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Transgenerational transmission 
of a stress-coping phenotype 
programmed by early-life stress  
in the Japanese quail
Cédric Zimmer1,†, Maria Larriva1, Neeltje J. Boogert2 & Karen A. Spencer1

An interesting aspect of developmental programming is the existence of transgenerational effects that 
influence offspring characteristics and performance later in life. These transgenerational effects have 
been hypothesized to allow individuals to cope better with predictable environmental fluctuations 
and thus facilitate adaptation to changing environments. Here, we test for the first time how early-
life stress drives developmental programming and transgenerational effects of maternal exposure to 
early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a 
fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and 
offspring and examined the consequences for several stress-related traits in the offspring generation. 
We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but 
resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels 
that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve 
mothers to better prepare their offspring to cope with later environments where the same stressors are 
experienced.

Conditions experienced in early-life can shape individual phenotypes and lead to irreversible modifications 
that may have long-term consequences for health and wellbeing1–3. This organizational effect, known as devel-
opmental programming, is a well-conserved phenomenon across vertebrates. It is mediated by glucocorticoid 
(GC) stress hormones that are released after the activation of the hypothalamo-pituitary-adrenal (HPA) axis in 
response to a stressful event2,4–6. Much previous work suggests a potential negative fitness outcome from pro-
longed or repeated activation of the HPA axis during early development2,7,8. However, recent studies looking 
at the consequences of early-life stress across life-history stages and in ecologically and evolutionarily relevant 
contexts have shown that early-life stress could prime offspring to cope better under stressful conditions in later 
life4,9–14. However, early-life stress is likely to have both benefits and costs. Its potential adaptive outcome may 
depend on the context within which the phenotypic traits are measured, as well as the life-history stage, the envi-
ronmental conditions and the generation1,4,6,15,16.

Transgenerational effects of early-life conditions are defined as the consequences on offspring phenotype of 
the conditions experienced during development by the parental generation. The potential adaptive benefit of 
transgenerational transmission of developmentally programmed traits is attracting increasing research inter-
est1,17,18. In vertebrates, early-life conditions can have transgenerational effects on a wide range of traits such as 
neuroanatomy, hormone levels, body size and condition, behaviour, reproductive success and survival (reviewed 
in ref. 1). It has been suggested that these effects may drive adaptive phenotypic plasticity, creating responses 
that could promote individual adaptation to changing environments1,4,19. However, as we are only at the onset of 
understanding the trans-generational effects of early-life conditions, their ecological consequences remain eva-
sive1. One issue with many studies to date is the lack of a full factorial approach where both parental and offspring 
developmental environments are manipulated. Additionally, previous studies have usually focussed on a single 
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phenotypic trait1,18,20. Finally, the potential consequences of stress interacting at different developmental stages to 
alter adult phenotypes in subsequent generations has not been investigated.

In this study, we manipulated pre- or/and post-natal stress in both mothers and their offspring in Japanese 
quail and examined the consequences for several phenotypic traits in the offspring generation, integrating infor-
mation across physiological, neuroendocrine and behavioural levels. In all offspring, we determined the HPA axis 
activity by measuring the physiological response (i.e. changes in blood glucocorticoid (GC) levels) to an acute 
stressor. This stress response enhances physiological processes and behaviours to remove the individual from 
the stressor and/or facilitate coping. Although this acute response is adaptive, prolonged or repeated exposure 
to high GC levels can be costly over the long term21. The physiological stress response is tightly regulated by a 
negative feedback loop at the level of the hippocampus, hypothalamus and pituitary gland to down-regulate the 
HPA axis, which is mediated by the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR)21,22. 
We therefore measured the relative expression of both receptors within the HPA axis. At the behavioural level, 
we measured the exploration of a novel environment. An increased exploration of a novel environment is usu-
ally associated with a better capacity to cope with stressful challenges23. We used four groups of Japanese quail 
(Coturnix japonica) mothers with different developmental experiences: one of the groups was exposed to stress 
during pre-natal development via injection of corticosterone (CORT) in the egg yolk to simulate the transfer of 
CORT from the mother into her eggs (n =​ 11), one group was exposed to stress during post-natal development 
by exposing chicks to an unpredictable food availability paradigm simulating a stressful foraging environment 
(n =​ 6), one group was exposed to stress during both pre- and post-natal development (n =​ 6) and one con-
trol group (n =​ 10) was exposed to neither stressor6,24. The offspring of these females were directly exposed to 
stress during pre-natal development by manipulating maternal stress levels during the laying period using an 
unpredictable food availability paradigm (n =​ 45), or to control conditions (n =​ 42). Half of the chicks from each 
pre-natal treatment were exposed to stress using again an unpredictable food availability paradigm (n =​ 44) while 
the other half were exposed to control conditions during post-natal development (n =​ 43) (Fig. 1). This experi-
mental design allowed us to determine the relative contribution of pre-natal and post-natal experiences and their 
potential interactive effects on offspring adult phenotype. It also allowed us to tease apart the effects of direct 
exposure of offspring to stress during their pre-natal (i.e. via manipulation of maternal stress), and/or post-natal 
development and the transgenerational effects of maternal exposure to early-life stress during their own pre- and/
or post-natal development on shaping offspring phenotype.

Results
Stress response.  Corticosterone (CORT) levels of offspring measured in adulthood were significantly influ-
enced by the time upon capture by the experimenter (Table 1). Basal CORT (i.e. measured within 3 minutes of 
capture: 0.89 ±​ 0.07 ng.ml−1) was lower than CORT levels at 10 (2.65 ±​ 0.23 ng.ml−1) (t71 =​ 12.4, p <​ 0.0001) and at 
30 (1.43 ±​ 0.13 ng.ml−1) minutes after capture (t171 =​ 6.0, p =​ 0.001) and the level at 10 minutes was higher than at 
30 minutes after capture (t170 =​ 6.4, p <​ 0.001) (Fig. 2). This stress response over time was significantly influenced 
by maternal developmental experience at both developmental stages (maternal pre-natal treatment ×​ mater-
nal post-natal treatment ×​ sampling time; Table 1). The multiple comparisons showed that this effect was 
mainly driven by maternal pre-natal treatment: for individuals whose mothers were exposed to pre-natal stress 
(MatPreCort), CORT concentrations significantly decreased between 10 and 30 minutes after capture (t170 ≥​ 4.2, 
p ≤​ 0.003; Fig. 2) and levels 30 min after capture did not significantly differ from baseline (MatPreCort) (t172 ≤​ 2.0, 
p ≥​ 0.69; Fig. 2) regardless of the maternal post-natal treatment. This decrease was not significant for individuals 
whose mothers were exposed to the pre-natal control treatment (MatPreCtrl) (t170 ≤​ 2.3, p ≥​ 0.48; Fig. 2), where 
CORT levels 30 min after capture remained significantly higher than basal levels (t172 ≥​ 3.8, p ≤​ 0.010; Fig. 2) 
regardless of the maternal post-natal treatment. However, offspring CORT levels 30 min after capture were not 
significantly different between individuals from mothers exposed to pre-natal stress (MatPreCort) or pre-natal 
control treatment (MatPreCtrl) regardless of maternal post-natal treatment (t160 ≤​ 1.3, p ≥​ 0.97; Fig. 2).

The offspring’s average CORT level of the 3 time points of the capture-handling restraint stress protocol were 
also significantly influenced by the interaction between both maternal treatments (maternal pre-natal treat-
ment ×​ maternal post-natal treatment) and by the interaction between both offspring treatments (offspring 
pre-natal treatment ×​ offspring post-natal treatment) (Table 1). However, these two interactions are not func-
tionally informative concerning the regulation of the physiological stress response as they do not concern the 
dynamic process by which CORT levels increase after capture to reach peak levels and the latency by which they 
return to baseline levels again. The magnitude of the peak and the latency to return to baseline level are known to 
have ecologically relevant consequences21,25 and are the outcome of the HPA axis feedback loop, and we therefore 
focus on those measures rather than CORT averages here.

Novel environment.  From all the measures we recorded in the novel environment, only the latency to enter 
the novel environment, the time spent in zone 3 of the novel environment (i.e. the area the furthest way from the 
introductory compartment and thus the ‘riskiest’) and the number of mealworms eaten were significantly influ-
enced by one or more of the early-life treatments (Table 1).

The latency to enter the novel environment was only significantly influenced by the interactions between 
maternal pre-natal treatment and offspring post-natal treatment and, secondly, between maternal pre-natal treat-
ment and offspring pre-natal treatment (Table 1). In both cases, this effect appeared to be mainly driven by the 
maternal pre-natal treatment: individuals whose mothers were exposed to pre-natal stress (MatPreCort) showed 
a significantly shorter latency to enter the novel environment compared to individuals whose mothers were in the 
pre-natal control group (MatPreCtrl) (z85 ≥​ 2.71, p ≤​ 0.034, Fig. 3a). This was the case regardless of the offspring’s 
own post-natal treatment (OffPostCtrl or OffPostFood-). Although multiple comparisons were not significant 
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(z85 ≤​ 2.44, p ≥​ 0.07), the same trend was observed for offspring own pre-natal treatments, where maternal expo-
sure to pre-natal stress tended to drive individuals to enter the novel environment faster (Fig. 3b).

The time spent in zone 3 of the novel environment was only affected by maternal pre-natal treatment and the 
interaction between both maternal treatments (Table 1). Offspring from pre-natally stressed mothers spent more 
time in zone 3 (MatPreCort: 48.7 ±​ 25.8 s), the part of the novel environment furthest away from the entrance, 
as compared to the offspring of pre-natal control mothers (MatPreCtrl: 32.6 ±​ 11.5 s; χ​21,85 =​ 4.82, p =​ 0.028). 
Offspring whose mothers had been exposed to both early-life stress treatments (MatPreCort/MatPostFood-) 
spent significantly more time in zone 3 than individuals whose mothers had been exposed to only one or no 
early-life stress treatments (z85 ≥​ 2.0, p ≤​ 0.046, Fig. 4).

Finally, the number of mealworms eaten in the novel environment was only significantly affected by the off-
spring post-natal treatment and the interaction between both maternal treatments (Table 1). Offspring exposed 
to post-natal food removal found and consumed more mealworms in the novel environment (OffPostCtrl: 
0.6 ±​ 0.22, OffPostFood-: 0.91 ±​ 0.32 mealworms; χ​21,85 =​ 6.52, p =​ 0.011). Offspring from mothers exposed to 
both early-life stresses (MatPreCort/MatPostFood-) got more mealworms than those from mothers exposed to 
only one or none of the early-life stresses (z85 ≥​ 2.58, p ≤​ 0.05; Fig. 5).

Figure 1.  Diagram of the experimental manipulation of maternal and offspring pre-natal and post-natal 
stress. We used four groups of Japanese quail females with different developmental experiences in order to 
obtain the offspring generation. One group was exposed to stress only during pre-natal development via 
injection of corticosterone in the egg yolk to simulate the transfer of CORT from the mother into her eggs 
(MatPreCort/MatPostCtrl, n =​ 11). One group was exposed to stress only during post-natal development 
by exposing chicks to unpredictable food availability between days 4 and 20 post-hatching (MatPreCtrl/
MatPostFood-, n =​ 6). One group was exposed to stress during both pre- and post-natal development 
(MatPreCort/Mat/PostFood-, n =​ 6). The control group was exposed to neither stressor (MatPreCtrl/
MatPostCtrl, n =​ 10). Each female bred once under control condition and once under unpredictable food 
availability in order to manipulate pre-natal stress of the offspring by increasing maternal stress levels during 
the laying period (Offspring pre-natal stress manipulation: pre-natally stressed n =​ 45, control n =​ 42). Half of 
the chicks from each pre-natal treatment were exposed to stress again using an unpredictable food availability 
paradigm (n =​ 44) while the other half were exposed to control conditions during post-natal development 
(n =​ 43). As for the offspring, we thus created four treatment groups: OffPreCtrl/OffPostCtrl (n =​ 22); 
OffPreCtrl/OffPostFood- (n =​ 20), OffPreFood-/OffPostCtrl (n =​ 21) and OffPreFood-/OffPostFood- (n =​ 24). 
This experimental design resulted in 16 treatment combinations.
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Variables Factors DF F/χ2-value P-value

CORT levels

Maternal pre-natal treatment 1,85 2.47 0.120

Maternal post-natal treatment 1,85 3.12 0.081

Offspring pre-natal treatment 1,85 0.06 0.801

Offspring post-natal treatment 1,85 0.83 0.370

Sex 1,85 3.22 0.077

Sampling time 2,170 77.13 <​0.0001

Maternal pre-natal treatment ×​ maternal post-natal treatment 2,170 7.75 0.007

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 6.31 0.014

Maternal pre-natal treatment ×​ sex 1,85 2.15 0.146

Maternal post-natal treatment ×​ sex 1,85 0.11 0.740

Offspring pre-natal treatment ×​ sex 1,85 0.15 0.700

Offspring post-natal treatment ×​ sex 1,85 3.93 0.052

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.62 0.434

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.83 0.365

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 1.72 0.193

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.58 0.450

Maternal pre-natal treatment ×​ sampling time 2,170 1.77 0.173

Maternal post-natal treatment ×​ sampling time 2,170 1.82 0.165

Offspring pre-natal treatment ×​ sampling time 2,170 0.05 0.948

Offspring post-natal treatment ×​ sampling time 2,170 0.01 0.994

Maternal pre-natal treatment ×​ maternal post-natal 
treatment ×​ sampling time 2,170 6.83 <​0.0001

Latency to enter the 
novel environment

Maternal pre-natal treatment 1,85 2.34 0.126

Maternal post-natal treatment 1,85 3.54 0.061

Offspring pre-natal treatment 1,85 1.38 0.249

Offspring post-natal treatment 1,85 0.65 0.420

Sex 1,85 0.41 0.520

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.45 0.503

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 3.07 0.080

Maternal pre-natal treatment ×​ sex 1,85 1,14 0.286

Maternal post-natal treatment ×​ sex 1,85 1.60 0.206

Offspring pre-natal treatment ×​ sex 1,85 1.24 0.265

Offspring post-natal treatment ×​ sex 1,85 0.08 0.777

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 4.95 0.026

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 12.45 0.0004

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.01 0.927

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.39 0.530

Latency to enter in 
zone 2

Maternal pre-natal treatment 1,85 0.13 0.722

Maternal post-natal treatment 1,85 0.19 0.663

Offspring pre-natal treatment 1,85 0.17 0.677

Offspring post-natal treatment 1,85 0.52 0.472

Sex 1,85 0.54 0.462

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 1.28 0.258

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.88 0.348

Maternal pre-natal treatment ×​ sex 1,85 0.02 0.884

Maternal post-natal treatment ×​ sex 1,85 0.09 0.765

Offspring pre-natal treatment ×​ sex 1,85 0.42 0.518

Offspring post-natal treatment ×​ sex 1,85 0.00 0.945

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.96 0.328

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.53 0.468

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.17 0.681

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.16 0.687

Latency to enter in 
zone 3

Maternal pre-natal treatment 1,85 0.37 0.542

Maternal post-natal treatment 1,85 0.05 0.821

Offspring pre-natal treatment 1,85 0.24 0.620

Offspring post-natal treatment 1,85 0.02 0.893

Sex 1,85 0.27 0.606

Continued
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Variables Factors DF F/χ2-value P-value

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.01 0.920

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.00 0.944

Maternal pre-natal treatment ×​ sex 1,85 0.01 0.927

Maternal post-natal treatment ×​ sex 1,85 0.01 0.941

Offspring pre-natal treatment ×​ sex 1,85 0.15 0.697

Offspring post-natal treatment ×​ sex 1,85 0.07 0.784

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.15 0.697

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.01 0.922

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.19 0.662

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.10 0.753

Latency to feed from 
feeder 1

Maternal pre-natal treatment 1,85 0.27 0.601

Maternal post-natal treatment 1,85 1.41 0.235

Offspring pre-natal treatment 1,85 0.06 0.811

Offspring post-natal treatment 1,85 0.19 0.666

Sex 1,85 0.14 0.711

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.42 0.516

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.26 0.611

Maternal pre-natal treatment ×​ sex 1,85 0.00 0.957

Maternal post-natal treatment ×​ sex 1,85 0.00 0.947

Offspring pre-natal treatment ×​ sex 1,85 0.50 0.477

Offspring post-natal treatment ×​ sex 1,85 0.85 0.357

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.12 0.727

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 1.36 0.243

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.30 0.584

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.03 0.860

Latency to feed from 
feeder 2

Maternal pre-natal treatment 1,85 0.20 0.654

Maternal post-natal treatment 1,85 2.39 0.122

Offspring pre-natal treatment 1,85 0.51 0.476

Offspring post-natal treatment 1,85 0.01 0.915

Sex 1,85 0.24 0.626

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.18 0.668

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.11 0.744

Maternal pre-natal treatment ×​ sex 1,85 0.12 0.731

Maternal post-natal treatment ×​ sex 1,85 0.35 0.554

Offspring pre-natal treatment ×​ sex 1,85 0.06 0.814

Offspring post-natal treatment ×​ sex 1,85 0.00 0.962

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.24 0.626

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.95 0.330

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.57 0.448

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.23 0.628

Latency to feed from 
feeder 3

Maternal pre-natal treatment 1,85 0.72 0.396

Maternal post-natal treatment 1,85 0.38 0.536

Offspring pre-natal treatment 1,85 0.04 0.849

Offspring post-natal treatment 1,85 0.20 0.653

Sex 1,85 0.01 0.943

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.53 0.468

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.21 0.643

Maternal pre-natal treatment ×​ sex 1,85 0.07 0.793

Maternal post-natal treatment ×​ sex 1,85 0.01 0.938

Offspring pre-natal treatment ×​ sex 1,85 0.01 0.937

Offspring post-natal treatment ×​ sex 1,85 0.07 0.798

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.01 0.934

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.00 0.990

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.39 0.532

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.35 0.556

Continued
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Variables Factors DF F/χ2-value P-value

Time spent in 
the introductory 
compartment

Maternal pre-natal treatment 1,85 0.21 0.644

Maternal post-natal treatment 1,85 0.41 0.520

Offspring pre-natal treatment 1,85 0.06 0.803

Offspring post-natal treatment 1,85 0.04 0.845

Sex 1,85 0.86 0.353

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.95 0.330

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 2.71 0.100

Maternal pre-natal treatment ×​ sex 1,85 0.07 0.793

Maternal post-natal treatment ×​ sex 1,85 0.03 0.861

Offspring pre-natal treatment ×​ sex 1,85 0.11 0.738

Offspring post-natal treatment ×​ sex 1,85 0.08 0.781

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 2.05 0.152

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 1.93 0.165

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.17 0.676

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.30 0.585

Time spent in zone 1

Maternal pre-natal treatment 1,85 1.02 0.312

Maternal post-natal treatment 1,85 0.25 0.615

Offspring pre-natal treatment 1,85 0.00 0.982

Offspring post-natal treatment 1,85 0.07 0.793

Sex 1,85 0.00 0.969

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 3.12 0.077

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.98 0.322

Maternal pre-natal treatment ×​ sex 1,85 1.23 0.268

Maternal post-natal treatment ×​ sex 1,85 3.72 0.057

Offspring pre-natal treatment ×​ sex 1,85 0.31 0.579

Offspring post-natal treatment ×​ sex 1,85 0.02 0.887

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.04 0.840

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 1.44 0.230

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.08 0.775

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 1.42 0.234

Time spent in zone 2

Maternal pre-natal treatment 1,85 0.05 0.816

Maternal post-natal treatment 1,85 0.84 0.359

Offspring pre-natal treatment 1,85 0.34 0.561

Offspring post-natal treatment 1,85 0.11 0.741

Sex 1,85 0.09 0.765

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.48 0.488

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.21 0.644

Maternal pre-natal treatment ×​ sex 1,85 0.21 0.647

Maternal post-natal treatment ×​ sex 1,85 0.01 0.939

Offspring pre-natal treatment ×​ sex 1,85 3.52 0.058

Offspring post-natal treatment ×​ sex 1,85 2.03 0.154

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.12 0.726

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.03 0.871

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 1.09 0.297

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.75 0.386

Time spent in zone 3

Maternal pre-natal treatment 1,85 4.82 0.028

Maternal post-natal treatment 1,85 0.64 0.420

Offspring pre-natal treatment 1,85 2.15 0.140

Offspring post-natal treatment 1,85 0.22 0.640

Sex 1,85 0.00 0.960

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 5.38 0.020

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.17 0.680

Maternal pre-natal treatment ×​ sex 1,85 1.83 0.177

Maternal post-natal treatment ×​ sex 1,85 0.49 0.486

Offspring pre-natal treatment ×​ sex 1,85 1.23 0.310

Offspring post-natal treatment ×​ sex 1,85 2.51 0.110

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 1.13 0.280

Continued
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Variables Factors DF F/χ2-value P-value

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.06 0.810

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.00 0.960

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 2.03 0.150

Time spent moving

Maternal pre-natal treatment 1,85 1.87 0.171

Maternal post-natal treatment 1,85 1.36 0.244

Offspring pre-natal treatment 1,85 2.37 0.116

Offspring post-natal treatment 1,85 2.39 0.122

Sex 1,85 2.29 0.130

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.13 0.723

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 3.73 0.055

Maternal pre-natal treatment ×​ sex 1,85 1.10 0.295

Maternal post-natal treatment ×​ sex 1,85 1.25 0.263

Offspring pre-natal treatment ×​ sex 1,85 0.23 0.633

Offspring post-natal treatment ×​ sex 1,85 1.09 0.297

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.13 0.714

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 2.06 0.151

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.72 0.395

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 1.13 0.289

Number of feeder 
visited

Maternal pre-natal treatment 1,85 0.61 0.436

Maternal post-natal treatment 1,85 1.36 0.243

Offspring pre-natal treatment 1,85 1.25 0.264

Offspring post-natal treatment 1,85 0.24 0.623

Sex 1,85 1.54 0.214

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.01 0.927

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.65 0.421

Maternal pre-natal treatment ×​ sex 1,85 0.20 0.652

Maternal post-natal treatment ×​ sex 1,85 3.34 0.067

Offspring pre-natal treatment ×​ sex 1,85 1.57 0.210

Offspring post-natal treatment ×​ sex 1,85 0.02 0.879

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.84 0.359

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.13 0.719

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.59 0.444

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.00 0.970

Number of 
mealworms eaten

Maternal pre-natal treatment 1,85 1.13 0.289

Maternal post-natal treatment 1,85 1.93 0.180

Offspring pre-natal treatment 1,85 0.00 0.960

Offspring post-natal treatment 1,85 6.52 0.011

Sex 1,85 1.14 0.290

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 5.44 0.020

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 1.84 0.170

Maternal pre-natal treatment ×​ sex 1,85 0.02 0.883

Maternal post-natal treatment ×​ sex 1,85 0.01 0.906

Offspring pre-natal treatment ×​ sex 1,85 0.42 0.520

Offspring post-natal treatment ×​ sex 1,85 1.15 0.290

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 3.12 0.090

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 2.44 0.120

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.67 0.410

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.35 0.550

GR expression 
hippocampus

Maternal pre-natal treatment 1,85 6.38 0.012

Maternal post-natal treatment 1,85 0.21 0.647

Offspring pre-natal treatment 1,85 0.20 0.653

Offspring post-natal treatment 1,85 0.01 0.914

Sex 1,85 0.10 0.756

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 1.34 0.247

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.81 0.367

Maternal pre-natal treatment ×​ sex 1,85 0.12 0.734

Maternal post-natal treatment ×​ sex 1,85 0.07 0.787

Continued
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Variables Factors DF F/χ2-value P-value

Offspring pre-natal treatment ×​ sex 1,85 0.69 0.407

Offspring post-natal treatment ×​ sex 1,85 2.57 0.054

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 1.01 0.316

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 1.52 0.218

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.24 0.627

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.59 0.442

MR expression 
hippocampus

Maternal pre-natal treatment 1,85 0.27 0.607

Maternal post-natal treatment 1,85 3.80 0.074

Offspring pre-natal treatment 1,85 0.05 0.822

Offspring post-natal treatment 1,85 0.48 0.488

Sex 1,85 1.88 0.170

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.73 0.392

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.01 0.903

Maternal pre-natal treatment ×​ sex 1,85 0.00 0.992

Maternal post-natal treatment ×​ sex 1,85 0.01 0.934

Offspring pre-natal treatment ×​ sex 1,85 1.21 0.271

Offspring post-natal treatment ×​ sex 1,85 0.07 0.798

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 1.45 0.229

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 1.17 0.279

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.82 0.364

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 1.23 0.267

GR:MR ratio 
hippocampus

Maternal pre-natal treatment 1,81 11.48 0.001

Maternal post-natal treatment 1,81 1.39 0.213

Offspring pre-natal treatment 1,81 4.4 0.036

Offspring post-natal treatment 1,81 0.84 0.359

Sex 1,81 0.79 0.374

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,81 0.59 0.442

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,81 0.1 0.748

Maternal pre-natal treatment ×​ sex 1,81 3.09 0.079

Maternal post-natal treatment ×​ sex 1,81 0.28 0.595

Offspring pre-natal treatment ×​ sex 1,81 2.99 0.084

Offspring post-natal treatment ×​ sex 1,81 3.22 0.081

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,81 0.00 0.960

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,81 2.95 0.086

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,81 1.82 0.177

Maternal post-natal treatment ×​ offspring post-natal treatment 1,81 0.44 0.505

GR expression 
hypothalamus

Maternal pre-natal treatment 1,82 7.68 0.006

Maternal post-natal treatment 1,82 3.21 0.073

Offspring pre-natal treatment 1,82 6.32 0.012

Offspring post-natal treatment 1,82 0.00 0.990

Sex 1,82 0.37 0.550

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,82 0.10 0.750

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,82 1.63 0.200

Maternal pre-natal treatment ×​ sex 1,82 0.42 0.519

Maternal post-natal treatment ×​ sex 1,82 0.67 0.414

Offspring pre-natal treatment ×​ sex 1,82 0.40 0.530

Offspring post-natal treatment ×​ sex 1,82 0.04 0.840

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,82 0.28 0.600

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,82 0.15 0.700

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,82 3.65 0.056

Maternal post-natal treatment ×​ offspring post-natal treatment 1,82 0.60 0.440

MR expression 
hypothalamus

Maternal pre-natal treatment 1,82 3.69 0.049

Maternal post-natal treatment 1,82 2.51 0.113

Offspring pre-natal treatment 1,82 5.08 0.024

Offspring post-natal treatment 1,82 0.32 0.572

Sex 1,82 0.21 0.648

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,82 2.04 0.153

Continued



www.nature.com/scientificreports/

9Scientific Reports | 7:46125 | DOI: 10.1038/srep46125

Variables Factors DF F/χ2-value P-value

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,82 0.53 0.468

Maternal pre-natal treatment ×​ sex 1,82 0.00 0.964

Maternal post-natal treatment ×​ sex 1,82 0.16 0.686

Offspring pre-natal treatment ×​ sex 1,82 0.10 0.755

Offspring post-natal treatment ×​ sex 1,82 0.75 0.385

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,82 0.00 0.986

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,82 0.39 0.530

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,82 0.00 0.975

Maternal post-natal treatment ×​ offspring post-natal treatment 1,82 1.18 0.278

GR:MR ratio 
hypothalamus

Maternal pre-natal treatment 1,86 1.80 0.180

Maternal post-natal treatment 1,78 3.67 0.055

Offspring pre-natal treatment 1,78 3.37 0.067

Offspring post-natal treatment 1,78 1.95 0.163

Sex 1,78 2.66 0.103

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,78 0.29 0.589

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,78 0.97 0.324

Maternal pre-natal treatment ×​ sex 1,78 1.93 0.165

Maternal post-natal treatment ×​ sex 1,78 3.10 0.085

Offspring pre-natal treatment ×​ sex 1,78 0.16 0.688

Offspring post-natal treatment ×​ sex 1,78 3.72 0.052

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,78 0.75 0.387

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,78 0.00 0.975

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,78 3.82 0.051

Maternal post-natal treatment ×​ offspring post-natal treatment 1,78 1.17 0.279

GR expression 
pituitary gland

Maternal pre-natal treatment 1,85 4.40 0.036

Maternal post-natal treatment 1,85 0.26 0.610

Offspring pre-natal treatment 1,85 0.01 0.940

Offspring post-natal treatment 1,85 0.23 0.640

Sex 1,85 0.38 0.540

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,85 0.02 0.880

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,85 0.11 0.740

Maternal pre-natal treatment ×​ sex 1,85 0.00 0.988

Maternal post-natal treatment ×​ sex 1,85 0.10 0.746

Offspring pre-natal treatment ×​ sex 1,85 2.48 0.116

Offspring post-natal treatment ×​ sex 1,85 0.15 0.695

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,85 0.31 0.580

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,85 0.04 0.840

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,85 0.38 0.540

Maternal post-natal treatment ×​ offspring post-natal treatment 1,85 0.12 0.730

MR expression 
pituitary gland

Maternal pre-natal treatment 1,84 4.78 0.029

Maternal post-natal treatment 1,84 0.99 0.320

Offspring pre-natal treatment 1,84 3.72 0.054

Offspring post-natal treatment 1,84 1.78 0.183

Sex 1,84 0.22 0.640

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,84 0.02 0.888

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,84 0.23 0.634

Maternal pre-natal treatment ×​ sex 1,84 1.38 0.240

Maternal post-natal treatment ×​ sex 1,84 0.18 0.674

Offspring pre-natal treatment ×​ sex 1,84 0.22 0.637

Offspring post-natal treatment ×​ sex 1,84 0.11 0.738

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,84 2.61 0.106

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,84 1.05 0.306

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,84 0.01 0.934

Maternal post-natal treatment ×​ offspring post-natal treatment 1,84 0.19 0.661

GR:MR ratio pituitary 
gland

Maternal pre-natal treatment 1,83 2.46 0.120

Maternal post-natal treatment 1,83 0.36 0.546

Offspring pre-natal treatment 1,83 0.45 0.504

Continued
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Glucocorticoid receptor and mineralocorticoid receptor mRNA expression.  Hippocampus.  In 
the offspring hippocampus, relative expression of the glucocorticoid receptor (GR) was only significantly 
influenced by maternal pre-natal treatment, whereas the relative expression of the mineralocorticoid recep-
tor (MR) was not significantly impacted by any of the independent variables (Table 1). Offspring whose 
mothers had been exposed to pre-natal corticosterone had significantly increased GR mRNA expression 
(MatPreCort: 0.0095 ±​ 0.0015) as compared to individuals whose mothers were pre-natal controls (MatPreCtrl: 
0.0045 ±​ 0.0007).

Due to the key role of GR and MR in the regulation of the stress response, the ratio between both recep-
tors is crucial for stress resilience and homeostasis22,26. The GR:MR mRNA ratio was significantly higher in 
offspring exposed to pre-natal stress (OffPreFood-: 2.11 ±​ 0.79) compared to controls (OffPreCtrl: 1.02 ±​ 0.21) 
(Table 1). This ratio was also higher in the hippocampus of individuals whose mothers had been pre-natally 
stressed (MatPreCort: 2.15 ±​ 0.78) compared to individuals whose mothers were pre-natal controls (MatPreCtrl: 
1.05 ±​ 0.36) (Table 1).

Hypothalamus.  In the offspring hypothalamus, both GR and MR relative expression was only significantly influ-
enced by maternal pre-natal treatment and offspring pre-natal treatment whereas the GR:MR mRNA ratio was 
not affected by any of the independent variables (Table 1). For both receptors, pre-natal stress (MatPreCort and 
OffPreFood-) was associated with an increased mRNA expression (Fig. 6a,b).

Pituitary gland.  In the offspring pituitary gland, GR and MR mRNA levels were only significantly impacted 
by maternal pre-natal treatment whereas the GR:MR mRNA ratio was not affected by any of the independent 
variables (Table 1). Glucocorticoid and mineralocorticoid receptor mRNA expression was higher in offspring 
whose mothers had been prenatally stressed (MatPreCort, GR: 0.0303 ±​ 0.0044; MR: 0.0233 ±​ 0.0076) compared 
to individual whose mothers were pre-natal controls (MatPreCtrl, GR: 0.0186 ±​ 0.0025; MR: 0.0102 ±​ 0.0015).

Discussion
By using a full factorial experimental design where both maternal and offspring early-life experiences were 
manipulated, we showed that maternal stress experienced during their early-life had a stronger effect on offspring 
adult phenotype than the offspring’s own early-life experience at all phenotypic levels that we investigated, shap-
ing offspring neuroendocrine, physiological and behavioural traits. Our previous studies show that pre-natal 
stress has the power to engineer a “stress-coping phenotype” in the maternal generation14,24. Here, maternal 
pre-natal experience did not simply alter offspring phenotype but resulted in the transmission of this maternal 
“stress-coping phenotype”. This may allow mothers to better prepare their offspring to face stressful situations 
in their future environment. Our results also highlight the relative strength of pre-natal compared to post-natal 
experiences, as most of the long-term phenotypic effects resulted from manipulation of pre-natal experience 
whereas post-natal conditions only affected offspring behaviour but not neuro-endocrine traits.

At the neuroendocrine level, offspring of pre-natally stressed females exhibited an increased GR mRNA 
expression and GR:MR mRNA ratio in the hippocampus and higher GR and MR mRNA levels in the hypo-
thalamus and in the pituitary gland compared to individuals of pre-natal control mothers. Offspring early-life 
experience also affected receptor expression in the HPA axis: offspring pre-natally stressed showed an increased 
GR:MR mRNA ratio in the hippocampus and GR and MR mRNA level in the hypothalamus. These modifications 
are in accordance with the effects of pre-natal stress observed in the maternal generation: pre-natally stressed 
mothers showed a larger GR:MR mRNA ratio in the hippocampus, an increased GR and MR mRNA expression 
in the hypothalamus and a higher GR mRNA expression in the pituitary gland14. Hence, it appears that maternal 
exposure to pre-natal stress resulted in the same intracellular receptor expression profiles in the HPA axis in both 
generations, regardless of whether the offspring were exposed to pre-natal stress themselves. In contrast, other 
changes in offspring phenotype induced by direct exposure to pre-natal stress were not exactly the same, and 
often weaker, than those induced by maternal pre-natal stress exposure. The GR and MR receptors play a crucial 

Variables Factors DF F/χ2-value P-value

Offspring post-natal treatment 1,83 2.05 0.152

Sex 1,83 0.83 0.361

Maternal pre-natal treatment ×​ maternal post-natal treatment 1,83 0.83 0.364

Offspring pre-natal treatment ×​ offspring post-natal treatment 1,83 0.60 0.440

Maternal pre-natal treatment ×​ sex 1,83 1.03 0.311

Maternal post-natal treatment ×​ sex 1,83 0.01 0.926

Offspring pre-natal treatment ×​ sex 1,83 0.14 0.704

Offspring post-natal treatment ×​ sex 1,83 1.01 0.314

Maternal pre-natal treatment ×​ offspring pre-natal treatment 1,83 0.19 0.666

Maternal pre-natal treatment ×​ offspring post-natal treatment 1,83 0.12 0.730

Maternal post-natal treatment ×​ offspring pre-natal treatment 1,83 0.38 0.537

Maternal post-natal treatment ×​ offspring post-natal treatment 1,83 3.10 0.078

Table 1.   Statistical results for all independent factors and second order interactions between them, and 
only for significant interactions of higher order for all the models. Significant p-value are indicated in bold.
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role within the HPA axis for the regulation of glucocorticoids at baseline and stress-induced levels and in the neg-
ative feedback efficiency22,26,27. In the maternal generation, these modifications of GR and MR mRNA expression 
within the HPA axis in pre-natally stressed individuals resulted in a more efficient negative feedback and thus 
were associated with an attenuated stress response to an acute stressor14,24. Similarly, here we show that corticos-
terone levels in the offspring of pre-natally stressed mothers decreased by more than 50% from 10 to 30 minutes 
after capture and returned to a lower level not significantly different from baseline level, whereas it decreased by 
only ca. 40% and remained significantly higher than baseline level in the offspring of pre-natal control females. 
Despite these different physiological dynamics, corticosterone levels at 30 minutes were not significantly different 
between offspring of pre-natal stressed and control females. Maternal exposure to pre-natal stress thus resulted in 
an attenuated physiological stress response in their offspring, which we suggest is mediated by the same neuroen-
docrine changes in the HPA axis in both generations. However, direct application of pre-natal stress to offspring 
did not result in an attenuated physiological stress response despite its effect on GR and MR mRNA expression 
within the HPA axis. This suggests that these modifications of receptors were not strong enough to affect the met-
rics of the physiological stress response that we measured. One potential caveat is that we measured GR and MR 
mRNA levels but we did not determine GR and MR protein expression. Some recent studies suggest that mRNA 
and protein expression measures do not always correlate (e.g refs 28 and 29), although most studies show that 
they are coupled30–36. The observed changes in GR and MR mRNA expression in our study are in accordance with 
the mediation of the physiological acute stress response, but it would be interesting to directly measure whether 
GR and MR mRNA and protein levels are coupled in the Japanese quail.

At the behavioural level, we employed the same novel environment test in our assessment of exploration in 
both generations. Offspring of females exposed to pre-natal stress took less time to enter the novel environment 
and spent more time away from the introductory compartment (in Zone 3) compared to offspring of pre-natal 
control females. Thus, maternal exposure to pre-natal stress induced an increase in exploration behaviour in a 
stressful novel environment in their offspring. In accordance with the results in the maternal generation24 and 
in other mammal and bird species37–40, we suggest that this increased exploration was mediated by the attenu-
ated physiological stress response programmed by maternal exposure to pre-natal stress. In addition, maternal 
exposure to both pre- and post-natal stress had interactive effects on offspring behaviour, where these individuals 
spent more time away from the introductory compartment (in Zone 3) and ate more mealworms than offspring of 
females that were exposed to none or only one early-life stressor. These are the exact same behavioural responses 
as we observed in the maternal cohort when tested at the same age as their offspring24. We therefore suggest that 
the phenotype programmed by exposure to early-life stress is readily transmitted to the following generation. 
Offspring direct exposure to post-natal stress was associated with a higher consumption of mealworms in the 
novel environment. This result is in accordance with previous studies showing that post-natal stress increases 
risk-taking and motivation to find food later in life24,38,41–44.

It appears that pre-natal stress (either maternal or offspring direct exposure) affected the offspring phenotype 
more than post-natal stress (either maternal or offspring direct exposure). This is in agreement with previous 
studies in the Japanese quail and others species showing that the pre-natal period is a sensitive period to stress that 
could result in long-term impacts on the phenotype (human and rodents2,7,8,45, guinea pig46, birds47, chicken48,49, 
Japanese quail6,14,24,50, threespine stickleback10,51, guppies52). However, in some other species post-natal expe-
rience does have a strong effect on individual phenotype (rat9,15,53,54, zebra finch44,55–59). It seems that the main 
difference between the species that are more likely affected by pre-natal or by post-natal stress is the degree of 

Figure 2.  Maternal exposure to pre-natal stress resulted in an attenuated stress response in their offspring. 
CORT level modification in response to a capture-handling-restraint protocol in offspring of mothers 
exposed to pre- and post-natal control treatments (white dots and solid line), of mothers exposed to pre-natal 
control and post-natal stress treatments (white dots and dashed line), of mothers exposed to pre-natal stress 
and post-natal control treatments (black dots and solid line) and of mothers exposed to pre- and post-natal 
stress treatments (black dots and dashed line). Values are means ±​ SEM. Different letters indicate significant 
differences.
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development at birth. In precocial species such as the Japanese quail, chicken or hare, pre-natal stress appears to 
have the strongest effect on adult phenotype whereas in altricial species like the zebra finch or rat, it seems that 
post-natal stress is the main factor affecting the adult phenotype.

Similarly to recent findings in the zebra finch18 where the authors manipulated both parent and offspring early 
nutritional conditions, we did not observe any interactive effects between maternal and offspring developmental 
experiences where both affected the traits we measured. We manipulated both maternal and offspring pre-natal 
experience and we showed that maternal pre-natal stress had a more substantial impact on offspring phenotype 
later in life regardless of the offspring’s own direct exposure to stress during development. Both maternal and 
offspring direct exposure to pre-natal stress independently affected GR and MR mRNA levels in the HPA axis. 
However, the effect of the offspring’s exposure to pre-natal stress was weaker than the effect of the maternal 
pre-natal experience. Moreover, contrary to what was observed in the maternal generation24, direct application 
of pre-natal stress to offspring did not result in an attenuated physiological response and neither had it effects on 
behaviour in the novel environment.

We showed here that maternal pre-natal stress exposure had a stronger effect in shaping offspring phenotype 
than their own pre-natal stress exposure. This might be because we exposed the maternal and offspring gen-
erations to different pre-natal stressors: corticosterone injection into the egg for the mothers vs. random food 
removal during the maternal formation of the eggs from which the test offspring emerged. The amount of corti-
costerone we injected in the eggs to produce the maternal pre-natal stress treatment group elevated yolk corticos-
terone in the physiological range (1.8 SD above the lab population average). However, the random food removal 
during the mothers’ egg laying period may not have affected maternal corticosterone deposition into the eggs, 
or not to an extent equivalent to the corticosterone injection in the maternal generation. Consequently offspring 
may not have been exposed to the same pre-natal stress level as the maternal generation, which would explain the 

Figure 3.  Maternal exposure to pre-natal stress decreased their offspring’s latency to enter the novel 
environment. Mean latency in seconds to enter the novel environment, as affected by (a) the interaction 
between maternal pre-natal treatment (control: MatPreCtrl, white bars, stressed: MatPreCort, black bars) 
and offspring post-natal treatment (control: OffPostCtrl, empty bars, stressed: OffPostFood-, right hatched 
bars) and (b) the interaction between maternal pre-natal treatment (control: MatPreCtrl, white bars, stressed: 
MatPreCort, black bars) and offspring pre-natal treatment (control: OffPreCtrl, empty bars, stressed: 
OffPreFood-, left hatched bars). Values are means ±​ SEM. Different letters indicate significant differences.
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strong effect of maternal pre-natal stress and the weak effects of offspring pre-natal stress. We suggest that future 
studies quantify the corticosterone levels in the eggs laid by females in the food-removal treatment group and 
the control group to determine the efficiency of the food-removal treatment to manipulate offspring pre-natal 
corticosterone exposure. Nevertheless, this suggests that different stressors can result in distinct effects on the 
phenotype46.

It is now well recognised that stress exposure during early development may not only affect individuals 
directly exposed to the stress, but also their offspring and grand-offspring through transgenerational effects1,7,17. 
Nevertheless, it is important to make the distinction between transgenerational effects and transgenerational 
transmission. Transgenerational effects occur when early developmental conditions in one generation affect 
future generations but not necessarily in the same way. Transgenerational transmission or inheritance refers to 
the transmission of the same modification in one or more phenotypic traits induced by early developmental 
experiences from one generation to the next. Examples of transgenerational effects of early-life conditions are 
quite abundant, especially in the biomedical, epidemiological and toxicological literature on humans and rodents 

Figure 4.  Maternal exposure to both early life stressors increased the time their offspring spent away from 
the home cage in the novel environment. Mean time spent in zone 3 for the offspring of mothers exposed 
to pre- and post-natal control treatments (MatPreCtrl/MatPostCtrl, empty white bar), of mothers exposed to 
pre-natal control and post-natal stress treatments (MatPreCtrl/MatPostFood-, striped white bar), of mothers 
exposed to pre-natal stress and post-natal control treatments (MatPreCort/MatPostCtrl, empty black bar) and 
of mothers exposed to both pre- and post-natal stress treatments (MatPreCort/MatPostFood-, striped black 
bar). Values are means ±​ SEM. Different letters indicate significant differences.

Figure 5.  Maternal exposure to both early life stressors increased the number of mealworms their offspring 
ate in the novel environment. Mean number of mealworms eaten for the offspring of mothers exposed to pre- 
and post-natal control treatments (MatPreCtrl/MatPostCtrl, empty white bar), of mothers exposed to pre-natal 
control and post-natal stress treatments (MatPreCtrl/MatPostFood-, striped white bar), of mothers exposed to 
pre-natal stress and post-natal control treatments (MatPreCort/MatPostCtrl, empty black bar) and of mothers 
exposed to pre- and post-natal stress treatments (MatPreCort/MatPostFood-, striped black bar). Values are 
means ±​ SEM. Different letters indicate significant differences.
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(reviewed in refs 1 and 17). Studies showing transgenerational inheritance of phenotypic traits programmed by 
early-life conditions are more limited60,61 (but see rodents53,60,62–64; birds50,65,66). However, most of these studies 
have shown transgenerational transmission at a single phenotypic level. An exception is the research on rats 
where the transmission of the maternal licking and grooming (LG) behaviours is associated with the transmission 
of an attenuated response to stress mediated by an increase in the expression of GR in the hippocampus and of a 
reduced behavioural response to fearful stimuli53,63. Our results show transgenerational transmission of a suite of 
linked phenotypic traits from the hormone receptor to the behavioural level programmed by maternal exposure 
to pre-natal stress. It has been proposed that the physiological and behavioural changes we observed may help 
to cope better with stressful situations and thus may have positive consequences for fitness23,67–69. Therefore, it 
appears that mother’s “stress-coping phenotype” programmed by early-life stress can be transmitted to the next 
generation which may enhance their offspring’s capacity to cope with later environments that vary in resources or 
in biotic and abiotic factors leading to the activation of the HPA axis.

The transmission of the maternal stress-coping phenotype to their offspring could be mediated by two 
non-exclusive non-genomic transmission pathways. Firstly, pre-natally stressed females may have altered the 
pre-natal environment of their offspring17 by increasing the amount of corticosterone deposited into the eggs. 
This would directly expose developing chicks to increased pre-natal stress hormone levels that may have pro-
grammed their phenotype in the same way as that observed in the maternal generation. Another potential mech-
anism is transmission via alteration of the epigenome1,17. In the example of licking/grooming behaviour in rat 
dams, a high level of these behaviours from mothers towards their pups altered the pups’ epigenome at the level 
of the GR promoter in the hippocampus. This epigenetic modification increased GR expression in the hippocam-
pus and lead to the observed attenuated physiological stress responses and increased L/G behaviour of pups70. 
Interestingly, pre-natal stress exposure in the maternal generation in this quail population also resulted in modi-
fications of GR and MR mRNA expression in the HPA axis, causing the observed attenuated stress response and 

Figure 6.  Maternal exposure and offspring exposure to pre-natal stress increased offspring glucocorticoid 
and mineralocorticoid receptor expression in the hypothalamus. Relative expression of (a) glucocorticoid 
receptor mRNA (GR) in the hypothalamus of offspring of pre-natal control mothers (MatPreCtrl, white bar) 
and of pre-natally stressed mothers (MatPreCort, black bar) and in pre-natal control offspring (OffPreCtrl, 
empty grey bar) and in pre-natally stressed offspring (OffPreCort, left hatched grey bar) (b) mineralocorticoid 
receptor mRNA (MR) in the hypothalamus of offspring of pre-natal control mothers (MatPreCtrl, white bar) 
and of pre-natally stressed mothers (MatPreCort, black bar) and in pre-natal control offspring (OffPreCtrl, 
empty grey bar) and in pre-natally stressed offspring (OffPreCort, left hatched grey bar). Values are 
means ±​ SEM. *Indicates significant differences.
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behavioural modification in the novel environment test14,24. As early life seems to be a sensitive period for the 
environment to affect the epigenome1, we can hypothesize that the differential receptors’ expression may result 
from epigenetic alterations of the GR and MR genes due to exposure to pre-natal stress. If these epigenetic modi-
fications were inherited by the offspring it would explain the development of the same phenotype. It would there-
fore be interesting to determine if pre-natal stress affected CORT deposition into the egg and/or epigenetic status 
of GR and MR genes in order to determine the causal mechanism underlying the transgenerational transmission 
of the maternal phenotype in more detail.

Our exhaustive experimental design in which both mothers and their offspring’s developmental conditions 
were manipulated allowed us to tease apart ancestral and current modulators of a range of phenotypic traits. We 
show that maternal pre-natal experience was the main driver of their offspring’s phenotype expression, resulting 
in the offspring inheritance of their mother’s ‘stress-coping phenotype’ programmed by pre-natal stress. This 
may allow mothers to enhance their offspring’s capacities to cope with a stressful environment later in life, which 
ultimately may increase their fitness. Such transgenerational non-genetic inheritance can be adaptive in changing 
environments when environmental fluctuations are predictable and the information provided by the parents 
are reliable. Under those circumstances, parents will benefit from transmitting their phenotypes optimized for 
anticipated conditions19,71,72. These results also support the notion that developmental programming should be 
regarded as a transgenerational phenomenon17 that could be crucial for adaption to changing environments.

Methods
Maternal stress manipulations.  All of the procedures carried out in this study were approved by the local 
ethics committee at the University of St Andrews (Scotland) and the experiment was conducted in accordance 
with the Animals (Scientific Procedures) Act 1986 (under PIL 70/13261 and PIL 70/1364 held by CZ and KAS 
respectively and PPL 60/4068 held by KAS). 76 unrelated fertile Japanese quail eggs were incubated. After 5 days 
of incubation, we manipulated pre-natal stress in half of these eggs by injecting them with 10 μ​l of corticoster-
one (CORT) dissolved in sterile peanut oil (850 ng.ml−1) at the egg apex under sterile conditions (MatPreCort: 
n =​ 38). This dose is known to increase yolk CORT concentrations within 1.8 SD of those found in the control 
breeding population24,41 and similar to previous studies that have increased CORT within the physiologically rel-
evant range or used natural stressors to increase CORT deposition into the eggs (eg. refs 13, 73–75). Control eggs 
were injected with peanut oil alone (MatPreCtrl: n =​ 38) (Fig. 1). At hatching, chicks (n =​ 59) were individually 
marked with a unique pattern of colors using nail polish to allow individual recognition. Chicks of each pre-na-
tal treatment were kept in two different enclosures with ad libitum food. When they were 4 days old, half of the 
chicks of each pre-natal treatment were assigned to one of two post-natal food treatments: either food removal on 
a random schedule for 3.5 h per day (25% of daylight hours) between 8 A.M. and 8 P.M. between the age of 4–20 
days (MatPostFood-: n =​ 28) or ad libitum food at all times during the same period (MatPostCtrl: n =​ 31) (Fig. 1, 
see refs 24 and 41 for details). After the end of the post-natal treatment, all birds were provided with ad libitum 
food until adulthood and the breeding experiments began. We thus created four maternal treatment groups: 
MatPreCtrl/MatPostCtrl (n =​ 15, 10 females); MatPreCtrl/MatPostFood- (n =​ 13, 6 females), MatPreCort/
MatPostCtrl (n =​ 16, 11 females) and MatPreCort/MatPostFood- (n =​ 15, 6 females) (Fig. 1). From this cohort, 
the 33 females were used to produce offspring in order to look at potential transgenerational effects.

Offspring stress manipulations.  During breeding of the maternal generation, females were placed in indi-
vidual cages (76 ×​ 48 ×​ 53 cm) and a control male was placed in each female cage for 10 minutes once a day. This 
has been shown to be an effective way to produce fertile eggs whilst minimizing harassment of females from 
males76. We used eight different control males, each male was presented to four females every day. The order of 
presentation of females was randomly assigned every day for each male. Each female produced two clutches 8 
weeks apart under two different environmental conditions in order to match or mismatch their adult environ-
ment with their developmental environment and to manipulate offspring pre-natal stress. One condition was 
designed to mimic unpredictable food stress, and elevate maternal CORT levels without causing food restric-
tion77,78. Food was randomly removed for 25% of the daylight hours (3.5 h) every day for 28 days between 0800 h 
and 2000 h during the laying period (OffPreFood-). The second condition was a control treatment where females 
were provided with ad libitum food access throughout the laying period (OffPreCtrl). Both treatments (stress: 
OffPreFood- and control: OffPreCtrl) and the order of each treatment were counterbalanced in each female group 
to control for any effect of the first clutch treatment on the response for the second clutch (Fig. 1). For each clutch, 
eggs laid during the first 10 days of mating were removed as this is the minimum time required to obtain fertile 
eggs79. Consequently cages were checked every day and each egg was given a number in order to track laying 
order. Random food removal has been shown to increase peak CORT levels77 and 7 days is the minimum time 
required for an increase in plasma CORT to result in an increase in CORT level in the yolk in the Japanese quail80. 
Thus, to increase the probability of a transfer of a higher CORT volumes into the eggs, for each female the 2 eggs 
laid on the last 2 days of the breeding treatment were collected in both conditions and were incubated. If a female 
finished her clutch before the end of the treatment the last 2 eggs laid were incubated. Consequently, for each 
female, 2 eggs produced under stress conditions and 2 eggs produced under control conditions were incubated. 
Two females under control breeding conditions did not lay a clutch. For 3 females reproducing under control 
conditions and 4 reproducing under stress conditions, eggs were not fertile. Consequently, 114 eggs (OffPreCtrl: 
n =​ 58; OffPreFood-: n =​ 56) were incubated at 37.5 °C and 55% humidity. On day 14 of incubation, eggs were 
moved to hatchers where eggs of each female were kept in different compartments, where they were maintained 
at 37 °C and 75% humidity until hatching on day 18. Eighty-seven eggs hatched (OffPreCtrl: 77.6%, OffPreFood-: 
80.4%). Upon hatching, each chick was given a unique nail polish mark on the head and wings and was returned 
to the hatcher for 24 hours to allow feathers to dry. Chicks of each pre-natal treatment were kept in two different 
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enclosures with ad libitum food, water and an electric hen brooder. When chicks were 4 days old, if the two chicks 
of a female hatched each chick was subsequently randomly allocated to one of the two post-natal treatments: 
either food removal on a random schedule for 3.5 h per day (25% of daylight hours) between 0800 and 2000 h 
between the age of 4–20 days (OffPostFood-: n =​ 44) or ad libitum food during the same period (OffPostCtrl: 
n =​ 43) (Fig. 1). If only one chick hatched for a female, the chick was allocated to one of the two post-natal treat-
ments to obtain an equal number of chicks from the two pre-natal conditions in each group. Room temperature 
was maintained at 20–22 °C and the photoperiod was 14L:10D (0700 h–2100 h). At 20 days post-hatching, all 
birds were provided with access to ad libitum food. We thus created four offspring treatment groups: OffPreCtrl/
OffPostCtrl (n =​ 22); OffPreCtrl/OffPostFood- (n =​ 20), OffPreFood-/OffPostCtrl (n =​ 21) and OffPreFood-/
OffPostFood- (n =​ 24). This experimental design resulted in 16 treatment combinations (Fig. 1) allowing us to 
determine if offspring phenotype was shaped by direct exposure to early life-stress, by exposure of their mother 
to early-life stress, by both direct and maternal exposure to early-life stress or if early-life stress had no effects on 
offspring phenotype. These treatment groups also gave us the opportunity to assess at which developmental stage 
early-life stress altered adult phenotype and if stress exposure at different developmental stages had interactive 
effects on offspring phenotype.

Physiological stress response.  Physiological stress response was assessed using a standardized 
capture-handling-restraint stress protocol when offspring were between 40 and 45 days of age (43 ±​ 0.2 days). 
One week before the beginning of blood sampling, birds were moved to individual cages (76 ×​ 48 ×​ 53 cm) in two 
rooms in which both sides of the rooms were visually divided so birds could not see the experimenters entering. 
Consequently, we were able to catch birds from one side of the room without disturbing birds located at the other 
side. When birds had been caught on both sides of the room, we waited 2 hours before catching birds again in the 
same room to avoid any effects of the previous captures. Additionally, catching order was added as a covariate in 
the analyses and showed no effect. Between 0900 and 1200 h, three experimenters silently entered a room and 
each caught a quail in its cage and then went to a nearby room where the blood was collected. Blood (70 μ​l) was 
collected within 3 minutes of capture to determine baseline CORT levels. Birds were then placed in an opaque 
box and two more blood samples were collected 10 and 30 minutes after initial capture. Samples were taken by 
venipuncture of a brachial vein. Blood was collected in a heparinised capillary tube and then transferred into a 
microcapillary tube and kept on ice until centrifugation (within 3 hours). Samples were centrifuged for 10 min-
utes at 3500 rpm and plasma stored at −​20 °C for later analysis.

CORT concentrations were measured after extraction of 30 μ​l aliquots of plasma in 1 ml of diethyl ether by 
the dextran-coated charcoal radioimmunoassay method (DextranT70, Sigma Aldrich 31390-25G, Activated 
Charcoal, Acros Organics 134342500), using CORT antiserum code ABIN344880 (antibodies-online.com) and 
[1,2,6,7-3H]-CORT label. The cross-reactivity of the antibody is <​0.01–1.5%, depending on the compound. 
CORT levels of all birds were above the detection limit (0.08 ng.ml−1). For all samples, extraction efficiency was 
estimated and ranged between 69 and 100%. All samples were run in duplicate in three assays and intra-assay 
and inter-assay coefficients of variation were 0.06 and 0.09, respectively. CORT concentration at 50% binding was 
1.03 ng.ml−1. All samples from a single individual were quantified in the same assay and treatment groups were 
equally represented within each assay.

Novel environment exploration.  When offspring were between 50 and 59 days of age (55.1 ±​ 0.3 days), 
exploratory behaviour in a novel environment was measured according to the same protocols used for mothers21. 
The novel environment was a cage (120 ×​ 75 ×​ 75 cm) containing an introductory compartment (25 ×​ 25 cm) 
and four novel objects: 2 orange plastic traffic cones (17.5 cm high ×​ 10 cm wide at the base), a multi-coloured 
enclosed feeder made of plastic brick (26 cm ×​ 19 cm ×​ 15 cm), a cloth ring with coloured fabrics (28 cm 
high ×​ 30 cm wide) and two yellow opaque plastic panels, one of which hid one of the traffic cones while the 
other panel hid the cloth ring with coloured fabrics. The second traffic cone was positioned close to the exit of 
the introductory compartment. Three small white opaque plastic dishes (7 cm diameter ×​ 4 cm high) containing 
three dried mealworms each were placed near both hidden objects and in the plastic brick construction (see ref. 
24 for details). After 80 minutes of food deprivation in their individual cages, birds were moved to the intro-
ductory compartment of the novel environment and allowed to habituate for another 10 minutes without food. 
Then, the experimenter opened a sliding door to allow the test subject to enter the novel environment and left the 
room. The sliding door remained open during the duration of the test allowing the individual to come back in the 
introductory compartment. The behaviour of the test subject was recorded for 15 minutes with two camcorders: 
one in front of the cage and one above the cage. For video analyses, we imagined the cage to be divided into three 
equally sized zones (see ref. 24 for details). From the videos, we recorded the latency to exit the introductory cage, 
the latency to enter each of the three virtual zones, latency to feed from each of the three feeders, the time spent in 
each zone and in the introductory compartment, the number of feeders visited, the number of mealworms eaten 
and the time spent moving.

Tissue collection and quantitative real-time PCR.  At the end of the experiment, when individuals of 
the offspring generation were 73.2 ±​ 0.5 days old, they were sacrificed by injection of an overdose of pentobar-
bital. Brains were quickly removed (within 1 minute), then pituitary glands were also removed (within 1 minute 
after brain removal) and placed on dry ice until frozen, then stored at −​80 °C. To perform the dissections, the 
brains were placed ventral side up into a brain Matrix with a 1 mm graduated scale placed on a mixture of dry and 
wet ice to keep the brain frozen and a 2 mm-thick coronal section was cut using two razor blades. Then, whilst still 
frozen, two equivalent bilateral punches (1 mm diameter each) were obtained from the hippocampus and a single 
punch was obtained from the medial hypothalamus that spanned the third ventricle (see ref. 14 for details). Each 
sample was stored separately at −​80 °C.
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Total RNA was extracted and purified using Absolutely RNA Miniprep kits (Agilent Technologies, Santa Clara, 
CA, USA) according to the manufacturer’s protocol. The quantity and integrity of RNA were assessed with a RNA 
6000 Pico assay kit for hippocampus and hypothalamus and a RNA 6000 Nano kit for pituitary gland using the 
Agilent 2100 bioanalyzer according to the manufacturer’s instructions. The mean RNA integrity number (RIN) 
of these samples was 7.6 ±​ 0.1 (range: 4.5–9.5). First strand cDNA was synthesized using Affinity Script Multiple 
Temperature cDNA Synthesis kits (Agilent Technologies) and diluted to obtain a working concentration of 25 pg.
μ​l−1. This cDNA was used to perform quantitative real-time PCR (qPCR) for the genes of interest (GR and MR) 
and the house-keeping gene β​-actin (BA) for the different brain regions using gene-specific primers. We used 
Specific PerfectProbe™​ primers (Primerdesign, Southampton, UK) for the genes of interest that amplified single 
products with no dimer pairs and have been validated in our quail population as well as the house keeping gene 
using a chicken (Gallus gallus) Genorm kit (Primerdesign) (BA: M =​ 0.30; other candidates M ≥​ 0.34)14. GR sense 
primer: TAATGACCGTGGTGACCTTTTA, anti-sense primer: TTTCTTGCTTTATGCCAGGAGTA (GenBank 
accession no. NM_001037826). MR sense primer: GTAGAATAGAGGACAGATGAACTTTT, anti-sense primer: 
ACCCAGAGAGAACACTACAGAT (GenBank accession no. NM_001159345). All qPCR reactions were run in 
duplicate with all the samples of an individual on the same plate. Each reaction contained 10 μ​l of 2x Brilliant III 
Ultra-Fast QPCR Master Mix (Agilent technologies), 1 μ​l of specific PerfectProbe™​ primer at a working concen-
tration of 300 nM, 0.3 μ​l of reference dye, 3.7 μ​l of RNAse/DNAase-free water and 5 μ​l of appropriate cDNA for 
a final volume of 20 μ​l along with no-template controls and blanks. Reactions were carried out on a Stratagene 
MX 3005 P (Agilent Technologies) at 95 °C for 3 min, then 50 cycles of 95 °C for 20 s, 60 °C for 20 s. From stand-
ard curves generated with known concentrations of cDNA, we determined that the amplification efficiency 
(Eff =​ 10(−1/slope) −​ 1) was higher than 94% for GR, MR and BA. Therefore, we used the Delta Ct method (Δ​Ct) to 
quantify the relative expression of GR and MR mRNA relative to BA: 2−(Ct GR/MR−Ct BA)81.

Statistical analyses.  For all dependant variables, offspring early-life treatments were specified as fixed fac-
tors to look at potential programming effects of these treatments on phenotypic traits. Maternal early-life treat-
ments were also added as fixed factors in the models to look at potential transgenerational effects. All models also 
included offspring sex and all the interactions between sex and the maternal and offspring treatments. For all 
models, residuals of normal models were not normally distributed, so generalized linear mixed models (GLMM) 
were used. Individual identity was used as a random factor to account for inter-individual differences. Mother 
identity was also specified as a random factor to take into account the parentage between individuals.

A GLMM was performed to analyse CORT levels. The model was fitted with a gamma law and the MSPL 
(Maximum Subject-specific Pseudo-Likelihood) was used as the estimation method. Blood-sample time after 
capture was also included as a repeated factor to take into account the non-independence between samples.

GLMMs fitted with a gamma law were used to analyse relative GR and MR mRNA expression and GR:MR 
mRNA ratio in the different brain regions; latencies to enter the novel environment and to feed in the three 
feeders; time spent in the introductory compartment, in the three zones and time spent moving in the novel 
environment. GLMMs fitted with Poisson law were used to analyse the number of feeders visited and the number 
of mealworms eaten.

GLMMs were performed using the GLIMMIX procedure in SAS 9.4. For all models, Tukey-Kramer multiple 
comparison adjustment was applied to obtain corrected p-values. Probability levels <​0.05 were considered as 
significant. Data presented are means ±​ SEM.
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