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Morphology evolution is an important process in naturally occurring biominerals. To investigate the interaction between 

biomolecules and inorganic components in the construction of biominerals, biomimetic hexagonal prism vaterite crystals 

were hydrothermally prepared through a reaction of urea with calcium nitrate tetrahydrate, whilst gelatin was added as a 

structure directing agent. An extraordinary morphology evolution was observed. The time dependent growth was 

investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and 

thermogravimetric analysis. In the early stages, vaterite nanocrystallites, ~5 nm in diameter, underwent aggregation with 

gelatin molecules and precursor molecules into 50 nm sized clusters. Some nanoneedles, consisting of self-orientated 

nanocrystallites embedded within a soft gelatin matrix, were developed on the surface of disordered cores to form 

spherulite particles, with a similar morphology to natural spherulite biominerals. Further growth was affected by the high 

viscosity of gelatin, resulting in ellipsoid particles composed of spherulitically ordered needles. It is proposed that surface 

adsorbed gelatin induces the formation of dipoles in the nanocrystallites and interaction between the dipoles is the driving 

force of the alignment of the nanocrystallites. Further growth might create a relatively strong and mirror-symmetric dipolar 

field, followed by a morphology change from ellipsoidal with a cell-division like splitting, to twin-cauliflower, dumbbell, 

cylindrical and finally to hexagonal prism particles. In this morphology evolution, the alignment of the crystallites changes 

from 1D linear manner (single crystal like) to 3D radial pattern, and finally to mirror symmetric 1D linear manner. This newly 

proposed mechanism sheds light on the microstructural evolution in many biomimetic materials and biominerals. 

Introduction 

It is extraordinary that, in nature, the orientation of the building units 

of biominerals can self-adjust into various wonderful intricate 

morphologies, e.g. nacre,1 abalone2 and echinoderms3 where many 

display single crystal-like properties. These fulfil many functions in 

nature, for instance, as structural support to provide protection to 

vertebrate skeletons and crustaceans.4 In 1965, Hare and Abelson5 

discovered organic components accounted for 2 to 5 dry weight % of 

a nacreous shell. It was assumed the organic content present in this 

brick and mortar type arrangement of aragonite tiles would make 

their structure fragile. Surprisingly Jackson et al.6 found that the work 

of fracture of these natural products was approximately 3000 times 

greater compared to that of pure CaCO3 crystals. The high 

mechanical strength of nacre arose from the protein component 

binding to the outer surfaces of the aragonite building units. The 

adsorption of polymer is strong enough to tightly hold the plates 

together but weak enough to allow individual plates to shift from 

their original position to absorb the energy generated in the event of 

an extreme force being applied.7                       

Generally the formation mechanism, but especially the role of 

biomolecules in the construction of naturally occurring biominerals 

is not well established. To overcome this problem, inorganic crystals 

with similar morphologies are biomimetically synthesised in the 

presence of polymer or surfactants. It is believed that the ability of a 

structure directing agent to selectively adsorb onto a preferred 

surface allows the polymorphic phase, the nucleation, alignment of 

crystallites, and hence morphology to be stringently controlled.8 

Previous biomimetically prepared hierarchical morphologies include 

ZnO twin crystals,9,10 ZnO twin cones11 and calcite microtrumpets.12 

Simulating the structure of naturally occurring biominerals is also 

useful to understand the structure-function relationship. A great 

example is the first successful attempt of replicating nacre using 

CaCO3 by Finnemore et al. Not only did the structure strongly 

resemble the biogenic material, its mechanical and optical properties 

could also be mimicked.13                   

For many decades CaCO3 has been singled out as a vital ingredient 

in nature due to its high abundance in rock, the exoskeleton and 

tissues of marine organisms and in egg shells. The main application 

of CaCO3 is in the construction industry but its high versatility allows 

its usage in other industrial applications including the manufacture 

of paints, plastics and pharmaceuticals.14 Calcium carbonate 

precipitates as one of three anhydrous polymorphs, calcite, vaterite 

or aragonite. Phase diagrams have proven that calcite is the most 

thermodynamically stable and vaterite the least.15 As the more 
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soluble and least dense of the three polymorphs, vaterite is well 

known for transforming into a more stable polymorph upon contact 

with water.16,17 Through dissolution and re-crystallisation, vaterite is 

said to convert to calcite at low temperature and aragonite at high 

temperature. A phase transformation in the opposite direction is also 

possible in some special conditions. For example, Mg substitution in 

calcite may greatly reduce its crystallinity and stability, leading to a 

transformation to aragonite, as we found in our previous study of hot 

spring travertines.18 To obtain a preferred polymorph in laboratory, 

many factors such as pH, temperature and supersaturation have to 

be accurately controlled.17,19        

Due to difficulties in obtaining large, pure, single crystals, the 

symmetry, space group, unit cell dimensions, orientation and site 

symmetry of the CO3 ions in vaterite are controversial and have 

puzzled scientists for over half a century.20,21 The first 

crystallographic structure of vaterite, a pseudo-hexagonal-

orthorhombic structure with dimensions of a = 4.13, b = 7.15, c = 8.48 

Å, space group Pbnm was proposed by Meyer in 1959, based on 

single crystal diffraction data.22 All sites were reported as fully 

occupied which was not consistent with the apparent disorder. A 

second vaterite structural model, and now the most commonly 

accepted structure was proposed by Kamhi in 1963.23 This structure 

with hexagonal symmetry and space group P63/mmc has unit cell 

parameters of a = 4.13, c = 8.49 Å. This structure was proposed to 

have complete occupancy by calcium and 1/3 occupancy by the 

carbonate groups, which accounted for the considerable disorder. 

Kamhi reported that the weak reflections which could not be indexed 

were attributed to a superstructure, rotated 30° about the c-axis of 

Kamhi’s original hexagonal structure, achieving unit cell parameters 

of a = √3a’ = 7.16 Å and c = 2c’ = 16.98 Å.23 Recently, through the use 

of high-resolution synchrotron powder diffraction and aberration 

corrected HRTEM, at least two different crystallographic structures 

of vaterite were found to co-exist within a pseudo-single crystal.24 

The major phase had hexagonal symmetry whilst the minor phase, 

existing as nanodomains within the major matrix remains unknown. 

It has been suggested that this discovery may well explain the 

discrepancies between experimental and theoretical results and 

more importantly could have led to the proposal of low-symmetry 

structures for vaterite where an average of two structures may have 

been reported.24,25 To avoid this, the structure of vaterite should be 

analysed on the scale of a few nanometres.      

One of the most surprising and appealing biomimetic 

morphologies is spherulites, formed via intermediate sheaf and rod-

like structures with a circular cross-section. This structure has been 

widely reported in a range of materials including BaCO3, Bi2S3, LnVO4 

and BiVO4
26-28 as well as naturally occurring zeolite stilbite.29 Their 

formation typically follow a crystal splitting growth mechanism 

where nanoparticles forms a single rod which splits apart at both 

ends to form a sheaf or dumbbell-like structure. Previously, crystals 

have been found to evolve into a spherulite type structure as the 

growth process continued, either, with an increase in reaction time,28 

an increase in structure directing agent concentration27 or a decrease 

in temperature.30 Typically the splitting of crystals is associated with 

very rapid crystal growth but reports in literature have suggested 

that oversaturation of the solution and the inclusion of extra 

molecules into the crystal structure29 were often factors to blame. 

Punin31 stated that the crystal splitting is only possible if the 

oversaturation of a solution exceeds a “critical” value. 

Understandably, it is still an open question, and investigation of 

completely new factors and driving forces for the morphology 

control will be of great interest. 

We report herein a new formation mechanism for polycrystalline 

hexagonal prism shaped vaterite prepared in the presence of gelatin 

as the structure directing agent. A novel multi-step morphology 

evolution process was observed, which is only possible when the 

structure consists of nanocrystallites embedded in a gelatin soft 

matrix. Initially a linear attachment of nanocrystallites resulted in 

spherulitically arranged needles. Polycrystalline ellipsoidal particles 

with high density of the needles underwent a cell-division like 

splitting, forming a twin-cauliflower like morphology. The central 

cylindrical component of the particles grew further by consuming the 

two cauliflower-like heads, resulting in a dumbbell-like shape. Finally, 

cylindrical shaped particles followed by hexagonal prism shaped 

particles appeared. The microstructural studies revealed that the 

patterns formed by the nanocrystallites matched the appearance of 

‘field force lines’ first introduced by Michael Faraday in 1830s. The 

dipolar field induced morphology evolution proposed in the present 

work might be an important implication of what happens in many 

naturally occurring biominerals.     

Results and discussion 

Powder X-ray diffraction (PXRD) patterns of CaCO3 specimens 

prepared with 28 g/L gelatin and 5.71 M urea but different reaction 

times are shown in Fig. 1. All samples are multiphasic. The sample 

after reaction of 3 h (Fig. 1a) contains four crystalline phases, two 

major and two minor. The dominant phases are Kamhi’s hexagonal 

vaterite 23 (JCPDS card No. 24-0030) with the unit cell parameters of 

a = 4.13 and c = 8.49 Å, space group, P63/mmc and rhombohedral 

calcite (JCPDS card No. 47-1743) with the cell parameters of a = 4.99, 

c = 17.06 Å, space group R3̅c. The minor phases are orthorhombic 

aragonite (JCPDS card No. 41-1475) with the unit cell parameters of 

a = 4.96, b = 7.96, c = 5.74 Å, space group Pmcn and a precursor phase 

of monoclinic calcium nitrate urea (JCPDS card No. 44-0719) with the 

unit cell parameters of a = 9.248, b = 12.67, c = 7.688 Å, β = 113.54°, 

space group P21/c. Interestingly, the three polymorphs of CaCO3 

appear with distinguishable morphologies as shown in Fig. S1, ESI†, 

i.e. ellipsoidal hexagonal vaterite, rhombohedral or star-shaped 

rhombohedral  calcite, and spindle-shaped orthorhombic aragonite. 

Their crystal structures were confirmed by high resolution 

transmission electron microscopic (HRTEM) images (Fig. S1 d-f, ESI†).  

PXRD showed that, on increasing the reaction time from 3 h to 6 h, 

no calcium nitrate urea could be detected, confirming this is a 

precursor phase of CaCO3. The morphologies of the rhombohedral 

and star-shaped rhombohedral calcite and spindle-shaped 

orthorhombic aragonite were unchanged in all the samples, 

according to the observations of scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM). On the other hand, the 

morphology evolution of the vaterite particles with increasing 

reaction time is extraordinary (Fig. 2). Low magnification SEM images 

are displayed in Fig. S2, ESI†. In the present work, therefore, we 

focussed on the vaterite phase. 

     Low magnification SEM images of a specimen prepared after 

hydrothermal treatment for 6 h and using a low urea concentration 
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of 2.86 M (for slowing down the crystal growth) found that 3-4 μm 

sized particles consisting of needles arranged in a spherulitic manner 

(Fig. 2a) dominated the early stages of crystal growth. These particles 

further grew and increased their density to form ellipsoid shaped 

particles with an average particle size of 12 μm as shown by an 

example from a 3 h specimen prepared with a high urea 

concentration, ca. 5.71 M (Fig. 2b). It has been proved by SEM that 

these ellipsoid particles indeed consist of high density needles as 

discussed below. 

 

 

Fig. 1 PXRD patterns of specimens prepared using 28 g/L gelatin and 5.71 M urea with 

varying hydrothermal treatment times of, (a) 3 h, (b) 6 h, (c) 23 h, (d) 96 h. Pattern (a) is 

indexed to calcium nitrate urea (N), rhombohedral calcite (C), hexagonal vaterite (V) and 

orthorhombic aragonite (A) phases whilst pattern (d) is indexed to the rhombohedral 

calcite (C) and hexagonal vaterite (V) crystal structures, respectively. 

 

An equatorial notch rapidly developed on the surface of the 

ellipsoidal particles (Fig. 2c). On extending the heating time to 6 h, 

the main morphology changed to crystals with a twin-cauliflower like 

outer surface, while the particle dimension increased to ca. 22 μm, 

as shown by Fig. 2d. By 23 h a cylindrical ‘waist’ section had grown 

out from the central boundary to change the particle morphology 

from “twin-cauliflower” into “dumbbell” (Fig. 2e). During the next 

slower step, the dumbbell ends were partially consumed while the 

length of the cylindrical ‘waist’ greatly increased as shown in Fig. 2f. 

By 96 h, the dumbbell ends were completely consumed resulting in 

cylinder type particles (Fig. 2g). Finally, single crystal-like hexagonal 

prism particles formed (Fig. 2h), as a sign of the end of the 

morphology evolution.  

 

Fig. 2 SEM images of typical vaterite morphologies found after different lengths of 
hydrothermal treatment. (a) A ball of loose needles arranged in a spherulitic manner 
taken from the 6 h specimen specially prepared with a urea concentration of 2.86 M for 
slowing down the growth rate. Other images were from the samples prepared with 5.71 
M urea and different hydrothermal treatment times: (b) and (c) 3 h, (d) 6 h, (e) 23 h, (f), 
(g) and (h) 96 h. 

 

Such a morphology evolution shown would be very unlikely if the 

particles are single crystals. If the particles are polycrystalline 

containing embedded nanocrystallites, the interaction between 

these nanocrystallites must play an important role in the morphology 

change. Another interesting phenomenon is that the vaterite phase 

dominates in the later samples. Control experiments of washing the 

final precipitate with ethanol instead of H2O confirmed the calcite 

phase is not a result of a phase transformation of vaterite during the 

washing process. Since typically unstable vaterite did not undergo a 

phase transformation to calcite, it can be assumed that gelatin has a 

stabilising effect on vaterite. This effect was confirmed by 

synthesising 23 h specimens with lower gelatin concentrations, 

namely 7 g/L and 0 g/L. PXRD patterns shown in Fig. S3, ESI†, 

confirmed that the specimen prepared with 28 g/L gelatin very 
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slightly favoured calcite over vaterite, whereas when the gelatin 

concentration was significantly lowered to 7 g/L calcite very strongly 

dominated over vaterite. When no gelatin was added to the system 

calcite was the main polymorph with only a small quantity of vaterite 

and aragonite phases. A similar effect was observed by Guo et al. 

previously when different volume ratios of dimethylformamide and 

deionised water were applied.32   

To confirm that gelatin forms composites with CaCO3, 

thermogravimetric analysis (TGA) experiments were performed as 

shown in Fig. S4, ESI†. The 3 h, 23 h and 96 h specimens prepared 

with 28 g/L gelatin and a 23 h specimen prepared without gelatin all 

showed a dramatic weight loss of ~40 wt% corresponding to the 

decomposition of CaCO3 into CaO and CO2. Comparison between 

samples prepared with and without gelatin concluded approximately 

6.1 to 9.5 wt% gelatin in the particles in the former depending on the 

length of hydrothermal treatment.  

   Higher magnification SEM, TEM, HRTEM images and SAED patterns 

were used to analyse the size, morphology and crystalline structure 

of the various growth stages in much greater detail. In this system 

CaCO3 precipitated with a rapid growth rate as seen from the large 
well developed ellipsoid shaped crystals in Fig. 2b. To establish how 

this ellipsoidal morphology developed, synthesis conditions such as 

reaction time and urea concentration were reduced in order to slow 

down the reaction rate. No precipitate could be collected with 

reaction times of less than 2 h so experiments involving a reduction 

of the urea concentration were carried out. PXRD patterns of 6 h 

specimens prepared using 2.86 M and 5.71 M urea concentrations 

are shown in Fig. S5. Low urea concentrations were found to favour 

calcite over vaterite whilst higher urea concentrations favour the 

latter. By keeping the system slightly acidic through reducing the 

urea concentration to 2.86 M greatly retarded the growth of vaterite 

making it ideal conditions to study the very early stage crystallites, 

whereas higher urea concentrations (5.71 M) were more suitable to 

study the later stages of vaterite crystal growth.  

The earliest morphology as detected by TEM imaging and SAED 

patterns was 5 nm sized spherical crystallites found in the 6 h (2.86 

M urea) specimen (Fig. 3a). These nanocrystallites did not undergo 

further crystal growth, but aggregated randomly into larger (~50 nm 

in diameter) clusters with gelatin molecules as shown in Fig. 3b. The 

d-spacings of the marked crystalline fringes in Fig. 3b were measured 

as A: 3.35 Å and B: 3.46 Å, matching the (101) and (100) planes of 

vaterite. These d-spacings can also be indexed to the (212̅) and (202̅) 

planes of monoclinic calcium nitrate urea although it is expected that 

this phase would be unstable under the electron beam so vaterite is 

the more likely phase. The 50 nm sized clusters further aggregated 

into even larger particles, 300 to 400 nm in diameter (Fig. 3c).   

Such an aggregation process was commonly observed as the first 

step in the so-called reversed crystal growth route.33,34 However, 

surface re-crystallisation of the aggregates into a complete 

monocrystalline polyhedral shell did not take place in the vaterite 

particles in the present work. Instead, the clusters of nanoparticles 

underwent self-orientated attachment of small particles into loosely 

packed needles ordered in a spherulite manner as shown in Fig. 3d. 

Spherulitic growth has often been associated with a high viscosity or 

the presence of impurities.35 In our case the high concentration (28 

g/L) of gelatin in the system would have played a major role in the 

formation of these balls of needles, and this microstructure was not 

observed when the synthesis involved no gelatin. One possible 

reason is a dipole-dipole interaction, as Zhang et al.36 demonstrated 

the dipole-induced self-assembly of nanocubes into one-dimensional 

chains.   

In addition to the loose packing of the needles, each needle 

consists of many vaterite nanocrystallites embedded in disordered 

precursor/gelatin molecules as shown by the lower inset of Fig. 3e. 

One would have expected that these nanocrystallites are either 

randomly oriented or self-orientated along the longitudinal axes of 

individual needles. However, the most extraordinary structural 

feature is that SAED patterns attained from a large number of 

needles in a spherulite particle show a single crystal-like property as 

shown in the inset of Fig. 3d, indicating all the nanocrystallites in the 

particle, even from different needles are perfectly orientated 

although they are not directly connected to each other. D-spacings 

corresponding to the marked spots in the SAED pattern in Fig. 3d 

were measured as A: 3.49 Å and B: 3.54 Å and could be indexed to 

the (100) and (010) planes of vaterite. Further SAED evidence of this 

unusual single crystal-like spherulite phenomenon is shown in Fig. 

S6, ESI†. The SAED patterns taken from different locations within the 

same spherulite particle are almost identical with the same 

orientation. 

The HRTEM image in Fig. 3e with a view direction of [001] confirms 

that needles in the spherulite particles consist of domains of small 

nanocrystallites with all the domains perfectly orientated. D-spacings 

measured from the marked spots are A: 3.54 Å and B: 3.52 Å, and can 

be indexed to the (100) and (010) planes of vaterite. The 

corresponding fast Fourier transform (FFT) pattern displayed in the 

upper inset confirms the well-ordered single crystal-like 

arrangement of nanocrystallites. Such a mosaic structure with all 

nanocrystallites embedded in a soft gelatin matrix is similar to the 

biomimetic fluorapatite–gelatine nanocomposites synthesized by 

Tlatlik, et al., in which the crystallographic c-axis of the apatite 

nanocrystals are oriented parallel to the longitudinal direction of the 

fibrils.37 When a ball of needles particle was crushed, loosely packed 

needles were seen to be radiating from a central disordered core of 

ca. 2 m in diameter (Fig. 3f). 

Although surfactant enhanced self-orientation of nanocrystallites 

is possible as observed previously,38 such a process becomes very 

difficult in the balls of needles in this work since the connection 

between the nanocrystallites in neighbouring needles is poor. The 

nanocrystallites can even be disconnected inside a single needle. For 

the same reason, classical Ostwald ripening process cannot easily 

take place between loosely arranged needles. In other words, the 

interaction between the nanocrystallites, forcing them to rotate in a 

soft matrix of precursor/gelatin molecules to achieve self-

orientation, must be three dimensional and can work in between 

nanoparticles with an unusual separation.  

Hexagonal vaterite has a dipole moment along the c-axis, i.e. the 

(001) surface is terminated with positively charged Ca2+ cations 

whilst the (001̅) surface is terminated with negatively charged CO3
2– 

anions. On the other hand, the isoelectric point of gelatin type B is in 

a range of 4.7 to 5.2.39 At the early stages of crystal growth, e.g. 3 h 

with 28 g/L gelatin, 5.71M urea, the pH value of the synthesis system 

was detected to be 5.8 and the corresponding charge of gelatin 

molecules was slightly negative. The gelatin molecules can stabilize 

the (001) surface of the nanocrystallites where Ca2+ is the terminal  
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Fig. 3 SEM/TEM images of the vaterite phase from the 6 h specimen (28 g/L gelatin, 2.86 M urea). (a) TEM image of an aggregate of 5 nm sized crystallites. (b) HRTEM image of a 
selected area in (a) showing vaterite nanocrystallites embedded in disordered precursor/gelatin molecules. The crystal fringes marked A and B can be indexed to the (101) and (100) 
planes of vaterite, respectively. (c) TEM image of clusters of weakly crystalline nanoparticles (50 nm in diameter) as indicated by the arrows. (d) TEM image of a ball of needles 
particle produced by self-orientated attachment of nanoparticles. The inset is a corresponding SAED pattern recorded from a large area covering many needles. (e) HRTEM image 
taken at the edge of a spherulite particle showing a single crystalline-like domain structure with marked fringes indexed to A (100) and B (010) planes of vaterite. The upper inset is 
the corresponding FFT pattern. The lower inset is a low magnification TEM image of individual needles found at the edge of a spherulite particle. (f) SEM image of a broken ball of 
needles, showing the core area contains no needle morphology. 

 

 

layer, and enhance the formation of a dipolar field in each 

nanocrystallite. In a bulk crystal, such a dipolar field is extremely 

weak. However, in a nanocrystallite, the relative strength of the 

dipolar field could be significant. These nanocrystallites embedded in 

a soft precursor/gelatin matrix have some degree of freedom to 

rotate and shift locally. These vaterite nanocrystallites can be 

regarded as nano-dipoles. The interactions between these dipoles 

resulted in a linear arrangement of nanocrystallites to form 

nanoneedles. However, such an alignment was not observed, 

probably because all the nanocrystallites in the spherulite particles 

soon re-aligned into a uniform orientation.      

The balls of needles underwent further aggregation to form larger 

ellipsoid shaped crystals with a relatively smooth surface and an 

average particle size of 12 μm (Fig. 2b). The ellipsoid particles consist 

of a significantly denser spherulitic arrangement of needles 

compared to the previous stage as demonstrated by a SEM image of 

a broken ellipsoid crystal (Fig. 4a). A higher magnification SEM image 

in Fig. 4b found the 1 μm core region to be notably empty, due to 

losing the disordered and potentially amorphous CaCO3 core.  

High resolution SEM imaging of the surface of an ellipsoid crystal 

found the tips of needles with a diameter of 40 nm protrude from 

the surface (Fig. 4c). Like the balls of loose needles, the ellipsoid 

particles retain the single crystalline-like arrangement of 

nanocrystallites as proven by HRTEM and SAED (Fig. S7, ESI†). A 

HRTEM image and corresponding FFT pattern of needles in an 

ellipsoid particle is shown in Fig. 4d. The domain structure of an 

individual needle can be seen with perfectly orientated crystal 

fringes measuring A: 3.47 Å and B: 8.58 Å which can be indexed to 

the (010) and (001) planes of vaterite. The lightly contrasted areas 

show the high porosity of the microsized ellipsoids caused by two 

main aspects, the inclusion of gelatin molecules and the voids 

typically produced with spherulitic growth. In addition, HRTEM 

images and SAED patterns (Fig. S7, ESI†) established the longest 

dimension of the ellipsoid particles is along the [001] zone axis.  

Rapidly after the formation of ellipsoid shaped particles, an 

equatorial notch developed on their surface as shown in Fig. 2c. Yao 

et al.40 prepared similar twinned spherical vaterite crystals under the 

control of poly(L-lysine) and suggested they formed from the 

aggregation of nanoparticles into a nuclear plate followed by the 

assembly of nanoparticles onto both sides of the plate. Our 

observation, however, indicates that the starting point of this 

equatorial notch must be at the centre of the ellipsoid particles, 

where re-crystallisation of the disordered core into hexagonal 

vaterite took place. As associated with this change the crystallinity 

and particle size in the core region would increase. Due to the highly 

compact arrangement of needles in the ellipsoidal particles it can be 
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Fig. 4 SEM/TEM images of the vaterite phase from the 3 h specimen (28 g/L gelatin, 5.71 M urea). (a) Low magnification SEM image of a broken ellipsoid particle similar to that in 

Fig. 2b where the inner structure consists of densely packed needles. (b) An enlarged SEM image of the 1 μm sized core region of the particle in (a) showing the core to be empty. 

(c) High magnification SEM image of the surface of an ellipsoid particle where needles, ca. ~40 nm in diameter were found to radiate from the centre to the surface. (d) HRTEM 

image of a needle in an ellipsoidal particle (FFT pattern is shown inset) showing a domain structure with perfectly orientated fringes indexed to vaterite. 

 

 

deduced that only a small build up in pressure associated with the 

growth of the central disc would be required to instigate splitting. 

On extending the heating time to 6 h (5.71 M urea, 28 g/L gelatin), 

the embryonic-type particles changed their morphology into those 

with a very rough outer surface as shown in Fig. 2d accompanied by 

a significant increase in particle size (20-25 μm). Fortunately, in our 

system the two parts of the cauliflower-like twinned structures were 

only weakly attached to each other through the central boundary 

hence they were easily broken as shown in Fig. 5a. When the twin 

cauliflower structures were broken their structure resembled a 

flower where large ‘petals’ projected from a disc in the core. The 

petals do not appear to be disturbed indicating only the small core 

section is involved in the bonding between alike crystals. Twin 

cauliflower particles containing a disc with a smaller dimension are 

most likely that at an earlier growth stage (Fig. S8, ESI†). To gain a 

greater insight into the structure and orientation of the disc a 200-

300 nm thick slice of a twin cauliflower particle was prepared by 

focussed ion beam (FIB) (Fig. 5b). TEM investigations of the disc in 

the core (marked by a box in Fig. 5b) found it consists of two thin 

plates (marked by two short arrows in Fig. 5c) with a uniform 

diameter and thickness of 5 µm and 200 nm, respectively. A pale 

contrasted region exists between the plates.  

This core particle is remarkably similar to ZnO/gelatin twinned 

platelets found by Bauermann et al.,39 Greer et al.10 and Liu et al.41 

where it was suggested that the 2-3 nm separation between the 

layers was a very thin layer of gelatin molecules. The key step in the 

formation mechanism was proposed to be surface re-crystallisation 

of Zn5(NO3)2(OH)8·2H2O/gelatin composite sheets into ZnO. A 

negatively charged gelatin layer, sandwiched between two ZnO 

crystalline sheets, induced negatively charged outer surfaces of this 

double-layer particle, which served as a core offering a pair of strong 

mirror symmetric central dipolar fields to guide the formation of twin 

particles.10,41 

The disc in the centre of an ellipsoidal particle as shown in Fig. 5a 

may also be a base of central dipolar field. A similar CaCO3 ellipsoidal 

morphology and particle splitting to Fig. 2c has also been observed 

by Imai et al. They believed the origin of the particle splitting was at 

its centre, although dipolar field interactions was not mentioned.42 
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Fig. 5 Electron microscopic images and diffraction patterns recorded from twin-cauliflower particles. (a) SEM image of a twin cauliflower-like particle broken in half to reveal a large 

disc-like core section. (b) TEM image of a thin section of a twin cauliflower particle prepared by FIB. The core of the particle is marked by a box. (c) Higher magnification TEM image 

of the core region of the particle in (b) showing a double plate structure as marked by two arrows. (d) ADF STEM image recorded from a thin cross section of a twin-cauliflower 

particle prepared by FIB. (e) A higher magnification ADF STEM image of the core particle in (d). (f) TEM image of a thin section of a twin-cauliflower particle prepared by FIB. The 

SAED patterns, assigned A and B were recorded from the marked regions, respectively. Comparison of SAED patterns shows a 31° rotation in the c-axis. (g) HRTEM image recorded 

from a thin section of a twin-cauliflower particle demonstrating a single crystal-like domain structure. The crystalline fringes marked A and B can be indexed to the (001) and (100) 

planes of hexagonal vaterite. 

 

 

 

On investigation of a second thin section of a twin-cauliflower 

particle by annular dark field scanning transmission electron 

microscopy (ADF STEM), the 3D radial arrangement of needles 

surrounding the core particle became apparent (Fig. 5d). A higher 

magnification ADF STEM image (Fig. 5e) of the core particle confirms 

that it is constructed from densely packed nanoparticles whilst many 

pores can be observed in the surrounding needles. SAED patterns 

marked A and B were recorded from two different locations on the 

same twin-cauliflower thin section (Fig. 5f), with the corresponding 

regions marked A and B, respectively. Although both SAED patterns 

show the same [010] view direction of hexagonal vaterite, it was 

noted that the c-axis had rotated by 31° indicating the 

nanocrystallites are radially aligned from the core. Since all 

nanocrystallites in the particles are not parallel to each other, the 
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diffraction spots are diffused, where the degree of diffusion is 

dependent on the size of the area covered by the electron beam. The 

ADF STEM image of a cross section of a twin-cauliflower particle in 

Fig. 5e shows a central disc and radial contrast patterns on both 

sides, which is similar to the famous Faraday’s iron filing patterns in 

the 19th century, when he sprinkled iron filings on a sheet of paper 

beneath which there was a magnet. The latter revealed a theory on 

magnetic lines of force, while the former shows how vaterite 

nanocrystallites align along possible force lines of a dipolar field 

created from the central disc. 

The HRTEM image of a twin-cauliflower ‘petal’ in Fig. 5g shows a 

domain structure of nanocrystallites with an average size of 7 nm 

where well orientated lattice fringes were measured as A: 8.49 Å and 

B: 3.52 Å and could be indexed to the (001) and (100) planes of 

vaterite. A few years ago Matsumoto et al.43 prepared ZnO 

microspheres in the presence of polyethylene glycol with a 

microstructure consisting of wedge nanocrystallites radially aligned 

along the c-axis. This was thought to be the first time polycrystalline 

particles exposing only one specific crystal plane, in this case only the 

c(+)-plane, i.e. the positively terminated face of the (001) plane, was 

exhibited. It was suggested that particles with this type of structure 

should have unique properties such as enhanced photocatalytic 

abilities.   

After hydrothermal treatment for 23 h the main morphology of the 

vaterite crystals had changed to a dumbbell type structure (Fig. 2e). 

Initially it was thought the cylindrical ‘waist’ of the dumbbells grew 

out from the central boundary of the twin cauliflower-like structures, 

but after careful measurements, it was found that the longitudinal 

dimension of the particles had in fact decreased from 20-25 μm to 

18-22 μm, and the ‘cauliflower’ heads reduced as well.  Therefore, 

the dumbbell structures must have developed from the 

reorganisation of the nanocrystallites within the needles into a more 

parallel, compact layout. In other words, the growth of the cylindrical 

‘waist’ is based on the cost of ‘cauliflower’ heads. The SEM image in 

the inset of Fig. 6a shows the needles making up the head of the 

dumbbells remained unchanged during the morphology change from 

twin cauliflower-like to dumbbell shaped particles. The high 

magnification SEM image in Fig. 6a shows the needles has an 

irregular cross section with a dimension of 100-150 nm. The diameter 

of the needles increased significantly from 40 nm (Fig. 4c) in the 

ellipsoid particles. The high magnification SEM image of the ‘waist’ 

of a dumbbell particle in Fig. 6b shows it consists of needles aligned 

in a parallel manner. If several needles have the same orientation 

they could fuse together into thicker needles such as those marked 

by the arrows in Fig. 6a, and even larger blocks as indicated in Fig. 

6b. Again, these are likely large areas with higher crystallinity which 

formed after the re-crystallisation of needles with the same 

orientation. The merging of several single crystal-like areas created a 

much smoother outer surface as shown in Fig. 2f. At this stage it was 

noticed that the majority of needles had reorganised into a parallel 

arrangement thus the length of the ‘waist’ section increased.  

 When all needles had re-orientated from radial into a parallel 

manner, the particles had a cylindrical morphology similar to that 

shown in Fig. 2g. TEM imaging of a cylindrical type particle (inset of 

Fig. 6c) found it is built from nanorods with a diameter of 5 nm and 

a length of 30−40 nm. In general, the nanorods appear to be well 

aligned in a parallel manner although some distortion in this particle 

would have arose from the fracturing of the crystal when 

intentionally crushed. HRTEM (Fig. 6d) established that the rods are 

partially orientated in some areas whilst other areas consisted of 

large single crystal-like domains. Generally large single crystal-like 

areas were located nearer the surface region of the cylindrical 

particles whereas partially orientated areas tended to be located 

towards the centre of the crystals. This finding is similar to that 

discovered by Chen et al.34 in zeolite analcime where crystalline 

surface ‘islands’ could self-adjust their orientation before fusing 

together to form a thin single crystalline icositetrahedral shell 

comprising 24 identical {211} facets whilst the core remained 

polycrystalline. 

The final hexagonal prism morphology (Fig. 2h) formed at a late 

stage (96 h) after surface re-crystallisation occurred on a larger scale. 

This step is thought to be similar to the two step mechanism initially 

found by Zhan et al.44 in CaCO3 and later in ZnO by Jitianu and Goia,45 

where polycrystalline cylinders were rapidly yielded from the 

aggregation of nanoparticles. This step was too fast to allow a more 

complex morphology to develop so was followed by a very slow 

second stage where the nanoparticles were able to rearrange into 

hexagonal prisms. Performing HRTEM on several nanorods located 

near the surface of a hexagonal prism particle found a perfectly 

orientated domain structure confirming all nanocrystallites within 

the rods had the same orientation plus all neighbouring nanorods 

were perfectly orientated with each other (Fig. 6e). The marked 

lattice fringes in Fig. 6e were measured as A: 2.72 Å and B: 3.54 Å 

with an interplane angle of 67°, and can be indexed to the (102) and 

(010) planes of vaterite. Although the nanorods are perfectly 

orientated with each other some defects exist in the boundary 

between neighbouring needles.  

SAED was performed on hexagonal prism vaterite particles to 

determine their growth direction. The single crystal-like SAED 

pattern shown in the inset of Fig. 6f was recorded from the area 

marked by a square on a hexagonal vaterite particle with a smooth 

surface. However, the SAED pattern indicates co-existence of a 

superstructure and stacking faults.  D-spacings calculated from the 

marked spots were measured as A: 4.07 Å and B: 2.01 Å, which could 

be indexed to the (002) and (110) planes of the basic hexagonal 

vaterite with a = 4.02 and c = 8.14 Å. In between spots A and B, there 

are two rows of weak spots. These spots can be indexed to a 

superstructure, √3 X √3 X 2 derived from the basic unit cell, which is 

similar to that reported by Kamhi in 1963.23 Consequently, the spots 

A and B will be indexed to the superunit cell as (004) and (300). All 

the weak spots can be indexed accordingly. All diffraction spots along 

the [001] direction were diffuse indicating the presence of many 

defects along the c-axis. The corresponding HRTEM image shown in 

Fig. S9, ESI† demonstrates a large number of layered defects along 

the [001] direction. The SAED pattern combined with HRTEM images 

also established that the c-axis is parallel to the long axis of the 

hexagonal prism. Similar stacking faults along the [001] zone axis was 

observed in vaterite tablets of freshwater lacklustre pearls 46 and 

Herdmani momus spicules.24 In the latter example HRTEM images 

and diffraction patterns showing that the stacking faults were found 

to be in good agreement with the Kamhi vaterite structure where 

diffuse scattering perpendicular to the c-axis is well known.23 Qiao 

and Feng reported that these stacking faults may increase the 

stability of vaterite.46 
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Fig. 6 Electron microscopic images recorded from a dumbbell, a cylindrical and a hexagonal prism particle. (a) HR-SEM image of the needles making up the head of the dumbbell-like 

structure revealing the needles have an irregular cross section with a diameter of approximately 100-150 nm. The arrows mark regions where several needles have re-crystallised 

together. A lower magnification SEM image is shown in the inset. (b) SEM image of the ‘waist’ section of a dumbbell showing well aligned needles. The arrows mark possible large 

single crystal areas. (c) TEM image of nanorods aligned in parallel recorded from the area marked by a circle in the fractured cylindrical particle shown in the inset. (d) HRTEM image 

of the rods in (c). The lattice fringes are partially orientated in some areas whilst other regions contain large single crystal-like domains. (e) HRTEM image of nanorods located at the 

edge of a hexagonal prism particle. The marked d-spacings measured from the single crystal-like fringes are A: 2.72 Å and B: 3.54 Å. (f) TEM image of a hexagonal prism particle. The 

inset is the corresponding single crystal-like SAED pattern recorded from the area located within the square. The marked d-spacings measured from the spots are A: 4.07 Å and B: 

2.01 Å. Some weak diffraction spots indicate a √3 X √3 X 2 superstructure. 

 

 

According to the microstructural studies, the reorganisation of 

needles into a parallel alignment began at the core of the twin 

cauliflower particles where the double nanoplate structure resides. 

The reorganisation of needles can be explained using a dipole field 

directed mechanism where polycrystalline structures are composed 

of nanocrystallites embedded in a gelatin matrix; therefore the 

nanocrystallites are able to rotate when directed by dipole field lines. 

Dipole field directed mechanisms have previously been reported by 

theoretical calculations in BaTiO3
47 and experimentally in 

fluorapatite48-50 and ZnO10 systems where gelatin was added as the 

structure directing agent. In both cases the addition/reorganisation 

of needles/plates was along the [001] growth direction due to the 

dipole moment in fluorapatite and ZnO along the c-axis. Additionally, 

intrinsic dipole field controlled mechanisms have been proposed in 

all three anhydrous polymorphs of CaCO3.51-53  

Until now only the reverse rod-to-sphere formation mechanism 

has been reported, where Kniep and co-workers48,49,54 imaged the 

location of intrinsic electric dipole fields using electron holography 

and used the MAFIA program to determine their intensities. Their 

proposed model demonstrated how dipole field force lines could 

have directed the growth around the polar hexagonal 

fluoroapatite/gelatin rods to form a dumbbell then an embryonic 

type morphology and finally to a spherulite-type crystal. Their model 

was used to explain the alignment and branching of single crystalline 

fibrils from a hexagonal seed through the bending of fibrils rather 

than rotation of nanocrystallites within the needles which occurs in 

our reverse spherulite to hexagonal prism route. Although Kniep and 

co-workers55 claimed the dipolar property of their fluoroapatite-

gelatin system stems from the triple helix in gelatin lining up in 

parallel, analysis of our vaterite-gelatin structures suggests the 

dipolar property likely stems from the dipole moment of the 

inorganic vaterite component and not the gelatin molecules.  

 

Formation mechanism 

Based on our extensive analysis of specimens at various growth 

stages we are now able to propose a mechanism for the morphology 

evolution of biomimetically prepared hexagonal prism vaterite 

crystals. The dipolar property of vaterite is proposed to be the driving 

force for the alignment of nanocrystallites which is the basis for the 

morphological evolution from single crystal-like spherulite-type  
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Fig. 7 Schematic drawing representing the formation mechanism and morphology evolution of hexagonal prism vaterite mesocrystals. The arrows represent the c-direction of the 

nanocrystallites which determine the direction of the dipolar fields. Yellow coloured squares symbolise the hexagonal vaterite phase of the nanocrystallites whilst red arc lines in (e) 

and (g) represent dipolar fields force lines. 

 

 

particles to hexagonal prism crystals as demonstrated by a proposed 

mechanism in Fig. 7.  

At beginning, a crystalline phase of calcium nitrate urea, 

Ca(NO3)2·4[CO(NH2)2], forms, which is quickly decomposed via the 

hydrolysis of urea. The synthesis of CaCO3 includes the following two 

overall reactions:  

 

      (NH2)2CO + 2H2O → 2NH4
+ + CO3

2-
     

 

      Ca2+ + CO3
2- → CaCO3  

 

      CaCO3 nanocrystallites with a diameter of approximately 5 nm are 

developed. Gelatin molecules coat the surface of the nanoparticles, 

suppressing any further growth (Fig. 7a). These CaCO3/gelatin 

composite nanoparticles aggregate to form weakly crystalline 

spherical clusters (Fig. 7b), followed by self-attachment into loosely 

packed needles ordered in a spherulitic manner. To understand the 

formation of the needles, we assume that all the nanocrystallites 

may line up with their [001] direction parallel to the longitudinal axis 

of the needles, governed by the interaction between their dipolar 

fields. However, we did not observe this type of alignment. Instead, 

we revealed that all the nanocrystallites in a spherulite particle are 

parallel to each other (Fig. 7c). The vaterite nanocrystallites, 

embedded in an amorphous precursor/gelatin matrix, change their 

crystal orientations from randomly orientated in spherical clusters to 

radially arranged with a needle appearance in spherulite particles, 

and then to a perfect parallel manner, driven by dipolar fields created 

in these nanocrystallites. In other words, all the vaterite 

nanocrystallites can be regarded as nanoscale dipoles. The 

interaction between these dipoles is strong enough to enable the 

nanocrystallites to rotate and shift locally within a gelatin soft matrix 

in the needles until they are perfectly orientated.     

The spherulite particles undergo further aggregation of composite 

into larger ellipsoid shaped particles composed of a much denser 

array of needles (Fig. 7d). The uniform crystal orientation is 

maintained and the [001] crystal direction is along the long axis of 

the ellipsoid particles.                 
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Shortly after, an equatorial notch develops on the surface of the 

ellipsoid particles (Fig. 7e). These embryonic-like particles mark the 

stage, at which the disordered nanocrystallites in the core undergo 

aggregation and surface crystallisation into a hexagonal vaterite 

double-plate disc in a similar process to the early stage growth of ZnO 

twin mesocrystals.10,41 As the double-plate disc grows in size, lattice 

tension builds up in the central area of the ellipsoid particles, which 

instigate the cell-division like splitting. It is believed that the double-

plate core detected in the present work has the same property of the 

ZnO double-plate core, i.e. negatively charged gelatin layer in the 

centre would attract the Ca2+ terminal planes in the two plates and 

leave CO3
2- terminal layers on both the outer surfaces, leading to the 

formation of a mirror symmetric dipolar field. 

Significantly larger twinned cauliflower-like particles (Fig. 7f) were 

then generated. The nanocrystallites about 7 nm in size within the 

twin cauliflower-like particles are re-arranged further into a radial 

manner. The change from a smooth surface to a rough surface is 

believed to be attributed to the re-arrangement of the crystal 

orientations of the nanocrystallites. The reason for this re-

arrangement is that, as the dipolar field of this growing double-plate 

disc becomes much stronger than the dipolar field of individual 

nanocrystallites, the orientations of all the nanocrystallites will align 

along the force lines of this central dipolar field, leading to a 3D radial 

pattern (Fig. 7f).  

In a much slower step, intrinsic dipole field force lines originating 

from the dipole moment of vaterite guide the re-organisation of 

needles in the twin cauliflower particles into dumbbell structures 

(Fig. 7g). This process begins at the core of the cauliflower-type 

structure when nanocrystallites located near the double-plate disc 

undergo a rotation so that their orientation match that of the 

double-plate disc as shown by the enlarged schematic diagram of the 

core region in Fig. 7g. Consequently, the nanocrystallites in the 

central ‘pedicle’ of the twin cauliflower particles line up to form 

nanorods, which are parallel to each other with their long axes 

almost parallel to the longitudinal axis of the twin cauliflower 

particles.  

When all the nanocrystallites have re-orientated to form parallel 

nanorods, both heads of the twin cauliflower particles disappear, 

leading to a cylindrical morphology (Fig. 7h). Surface re-

crystallisation then takes place so nanorods with the same 

orientation can fuse together to create large single crystal-like areas. 

When these areas expand to cover the whole particle surface, the 

final morphology of vaterite is a sharp faceted hexagonal prism (Fig. 

7i). The higher crystallinity at the surface compared to the core 

region in these prisms has been proven by hydrothermally treating 

perfect hexagonal prism particles in the 96 h specimen in acidic 

conditions for 3 h (Fig. S10, ESI†). This hollows out the core region of 

the hexagonal prisms, which is less ordered in comparison with the 

surface. It can be expected that, in further growth, re-crystallisation 

will extend from the surface to the core as we often see in reversed 

crystal growth.33,34 

 

Further evidence of dipolar character 

According to the proposed mechanism in Fig. 7, the dipolar field is 

believed to be the key driving force for the extraordinary morphology 

evolution of vaterite. The change of orientations of nanocrystallites 

observed by SAED and HRTEM presented above strongly indicate the 

existence of the dipoles in vaterite nanocrystallites and their 

interactions. However, so far we are unable to detect these dipoles 

directly through the use of electron holography. More experiments 

have been arranged to further support this hypothesis.  

One way to control the morphology and, in turn reveal the dipolar 

property of vaterite is to add a salt during the synthesis. This will 

change the ionic strength of the solution and thus, try to screen the 

long-range dipolar field by interacting with the polar facets of 

vaterite. It has previously been demonstrated that the polar faces of 

ZnO can be addressed separately by anions and cations via specific 

interactions with the zinc and oxygen terminated facets.56 In the 

present work it is expected that the morphology evolution shown in 

Fig. 2 would be stopped by the addition of a salt. SEM images of 

vaterite particles prepared by hydrothermal treatment for 96 h in KCl 

solution with concentrations of 0.14 M and 0.57 M, respectively are 

shown in Fig. S11, ESI†. At the low KCl concentration, twin 

cauliflower structures and dumbbell vaterite particles (Fig. S11a, 

ESI†) dominated whereas at the high KCl concentration, the growth 

never progressed beyond twin cauliflower particles (Fig. S11b, ESI†). 

No hexagonal prism particles were generated using either 

concentrations of KCl indicating a suppression of the growth along 

the [001] direction of vaterite. Reduction of growth along the polar 

planes of vaterite is thought to arise from a strong interaction of the 

K+ ions on the O-terminated (00 1̅ ) facet and Cl- ions on the Ca-

terminated (001) facet. Previously, when KCl and NaCl was added to 

ZnO twin mesocrystals the building units were changed from 

nanorods to nanoplates as the dipolar force was shielded.41 On the 

other hand, the formation of the twin cauliflower morphology shown 

in Fig. S11a, ESI† indicates that the influence of KCl to the central 

double-layer disc particles is limited.  

To understand how the addition of KCl as an electrolyte can affect 

the dipole field of vaterite, it is important to consider Debye length. 

Debye length is the measure of a charge carrier's net electrostatic 

effect in solution, and how far those electrostatic effects persist 

before they are reduced in strength. For a monovalent electrolyte 

the Debye length, k-1 can be expressed as 

 

k−1 =  √
εrε0RT

2F2C0
 

where r is dielectric constant, 0 is the permittivity of free space, R 

is the gas constant, T is the absolute temperature in kelvin, F is the 

Faraday constant and C0 is the molar concentration of the 

electrolyte. Using this equation the Debye screening length for a 0.14 

M and a 0.57 M KCl aqueous solution at 100 °C is calculated as 0.75 

nm and 0.37 nm, respectively. This implies that with a separation 

above these values, the two charges can no longer interact by the 

Coulomb interactions and therefore the external field can be 

screened out. It is therefore reasonable to expect that the dipolar 

field driven morphology evolution cannot continue. 
Further confirmation of the electric polarity of the vaterite 

structures and the accuracy of our formation model was accessed by 
surface staining experiments using charged dye. This staining 
method has previously successfully illustrated the charges on the 
surface of dipolar apple-like ZnO57 and concave-convex calcite 
mesocrystals51 and alongside electron microscopic images proved 
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their formation was driven by a dipole field. The addition of cationic 
safranin T dye (0.5 g/L) to several vaterite morphologies including 
ellipsoid, embryonic, twin-cauliflower, dumbbell and hexagonal 
prisms selectively stained the O-terminated facets red. If the driving 
force of the morphology evolution is related to dipole field 
interactions then the terminal surface of the different morphologies 
would be different as highlighted by the mechanism in Fig. 7. For 
example, the ellipsoid particles would have a positively charged 
surface at one end and a negatively charged surface at the other, 
because all the nanocrystallites together with synchronised dipoles 
in the particles have a uniform orientation. Optical microscopic 
observations show half the early growth stage ellipsoid particles (Fig. 
8a) to be stained red (marked by black circles) whilst the remaining 
surface of the particles was unstained (marked by white circles). This 
suggests half the surface of the ellipsoid particles is O rich, whilst the 
other half is Ca rich. The particle marked by the arrow shows a light 
contrast at the lower half area, implying a profile view direction.  

       
 

 
Fig. 8 Optical microscopic images of vaterite mesocrystals stained with cationic safranin 
T dye. Growth stages include (a) ellipsoid, (b) embryonic, (c) twin-cauliflower, (d) 
dumbbell, and (e) hexagonal prism particles. (f) Dumbbell particles calcined at 600 °C for 
4 h prior to the addition of safranin T dye. The black ring outside all mesocrystals is not 
dye molecules but fringes formed from the interference between light rays reflected 
from the surface of the mesocrystal. 

 
 
Safranin T dye molecules were found to attach to all surfaces of the 

embryonic (Fig. 8b), and twin-cauliflower particles (Fig. 8c), showing 
that their surfaces are all O-terminated. This is consistent with the 
HRTEM and SAED results where it was proven all nanocrystallites are 

radially aligned along the c-axis. Optical microscopic images of 
dumbbell (Fig. 8d) and hexagonal prism particles (Fig. 8e) showed 
that the cauliflower-type heads of the dumbbells and {001} facets of 
the hexagonal prisms were stained red whilst the cylindrical ‘waist’ 
of the dumbbell and rectangular side faces of the hexagonal prism 
remained unstained. The structure of the dumbbell heads did not 
change during the morphology change from twin cauliflower 
particles, therefore, their surface remained O-terminated. The 
stained {001} facets of the hexagonal prism particles are also O-
terminated due to the guiding of nanocrystallites onto the mirror 
symmetric double plate disc. 

Unstained regions in the dumbbell and hexagonal prism particles 
are neutral as expected from the uniform orientation of all nanorods. 
Calcination of dumbbell particles prior to staining with safranin T dye 
caused dye molecules to attach onto all surfaces of the dumbbell 
particles (Fig. 8f). This suggests that calcination destroyed the 
ordering of dipolar field by changing the orientation of the 
nanocrystallites so dye molecules were able to adsorb to all surfaces. 
All optical microscopic images of stained vaterite mesocrystals are 
consistent with our experimental observations and the proposed 
mechanism in Fig. 7.   

Experimental 

Preparation of vaterite specimens: The synthetic method for CaCO3 

was the same as that used by Zhan et al.44 in which gelatin (Type B) 

was used as a structure directing agent. Gelatin is known as a “smart” 

material because of its sensitivity towards its environment such as 

temperature and pH. Even a slight deviation can significantly affect 

its properties.58 The gelatin, produced from bovine skin, is a single 

chained series of repeating amino acids obtained from the thermal 

denaturation of collagen under alkaline conditions.39 The procedure 

involved dissolving 1 g gelatin (type B, 225 Bloom, from Sigma) in 10 

mL distilled water at 60 °C to form a gel. A mixture of 23.62 g (0.1 

mol) Ca(NO3)2∙4H2O (99%, from Alfa Aesar) and 12.0 g (0.2 mol) urea 

(ACS grade, from Sigma) was added to the gelatin gel. The final 

volume is about 35 mL. Therefore, the concentrations of the 

components are: 28 g/L of gelatin, 2.86 M of Ca(NO3)2∙4H2O, and 5.71 

M of urea. The aqueous solution was sealed in a 100 mL PTFE bottle 

and hydrothermally treated at 100 °C for 96 h. The resulting 

precipitate was recovered by centrifugation (at G-force 2536 g for 5 

min), followed by washing three times with distilled water. The 

precipitate was then dried at 60 °C overnight. Early stage growth 

specimens were synthesised under identical conditions except 

different hydrothermal reaction times of 3 h, 6 h, 23 h and 96 h, were 

applied. In addition specimens were prepared using different 

concentrations of gelatin (0 g/L, 7 g/L) and urea (2.86 M) for further 

investigation of the effects of these chemicals on the crystal growth.  

Preparation of charged dye specimens: Safranin T dye was obtained 

from Sigma-Aldrich and used without further purification. CaCO3 

mesocrystals were immersed overnight in a standard dye solution 

(0.5 g/L) prepared with DI water. The mesocrystals were washed 

three times with distilled water before placing on a glass slide. After 

drying the mesocrystals were ready for viewing under the optical 

microscope.    

Preparation of vaterite mesocrystals to study the influence of 

cations: Gelatin (1 g) was dissolved in 10 mL KCl solution (0.5 M or 2 

M) at 60 °C to form a gel. A mixture of Ca(NO3)2∙4H2O (23.62 g) and 
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urea (12.0 g) was added to the gelatin gel. The final concentration of 

KCl is 0.14 M or 0.57 M. The aqueous solution was sealed in a PTFE 

bottle and hydrothermally treated at 100 °C for 96 h. The resulting 

precipitate was recovered by centrifugation followed by washing 

three times with distilled water and drying at 60 °C overnight. 

Specimen characterisation: PXRD was performed on a PANalytical 

Empyrean diffractometer, using Cu Kα radiation (λ = 1.5418 Å). 

Analysis of the PXRD patterns was carried out using Highscore plus 

software. SEM images of the specimens were obtained using a JEOL 

JSM-6700F field-emission gun microscope, operating at 1 to 5 kV 

with gentle mode. To overcome beam charging problems, the 

specimen surface was coated with a thin gold film. The FEG-SEM is 

equipped with an Oxford INCA system for energy dispersive X-ray 

spectroscopy (EDX), which was applied for examination of the 

chemical compositions of the specimens. TEM images and SAED 

patterns were primarily attained using a JEOL JEM-2011 electron 

microscope operating at an accelerating voltage of 200 kV. This 

electron microscope is also equipped with an Oxford Link ISIS 

SemiSTEM EDX system. The TEM and HRTEM images were recorded 

using a Gatan 794 CCD camera. Additionally, TEM and ADF STEM 

images were recorded on a Titan Thermis 200 (S)TEM and JEM-

ARM200F. A thin slice of a twin cauliflower vaterite mesocrystal was 

prepared by FIB on dualbeams JEOL JIB-4500, JEOL JIB-4501 and FEI 

Scios. TGA was carried out on a Stanton Redcroft STA-780 series 

instrument at a heating rate of 5°C/min under O2. Light microscopic 

images were recorded using a BMS D1 series biological microscope.     

Conclusions 

The present biomimetic vaterite system demonstrates a novel 

morphology evolution of spherulites to single crystal-like hexagonal 

prisms. Experimental observations established a very unique case 

where the nanocrystallites were able to rotate and shift locally within 

a soft matter matrix. It is remarkable to find vaterite nanocrystallites 

in the soft matter matrix can be self-aligned into a unidirectional 

pattern, which transfers to a radial arrangement. Finally the 

nanocrystallites undergo another re-arrangement into a linear 

pattern with mirror symmetry along the long axis of the cylindrical 

particles. Dipole field is proposed to be the driving force of this 

remarkable morphology evolution. The proposed formation 

mechanism strongly supports the idea that interactions between the 

organic and inorganic components can take over and thus direct the 

morphology. Gelatin not only controls the crystal size at a nanometer 

scale but may also induce a dipole field in the nanocrystallites. A 

similar structure to the present work has been observed in pearl 

oyster, Pinctada fucata59 where aragonite nanoparticles nucleated 

with random orientations inside dimples on the surface of the 

prismatic columns before extending to form nacreous layers where 

the nanocrystallites were preferentially orientated along the c-axis. 

Further work is needed to obtain direct evidence of dipole field in the 

samples and to clarify if this dipole field directed re-organisation 

mechanism can be identified in the formation of many naturally 

occurring biominerals. Another knowledge gap lies in the following 

steps, nucleation and the very early growth stages, i.e. interactions 

between a developing mineral and a macromolecular matrix. De 

Yoreo and colleagues recently tried to address this problem using 

liquid-cell TEM to visualise the nucleation and growth of CaCO3 in a 

matrix of polystyrene sulphonate (PSS).60  
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