SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

EDMOND CHEUNG1†, DAVID V. STARK1, SONG HUANG1, KATE H. R. RUBIN2, LIHWAI LIN3, CHRISTY TREMONTRI4, KAI ZHANG5, RENBIN YAN6, DMITRY BIZYAEV6,7, MÉDÉRIC BOQUEN6, JOEL R. BROWNSTEIN5, NIV DRORY10, JOSEPH D. GELFAND11,12, JOHAN H. KNAPEN13,14, ROBERTO MAIOLINO5,15,16, OLENA MALANUSHENKO5, KAREN L. MASTERS17, MICHAEL R. MERRIFIELD18, ZACH PACE1, KAIKE PAN6, ROGEMAR A. RIFFEL19,20, ALEXANDRE ROMAN-LOPES21, WIPHU RUJIPOKAR1,22, DONALD P. SCHNEIDER23,24, JOHN P. STOTT25, DANIEL THOMAS17, AND ANNE-MARIE WEIJMANS26

Draft version September 9, 2016

ABSTRACT

The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈ 8″ (≈ 6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios, and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: starburst — galaxies: abundances
1. INTRODUCTION

Understanding the warm, ionized gas outside of galaxies is a critical aspect of galaxy evolution. To study this gas, there have been two main probes: (1) observations of extraplanar ionized gas in edge-on galaxies (e.g., Rand et al. 1996; Tullmann et al. 2000; Ott et al. 2001; Miller & Veilleux 2003; Rossa & Dettmar 2003) and (2) low ionization metal-line absorption studies using quasar sightlines (e.g., Tumlinson et al. 2011; Werk et al. 2013, 2014).

These studies have led to the discovery of diffuse ionized gas (DIG; Hoyle & Ellis 1963; Reynolds 1985), which is a layer of warm, low-density ionized gas that extends out to several kpc into the haloes of galaxies, and the confirmation of the circumgalactic medium (CGM; Bergeron 1986; Lanzetta et al. 1995), which is a gas reservoir containing warm, ionized gas that is of even lower density than the DIG and extends hundreds of kpc into the haloes of galaxies. But how this gas relates to the evolution of their host galaxies is an open question.

In this work, we further our understanding of warm, ionized gas in the haloes of galaxies by studying a rare and unusual gas complex in the SDSS-IV MaNGA survey (Bundy et al. 2015). Designed to observe galaxies out to a maximum radius of 2.5 effective radius (R_e), the MaNGA survey has observed a dusty, starbursting galaxy that is on the upper end of the mass-metallicity relationship (Tremonti et al. 2004) out to 6.3R_e through a fortuitous overestimation of R_e. This galaxy shows no signs of interaction and displays a large Hα extension with no optical counterpart in the Sloan Digital Sky Survey Data Release 7 (SDSS DR7; York et al. 2000; Abazajian et al. 2009). Throughout this work, we assume a flat cosmological model with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.30$, and $\Omega_{\Lambda} = 0.70$.

2. DATA

The data used in this work are from the ongoing SDSS-IV MaNGA survey (Bundy et al. 2015; Dory et al. 2013; Law et al. 2013; Yan et al. 2016; SDSS Collaboration et al. 2016), which is an integral field unit (IFU) survey that is taking resolved spectroscopy of 10,000 nearby galaxies with log $M_* / M_\odot > 9$. The survey uses the SDSS 2.5-meter telescope (Gunn et al. 2006) and BOSS spectrographs (Smee et al. 2013; pilot studies using P-MaNGA data include Li et al. 2013; Wilkinson et al. 2013; Belfiore et al. 2015). The r-band signal-to-noise (S/N) in the galaxy outskirts is 4.8 Å$^{-1}$ and the wavelength coverage is 3,600–10,000 Å. The effective spatial resolution is 2.5" (full width at half maximum; FWHM), with an instrumental resolution of $\sigma \approx 60$ km s$^{-1}$ and a spectral resolution of $R \sim 2000$.

The MaNGA sample and data products were drawn from the internal MaNGA Product Launch-4 (MPL-4), which contains 1,368 galaxies. Ancillary data are

27 We define starbursts as galaxies with log $S_{SFR} > -1$ M$_\odot$ yr$^{-1}$ kpc$^{-2}$ (Kennicutt & Evans 2014).

28 MaNGA uses R_e measurements from the NASA-Sloan Atlas, which estimated $R_e = 7.4''$ for this galaxy. After masking out the bright, nearby stars, we used GALFIT (Peng et al. 2002) to fit a single Sérsic model to this galaxy, yielding $R_e = 2.6''$; see §2 from the MPA-JHU DR7 value-added catalog and the NASA-Sloan Atlas.

The stellar masses from the MPA-JHU DR7 value-added catalog are estimated by fitting a large grid of stellar population models from Bruzual & Charlot (2003) to the ugriz SDSS photometry, following the philosophy of Kauffmann et al. (2003) and Salim et al. (2007). The fiber star formation rates from the MPA-JHU DR7 value-added catalog are estimated using the technique described in Brinchmann et al. (2004), where galaxies with emission lines are fitted with the models of Charlot & Longhetti (2001). The fiber star formation rate surface density is calculated over the 3" diameter SDSS fiber.

The stellar continuum of each spaxel is fit by the MaNGA Data Analysis Pipeline (DAP: Westfall et al., in prep), which uses pPXF (Cappellari & Emsellem 2004) and the MIUSCAT stellar population models (Vazdekis et al. 2012). Although the MIUSCAT templates are built to reflect simple stellar populations, the mix of templates used to construct the best-fit stellar continuum does not represent a physically-motivated stellar population.

Emission line fluxes are measured through simple flux-summing after subtraction of the stellar continuum (where there is stellar continuum). The wavelength passbands over which they are integrated are similar to that of Yan et al. (2006), ranging from 10 Å to 20 Å around the central wavelength. For spectra that do not have measured stellar continua, we subtract a baseline continuum that is based on a linear fit to the red and blue sidebands; these sidebands extend approximately 100 Å beyond the central passbands, and have been chosen to avoid other strong emission lines.

We adopt the non-parametric quantities v_{peak} and W_50 to characterize the center (with respect to the systemic velocity of the host galaxy) and width (that contains 50% of the flux) of the Hα emission line (e.g., Harrison et al. 2014). We only measure v_{peak} and W_50 in spaxels where the Hα flux has $S/N > 5$.

To estimate the gaseous metallicities, 12+log(O/H), we use the IZI code (Blanc et al. 2013), which estimates ionization parameter and gaseous metallicity based on a bayesian analysis of a model grid with a set of input line fluxes; we used the Dopita et al. (2013) model grids, but obtain similar results with that of Levesque et al. (2010). We provide [OⅡ] 3727,3729, Hβ, [OⅢ] 5007, Hα, [NⅡ] 6583, and [SⅡ] 6717,6731; all provided line fluxes have $S/N > 3$. Throughout this work, we correct for reddening using the Balmer decrement and the Fitzpatrick (1999) extinction law. The typical uncertainties of these IZI metallicities are 0.1-0.3 dex.

We also estimate the gaseous metallicity using the [NⅡ]/[OⅢ] calibration from Kewley & Dopita (2002), which is relatively insensitive to variations in ionization parameter and is least sensitive to diffuse ionized gas contamination (Zhang et al. 2016, submitted). We estimate the uncertainties by adding in quadrature the intrinsic scatter of this calibration (0.04 dex; see Kewley & Dopita 2002) and the measurement error of log [NⅡ]/[OⅢ] propagated through the calibration, resulting in typical un-

29 http://www.mpa-garching.mpg.de/SDSS/DR7/
30 http://www.nsatlas.org
A serendipitous observation of a potential gas accretion event

3. RESULTS

Our main result is presented in Fig. 1a. The SDSS gri color image of the system is shown in Fig. 1a, with the MaNGA footprint outlined by the magenta hexagon. Fig. 1b displays the Hα flux map of this system, with the Hα flux contours in light grey. There is a large extension in the Hα flux distribution that extends \(\approx 8'' \) \((\approx 6.3 \text{ kpc})\) to the left (East) beyond the effective radius of the host galaxy, and does not correspond to any optical source in SDSS. This striking feature is elucidated in Fig. 1c, where we present the Hα flux contours superimposed on the SDSS r band image, with the blue circle marking the Re of the host galaxy.

Fig. 1d and Fig. 1e show the spectra centered on the uncertainties of 0.05-0.15 dex.

TABLE 1

<table>
<thead>
<tr>
<th>MaNGA-ID</th>
<th>Plate-IFU (J2000.0 deg)</th>
<th>RA (J2000.0 deg)</th>
<th>DEC (J2000.0 deg)</th>
<th>z(^a)</th>
<th>log (M_\ast)(^b) (M(_\odot))</th>
<th>u - r(^c)</th>
<th>log SFR(^d) (M(_\odot) yr(^{-1}))</th>
<th>log (\Sigma_{\text{SFR}})(^e) (M(_\odot) yr(^{-1}) kpc(^{-2}))</th>
<th>(R_e)(^f) (''')</th>
<th>(R_e) (kpc)</th>
<th>(n^g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-113700</td>
<td>8618-12703</td>
<td>319.45182</td>
<td>11.66059</td>
<td>0.038</td>
<td>9.77</td>
<td>2.05</td>
<td>0.22</td>
<td>-0.37</td>
<td>2.6</td>
<td>2.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

\(^a\) Spectroscopic redshift from NSA catalog.
\(^b\) Galaxy stellar mass from MPA-JHU DR7 data release.
\(^c\) Rest-frame u - r color from NSA catalog.
\(^d\) Fiber star-formation rate from MPA-JHU DR7 data release.
\(^e\) Fiber star-formation rate surface density using the MPA-JHU DR7 data release.
\(^f\) Effective radius from GALFIT (Peng et al. 2002).
\(^g\) Galaxy Sérsic index from GALFIT (Peng et al. 2002).
Fig. 2.— The gaseous metallicity, $12+\log(O/H)$, map of the system using IZI (a) and the $[\text{N} II]/[\text{O} II]$ calibration (b). The Hα extension has lower gaseous metallicities, by ≈ 0.25 dex and ≈ 0.15 dex, respectively, than the center of the host galaxy at greater than 99.7% confidence. The $12+\log(O/H)$ profile of the highlighted spaxels in panels a and b using IZI (c) and the $[\text{N} II]/[\text{O} II]$ calibration (d); the colors correspond to the colors of the highlighted spaxels. The characteristic metallicity gradient of non-interacting disks from Sánchez et al. (2014) is overlaid in the dashed line (with an arbitrary zero-point) and the error bars represent the 1σ uncertainties.
A serendipitous observation of a potential gas accretion event

Another source of uncertainty is the DIG contribution to the emission line ratios, which could produce artificial metallicity gradients, especially in the outskirts of the system (Zhang et al., submitted). While we argue that DIG is not the major component of this system in §4.1, we cannot rule out minor DIG contributions that could affect the estimated metallicity gradients of this system.

The ionized gas kinematics of this system is presented in Fig. 3 with \(v_{\text{peak}} \) displayed in panel a and \(W_{80} \) in panel b; again, we superimpose the H\(\alpha \) flux contours and highlight the two spaxels from Fig. 1b. Fig. 3a reveals an asymmetric gradient that ranges from \(v_{\text{peak}} \approx -140 \) km s\(^{-1}\) at the H\(\alpha \) extension to \(v_{\text{peak}} \approx 40 \) km s\(^{-1}\) at the right side of the host galaxy. Fig. 3b shows typical values of \(W_{80} \approx 230 \) km s\(^{-1}\), with areas of enhanced \(W_{80} \) in the H\(\alpha \) extension and the outer envelope of the H\(\alpha \) flux distribution. The velocity profile of the highlighted spaxels in Fig. 3a is shown in Fig. 3c, with \(R_e \) of the host galaxy marked by the dashed, vertical lines. \(|v_{\text{peak}}| \) rises smoothly out to \(\pm 5'' \), where it starts to flatten. Beyond \(-5'' \), however, there is an irregular wiggle in \(v_{\text{peak}} \) that corresponds to boosted \(W_{80} \) in the H\(\alpha \) extension.

The [N\text{II}] and [S\text{II}] BPT (Baldwin et al. 1981) diagrams for this system are presented in Fig. 4a and Fig. 4b, respectively. We only consider spaxels with emission lines that have \(S/N > 3 \) and overlay curves from Kewley et al. (2006) that are used to separate different classes of galaxies. Fig. 4c and Fig. 4d display the resolved [N\text{II}] and [S\text{II}] BPT diagrams, respectively; i.e., these maps color-code each spaxel according to its location in their respective BPT diagrams. We overplot the H\(\alpha \) flux contours and highlight the same two spaxels in Fig. 1b. Fig. 4d demonstrates that almost all spaxels have H\text{II} line ratios.

4. DISCUSSION

In this section, we discuss the nature of the H\(\alpha \) extension.

4.1. Diffuse ionized gas

The presence of warm, ionized gas in the outskirts of galaxies has been commonly referred to as diffuse ionized gas (DIG: Hoyle & Ellis 1963; Reynolds 1985). The most pronounced characteristics of the DIG are the elevated [N\text{II}]/H\(\alpha \) and [S\text{II}]/H\(\alpha \) line ratios compared to H\text{II} regions (e.g.,
Fig. 4.—a-b: The [N\textsc{ii}] and [S\textsc{ii}] BPT diagrams; the lower right error bars represent the typical 1σ measurement errors. c-d: The resolved [N\textsc{ii}] and [S\textsc{ii}] BPT diagrams, i.e., every spaxel is color-coded according to its location in the BPT diagrams above. Almost all the spaxels of this system have line ratios in the H\textsc{ii} regime.

Monnet 1971; Rand et al. 1998; Rand 1997; 1998; Haffner et al. 1999; Tullmann et al. 2000; Otte et al. 2001; 2002; Collins & Rand 2001; Hoopes & Walterbos 2003; Wood & Mathis 2004; Vöges & Walterbos 2006; Rand et al. 2008; Haffner et al. 2009; Reynolds et al. 2012), which may be due to secondary ionization/heating sources (e.g., Reynolds & Cox 1992; Reynolds et al. 1999). Thus comparing the line ratios of the H\textalpha extension to that of H\textsc{ii} regions would constrain whether the H\textalpha extension is DIG.

Ideally, we would identify individual H\textsc{ii} regions in our system in order to conduct this comparison. However, the spatial resolution of the MaNGA data is too coarse—the FWHM is 2.5″, which corresponds to ≈ 1.9 kpc at \(z = 0.038 \) (the host galaxy’s redshift), which is more than an order of magnitude larger than typical H\textsc{ii} regions (1-100 pc; Kennicutt 1984; Hunt & Hirashita 2009). Therefore every spaxel in our data contains contributions from both H\textsc{ii} regions and DIG.

One way to constrain the DIG contribution of the H\textalpha extension is by comparing its line ratios to that of the center of the host galaxy, where the H\textalpha surface brightness is the highest and the DIG contribution is the lowest (Ferguson et al. 1996). However, since line ratios are also dependent on metallicity and ionization parameter (Dopita et al. 2000, 2013; Kewley & Dopita 2002; Kewley et al. 2006)—which are likely to be different at the center compared to the H\textalpha extension—another way to constrain the DIG contribution is to compare the line ratios of the H\textalpha extension to the line ratios of the surrounding regions.

We present this line ratio comparison in Fig. 5, all of which have been corrected for reddening according to §2. Figs. 5a-c show the log line ratio maps of [N\textsc{ii}]/H\alpha, [O\textsc{iii}]/H\alpha, and [S\textsc{ii}]/H\alpha, and Figs. 5d-f show the log line ratio maps of [O\textsc{ii}]/H\alpha and [O\textsc{iii}]/H\beta; the white contours represent the H\alpha flux distribution. Fig. 5d displays the [N\textsc{ii}]/H\alpha (filled circles), [O\textsc{iii}]/H\alpha (open triangles), and [S\textsc{ii}]/H\alpha (asterisks) line ratio profiles as traced by the highlighted spaxels in Fig. 5a-c, while Fig. 5e presents the [O\textsc{ii}]/H\alpha (filled stars), [O\textsc{iii}]/H\beta (open squares), and [S\textsc{ii}]/[N\textsc{ii}] (open diamonds) line ratio profiles as traced by the highlighted spaxels in Fig. 5d-f; the black solid line represents the H\alpha surface brightness profile over the same highlighted spaxels.

Fig. 5 indicates a complicated situation. While Fig. 5d and Fig. 5e show that [N\textsc{ii}]/H\alpha generally decreases with more negative offsets from the center of the galaxy, i.e.,
A serendipitous observation of a potential gas accretion event

![Image of gas accretion event](image_url)

Fig. 5.—a-c: The log [Nii]/Hα, log [Oiii]/Hα, and log [Sii]/Hα line ratio maps. d: Line ratio profiles of [Nii]/Hα, [Oiii]/Hα, and [Sii]/Hα of the highlighted spaxels in panels a-c; the colors correspond to the colors of the highlighted spaxels and the error bars represent the 1σ measurement error. The black line represents the Hα surface brightness profile across the same highlighted spaxels, with its values indicated by the y-axis on the right side. e-f: The log [Oii]/Hα and log [Oiii]/Hβ line ratio maps. g: The line ratio profiles of [Oii]/Hα, [Oiii]/Hβ, [Sii]/[Nii] of the highlighted spaxels in panels e-f. We only consider spaxels with S/N > 3 for these emission lines and have corrected all these line ratios for reddening.
Another way to constrain the DIG contribution is to probe the gas density of the system with the [S\II] 6717/ [S\II] 6731 line ratio (Osterbrock & Ferland 2006). We present the [S\II] 6717 / [S\II] 6731 line ratio map in Fig. 6 (with the H\alpha contours superimposed and the same spaxels from Fig. 1 highlighted in white), and the histogram of the [S\II] 6717 / [S\II] 6731 line ratios for various regions in Fig. 6.

The [S\II] 6717 / [S\II] 6731 line ratios of the H\alpha circle ranges from 1.0 to 1.6, which corresponds to electron densities, \(n_e\), of 500 cm\(^{-3}\) to \(< 10\) cm\(^{-3}\), respectively (Proxauf et al. 2014). Even though the leftmost edge of the H\alpha circle shows electron densities that are less than 10 cm\(^{-3}\), that a large area of the H\alpha extension contains dense gas with \(n_e \sim 500\) cm\(^{-3}\) strongly indicates that the H\alpha extension is not dominated by DIG.

4.2. Gas accretion

Alternatively, the H\alpha extension could be a sign of gas accretion (Sancisi et al. 2008, Rubin et al. 2012, Bouche et al. 2013, Sanchez Almeida et al. 2014, 2015, Bouche et al. 2016), which can manifest through a variety of ways, e.g., cold flows (the properties of this galaxy, log \(M_*/M_\odot = 9.77\) and \(z = 0.038\), suggest cold flows rather than hot flows: Keres et al. 2005, 2009a; Dekel & Birnboim 2006; Dekel et al. 2009, Danovich et al. 2015, Stewart et al. 2016), recycled wind material (Shapiro & Field 1976; Bregman 1980, Fraternali & Binney 2008, Oppenheimer & Davé 2008, Keres et al. 2009b, Oppenheimer et al. 2010, Hopkins et al. 2014), or a gas-rich low-surface-brightness (LSB) dwarf galaxy (e.g., Leaman et al. 2015, Fischer et al. 2015).

The super-solar gaseous metallicities of this H\alpha extension (see Fig. 2), however, is inconsistent with gas accretion through cold flows from the IGM since the accreted gas is expected to be very metal-poor (Davé et al. 2011, van de Voort & Schaye 2012, Joung et al. 2012).

The H\alpha line ratios of the H\alpha extension indicates that star-formation is the primary source of ionization (see Fig. 1), suggesting that the H\alpha extension is an accreting gas-rich LSB dwarf galaxy. Assuming that this H\alpha extension is indeed a LSB dwarf galaxy, then we estimate a stellar mass upper limit of \(M_* \sim 10^7\) M\odot.

To obtain this limit, we first sum the g band flux of every pixel in the H\alpha circle using SDSS DR7; we multiply this sum by three and take it as the upper limit of the g band flux. Selecting SDSS DR7 galaxies at 0.02 < \(z\) < 0.04, we plot their mass-to-light ratios (\(M/L\)) as a function of rest-frame \(g-r\) color using the MPA-JHU stellar masses and galaxy \(g\) and \(r\) band absolute magnitudes from GIM2D (Simard et al. 2011), and then use the typical \(M/L\) of star-forming galaxies (0.2 < \(g-r\) < 0.4) to estimate the stellar mass upper limit of the H\alpha extension, which yields \(M_* \sim 10^7\) M\odot.

A galaxy with such a low stellar mass, however, is unlikely to have the super-solar gaseous metallicities that are observed in the H\alpha extension (Berg et al. 2012, Jimmy et al. 2013), indicating that the H\alpha complex is probably not an accreting gas-rich LSB dwarf galaxy.

This conclusion implies that the H\alpha line ratios of this H\alpha extension are not from star-formation, which is similar to the case of some high-velocity
clouds (HVCs) in the Milky Way. For example, although the “Smith Cloud” shows no measurable starformation (Stark et al. 2015), it displays line ratios that are likely in the HII regime (log [NII]/Hα ≈ −0.5 and log [SII]/Hα = −0.5; Hill et al. 2009). The source of ionization for HVCs like the Smith Cloud is theorized to be escaped UV photons from young stars in the Galactic disk (Bland-Hawthorn et al. 1998 Bland-Hawthorn & Maloney 1999), which may be applicable to the Hα extension.

Finally, the enhanced values of W80 within the Hα extension (see Fig. 3b) that coincide with an unusual vpeak bump in the velocity profile (at ∼ −7″ of Fig. 3) may suggest the presence of turbulence that could be caused by the interaction between accreting gas and the host galaxy. However, such large values of W80 may also be an artifact caused by the coarse resolution of the MaNGA data, which could blend multiple components separated by small velocities and/or small distances. Future higher resolution data will be needed to discern these possibilities.

Therefore the gas accretion scenario that best matches the properties of the Hα extension is recycled wind material (Oppenheimer & Davé 2008; Kereš et al. 2009b; Oppenheimer et al. 2010; Hopkins et al. 2014), which is predicted to be a critical process in shaping the galaxy stellar mass function at low stellar masses (< 5 × 1010 M⊙/M⊙; Oppenheimer et al. 2010; Hopkins et al. 2014).

4.2. Gas accretion deficit

If this Hα extension is indeed accreting gas, then an interesting application would be toward the gas accretion deficit. To elaborate, Sancisi et al. (2008) combined many nearby H I studies to show that the visible H I gas accretion rate in the local universe is only ∼ 0.2 M⊙ yr−1, which is about an order of magnitude too small to account for the current SFR of local star-forming galaxies (∼ 1 M⊙ yr−1). These H I studies, however, only probe cold gas (T ≲ 100 K). Simulations predict that most of the gas in cold flows have T ≳ 10^4 K upon entering the host galaxy (van de Voort & Schaye 2012; Joung et al. 2012; Nelson et al. 2013). Thus probing warm (∼ 10^4 K), ionized gas from the CGM may alleviate the gas accretion deficit.

To test this idea, we compare the potential warm gas accretion rate onto this galaxy with its SFR. We first calculate the ionized gas mass of the Hα circle using the following equation from Osterbrock & Ferland (2006):

\[
\frac{M_{\text{ionized gas}}}{2.82 \times 10^9 M_\odot} = \left(\frac{L_{H\beta}}{10^{43} \text{ erg s}^{-1}} \right) \left(\frac{n_e}{100 \text{ cm}^{-3}} \right)^{-1},
\]

where \(L_{H\beta} \) is the extinction-corrected Hβ luminosity and \(n_e \) is the electron density. We calculate \(L_{H\beta} \) by summing the extinction-corrected H β luminosities of every spaxel in the Hα circle, yielding \(L_{H\beta} = 2.89 \times 10^{40} \text{ erg s}^{-1} \). To estimate \(n_e \), we measure the median [SII] \(6717/\text{[SII]} \) \(6731 \) ratio (≈ 1.3; see Fig. 6b) of the Hα circle to obtain \(n_e \approx 50 \text{ cm}^{-3} \); this calculation yields \(M_{\text{ionized gas}} \approx 1.63 \times 10^6 M_\odot \).

The time required for this Hα circle to accrete onto the host galaxy, \(t_{\text{accretion}} \), is estimated by dividing the distance between the Hα circle and the host galaxy with the observed velocity of the Hα circle. This distance, i.e., the distance between the two highlighted spaxels in Fig. 4, is \(≈ 6.75 \text{ kpc} \), which corresponds to \(1.5 \times 10^{17} \text{ km} \). The median velocity \(|v_{\text{peak}}| \) of the Hα circle is \(∼ 80 \text{ km s}^{-1} \). Hence \(t_{\text{accretion}} \approx 6 \times 10^7 \text{ yrs} \).

Therefore, the average warm gas accretion rate onto the host galaxy is \(M_{\text{ionized gas}}/t_{\text{accretion}} \approx 0.03 M_\odot \text{ yr}^{-1} \). If this accreting warm gas were driving the current star-formation in the host galaxy, we would expect for this warm gas accretion rate to be similar to the current SFR. However, the estimated star-formation rate of the host galaxy is \(SFR = 1.67 M_\odot \text{ yr}^{-1} \), which is almost two orders of magnitude larger than the estimated warm gas accretion rate. Thus warm gas accretion does not appear to solve the gas accretion deficit for this galaxy.

However, since this galaxy is starbursting, which is defined to be a short period of intense star-formation, perhaps it is unsurprising that the warm gas accretion does not sustain the current star-formation rate. Moreover, this estimated warm gas accretion rate may be a lower limit since we do not account for transverse motions, meaning the true velocity could be higher, nor do we account for the possibility of more diffuse ionized gas that is below our detection limit.

4.3. Other possibilities

Another possibility for this Hα complex is that it’s an outflow. If it were an outflow from a starburst though, we’d expect for its 12+log(O/H) values to be the same as, or higher than, the center of the host galaxy, where the metal-enriching stellar feedback would have likely originated. Instead, we find that the Hα extension has lower 12+log(O/H), arguing against an outflow. Another possibility is that it’s gas disrupted and/or stripped by environmental processes, e.g., mergers or ram-pressure stripping (Gunn & Gott 1972). However, since the host galaxy shows no signs of interaction and does not appear to be in a large group, we find this explanation unlikely. Moreover, with a galaxy Sérsic index of \(n = 3.7 \), unusual gaseous metallicity profile, and irregular rotation curve, it is also unlikely that this Hα extension is simply part of the host galaxy as a dim, lopsided disk.

Finally, the elongated, asymmetric Hα flux distribution of the system (see Fig. 4) resembles the morphologies of tadpole galaxies (van den Bergh et al. 1996a; Elmegreen et al. 2005, 2007, 2012; Sánchez Almeida et al. 2013; Stranahan et al. 2015), suggesting that this Hα extension may be part of a tadpole galaxy. However, in addition to its cometary morphology, another common property of tadpole galaxies is their bright, blue colors that are indicative of recent bursts of intense star formation (Elmegreen & Elmegreen 2010; Elmegreen et al. 2012). Since the Hα extension in our system has no optical or ultraviolet (UV) counterpart, it is unlikely that our system is a tadpole galaxy. Moreover, the super-solar gaseous metallicities of our system is inconsistent with the very metal-poor gaseous metallicities found in local tadpole galaxies (Sánchez Almeida et al. 2013).
In this paper, we present the serendipitous observation of an ionized gas structure that protrudes out of a dusty, starbursting galaxy. Our analysis indicates that this ionized gas complex is most consistent with gas accretion through recycled wind material.

To better understand the nature of this phenomenon, and to constrain the importance of gas accretion through recycled wind material, we need to find more of these extended gas complexes. However, the current MaNGA sample has not observed any other isolated galaxy with an adequately-sized integral field unit ($\gtrsim 6.3R_e$) to allow such a search. We hope to address this issue with future MaNGA releases.

We thank Kevin Bundy, Kyle Westfall, and Matthew Bershady for helpful comments and discussions. We also thank the anonymous referee for a constructive report that improved this work.

Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. DB is supported by grant RSCF-14-22-00041. AW acknowledges support from a Leverhulme Early Career Fellowship. JHK acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under grant number AYA2013-41243-P, and thanks the Astrophysics Research Institute of Liverpool John Moores University for their hospitality, and the Spanish Ministry of Education, Culture and Sports for financial support of his visit there, through grant number PR2015-00512.

REFERENCES

Haffner, L. M., Dettmar, R.-J., Beckman, J. E., et al. 2009, Reviews of Modern Physics, 81, 969
Hoyle, F., & Ellis, G. R. A. 1963, Australian Journal of Physics, 16, 1
A serendipitous observation of a potential gas accretion event

