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ABSTRACT
We present baryon acoustic oscillation (BAO) scale measurements determined from the clus-
tering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300
square degrees, as quantified by their redshift-space correlation function. In order to facili-
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tate these measurements, we define, describe, and motivate the selection function for galaxies
in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey
(BOSS). This includes the observational footprint, masks for image quality and Galactic ex-
tinction, and weights to account for density relationships intrinsic to the imaging and spec-
troscopic portions of the survey. We simulate the observed systematic trends in mock galaxy
samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale
measurements and have a minor impact on the recovered statistical uncertainty. We measure
transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and
(overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that
is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse
distance. The combination of the redshift bins represents 1.8 per cent precision on the radial
distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that
analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods
presented here are combined with others in Alam et al. (2016) to produce the final cosmolog-
ical constraints from BOSS.

Key words: cosmology: observations - (cosmology:) large-scale structure of Universe

1 INTRODUCTION

The Baryon Oscillation Spectroscopic Survey (BOSS) has built on
the legacy of previous wide-field surveys such as Two Degree Field
Galaxy Redshift Survey (2dFGRS; Colless et al. 2003) and the
Sloan Digital Sky Survey I-II (SDSS; York et al. 2000) to amass
a sample (Alam et al. 2015; Reid et al. 2016) of more than 1 mil-
lion spectroscopic redshifts of the galaxies with the greatest stellar
mass to z < 0.75. This final BOSS data set represents the pre-
mier large-scale structure catalog for use in measuring cosmologic
distances based on the baryon acoustic oscillation (BAO) feature
and the rate of structure growth via the signature of redshift-space
distortions (RSD).

Previous results have demonstrated that the current and pre-
vious BOSS data sets produce precise and robust BAO and RSD
measurements (c.f., Reid et al. 2012; Anderson et al. 2012; Chuang
et al. 2013a; Kazin et al. 2013; Sánchez et al. 2013; Anderson et al.
2014a,b; Sánchez et al. 2014; Samushia et al. 2014; Cuesta et al.
2016; Gil-Marı́n et al. 2015a,b). The results of Ross et al. (2012,
2014); Alam et al. (2015); Osumi et al. (2015) have demonstrated
that the BOSS results are robust to observational systematic con-
cerns and details of sample selection related to galaxy evolution.
This paper represents a final, detailed, investigation of observa-
tional systematic concerns in the BOSS sample. We detail how the
angular selection functions of the BOSS galaxy samples are defined
and test for any systematic uncertainty that is imparted into BAO
measurements based on this process. The work we present details
how BOSS galaxy data can be combined into one BOSS galaxy cat-
alog, and that robust BAO distance and RSD growth measurements
can be obtained from the data set.

This work uses the ‘combined’ BOSS galaxy catalog to de-
termine BAO scale distance measurements, making use of den-
sity field ‘reconstruction’ (c.f., Padmanabhan et al. 2012). Fol-
lowing Xu et al. (2013); Anderson et al. (2014a,b); Ross et al.
(2015); Cuesta et al. (2016), we use the monopole and quadrupole
of the correlation function to measure the expansion rate, H(z),
and the angular diameter distance, DA(z), at the redshift of BOSS
galaxies. BAO measurements obtained using the monopole and
quadrupole of the power spectrum are presented in Beutler et al.
(2016a), while Vargas-Magaña et al. (2016) diagnoses the level
of theoretical systematic uncertainty in the BOSS BAO measure-
ments. Measurements of the rate of structure growth from the RSD

signal are presented in Beutler et al. (2016b); Grieb et al. (2016);
Sánchez et al. (2016a); Satpathy et al. (2016). Alam et al. (2016)
combines the results of these seven (including this work) results to-
gether into a single likelihood that can be used to test cosmological
models.

The paper is outlined as follows: In Section 2 we describe
how clustering measurements and their covariance are determined,
and how these measurements are used to determine the distance
to BOSS galaxies using the BAO feature; in Section 3, we de-
scribe how BOSS galaxies are selected, masked, and simulated.
In section 4, we describe how weights that correct for observa-
tional systematic relationships with galaxy density are determined
and applied to clustering measurements. In Section 5, we present
the configuration-space clustering of BOSS galaxies, demonstrat-
ing the effect of systematic weights, comparing the clustering of
different BOSS selections and showing that the clustering in the
independent NGC and SGC hemispheres is consistent and that the
separate BOSS selections can be combined into one BOSS sample
to be used for clustering measurements. In Section 6, we show that
the BOSS BAO measurements are robust to observational system-
atics (both for data and mock samples). In Section 7, we present
the BAO measurements of the BOSS combined sample; these mea-
surements are used in Alam et al. (2016), combined with the BAO
distance measurements and RSD growth measurements of Beutler
et al. (2016a,b); Grieb et al. (2016); Sánchez et al. (2016a); Satpa-
thy et al. (2016); Vargas-Magaña et al. (2016) and using the meth-
ods described in Sánchez et al. (2016b) to constrain cosmological
models. In Section 8, we compare our BAO results with those ob-
tained from other BOSS studies and make general recommenda-
tions for how to consider any residual observation systematic un-
certainty when using BOSS clustering results.

Unless otherwise noted, we use a flat ΛCDM cosmology given
by Ωm = 0.31, Ωbh

2 = 0.0220, h = 0.676. This is consistent
with Planck Collaboration et al. (2015) and is the same as used in
the companion papers studying the BOSS combined sample.

2 ANALYSIS TOOLS

2.1 Clustering statistics

We work in configuration space. The procedure we use is the same
as in Anderson et al. (2014b), except that our fiducial bin-size is
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5 h−1Mpc (as justified in Appendix A). We repeat some of the
details here. We determine the multipoles of the correlation func-
tion, ξ`(s), by finding the redshift-space separation, s, of pairs of
galaxies and randoms, in units h−1Mpc assuming our fiducial cos-
mology, and cosine of the angle of the pair to the line-of-sight, µ,
and employing the standard Landy & Szalay (1993) method

ξ(s, µ) =
DD(s, µ)− 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (1)

where D represents the galaxy sample and R represents the uni-
form random sample that simulates the selection function of the
galaxies. DD(s, µ) thus represent the number of pairs of galaxies
with separation s and orientation µ.

When counting, each pair is summed as the multiplication
of the weights associated with the pair galaxy/random points. For
galaxies, the total weight corrects for systematic dependencies in
the imaging and spectroscopic data (see Section 4) multiplied by
a weight, wFKP, that is meant to optimally weight the contribution
of galaxies based on their number density at different redshifts. The
random points are weighted only by wFKP. The wFKP weight is
based on Feldman et al. (1994) and defined as

wFKP = 1/(1 + n(z)P0). (2)

In this analysis (and other companion DR12 papers), we use P0 =
104h3Mpc−3, while previous BOSS analyses have used P0 = 2×
104h3Mpc−3. The choice of P0 = 104h3Mpc−3 is motivated by
the fact that this is close to the value of the BOSS power spectrum
at k = 0.14hMpc−1 and Font-Ribera et al. (2014) suggest this
scale is the effective scale to use for BOSS BAO measurements.

We calculate ξ(s, |µ|) in evenly-spaced bins1 of width 5
h−1Mpc in s and 0.01 in |µ|. We then determine the first two even
moments of the redshift-space correlation function via

2ξ`(s)

2`+ 1
=

100∑
i=1

0.01ξ(s, µi)L`(µi), (3)

where µi = 0.01i − 0.005 and L` is a Legendre polynomial of
order `.

We will also use data that has had the “reconstruction” process
applied (Eisenstein et al. 2007a; Padmanabhan et al. 2012). In this
case, there is a shifted random field, denoted S, and the original
random field, and equation (1) becomes

ξ(s, µ) =
DD(s, µ)− 2DS(s, µ) + SS(s, µ)

RR(s, µ)
, (4)

2.2 Likelihood analysis/parameter inference

We assume the likelihood distribution, L, of any parameter (or vec-
tor of parameters), p, of interest is a multi-variate Gaussian:

L(p) ∝ e−χ
2(p)/2. (5)

The χ2 is given by the standard definition

χ2 = DC−1DT , (6)

where C represents the covariance matrix of a data vector and D
is the difference between the data and model vectors, when model
parameter p is used. We assume flat priors on all model parameters,
unless otherwise noted.

1 The pair-counts are tabulated using a bin width of 1 h−1Mpc and then
summed into 5 h−1Mpc bins, allowing different choices for bin centres.

In order to estimate covariance matrices, we use a large num-
ber of mock galaxy samples (see Section 3.4), unless otherwise
noted. The noise from the finite number of mock realizations re-
quires some corrections to the χ2 values, the width of the likeli-
hood distribution, and the standard deviation of any parameter de-
termined from the same set of mocks used to define the covariance
matrix. These factors are defined in Hartlap et al. (2007); Dodelson
& Schneider (2013); Percival et al. (2014) and we apply them in the
same way as in, e.g., Anderson et al. (2014b). We use 996 mocks
and thus the factors end up being only 3 per cent.

2.3 Fitting the BAO Scale

The fundamental aim of BAO measurements is to measure the an-
gular diameter distance, DA(z) and the expansion rate, H(z). We
do so by measuring how different the BAO scale is in our clustering
measurements compared to its location in a template constructed
using our fiducial cosmology. There are two effects that determine
the difference between the observed BAO position and that in the
template. The first is the difference between the BAO position in
the true intrinsic primordial power spectrum, and that in the model,
with the multiplicative shift depending on the ratio rd/r

fid
d , where

rd is the sound horizon at the drag epoch (and thus represents the
expected location of the BAO feature in co-moving distance units,
due to the physics of the early Universe) . The second is the differ-
ence in projection. The data is measured using a fiducial distance-
redshift relation, matching that of the template: if this is wrong we
will see a shift that depends on H(z) in the radial direction, and
DA(z) in the angular direction. The combination of these effects
means that our comparison of BAO positions measures:

α|| =
(H(z)rd)fid

H(z)rd
, α⊥ =

DA(z)rfid
d

Dfid
A (z)rd

. (7)

It is often convenient for the purposes of comparison to translate
these to

α = α
1/3

|| α
2/3
⊥ , 1 + ε =

(
α||
α⊥

)1/3

, (8)

here α is the BAO measurement expected from spherically aver-
aged clustering measurements and ε the significance of the BAO
feature introduced into the quadrupole by assuming a fiducial cos-
mology that does not match the true cosmology.

The methodology we use to measure α||, α⊥ is based on
that used in Xu et al. (2013); Anderson et al. (2014b); Ross
et al. (2015), but we employ improved modeling of the post-
reconstruction quadrupole based on the results of Seo et al. (2015),
which are similar to White (2015) and Cohn et al. (2016). We
present the relevant details here.

We generate a template ξ(s) using the linear power spectrum,
Plin(k), obtained from CAMB2 (Lewis & Bridle 2002) and a ‘no-
wiggle’ Pnw(k) obtained from the Eisenstein & Hu (1998) fitting
formulae, both using our fiducial cosmology (except where other-
wise noted). We account for redshift-space distortion (RSD) and
non-linear effects via

P (k, µ) = C2(k, µ,Σs)
(

(Plin − Pnw)e−k
2σ2

v + Pnw

)
, (9)

where

σ2
v = (1− µ2)Σ2

⊥/2 + µ2Σ2
||/2, (10)

2 camb.info
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C(k, µ,Σs) =
1 + µ2β(1− S(k))

(1 + k2µ2Σ2
s/2)

, (11)

S(k) is the smoothing applied in reconstruction; S(k) = e−k
2Σ2

r/2

and Σr = 15h−1Mpc for the reconstruction applied to the BOSS
DR12 sample. Finally, we fix β = 0.4 and Σs = 4h−1Mpc
and use Σ⊥ = 2.5h−1Mpc and Σ|| = 4h−1Mpc for post-
reconstruction results and Σ|| = 10h−1Mpc and Σ⊥ = 6h−1Mpc
pre-reconstruction. The choices to the damping scales are similar
to those of Beutler et al. (2016a); Vargas-Magaña et al. (2016) and
the values found in Seo et al. (2015). We show in Appendix B that
the specific choices have little impact on our results. Note, the bias
priors we define below effectively allow the amplitude of ξ2 to vary.

Given P (k, µ), we determine the multipole moments

P`(k) =
2`+ 1

2

∫ 1

−1

P (k, µ)L`(µ)dµ, (12)

where L`(µ) are Legendre polynomials. These are transformed to
ξ` via

ξ`(s) =
i`

2π2

∫
dkk2P`(k)j`(ks) (13)

We then use

ξ(s, µ) =
∑
`

ξ`(s)L`(µ) (14)

(summing to ` = 4) and take averages over any given µ window to
create any particular template:

ξ(s, α⊥, α||)F,mod(s) =

∫ 1

0

dµF (µ′)ξ(s′, µ′), (15)

where3 µ′ = µα||/
√
µ2α2

|| + (1− µ2)α2
⊥ and s′ =

s
√
µ2α2

|| + (1− µ2)α2
⊥ and the specific F (µ′) are defined below.

In practice, we fit for α⊥, α|| using ξ0, ξ2. To fit ξ0, ξ2, we
recognize ξ2 = 5

∫ 1

0
dµ
(
1.5µ2ξ(µ)− 0.5ξ(µ)

)
and, denoting

3
∫ 1

0
dµµ2ξ(µ) as ξµ2 (so here F (µ) = 3µ2), we fit to the data

using the model

ξ0,mod(s) = B0ξ0(s, α⊥, α||) +A0(s) (16)

ξ2,mod(s) =
5

2

(
B2ξµ2(s, α⊥, α||)−B0ξ0(s, α⊥, α||)

)
+A2(s),

(17)
where Ax(s) = ax,1/s

2 + ax,2/s+ ax,3. In each case, the param-
eter Bx essentially sets the size of the BAO feature in the template.
We apply a Gaussian prior of width log(Bx) = 0.4 around the
best-fit B0 in the range 50 < s < 80h−1Mpc with Ax = 0. We
have fixed β = 0.4 in the fiducial template and the 1 − S(k) term
in Equation (11) forces its effective value to zero at large scales
(in the post-reconstruction case). However, note that the greater the
difference there is between B2 and B0, the greater the amplitude
of ξ2,mod will be. Thus, B2 plays essentially the same role in our
analysis as β has in previous analyses (e.g., Anderson et al. 2014b).

Modeling ξ0,2 in the manner described above isolates the
anisotropic BAO scale information, while marginalizing over
broad-band shape and amplitude information. The pair of moments

3 This is essentially the Alcock & Paczynski (1979) effect on the BAO
feature.

ξ0,2 represent an optimal and complete pair in the case where BAO
scale information is spherically distributed (Ross et al. 2015).

3 DATA

3.1 The BOSS DR12 Galaxy Sample

The SDSS-III (Eisenstein et al. 2011) BOSS (Dawson et al. 2013)
targeted galaxies for spectroscopy using SDSS imaging data, as
described in Reid et al. (2016). The SDSS-I, II, and III surveys
obtained wide-field CCD photometry (Gunn et al. 1998, 2006) in
five passbands (u, g, r, i, z; Fukugita et al. 1996), amassing a to-
tal footprint of 14,455 deg2. From this data, BOSS targeted and
subsequently observed spectra for 1.4 million galaxies (Alam et al.
2015), using the BOSS spectrograph (Smee et al. 2013) and the
SDSS telescope (Gunn et al. 2006). Observations were performed
in a series of 15-minute exposures and integrated until a fiducial
minimum signal-to-noise ratio, chosen to ensure a high redshift
success rate, was reached. Redshifts were determined as described
in Bolton et al. (2012).

The full details of the BOSS galaxy samples are given in Reid
et al. (2016)4. Here, we summarise the most relevant details in or-
der to provide the background required to understand the analysis
of observational effects presented in Section 4.

The CMASS sample is designed to be approximately stellar
mass limited above z = 0.45. Such galaxies are selected from the
SDSS DR8 (Aihara et al. 2011) imaging via

17.5 < icmod < 19.9 (18)

rmod − imod < 2 (19)

d⊥ > 0.55 (20)

ifib2 < 21.5 (21)

icmod < 19.86 + 1.6(d⊥ − 0.8) (22)

where all magnitudes are corrected for Galactic extinction (via the
Schlegel, Finkbeiner & Davis 1998 dust maps), ifib2 is the i-band
magnitude within a 2′′ aperture, the subscript mod denotes ‘model’
magnitudes (Stoughton et al. 2002), the subscript cmod denotes
‘cmodel’ magnitudes (Abazajian et al. 2004), and

d⊥ = rmod − imod − (gmod − rmod)/8.0. (23)

For CMASS targets, stars are further separated from galaxies
by only keeping objects with

ipsf − imod > 0.2 + 0.2(20.0− imod) (24)

zpsf − zmod > 9.125− 0.46zmod (25)

unless the object also passes the LOWZ cuts.
The LOWZ sample is selected based on the following

rcmod < 13.5 + c‖/0.3 (26)

|c⊥| < 0.2 (27)

16 < rcmod < 19.6 (28)

rpsf − rmod > 0.3 (29)

where

c‖ = 0.7(gmod − rmod) + 1.2(rmod − imod − 0.18) (30)

4 Code to produce the BOSS catalogs, MKSAMPLE, is available from
the main SDSS web site http://www.sdss.org/surveys/boss
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Figure 1. The number density as a function of redshift for the three different
LOWZ selections, in the North Galactic Cap (NGC). The LOWZE2 and
LOWZE3 selections were applied to early BOSS observations.

and

c⊥ = rmod − imod − (gmod − rmod)/4.0− 0.18. (31)

As detailed in Reid et al. (2016), approximately 900 deg2 of
the LOWZ sample was targeted with more restrictive cuts than the
nominal LOWZ selection. This 900 deg2 area is divided into two
separate selections. Covering 130 deg2, the ‘LOWZE2’ selection
applies the CMASS i-band star/galaxy separation cut (equation 24)
and had an rcmod limit that was 0.1 magnitudes brighter for both
equation (26) (13.4) and equation (28) (19.5). These bright limits
reduce the density of the sample by 16 per cent (as can be seen in
Fig. 1). Covering 760 deg2, the ‘LOWZE3’ sample is the same as
the LOWZE2 selection, except that the z-band star/galaxy selection
(equation 25) is also applied and the bright limit is rcmod > 17. The
z-band star/galaxy separation cut reduces the density of the sample
by an additional 39 per cent, in a manner that depends strongly
on the size of the PSF, as detailed in Section 4.2. This gives the
LOWZE3 sample approximately half the number density of the
LOWZ sample.

Given that each sample is a subset of the nominal LOWZ sam-
ple, we are able to apply the respective cuts to reproduce LOWZE2
and LOWZE3 samples over the full BOSS footprint. Thus, unless
explicitly stated otherwise, when studying each respective sample,
we will do so over the full BOSS NGC footprint in order to obtain
the best statistical understanding of the samples. Doing so allows
us to test the properties of these samples and thereby combine them
into one full BOSS galaxy sample. The number density as a func-
tion of redshift is displayed in Fig. 1 for each of the LOWZ selec-
tions. Compared to the nominal LOWZ selection, the reduction in
number density is approximately constant as a function of redshift
for the LOWZE2, while for LOWZE3 the difference grows greater
at lower redshifts.

In addition to the color cuts applied to targeting, we apply cuts
in redshift of 0.43 < z < 0.7 to CMASS and 0.15 < z < 0.43
to the LOWZ, LOWZE2, and LOWZE3 samples when measur-
ing their individual clustering signals. These samples are combined
into one full BOSS sample, applying no redshift cuts on the in-
dividual samples. We do not expect the galaxies that are removed
to have a statistically significant effect on the trends observed, and
thus we consider the effect of this to be negligible.

0.2 0.3 0.4 0.5 0.6 0.7
redshift

0

1

2

3

4

5

6

n
 (

10
−

4
h

3
M

p
c−

3
)

CMASS
LOWZ

NGC SGC

Figure 2. The number density as a function of redshift for CMASS (solid
curves) and LOWZ (dashed curves) selections, in the North and South
Galactic Caps (NGC, colored ‘forestgreen’; and SGC, colored ‘darkkhaki’).
The overall offset between densities in the two regions is due to calibration
offsets in the imaging data between the two regions.

3.2 Mask

The BOSS mask is described in detail in section 5.1 of Reid et al.
(2016). The most basic mask to be applied to BOSS is defined by
the coverage of the spectroscopic tiles, i.e., the survey footprint;
this is shown in figure 1 of Alam et al. (2016). On top of the sur-
vey footprint, a series of veto masks are applied. These include
masks for bright stars, bright objects (Rykoff et al. 2014), and non-
photometric conditions.

We define additional veto masks based on the seeing at the
time the imaging data was observed and the Galactic extinc-
tion. Survey area is discarded where the i-band seeing, given in
terms of the full-width-half-maximum of the point spread function
(‘PSF FWHM’) is greater than 2′′. This is due to the ifib2 selection,
as these magnitudes are convolved with 2′′ seeing and are therefore
ill-defined where the seeing is worse. We additionally remove ar-
eas where the g- and r-band PSF FWHM are greater than 2′′.3 and
2′′.1; these values are roughly equivalent to the i-band value of
2′′.0, given the optics of the SDSS telescope. These cuts on seeing
remove 0.5 and 1.7 per cent of the area in NGC and SGC footprints.

We cut areas where the Galactic extinction, as given by the
Schlegel, Finkbeiner & Davis (1998) E(B − V ) value, is greater
than 0.15. A negligible amount of area in the NGC (0.06 per cent)
has worse extinction than this. This cut removes 2.2 per cent of
the area in the SGC. We find a correlation between the projected
density of LOWZ galaxies andE(B−V ) at high extinction values
(see Fig. 5), and thus cut at E(B−V ) = 0.15 to remove this trend
and make the data quality more similar between the NGC and SGC.

3.3 Galactic Hemisphere

As explained in Ross et al. (2011, 2012), we expect different num-
ber densities for BOSS galaxies in the NGC and SGC, due to
the fact that Schlafly & Finkbeiner (2011) have shown there are
measurable offsets in the DR8 (Aihara et al. 2011) photometry
between the two regions. The final BOSS DR12 results are con-
sistent with these earlier studies: Accounting for all weights, we
find a 1.0 per cent larger projected density of the CMASS sam-
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ple (0.43 < z < 0.75) in the SGC compared to the NGC. In the
LOWZ sample (0.2 < z < 0.43), the projected density is 7.6
per cent higher in the SGC compared to the NGC. For this reason,
the NGC and SGC are treated to have separate selection functions,
as has been the standard practice throughout the lifetime of BOSS
analyses.

Fig. 2 displays the number density of the CMASS and LOWZ
samples in the NGC and SGC. One can see that the LOWZ sample
in the SGC has a greater density than the NGC by a nearly con-
stant factor. For the CMASS sample, the SGC distribution is some-
what skewed compared to the NGC selection. The number density
is greater at the low redshift end, due to the fact that the offset in
photometry effectively lowers d⊥ limit (equation 20) in the SGC
compared to the NGC. These differences in n(z) imply that the
galaxy populations will be slightly different in the different hemi-
spheres and should thus be considered when the results from each
hemisphere are combined.

3.4 Mock Galaxy Samples

We use two independent methods to create two samples of close
to 1000 mock realizations designed to match BOSS galaxy sam-
ples5. The two methods are ‘QPM’ (White et al. 2014) and Mul-
tiDark PATCHY (MD-P)(Kitaura et al. 2014, 2016) and each has
been tuned to match the footprint, redshift distribution, and halo
occupation distribution of BOSS samples. We therefore expect the
clustering of the mock samples to match the BOSS measurements.
We use both sets of these mock samples to generate covariance
matrices and to test methodology. Each uses its own cosmology;
the differences between these cosmologies aid in assessing the ro-
bustness of our results6. The cosmology used for each mock and
the BAO measurements we expect to find for them when analyzing
them using our fiducial cosmology are listed in Table 1.

The tests we performed on the LOWZ and CMASS samples
were completed using the QPM mocks; this work was completed
(as a pre-requisite) prior to the definition of the BOSS combined
sample.7 This same work allowed the combined sample MD-P and
QPM mocks to be created. Kitaura et al. (2016) demonstrate that
the MD-P mocks are a better match to the combined sample, with
some improvement over QPM due to the treatment of the lightcone
(see Kitaura et al. 2016 for full details). Thus, in what follows we
exclusively use the QPM mocks in tests of the LOWZ and CMASS
samples, use the MD-P mocks as the primary sample for tests of the
combined sample, and use the QPM mocks as a robustness check
on the combined sample results.

4 WEIGHTING GALAXIES BASED ON SURVEY
PROPERTIES

The methods used to account for various reasons for incomplete-
ness in observations of the BOSS spectroscopic sample are defined
and justified in Reid et al. (2016). These include close pair weights,
wcp, that are applied to account for fiber collisions and weights,
wnoz, that account for redshift failures. We include these weights

5 996 mocks are MD-P used for the MD-P results and 1000 for QPM
6 Both include no neutrino mass, rather than the minimal allowed mass
adopted for our fiducial cosmology, but as shown by Thepsuriya & Lewis
(2015), this is expected to have minimal impact on BAO analyses.
7 We have found no indications that any conclusions would be altered if
the tests are repeated with the final MD-P mocks.

Table 1. Cosmology and expected values for BAO parameters for QPM and
MultiDark-PATCHY (MD-P) mocks, given we have analyzed them using
our fiducial cosmology and each set of mocks has their own cosmology.
Each uses a flat geometry and has a density of neutrinos Ων = 0. The exact
values used for MD-P are Ωm = 0.307115 and h = 0.6777, which have
been rounded to 3 significant figures below.

QPM Ωm = 0.29 h = 0.7 Ωbh
2 = 0.02247 Ων = 0

redshift α|| α⊥ α ε

0.38 0.9808 0.9755 0.9773 0.0018
0.51 0.9840 0.9770 0.9793 0.0024
0.61 0.9861 0.9782 0.9808 0.0027

MD-P Ωm = 0.307 h = 0.678 Ωbh
2 = 0.02214 Ων = 0

redshift α|| α⊥ α ε

0.38 0.9999 0.9991 0.9993 0.0003
0.51 1.0003 0.9993 0.9996 0.0003
0.61 1.0006 0.9995 0.9999 0.0004

as wz = wcp +wnoz−1 in all analyses, unless otherwise noted. In
the following subsections, we test the projected BOSS galaxy den-
sity against observational parameters that affect the imaging data,
and define weights to correct for systematic relationships, where
identified.

Our results require determining the uncertainty in the relation-
ships between galaxy density and observational parameters, often
for samples that are divided in ways that are not possible for our
mock samples. Thus, we require some manner of estimating uncer-
tainties that balances cosmic variance and shot-noise but does not
rely on the variance of mock realizations. To do so, we weight all
galaxy counts by the wFKP weights and treat the resulting counts
like Poisson statistics. Such a scheme balances shot-noise and cos-
mic variance, at the scale used to define the FKP weights. For ex-
ample, if the FKP weight is 0.5 for all galaxies in the sample, the
expected variance in the number of galaxies is twice the number
of galaxies (instead of the number of galaxies in the case where
the FKP weights are 1). The variance on the FKP-weighted sample
would be 0.5N , while the variance in the pure Poisson case would
be 0.25N (as the variance of xN is x2N when N is drawn from
a Poisson distribution). In this example, the variance is twice as
large as the shot-noise contribution, because there are equal contri-
butions from cosmic variance and shot-noise. We have compared
this scheme to the variance of statistics obtained from the CMASS
mock samples and found good agreement. Applying this scheme
allows uncertainties to be estimated for samples that do not have
matching suites of mock catalogs.

4.1 Stellar Density

The projected density of CMASS was found to depend on the lo-
cal stellar density in Ross et al. (2011). This finding was confirmed
in all subsequent BOSS data sets. We use SDSS DR8 stars with
17.5 < i < 19.9 to map the stellar density at Healpix resolution
Nside= 128 (0.21 square degrees per pixel). This is the same set of
stars used in Ross et al. (2011, 2012). The systematic dependency
with stellar density affects only the CMASS sample; as shown in
the top panel of Fig. 3, none of the LOWZ selections exhibit any
trend; this is as expected given it is a brighter selection than the
CMASS sample (see Tojeiro et al. 2014 for further details). As-
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Figure 3. Projected BOSS galaxy density versus stellar density, measured
as the number of 17.5 < i < 19.9 stars in Healpix pixels with Nside=128.
Top panel: the relationships for CMASS and the three LOWZ selections.
Middle panel: The relationships for CMASS, split into bins of ifib2 magni-
tude. These are the measurements used to define the stellar density weights
applied to clustering measurements. Bottom panel: The relationships for
CMASS, split by redshift, before (curves) and after (points with error-bars)
stellar density weights are applied. The relationships before any weighting
is applied are slightly dependent on redshift, due to a weak correlation be-
tween ifib2 and redshift. Weighting based on ifib2 (illustrated in the middle
panel) removes this dependency.

suming a diagonal covariance matrix, we find the χ2 of the null test
of n/〈n〉 = 1 to be 9.6, 11.1, and 9.8 for the LOWZ, LOWZE2,
and LOWZE3 samples (to be compared to 10 measurement bins).
Comparatively, the χ2 for the CMASS sample is 211. We therefore
do not include any stellar density weights for any of the LOWZ
samples.

In Ross et al. (2011, 2012), it was shown that the relation-
ship with stellar density also depends on the surface brightness
of the galaxy. The ifib2 magnitude of the galaxy is a convenient
measure of the surface brightness, as it represents the total flux
within a given aperture (convolved with the seeing). The middle
panel of Fig. 3 shows the relationship between the CMASS num-
ber density and the stellar density, divided into five ranges of ifib2

magnitudes (ifib2 < 20.3; 20.3 < ifib2 < 20.6; 20.6 < ifib2 <
20.9; 20.9 < ifib2 < 21.2; 21.2 < ifib2). In each bin, we find
the best-fit linear relationship ngal = A(ifib2) + B(ifib2)nstar.
The dashed lines display the best-fit linear relationship in each
ifib2 bin; the χ2 of the fits range between 4 and 8, for 8 de-
grees of freedom. With increasing ifib2, the best-fit A and B are
A(ifib2) = [0.959, 0.994, 1.038, 1.087, 1.120] and B(ifib2) =
[0.826, 0.149,−0.782,−1.83,−2.52]× 10−4.

The linear fits to the relationship between galaxy and stellar
density in each of the ifib2 bins are used to define weights to apply
to CMASS galaxies to correct for the systematic dependency on
stellar density. To obtain the expected relationship at any ifib2, we
interpolate between the results in the neighboring ifib2 bins, i.e.,
to find the expected relationship at ifib2 = 20.8, we interpolate
between the results in the 20.3 < ifib2 < 20.6 and 20.6 < ifib2 <
20.9 bins to obtain the slope, B(ifib2), and intercept, A(ifib2), of
the relationship. The weight we apply to the galaxy is then

wstar(nstar, ifib2) = (B(ifib2)nstar +A(ifib2))−1 , (32)

i.e., we simply weight by the inverse of the expected systematic
relationship.

The surface brightness dependence of the stellar density rela-
tionship must be accounted for in order to account for the redshift
dependence of the systematic effect. The bottom panel of Fig. 3
shows the CMASS number density vs. stellar density, after apply-
ing wstar. In each redshift bin, the systematic relationship is re-
moved. After applying the systematic weights, the χ2 for the null
test are 13.5, 8.4, and 11.2 (for 10 degrees of freedom), with in-
creasing redshift; prior to applying the weights, they are 47, 117,
and 65. The impact of the stellar density weights on the measured
clustering is presented in Section 5.1.

4.2 Seeing

There is a relationship between the observed density of BOSS
CMASS galaxies and the local seeing due to the star galaxy sep-
aration cuts, as explained in Ross et al. (2011). Weights were previ-
ously defined and applied to the DR10 and DR11 CMASS samples
to remove this trend, and we repeat such a procedure for DR12,
while further investigating any relationship in the LOWZ samples.

The top panel of Fig. 4 displays the relationship between ob-
served projected density and seeing for different BOSS selections.
For the standard LOWZ selection and the LOWZE2 selection, no
strong relationship is observed; the χ2 values of the null tests
are 16.2 and 14.2, respectively, for 10 degrees of freedom. How-
ever, for CMASS and especially LOWZE3, clear relationships exist
where the galaxy density decreases as the seeing gets worse (the χ2

values of the null tests are 225 and 877). For each sample, we will
define systematic weights to correct for these relationships, and we
describe this process throughout the rest of this section..

For CMASS, we define weights in a manner similar to that
applied in Anderson et al. (2014b). We find the relationship with
seeing is more severe in the SGC compared to the NGC, and we
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Figure 4. The relationship between observed density of BOSS galax-
ies and i-band seeing. Top panel: The relationships for CMASS and the
three LOWZ selections. Middle panel: The relationships for CMASS NGC
and SGC. The dashed curves display the best-fit relationship used to de-
fine the weights that correct for the observed trends. The solid curve dis-
plays the measured relationship for the combined NGC+SGC sample, af-
ter the weights have been applied. Bottom panel: The relationships for the
LOWZE3 sample, split into four bins by imod magnitude. These relation-
ships are used to define the weights applied the LOWZE3 sample.

therefore determine the weights separately in each region8. We find

8 The difference in this dependency with seeing between the two regions
must be related to another variable that differs considerably between the two
regions, but a thorough investigation was unable to determine this variable.

the best-fit parameters to the following model

ng = Asee

[
1− erf

(
Si −Bsee

σsee

)]
, (33)

where Si denotes the i-band seeing. The middle panel of Fig.
4 displays the observed relationships for the data in each hemi-
sphere and the best-fit model. For the NGC (SGC), the best-fit pa-
rameters are Asee = 0.5205(0.5344), Bsee = 2.844(2.267),and
σsee = 1.236(0.906). The χ2 of these best-fit are 5.4 and 6.9 for
the NGC and SGC, to be compared to 7 degrees of freedom. The
seeing-dependent weights are simply given by the inverses of the
best-fit relationships. The combined SGC+NGC relationship, after
applying the seeing-dependent weights, is displayed using a solid
black curve. The error-bars are suppressed, but the χ2 of the null
test is 7.7 for 10 data points.

For LOWZE3, the inclusion of the z-band star/galaxy separa-
tion cut introduces a strong relationship between the galaxy density
and the seeing. We find the effect is strongly magnitude dependent
(we do not find this to be the case for the dependence of the CMASS
sample with seeing). We therefore divide the sample by imod mag-
nitude (i- and z-band magnitudes are strongly correlated at these
redshifts and the SDSS i-band is less prone to zero-point fluctua-
tions) and define weights in a manner analogous to how we defined
the CMASS stellar density weights as a function of ifib2. We divide
the LOWZE3 sample into four bins based on the galaxies’ imod

magnitude, imod < 17.5, 17.5 < imod < 18, 18 < imod < 18.5,
and imod > 18.5, and fit a linear relationship to each and then in-
terpolate to obtain the weight as a function of the local i-band see-
ing and the galaxy’s imod magnitude. The measurement in these
four magnitude bins is displayed by the points with error-bars in
the bottom panel of Fig. 4. The dashed curves display the best-fit
linear relationship to each. We find the slope of the best-fits, `, is
well-approximated by

` = b+m(imod − 16)
1
2 , (34)

with b = 0.875 andm = −2.226. Thus, given that the mean seeing
over the footprint is 1.25, the relationship between i band seeing,
LOWZE3 density (nLE3), and imod is given by

nLE3(Si, imod) = 1 + (Si − 1.25)`(imod). (35)

We set any ` < −2 to `min = −2 and take the inverse of equation
(35) in order to apply weights to the LOWZE3 sample, setting any
weights greater than 5 to 5.

The total systematic weight (e.g.,wstar×wsee for CMASS) is
normalized such that the weights sum to the total number of galax-
ies in the sample they are defined for. The impact of the seeing
weights we apply on the measured clustering of the CMASS and
LOWZE3 samples is presented in Section 5.1.

4.3 Sky background, Airmass, Extinction

As for previous BOSS data releases, we test against three additional
potential systematic quantities, each of which affects the depth of
the imaging data: sky background, airmass, and Galactic extinction.
These are shown for the CMASS and LOWZ samples in Fig. 5.
For sky-background and airmass, the χ2 values of the null tests
range between 9 (for CMASS against sky background) and 18 (for
LOWZ against airmass), to be compared to the 10 data points in
each case.

For Galactic extinction, the χ2 are somewhat larger than ex-
pected: 35 for the CMASS sample and 26 for LOWZ (compared to
10 data points). However, these large χ2 are dominated by the value
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Figure 5. The relationship between galaxy density observed density and sky
background (in nanomaggies per square arc second), Galactic extinction (in
E(B-V)), and airmass, for CMASS and LOWZ. The dashed lines display
the predicted relationship with Galactic extinction, based on the difference
between the extinction coefficients applied to BOSS imaging data and those
found in Schlafly & Finkbeiner (2011).

at the lowest extinction, which is low by 3 per cent for both LOWZ
and CMASS9. Schlafly & Finkbeiner (2011) suggest somewhat
different extinction coefficients than those used to target BOSS
galaxies. Such a change implies extinction-dependent shifts in the
color of the BOSS selection and these shifts can be translated into
an expected change in target density as a function of extinction.
The expected trend is shown with dashed lines and agrees with the
overall trend observed for both LOWZ and CMASS. In terms of χ2,
the LOWZ value is 19 when using this prediction and the CMASS
value remains 35 (improvement at the extrema of the range is coun-
tered by disagreement at E(B-V)∼0.08). This implies any effect on
the measured clustering found when correcting for this predicted
relationship would be marginal, and, indeed, we find no significant
changes in the measured clustering when applying and extinction-
dependent weights. We thus choose not to include any weights to
correct for these trends with Galactic extinction.

Overall, we do not find any clear trends, given the uncertainty,
between the density of BOSS galaxies and sky background, Galac-
tic extinction, or airmass. Therefore, like in previous BOSS anal-
yses, we do not weight BOSS galaxies according to any of these
quantities. In the tests that follow, it will become clear that the sys-
tematic effects we correct for via weights (stellar density and see-
ing) would have minimal impact on the final BOSS BAO and RSD
results even if they had not been corrected for. Attempts to correct
for additional potential systematic effects of marginal significance
are thus ill-advised. However, each individual analysis will be af-
fected differently, and it would therefore be prudent for any future
studies of the clustering of BOSS galaxies (e.g., primordial non-
Gaussianity; Ross et al. 2013) at the largest scales to reconsider
this choice.

5 BOSS GALAXY CLUSTERING

In this section, we present the configuration-space clustering of
BOSS galaxies. We determine the relative importance of the sys-
tematic weights we apply, in terms of the impact on the measured
correlation functions. We then show BOSS clustering results when

9 Masking the data at the lowest extinction values does not cause any sig-
nificant change in the clustering results.

the samples are divided by hemisphere (NGC and SGC) and by tar-
geting selection (LOWZ, LOWZE2, LOWZE3, and CMASS). We
conclude by showing the clustering of the combined BOSS sample,
split by redshift.

5.1 Effect of weights

The CMASS sample contains the most signal-to-noise of any par-
ticular BOSS selection, has a significant percentage of unobserved
close-pairs and redshift failures (5.4 and 1.8 per cent), and uses
weights for both stellar density and seeing to correct for system-
atic dependencies in the observed number density. We test the im-
pact of these weights by comparing the clustering measured with
the weights applied to that without. For the monopole, these differ-
ences are displayed in the top panel of Fig. 6. In order to assess the
total potential impact of the weights, we find the total χ2 difference
between the clustering measured with and without the weights. The
relative importance of each weight is as one would expect visually:
the χ2 are 13.1, 3.7, 2.1, and 0.1 for stellar density, close pair, red-
shift failure, and seeing weights.

The importance of the weights is smaller for CMASS ξ2 than
ξ0, as one can see in the 2nd to the top panel in Fig. 6. The χ2 are
0.5, 2.5, 2.3, and 0.1 for stellar density, close pair, redshift failure,
and seeing weights. Unsurprisingly, the weights that affect the ra-
dial distribution are most important for ξ2, and the redshift failure
weights are slightly more important for ξ2 than for ξ0. For both
ξ0 and ξ2, the seeing weights have negligible impact. The χ2 dif-
ference is only 0.1 for both, implying that the greatest difference
it could cause in the determination of a model parameter is 0.3σ
(whereas for stellar density, it is potentially a 3.6σ effect) .

For the nominal LOWZ sample, the only systematic weights
applied are for close pairs and redshift failures, and these represent
only 2.9 and 0.5 per cent of LOWZ targets. Similar to CMASS, the
close-pair weights increase the small-scale clustering amplitudes.
However, the effect is much smaller, compared to the uncertainty
on the measurements, and the χ2 are only 0.8 and 1.4 for ξ0 and ξ2.
For redshift failures, the χ2 are only 0.2 and 0.1 for ξ0 and ξ2.

For the LOWZE3 sample, selected over the full NGC foot-
print, we defined a weight based on seeing, in order to reverse a
strong effect on the observed number density of the sample. The
effect of this weight on the measured clustering of the LOWZE3
selection over the full NGC footprint is shown using circles in the
bottom two panel of Fig. 6 (of note, the size of the uncertainty
band for LOWZE3 should be larger than for the displayed LOWZ
uncertainty, due to the number density being approximately half of
LOWZ and the fact that the SGC footprint is not used). It has the
strongest effect of any weight we apply.

While the effect of the seeing weights is strong for the
LOWZE3 sample over the full NGC footprint, our final sample
will only use this selection over 755 deg2. Further, when these
data are used, we combine the LOWZ sample with CMASS and
use data in the range 0.2 < z < 0.5. When we consider the im-
pact of the weights on the clustering of this combined sample (de-
noted ‘LOWZ comb’), we find a χ2 difference of only 0.2 between
the ξ0,2 measured with and without the weights applied, this com-
parison is plotted using triangles in the bottom two panels Fig. 6.
The reason for the sharp decrease in significance is two-fold: 1)
the LOWZE3 sample accounts for approximately five per cent of
the statistical power of the combined sample with 0.2 < z < 0.5
and 2) the effect of the weights when restricting to only the 755
deg2 of unique LOWZE3 data is considerably smaller than over
the full NGC (presumably due to the particular pattern of seeing
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Figure 6. The change in the measured monopole and quadrupole of the
BOSS CMASS (top panels) and LOWZ (bottom panels) correlation func-
tions, when the given systematic weight is applied. ‘LOWZ comb’ refers
to the combination of the LOWZ, LOWZE2, and LOWZE3 selections. The
grey shaded region displays the 1σ uncertainty obtained from mock sam-
ples.

in this area). Thus, while its effect is dramatic on the LOWZE3
sample within the full NGC area, the effect of the weights on the
combined sample is minor for the combined sample that we use for
BOSS science. Notably, the inclusion of the LOWZE3 area allows
us to include the CMASS data occupying the same footprint with
0.2 < z < 0.5 into the combined sample, which increases the sta-
tistical power of the region to eight per cent of the total. Our tests
suggest that even in the (catastrophic) event that residual systematic
effects in the LOWZE3 sample are equal to those we have treated
with weights for seeing, the most any derived parameter could be
biased is 0.45σ (and this is in the specific case that the signal be-
ing searched for is exactly mimicked by the systematic effect). The
expected variation (assuming Gaussian statistics) when increasing
a sample from 92 per cent complete to 100 per cent is 0.4σ; in this
sense the expected gain is approximately equal to the worst-case
scenario for the inclusion of the LOWZE3 data. We thus include
the 755 deg2 of unique LOWZE3 data in the BOSS combined sam-
ple.

5.2 Hemisphere

As described in Section 3.3, the selection functions for the NGC
and SGC BOSS galaxy data are slightly different. Here, we com-
pare the clustering in the two regions. This comparison is shown
for CMASS in the top two panels of Fig. 7 for ξ0 (top panel) and
ξ2 (2nd to top panel). In the range 20 < s < 200h−1, the χ2 ob-
tained when testing the NGC ξ0 against the SGC ξ0 (determined
by summing the two QPM covariance matrices) is 42 for the 36
data points. Restricting to the range 50 < s < 150h−1, the χ2 is
25 for 20 points. The CMASS clustering in the two regions agrees
to an similar extent as it did for the DR9 data (Ross et al. 2012).
The agreement is somewhat worse for ξ2, as we find a χ2 of 48 for
20 < s < 200h−1Mpc and 29 for 50 < s < 150h−1Mpc.

The comparison between NGC and SGC for the LOWZ sam-
ple is shown in the bottom panels of Fig. 7. The agreement be-
tween the ξ0 is quite good; the χ2 is 28 for the 36 data points with
20 < s < 200h−1Mpc. For ξ2, the agreement is worse; the χ2 is
50 for the same 36 s bins. The discrepancy is dominated by large-
scales, as for the 22 data points with s < 130h−1Mpc, the χ2

is 19, while for the 14 with s > 130h−1Mpc, the χ2 is 29. The
difference is such that it serendipitously cancels for the combined
NGC+SGC sample. While unusual, no effect studied in this paper
has a significant impact on the shape of the LOWZ quadrupole at
s > 130h−1Mpc and we can offer no explanation beyond a statis-
tical fluctuation (which would be at∼ 2σ for χ2/dof= 50/36). We
note that scales s > 130h−1Mpc have a negligible impact on RSD
structure growth measurements and only a small impact on BAO
measurements (see Appendix B).

We do not find any strong discrepancies between the NGC and
SGC configuration-space clustering of BOSS galaxies at scales rel-
evant to BAO or RSD studies. We therefore combine the two hemi-
spheres in our standard analysis, but demonstrate in subsequent
sections that the results applied to each hemisphere individually
are consistent with the combined constraints and that the BAO re-
sults are thus robust to any concerns about combining the NGC and
SGC results. Alam et al. (2016) show discrepancies between the
two hemispheres are more apparent at small scales when studying
the power spectrum. The differences are shown to be a consequence
of the color offsets between the two regions, as discussed in Section
3.3. These differences are not apparent in the correlation function
analysis because they are isolated to s < 20h−1 in configuration
space.
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Figure 7. The clustering of BOSS CMASS (top two panels) and LOWZ
(bottom two panels) galaxies, for the two contiguous regions within the
SGC and NGC hemispheres. The dotted lines denote the mean of the QPM
mock samples.

Figure 8. The clustering of BOSS galaxies, using the four different tar-
geting specifications. The CMASS and LOWZ samples occupy different
redshift regimes (see Fig. 2) and thus some difference in clustering ampli-
tude is to be expected. The dotted lines denote the mean of the QPM mock
samples.

5.3 Targeting selection

Here, we compare the clustering in the nominal LOWZ selection to
the clustering obtained using the LOWZE2 selection (which is the
full LOWZ footprint plus the 131 deg2 area where the LOWZE2
selection was applied to targeting) and to the clustering obtained
using the LOWZE3 selection (which is the full LOWZ area plus the
755deg2 where the LOWZE3 selection was applied to targeting.)
We use the full area available, within the NGC, in order to obtain
the best statistics on the galaxies that comprise each selection.

We show this comparison in Fig. 8, where the CMASS clus-
tering is also shown. The LOWZE2 selection covers the same area
as the LOWZ selection, with 131deg2 more area and a lower num-
ber density. We should thus expect consistent clustering measure-
ments. Its correlation function is displayed using a solid curve in
Fig. 8. For both ξ0 and ξ2, LOWZE2 appears consistent with the
LOWZ measurements, but with a slightly higher clustering ampli-
tude. Indeed, using the LOWZ covariance matrix, we find a χ2 of
23 for the monopole and 19 for the quadrupole when testing the
range 20 < s < 200 (36 data points). Multiplying the LOWZ ξ0
by 1.04 reduces the χ2 to 20. An increase in clustering amplitude
is expected, as the LOWZE2 sample applies brighter limits to the
selection compared to the nominal LOWZ selection. Applying a
factor to the quadrupole does not significantly reduce the χ2. These
χ2/dof are much less than one, as expected for measurements that
are highly correlated.
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The LOWZE3 sample covers the same area as the LOWZ foot-
print, with an additional 755deg2, a lower number density, and large
weights that account for variations in target density with seeing.
As detailed in Section 3, its mean number density is just greater
than half that of the nominal LOWZ selection. The LOWZE3 cor-
relation functions are displayed using dashed curves in Fig. 8. The
measurements appear qualitatively similar to the LOWZ measure-
ments, especially for the quadrupole, but with a slightly greater
clustering amplitude for ξ0. However, when repeating the test we
applied to the LOWZE2 sample, using the LOWZ covariance ma-
trix to evaluate a χ2 value for the difference between the LOWZ
and LOWZE3 samples, we find the χ2 is 83 for the monopole,
when multiplying the amplitudes by a factor of 1.10, in the range
20 < s < 200h−1Mpc (36 data points), and that this χ2 is not
significantly better or worse for a particular range of scales (e.g.,
it is 31 for the 16 data points with s > 120h−1Mpc). Similar
to LOWZE2, we expect an increase in the clustering amplitude
of the LOWZE3 sample compared to LOWZ, as the cuts applied
to LOWZ to produce the LOWZE3 sample preferentially remove
fainter galaxies. The quadrupole gives somewhat better agreement,
as the χ2 is 50 for the range 20 < s < 200h−1Mpc (applying a
constant factor does not significantly improve the χ2).

If we increase the diagonal elements of the LOWZ covariance
matrix by 10 per cent and repeat the test, we find the χ2 reduce to
36 for ξ0 and 24 for ξ2 (for the same 1.10 factor for ξ0). Chang-
ing the covariance matrix in this manner represents the addition
of a pure shot-noise contribution to the covariance matrix that has
a variance which is 10 per cent of the LOWZ variance. This is
likely conservative, as the LOWZE3 number density is approxi-
mately half of the LOWZ number density. When using the value of
P0 = 104h3Mpc−3 adopted to define the FKP weights, a number
density of 3 × 10−4h3Mpc−3 for the LOWZ sample, and a num-
ber density 1.5×10−4h3Mpc−3 for the LOWZE3 sample, we find
the expected increase in the variance is 56 per cent. We therefore
conclude that the clustering of the LOWZ and LOWZE3 samples
is consistent, when allowing for a 10 per cent increase in clustering
amplitude and the extra shot noise imparted by the lower LOWZE3
number density.

The clustering amplitude of the CMASS sample is clearly
lower than that of the LOWZ sample on scales s < 80h−1Mpc.
Again, using the covariance matrix of the LOWZ sample, we find
the χ2 between two measurements, scaling the CMASS result by a
constant factor. We find a minimum χ2 of 34 for a factor 1.12 for
the monopole and 41 for the quadrupole, applying a factor of 1.27.
This implies the shapes of the measured monopole and quadrupole
are consistent between the CMASS and LOWZ samples.

5.4 Combined BOSS sample

Finally, we present the clustering of the BOSS galaxy sample,
i.e., the combined sample of LOWZ, LOWZE2, LOWZE3, and
CMASS, applying all of the weights defined in the previous section.
The clustering amplitudes of the individual BOSS samples differ
by less than 20 per cent for the CMASS/LOWZ samples and less
than 10 per cent for the individual LOWZ samples. The scales we
are interested in are less than 150h−1 Mpc. Thus any cross-sample
pairs of galaxies will be a small percentage of the total entering any
particular measurement and we do not expect any significant shift
in the amplitude as a function of scale within the scales of interest.
Further, we have tested weighting the individual samples such that
their density field has the same amplitude in the regions of over-
lap. We find this weighting has no significant impact on the mea-

Figure 9. The measured monopole and quadrupole of the BOSS galaxy cor-
relation function, split into two redshift shells. The dotted lines display the
mean of the MultiDark-Patchy samples with the same redshift selections.

sured clustering, and we therefore simply add the catalogs (both the
galaxy and the random ones, in the correct proportion) to produce
the combined sample. The clustering measurements for the com-
bined BOSS sample with 0.2 < z < 0.75, split into two redshift
bins at z = 0.5, are displayed in Fig. 9. One can see that the clus-
tering is similar in the two redshift regimes, with a slightly greater
clustering amplitude in the lower redshift sample.

The dotted curves in Fig. 9 display the mean of the PATCHY
mock samples, which are a better match to the BOSS combined
sample properties than QPM (one of the biggest differences is the
treatment of the lightcone in PATCHY, see Kitaura et al. 2016 for
full details)10. The covariance between the s bins makes the sta-
tistical match between the mean of the mocks and the measured
clustering better than might be guessed by eye. For the monopole
and 0.2 < z < 0.5 it is 38 for the 32 measurement bins with
20 < s < 180h−1Mpc, while for 0.5 < z < 0.75, it is 31 for the
same range of scales. For the quadrupole, it is 35 for 0.2 < z < 0.5
and 30 for 0.5 < z < 0.75. Allowing the mean of the mocks
to be scaled by a constant value, the χ2 decreases to 36 for the
0.2 < z < 0.5 monopole when applying a factor of 0.98. No sig-
nificant improvement is found for the 0.5 < z < 0.75 monopole.
For the quadrupole, the χ2 cannot be significantly improved by ap-
plying any factor to the mean of the 0.2 < z < 0.5 mocks and is

10 The QPM mocks are a good match
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reduced to 27 when applying a factor of 0.93 to the 0.5 < z < 0.75
mocks.

For the monopole, the clustering at large scales shows an ap-
parent excess, however it is of marginal statistical significance : for
the 0.2 < z < 0.5 bin the χ2 is 20 for the 12 data points with
s > 120h−1 and 17 for the 20 points with s < 120h−1, but for
z > 0.5, the χ2/dof is slightly smaller for s > 120h−1 (10/12) than
for s < 120h−1 (22/20). While all of the data points are greater
than the mean of the mocks at large-scales, the large degree of co-
variance between the measurements makes this fact unremarkable.
In Fourier space, Beutler et al. (2016b); Grieb et al. (2016) find no
apparent excess for k > 0.01hMpc−1.

6 ROBUSTNESS OF BAO MEASUREMENTS TO
OBSERVATIONAL TREATMENT

In this section, we measure the BAO scale for each of the BOSS
target samples, and test the robustness of the measurements to our
treatment of the selection function. We first test the effect of the
stellar density weights by simulating the stellar density systematic
in mock samples and then comparing the BAO results to those with-
out any simulation of the stellar density systematic. We then test the
BOSS BAO measurements by determining their dependency on the
application of the various weights and examining the results we
obtain for each Galactic hemisphere.

6.1 Tests on mocks

We test for the systematic impact the stellar density relationship has
on the measured BAO position by simulating the effect in mock
CMASS samples and thus determine an observational systematic
uncertainty on BOSS BAO measurements. We take the stellar den-
sity field observed by SDSS and assume the distribution of stars is
the same for each of the mocks. In order to simulate the systematic
effect of stellar density observed in the BOSS data, we also must
assign ifib2 magnitudes to each mock galaxy. We accomplish this
by taking the observed distribution of ifib2 magnitude as a function
of redshift and sampling from this for each mock galaxy redshift,
i.e., we estimate P (ifib2|z) based on the BOSS data and use this to
assign the ifib2 values to each mock galaxy. This allows us to ana-
lyze the statistics of the distributions of BAO scale measurements
obtained from the following four cases that include different levels
of systematic contamination and correction:

(i) Fiducial mocks; BAO fits are presented for 200 of these, in
order to match the number used in case ii.

(ii) Mocks that have been randomly sub-sampled in a manner
matching the observed stellar density systematic11; the cluster-
ing of these has the spurious large-scale power similar to the un-
weighted data sample; BAO fits have been performed for 200 of
these.

(iii) Mocks that first have the sub-sampling procedure applied in
case (ii) and then have stellar density weights calculated and used
for their clustering; the stellar density systematic is thus removed,
but the weights are calculated on a per-mock basis; BAO fits have
been performed for 600 of these.

11 E.g., if the density is expected to be 0.95 that of the nominal density,
each mock galaxy is tested and kept in the sample if a randomly generated
number between 0 and 1 is less than 0.95.

Figure 10. The change in the mean measured monopole (top) and
quadrupole (bottom) of the correlation function of mock samples, when
comparing the fiducial case (without any simulation of observational sys-
tematics) to the case where the stellar density systematic has been simu-
lated (‘darkorchid’ diamonds) and when comparing the fiducial case to the
case where the stellar density systematic has been simulated and corrected
for (azure squares). The grey shaded region displays the 1σ uncertainty ob-
tained from mock samples.

(iv) Mocks that have been uniformly sub-sampled by 4% to have
the same number density as those sub-sampled according to the
stellar density systematic; these are a more-fair comparison to cases
(ii) and (iii) than the fiducial mocks: BAO fits have been performed
for 600 of these.

Cases iii) and iv) are the most realistic and will be used to deter-
mine any additional scatter from the weighting process. We there-
fore concentrate on performing fits for these tests, while for other
tests we simply perform a number sufficient to detect any signifi-
cant issues.

We use the QPM CMASS NGC mocks and for all tests we
use the ξ0,2 covariance matrix determined from 1000 realizations
of the fiducial case (i). For these, we have assumed the same cos-
mology as used to construct the QPM mocks (given in Table 1)
both when measuring ξ0,2 and in the BAO template. These choices
match those of Cuesta et al. (2016). Thus, the expected α and ε
values are 1 and 0.

The results of anisotropic BAO fits are shown in Table 2 (‘S’
denotes a standard deviation and σ an uncertainty recovered from
a likelihood). Compared to the cases with no stellar density sys-
tematic, introducing the stellar density systematic shifts the mean
recovered value of αx by at most 0.0005, equivalent to 0.01σ. This
suggests that any potential systematic bias due to stellar density is
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Table 2. Statistics of anisotropic BAO fits on either 600 (‘Sub’ and ‘Sub Star, weighted’) or 200 (‘Fid.’ and ‘Sub Star, not weighted’) pre-reconstruction NGC
mocks with and without stellar density systematics. Numerals match the list in the text. For these, we have assumed the same cosmology as used to construct
the QPM mocks (given in Table 1). Thus, the expected α and ε values are 1 and 0. ‘Fid.’ denotes the case where the fiducial mock samples have been used; ‘Sub
Star, not weighted’ denotes the case where each mock was subsampled based on the stellar density relationship observed in the data; ‘Sub’ refers to the case
where the mocks have been randomly sub-sampled so that the number density is the same as the ‘sub Star, not weighted’ case; ‘Sub Star, weighted’ denotes
the case where the Star, not weighted mocks have stellar density weights assigned in a manner matching the procedure applied to the data. S denotes standard
deviation and σ the uncertainty recovered from a likelihood.

Case 〈α||〉 S|| 〈σ||〉 〈α⊥〉 S⊥ 〈σ⊥〉 〈α〉 Sα 〈ε〉 Sε

600 mocks used:
(iii) Sub Star, weighted 1.0011 0.0534 0.0567 1.0045 0.0253 0.0266 1.0029 0.0181 -0.0013 0.0220
(iv) Sub 1.0016 0.0532 0.0564 1.0043 0.0247 0.0266 1.0029 0.0180 -0.0010 0.0217

200 mocks used:
(i) Fid. 1.0011 0.0510 0.0554 1.0053 0.0241 0.0259 1.0034 0.0165 -0.0015 0.0213
(ii) Sub Star, not weighted 1.0009 0.0520 0.0550 1.0055 0.0250 0.0257 1.0035 0.0171 -0.0016 0.0217

negligibly small; i.e., if we applied no correction for stellar density
systematics, we would still recover un-biased BAO measurements.
All of the mean σ are very similar (for cases using the same set of
mocks), as one might expect given that the same covariance matrix
is used in all cases.

In order to assess whether the weighting process introduces
any additional scatter, we have compared the standard deviations
recovered from Cases iii) and iv). For both α|| and α⊥, the standard
deviations increase very slightly when the mocks go through the
weighting process. We determine the systematic scatter as S2

sys =
S2
iii−S2

iv and estimate an uncertainty via a jackknife-like method;
we omit blocks of 20 mocks and recalculate Ssys. The uncertainty
on S is then σ2

S = 29
30

∑
i(Ssys,i − Ssys,full)

2, with i denoting the
sample with 20 mock results removed. We find Ssys = 0.005 ±
0.005 for α|| and Ssys = 0.005 ± 0.002 for α⊥. The increase in
the variance is thus significant for α⊥.

The variance on the recovered BAO positions is slightly larger
when the mocks have the stellar density systematic applied and
corrected for, compared to the case where a uniform sub-sampling
has been applied. This not surprising, as the correction procedure
has essentially removed the clustering modes that align with stellar
density (c.f. Elsner et al. 2016). The application of the weights has
a larger (relative) effect on the α⊥ measurements; this is consistent
with the fact that the weighting procedure should largely remove
transverse modes that correlate with the distribution of stars in the
Galaxy. The results from our mocks tests suggest that uncertainties
on α⊥ using the CMASS data will be under-estimated by 2 per cent
(
√

0.0252 + 0.0052/0.025 − 1) and that uncertainties on α|| by
half a per cent (

√
0.052 + 0.0052/0.05 − 1). Based on the mode-

removal argument, we expect the percentages to stay constant with
signal-to-noise (e.g., for post-reconstruction results)12.

As demonstrated in the Appendix of Ross et al. (2012), the
correction procedure we apply for observational systematics is ex-
pected to produce slightly biased clustering measurements.13 We
test this by comparing the mean ξ0,2 for each of the mock cases
and we plot the results in Fig. 10. We find the correction procedure
produces a nearly indistinguishable change in the mean ξ0,2 when
compared to the fiducial case (squares); clearly any bias is negli-

12 We have focused the mock tests on pre-reconstruction results due to the
computational demands of analyzing the post-reconstruction samples
13 See Elsner et al. (2016) for analytic descriptions of similar effects in
spherical harmonic space.

gible in comparison to the statistical uncertainty (denoted by the
grey shaded regions). In contrast, the mean effect of simulating the
stellar density systematic is of clear significance to ξ0 but exhibits
a difference that is well within the statistical uncertainty for ξ2 (see
the diamonds in Fig. 10). This is similar to the difference between
the clustering observed in the CMASS data with and without cor-
rective weights for the stellar density systematic (the triangles in
the upper two panels of Fig. 6).

The conclusion of this subsection is that, as best we can mea-
sure, observational systematics impart no bias on BOSS BAO mea-
surements. However, we do find that the known observational sys-
tematics slightly reduce the statistical power of the measurements,
implying our uncertainties on α⊥ are under-estimated by 2 per cent
and those on α|| by 0.5 per cent. We apply these additional errors
to our final results as systematic uncertainties.

6.2 Robustness of BOSS data

The results of the previous section (6.1) imply that the stellar den-
sity systematic, the most dominant systematic (in terms of greatest
potential significance), has, at most, a minor effect on the resulting
BAO measurements. In this section, we apply similar tests to the
BOSS data, and expand them to consider all of the weights applied
to BOSS galaxies that are meant to provide the correct selection
function. We also compare the results from the NGC and SGC re-
gions separately. All of the measurements in this section use the
covariance matrix constructed from 1000 QPM mocks. The results
are summarized in Table 3 and we discuss them below.

The pre-reconstruction CMASS results are shown in the top
rows of Table 3. We measure both isotropic and anisotropic BAO.
Moving down by row, we add weights to the galaxy catalog (the
n(z) is re-created for each case). The results are stable; the biggest
absolute difference is 0.007 in α|| between the cases where no
weights are applied and the case where close-pair and redshift-
failure weights are applied. The biggest difference in terms of frac-
tion of the uncertainty is 0.25σ in α⊥ between the cases the close-
pair and redshift failure weights have been applied and all weights
have been applied. These size changes are consistent with the scat-
ter expected due to statistical fluctuations. For example, the level
of scatter we find when applying stellar density weights in the pre-
vious section is 0.2σ between the weighted and un-weighted data;
i.e., the statistical results are consistent with the level to which we
expect the weights to alter the relative importance of each given
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Table 3. Isotropic and anisotropic BAO fits on pre- and post-reconstruction CMASS data when different weights are applied. The fiducial case is ‘all’ (without
specification of hemisphere) and we are interested in the variations (or lack thereof) between the results in different cases. The cases are as follows: ‘none’
denotes no systematic weights were applied; ‘cp’ denotes close pair weights were applied; ‘zf’ denotes redshift failure weights were applied in addition to
cp; ‘st’ denotes stellar density weights were applied in addition to cp and zf weights; ‘all’ additionally includes the seeing weights, and thus all weights were
applied. ‘C16’ denotes that the ξ0,2 measurements using the reconstruction applied to Cuesta et al. (2016) were applied (whereas the rest of the cases used
reconstruction similar to that of Burden et al. 2014). All covariance matrices used were determined from the appropriate sample of 1000 QPM mocks. The
reconstruction applied to these mocks matches what was used in Cuesta et al. (2016).

Sample Weights α χ2/dof α|| α⊥ χ2/dof

Pre-reconstruction:

CMASS none 0.985± 0.013 26/15 0.965±0.035 0.996±0.020 42/30
CMASS cp 0.986± 0.012 23/15 0.966±0.034 0.996±0.020 41/30
CMASS zf 0.985± 0.012 30/15 0.972±0.034 0.992±0.020 47/30
CMASS st 0.987± 0.012 24/15 0.971±0.034 0.996±0.020 41/30
CMASS all 0.987± 0.012 24/15 0.970±0.034 0.997±0.021 40/30
CMASS NGC all 0.985± 0.013 19/15 0.965±0.037 0.994±0.026 41/30
CMASS SGC all 1.020± 0.028 27/15 1.020±0.095 1.014±0.057 38/30

LOWZ none 0.992± 0.026 18/15 x x x
LOWZ zf 0.993± 0.026 18/15 x x x
LOWZ all 0.993± 0.025 17/15 x x x
LOWZE3 NGC all 1.007± 0.025 38/15 x x x
LOWZE2 NGC all 1.010± 0.029 14/15 x x x
LOWZ NGC all 1.009± 0.029 18/15 x x x
LOWZ SGC all 0.949± 0.042 10/15 x x x

Post-reconstruction:

Sample Weights α χ2/dof α|| α⊥ χ2/dof

CMASS none 0.9843± 0.0093 16/15 0.962±0.023 0.997±0.014 30/30
CMASS cp 0.9850± 0.0083 27/15 0.961±0.022 0.996±0.013 43/30
CMASS zf 0.9856± 0.0087 33/15 0.962±0.022 0.998±0.013 63/30
CMASS st 0.9859± 0.0086 18/15 0.957±0.021 1.001±0.013 37/30
CMASS all 0.9832± 0.0085 19/15 0.952±0.021 1.000±0.013 46/30
CMASS C16 0.9849± 0.0092 14/15 0.949±0.024 1.003±0.014 30/30
CMASS NGC all 0.975± 0.010 15/15 0.942±0.022 0.999±0.016 39/30
CMASS SGC all 1.016± 0.020 15/15 1.005±0.044 1.013±0.029 50/30

survey mode and thus cause small differences in the recovered mea-
surements. The isotropic NGC/SGC measurements differ by 1.1σ,
and therefore are consistent to this level, given they represent inde-
pendent volumes. The combined result is slightly closer (by 0.004)
to the NGC measurement than one would expect from Gaussian
likelihoods.

For LOWZ, pre-reconstruction, we only measure the isotropic
BAO scale, due to the relatively low signal to noise. Measurements
of the isotropic BAO scale use only the monopole, ξ0. The results
are shown in the middle rows of Table 3. As expected, the applica-
tion of close-pair or redshift failure weights has very little impact
on the measurements (at most 0.04σ). The difference between the
NGC and SGC measurements is 1σ, but in the opposite direction as
the difference found for CMASS. The combined LOWZ measure-
ment is closer to the NGC measurement by 0.003 compared to what
would be expected from Gaussian statistics. We find that the BAO
measurements obtained from the LOWZE3 and LOWZE2 selec-
tions are very similar (within 0.1σ) to what we find for the nominal
LOWZ sample. This agreement helps validate that the LOWZE3
and LOWZE2 samples are indeed faithful tracers of the BAO signal
and that their unique areas should be added to the nominal LOWZ
footprint in order to obtain the best BAO measurements using low
redshift BOSS data.

Finally, we investigate the robustness of the post-

reconstruction results, shown in the bottom panels of Table
3. We focus on the CMASS sample. The agreement remains quite
good, but the differences are larger relative to the uncertainty than
they were for the pre-reconstruction results. The biggest difference
is 0.5σ in α||, between the case where close-pair and redshift
failure weights are applied and all weights are applied (with the
change being shared equally between the addition of the stellar
density weights and the seeing weights). A potential explanation is
that there is more stochasticity in the reconstruction process; the
weighted galaxy field is first used to determine the displacement
field and then the weighted galaxy and random positions are
displaced. This increases the chance of fluctuations in the resulting
measurements. Given that the largest fluctuation we find is 0.5σ
out of 30 possible comparisons, we find no evidence for concern.

There is a 1.8σ discrepancy between the post-reconstruction
CMASS isotropic BAO measurement in the NGC and SGC. Such
a discrepancy has been observed at similar significance in each
BOSS data release. When decomposed, the discrepancy is largest
in α||, where the difference is 1.3σ (it is only 0.4σ, and thus con-
sistent, for α⊥). Despite the slight tension, the results recovered
when combining the pair-counts of NGC and SGC samples match
the expectation for Gaussian likelihoods one obtains when taking
the weighted mean of the NGC and SGC results.
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Table 4. Statistics of anisotropic BAO fits obtained from two sets 1000 mocks, for each of the combined sample redshift bins. ‘MD-P’ denotes the Multidark
PATCHY mocks were used. S denotes standard deviation and σ the uncertainty recovered from a likelihood. ∆ represents the difference from the expected
values (given in Table 1).

z bin ∆〈α||〉 S|| 〈σ||〉 ∆〈α⊥〉 S⊥ 〈σ⊥〉 ∆〈α〉 Sα ∆〈ε〉 Sε 〈χ2〉/dof

pre-reconstruction:
QPM

0.2 < z < 0.5 0.003 0.048 0.049 0.005 0.025 0.027 0.004 0.018 -0.001 0.024 29.4/30
0.4 < z < 0.6 0.001 0.045 0.045 0.007 0.023 0.025 0.005 0.015 -0.002 0.021 29.3/30
0.5 < z < 0.75 -0.002 0.042 0.043 0.007 0.023 0.025 0.004 0.015 -0.003 0.020 29.3/30

MD-P
0.2 < z < 0.5 0.001 0.057 0.057 0.008 0.031 0.032 0.005 0.021 -0.002 0.025 29.4/30
0.4 < z < 0.6 0.004 0.056 0.053 0.008 0.028 0.028 0.005 0.018 -0.001 0.025 29.3/30
0.5 < z < 0.75 -0.001 0.052 0.050 0.010 0.029 0.028 0.006 0.018 -0.004 0.024 29.3/30

post-reconstruction:
QPM

0.2 < z < 0.5 0.002 0.030 0.031 0.003 0.017 0.017 0.0024 0.0113 -0.0003 0.0138 29.4/30
0.4 < z < 0.6 0.003 0.027 0.029 0.001 0.015 0.016 0.0016 0.0105 0.0005 0.0125 29.7/30
0.5 < z < 0.75 0.002 0.029 0.031 0.002 0.016 0.017 0.0013 0.0112 -0.0001 0.0130 29.7/30

MD-P
0.2 < z < 0.5 0.002 0.034 0.035 -0.001 0.019 0.020 0.0002 0.0128 0.0009 0.0152 29.3/30
0.4 < z < 0.6 0.004 0.031 0.032 0.001 0.017 0.017 0.0014 0.0114 0.0011 0.0140 29.3/30
0.5 < z < 0.75 0.000 0.031 0.033 0.002 0.018 0.019 0.0015 0.0118 -0.0008 0.0145 29.4/30

7 COMBINED SAMPLE BAO MEASUREMENTS

The previous subsection demonstrates that the BAO measurements
are consistent between the components of BOSS, splitting by tar-
geting algorithm, after correcting for effects due to technical issues
in BOSS observations. Here, we present BAO measurements de-
termined using the combined sample data, both for the mock and
data samples. We use both the QPM and MD-P mocks, and the co-
variance matrix determined using them, to analyze this sample. In
addition to the 0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins,
we present results for a 0.4 < z < 0.6 redshift bin, which we ex-
pect to be largely covariant with the two distinct redshift bins but
to provide additional information when assessing the robustness of
our results.

7.1 Results from mock samples

Table 4 displays the results of our BAO fits to both sets of mock cor-
relation functions. For the mean values, we indicate the difference
from the expected value, given the cosmology used for the mocks
and our fiducial cosmology. These expected values are given in Ta-
ble 1.

All of the results are biased relative to the uncertainty on the
ensembles of the 1000 mock realizations (one should divide the S
and σ numbers by

√
1000 to obtain the uncertainty on the of av-

erage of results of 1000 mocks), but by a relatively small amount
when compared to the uncertainty expected for one realization. For
the pre-reconstruction results, some bias is expected due to mode-
coupling from non-linear structure formation (c.f. Padmanabhan
& White 2009). The bias we find is greatest in α⊥, where it is
0.006 for QPM and 0.009 for MD-P (averaged across the three red-
shift bins). These are 0.25σ and 0.31σ. For α||, the bias is only
0.001 on average, making it � 0.1σ. The biases are of the order
predicted by Padmanabhan & White (2009). Studies (e.g., Beutler
et al. 2016b; Sánchez et al. 2016a) that use the pre-reconstruction
data to measure fσ8, α||, and α⊥ employ modeling that takes the

predicted shifts into account and are expected to obtain somewhat
more accurate results for the pre-reconstruction data. We use the
pre-reconstruction results primarily as a basis for comparison to
the post-reconstruction results.

Post-reconstruction, as expected, the bias in α⊥ is decreased.
Considering the mean results across the redshift bins, for QPM, it
is 0.002 (i.e., σ/8) and for MD-P it is 0.001 (i.e., 0.06σ). For α||,
it is 0.002 (i.e., ∼ 0.07σ) for both sets of mocks. In terms of α/ε,
the biases are 0.16σ for the QPM α and 0.08σ for the MD-P α,
while for ε they are both� 0.1σ. The biases vary with redshift bin
to a level that is significantly larger than the uncertainty on the en-
semble average; for example, in MD-P the difference in α between
the low and high redshift bins is 0.0014, while the expected 1σ
deviation is 0.0006; similarly the difference for ε is 0.0017 com-
pared to an expected 1σ deviation of 0.0007. For QPM, the dif-
ferences are smaller. In terms of the expected deviations, they are
∼ 2σ for α and less than 1σ for ε (though it is 1.5σ comparing the
0.2 < z < 0.5 and 0.4 < z < 0.6 bins, which should be cor-
related). The biases thus appear specific to redshift bin, implying
they are either related the creation of the mocks and any redshift
evolution they include or choices in the reconstruction algorithms
related to the expected evolution of the density field. Overall, any
bias in our measured BAO parameters is less than 0.16σ (using the
expected uncertainty for a single realization) and should not impact
our conclusions. See Vargas-Magaña et al. (2016) for further study
of related issues.

In general, the uncertainties recovered from the MD-P mocks
are larger than those of the QPM mocks. The differences are in the
uncertainties are ∼ 10 per cent in α|| and are slightly larger (< 13
per cent) in α⊥. The differences in the uncertainties are thus at a
similar level to the biases we find in the recovered BAO parameters.
These biases are absorbed by the theoretical systematic uncertainty
budget derived in Vargas-Magaña et al. (2016) and applied in Alam
et al. (2016).
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Figure 11. The measured post-reconstruction ξ0 and ξ2 and corresponding
best-fit BAO models for BOSS galaxies. These best-fit models encode the
BAO distance measurements determined in this work and are displayed for
the range of scales that have been fit (50 < s < 150h−1Mpc).

7.2 Results from data

Results for BAO fits on BOSS data, using both the QPM and the
MD-P covariance matrices, are displayed in Table 5. The results
are similar using the two covariance matrices, but there are no-
table differences. In general, the uncertainties are smaller when
the QPM covariance matrices are used, matching the results on
the mocks. Correspondingly, the χ2 values are consistently higher
for the QPM mocks (in five of the six cases to compare). None
of the six QPM cases recover a χ2/dof that is less than 1, while
this is the case for two of the MD-P cases. Considering the total
χ2 for the two independent redshift bins, the χ2/dof for QPM is
75/60 pre-reconstruction and 81/60 post-reconstruction. This can
be compared to 65/60 and 71/60 for MD-P. This is suggestive that
the MD-P covariance matrix is doing the better job of characteriz-
ing the noise in the BOSS combined sample ξ0,2 measurements.

Pre-reconstruction, the α|| results are consistently greater for
the QPM covariance matrix compared to the MD-P covariance ma-
trix. The difference varies between 0.017 and 0.010 and is a 0.5σ
shift in the most extreme case (the 0.2 < z < 0.5 redshift bin);
given the same data is used and only the covariance matrix is al-
tered this is a fairly large change. The differences are much smaller
for α⊥, where it is at most 0.006 (0.3σ) in the 0.4 < z < 0.6
redshift bin.

Post-reconstruction, the BAO measurements are robust to
the choice of covariance matrix. The biggest difference is 0.003

Table 5. BAO fits on the BOSS combined sample data, using both the Mul-
tidark PATCHY (MD-P) and QPM covariance matrices.

z bin α|| α⊥ χ2/dof

pre-reconstruction:
QPM

0.2 < z < 0.5 1.068±0.035 0.982±0.020 45/30
0.4 < z < 0.6 1.037±0.038 1.014±0.021 46/30
0.5 < z < 0.75 0.963±0.035 0.999±0.024 30/30

MD-P
0.2 < z < 0.5 1.051±0.036 0.983±0.022 37/30
0.4 < z < 0.6 1.024±0.042 1.008±0.022 42/30
0.5 < z < 0.75 0.953±0.034 1.001±0.024 28/30

post-reconstruction:
QPM

0.2 < z < 0.5 1.024±0.024 0.986±0.013 48/30
0.4 < z < 0.6 0.989±0.020 0.993±0.012 27/30
0.5 < z < 0.75 0.962±0.024 0.991±0.015 33/30

MD-P
0.2 < z < 0.5 1.025±0.027 0.988±0.015 39/30
0.4 < z < 0.6 0.986±0.024 0.994±0.014 23/30
0.5 < z < 0.75 0.962±0.023 0.991±0.015 32/30

(0.15σ) in α|| for the data in the 0.4 < z < 0.6 redshift bin; the
difference in the uncertainty between the results in this bin is the
same. The level of agreement is consistent with the results found
from the mock realizations and suggests that the choice of covari-
ance matrix is not a major systematic uncertainty in our analysis.
Given the slightly larger uncertainties for the data using the MD-P
covariance matrix, we believe they represent the more conservative
choice and are what we use for our final results. We use the MD-P
results in all comparisons that follow unless otherwise noted.

Fig. 11 displays the measured post-reconstruction ξ0,2 and the
associated best-fit BAO model, using the MD-P covariance matrix.
At each redshift, one can observe the strong BAO feature in the
monopole, which has been enhanced by the reconstruction process,
compared to previous plots. For the quadrupole, reconstruction re-
moves most of the large-scale RSD effects and the overall ampli-
tude is thus decreased. BAO features appear in the quadrupole to
the right and left of the peak in the monopole. Such BAO features
appear in the quadrupole when α|| 6= α⊥ (and thus do not present
themselves in the mocks as the two α parameters are expected to be
nearly equal in our mock analysis). The feature appears to the right
in the 0.5 < z < 0.75 redshift bin, which yields a measurement of
α|| that is lower than α⊥; the reverse is true for the 0.2 < z < 0.5
bin. See Alam et al. (2016) for further exploration and visualization
of these features in the same data.

The uncertainties we obtain are significantly smaller than the
mean uncertainties recovered from the mock realizations, by ∼ 25
per cent in each redshift bin. This implies more pronounced BAO
features in the data than are present in the typical mock. In order
to determine how unusual this is, we combine the results from the
0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, as they are
independent and the expected α values are nearly identical. Fig. 12
displays the uncertainty in α⊥ (σ⊥) vs. the uncertainty in α|| (σ||)
recovered for each mock realization when combining the results of
the two redshift bins (blue circles) and the DR12 data (orange star).
One can see that the DR12 result is within the locus of points, but
at the lower edge. We can quantify the results further by comparing
the area of the 1σ confidence region in the data to the ensemble of
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Table 6. Post-reconstruction combined sample 2D BAO fits, obtained using the covariance matrix constructed from the MultiDark-PATCHY mock catalogs.
The ‘combined+sys’ results represent the likelihoods that are used in Alam et al. (2016) and are the average of the results listed as a function of bin-center.

sample bin center shift α|| α⊥ r χ2/dof α χ2/dof

0.2 < z < 0.5:
post-recon combined +sys 1.022±0.027±0.003 0.988±0.015±0.003 - -

combined 1.022±0.027 0.988±0.015 -0.39 42/30
0 h−1Mpc 1.025±0.027 0.988±0.015 -0.39 39/30 0.998±0.010 25/15
1 h−1Mpc 1.017±0.027 0.992±0.015 -0.39 35/30 1.000±0.010 20/15
2 h−1Mpc 1.022±0.028 0.990±0.015 -0.39 40/30 0.999±0.010 19/15
3 h−1Mpc 1.024±0.028 0.985±0.015 -0.40 51/30 1.000±0.010 28/15
4 h−1Mpc 1.023±0.026 0.986±0.015 -0.40 44/30 1.000±0.010 26/15

pre-recon 0 h−1Mpc 1.051±0.037 0.983±0.022 -0.37 37/30 1.004±0.015 18/15

0.4 < z < 0.6:
post-recon combined +sys 0.984±0.023±0.002 0.994±0.014±0.003 - -

combined 0.984±0.023 0.994±0.014 -0.39 30/30
0 h−1Mpc 0.986±0.024 0.994±0.014 -0.39 23/30 0.991±0.009 16/15
1 h−1Mpc 0.981±0.022 0.996±0.014 -0.39 22/30 0.992±0.009 14/15
2 h−1Mpc 0.981±0.023 0.996±0.015 -0.39 37/30 0.993±0.009 19/15
3 h−1Mpc 0.988±0.023 0.994±0.014 -0.39 38/30 0.993±0.009 24/15
4 h−1Mpc 0.987±0.024 0.992±0.014 -0.40 29/30 0.992±0.009 18/15

pre-recon 0 h−1Mpc 1.024±0.042 1.008±0.022 -0.49 42/30 1.012±0.015 22/15

0.5 < z < 0.75:
post-recon combined +sys 0.958±0.023±0.002 0.995±0.016±0.003 - -

combined 0.958±0.023 0.995±0.016 -0.41 32/30
0 h−1Mpc 0.962±0.023 0.991±0.015 -0.42 32/30 0.981±0.010 14/15
1 h−1Mpc 0.957±0.023 0.999±0.016 -0.42 26/30 0.982±0.010 13/15
2 h−1Mpc 0.957±0.023 0.994±0.016 -0.41 34/30 0.982±0.010 18/15
3 h−1Mpc 0.954±0.024 0.996±0.015 -0.41 40/30 0.983±0.010 18/15
4 h−1Mpc 0.957±0.024 0.994±0.015 -0.41 29/30 0.982±0.010 14/15

pre-recon 0 h−1Mpc 0.953±0.035 1.001±0.024 -0.49 28/30 0.984±0.015 14/15

Figure 12. The uncertainty in α|| compared to the uncertainty in α⊥ for
each MultiDark-PATCHY mock realization (open ‘cadetblue’ circles) and
the DR12 data (large goldenrod star). We have combined the data in the
0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, assuming Gaussian
likelihoods. The DR12 uncertainties are on the low side, but are within the
locus of points representing the mock realizations.

mocks. We find 45 mocks (∼5 per cent), when once more combin-
ing the results of the 0.2 < z < 0.5 and 0.5 < z < 0.75 redshift
bins, have a smaller area contained in their 1σ confidence region

than we find for the data. Thus, we determine that we have been
somewhat lucky in the region of the Universe we have observed
with BOSS, but not grossly so. In this sense, these results are sim-
ilar to those obtained with the previous data set (Anderson et al.
2014b). To some degree, the fact that we find better results than the
majority of the mock realizations is due to the fact that the grid-
scales involved in the creation of the mocks effectively increase the
damping of the BAO signal. This is discussed further in Beutler et
al. (2016a).

In order to produce our final measurements, we combine re-
sults across five choices of bin center, each separated by 1h−1Mpc.
This is similar to what was done in Anderson et al. (2014b). How-
ever, given our fiducial bin size is now 5h−1Mpc (compared to
8h−1Mpc), the variance between the results in each bin center is
smaller and to obtain the combined results we simply average the
likelihood surfaces for each bin center (rather attempt to determine
the optimal combination with a slightly improved uncertainty, as
was done for the isotropic results in Anderson et al. 2014b).

The results for each bin center choice are presented in Table 6.
The results from averaging each likelihood are labeled ‘combined’.
The difference between the combined results and the fiducial bin
center choice (0 h−1Mpc) is at most 0.004 in α⊥ (0.25σ) for the
0.5 < z < 0.75 redshift bin.

We add an observational systematic uncertainty to the com-
bined result to obtain our final results, quoted as ‘combined+ sys’
in Table 6. Our tests on the mock samples do not suggest any sys-
tematic bias is imparted into the measurements due to observational
systematic effects. However, we do find that the procedure we apply
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to correct for a systematic dependence with stellar density removes
a small amount of the BAO information from the survey volume.
The mocks we used to determine the covariance used for our BAO
results do not include this small reduction in information. Thus, to
account for this we add to the results a systematic uncertainty. In
Section 6.1, the weighting process was found to impart a 2 per cent
dilation into the standard deviation on α⊥ and a 0.5 per cent dila-
tion on α||. We decompose these dilations into individual system-
atic uncertainties, so that they can be combined with any other sys-
tematic uncertainties. For the given dilations, these are 0.1σstat for
α|| and 0.2σstat for α⊥ (e.g., solving 1.022σ2

stat = σ2
stat + σ2

sys).
This systematic uncertainty is added in a similar manner to all of
the BAO distance measurements that are used to obtain cosmologi-
cal constraints in Alam et al. (2016). We emphasize that these sys-
tematic uncertainties are purely observational; Alam et al. (2016)
presents a full accounting of potential systematic uncertainties af-
fecting BOSS BAO measurements, incorporating theoretical sys-
tematic uncertainties (e.g., those relating to the methodology used
for BAO fits and to construct the covariance matrix) that are esti-
mated in Vargas-Magaña et al. (2016).

Our final measurements determine the radial distance scale to
than 2.7 per cent precision (or better) and the transverse distance
to 1.6 precision (or better) in each redshift bin. If we consider the
two independent redshift bins, we can add the inverse variance on
each α parameter to determine an effective combined precision.
This yields 1.8 and 1.1 per cent for the radial and transverse dis-
tance scales. These measurements are further improved in Alam et
al. (2016), where results from the middle redshift bin, power spec-
trum BAO, and full-shape measurements are optimally combined.

Additional robustness checks are presented in Appendix B,
where we find no significant concerns.

8 DISCUSSION

8.1 Comparison to other DR12 BAO measurements

The final output of this work is the BAO measurements using the
post-reconstruction, anisotropic correlation function measurements
of the BOSS DR12 galaxy sample in redshift bins 0.2 < z < 0.5,
0.4 < z < 0.6, and 0.5 < z < 0.75. Other studies have made sim-
ilar measurements using DR12 data. Cuesta et al. (2016) obtained
BAO measurements using the post-reconstruction anisotropic cor-
relation function of the DR12 CMASS and LOWZ samples. In
our robustness checks, we made the same measurements for the
CMASS sample. Accounting for the difference in the fiducial cos-
mologies assumed by each analysis, the differences between Cuesta
et al. (2016) and ours are 0.018 for α|| and -0.011 for α⊥. However,
once we adjust to use the same bin size (8h−1Mpc) as Cuesta et al.
(2016), the differences reduce to 0.011 for α|| and -0.004 for α⊥.
Each of these represent a difference of less than 0.5σ and are likely
due to small methodological differences in the BAO fitting. We find
smaller uncertainties on α|| (for both the data and the mocks) due
to these differences.

Both Beutler et al. (2016a) and Vargas-Magaña et al. (2016)
obtain BAO measurements for the same post-reconstruction data
set and redshift bins as we use. Beutler et al. (2016a) is a Fourier
space analysis. Analyzing the same set of mocks, we find our re-
sults are correlated with a factor 0.9 and that the differences we ob-
tain on the BOSS data are consistent with this high level of correla-
tion. Both recover nearly identical uncertainties on the anisotropic
BAO parameters, for both the data and the mock samples. Vargas-
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Figure 13. The allowed 1 and 2σ regions (black ellipses) in the Hubble
parameter, H , and the angular diameter distance, DA, determined from
our post-reconstruction anisotropic BAO scale measurements using BOSS
galaxies with 0.2 < z < 0.5 (top panel) and with 0.5 < z < 0.75 (bottom
panel). The colored points represent the 2σ allowed region when assuming
a flat ΛCDM cosmology and the the Planck 2015 results, with different
colors representing the value of H at z = 0 (as indicated by the color bar
on the right).

Magaña et al. (2016) uses the same configuration space data as pre-
sented in this study, but apply slightly different methodology to
obtain their BAO measurements; they recover results that are con-
sistent with ours. A more detailed comparison of these results is
presented in Alam et al. (2016), where consensus sets of BOSS
DR12 BAO and BOSS DR12 BAO + RSD measurements, com-
bined as described in Sánchez et al. (2016b), are presented.

8.2 Comparison with ΛCDM

Our measurements of α|| and α⊥ can be translated into constraints
on DA(z)(rfid

d /rd) and H(z)(rd/r
fid
d ) and thereby test cosmo-

logical models. Here, we simply compare our measurements with
the allowed parameter space in ΛCDM as determined by Planck
Collaboration et al. (2015)14. This is show in Fig. 13 for the

14 Specifically, the results from the ’base plikHM TT lowTEB lensing’
chains.
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0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins. Our low red-
shift result is fully consistent with the Planck ΛCDM prediction.
Our high redshift result is in slight tension, as the 1σ contours just
barely overlap; this is mostly driven by the H(z) measurement.
This is similar to what was found in Anderson et al. (2014b) for the
DR11 CMASS data; the agreement is slightly better in Beutler et
al. (2016a) and significantly better (to the level there is no tension)
when these two post reconstruction results are optimally combined
with pre-reconstruction full-shape results in Alam et al. (2016). Our
results for the 0.4 < z < 0.6 redshift slice (not plotted) are consis-
tent with the Planck ΛCDM prediction, as one would predict based
on the mean of the 0.2 < z < 0.5 and 0.5 < z < 0.75 results. The
full cosmological context of our measurements, when combined
with other BOSS DR12 results, is explored in detail in Alam et al.
(2016).

9 SUMMARY

In this work, we have

• Described and motivated the construction of the selection
function for BOSS galaxies;
• Shown how the treatment of the selection function affects the

measured clustering;
• Shown that the individual BOSS target samples can be triv-

ially combined into one BOSS sample, allowing arbitrary splitting
in redshift;
• Demonstrated that BOSS BAO measurements are robust to the

treatment of the selection function and the details of how the BOSS
samples are combined;
• Measured the BAO scale transverse to and along the line of

sight from the BOSS galaxy correlation function in two indepen-
dent redshift slices, 0.2 < z < 0.5 and 0.5 < z < 0.75, and one
overlapping redshift slice. 0.4 < z < 0.6.

The results of our work on the selection function are included in the
BOSS galaxy catalogs described in Reid et al. (2016). The results
of our BAO scale measurements are used in Alam et al. (2016),
where they are combined with other BOSS DR12 results and used
to evaluate cosmological models.

The main, non-standard, components to the BOSS selection
function are the weights that we apply to account for fluctuations
in the angular selection function. The angular selection function
has been demonstrated to depend on the stellar density and the see-
ing conditions of the BOSS imaging data that targets are selected
from. The weights we have defined correct for these variations in
the selection function.

We have assessed the impact of these weights by comparing
the clustering of BOSS samples with and without the weights. The
stellar density weights have by far the greatest impact. The impact
can be quantified by determining the χ2 difference between the two
measurements (using a model that assumes the difference is zero);
for the stellar density weights it was 13.1, implying the possibility
of parameter estimation being biased by 3.6σ when not accounting
for the effect of stellar density on the angular selection function.
However, we find both for mocks and for the data that BAO mea-
surements are robust to whether or not any weights are included to
account for the fluctuations in the selection function. We conclude
that our treatment of the BOSS selection function imparts no bias
into the resulting BAO measurements.

We note that our conclusions on the lack of any bias are spe-
cific to BAO measurements. We recommend that any other kind

of measurement conduct a similar analysis as presented here, in
order to assess any potential of systematic bias. At the least, we
suggest that any configuration space analysis includes a constant
term with a free amplitude to be marginalized over (like there is
in the BAO model). An analysis demonstrating the robustness of
structure growth measurements determined by modeling RSD un-
der such treatment is presented in Appendix D. Our analysis does
not attempt to assess the size of possible fluctuations due to cali-
bration uncertainties, like discussed in Huterer et al. (2013), which
would need to be accounted for in any analysis where broad-band
large-scale power is important (e.g., primordial non-Gaussianity).

While the location of the measured BAO position is robust to
the treatment of the selection function, our treatment does add a
small degree of statistical uncertainty that is not accounted for in
our covariance matrices. The reason is that our methods essentially
null clustering modes that are aligned with fluctuations in stellar
density. A small fraction of these modes contain BAO information.
We find that when approximating our procedure for correcting for
the stellar density systematic the standard deviation of mock sam-
ples increases by 2 per cent for the transverse BAO measurement
and 0.5 per cent for the radial BAO measurement. In terms of the
statistical uncertainty, these are 0.14σstat and 0.07σstat, respec-
tively.

Fundamentally, the robustness of BAO measurements is due
to the fact that the BAO are a localized feature in configuration
space and it is difficult for any observational feature to have such
a localized effect, especially when angular and radial components
are combined. Indeed, it was noted in the review of Weinberg et al.
(2013) that this nature of BAO studies makes it an especially robust
probe of the expansion history of the Universe. The work we have
presented shows this to be true in detail. Our results suggest this
will remain fact for the next generation of BAO experiments.
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APPENDIX A: CHOOSING A BIN SIZE AND RANGE OF
SCALES

In this appendix, we motivate the choices for the bin-size and
range of scales used to obtain our BAO measurements. We thus
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Figure A1. Statistics of 2D BAO fits on 1000 QPM CMASS post-
reconstruction mocks, as a function of the bin size. Red diamonds show re-
sults for α⊥ and blue circles show the results for α||. The bias of the mean
alpha, multiplied by 10, is shown with solid lines; one can see it is never
greater that 0.1σ. The standard deviation of the mock results is shown with
dotted lines (and open symbols) and the mean likelihood error with dashed
lines.

present the results of BAO constraints obtained from the post-
reconstruction CMASS sample as a function of the bin-size and
the range of scales used in the analysis. All statistics are derived
from the mean and variance of fits to α||, α⊥ obtained from the
QPM mocks. See Vargas-Magaña et al. (2016) for a more detailed
study on similar tests.

We have tested the BAO constraints obtained from the post-
reconstruction CMASS sample as a function of bin-size (holding
the fitting range fixed to 50 < s < 150). This is a repeat of the
tests done in Percival et al. (2014); naively, the results would only
improve as the bin-size is decreased, but this decrease increases the
size of the data vector and thus the noise in the inverse covariance
matrix. The results are summarized by Fig. A1. One can see that
the trends are not strong, so any choice of bin size in the range
4−8h−1Mpc would be reasonable. The tests on the mocks suggest
the correlations between results from different bin sizes are ∼0.95
for both α⊥ and α||. Based on these results, we choose to use a bin
size of 5h−1Mpc. Such a bin choice requires combining across less
bin centers than was the case for BOSS DR11 analyses, which used
a bin size of 8h−1Mpc (Anderson et al. 2014b).

Similarly, we have tested the minimum and maximum scale
used in the BAO fits. The results are summarized in Fig. A2.
These results motivate our choice of using the range 50 < s <
150h−1Mpc. At scales s < 50h−1Mpc, we do not recover un-
biased measurements of α||. This is due to our ability to model the
post-reconstruction quadrupole at such scales. A minimum scale
r > 70h−1Mpc causes a decrease in the statistical power of the
measurements. Likewise, a maximum scale r < 150h−1 increases
both the statistical uncertainty and the bias of the results.

APPENDIX B: ROBUSTNESS TESTS ON COMBINED
SAMPLE

Here, we report the results of a number of robustness checks on the
BAO fits to the BOSS combined sample data. Table B1 presents

Table B1. Post-reconstruction combined sample 2D BAO fits as a function
of bin-size, choice of fitting range, choices for nuisance parameters, and
Galactic hemisphere.

test α|| α⊥ χ2/dof

0.2 < z < 0.5:
bin size:

3 h−1Mpc 1.022±0.028 0.987±0.015 51/54
4 h−1Mpc 1.026±0.029 0.985±0.015 55/38
5 h−1Mpc 1.025±0.027 0.988±0.015 39/30
6 h−1Mpc 1.020±0.028 0.988±0.015 34/24
7 h−1Mpc 1.026±0.028 0.985±0.015 26/18
8 h−1Mpc 1.027±0.028 0.982±0.015 28/16
10 h−1Mpc 1.027±0.029 0.986±0.016 14/10

s > 70h−1Mpc 1.023±0.026 0.990±0.014 32/26
s < 170h−1Mpc 1.027±0.027 0.987±0.015 44/34

A0 = 0 1.029±0.028 0.986±0.015 46/33
A2 = 0 1.021±0.028 0.991±0.015 43/33
A` = 0 1.023±0.028 0.990±0.015 50/36
B0 free 1.025±0.027 0.988±0.015 39/30
B2 free 1.025±0.027 0.988±0.015 39/30

NGC 1.035±0.031 0.997±0.016 36/30
SGC 0.999±0.043 0.942±0.034 38/30

0.4 < z < 0.6:
bin size:

3 h−1Mpc 0.991±0.024 0.995±0.014 54/54
4 h−1Mpc 0.991±0.024 0.991±0.014 38/38
5 h−1Mpc 0.986±0.024 0.994±0.014 23/30
6 h−1Mpc 0.984±0.023 0.995±0.014 23/24
7 h−1Mpc 0.985±0.023 0.992±0.013 16/18
8 h−1Mpc 0.989±0.024 0.993±0.013 13/16
10 h−1Mpc 0.982±0.024 0.995±0.014 8/10

s > 70h−1Mpc 0.985±0.022 0.994±0.013 17/26
s < 170h−1Mpc 0.984±0.025 0.995±0.014 37/34

A0 = 0 0.986±0.026 0.993±0.015 30/33
A2 = 0 0.982±0.024 0.996±0.014 25/33
A` = 0 0.982±0.025 0.995±0.015 31/36
B0 free 0.986±0.024 0.994±0.014 23/30
B2 free 0.986±0.024 0.994±0.014 22/30

NGC 0.972±0.028 0.995±0.016 21/30
SGC 1.025±0.057 0.990±0.036 30/30

0.5 < z < 0.75:
bin size:

3 h−1Mpc 0.962±0.023 0.993±0.015 55/54
4 h−1Mpc 0.957±0.023 0.995±0.015 37/38
5 h−1Mpc 0.962±0.023 0.991±0.015 32/30
6 h−1Mpc 0.961±0.023 0.995±0.016 25/24
7 h−1Mpc 0.963±0.025 0.990±0.015 13/18
8 h−1Mpc 0.955±0.023 0.995±0.015 16/16
10 h−1Mpc 0.963±0.023 0.989±0.015 12/10

s > 70h−1Mpc 0.964±0.022 0.990±0.014 23/26
s < 170h−1Mpc 0.963±0.023 0.989±0.015 41/34

A0 = 0 0.963±0.027 0.992±0.017 43/33
A2 = 0 0.955±0.022 0.994±0.015 35/33
A` = 0 0.954±0.025 0.996±0.017 49/36
B0 free 0.962±0.024 0.991±0.015 31/30
B2 free 0.962±0.023 0.990±0.015 31/30

NGC 0.944±0.025 0.986±0.017 31/30
SGC 1.020±0.048 1.010±0.035 32/30
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Figure A2. Statistics of 2D BAO fits on 1000 QPM CMASS post-
reconstruction mocks, as a function of the minimum (top) and maximum
(bottom) scale used.. Red diamonds show results for α⊥ and blue circles
show the results for α||. The bias of the mean alpha, multiplied by 10, is
shown with solid lines. The standard deviation of the mock results is shown
with dotted lines (and open symbols) and the mean likelihood error with
dashed lines.

measurements for different bin sizes. The variation between the re-
sults is small and consistent with that found in the mock samples
in the previous section. We have also tested changing the range of
scales that are fit within the region, increasing the minimum and
maximum scale each by 20h−1Mpc individually, as the mock tests
suggest our results should be equally valid under this change; in-
deed we find no significant change.

Table B1 also presents tests where we have changed the way
nuisance parameters are treated. We test allowing each of the bias
terms to be completely free (i.e., with no prior on B`; denoted by
‘B` free’) and find no significant changes in the results. We have
also tested removing the polynomial terms from the fits (denoted by
‘A` = 0’); the motivation of these polynomial terms is to isolate
the BAO feature and ensure broadband effects, such as incomplete
modeling of the post-reconstruction quadrupole and observational
systematics, do not affect the recovered results. Even without these
terms, the results in the table show that we recover nearly the same
results. The biggest change is in the 0.5 < z < 0.75 redshift bin,
where not including the polynomial terms shifts the results by ∼
0.3σ for both α||,⊥ values (in opposite directions). Thus, despite

Table B2. Post-reconstruction combined sample 2D BAO fits, varying the
choice of damping parameters that enter the template.

test α|| α⊥ χ2/dof

0.2 < z < 0.5:
fiducial 1.025±0.027 0.988±0.015 39/30
Σ⊥ = 0 1.026±0.027 0.987±0.014 39/30
Σ⊥ = 5.0h−1Mpc 1.024±0.027 0.991±0.016 42/30
Σ|| = 0 1.024±0.026 0.988±0.015 39/30
Σ|| = 8.0h−1Mpc 1.029±0.028 0.988±0.015 42/30
Σs = 0 1.024±0.027 0.988±0.015 39/30
Σs = 8.0h−1Mpc 1.035±0.030 0.988±0.015 44/30

0.4 < z < 0.6:
fiducial 0.986±0.024 0.994±0.014 23/30
Σ⊥ = 0 0.986±0.023 0.994±0.014 21/30
Σ⊥ = 5.0h−1Mpc 0.985±0.024 0.995±0.016 27/30
Σ|| = 0 0.985±0.022 0.995±0.014 21/30
Σ|| = 8.0h−1Mpc 0.991±0.027 0.992±0.014 27/30
Σs = 0 0.987±0.024 0.992±0.014 28/30
Σs = 8.0h−1Mpc 0.994±0.029 0.994±0.014 24/30

0.5 < z < 0.75:
fiducial 0.962±0.023 0.991±0.015 32/30
Σ⊥ = 0 0.962±0.023 0.990±0.015 31/30
Σ⊥ = 5.0h−1Mpc 0.962±0.024 0.991±0.017 35/30
Σ|| = 0 0.960±0.022 0.992±0.015 30/30
Σ|| = 8.0h−1Mpc 0.968±0.027 0.988±0.015 36/30
Σs = 0 0.963±0.024 0.990±0.015 32/30
Σs = 8.0h−1Mpc 0.971±0.029 0.987±0.015 38/30

their (well-motivated) inclusion, the polynomial terms have only a
minor effect on the recovered results.

The results presented in Table B1 are for where we individu-
ally fit the BAO scale in the NGC and SGC. In the 0.2 < z < 0.5
redshift bin, the differences are greatest in terms of the measure-
ment of α, where the discrepancy is ∼1.5σ. A similar difference
is found in the high redshift bin, except that the difference is in the
opposite direction. These results are therefore consistent with those
presented for the CMASS and LOWZ samples in Section 6.2.

Table B2 presents tests where we have significantly altered
the fiducial damping scales in the template. We have either set the
damping scale to 0 or doubled its size. Setting the damping scale to
zero alters the results by at most 0.13σ (α⊥ in the 0.4 < z < 0.6
bin) and the changes are otherwise < 0.1σ. Doubling the damping
scale for Σ|| or Σs has a larger effect, mainly on α||. The most ex-
treme change is 0.33σ, when doubling Σs in the 0.2 < z < 0.5
redshift bin. The size of the change in the other redshift bins is sim-
ilar; increasing Σs results in an increase in α||. The same is true for
increasing Σ||, though changes are smaller (< 0.2σ). The changes
are generally coupled with small decreases in α⊥, implying that in
terms of α,ε, the changes would be observed in ε. These results are
consistent with those of Vargas-Magaña et al. (2015, 2016), where
template choices are studied in detail using mock galaxy catalogs
and the results of which set systematic uncertainty applied to the
results in Alam et al. (2016). Notably, none of the results that cause
more than a 0.1σ shift in the best-fit BAO position are preferred in
terms of the minimum χ2 of the fit.
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Figure C1. The mean BAO uncertainty as a function of µ for post-
reconstruction MultiDark-Patchy mocks (solid lines/open symbols) com-
pared to the results for the BOSS galaxy data (dashed lines/filled symbols).

APPENDIX C: INFORMATION DISTRIBUTION WITH
RESPECT TO THE LINE OF SIGHT

In the spherically symmetric case, with no RSD, information is ex-
pected to be divided equally as a function of the cosine of the angle
to the line of sight, µ. In Ross et al. (2015), it was found that the
BAO information in the BOSS DR11 mock samples was nearly
constant a a function of µ. A speculative argument explaining this
fact is that any boost in information along the line of sight due
to linear RSD is canceled by non-linear RSD and finger of God
effects. Here, we test the distribution of BAO information in the
MultiDark Patchy mocks, compared to the DR12 data. We do this
by dividing the data into five bins by µ (or ‘wedges’; Kazin et al.
2012), with ∆µ = 0.2.

In each µ bin, we apply the same BAO model described in
Section 2.3, but with the template determined via integration over
the particular µ range. The results for both the data and the mean
results from the mocks are presented in Fig. C1. For the mocks,
the mean uncertainty is approximately constant with µ, except in
the µ > 0.8 bin, where it is about 20 per cent greater than the
µ bin with the lowest uncertainty. This is a bigger difference than
was found in Ross et al. (2015), where differences were at most 15
per cent and the uncertainties were the same in the low and high
µ bins. It is possible the differences are due to differences between
the MultiDark-Patchy mocks and the PTHalos (Manera et al. 2013)
mocks used in the Ross et al. (2015) analysis. Regardless, the fun-
damental result that the uncertainty is approximately constant with
µ remains. We find no clear trend in the uncertainty on the data.
This is not overly surprising, as it is a single realization.

Finally, we have looked at the measured BAO position as a
function of µ. These measurements can be compared a prediction
based on α(µ) =

√
µ2α2

|| + (1− µ2)α2
⊥ and our measurements

of α||, α⊥. Fig. C2 shows this comparison. The curves are consis-
tent with the measured points, as one would expect.
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Figure C2. The measured BAO scale as a function of µ, measured from the
post-reconstruction BOSS galaxy correlation function, in µ bins of thick-
ness 0.2. The solid lines represent the prediction based on the α||, α⊥ mea-
sured from ξ0, ξ2.

APPENDIX D: ROBUSTNESS OF BOSS STRUCTURE
GROWTH MEASUREMENTS TO OBSERVATIONAL
TREATMENT

This work has focused on BAO scale measurements and their ro-
bustness to observational systematics. A key component of BOSS
analysis has been to measure the rate of structure growth, f ≡
dlnD/dlna, where a is the scale factor and D is the linear growth
factor. Measurements of the clustering of galaxies are able to mea-
sure the parameter combination f(z)σ8(z), α‖, α⊥ (c.f., Reid et
al. 2012; Samushia et al. 2014). Here, we investigate the extent to
which the f(z)σ8(z) measurements are affected by observational
systematic uncertainties.

We focus on the stellar density systematic, as this has the
most significant effect on the clustering of BOSS galaxies. We
use the mean correlation functions of the 4 sets of 200 mock cata-
logues with varying simulation/treatment of the BOSS stellar den-
sity systematic, as described in Section 6.1. We apply Markov
Chain Monte Carlos (MCMC) analysis using the two-dimensional
dewiggle model (Eisenstein et al. 2007b) to measure {f(z)σ8(z),
α‖, α⊥, α, ε} from the mean correlation functions. The model we
use for RSD tests is similar to the one for BAO tests (i.e. Eq 14
and 15) but there is some difference in detail. While the Σ⊥ and
Σ‖ are fixed for the BAO model, we compute them from nonlin-
ear perturbation theory following Crocce et al. (2006); Eisenstein
et al. (2007b); Matsubara (2008). We model the systematics on
monopole with a polynomialA0(s) = a2/s

2+a1/s+a0 but we do
not apply the same for the quadrupole since the quadrupole mea-
surements at large scales are insensitive to the observational sys-
tematics as shown in Fig. 6. This methodology has been applied to
DR11 CMASS data analysis to obtain the measurements of RSD +
BAO (Chuang et al. 2013b), fit in the range 40 < s < 180h−1Mpc.

We also test the ‘Gaussian streaming model’ described in Reid
& White (2011); this model has been applied to multiple BOSS
analyses (c.f., Reid et al. 2012; Samushia et al. 2014) and is fully
described in these references. In this study, we consider relatively
large scales (i.e. 40 < s < 180h−1Mpc), which we do not ex-
pect to be affected by any FoG effects, so we do not include any
parameter for this (as have previous analyses). Thus, only one nui-
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Table D1. Measurements of {f(z)σ8(z), α‖, α⊥, α, ε} from the mean correlation functions of the same four sets mock catalogues BAO results are presented
for in Table 2. We use 200 mock catalogues from each set. In the top four rows, we have applied MCMC analysis using the fast model described in Chuang et
al. (2016). In the bottom four rows, we use a ‘Gaussian streaming model’ like that of Reid & White (2011). One can see that the measurements are insensitive
to the systematic treatment.

‘fast model’:
case f(z)σ8(z) α‖ α⊥ α ε

(i) Fid. 0.507± 0.067 0.995± 0.045 1.005± 0.021 1.001± 0.015 −0.004± 0.019
(ii) Sub Star, not weighted 0.511± 0.066 0.992± 0.044 1.008± 0.021 1.002± 0.016 −0.005± 0.018

(iii) Sub Star, weighted 0.510± 0.066 0.992± 0.043 1.006± 0.021 1.001± 0.015 −0.005± 0.019

(iv) Sub 0.506± 0.067 0.995± 0.044 1.006± 0.022 1.002± 0.015 −0.004± 0.019

‘Gaussian streaming model’:
case f(z)σ8(z) α‖ α⊥ α ε

(i) Fid. 0.489± 0.065 0.996± 0.044 1.001± 0.022 0.999± 0.016 −0.002± 0.019
(ii) Sub Star, not weighted 0.499± 0.064 0.992± 0.041 1.005± 0.022 1.000± 0.016 −0.004± 0.017

(iii) Sub Star, weighted 0.492± 0.066 0.992± 0.045 1.003± 0.021 0.999± 0.015 −0.004± 0.020

(iv) Sub 0.488± 0.071 0.994± 0.045 1.004± 0.022 1.000± 0.015 −0.003± 0.020

sance parameter is included in our analysis: b1L = b− 1, the first-
order Lagrangian host halo bias in real space. Further details of the
model, its numerical implementation, and its accuracy can be found
in Reid & White (2011).

The results of the tests are shown in Table D and we find that
they are insensitive to the treatment of stellar density systematics.
Note that since we aim to test the impact from the stellar density
systematics, the most important quantity is the differences between
the four results (rather than any difference from the true value ex-
pected for the cosmology of the mocks). One can observe that the
fluctuations are at a level that is < 0.1σ, and that this is true for
both types of modeling. The cases where the stellar density sys-
tematic is present (corrected for or not), exhibit slight (6 0.1σ),
but coherent shifts in fσ8 (an increase), α|| (a decrease), and ε (a
decrease). Given the small size of the shifts, we do not believe they
are of concern for BOSS DR12 analysis. However, revisiting this
issue for future surveys that will have greater statistical precision is
of clear importance.
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