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ABSTRACT: A simple synthetic autocatalytic replicator 

is capable of establishing and driving the propagation of 

a reaction-diffusion front within a 50 µL syringe. This 

replicator templates its own synthesis through a 1,3-

dipolar cycloaddition reaction between a nitrone compo-

nent, equipped with a 9-ethynylanthracene optical tag, 

and a maleimide. Kinetic studies using NMR and UV-

Vis spectroscopies confirm that the replicator forms effi-

ciently and with high diastereoselectivity and this repli-

cation process brings about a dramatic change in optical 

properties of the sample – a change in the color of the 

fluorescence in the sample from yellow to blue. The ad-

dition of a small amount of the pre-formed replicator at a 

specific location within a microsyringe, filled with the 

reaction building blocks, results in the initiation and 

propagation of a reaction-diffusion front. The realization 

of a replicator capable of initiating a reaction-diffusion 

front provides a platform for the examination of inter-

connected replicating networks under out-of-equilibrium 

conditions involving diffusion processes. 

The spontaneous generation of stationary patterns and 

propagating fronts in chemical systems
1
 has intrigued 

scientists for generation. Such phenomena are ubiqui-

tous in nature
2
 and the physical processes behind their 

appearance and stability have been studied extensively
3
 

and are now relatively well understood. Propagating 

reaction-diffusion fronts have received significant atten-

tion in this respect. Frequently, one or more oscillatory 

or autocatalytic processes are found at the core of these 

systems. Front generation is initiated when an autocata-

lyst is added at a discrete location in an expanse of reac-

tant, initially at uniform concentration and the ensuing 

reaction generates wave fronts, which propagate out-

ward from the initial reaction zone. In almost all
4
 of the 

examples reported to date, the autocatalysis is based on 

inorganic chemistry, although, more recently, a small 

number of examples based on RNA
5
 and DNA

6
 have 

been described. Self-replication
7
 represents a niche of 

autocatalytic behavior in which a structurally complex 

template is capable of recognizing the building blocks 

necessary for its own formation and catalyzing their re-

action to form an exact copy of itself. We, and others, 

have described the use of such systems in instructable 

networks
8
, as tools for dynamic systemic resolution

9
 and 

in the construction
10

 of mechanically-interlocked mole-

cules. Although all of these systems display the non-

linear kinetic characteristics of autocatalytic systems to a 

greater or lesser extent, in general, they have been stud-

ied under well-stirred batch reactor conditions. The con-

sequence of this reaction format places a fundamental 

limit on the level of complexity and emergence that can 

be generated by such system. In order to create diverse 

emergent behavior there is a need to study self-

replicating systems under out-of-equilibrium conditions 

and propagating reaction-diffusion fronts could provide 

an ideal vehicle for such studies. Here, we report the 

design and implementation of a molecular replicating 

system capable of generating and sustaining a propagat-

ing reaction-diffusion front. 

Previously, we have described
11

 an efficient synthetic 

replicator based on the general design shown in Figure 

1a. Reaction of nitrone 1a with maleimide 2 in CDCl3 at 

–10 °C results in the rapid, autocatalytic formation of 

the cycloadduct 3a. Cycloadduct 3a is a very efficient 

template for its own formation – it is capable of acceler-

ating the reaction between 1a and 2 up to 125 × through 

a ternary complex [1a•2•3a] and the structure of this 

complex ensures that only the trans diastereoisomer of 

3a is formed during this process. Conventionally, we 

have monitored the kinetics of replication processes by 

NMR spectroscopy. In a reaction diffusion format, this 

reaction requires an alternative method to monitor the 

progress
12

 of the reaction. Ideally, we desired an optical 

signature of replication. Therefore, we designed nitrone 

1b, bearing a 9-ethynylanthracene tag. RM1 calculations 

(Figure 1b) indicated that this nitrone, in partnership 

with maleimide 2 was capable of furnishing template 3b 

through a ternary complex [1b•2•3b]. This complex 

should permit the formation of only the trans diastereo-

sisomer of 3b. TD-DFT calculations (see Supporting 

Information) indicated that a significant change in the 

350 to 400 nm region of the UV-Vis spectrum could be 

expected on conversion of nitrone 1b to cycloadduct 3b 
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as a result of the presence of the 9-ethynylanthracene 

unit. We synthesized nitrone 1b using standard methods 

and this compound forms yellow-colored solutions in 

CDCl3, which exhibit an intense yellow fluorescence 

(Figure 1a). Pleasingly, the conversion of 1b into 3b 

resulted in a very significant color change – the yellow 

fluorescence of 1b being replaced (Figure 1a) by the 

blue fluorescence of 3b.  

 

Figure 1. (a) A self-replicating template 3a is constructed 

by the reaction of nitrone 1a with maleimide 2 through in 

the catalytically-active [1a•2•3a] ternary complex. Re-

placement of the substituent R affords replicator 3b, which 

incorporates a 9-ethynylanthracene optical tag, derived 

from nitrone 1b. The formation of cycloadduct 3b, mediat-

ed by ternary complex [1b•2•3b], is now associated with a 

change in fluorescence from yellow (1b) to blue (3b). (b) 

Calculated (RM1) structure of the transition state leading to 

3b from the ternary complex [1b•2•3b], 

Next, we conducted a series of kinetic experiments in-

volving the reaction of 1b and 2 in CDCl3 at 0 and 

20 °C, monitoring the production of cycloadduct 3b by 

500 MHz 
1
H NMR spectroscopy. The results of these 

experiments and subsequent fitting of the experimental 

data at 20 °C to the appropriate kinetic model are shown 

in Figures 2a and 2b. These kinetic experiments reveal 

that replicator 3b is an excellent template for its own 

formation – the ternary complex [1b•2•3b] generates an 

effective molarity
13

 (EM) of 16.2 M for the cycloaddi-

tion reaction (for details, see Supporting Information). 

This value for the ternary complex EM is broadly simi-

lar to those determined previously
9e,10b,11

 for similar rep-

licators and indicates that the incorporation of the 9-

ethynylanthracene optical probe has essentially no effect 

on the functioning of the replicator. 

 

Figure 2. (a) Concentration (red circles) and rate (black 

dotted line) vs time profile for the formation of 3b from 

nitrone 1b and maleimide 2 as determined by 500 MHz 
1
H 

NMR spectroscopy ([1b] = [2] = 10 mM, 20 °C, CDCl3). 

The red line shows the fit of the appropriate kinetic model 

to these data. (See Supporting Information) (b) The appear-

ance of the resonance associated with the formation of the 

trans-3b cycloadduct over time in the 500 MHz 
1
H NMR 

spectrum of a reaction mixture containing 1b and 2 ([1b] = 

[2] = 10 mM, 20 °C, CDCl3). (c) Selected UV-Vis spectra 

recorded during the reaction of 1b and 2 ([1b] = [2] = 

10 mM, 20 °C, CDCl3), showing the disappearance of 

nitrone 1b (346 nm band) and simultaneous appearance of 

cycloadduct 3b (297 nm band). (d) Comparison of absorb-

ance at 297 nm vs time. The blue circles show data deter-

mined experimentally from the spectra in Figure 2c. The 

red line shows the absorbance at 297 nm computed using 

the concentrations of 3b determined from the best fit of the 

appropriate kinetic model to the NMR data in Figure 2a. 

Having established that 3b was indeed capable of tem-

plating its own formation, we next sought to establish 

that the color change that is observed during this reac-

tion is a signature of the autocatalytic replication pro-

cesses. Accordingly, we monitored the formation of 3b 

using UV-Vis spectroscopy (Figure 2c) under identical 

conditions to those employed in the NMR kinetic exper-
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iments. As expected, the UV-Vis spectra recorded during 

the reaction show the disappearance of a band corre-

sponding to nitrone 1b at 346 nm with the concomitant 

appearance of a band at 297 nm corresponding to cy-

cloadduct 3. In order to relate this data to the kinetic data 

derived from NMR spectroscopy, we reconstructed the 

reaction profile at 297 nm by computing the expected 

absorbance at this wavelength from the concentrations 

of the components of the reaction mixture determined 

from the best fit our kinetic model to the NMR data. The 

excellent agreement (Figure 2d) between the calculated 

and observed reaction profiles provides compelling evi-

dence that the color change that is observed during this 

reaction is indeed the signature of the replication of 3b. 

 

Figure 3. (a) Graphical representation and (b) photograph 

of the experimental setup employed for investigation of the 

propagating reaction-diffusion front initiated by replicator 

3b in two 50 µL gas tight syringes. The upper syringe in 

each case represents the control experiment comprising the 

nitrone 1b and maleimide 2 only. ([1b] = [2] = 5 mM, 

20 °C, CDCl3). The lower syringe is seeded with ca. 2 µL 

of a solution of 3b. ([1b] = [2] = 5 mM, [3b] = 10 mM, 

20 °C, CDCl3). 

Normally, propagating reaction-diffusion fronts are ob-

served in reactions that are initiated on flat plates or 

within capillary tubes. Since CDCl3 is a relatively vola-

tile solvent, we chose to investigate whether 3b was ca-

pable of supporting a propagating reaction-diffusion 

front within a 50 µL gas tight syringe of internal diame-

ter 1.03 mm. Figure 3 illustrates our experimental setup. 

Two syringes were placed side-by-side in a specially 

constructed stand housed within a controlled environ-

ment where the temperature was regulated at 20 °C. One 

syringe was filled with a 5 mM solution of nitrone 1b 

and maleimide 2 in CDCl3. The second syringe was pre-

pared identically with the exception that approximately 

2 µL of a 10 mM solution of replicator 3b was drawn 

into the end of the syringe after it was filled with the 

solution of 1b and 2.  

We envisaged that the syringe containing only 1b and 2 

would change color uniformly as replicator 3b was 

formed. In the other syringe, the presence of 3b would 

initiate the replication process and the diffusion of the 

replicator thus formed would establish a reaction-

diffusion front that would propagate along the syringe, 

being observed as the progression of a blue band along 

the initially yellow syringe. 

 

Figure 4. (a) Processed grayscale images, acquired over 

time with the syringes illuminated using a 365 nm UV 

lamp, of the template-initiated reaction-diffusion experi-

ment (+3b, left column) and the control experiment (–3b, 

right column). (b) Smoothed profiles of the grayscale im-

ages from the reaction-diffusion experiment (+3b) over 

time showing the progression of the reaction diffusion front 

over 20 minutes.  

The syringes were illuminated using a 365 nm UV lamp 

and a color image was captured every two minutes using 

a digital camera. Processing of these images (see Sup-

porting Information) afforded the data shown in Figure 

4a. It is evident from these images that replicator 3b has, 

established (Figure 4a, +3b) a propagating reaction-

diffusion front within the syringe to which it was added 

initially. By contrast, no such feature is evident within 

the control syringe (Figure 4a, –3b). As an additional 

control, we examined the diffusion of 3b in the absence 

of an autocatalytic reaction. Approximately 2 µL of a 

10 mM solution of replicator 3b was drawn into the end 

of a syringe filled with a 5 mM solution of nitrone 1b 

only in CDCl3. In this case, the blue color of replicator 
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3b disappears as a result of diffusion processes within 

the syringe, leaving the syringe visually indistinguisha-

ble from one that had been filled with nitrone 1b only. 

No optical signature of a propagating reaction-diffusion 

front is observed in this case. Selected images were pro-

cessed further (see Supporting Information) to compute 

the profile (Figure 4b) of the propagating front at a se-

quence of time points. These data clearly show the pro-

gression of the reaction-diffusion front mediated by rep-

licator 3b along the syringe. In many cases, reaction-

diffusion fronts propagate at constant linear or radial 

velocity. However, in this case, the progression
14

 of the 

front slows and will eventually stall as nitrone 1b and 

maleimide 2 are depleted throughout syringe as a result 

of the background rate of the cycloaddition reaction 

forming 3b being significant on the timescale of the ex-

periment.  

Here, we have described the first example of a propagat-

ing reaction-diffusion front that is initiated and driven by 

a synthetic replicator. The work reported here represents 

a proof-of-principle. The successful implementation of a 

replicator-driven reaction-diffusion front, mediated by 

an autocatalytic replicator of defined structure and with 

specific interactions and catalytic relationships with oth-

er similar replicators, opens up
15

 a number of exciting 

possibilities. This reaction format will allow us to ex-

plore networks
8a

 of replicators under conditions and out-

comes that lie far from the constraints
16

 imposed by 

well-stirred batch reactors. These studies are currently 

underway in our laboratory. 
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