
Downloaded from www.microbiologyresearch.org by

IP:  138.251.93.58

On: Fri, 09 Oct 2015 10:18:35

1 

Employing Transposon Mutagenesis to Investigate Foot-and-Mouth Disease Virus Replication 1 

 2 

Running title: Transposon mutagenesis of the FMDV genome 3 

 4 

Morgan R. Herod1, Eleni-Anna Loundras1, Joseph C. Ward1, Fiona Tulloch2, David J. 5 

Rowlands1 and Nicola J. Stonehouse1* 6 

1 School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for 7 

Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom. 8 

2 Biomedical Sciences Research Complex (BSRC), School of Biology, University of St. Andrews, 9 

North Haugh, St. Andrews, Fife, KY16 9ST, Scotland. 10 

 11 

*N.J.Stonehouse@leeds.ac.uk 12 

Key Words: FMDV, picornavirus, 3A trans-complementation, transposon, mutagenesis 13 

Abstract word count: 197 14 

Word count: 4799 15 

 16 

Summary 17 

Probing the molecular interactions within the foot-and-mouth disease virus (FMDV) RNA replication 18 

complex has been restricted in part to the lack of suitable reagents. Random insertional mutagenesis 19 

has proven an excellent method to reveal domains of proteins essential for viral replication as well as 20 

locations that can tolerate small genetic insertions. Such insertion sites can be subsequently adapted 21 

by the incorporation of commonly used epitope tags and so facilitate their detection with commercial 22 

available reagents. In this study, we use random transposon-mediated mutagenesis to produce a 23 

library of 15 nucleotide insertions in the FMDV non-structural polyprotein. Using a replicon-based 24 

assay we isolated multiple replication-competent as well as replication-defective insertions. We have 25 

adapted the replication-competent insertion sites for the successful incorporation of epitope tags 26 

within FMDV non-structural proteins, for the use in a variety of downstream assays. Additionally, we 27 

show that replication of some of the replication-defective insertion mutants can be rescued by co-28 
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transfection of a ‘helper’ replicon, demonstrating a novel use of random mutagenesis to identify inter-29 

genomic trans-complementation. Both the epitope tags and replication-defective insertions identified 30 

here will be valuable tools for probing interactions within picornaviral replication complexes.  31 

 32 

Introduction 33 

Foot-and-mouth disease is an acute systemic disease of cloven-hoofed animals, outbreaks of which in 34 

domestic livestock have significant economic consequences for the agricultural and tourism industries. 35 

The causative agent, foot-and-mouth disease virus (FMDV), is endemic in wide areas of Asia, 36 

Southern America, Africa and the Middle East and has the potential to cause major epidemics 37 

globally. Difficulties arising from the control of the spread of disease stem primarily from the high 38 

infectivity and transmissibility of the virus and the asymptomatic carrier state the virus can adopt.  39 

 40 

FMDV is a member of the Picornaviridae family of single-stranded positive sense RNA viruses. The 41 

genome is translated as a single open reading frame, flanked by both 5 and 3 untranslated regions 42 

(UTR) and a 3 poly(A) tail (Carrillo et al., 2005). The long and highly secondary structured 5 UTR 43 

contains at least 5 discrete domains, including the type II viral IRES (Belsham & Brangwyn, 1990; 44 

Lopez de Quinto & Martinez-Salas, 1997; Lopez de Quinto et al., 2002) and cre or cis-acting 45 

replicative elements (Mason et al., 2002) in addition to 3 elements of unknown function; varying 46 

copies of pseudoknots, a polypyrimidine (pC) tract of variable length and a predicted large 5 stem 47 

loop or S-fragment (Carrillo et al., 2005; Clarke et al., 1987; Escarmis et al., 1995; Mason et al., 48 

2003; Rowlands et al., 1978). The comparatively smaller 3 UTR contains two stem-loop structures 49 

both of which appear to have roles in viral RNA replication (Rodriguez Pulido et al., 2009; Saiz et al., 50 

2001). 51 

 52 

Following translation the FMDV polyprotein is processed co- and post-translationally to produce 4 53 

primary products; mature Lpro (self-processed in cis at its own C-terminus), and the precursors P1-2A. 54 

2BC and P3 (3AB1-3CD). Processing at the 2A2B boundary occurs co-translationally through a 55 
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ribosome skipping mechanism to release P1-2A from the rest of the polyprotein (de Felipe et al., 56 

2003; Donnelly et al., 2001; Ryan & Drew, 1994). The P1-2A primary product is subsequently 57 

processed by the 3C/3CD protease to generate three structural proteins, 1AB, 1C, and 1D (1AB being 58 

cleaved by an unknown mechanism into 1A and 1B in a final virus maturation step), whereas the 2BC 59 

and P3 precursors undergo 3C/3CD mediated proteolysis to generate the mature viral RNA replication 60 

proteins (reviewed by Ryan & Flint, 1997). In poliovirus and FMDV, non-structural (NS) proteins 2B 61 

and 2C along with their precursor 2BC are involved in disrupting endoplasmic reticulum to Golgi 62 

transport to inhibit the cellular secretory pathway (Doedens & Kirkegaard, 1995; Moffat et al., 2005; 63 

Moffat et al., 2007) via a PI4K-independent mechanism in FMDV (Loundras, Herod, Harris and 64 

Stonehouse, manuscript in preparation). The 2C protein from poliovirus also demonstrates ATPase 65 

activity and is likely to play a direct role in replicating the viral genome (Rodriguez & Carrasco, 66 

1993; Xia et al., 2015). 67 

 68 

The P3 precursor undergoes proteolysis, likely through both major and minor pathways, to generate 69 

four mature viral non-structural proteins; the viral RNA-dependant-RNA polymerase 3Dpol (Ferrer-70 

Orta et al., 2009; Ferrer-Orta et al., 2006; Ferrer-Orta et al., 2004), the major viral protease 3Cpro 71 

(Birtley et al., 2005; Grubman et al., 1995), three non-identical tandem repeats of the primer 72 

polypeptide 3B (3B1-3) (Forss & Schaller, 1982; King et al., 1980; Nayak et al., 2005; Paul et al., 73 

1998; Paul et al., 2003) and the transmembrane protein 3A (Gonzalez-Magaldi et al., 2014; Gonzalez-74 

Magaldi et al., 2012). Replication of the viral genome requires expression of all viral NS proteins in 75 

addition to cis-acting RNA elements, which are thought to localise to membrane-associated 76 

replication compartments where viral RNA synthesis occurs. To date, defining the molecular 77 

interactions in these replication compartments has largely remained elusive, in part due to the limited 78 

reagents available for studying such interactions. 79 

 80 

Random transposon-mediated mutagenesis has been extensively exploited for the functional profiling 81 

of viral proteins and identifying essential protein functional domains as well as characterising cis-82 

acting RNA replication elements (Brune et al., 1999; McMahon et al., 1998; Mohl et al., 2010; 83 
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Remenyi et al., 2014; Teterina et al., 2011a; Thorne et al., 2012). This powerful technique allows for 84 

the simultaneous screening of large numbers of insertional mutations on viral replication to identify 85 

locations within proteins which can tolerate small genetic insertions. Once identified, these insertion 86 

sites can be utilised for the genetic incorporation of epitope tags facilitating further downstream study 87 

such as co-immunoprecipitation and immunofluorescence (Teterina et al., 2010; Teterina et al., 88 

2011b; Thorne et al., 2012). 89 

 90 

In this study, our aim was to use transposon mutagenesis on the FMDV P2P3 polyprotein to identify 91 

locations within NS proteins which could tolerate small genetic insertions. For this work, we 92 

employed a FMDV replicon, a self-replicating mini viral genome in which the viral structural proteins 93 

have been removed and replaced by a reporter transgene allowing for quantification of viral 94 

replication in the absence of virion production (Tulloch et al., 2014). Using this replicon-based 95 

reporter assay, we have identified functionally permissive insertion sites in addition to replication-96 

defective insertions. Additionally, we have adapted well tolerated insertion sites by the incorporation 97 

of epitope tags. Finally, we demonstrate that replication defective insertion sites within the 3A NS 98 

protein can be complemented in trans by co-transfection with a ‘helper’ replicon construct.  99 

 100 

Results 101 

Transposon mutagenesis of the FMDV NS polyprotein 102 

Multiple studies have demonstrated the use of transposon-mediated random mutagenesis to probe the 103 

genomes of positive-strand RNA viruses for sites that can tolerate the insertion of small exogenous 104 

sequences (McMahon et al., 1998; Remenyi et al., 2014; Teterina et al., 2011a; Thorne et al., 2012) 105 

and we have used this method to identify regions of the FMDV NS polyprotein which can tolerate 106 

genetic insertions. The FMDV replicon plasmid, pGFP-PAC (Tulloch et al., 2014) was used to 107 

generate a replicon library containing insertions solely in the NS polyprotein (2A though to 3Dpol). To 108 

exclude irrelevant insertions sites within the vector backbone, the XmaI – BamHI fragment of the 109 

FMDV NS polyprotein was subcloned into XmaI – BamHI digested pUC18 to generate pUC-2A-3D. 110 

Mutagenesis was conducted on pUC-2A-3D prior to replacement of the XmaI - BamHI fragment into 111 
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pGFP-PAC and the transposon removed from the library by digestion with NotI. This resulted in a 112 

library of 15 nucleotide insertions spanning the FMDV 2A-3D region. Each 15 nucleotide insertion 113 

consisted of 10 nucleotides remaining from the transposon insertion (including a unique NotI 114 

restriction enzyme site) and 5 nucleotides originating from the target DNA directly upstream of the 115 

insertion site which is duplicated during the transposition event. 116 

 117 

To identify insertion sites in vitro, transcribed RNA from the transposon-mutated replicon library was 118 

transfected into BHK-21 cells along with appropriate controls. Transfection was performed with 119 

either 0.3 µg or 1 µg of in vitro-transcribed RNA per well. Total RNA was extracted at 8 hours post-120 

transfection when GFP expression was maximal (Fig. S1), replicon genomes amplified by RT-PCR 121 

(Fig. S2) and subcloned into a plasmid vector. To identify a limited selection of different transposon 122 

insertions, a total of 38 individual clones were selected at random and the location of transposon 123 

insertion determined by DNA sequencing. The name of each transposon insertion derived from the 124 

nucleotide of the corresponding NS protein after which insertion occurred (Tables 1 and 2). 125 

 126 

Of the 16 clones isolated from transfection of 0.3 µg of RNA, 11 insertions were located in the C-127 

terminal region of 3A, downstream of the predicted transmembrane region. Two insertion sites were 128 

within the multiple copies of 3B (one within 3B1 and one within 3B2), with two insertions in 2C and 129 

one within the 3Dpol coding region. Similarly, of the 22 clones isolated after transfection of 1 µg of the 130 

transposon library, 7 insertions were in 3A, with one insertion in 3B1 and 3B3, respectively. In 131 

addition, using this higher RNA concentration, 4 and 9 insertions were identified in 3Cpro and 3Dpol, 132 

respectively. Only two common insertions were isolated after transfection with either RNA 133 

concentration, all within the 3A C-terminal region (3A229 and 3A339). 134 

 135 

To broadly screen a selection of the identified transposon insertions for replication competence, 136 

eleven 3A transposon insertions, one insertion in each of 3B1-3 and all the isolated 2C, 3Cpro and 3Dpol 137 

insertions were introduced individually into the pGFP-PAC replicon. RNA transcripts were generated 138 

and transfected into BHK-21 cells along with a wild-type positive control, and a replication-defective 139 
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negative control construct bearing a large deletion to the polymerase gene (3Dpol), and replication 140 

monitored by GFP expression hourly over a 24 hour period using an IncuCyte Dual Colour Zoom® 141 

FLR. Relative replication is shown at maximal GFP expression at 8 hours post-transfection (Fig. 1). 142 

 143 

All except one of the replicon constructs containing transposon insertions in 3A demonstrated s 144 

replication above that of the replication-defective polymerase knockout control (indicating the level of 145 

input translation), the exception being the insertion at nucleotide 3A341 which was replication-146 

incompetent. All 3B transposon insertions tested also demonstrated replication almost equivalent to 147 

the wild-type construct. The single 3Dpol insertion identified after transfection of 0.3 µg of RNA from 148 

the transposon mutated replicon library (3D450) replicated to wild-type levels, whereas none of the 149 

3Cpro or 3Dpol insertions identified after transfection of 1 µg of library RNA were replication-150 

competent, and only expressed GFP equivalent to the polymerase knockout control construct (3Dpol). 151 

Neither of the isolated 2C transposon insertions showed replication in BHK-21 cells. Notably, a 152 

limited number of the replicon constructs containing transposon insertions demonstrated GFP 153 

expression below that of the negative control, polymerase knockout replicon, in particular insertions 154 

3A341 and 3D747 as well as possibly both 2C insertions. 155 

 156 

Modifications of the C-terminal portion of FMDV 3A have been shown to limit replication of the 157 

virus in bovine cells (Beard & Mason, 2000; Li et al., 2010; Pacheco et al., 2013; Pacheco et al., 158 

2003). To investigate whether the identified replication-competent transposon insertions could 159 

replicate in bovine cells, replicons bearing replication-competent insertions were transfected into 160 

MDBK cells along with controls and GFP expression monitored over 24 hours (Fig. 2). 161 

 162 

The majority of 3A insertions completely abrogated or severely impaired replication in MDBK cells, 163 

with exception of the 3A339, 3A358 and 3A387 insertions which maintained over 50% replication. 164 

The identified transposon insertions in 3B1 and 3B3 were essentially replication-incompetent in 165 

MDBK cells, whereas the 3B2 insertion tested maintained replication equal to the wild-type replicon. 166 
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The replication-competent 3Dpol insertion (3D450) maintained good replication in MDBK cells, with 167 

GFP expression approximately 50% of that of the wild-type replicon.  168 

 169 

Generation of tagged FMDV replicons 170 

Identification of replication-competent insertion sites suggests potential locations for insertion of 171 

alternative exogenous sequences such as epitope tags. Two frequently used small epitope tags, FLAG 172 

(DYKDDDDK) and HA (YPYDVPDYA), were chosen for insertion into two different location in 3A 173 

(after nucleotides 303 and 358) and the one functional 3Dpol insertion site (nucleotide 450) (Fig. 3a), 174 

all three insertion sites demonstrating high levels of replication in BHK-21 cells. Insertion site 3A303 175 

was selected for epitope labelling, based on the inserted transposon sequence at this location 176 

(DCGRTDDK) which partially resembled a FLAG epitope and 3A358 was selected since this 177 

demonstrated moderate replication in MDBK cells. Replication of the epitope tagged replicon 178 

constructs was assessed in both BHK-21 and MDBK cells along with the relevant controls (Fig. 3b 179 

and 3c). 180 

 181 

Replicons bearing either a FLAG or HA tag in either of the 3A insertion sites tested showed levels of 182 

replication equivalent to the wild-type replicon in BHK-21 cells, but little or no replication in the 183 

bovine cell line, MBDK. In contrast, insertion of either epitope tag in the 3D450 insertion site 184 

completely abrogated replication, even in BHK-21 cells. 185 

 186 

Western blot analysis of BHK-21 cells transfected with FLAG and HA labelled 3A replicons with 187 

anti-FLAG and anti-HA primary antibodies detected epitope labelled 3A and 3A precursors as 188 

expected (Fig. 3d). Probing with an anti-3A monoclonal antibody also detected epitope-labelled 189 

3A303, but failed to detect either 3A358FLAG or 3A358HA, possibly because genetic insertions in 190 

this position disrupt the epitope recognised by this monoclonal antibody or insertion of epitope tags 191 

disrupts the native folding of 3A when introduced into this position.  192 

 193 
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To demonstrate that the epitope tagged replicons could be used for immunofluorescent detection of 194 

3A, BHK-21 cells were transfected with the 3A303FLAG or 3A358FLAG replicon, fixed at 8 hours 195 

post-transfection, probed with an anti-FLAG antibody and analysed by confocal microscopy (Fig. 3e). 196 

As would be anticipated, FLAG staining was clearly detected only in cells expressing the GFP 197 

transgene, used as a marker for replicon replication, and demonstrated a diffuse punctate staining 198 

concordant to that previously described for FMDV 3A (Garcia-Briones et al., 2006; Gonzalez-199 

Magaldi et al., 2014; Gonzalez-Magaldi et al., 2012; O'Donnell et al., 2001). 200 

 201 

Replication-defective 3A mutations can be complemented in trans 202 

Previous studies with FMDV and other picornaviruses have demonstrated that certain non-structural 203 

protein functions can be rescued in trans by co-expression with a replication competent helper virus 204 

or replicon (Garcia-Arriaza et al., 2005; Giachetti et al., 1992; Teterina et al., 1995; Tiley et al., 2003; 205 

Towner et al., 1998). All of the 3A transposon insertions identified in this study were located within 206 

the 3A C-terminus, downstream of the predicted transmembrane domain, and the majority were 207 

replication-competent in BHK-21 cells. The one exception was the single replication-defective 3A 208 

transposon insertion site identified, 3A341, which was isolated after transfection with the higher 209 

amount of the mutant replicon library, along with multiple other replication-defective 3Cpro and 3Dpol 210 

insertions. We hypothesised that selection using this higher concentration of transposon library was 211 

fostering an environment favourable for replication-defective insertions to be replicated in trans due 212 

to co-transfection with replication competent genomes in the library. 213 

 214 

To investigate this possibility the replication-defective 3A341 transposon insertion was introduced 215 

into a replicon construct in which the GFP-PAC reporter cassette had been replaced by mCherry red 216 

fluorescent protein (Tulloch, Luke, Nicholson and Ryan, manuscript in preparation). In addition, two 217 

negative control replicons were generated containing either a double point mutation to the 3Dpol active 218 

site GDD motif (3DpolGNN) or the same 3Dpol deletion as used previously (3Dpol). Equivalent 219 

‘helper’ replicon constructs were generated containing the GFP reporter gene from Ptilosarcus 220 

(ptGFP) in place of mCherry (Tulloch, Luke, Nicholson and Ryan, manuscript in preparation), 221 
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allowing for discrimination of replication between the replication-defective mCherry construct and the 222 

‘helper’ replicon. We theorised that the use of ‘helper’ replicons would allow for expression of wild-223 

type 3A from the native precursor(s) with the level and timing of protein expression balanced to that 224 

of the mutant replicon. 225 

 226 

The ptGFP replicons were subsequently assessed for their ability to support replication of the 227 

mCherry replicons bearing replication-defective mutations (Fig. 4). For the replicon bearing the 228 

replication-defective mutation 3A341, trans-complementation was observed when this was co-229 

transfected with the wild-type ptGFP ‘helper’ construct, with an approximate 2-fold significant 230 

increase in mCherry expression. Neither of the replication-defective polymerase constructs (ptGFP-231 

3DpolGNN or ptGFP-3Dpol) were able to rescue the 3A mutant. However the 3Dpol active site point 232 

mutant construct could itself be efficiently rescued in trans by co-transfection with a wild-type helper 233 

replicon. Interestingly, however, the mutant construct bearing a replication defective 3Dpol deletion 234 

(mCherry-3Dpol) was not rescued by any of the ‘helper’ replicons, with only a small but non-235 

significant decrease in mCherry observed upon co-transfection with the wild-type ptGFP replicon. 236 

Thus this data would suggest that whereas both 3A and 3Dpol can be complemented in trans, not all 237 

functions of 3Dpol can be rescued by co-transfection indicating some cis preferential functions of 238 

certain NS proteins. 239 

 240 

Discussion 241 

Understanding the replication of positive strand RNA viruses is key to the development of novel 242 

therapeutic strategies. Despite over 50 years of intense study, relatively little is known about the 243 

molecular interactions within the picornavirus RNA replication complex and the functions of some 244 

viral proteins have not yet been fully elucidated. 245 

 246 

Here, we have conducted transposon insertional mutagenesis of the FMDV non-structural polyprotein 247 

to find some of the locations within individual NS proteins which could accept insertions of epitope 248 
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tags whilst maintaining replicon replication. Selection from the transposon-mutated replicon pool was 249 

conducted at both low and 3x higher concentrations of replicon library RNA. At both concentrations, 250 

replication-competent insertions sites were readily identified in 3A, with 16 separate 3A insertions 251 

identified across the two concentrations. Notably, all insertion sites were located within the C-252 

terminal unstructured region, with the most N-terminal insertion occurring immediately following the 253 

terminal residue of the predicted transmembrane domain (Fig. S3). It is remarkable that for a protein 254 

of 459 nucleotides, no insertions were identified in the first 229 nucleotides, strongly implicating the 255 

N-terminal half of the protein as essential for viral RNA replication. Furthermore, transposon 256 

mutagenesis of the poliovirus genome by Teterina et al, only isolated functional 3A insertion sites 257 

within the first 11 amino acid residues of the protein and not within the N-terminal alpha helical and 258 

hydrophobic domains, further highlighting the importance of these structures in picornaviral 259 

replication. The N-terminal portion of FMDV 3A is predicted to contain two alpha helices involved in 260 

3A homo-dimerisation followed by a hydrophobic transmembrane domain spanning residues ~59 – 76 261 

(Gonzalez-Magaldi et al., 2012). In comparison to the N-terminal region, the C-terminal portion of 262 

FMDV 3A is relatively non-conserved and is extended by some 60 amino acids compared to most 263 

other picornaviruses. Mutations, insertions and deletions within the C-terminal region of 3A have 264 

implicated its importance for pathogenicity and host range with natural viral isolates with large 265 

deletions in this region having been identified (such as residues 85-102, 93-102 and 133-143) 266 

(Knowles et al., 2001; O'Donnell et al., 2001; Pacheco et al., 2013; Pacheco et al., 2003). Deletion of 267 

amino acids 93-102 of 3A has been observed in natural isolates of FMDV and this correlates with an 268 

attenuated phenotype in bovines, but normal porcine pathogenicity and replication both in vitro and in 269 

vivo (Beard & Mason, 2000; Knowles et al., 2001; Li et al., 2010; 2011). However, it is not clear 270 

whether the 3A deletion alone is responsible for this phenotype and the molecular basis for the host 271 

specific restriction of replication is unknown. It has been demonstrated by immunofluorescent and 272 

FRAP studies that deletions within either the N- or C-terminal regions of 3A can increase protein 273 

mobility and alter the cellular distribution in the absence of viral replication, an observation 274 

potentially related to the interaction of 3A with the cellular protein DCTN3, which has been 275 

implicated in the pathogenicity phenotype in cattle (Gladue et al., 2014; Gonzalez-Magaldi et al., 276 
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2014). Host-cell restriction of 3A is of particular significance, since some of the 3A insertions tested 277 

allow for replication in BHK-21 cells, while restricting the replication in the MDBK bovine cell line. 278 

Further investigation is warranted into the 3A-mediated host cell phenotype, in particular the C-279 

terminal unstructured half of the protein and particular care must be taken when choosing the cellular 280 

context for understanding the molecular basis of viral replication. 281 

 282 

Transposon insertions were identified within all three copies of 3B. However previous studies have 283 

suggested the possibility of redundancy within the repeated 3B proteins and it is not known at present 284 

whether 3Bs bearing insertions retain the function of the protein (Arias et al., 2010; Falk et al., 1992). 285 

A tagged poliovirus has been generated containing an 8 amino acid HA tag after residue 17 of 3B 286 

which displayed wild-type growth properties, suggesting some of the 3B insertion sites identified here 287 

may retain protein function. Interestingly however the insertions tested in both 3B1 and 3B3 abolish 288 

replication in the bovine cell line MDBK, whilst maintaining good replication in BHK-21 cells. In 289 

contrast, the insertion in 3B2 demonstrated good replication in both cell lines, potentially suggesting a 290 

role of the various 3B proteins in regulating host-cell restriction.  291 

 292 

One striking observation was the difference in the numbers of 3Cpro and 3Dpol insertions identified 293 

using low vs high concentration of mutated library for selection. At the lower library concentration no 294 

insertional sites were identified within 3Cpro and a single transposon insertion was identified within 295 

3Dpol (3D450), which replicated efficiently in both BHK-21 and MDBK cells. This insertion is located 296 

in an unstructured region at the end of α5 on the outside of the finger domain (Fig. S4), which despite 297 

the conservation between picornavirus 3Dpol polymerases, was not identified in the transposon 298 

mutagenesis study of poliovirus (Teterina et al., 2011a). In contrast, selection at the higher RNA 299 

concentration readily yielded 3Cpro and 3Dpol insertions, all of which were found to completely 300 

abrogate replicon replication in isolation, as did the only replication-defective 3A insertion site 301 

identified (3A341). However, it must be noted that the observed preference for 3Cpro and 3Dpol 302 

insertions (at the higher concentration of library RNA) may be an unintentional consequence of the 303 
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non-exhaustive screening approach used in selecting a limited number of colonies at each RNA 304 

concentration from a relative large transposon library. 305 

The frequencies at which replication-defective insertions were identified using a high RNA 306 

concentration led us to hypothesise that transfection of greater amounts of replicon RNA provided 307 

conditions in which replication-defective genomes were being maintained or replicated in trans, by 308 

co-incidental co-transfection with genomes containing replication-permissive insertions. In 309 

accordance with this hypothesis, replication of a construct bearing the lethal replication defective 3A 310 

insertion was rescued by simultaneous co-transfection of a wild-type ‘helper’ replicon. Trans-311 

complementation of replication-defective NS protein mutations has been described within some NS 312 

proteins of picornaviruses including poliovirus 3A (Giachetti et al., 1992; Teterina et al., 1995; 313 

Towner et al., 1998) and some FMDV proteins (Garcia-Arriaza et al., 2005; Tiley et al., 2003), 314 

however to our knowledge, this is the first study to demonstrate rescue in trans of a replication-315 

defective FMDV 3A mutation. 316 

 317 

Due to the limited structural information on the C-terminal domain of 3A it is hard to speculate why 318 

the 3A341 insertion renders the replicon replication-defective. The observation that this replication-319 

defective lesion can be complemented in trans and that insertions at positions 3A339 and 3A342 were 320 

tolerated in both hamster and bovine cells suggests a disruption in 3A protein function, as opposed to 321 

effects at the RNA level. Further characterisation of the 3A341 insertion may be valuable in yielding 322 

information as to the function of the FMDV 3A C-terminal region. 323 

 324 

Having identified functional transposon insertion sites, we generated replicon constructs containing 325 

epitope tags in either 3A or 3Dpol. FLAG or HA tags were successfully inserted into 2 separate 326 

locations of 3A to yield replication-competent replicons that could be characterised by Western 327 

blotting and immunofluorescence analysis. Incorporation of either tag into the 3A358 position 328 

abolished recognition by the anti-3A 2C2 mono-clonal antibody, possibly due to disruption of the 329 

monoclonal antibody epitope or disruption of the native 3A C-terminal folding. Incorporation of 330 

either tag into the 3A303 position allowed for maintained recognition for the antibody, however 331 
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resulted in slight changes of 3A mobility by SDS-PAGE, particularly in the case of the FLAG epitope, 332 

possibly due to the change in the local charge environment in this unstructured region. Insertions of 333 

functional epitope tags have previously been reported in the N-terminal region of poliovirus 3A, albeit 334 

with some deleterious effects on replication, and within the C-terminal region of FMDV 3A at similar 335 

locations as described here (Li et al., 2012; Ma et al., 2015; Teterina et al., 2011b). However, despite 336 

the success of epitope tagging 3A in this study, 3Dpol did not tolerate the insertion of epitope tags at 337 

the single replication-competent transposon insertion site identified, presumably due to the nature of 338 

the sequence of the epitope insertion at this location.  339 

 340 

In comparison to P3, few insertions were identified within P2, either in this study which only 341 

identified 2 replication-defective insertions in 2C, or in the previous transposon mutagenesis study of 342 

poliovirus where only one replication-competent insertion was identified at the N-terminus of 2B 343 

(Teterina et al., 2011a). Together these data would suggest P2 is relatively less amenable for mutation 344 

or modification when compared to P3 and a more focused study using transposon mutation of P2 345 

alone may be required to discover replication-competent insertions in FMDV 2B or 2C non-structural 346 

proteins. However, the methodologies used to identify insertions in both this and the previous study 347 

by Tererina et al were non-exhaustive and it is therefore possible that tolerated P2 insertions could be 348 

identified using alternative methodologies, such as next generation sequencing. 349 

 350 

In conclusion, we have used random transposon-mediated mutagenesis to identify replication tolerant 351 

insertion sites within the P3 region of the FMDV NS polyprotein and have exploited these sites for the 352 

incorporation of epitope tags which will be invaluable for downstream studies.  Furthermore, selection 353 

using high concentrations of mutagenised replicon RNA enabled the identification of replication-354 

defective insertions which could be rescued in trans. Further investigation of such replication-355 

defective mutations is ongoing and may yield insights into the mechanisms of picornaviral RNA 356 

replication. 357 

 358 

Materials and Methods 359 
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Cells lines 360 

BHK-21 and MDBK cells were obtained from the ATCC (LGC Standard) and maintained in 361 

Dulbecco modified Eagle Medium with glutamine (Sigma-Alrdich) supplemented with 10 % foetal 362 

calf serum (FCS), 50 U/ml penicillin and 50 µg/ml streptomycin.  363 

 364 

Plasmid constructs 365 

The FMDV replicon plasmid constructs pGFP-PAC and pGFP-PAC-3Dpol polymerase knockout 366 

control have been previously described (Tulloch et al., 2014).  367 

Generation of the transposon-mutated replicon library first required transfer of the FMDV non-368 

structural polyprotein coding region into a sub-cloning vector for mutagenesis. Therefore, the XmaI - 369 

BamHI fragment from pGFP-PAC was transferred to XmaI - BamHI digested pUC18 (Invitrogen) to 370 

regenerate pUC-2A-3D. The transposon mutagenesis system Mutation Generation System Kit (Life 371 

technologies) was employed following manufacturer’s instruction, for transposition of a 372 

chloramphenicol resistant transposon, on construct pUC-2A-3D to generate the plasmid library pUC-373 

2A-3D-TnC, in which each plasmid contained on average a single chloramphenicol-resistant 374 

transposon insertion. Mutagenised clones were transformed in ElecoTen Ultracompetent cells 375 

(Stratagene), selected for resistance to chloramphenicol plus kanamycin and total colonies collected. 376 

The library was estimated to contain over 20,000 clones. This library was subsequently digested with 377 

XmaI and BamHI and the resulting approximately 4.7 kb fragment cloned back into pGFP-PAC and 378 

selected against chloramphenicol and ampicillin to remove wild-type replicon and so create the 379 

replicon library pGFP-PAC-TnC. The library pGFP-PAC-TnC was digested with NotI to remove the 380 

chloramphenicol resistance cassette, and religated to make pGFP-PAC-Tn, a replicon library 381 

containing 15 nucleotide insertions randomly located across the FMDV NS polyprotein coding region.  382 

To introduce individual transposon insertions into the replicon plasmid, the XmaI - BamHI fragment 383 

from pGFP-PAC were replaced by an equivalent XmaI - BamHI fragment obtained from the cloned 384 

products derived from the initial transposon selection experiment.  385 

 386 

In vitro transcription 387 
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Replicon plasmid DNA (5 µg) was linearised with HpaI (NEB) or AscI (NEB), as appropriate, 388 

purified by phenol-chloroform extraction, ethanol precipitated and redissolved in RNase-free water. 389 

The linear DNA was used in a 50 µl in vitro transcription reaction containing transcription buffer and 390 

BSA, treated with RNAsecure reagent (Ambion) following manufacturers recommendation, before 391 

the addition of 40 units T7 polymerase (NEB), 50 units RNaseOut (Invitrogen) and 8 mM rNTPs 392 

(Roche). The in vitro transcription reaction was incubated at 32ºC for 4 hours after which 2.5 units of 393 

RQ1 DNase (Promega) were added, followed by incubation at 37ºC for 30 minutes before the RNA 394 

was recovered with RNA Clean & Concentrator-25 spin columns (Zymo Research) following 395 

manufacturer’s instructions. Transcript integrity was assessed by MOPS-formaldehyde gel 396 

electrophoresis prior to transfection.  397 

 398 

Cell transfection and fluorescent reporter assays 399 

BHK-21 and MDBK cells were seeded into tissue culture plates at 5x104 cells/cm2 and 6.25x104 400 

cells/cm2, respectively and allowed to adhere for 16 hours. Immediately prior to transfection cells 401 

were washed briefly in PBS and media replace with 100 µl/cm2 of Minimal Essential Medium 402 

(Invitrogen) supplemented with 10 % FCS, 50 U/ml penicillin and 50 µg/ml streptomycin, 1 X non-403 

essential amino acids, and 2 mM glutamine. Duplicate wells were transfected with replicon transcripts 404 

using Escort I transfection reagent (Sigma) or Lipofectin (Life technologies) as indicated, following 405 

manufacturer’s instructions, using 0.25 µg/cm2 or 0.5 µg/cm2 total RNA, respectively. For co-406 

transfections, equal amounts of the two RNA transcripts were transfected simultaneously.  407 

Fluorescent protein expression and live cell imaging was analysed using an IncuCyte Dual Colour 408 

Zoom® FLR (Essen BioScience) within a 37ºC humidified CO2 incubator scanning hourly up to 24-409 

hours post-transfection collecting multiple images per well. Images were analysed using the 410 

associated Zoom® software with the integrated algorithm measuring fluorescent object counts per 411 

well as previously described (Forrest et al., 2014; Tulloch et al., 2014). Data is presented to show 412 

GFP expression at 8 hours post-transfection as a measure of maximum replication. 413 

 414 

Isolation of transposon insertions 415 
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Following BHK-21 cell transfection of in vitro transcribed replicon RNA or replicon library RNA, 416 

cells were detached by trypsin and washed once in ice cold PBS. Total RNA was extracted from cell 417 

pellet using TRIzol® reagent (Life Technologies) following manufacturer’s protocol. Total RNA was 418 

treated with RQ1-DNase (Promega) and FMDV cDNA amplified using Superscript® II (Life 419 

Technologies) following manufacturer’s protocol. FMDV genomes were amplified using Phusion® 420 

High-Fidelity DNA polymerase (NEB) and blunt-end ligated into pCRBlunt. Individual colonies were 421 

isolated and the location of transposon insertions identified by DNA sequencing. 422 

 423 

Western blotting 424 

Immunoblotting was carried out as previously described (Forrest et al., 2014). Briefly, cells were 425 

washed in PBS, detached by trypsin, washed in PBS before lysis in radioimmunoprecipitation assay 426 

buffer (0.1 % sodium dodecyl sufate [SDS], 0.5 % sodium deoxycholate, 1 % NP-40, 150 mM sodium 427 

chloride, 50 mM Tris pH 8.0, 1 mM EDTA) supplemented with 2X cOmplete® protease inhibitor 428 

(Roche) and incubated on ice for 5 minutes before clarification by centrifugation. Cell lysates were 429 

separated by SDS-PAGE using miniProtean gel system (Biorad), followed by transfer to PVDF 430 

membrane (Bio-Rad) using XCell SureLock® Mini-Cell wet transfer apparatus (Life technologies). 431 

Membranes were blocked with 10 % dried milk, 0.1 % Tween-20 (Sigma-Aldrich) in Tris-buffered 432 

saline. Primary antibodies used were rabbit anti-3D 397 polyclonal, mouse anti-3A 2C2 monoclonal 433 

(Prof. Francisco Sobrino, Centro De Biologia Molecular Severo Ochoa, Madrid, Spain), mouse anti-434 

FLAG M2 (Sigma-Aldrich) and mouse anti-HA (Sigma-Aldrich) and detected with anti-mouse-HRP 435 

or anti-rabbit-HRP (Sigma-Aldrich), as appropriate. 436 

 437 

Confocal microscopy 438 

BHK-21 cells seeded onto glass coverslips were transfected with in vitro transcripts, fixed at indicated 439 

time points with 4 % paraformaldehyde, washed in PBS and permeabilised in saponin buffer (0.1 % 440 

saponin, 10 % FCS, 0.1 % sodium azide) for 1 hour at 4ºC. Primary and secondary antibodies were 441 

incubated in saponin buffer for 2 hours at room temperature with three washes in saponin buffer 442 

between steps. Primary antibody anti-FLAG M2 (Sigma-Aldrich) was detected with anti-mouse-443 
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Alexa568 (Life technologies) secondary antibodies. Following a final wash in PBS, coverslips were 444 

mounted in VECTASHIELD mounting medium with DAPI (Vectorlabs) and images captured using a 445 

Zeiss LSM-700 confocal microscope. 446 

 447 
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Table 1 634 

Name Library Isolation Insertion 
Site 

Nucleotide insertion Amino Acid Sequence 

2C17 0.3 µg p1 CATCAA TCAACTGCGGCCGCATC KARDINCGRINDIFA 

2C842 0.3 µg p1 CAAGAC AGACTGCGGCCGCAAAG KRMQQDCGRKDMFKP 

3A229 0.3 µg p1 TCCGTG CGTTGCGGCCGCATCCG IVIMIRCGRIRETRK 

3A233 0.3 µg p1 TGAGAC ATGCGGCCGCACGTGAG VIMIRDAAARETRKR 

3A266 0.3 µg p1 TGCAGT CAGTGCGGCCGCATGCA MVDDAVRPHAVNEY 

3A274 0.3 µg p1 ATGAGT GAGTTGCGGCCGCATGA DAVNELRPHEYIEKA 

3A282 0.3 µg p1 TTGAGA GATGCGGCCGCAATTGA VNEYIDAAAIEKANI 

3A339 0.3 µg p1 CCTCTA TCTATGCGGCCGCACTC AEKSPLCGRTLETSG 

3A342 0.3 µg p1 TAGAGA GAGATGCGGCCGCAAGA EKSPLEMRPQETSGA 

3A350 0.3 µg p1 AGCGGC CGGCTGCGGCCGCAGCG SPLETSGCGRSGAST 

3A354 0.3 µg p1 GCGCCA GCCAGCTGCGGCCGCAC ETSGASCGRTSTVGF 

3A387 0.3 µg p1 TCCCAG CCAGTGCGGCCGCACCC RERTLPVRPHPGQKA 

3A442 0.3 µg p1 AGGAGC GTGCGGCCGCATGAGGA QPVEVRPHEEQPQ 

3B17 0.3 µg p1 CCTACG TACGCTGCGGCCGCATA EGPYAAAAYAGPLE 

3B225 0.3 µg p1 GAGACA GACTGCGGCCGCAGAGA AGPMERLRPQRQKPL 

3D450 0.3 µg p1 ATGGAG GGATGCGGCCGCAATGG ALKLMDAAAMEKREY 

 635 

Table 1. Transposon insertions identified after selection following transfection with 0.3 µg of 636 

replicon library RNA. The location of each insertion identified is named with the number indicating 637 

the nucleotide residues of the corresponding FMDV NS protein after which insertion occurred. The 638 

dinucleotide at which insertion occurred is shown in bold. The inserted nucleotide sequence and 639 

amino acid translation is underlined.  640 

  641 
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Table 2 642 

Name Library Isolation Insertion 
Site 

Nucleotide Insertion Amino Acid Sequence 

3A229 1 µg p1 TCCGTG CGTTGCGGCCGCATCCG IVIMIRCGRIRETRK 

3A234 1 µg p1 TGAGAC AGTGCGGCCGCAGTGAG IMIRECFRSETRKRM 

3A301 1 µg p1 CCACAG ACAGTGCGGCCGCACAC KANITTVRPHTDDKT 

3A303 1 µg p1 CACAGA CAGATTGCGGCCGCACA ANITTDCGRTDDKTL 

3A339 1 µg p1 CCTCTA TCTATGCGGCCGCACTC AEKSPLCGRTLETSG 

3A341 1 µg p1 CTCTAG CTAGTGCGGCCGCATCT AEKSPLVRPHLETSG 

3A358 1 µg p1 CCAGCA AGTGCGGCCGCAGCCAG TSGASAAAASTVGFR 

3B111 1 µg p1 CGCCGG CCGGATGCGGCCGCACC EGPYAGCGRTGPLER 

3B311 1 µg p1 GAGGGA GGGTGCGGCCGCAGAGG EGPYEGAAAEGPVKK 

3C1 1 µg p1 TGAGAG AGTGCGGCCGCACTGAG KNLIVTECGRTESGA 

3C57 1 µg p1 GTTGAG TGAGTGCGGCCGCATTG NTKPVECGRIELILD 

3C196 1 µg p1 AGTGAC TGACTGCGGCCGCAGTG AMTDSDCGRSDYRVF 

3C319 1 µg p1 ACAGCA AGCTGCGGCCGCAACAG KHFDTAAAATARMKK 

3D306 1 µg p1 ATCAAG CAAGTGCGGCCGCATCA IYEAIKCGRIKGVDG 

3D489 1 µg p1 CTGAAG GAATGCGGCCGCACTGA CQTFLNAAALKDEIR 

3D525 1 µg p1 CCGGTA GGTGCGGCCGCAGCCGG EKVRAGAAAAGKTRI 

3D651 1 µg p1 TGCAAC CAACTGCGGCCGCAGCA SAVGCNCGRSNPDVD 

3D657 1 µg p1 CCCTGA CTGATTGCGGCCGCACT VGCNPDCGRTDVDWQ 

3D716 1 µg p1 GGACTA ATGCGGCCGCAGTGGAC WDVDAAAVDYSAFD 

3D738 1 µg p1 GCTAAT TAATGCGGCCGCAGCTA SAFDANAAAANHCSD 

3D747 1 µg p1 TGTAGT TAGTTGCGGCCGCAGTA DANHCSCGRSSDAMN 

3D750 1 µg p1 TAGTGA GTTGCGGCCGCAGTAGT ANHCSCGRSSDAMNI 

 643 

Table 2. Transposon insertions identified after selection following transfection with 1 µg of 644 

replicon library. The location of each insertion identified is named with the number indicating the 645 

nucleotide residues of the corresponding FMDV non-structural protein after which insertion occurred. 646 

The dinucleotide at which insertion occurred is shown in bold. The inserted nucleotide sequence and 647 

amino acid translation is underlined. 648 

 649 

  650 
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Figure Legends 651 

Figure 1. Replication of individual transposon insertions in BHK-21 cells. (a) Cartoon of the 652 

FMDV replicon genome showing the location of transposon insertions chosen for analysis. Number 653 

indicating the nucleotide residues of the corresponding FMDV non-structural protein after which 654 

insertion occurred (b) BHK-21 cells seeded into 12-well plates were allowed to adhere for 16 hours 655 

before transfection with replicon transcripts containing individual transposon insertions using Escort 656 

reagent. Wild-type GFP-PAC replicon (wt) and polymerase knockout (Δ3Dpol) constructs were 657 

included the latter as a negative control for input translation. GFP expression was monitored hourly 658 

using an IncuCyte Zoom® Dual Colour FLR and analysed using the integrated software. Data shown 659 

represents mean GFP positive cells per well at 8 hours post-transfection (n = 2, ± SEM).  660 

 661 

Figure 2 Replication of individual transposon insertions in MDBK cells. MDBK cells seeded into 662 

12-well plates were allowed to adhere for 16 hours before transfection with replicon transcripts 663 

containing individual transposon insertions after indicated nucleotide using Escort reagent. Wild-type 664 

GFP-PAC replicon (wt) and polymerase knockout (Δ3Dpol) constructs were included, the latter as a 665 

negative control for input translation. GFP expression was monitored hourly using an IncuCyte 666 

Zoom® Dual Colour FLR and analysed using the integrated software. Data shown represents mean 667 

GFP positive cells per well at 8 hours post-transfection (n = 2, ± SEM).  668 

 669 

Figure 3. Replication of epitope tagged FMDV replicons. (a) Cartoon of the FMDV replicon 670 

genome showing the positions of the inserted 3A or 3D epitope tags. (b) BHK-21 or (c) MDBK cells 671 

seeded into 24-well plates were allowed to adhere for 16 hours before transfection with replicon 672 

transcripts containing epitope tags using Lipofectin reagent. Wild-type GFP-PAC replicon (wt) and 673 

polymerase knockout (Δ3Dpol) constructs were included as controls. GFP expression was monitored 674 

hourly using an IncuCyte Zoom® Dual Colour FLR and analysed using the integrated software. Data 675 

shown represents mean GFP positive cells per well at 8 hours post-transfection (n = 2, ± SEM). (d) 676 

BHK-21 cells were transfected with epitope tagged 3A and 3D constructs in addition to controls, 677 

protein lysates prepared at 8 hours post transfection and probed by Western blot for FLAG and HA 678 

expression plus 3A and 3D non-structural proteins and GAPDH loading control. (e) Simultaneously 679 

BHK-21 cells seeded onto glass coverslips were fixed in formaldehyde at 8 hours post-transfection 680 

before being stained for anti-FLAG (red), GFP expression (green) and cell nuclei counterstained with 681 

DAPI (blue). Images were captured by confocal microscopy. Scale bar is 50 µm. 682 

 683 

Figure 4. Replication-defective 3A insertions can be complemented in trans. BHK-21 cells seeded 684 

into 24-well plates were allowed to adhere for 16 hours before co-transfection using Lipofectin 685 

reagent with mCherry replicons containing either a 3Dpol or 3A replication-defective mutation or wild-686 

type control, and a wild-type (ptGFP) or polymerase knockout helper replicons expressing ptGFP 687 

(ptGFP 3DpolGNN and ptGFP Δ3Dpol) or yeast tRNA as a negative control. Both mCherry and ptGFP 688 

expression were monitored hourly using an IncuCyte Zoom® Dual Colour FLR and analysed using the 689 

integrated software. Data shown represents mean GFP positive cells per well at 8 hours post-690 

transfection (n = 3, ± SEM, * = p<0.05).  691 

 692 
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Figure S1. Replication of the transposon-mutated replicon library. BHK-21 cells seeded into 12-693 

well plates were allowed to adhere for 16 hours before transfection with transposon-mutated replicon 694 

library using Escort reagent. Wild-type GFP-PAC (wt) and polymerase knockout (Δ3Dpol) constructs 695 

were also included, the latter as a negative control for input translation. GFP expression was 696 

monitored hourly over 24 hours using an IncuCyte Zoom® Dual Colour FLR and analysed using the 697 

integrated software. Data shown represents typical GFP positive cells per well. Relative replication is 698 

at the maximal GFP expression approximately 8-9 hours post-transfection.  699 

 700 

Figure S2. RT-PCR from transposon-mutated library. Total RNA was extracted from BHK-21 701 

cells transfected with indicated transcripts at 8 hours post transfection. 2 µg of each extracted was 702 

used in reverse transcription reaction before replicon genomes were amplified by PCR. Control 703 

reactions containing no reverse transcriptase (RT) were set up in parallel. Amplified products were 704 

analysed by 1 % agarose gel electrophoresis. Samples were as follows: (1) positive control, (2) DNA 705 

ladder, (3) wt + RT, (4) Rep Tn library + RT, (5) 3Dpol + RT, (6) wt – RT, (7) Rep Tn library – RT, 706 

(8) 3Dpol – RT.  707 

 708 

Figure S3. Location of 3A transposon insertions. Cartoon schematic of the predicted 3A structure 709 

showing the two predicted alpha helices and the transmembrane region, with the amino acid sequence 710 

shown below. Arrows indicate the location of transposon insertions with the number indicating the 711 

nucleotide position after which insertion occurred. 712 

 713 

Figure S4. Location of the replication-competent 3D450 insertion. Cartoon of the 3Dpol crystal 714 

structure showing the conventional right-hand front view (a) and rotated ~ 180 (b). Motif C 715 

containing the active site motif and motif A are shown in green and blue, respectively. The 716 

replication-competent 3D450 insertion is situated between amino acids M149 and E150, highlighted 717 

in stick representation in hot pink positioned at the end of helix α5. 718 
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Figure S1. Replication of the transposon-mutated replicon library. BHK-21 cells seeded into 12-well 

plates were allowed to adhere for 16 hours before transfection with transposon-mutated replicon library 

using Escort reagent. Wild-type GFP-PAC (wt) and polymerase knockout (Δ3D
pol

) constructs were also 

included, the latter as a negative control for input translation. GFP expression was monitored hourly over 

24 hours using an IncuCyte Zoom® Dual Colour FLR and analysed using the integrated software. Data 

shown represents typical GFP positive cells per well. Relative replication is at the maximal GFP expression 

approximately 8-9 hours post-transfection.  
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Figure S2. RT-PCR from transposon-mutated library. Total RNA was extracted from BHK-21 cells 

transfected with indicated transcripts at 8 hours post transfection. 2 µg of each extracted was used in 

reverse transcription reaction before replicon genomes were amplified by PCR. Control reactions 

containing no reverse transcriptase (RT) were set up in parallel. Amplified products were analysed by 1 % 

agarose gel electrophoresis. Samples were as follows: (1) positive control, (2) DNA ladder, (3) wt + RT, 

(4) Rep Tn library + RT, (5) 3D
pol

 + RT, (6) wt – RT, (7) Rep Tn library – RT, (8) 3D
pol

 – RT.  
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Figure S3. Location of 3A transposon insertions. Cartoon schematic of the predicted 3A structure 

showing the two predicted alpha helices and the transmembrane region, with the amino acid sequence 

shown below. Arrows indicate the location of transposon insertions with the number indicating the 

nucleotide position after which insertion occurred. 
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Figure S4. Location of the replication-competent 3D450 insertion. Cartoon of the 3D
pol

 crystal structure 

showing the conventional right-hand front view (a) and rotated ~ 180 (b). Motif C containing the active 

site motif and motif A are shown in green and blue, respectively. The replication-competent 3D450 

insertion is situated between amino acids M149 and E150, highlighted in stick representation in hot pink 

positioned at the end of helix α5. 
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