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Abstract

For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages.
Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the
shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth.
Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many
discussions have taken place over their structure and form, we have very little information on their functional ecology and how
such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is
clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem
engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material
from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective
assemblages could produce a rapid (12–24 h) and significant increase in sediment stability that continued in a linear fashion
over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to
produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the
stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These
data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was
visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications
for the understanding of early stromatolite development and highlight the potential importance of the evolution of
photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the
niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to
dominate shallow coastal environments for 80% of the biotic history of the earth.
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Introduction

The drive to recognise the functional capabilities of diverse

ecological systems is an emerging theme in modern ecology [1].

The impetus for this approach is related to the desire to assess the

‘‘ecosystem services’’ that habitats provide [2]. The first functional

assemblages, or ecosystems, that can be recognised from the fossil

record are the stromatolites which are often cited as the first

indication of life on earth [3]. Stromatolites are laminated

sedimentary structures formed by microbial activity [4] and are

considered to have dominated the shallows of the Precambrian

oceans. Stromatolites were the principle functional assemblages of

the early earth and their structural and metabolic capabilities

represented an early stage in the development of the highly-

structured and self-organised systems that comprise modern

microbial mats [5]. In terms of their ecological importance, there

can hardly be a more significant ‘‘ecosystem service’’ than the

production of oxygen and the consequent development of an

oxygenic atmosphere, with the evolution of oxygenic photosyn-

thesis among the cyanobacteria [6]. However, a second charac-

teristic that is inherent in the development of modern stromatolites

and microbial mats is the ability to trap and bind sediments [7].

The intricate metabolic cascades that have evolved between

different components of the microbial assemblage that make up

complex microbial mats depend on structural integrity to maintain

the physicochemical gradients that drive the system [5,6,8]. The

evolution of microbial mat systems is likely to have been influenced

by the trapping and binding capacity of the constituent organisms.

This leads to the identification of mat formers as ‘‘ecosystem

engineers’’ [9]. However, although stromatolites are recognised as

structures which are resistant to hydrodynamic forcing, there is

very little information on the exact mechanisms of stabilisation and

the way in which sediments may become bound. The debate often

centres on the relative role of abiotic and biotic processes leading

PLoS ONE | www.plosone.org 1 September 2008 | Volume 3 | Issue 9 | e3176



to particle capture and lithification. However, the arguments for

and against the biotic influence should now be set aside by the

recognition that stromatolites are not either solely biotic or mineral

but the result of complex interactions between microbes, minerals

and the environment [7].

The process of long-term stabilization in some stromatolites is

mediated by the precipitation of calcium carbonate through

microbially-mediated processes [3,5,10]. The relative role of

precipitation and the biogenic processes that support it are also

likely to have changed with the gradual diversification of life forms.

It is recognised that we do not understand the nature of the early

processes that led to the first accumulation of sediment and cells that

led to stromatolite development [11–13]. There is no accurate

model to represent this process today since the main players have

changed with time and new forms have evolved, such as eukaryotes,

which now also contribute to microbial mat formation. In addition,

living stromatolites have become very rare as less ancient functional

groups such as corals, bioturbators and grazers have emerged to

compete with or exploit stromatolites [6]. However, living

stromatolites do still persist in some limited areas [14] and this

provides an opportunity for research into a modern analogue for

these most ancient of ecosystems. The question of the early genesis

of stromatolite forming assemblages cannot be addressed directly

but information on the biostabilisation capacity of existing

assemblages can be used to examine the potential of modern

assemblages to trap and bind sediments. This paper presents the first

measurements of the engineering capacity of natural stromatolite-

forming assemblages under ambient conditions.

Results

Control systems
For each set of experiments a control comprised of carbonate sand

(ooids) from beach areas among the stromatolites was examined

(Figure 1A). The initial profile of erosion thresholds (10, 20, 50 and

75% reduction in water column transmission) after 12 h of

incubation was significantly lower than the subsequent measurements

(P,0.05, Nemenyi test, [15]. There was no further significant

increase in stability with time. By examining the variation of each

erosion threshold with time (Figure 1B), it was shown that the pulse

pressure required to cause erosion after 12 h was the only value

significantly lower than subsequent measures in the same series

(H = 8.19 DF = 3 P = 0.042; H = 13.14 DF = 3 P = 0.004; H = 9.38

DF = 3 P = 0.025, for 10, 20 and 50% thresholds, respectively) with

the exception of the maximum erosional threshold (75%) which

showed no change with time (H = 1.16 DF = 3 P = 0.762)(Figure 1B).

Experimental systems: Winter series
Columnar stromatolite material from site 1 showed little

stabilization with time over the winter series (Figure 1C). There

was a slight increase in force required to surpass the 10 and 20%

erosion thresholds in the period between 12 and 36 h of incubation

(H = 8.57 DF = 2 P = 0.014 and H = 9.56 DF = 2 P = 0.008)

(Figure 1C) but no further statistical increase in stability. The ridge

material from site 5 showed a greater variation in stability but little

significant increase (Figure 1D). The final material for this series of

analysis was derived from site 10. This site showed a clear and rapid

increase in stability with time (Figure 1E). The force required to

surpass the two most severe thresholds (50 and 75% reduction in

transmission) increased in a linear fashion (Figure 1E). However,

there was a significant increase in sediment stability using all measures

(10% H = 15.12 DF = 3 P = 0.002; 20% H = 18.07 DF = 3 P = 0.000;

50% H = 19.18 DF = 3 P = 0.000; and 75% H = 18.38 DF = 3

P = 0.000).

Experimental systems: Summer series
A second series of experiments was conducted during the

Bahamian summer (Figure 2A–C). A second control series was

conducted and no significant increase in sediment stabilisation was

found over an incubation period of 228 h (Figure 2A).

Material from sites 1 and 10 were selected as the extremes in

response from the winter series of experiments and material was also

incubated in darkness as well as under ambient light conditions.

The incubation of material from site 1, kept in darkness

(Figure 2B), showed no significant increase in sediment stability

with time for threshold 1 (10%). However, the higher thresholds did

show increases in stability but only in that the final measurement

was significantly higher than previous measurements (20%;

H = 13.99 DF = 4 P = 0.007: 50%; H = 13.29 DF = 4: 75%;

H = 14.24 DF = 4 P = 0.007). During the final stages of the test, 3

replicate systems were transferred into ambient light conditions

(dotted lines on Figure 2B). This had no significant effect in terms of

stability (all P.0.05). For incubation under ambient light, the

pattern was quite different with a significant linear increase in

sediment stability with time for all erosion thresholds (H.19 DF = 4

and P#0.001 in all cases) (Figure 2C). After 156 h of incubation, 3

of the seven replicate systems were moved into continual darkness

(dotted lines, Figure 2C). The stability in these systems decreased in

comparison to the 156 h mark (Figure 2C). This decline was

assessed against equivalent replicate systems kept under ambient

light and shown to be significant (Man Whitney Test, P,0.001).

This work was repeated for material from site 10 (Figure 2D–E).

Material cultured in darkness showed no statistical increase in

stability with time (Figure 2D). Where replicates were transferred

from darkness into the light there was a noticeable increase in

stability but these differences were not significant. The stability of

systems kept under ambient light increased in a linear fashion

(Figure 2E) (P,0.001). The slope of the increase was slightly

different among the levels of erosions threshold with the more

sensitive thresholds (10 and 20%), increasing more slowly than the

more extreme thresholds (50 and 75%). After 156 h of incubation,

3 of the seven replicate systems were moved into continual

darkness (dotted lines, Figure 2E). The stability of the 3rd and 4th

erosion thresholds in these systems decreased in comparison to the

156 h mark (Figure 2E). This decline was assessed against

equivalent replicate systems kept under ambient light and shown

to be significant (Man Whitney Test, P,0.001).

Calcium micro-profiles: Summer series
Preliminary measurements conducted during the winter series

indicated the potential of the reconstituted mats to rapidly engage in

calcium binding (data not shown). During the summer series, profiles

for O2 and Ca2+ were measured throughout the experiment (228 h).

Representative profiles for the light/dark and dark incubations

during the initial 156 h of the experiment (average of three

measurements, top 6–8 mm depicted only; Figure 3) showed that

dark incubations resulted in typical diffusion profiles of O2 and Ca2+

(Figure 3: right hand panel). From the early stages of mat

development, there was a potential to bind Ca2+ from the overlying

water as the minimum in the profile of this suggested. Removal of

Ca2+ is a critical step in CaCO3 precipitation[3]. After 60 h of

incubation, ca. 0.9 mM calcium (15%) was bound at the depth where

the O2 maximum was found. This increased to 1.2 mM Ca bound

(20%) after 108 h, while after 156 h of incubation, ca. 2.1 mM of

calcium (38% of total) was bound in the zone of maximum O2

production. Measurements taken after 228 h (not shown) revealed

that 2.0 mM was bound, indicating that the maximum calcium

binding capacity was reached after 156 h. In the experiments where

ambient light treatments were transferred to continuous darkness, the
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oxygen peak disappeared and the calcium minimum decreased in

magnitude (data not shown). In contrast to the dark incubations,

ambient light/dark cycles supported a rapid mat formation (Figure 3:

left hand site panels): at ca. 1–2 mm depth an O2 peak, characteristic

for mats including intact stromatolites [16] was observed. The oxygen

maximum migrated from 0.75 mm after 60 h (ca. 140% O2

saturation at peak) when it was first observed, to 2.0 mm after

156 h of incubation in the natural light-dark cycle. Towards the end

of the experiment, peak values in excess of 300% O2 saturation were

observed (Figure 3, bottom left panel).

Imagery of stromatolite systems
Low-temperatures scanning electron micrographs of the re-

constituted stromatolite material provided qualitative evidence of

the nature of the binding mechanism (Figure 4). Stages in the

binding of the surface ooids were observed. Binding was achieved

by a surface matrix of cyanobacterial filaments (Figure 4A–C).

Organic material was also found closely associated with the ooids

(Figure 4C and D). Fracturing of random ooids revealed micro-

boring organisms including the cyanobacterial species, Solentia sp

(Figure 4D). This was supported by observation of the developing

mat system using confocal laser microscopy (Figure 5). The CSLM

imagery showed the accumulation of EPS associated with the

surface of the ooids (Figure 5A). The further development of EPS

binding and physical trapping by cyanobacterial filaments was

clearly demonstrated (Figure 5A–C).

Comparison between systems
Comparison between seasons and sites (1 and 10) was

conducted by selecting and comparing a single erosion threshold

Figure 1. Erosion profiles from stromatolite material and controls measured during the winter. A. The mean pressure required to cause
sequentially increasing levels of erosion in controls. Erosion thresholds (10, 20, 50 and 75% reduction in transmission against clear water [100%],
respectively) were recorded for replicate incubations with increasing incubation time (o = 12 h, ¤ = 36 h, &= 60 h and D= 84 h). B. Comparison of
the mean pressure required to cause a specific level of erosion in control systems (o = 10%, ¤ = 20%, &= 50% and D= 75%) with time. C–D.
Comparison of the mean pressure required to cause a specific level of erosion for winter series (particle resuspension causing a reduction in
transmission, o = 10%, ¤ = 20%, &= 50% and D= 75%) against period of incubation for each of the experimental sites. C. Site 1. D. Site 5 and E. Site
10. (n = 7 for all treatments).
doi:10.1371/journal.pone.0003176.g001
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(50%) between treatments. The 50% threshold showed a linear

increase in stability over the incubation period for all systems with

the exception of the winter series at site 1 (Figure 1C) in which

there was no significant increase (df 20, r2,0.00, p = 0.89). For the

other comparisons, the linear regression data for each is given in

Table 1 and graphical relationships in Figure 6. The slope of all

lines proved to be significantly different (P,0.01). Site 10 showed

a more rapid rate of stabilisation than site 1 under both summer

and winter conditions and in each case the systems were increasing

in stability over the entire course of the incubation. Site 1 showed

no increase in stability during the winter but showed significant

stabilisation in the summer.

Discussion

Light enhanced stromatolite binding
Re-constituted stromatolite material shows a clear capacity to

re-establish a stabilised substratum. For the first time, the rate of

sediment stabilisation and engineering capacity of the microbial

assemblages that comprise living stromatolite has been shown in

Figure 2. Erosion profiles from stromatolite material and controls measured during the summer. The mean pressure required to cause a
specific level of erosion (particle resuspension causing a reduction in transmission, o = 10%, ¤ = 20%, &= 50% and D= 75%, n = 7) against period of
incubation for each of the experimental sites. A. Control of beach sand. B. Experimental replicates held in continuous darkness from site 1. For the
penultimate incubation period, 3 replicates were transferred to the alternate condition (ambient light) as indicated by the dotted lines. C.
Experimental replicates from site 1 kept under ambient light and temperature conditions. For the penultimate incubation period, 3 replicates were
transferred to the alternate conditions (darkness) as indicated by the dotted lines. D. Experimental replicates from site 10 held in continuous darkness.
For the penultimate incubation period, 3 replicates were transferred to the alternate condition (ambient light) as indicated by the dotted lines. E.
Experimental replicates from site 10 kept under ambient light and temperature conditions. For the penultimate incubation period, 3 replicates were
transferred to the alternate conditions (darkness) as indicated by the dotted lines. (n = 7 for all treatments except where stated).
doi:10.1371/journal.pone.0003176.g002
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an experimental study. Stabilisation of microbial systems as

compared with controls began within hours and were still

increasing in stability over the entire course of the incubation

(228 h). There was a variation in results from different sites and

variation between seasons, with sites 1 and 10 more active in the

summer and the microbial populations of site 10 being more

effective stabilisers than those from site 1. Additional microbio-

logical investigation would be worthwhile to establish the variation

in assemblage composition. Site 1 did not produce effective

stabilisation during the winter (Figure 2A). In all cases, light was a

critical factor in the rapid development of cohesion within the

systems. There was some indication that stabilisation might be

possible in darkness (Figure 2B) but only after extended incubation

and to a much lesser extent than found with illuminated systems.

Further, there was an observed decrease in sediment stabilization

of light-induced mats which were transferred to darkness

(Figure 2C). This might have occurred due to heterotrophic

degradation of photosynthetically-derived EPS. This information

opens a new possibility in the interpretation of ancient stromatolite

material. If modern stromatolites provide a reasonable analogue

for their ancient ancestral forms [17], then we might conclude that

the initial biogenic stabilisation of sediments by stromatolites

probably became more rapid and effective after the evolution of

photosynthesis. This seems sensible since the processes of biogenic

stabilisation are often associated with the production of organic

molecules secreted as a by-product of photosynthesis. These

molecules provide a large proportion of the extra cellular

polymeric substances found in modern surficial sediments [18]

and stromatolites [19]. EPS is often cited as one of the major

mechanisms of biogenic stabilisation [20]. The capacity of extra-

cellular organic substances to stabilise sediments has been widely

demonstrated in laboratory and field studies [21,22]. This suggests

that early biofilms formations which pre-dated the evolution of

photosynthesis might be more transient and delicate than later

forms, in keeping with the slow development of stability in the dark

incubation in the present study. However, the metabolic process

carried out by non-photosynthetic bacteria may still have been

influential on the formation of carbonates and evaporites [13,23–

26]. The advent of photosynthesis and the capacity of biofilms to

produce organic molecules is likely to have worked in tandem with

existing non-photosynthetic organisms increasing the likelihood of

stromatolite formation. The role of the varied organic molecules

associated with biofilms, microbial mats and stromatolites is

continuingly being investigated and expanded [18,19].

The mechanistic nature of binding
The present study suggests that stromatolite assemblages are

capable of rapid and effective stabilisation of suitable substrata.

The production of extra cellular polymeric substances certainly

plays a role in the stabilisation of biofilms and microbial mats as

highlighted above (Figure 4). In addition, the filamentous nature of

the cyanobacteria appears to become an effective stabilising

mechanism (Figures 4 and 5). The evolution of a filamentous

growth habit may also have been important to enhance the

potential for stable biofilm formation and some workers have

noted that in evolutionary and morphological terms cyanobacteria

have changed little since their first preservation in the fossil record

[17]. The lack of stabilisation in systems deprived of light may be

directly as a consequence of the lack of photosynthesis and hence

organic exudates or may also be a secondary effect mediated by

the lack of a migrational cue for cyanobacteria to accumulate at

the sediment surface. However, it is likely that both processes will

influence the onset of surface cohesion. Variation in the trapping

and binding capacity of stromatolite assemblages has been

Figure 3. Oxygen and calcium concentrations within the mat
systems. Depth profiles of oxygen (&) and calcium (N) in the upper
8 mm of the sediments from site 10. Left hand side panels depict light
incubations; right hand side panels represent dark incubations. Each
profile corresponds to the average of three measurements. From top to
bottom, measurements were taken after 12 h, 60 h, 108 h and 156 h,
respectively. Average light intensities were 1613, 1241,1976, and
1846 mE m22 s21, during the 12 h, 60 h, 108 h, and 156 h afternoon
O2 measurements, respectively.
doi:10.1371/journal.pone.0003176.g003
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suggested to influence the nature of the mineralization process and

hence lamination structure [10].

The lithification process
The initial biogenic stabilization of depositional systems may well

be a requirement to allow or enhance future lithification of the

sediments. Reworking of the matrix by wind, waves or tides is

unlikely to be conducive to stromatolite preservation. Initial analysis

of the stromatolites as the assemblages reorganized after homoge-

nization showed that the initial stabilization process was independent

of calcium concentration, but likely due to the concentration of

biomass and associated EPS. This process is probably driven by light

induced cyanobacterial movement [27]. These cyanobacteria are

major producers of EPS [6,28], which effectively scavenges calcium

[3]. After 156 h of incubation, the binding sites in the EPS matrix are

saturated with calcium, and calcium carbonate precipitation is likely

to commence as soon as the geochemical conditions allow this. In the

initial stages of mat development, as seen towards the end of the

present experiments, this precipitation is enhanced by EPS

degradation (microbial or via UV decay) in combination with an

elevation of the pH, which is found during maximum photosynthesis

during the afternoon [16]. The rapid binding of calcium and early

saturation of the EPS matrix with this material may be surprising,

but is also an absolute requirement for early mats to survive the

extreme hydrodynamic conditions that prevail at the Highborne Cay

site. Where illuminated systems were transferred to darkness, part of

the EPS matrix may have been degraded, releasing the calcium. This

corroborates the observation of loss of stability (lowering of the

erosion threshold) during this treatment as described above. Controls

(ooids only) showed virtually vertical depth profiles that did not

change over the course of the experiment (not shown).

Limitation and questions
The artificial homogenisation of stromatolite material is a major

and unusual disturbance. Even after this rather brutal treatment the

microbial assemblage is capable of re-stabilisation despite have

sustained considerable damage and dispersal among a far greater

volume of sediment than is normal for the highly stratified natural

assemblages. The sharp gradients that exist in the stromatolite will

have been destroyed but begin forming again as soon as the material

is allowed to settle. Additionally, although the homogenisation is

extreme, the effects of Hurricane Rita did lead to the fragmentation

and dispersal of stromatolite material in a somewhat similar manner

to the current experiment (Reid pers comm.). However, the veracity

of the experimental treatment was not the issue here. What is more

significant is that the stromatolite assemblages have proven

themselves to be rapid and highly effective ecosystem engineers.

These systems are the nearest analogue we have to the ancient

microbial mats that were arguably the first organized ecosystem on

the surface of the planet. The evolution of photosynthesis may have

provided an important advance for the niche construction activity of

microbial systems and the formation of the stromatolites which came

to dominate shallow coastal environments for 80% of the biotic

history of the earth [19].

Figure 4. Low-temperature scanning electron micrographs of reconstituted stromatolite material. A. Material after the first 2 days of
incubation. Surface ooids and organic material. B. Organic linkages between ooid grains. C. Further development of organic material at the surface. D.
Detail of ooids showing beginning of a complex matrix of polymers and cyanobacterial (Schizothrix) filaments. E–F. The cyanobacterial matrix
becomes denser eventually enveloping the ooid grains. Bar markers: A = 800 um, B = 100 um, C = 400 um, D–F = 100 um.
doi:10.1371/journal.pone.0003176.g004
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Materials and Methods

Sites
The material for study was obtained from shallow to sub-tidal

regions of Highborne Cay (76u499W, 24u439N), Exuma Chain of

Islands in the Bahamas (Figure 7). The morphology and extent of

the stromatolite reef system is described in detail by Andres and

Reid [29]. Two major morphologies of stromatolite were

described, columnar stromatolites and stromatolite ridges. Stro-

matolite material was collected from three sites along the beach

(Figure 7B). The sites corresponded with areas under investigation

through the ‘‘Research Initiative on Bahamian Stromatolites’’

(RIBS) project (http://www.home.duq.edu/,stolz/RIBS/index.

html). Material was collected on two RIBS cruises, the first in

November 2003 (winter series) and the second in July 2004

(summer series).

Preparation of sediments
Samples of stromatolite from the sample areas were collected

and taken to the research vessel laboratory (the RV Walton-

Smith). The living stromatolite material was gently broken down

by hand into constituent grains and passed through a 1 mm sieve

to remove large fragments but retain the carbonate ooid grains

Figure 5. CSLM images showing the initial trapping of ooids on mat surface. A–C. The accumulation of EPS and abundant filamentous
cyanobacterial cells that begin to surround ooids to form a structured microbial community. Note the autofluorescence and scattering of aragonite
(blue), cyanobacterial pigment autofluorescence (red) and heterotrophic cell clusters (green). D. Sediment ooids appear orange, while EPS stained
with lectin Con-A appears green. (Scale bar given in um).
doi:10.1371/journal.pone.0003176.g005

Table 1. Regression analysis of the 50% erosion threshold of
three experimental trials.

Trial Equation R2 (adj) ANOVA

DF F P

Winter 10 PSI = 20.155+0.0496 h 79.5 26 101.79 0.000

Summer 1 PSI = 0.752+0.0308 h 51.1 26 29.5 0.000

Summer 10 PSI = 0.545+0.0558 h 66.3 26 54.13 0.000

doi:10.1371/journal.pone.0003176.t001

Figure 6. Linear relationship between eroding pressure and
time. Linear regression lines for the equations given in Table 1. The
relationships represent the increase in stability with time for the winter
series from site 10 (N), the summer series from site 1 (m) and the
summer series from site 10 (&). For clarity, the mean values of the data
groups are indicated by the symbols however, the regressions were
calculated using all data points.
doi:10.1371/journal.pone.0003176.g006
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and associated microbial populations. The reconstituted material

was placed in small square trays (15615610 cm) on a base of

beach ooid material (3 cm deep) to form a 2 cm deep layer, shaken

gently to smooth the surface of the reconstituted bed and placed in

an open outdoor aquaria supplied with running seawater under a

natural day/night cycle. The systems were maintained for a

maximum of 228 h. Experimental runs were conducted on two

RV Walton Smith cruises (November 2003 and July 2004). In the

first series of experiments under winter conditions (11/03),

material from sites 1 (columnar), 5 (ridge) and 10 (ridge) was

collected (Figure 7). Samples were maintained under natural light

conditions. In the following summer series (7/04), material was

collected from RIBS sites 1 (columnar) and 10 (ridge) and, in

addition to ambient day/night cycles (n = 7), replicates were also

kept under the condition of continuous darkness (dark treatment,

n = 7). In all experimental runs, control systems were established

using natural beach carbonate sand from among the stromatolite

heads (n = 7 for all initial experiments).

Sediment stability
The stability of the surface was measured using a Cohesive

Strength Meter [30,31]. During each erosion test, 4 relative

measures of erosion were recorded related to the resuspension of

ooids from the surface of the bed. Data are presented as a % loss in

transmission against clear water (100%).

1. Erosion threshold 1: 10% decline in transmission

2. Erosion threshold 2: 20% decline in transmission

3. Erosion threshold 3: 50% decline in transmission

4. Erosion threshold 4: 75% decline in transmission

These thresholds represented the first unequivocal reducing in

transmission (1), the general erosion of surface material (2), the

erosion of underlying material (3) and general bulk erosion (4).

These thresholds were established by observation on the influence

of the jet on the preliminary tests of reconstituted stromatolite

material.

Oxygen and calcium microprofiles
Depth profiles of O2 and Ca2+ of the upper 15 mm of the

sediments were measured to determine microbial activity and

location and also the potential of the reconstituted system (i.e.,

biomass and exopolymeric substances, EPS) to bind calcium [16].

Glass microelectrodes with a tip diameter of less than 100 mm

(Unisense, Aarhus, Denmark; Diamond General, Ann Arbor, MI,

USA) were deployed using a motor driven micromanipulator

(National Aperture, NH, USA) in combination with a picoam-

meter (Unisense) and high-impedance millivolt meter (Microscale

Measurements, The Hague, The Netherlands), for O2 and Ca2+,

respectively. Measurements were made in samples from locations

Figure 7. Highborne Cay in the Bahamas. The location of Highborne Cay in the Exuma chain of Bahamian Islands. A. Aerial detail of Highborne
Cay. B. The samples sites from the North-easterly beach of the island as described previously [29].
doi:10.1371/journal.pone.0003176.g007
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1 and 10, as well as in controls (beach ooids), under ambient light

conditions for light treatments and in the shade for dark

treatments. The light intensity was recorded with a LiCor LI

250A meter equipped with a quantum sensor (LiCor, Lincoln, NE,

USA). At each time point (12, 60, 108, 156 h), three replicate

measurements were taken and average values calculated before

generating depth profiles. These measurements were continued for

a further 72 h (to a total experimental time period of 228 h).

Low- temperature scanning electron microscopy
The microstructure of selected samples was examined by low-

temperature scanning electron microscopy (LTSEM) after Pater-

son [32]. Samples were taken using small plastic cores (3 cm id)

and quench frozen in liquid nitrogen (LN2). The samples were

transported in dry ice and then stored at 280uC. Before

examination, samples were transferred back into LN2. The frozen

material was fractured under LN2 and mounted on a specialized

mechanical stub and introduce to the cold-stage of a scanning

electron microscope (JEOL 35CF SEM fitted with Cryo capability,

Oxford systems). Surface water was removed by sublimation into

vacuum (290uC) and the samples coated with gold and examined

while still frozen (2180uC).

Confocal Scanning Laser Microscopy (CSLM)
Imaging by confocal scanning laser microscopy (CSLM) was

conducted using a Zeiss LSM 510 Meta Confocal system,

equipped with Zeiss Axioplan 200 motorized microscope and a

405 diode argon, red and green He/Ne lasers. Image resolution

was 5126512 pixels [33].

Statistical analysis
Stability data was not normally distributed therefore the non-

parameteric Kruskal Wallace test was applied [15] using statistical

software (Minitab). Seven replicates were maintained in all cases

with the exception of the summer series where after the

penultimate measurement (156 h incubation) 3 replicates were

transferred to the alternate condition (from ambient light to

darkness or vice versa). Where the Kruskal Wallace was significant

for a difference among groups, the test was augmented by a post-hoc

multiple comparison to identify the different groups [15]. In the

few cases where the comparison was unbalanced (containing a

group of n = 4) the procedure of Dunn 1964 [15], was applied.

Where simple pair-wise comparisons were made, a Man Whitney

test was employed.
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