor premise). Prawitz’ result shows that, given a proof, there
is a proof in which each branch is divided into two parts, an E-part and
an I-part, separated by a minimum formula. Each formula in the E-part is
major premise of an E-rule, and each formula in the I-part (except the last)
is premise of an I-rule. Reduction of proof-theoretic justification of the third
to the second grade depends on this result. Moreover, this result itself de-
pends on the existence of what Dummett (1977, p. 112) calls “permutative
reductions”.

The proof of normalization consists in the removal of maximum formu-
lae from derivations. A maximum formula is a formula which is both the
conclusion of an I-rule and major premise of an E-rule, as was $ ~A above.
Dummett, in a graphic expression, calls such a part of a derivation a “local
peak” (Dummett, 1991, p. 248), so that normalization is the “levelling of lo-
cal peaks”. However, before Prawitz’ “justifying operations” can be applied
to local peaks, a preliminary permutative reduction is needed:

“The other reduction steps are auxiliary, being principally con-
cerned to rearrange the order in which the rules are applied, so
that a proof in which a sentence is introduced by an introduc-
tion rule, and only later removed by means of an elimination
rule in which it is the major premiss, can be transformed into
one in which the elimination rule is applied immediately after
the introduction rule to form a local peak.” (Dummett, 1991, p.
250)

What we have in general is called by Prawitz a “maximum segment” (Prawitz,
1965, p. 49), what we might graphically describe as a “local plateau”:18 a
succession of occurrences of the same formula as minor premises of appli-
cations of E-rules separating its introduction by an I-rule and elimination
by the corresponding E-rule. The procedures by which we reduce plateaux

17Theorem 3 in ch. III §2 of Prawitz (1965). Cf. Gentzen’s “Sharpened Hauptsatz” in
Gentzen (1969, §IV.2). Schroeder-Heister (2006, p. 531) calls the Fundamental Assump-
tion a corollary of normalizability, but it is really a lemma essential to its proof.

18Gentzen calls it a “hillock” (Hügel): see von Plato (2008, p. 247).
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to peaks are Dummett’s permutative reductions. They correspond to the
reductions of rank in the proof of Cut-elimination. By successively permut-
ing the application of an I-rule for a connective with the E-rule for which
its conclusion is a minor premise, we can eventually bring the formula in
question face to face with the corresponding application of the E-rule for
the same connective. Then what Dummett calls the “fundamental reduc-
tion step” which we described at the end of § 2 can be applied to eliminate
the maximum formula entirely.

What this shows, however, is that the Fundamental Assumption is more
than just an assumption. It requires proof that the rules as a whole are
such that each branch has this hour-glass shape, with a minimum formula
separating the branch into an E-part and an I-part. That is a holistic matter,
depending on the interaction between the various rules and connectives. It
cannot be simply assumed, but must be proved.

The other example which invites exploration is negation. Prawitz makes
little mention of negation in his papers on general proof theory. Where it
does appear, ¬A is treated by definition as A → ⊥, where the “absurdity
constant” ⊥ is governed solely by an elimination-rule, from ⊥ infer anything:

⊥
A

⊥E

As far as I know, every other author follows Prawitz’ lead except Dummett
(1977, ch. 4); thereby, the harmony of ‘¬’ devolves on the harmony of ‘→’
(and ‘⊥’).

Gentzen (1969, II 2.21, 5.2) treats negation in two ways in his published
paper, as primitive and as defined, but using the absurdity constant ⊥ in
both cases. In the MS previously mentioned, he treated ‘¬’ as primitive
without appeal to ⊥. As introduction-rule, he took reductio ad absurdum
(dubbed by him ‘R’) in this form:

[A]
....
B

[A]
....
¬B

¬A ¬I

What elimination-rule does this justify? We can infer from ¬A all and only
what we can infer from its grounds. There is one I-rule with two premises
(m = 1, n1 = 2), so there will be two E-rules, one for each premise of the
I-rule:

¬A

[
[A]
B

]
....
C

C
¬E1

and ¬A

[
[A]
¬B

]
....
C

C
¬E2
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Applying the simplification as before, where we infer C from assuming the
existence of derivations, respectively, of B and of ¬B from A, we obtain:

¬A A

[B]
....
C

C
and so ¬A A

B....
C

and

¬A A

[¬B]
....
C

C
and so ¬A A

¬B....
C

The second of these is simply a special case of the first, and so we have
justified, by considerations of ge-harmony, a form of ex falso quodlibet (EFQ)
as the matching elimination-rule for ‘¬’ (dubbed ‘V’ by Gentzen):

¬A A
B

¬E

We need to check, however, that this rule does accord harmoniously
with ¬I and permit a justification of Prawitz’ kind. So suppose we have an
assertion of ¬A justified by ¬I, immediately followed by an application of
¬E:

[A]
α1

¬B

[A]
α2

B
¬A ¬I

β
A

C
¬E

If we now close the open assumptions of the form A in α1 and α2 with the
derivation β, we obtain: [

β
A

]
α1

¬B

[
β
A

]
α2

B
C

¬E
(†)

An obvious worry, and it was Gentzen’s worry at this point, is that we still
have an occurrence of the wff ¬B, major premise of an application of ¬E
and possibly inferred by ¬I. Indeed, since A and B are independent, the
degree of ¬B may be greater than that of ¬A. So has a suitable reduction
been carried out?19

19Dummett (1977, p. 154) seems not to address this worry.
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Gentzen’s solution, described in the MS but not appearing in the pub-
lished version (where the contradictories B and ¬B were replaced by ‘⊥’), is
first to perform a new kind of permutative reduction on the original deriva-
tion of ¬A, so that it concludes in a single application of ¬I. So suppose
that the derivation of ¬A concludes in successive applications of ¬I:

[A,B]
β1
¬C

[A,B]
β2
C

¬B ¬I

[A]
α2
B

¬A ¬I

The detour through ¬B is unnecessary. The derivation can be simplified as
follows:

[A],

 [A]
α2

B


β1
¬C

[A],

 [A]
α2

B


β2
C

¬A ¬I

By successive simplifications of this kind, we can ensure that β1 does not
conclude in an application of ¬I and so ¬B in (†) is not a maximum formula.

4 Fregean Absolutism

We have now shown the analytic validity of →I, MPP, RAA (reductio ad
absurdum, or ¬I) and EFQ (or ¬E). →I and ¬I are justified directly, in
defining the meaning of ‘→’ and ‘¬’, while MPP and EFQ are justified
indirectly, as admissible rules, by showing that whenever their premises are
derivable, so too is their conclusion. Consequently, whatever we can prove
with these rules is analytic, by proof-theoretic justification of the first grade,
in particular:

A
(1)

B → A
→ I

A→ (B → A)
→ I(1) and

¬A (1)
A

(2)

B
¬E

A→ B
→ I(2)

¬A→ (A→ B)
→ I(1)

But by my lights, (*) A→ (B → A) and (**) ¬A→ (A→ B), as general
forms of inference, are false. As Ackermann put it:

“One would reject the validity of the formula A → (B → A),
since it permits the inference from A of B → A, and since the
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truth of A has nothing to do with whether a logical connection
holds between B and A.”20

Indeed, EFQ is also invalid, allowing one apparently to infer anything what-
ever from a pair of contradictories, for in conjunction with other plausible
theses, it can be shown that EFQ leads to the validation of invalid argu-
ments.21

Where does the mistake lie? Arguably, it lies in the introduction-rules
postulated for ‘→’ and ‘¬’ and the meanings thereby conferred on these
connectives. That’s what results in the theses (*) and (**), which follow
analytically from those rules, as we saw in §§ 2-3.

It is tempting to think that there’s nothing in themselves wrong with
(*) and (**); what is wrong is to suppose those theses hold of ‘if’ and ‘not’.
That is the moral often drawn from the Paradoxes of Material Implica-
tion.22 It is thought that they are indeed “true” (analytically) of ‘→’ and
‘¬’, but they are paradoxical (counter-intuitive, that is, false) as applied to
our pre-theoretic conceptions of implication and negation, since there are
false implications with false antecedent and others with true consequent.

This is a mistake. Take ¬I first. As we saw, ¬I justifies EFQ, that is, the
claim that each statement is paired with another, its contradictory, which
together entail everything. To be sure, A and ‘If A then everything is true’
together entail that everything is true, and so entail everything. But we
can deny A without claiming that if A then everything is true. Not every
falsehood is that false! A and ¬A cannot both be true, but their conjunction
does not necessarily bring the heavens crashing down, as Tennyson’s Lady
of Shalott feared:

Out flew the web and floated wide;
The mirror cracked from side to side;
‘The curse is come upon me’, cried
The Lady of Shalott.

We can justify denying A simply by showing that A implies a falsehood,
without necessarily showing it implies everything. The contradictory of A
is the weakest proposition inconsistent with A, and ‘If A then everything is
true’ is too strong.

20Ackermann (1956, p. 113): “So würde man die Allgemeingültigkeit einer Formel A →
(B → A) ablehnen, da sie den Schluß von A auf B → A einschließt und da die Richtigkeit
von A nichts damit zu tun hat, ob zwischen B und A ein logischer Zusammenhang besteht.”

21See, e.g., Read (1988, ch. 2).
22See, e.g., Haack (1978, p. 200).
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The concept ‘If A then everything is true’ is often referred to as Boolean
negation.23 It is a dangerous and unhelpful concept, which threatens to triv-
ialize any theory. One does not need to be a dialetheist to want to reject it.
Whether a theory contains both A and ¬A (where ‘¬’ is Boolean negation),
for some A, is in general undecidable. But closing under consequence (as one
does to form a theory) results in the trivial theory if both such statements
are in it. This is unhelpful. A better account of negation is given by De
Morgan negation.24

Jean van Heijenoort contrasted absolutism with relativism in logic:

“Absolutism, . . . is the doctrine that there is one logic, that this
logic is what has become known as classical logic, and, moreover,
that such a logic is all-embracing and universal. Relativism is
the opposite doctrine.” (van Heijenoort, 1985, p. 75)

He attributed absolutism to Kant, Frege and Russell. Kant seems in strange
company as an adherent of classical logic. But in light of this, and the fact
that van Heijenoort recognises the two doctrines as “tendencies”, one might
adapt the title of absolutism to the belief in one universal logic, whatever it
is, which I have elsewhere termed “logical monism” (Read, 2006).

We may well tolerate other logics, e.g., intuitionistic or dialetheic logic,
or even classical logic with its commitment to EFQ, but that does not mean
we accept them, or believe that they are suitable for the task of determin-
ing logical validity. They give the wrong answer about certain arguments,
either validating invalid arguments (over-generation), or invalidating valid
arguments (under-generation). Nonetheless, this raises the question why
these arguments are valid or invalid, even though certain logics give a con-
trary verdict. They are invalid when the premises can be true while the
conclusion is false; they are valid when this is impossible. Classical and
intuitionistic logic fail as logics of the conditional since the truth of the con-
sequent does not suffice to make a conditional true, nor does the falsity of
the antecedent. There are false conditionals with false antecedent, e.g., ‘If I
didn’t post the letter I burned it’, assuming merely that I posted it; and with
true consequent, e.g., ‘If second order logic is undecidable it is incomplete’,
since other logics, e.g., first-order logic, are undecidable but still complete.
So the compound conditionals, ‘If I posted the letter, then if I didn’t post it
I burned it’ and ‘If second-order logic is incomplete, then if it’s undecidable
then it’s incomplete’ (of the form (**) and (*) respectively) are false, since
they have (or could have) true antecedent and false consequent.

A first thought concerning what is wrong with →I (as given above) is

23See, e.g., Priest (1990, p. 203).
24See, e.g., Read (1988, §7.6).
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that it allows vacuous discharge of the assumption, as in the above proof of
(*). Prawitz (1965, p. 84) showed that we can circumvent this restriction
and still prove (*), by use of the rules for ‘∧’ and ‘∨’:

A
(1)

B
(2)

A ∧B ∧I

A
∧E

B → A
→ I(2)

A→ (B → A)
→ I(1)

A
(1)

A ∨ (B → A)
∨I

A
(3)

B
(2)

B → A
(4)

A
→ E

A
∨E

B → A
→ I(2)

A→ (B → A)
→ I(1)

Of course, these proofs are not in normal form, but, more importantly, they
cannot be normalized without permitting vacuous discharge of assumptions
in →I. With this restriction, →I does not interact holistically with the rules
for ‘∧’ and ‘∨’ to allow normalization. When the maximum formula is
removed by the reduction step, the later application of →I to derive B → A
is no longer legitimate if vacuous discharge is disallowed. Prawitz (1965,
p. 84 n.2) floats the idea that one could simply restrict proofs to proofs in
normal form, but realises that this would prevent us chaining proofs together
in ways we find convenient and natural. For chaining two proofs in normal
form together might result in a non-normal derivation, for example:

A B
A ∧B

B → (A ∧B) B → (A ∧B) B

A ∧B
A

B → A

Chaining these proofs together and eliminating the maximum formula B →
(A ∧ B) results in the non-normalizable derivation of B → A from A given
above.

The moral is that harmony is not enough to guarantee validity. Har-
mony ensures that the consequences of an assertion are no more and no
less than the meaning encapsulated in the introduction-rule warrants. But
that meaning may itself be corrupt. An example is the I-rule for • in Read
(2000, §2.8), a formal Liar whose assertion warrants its own denial. One
might try to bar such monsters by a restriction on the form of I-rules. The
•I-rule breaches Dummett’s proposed constraint on I-rules, his “complexity
condition”:

“The minimal demand we should make on an introduction rule
intended to be self-justifying is that its form be such as to guar-
antee that, in any application of it, the conclusion will be of
higher logical complexity [i.e., degree] than any of its premises
and than any discharged hypothesis.” (Dummett, 1991, p. 258)
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As with many proposed solutions to the Liar, out goes the baby with the
bath-water: e.g., Gentzen’s rule R (i.e., ¬I) does not satisfy Dummett’s con-
dition, yet seems otherwise harmless. Moreover, the complexity condition
does not help with our present difficulty, since →I satisfies the condition,
yet leads directly to (*).

Prawitz (1985, 2006), and following him, Schroeder-Heister (2006), try
to restrict further the proof-theoretic validity which results from the I-rules
by relativizing it to the existence of a justification procedure:25

“My approach is now to let the arguments for which validity is
defined consist of argument skeletons together with proposed jus-
tifications of all the inferences that are non-canonical.” (Prawitz,
2006, p. 514)

As we have seen, whether there are such justifications, or reductions, will
depend on the form of the E-rules and on the interaction of the various rules
for the different connectives (in the end, on the Fundamental Assumption).
But if the E-rules are in harmony with the I-rules (and the Fundamental
Assumption can be accepted for argument-schemata as in § 3) and so admis-
sible, then they are justified and the appropriate reductions do exist. In that
case, the justification cannot be denied, and the consequent derivations are
analytically valid, even if they fail to preserve truth. So such a relativization
is ineffective.

What has been realised over the past forty years or so (in the theory
of relevance logic, in linear logic, and in the theory of sub-structural logics
generally) is that one needs to distinguish two different ways of combining
premises. They may be used side by side to entail a conclusion, or one may
be applied to the other. For example, A∧B follows from A and B in tandem,
whereas B follows from applying A→ B to A. In this way, we can develop
a theory of ‘→’ and ‘¬’ which does not have such problematic consequences
as (*) and (**). What is valid is then analytically valid in virtue of the
meanings of ‘→’, ‘¬’ and so on. This is not the place to spell out the details,
which require making the assumptions in the rules explicit and the way they
are combined to yield the conclusion. There is nothing new in this: the task
is to find the right (formulation of the) rules, and hence the real meaning of
the logical terms, by checking their consequences and revising accordingly.26

The moral we can draw, however, is that what logic one is committed to
depends on the meaning one gives to the logical particles, encapsulated in
the rules for their assertion, and so adopting the wrong logic may result in
asserting falsehoods. The latter is something to be avoided.

25Prawitz accepts Dummett’s complexity condition on the I-rules: see Prawitz (2006,
p. 515).

26See, e.g., Read (1988, ch. 1).
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5 Conclusion

A dominant account of validity was given shape by Tarski, saying that an
inference is valid if it preserves truth through all substitutions for the non-
logical vocabulary. This is a reductionist enterprise, attempting to reduce
the real modality in the criterion, ‘the premises cannot be true without the
conclusion’, to the possibility of re-interpretation. It is a hostage to fortune
whether the reduction is available (as Etchemendy (1990) observed), and
at best turns the obscure question of validity into the more obscure one
of the possibility of true premise and false conclusion. In contrast, the
idea of proof-theoretic validity is that validity of inference is based on rules
of proof and the meanings of the logical constants encapsulated in those
rules. Unlike Tarski’s account, no division is required between the logical
and descriptive vocabulary. In Tarski-validity, the essential idea is truth-
preservation regardless of the meaning of the descriptive terms, while in
proof-theoretic validity it is proof in accordance with the meanings of the
logical terms given by the proof-rules. Those inferences simply in virtue of
the meanings of the logical terms constitute the formal validities; others are
materially valid in virtue of the meanings of (both logical and) non-logical
terms.27

Thus a proof-theoretically valid inference is analytically valid in virtue
of the meanings of the logical constants specified by the rules for their ap-
plication. Prawitz wrote:

“Once we know the condition for correctly asserting a sentence,
we also know when to accept an inference and when to accept
that a sentence follows logically from a set of premisses.”28

However, despite Prawitz’ use of ‘know’ here, analytic truth, and analytical
validity, does not guarantee truth or validity. Use of an expression with a
certain meaning can commit its user to the a priori assertion of falsehoods or
to the endorsement of invalid inferences. The classic examples are Tarski’s
claim that natural languages are inconsistent, by virtue of the meaning they
give to the term ‘true’, and Prior’s observation that validity can be trivialized
by adoption of his rules for the term ‘tonk’. An understanding of ‘true’ (if
Tarski is right) and of ‘tonk’ commits their users to a justified belief in
the correctness of certain statements and of certain inferences. But justified
belief is famously not enough to guarantee truth. Hence Tarski refrains from
using ‘true’ in its natural language guise and opts for an account of truth in

27See, e.g., Read (1994).
28Prawitz (1985, p. 168). Cf. (Prawitz, 1973, p. 232): “An argument that is built up . . .

of other arguments or argument schemata is thus valid by the very meaning of the logical
constants . . . ; it is valid by definition so to speak.”
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stratified formal languages; Prior and others refrain from using ‘tonk’ with
Prior’s rules.

Prawitz, and following him, Dummett set out to articulate the mech-
anisms by which the rules for a logical term result in an analytical com-
mitment to the validity of the resulting inference. The core idea is that
all aspects of the term’s meaning should be in harmony. Meaning can be
conferred by I-rules, E-rules, and by the proofs composed of such rules. But
when the rules are in harmony, they all determine the same meaning. In
particular, the whole meaning is then contained in the introduction-rule or
rules. The elimination-rule is in harmony and is justified by the meaning so
conferred if it is admissible, that is, if its conclusion is provable (without the
rule, from some non-logical base) whenever its premises are. This is Dum-
mett’s second grade of proof-theoretic justification. Even here, there is a
crucial assumption, what Dummett terms the “Fundamental Assumption”,
namely, that the elimination-rule can be permuted with the other E-rules
so that its major premise is an application of the corresponding I-rule. In
the familiar systems, this is true, but nonetheless it is a fact which needs
to be proved. In general, it is an holistic assumption about the interaction
between the rules for the different logical terms, so that local plateaux (or
“hillocks”) can be reduced to mere peaks.

Moreover, natural deduction proofs do not consist only of closed proofs,
but also of open proofs, that is, of derivations of conclusions from assump-
tions, and derivations generalizing on free variables. The Fundamental As-
sumption is simply false of open proofs. To apply the Fundamental Assump-
tion in order to show the E-rules admissible, it needs to be shown that the
proof can be articulated into a succession of branches, each ending in the
application of an E-rule, and then closing off the open assumptions and free
variables in each branch to obtain a closed proof for which the Fundamental
Assumption is available.

What is good about the notion of proof-theoretic validity is that it recog-
nises that what rules one adopts determines the meaning of the logical terms
involved and commits one to accepting certain inferences as valid. What is
bad is to infer from this that those inferences really are valid. Proof-theoretic
validity serves an epistemological function to reveal how those inferences re-
sult from the meaning-determining rules alone. But it cannot serve the
metaphysical function of actually making those inferences valid. Validity is
truth-preservation, and proof must respect that fact.

Nonetheless, this is not to equate validity with preservation of truth
through arbitrary replacement of the non-logical vocabulary. That is hostage
to fortune through the richness or poverty of the vocabulary and availabil-
ity of suitable models, and so can also result in the validation of invalid
inferences (and failure to validate valid ones). Moreover, it is hollow and
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unworkable since it equates validity simply with membership of a class of
arguments all of which are valid, as Etchemendy (2008) observed. Validity
is necessary truth-preservation, in itself dependent on the meanings of the
constituent propositions. To that extent, Eklund and Scharp are right: be
careful what you wish for—or choose to mean—for you may receive it, even
though it may not be what you want, or what is true or valid.
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