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We present the realization of four different learning rules with a quantum dot memristor by tuning the 

shape, the magnitude, the polarity and the timing of voltage pulses. The memristor displays a large 

maximum to minimum conductance ratio of about 57000 at zero bias voltage. The high and low 

conductances correspond to different amounts of electrons localized in quantum dots, which can be 

successively raised or lowered by the timing and shapes of incoming voltage pulses. Modifications of the 

pulse shapes allow altering the conductance change in dependence on the time difference. Hence, we are 

able to mimic different learning processes in neural networks with a single device. In addition, the device 

performance under pulsed excitation is emulated combining the Landauer-Büttiker formalism with a 

dynamic model for the quantum dot charging, which allows explaining the whole spectrum of learning 

responses in terms of structural parameters that can be adjusted during fabrication such as gating 

efficiencies and tunneling rates. The presented memristor may pave the way for future artificial synapses 

with a stimulus-dependent capability of learning. 
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I. INTRODUCTION 

Memristors are fundamental passive circuit elements proposed by L. Chua in 1971.1 The fingerprint of 

memristors is a pinched hysteresis loop in the current-voltage-plane showing a state-dependent 

conductance.2 The state of a memristor is determined by previous charge flow through the device.3 Hence, 

the conductance can be precisely controlled by voltage pulses with different widths, amplitudes and 

shapes,4-6 which allows artificially mimicking synaptic functionalities.7-10 Synapses and the modification 

of their strength are crucial for learning and memory in neural networks.11,12 A model called spike-timing-

dependent plasticity (STDP) relates this modification to the time difference between incoming pre- and 

postsynaptic action potentials,13-16 which allows to detect the coincidence of two or more input signals.17,18 

Various modifications as a function of pulse timing have been reported for different synapses.19-21 For 

example, in hippocampal neurons, potentiation (increase) of the synaptic strength is observed when the 

post- follows the presynaptic pulse, while depression (decrease) occurs when the pre- follows the 

postsynaptic pulse (asymmetric Hebbian learning).16 This functionality can be successfully emulated with 

memristors4,22-26 and, empirically, it is described with exponential functions.14,27 Depending on the 

synapse type (excitatory or inhibitory), potentiation and depression can also occur for a reversed order of 

the pre- and postsynaptic pulses (asymmetric anti-Hebbian learning). The symmetric Hebbian and 

symmetric anti-Hebbian learning rules allow potentiation or depression to occur irrespectively of the 

relative timing of pre- and postsynaptic pulses.19 Recently, it was found that pattern completion in network 

models is most effective for symmetric learning rules.28 The different types of learning essentially depend 

on the synapse type and/or the computational task. Hence, the symmetric and asymmetric learning rules 

are beneficial for pattern completion and the recalling and storing of temporal sequences of action 

potentials, respectively.28,29 The four different learning rules were artificially emulated by varying 

electrical input signals in chalcogenide23,30,31 and metal oxide memristors32, and by varying optical input 

signals of metal-sulphide microfibers.33  
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We present the emulation of four learning rules with a quantum dot memristor where the conductance 

change corresponds to charge transfer between quantum dots (QDs) and a two-dimensional electron gas 

(2-DEG). The localized charge in the QDs can be controlled by tuning shapes, magnitudes and timing of 

voltage pulses. The large ratio of maximum to minimum conductance of 57000 at zero bias voltage 

provides high sensitivity and efficiency and allows reducing the relative effects of undesirable readout 

noise. A model describing the device performance and the charging and discharging processes when 

applying pulses within a critical voltage and time window is introduced. Hence, the conductance 

modification can be correlated to device parameters such as gate efficiencies and critical voltages for 

charging and discharging. 

 

II. DEVICE CHARACTERISTICS 

An electron microscope image of the device with the corresponding circuit diagram is shown in Fig. 1(a). 

A GaAs/AlGaAs heterostructure is grown by molecular beam epitaxy with site-controlled QDs positioned 

in a narrow channel. A detailed description of the fabrication techniques is given in Ref. 34. Short 

circuiting the drain contact with lateral gates provides the memristive operation.35-37 The pre- (Vpr) and 

postsynaptic (Vpo) voltage pulses are applied to the drain and source contacts and emulate the input signals 

of pre- and postsynaptic neurons, respectively. A resistance with 1 MΩ is used in series to the channel and 

the measurements are conducted at 4.2 K in the dark. The current-voltage-characteristic in Fig. 1(b) shows 

a pinched hysteresis loop with memductances of Gh = 0.8 and Gl = 1.4x10-5 µS around zero bias voltage. 

The Coulomb interaction of localized electrons with the nearby wire leads to the memductance ratio of 

around 57000.36 Thus the state variable of the present device corresponds to the amount of localized 

electrons.38 For voltage differences between the two terminals ΔV = Vpr - Vpo that exceed the threshold 

voltages for charging Vc ≈ -1.9 V and discharging Vd ≈ 3.9 V, the amount of charges is raised and lowered, 
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respectively.39 The switching between high and low conductances (see Fig. 1(b)) is comparable to other 

memristor realizations, e.g. the Al2O3/TiO2-x memristors reported in Ref. 32. The steep current increase at 

Vd occurs due to a fast discharging mechanism, while below Vd the device operates in a slow discharging 

regime of the QDs. The two discharging regimes (above and below Vd) have different timescales and are 

beneficial to perform arithmetic operations in tunable bases with more gradual conductance changes 

occurring at voltage pulse slightly below Vd.
39 

 

 

 

III. PULSE SHAPE - DEPENDENT STDP 

Fig. 1(c) shows the voltage pulses that are required and used to emulate the four learning rules and applied 

to the drain (red) and source (blue) contacts. The corresponding voltage differences between the pre- and 

postsynaptic pulses for positive time differences (Δtp > 0) are illustrated in Fig. 1(d). For different shapes 

of the pulses, the threshold voltages for charging or discharging can be exceeded. Emulating asymmetric 

Hebbian and anti-Hebbian learning is realized with pulses consisting of a positive and a negative 

amplitude. Shapes with amplitudes of different polarities with respect to the resting potential (zero for the 

presented shapes) are also observed in biological systems.40 The shape with positive and negative spikes 

allows controlling the voltage across the memristor solely by varying the time difference Δtp between the 

pulses. Similar pulses were used to emulate asymmetric Hebbian learning with other memristor 

realizations.26,30 Different pulse shapes are applied to investigate the emulation of input-dependent 

learning. Note that the pulses to mimic symmetric learning rules are symmetric in time, thus charging and 

discharging the QDs should not depend on the temporal order of the pulses, but on the absolute value of 

the time difference. The width of the pulses is 10 ms and the amplitudes are listed in Table 1. All pulse 

pairs are followed by a read-out pulse to determine the conductance of the device. The implementation of 
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the learning rules with different pulse shapes is motivated by biological systems, where varying shapes 

carry information about stimulus history41 or can be used to encode information42 or to classify neurons.43 

 

Fig. 2(a) shows the conductance G versus pulse number N for different Δtp and the pulses that emulate 

asymmetric Hebbian learning (see Fig. 1(c)). Before the measurements, the system is set to the same initial 

conductance G(N=0) = G0 ≈ 1.0 µS which corresponds to a specific amount n0 of charges in the QDs. 

Tuning the time difference allows to increase or decrease the conductance by discharging the QDs for 

Δtp = +2.4 ms and charging the QDs for Δtp = -4.0 ms, respectively. In Fig. 1(d), the voltage difference 

for the considered pulses exceeds Vd for positive time difference leading to the discharging.39 For negative 

time differences, |ΔV| exceeds |Vc|. 

 

Fig. 2(b) depicts the conductance versus N for different negative time differences and the same 

experimental configuration as in Fig. 2(a). The conductance after 10 pulses is lower for larger time 

differences. Thus the state variable for N =10 is controlled by the time difference between pre- and 

postsynaptic pulses. During programming (QD charging for negative time difference), the voltage 

difference across the memristor controls the maximum number of localized electrons in the QDs. In the 

range between -4.4 and -2.0 ms, the minimum value of ΔV is lowered for larger time differences and 

consequently more electrons can be localized. The conductance after 10 pulses, G10, as a function of the 

time difference is illustrated in Fig. 2(c). Within a critical range, G10 is strongly influenced by the time 

difference. After the application of 10 pulses with Δtp < -2.5 ms, the conductance is non-zero and varying 

time differences allow programming different memductance states, which may be exploited to realize 

multilevel memories.44,45 The horizontal lines in Fig. 2(c) indicate eight different states that can be 

programmed solely by tuning the time difference between pre- and postsynaptic pulses in step sizes of 
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0.2 ms. The data in Fig. 2(a) shows that intermediate values can also be realized leading to the storage of 

more than eight levels. 

 

Fig. 3(a) displays the relative conductance change ΔG = (G1 - G0) / G0 under the asymmetric Hebbian 

learning configuration (see Fig. 1(c)) corresponding to the data in Fig. 2(a), with G1 being the conductance 

after the first pulse. For a pulse separation of more than five milliseconds, the relative conductance change 

is zero. Note that the critical time window for conductance modifications ranges from -4 to +2 ms. For 

small |Δtp|, G is enhanced for positive and lowered for negative time differences. An inversion of the 

voltage pulses in combination with larger negative amplitude of the presynaptic pulse of -2.8 V 

corresponds to the asymmetric anti-Hebbian learning configuration (see Fig. 1(c)) and leads to positive 

and negative values of ΔG for Δtp < 0 and Δtp > 0, respectively, as depicted in Fig. 3(b). The voltage 

difference across the device for positive Δtp is displayed in Fig. 1(d) and, under the asymmetric anti-

Hebbian learning configuration, exceeds the threshold voltage for charging. In turn, for negative time 

differences (not shown in Fig. 1 (d)), ΔV exceeds Vd.  

 

So far, the ΔG vs Δtp dependencies that emulate asymmetric learning rules show transitions from 

depression to potentiation when inverting the temporal order of the pulses. To mimic symmetric learning 

rules, which are independent on the temporal order (symmetric Hebbian and symmetric anti-Hebbian 

learning), time-symmetric pulses, as displayed in Fig. 1(c), are applied. The relative conductance change 

in Fig. 3(c) is positive around zero and negative for large values of |Δtp|. Thus, the conductance change 

depends exclusively on the time difference between the pulses and not on the order of their arrival. In 

neuroscience, comparable observations of the synaptic strength versus Δtp are described by the symmetric 

Hebbian learning rule and were observed in GABAergic synapses.46 In turn, applying the pulses sketched 
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in the inset of Fig. 3(d), the relative conductance change is negative for small time differences and zero 

for large magnitudes of Δtp. 

 

The amplitudes of the voltage pulses in Fig. 1(c) are tuned in a way to realize large absolute conductance 

changes for small time differences. This enables the emulation of fast learning processes (only small 

amounts of repetitions are required to enhance the conductance). To emulate more subtle changes of 

synaptic strength, the voltage difference between the two pulses can be tuned slightly above or below the 

threshold voltages for charging and discharging, which allows the gradual increase or decrease of the 

conductance under a sequence of hundreds of pulses. With the experimental results presented in Fig. 3, 

the device is suitable to emulate different learning rules in dependence on the input signals (stimulus). The 

electronic properties of the device further allow simulating the signal transduction governed by the QD 

charge in a comprehensive way. 

 

IV. MODELLING OF LEARNING RULES 

Applying the voltage difference ΔV to the memristor, the current can be determined within the Landauer-

Büttiker formalism that assumes  

𝐼(∆𝑉) =
𝑒

2𝜋
∫ 𝑣𝑛[𝐻(𝑣𝑛)𝑓𝐹𝐷(𝐸, 𝜇𝑝𝑟) + 𝐻(−𝑣𝑛)𝑓𝐹𝐷(𝐸, 𝜇𝑝𝑜)]𝑑𝑘,

∞

−∞
   (1) 

with 𝜇𝑝𝑟 − 𝜇𝑝𝑜 = 𝑒∆𝑉, 𝑣𝑛 = 1/ℏ(𝜕𝐸/𝜕𝑘), the elementary charge e, the Fermi-Dirac-distribution fFD, the 

step function H, and 𝐸 = 𝐸0 +
ℏ2𝑘2

2𝑚∗ , where k denotes the electron wave vector, and m* is the electron 

effective mass. In the limit of low voltage differences, 𝜇𝑝𝑟 ≈ 𝜇𝑝𝑜 ≡ 𝜇, the current for the electrical 

configuration in Fig. 1(a) can be approximated by 

𝐼 =
𝑒2

2𝜋ℏ
𝑓𝐹𝐷(𝐸𝑖, 𝜇)(∆𝑉 − 𝐼 ∙ 𝑅).    (2) 

Thus, the conductance is reduced to 
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𝐺(𝑛, µ) =
(exp[

𝐸𝑖(𝑛)−µ

𝑘𝑇
]+1)

−1

1+𝑅 
𝑒2

2𝜋ℏ
(exp[

𝐸𝑖(𝑛)−µ

𝑘𝑇
]+1)

−1.     (3) 

T is the temperature and R the resistance in series with the wire. The transverse subband energies 𝐸𝑖(𝑛) =

𝐸𝑖
0 + 𝛾𝑛 + 𝜂∆𝑉 are determined by the efficiencies γ and η, and by the number, n, of electrons in the QDs. 

The rate equation determining the QD charge is given by 

𝑑𝑛

𝑑𝑡
= {

−𝛼𝑐∆𝑉   𝑓𝑜𝑟  ∆𝑉 < 𝑉𝑐 < 0
−𝛼𝑑∆𝑉𝑛   𝑓𝑜𝑟  ∆𝑉 > 𝑉𝑑 > 0

.     (4) 

Here 𝛼𝑐 and 𝛼𝑑 are the efficiencies that control the QD charging and discharging, respectively. These 

efficiencies depend on device parameters as the gate wire distance and the tunneling distance.47,48 Thus 

when the QDs become charged, starting from an initial charge n0, the number of electrons is determined 

by 

𝑛 = 𝑛0 − 𝛼𝑐 ∫(∆𝑉 − 𝑉𝑐)𝑑𝑡,     (5) 

according to the first line of Eq. (4). For discharging processes, the number of localized electrons follows 

from the second line of Eq. (4) with 

𝑛 = 𝑛0exp[−𝛼𝑑 ∫(∆𝑉 − 𝑉𝑑)𝑑𝑡].     (6) 

The QD-localized charge is mainly governed by the shape of the applied pulses. Note that the active part 

of pulse combination that controls either the charging or discharging in Eqs. (5) and (6) is determined by 

the pulse action defined as 𝑆𝑐(𝑑) = ∫(∆𝑉(∆𝑡𝑝) − 𝑉𝑐(𝑑))𝑑𝑡 , corresponding to the shaded areas in Fig. 1(d). 

 

The theoretical relative conductance change as a function of Δtp is displayed in Fig. 4. The four panels are 

arranged in the same sequence as Fig. 3 and are obtained by using exactly the same input pulses as in the 

experiments. Simulations with the pulses shown in Fig. 1(c) lead to ΔG vs Δtp dependencies that enable 

the emulation of asymmetric Hebbian learning in Fig. 4(a), asymmetric anti-Hebbian learning in Fig. 4(b), 

symmetric Hebbian learning in Fig. 4(c), and symmetric anti-Hebbian learning in Fig. 4(d). Note in Figs. 

4(a) and (b) that the model predicts non-zero relative conductance changes for |Δtp| > 5 ms. Here, the 
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presynaptic pulse is sufficient to charge the QDs, because its amplitude exceeds |Vc|. In Fig. 4(c), the limit 

ΔG→-1 for large |Δtp| corresponds to totally charged QDs which reduces G1 to zero. The slight asymmetry 

of positive ΔG, when inverting the temporal order, is explained by the non-commutativity of charging and 

discharging in Eq. (4). This is also evident in the experimental results (see Fig. 3 (c)). The asymmetry of 

the ΔG-vs-Δtp-curve in Fig. 4(c) with respect to Δtp originates from the asymmetry of the charging and 

discharging processes due to their different time scales. In Fig. 3(c), both charging and discharging 

processes occur within a single pulse sequence, which, due to their non-commutativity, leads to slight 

asymmetric ΔG-vs-Δtp-curves with respect to Δtp. 

 

Modelling the device performance for different αc allows correlating the conductance change to the device 

layout. Smaller efficiencies for charging can be realized by increasing the tunneling distance or the gate 

wire distance. The ΔG vs Δtp dependencies in Fig. 4 show that charging is boosted for enhanced αc, leading 

to larger time intervals for charging. In addition, the time window for discharging in Fig. 4(c) is reduced 

for enhanced αc. Thus, tuning the device geometry, e.g. the gate wire distance, enables control of the time 

windows for conductance modifications, which may be beneficial to realize artificial synapses with 

different sensitivities regarding time difference. For small gate wire distances, the conductance can only 

be tuned within a narrow time window allowing the implementation of high specialization and selectivity. 

Larger gate wire distances lead to broader time windows for learning and hence a large spectrum of time 

differences tunes the conductance.  

 

The presented model further allows assessing the ΔG vs Δtp dependence in terms of the pulse shapes. 

According to Eq. (3), the conductance can be expressed in general terms as 𝐺(𝑛) = [𝐴 ∙ 𝑒𝑥𝑝(𝐵 ∙ 𝑛) +

𝜌]−1, thus Δ𝐺(𝑛) = 𝐴[𝑒𝑥𝑝(𝐵 ∙ 𝑛0) − 𝑒𝑥𝑝(𝐵 ∙ 𝑛)][𝐴 ∙ 𝑒𝑥𝑝(𝐵 ∙ 𝑛) + 𝜌]−1, where A, B and  are fixed 



10 

 

parameters defined by the system configuration (e.g. subband energies, gate efficiencies, temperature). 

When discharging the QDs, in the limit of low values of n, ΔG can be approximated by 

Δ𝐺(𝑛, ∆𝑡𝑝) → Δ𝐺𝑑(𝑛, ∆𝑡𝑝) =
𝐴𝐵

𝐴+𝜌
(𝑛0 − 𝑛) =

𝐴𝐵

𝐴+𝜌
[1 − exp (−𝛼𝑑𝑆𝑑(∆𝑡𝑝))] > 0.  (7) 

In turn, for charging, in the limit of large values of n, the relative conductance tends to 

Δ𝐺(𝑛, ∆𝑡𝑝) → Δ𝐺𝑐(𝑛, ∆𝑡𝑝) = exp[𝐵(𝑛0 − 𝑛)] − 1 = exp (−𝐵𝛼𝑐𝑆𝑐(∆𝑡𝑝)) − 1 < 0.  (8) 

All the information of the pulse shape is contained in either Sc or Sd. For the pulse shapes used in this 

analysis, the pulse action for both charging and discharging can be well described up to second order in 

Δtp as 𝛼𝑐(𝑑)𝑆𝑐(𝑑)~ ∑ 𝑎𝑖∆𝑡𝑝
𝑖2

𝑖=0 . The experimental data in Fig. 3 are fitted according to the exponential laws 

obtained in Eq. (7), with 
𝐴𝐵

𝐴+𝜌
= 3, and Eq. (8), for positive and negative values of ΔG, respectively. The 

expressions used for the corresponding pulse actions are listed in Table 2. Exponential ΔG vs Δtp 

dependencies as observed in Figs. 3(a) and (b) were also determined in hippocampal neurons.27,49 The 

expression used in Fig. 3(c) is comparable to the one used in Ref. 28 to empirically describe the symmetric 

Hebbian learning rule. Note in this case that according to Eq. (8), for|∆𝑡𝑝| ≫ 0, ∆𝐺𝑐 → −1. The small 

discrepancy with the experiment in this limit is ascribed to unavoidable leakage (partial discharge) during 

the charging process. The data in Fig. 3(d) is fitted according to one exponential function and represents 

the symmetric anti-Hebbian learning rule. The exponential fit functions include the actions Sd and Sc, in 

Eqs. (7) and (8) respectively, and hence explicitly relate the relative conductance changes with the pulse 

shapes.  

 

V. DISCUSSION 

The presented data demonstrate the ability to realize pulse shape - dependent learning rules based on the 

mature III-V-semiconductor platform. It is worth noting that the low operation temperature of the device 

corresponds to the small energetic confinement of the electrons in the QDs which is about 0.4 eV. Because 
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of this confinement, the maximum operation temperature of the device is 165 K, as was reported in Ref. 

36. Room temperature operation may be realized by tuning the material compositions of the QDs and the 

surrounding layers.50 Hence for the desired room temperature operation, devices based on other material 

compositions (different Al contents etc.) need to be designed, fabricated and tested. However, the 

presented results are expected to be directly transferable. Pulse shape - dependent learning rules were also 

obtained in Refs. 30 and 31 with a chalcogenide memristor, which has the advantage of short time 

windows for learning. In contrast to the previous proposals, the presented device is based on the mature 

III-V semiconductor platform that enables optical conductance control with low power light pulses.39 Thus 

the memductance state can be controlled either by optical or electrical pulses or by combinations of both, 

which allows the integration with photodetectors as sensory neurons. The conductance control is further 

sensitive to the wavelength of incoming light51
, which was also demonstrated with other memristors52 and 

memcapacitors53 and enables encoding information in the wavelength. For the present device, the light 

sensitivity leads to varying learning processes in the dark and under illumination, which is the key 

advantage compared to other memristor realization with large on/off ratios of up to 1012,54 low switching 

times in the sub-nanosecond range55 or high endurance (1012 cycles).56 More complex functionalities as 

recognition and classification tasks were performed with memristor crossbars that offer high scalability.57 

Scalability of quantum wires as key element of the presented memristor was demonstrated with the 

realization of a full adder.58 

 

In Ref. 39, the relative conductance change ΔG/G0 of the present device for the asymmetric Hebbian 

learning rule was found to be independent on G0 for depression, but shows a maximum at medium G0 

conductance values for potentiation. A dependency of the learning rules on the initial conductance was 

also presented for an Al2O3/TiO2-x memristor in Ref. 32. Finally, the present device allows controlling the 

time window for conductance modifications by tuning the device layout. In Eqs. (7) and (8), the relative 
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conductance changes tend faster to zero for larger charging and discharging efficiencies, which may be 

exploited to realize artificial synapses for high specialization (narrow time window for learning) and basic 

learning (broader time window for learning).  

 

VI. CONCLUSION 

In summary, we are able to artificially emulate four learning rules of neural networks with a quantum dot 

memristor. Analogous to synaptic strength in neural networks, the conductance is controlled by changing 

the time difference between pre- and postsynaptic voltage pulses. The conductance of the device is tuned 

by localizing electrons in quantum dots, which depends sensitively on the shape, magnitude and timing of 

pre- and postsynaptic voltage pulses. The presented pulse shape - dependent learning rules may pave the 

way to the realization of activity-dependent learning with a single device in future artificial neural 

networks. 

 

 

Acknowledgements: 

The authors gratefully acknowledge financial support from the European Union (FPVII (2007-2013) 

under grant agreement n° 318287 Landauer) as well as the state of Bavaria. The Brazilian authors 

acknowledge the support of CNPq. V. L.-R. acknowledges the support of FAPESP (grants 2014/02112-3 

and 2015/10765-0). 



13 

 

 

Figure captions: 

FIG. 1. (a) Electron microscope image of the memristor. The pre- and postsynaptic voltage pulses are 

applied to the drain and source contacts, respectively. The positions of the QDs are highlighted in yellow. 

(b) Current-voltage-characteristic of the memristor. A pinched hysteresis loop is observed. The QDs are 

charged and discharged when the voltage exceeds Vc and Vd, respectively. Inset: Zoom in of low 

conductance state around zero bias voltage. (c) Schemes of the pre- (red) and postsynaptic (blue) voltage 

pulses versus time. If the difference ΔV = Vpr – Vpo in (d) exceeds Vc or Vd (see orange areas), the amount 

of localized charges is enhanced or reduced, respectively. The pulses from left to right are applied to 

investigate the emulation of asymmetric Hebbian, asymmetric anti-Hebbian, symmetric Hebbian and 

symmetric anti-Hebbian learning, respectively. (d) Voltage difference for the pulses in panel (c) and 

Δtp > 0.  

 

 

FIG. 2. (a) Conductance versus pulse number for various time differences and the pulse shapes to emulate 

asymmetric Hebbian learning in Fig. 1(c). Depending on the temporal order of the pulse, G can be 

enhanced or lowered. (b) G versus N for the same experimental setup as in (a) but different Δtp. For varying 

time difference, the conductance after 10 pulses is changed. (c) Conductance after 10 pulses versus Δtp. 

For Δtp < 2.5 ms, the conductance depends sensitively on the time difference. The horizontal lines indicate 

eight different levels that may be stored by tuning Δtp in step sizes of 0.2 ms. 

 

 

FIG. 3. Relative conductance change versus Δtp for the pulse shapes in Fig. 1(c). In each panel, the 

corresponding pulse shapes are sketched with red (Vpr) and blue (Vpo) lines. The presented ΔG vs Δtp 

dependencies allow the emulation of asymmetric Hebbian learning in (a), asymmetric anti-Hebbian 

learning in (b), symmetric Hebbian learning in (c), and symmetric anti-Hebbian learning in (d). 

 

 

FIG. 4. Simulation of the relative conductance change versus time difference. The figure is arranged in 

analogy to Fig. 3. The corresponding pulse shapes for the panels (a) to (d) are shown from left to right in 

Fig. 1(c). Panels (a) and (b) show the asymmetric and (c) and (d) the symmetric learning rules. The 

resilience is investigated by tuning the efficiency for charging. 
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Learning rule Vpr (V) Vpo (V) 

Asymmetric Hebbian -3.0, +4.2 -2.0, +2.0 

Asymmetric anti-Hebbian +4.2, -2.8 +2.0, -2.0 

Symmetric Hebbian -3.8, +3.8, -3.7 -2.0 

Symmetric anti-Hebbian -2.4 +2.4 

Table 1: Amplitudes of the voltage pulses in Fig. 1(c). The positive and negative voltages correspond to 

the maximum and minimum values for increasing time, respectively. 

 

 

 

 

Fig. ΔGd ΔGc 

3(a) 𝛼𝑑𝑆𝑑 = −0.17∆𝑡𝑝
2 + 0.34∆𝑡𝑝 + 0.34 𝐵𝛼𝑐𝑆𝑐 = −0.24∆𝑡𝑝

2 − 0.864∆𝑡𝑝 + 0.9 

3(b) 𝛼𝑑𝑆𝑑 = −0.08∆𝑡𝑝
2 + 0.96 𝐵𝛼𝑐𝑆𝑐 = −0.1∆𝑡𝑝

2 + 0.18 

3(c) 𝛼𝑑𝑆𝑑 = −0.2∆𝑡𝑝
2 + 0.2 𝐵𝛼𝑐𝑆𝑐 = −0.2∆𝑡𝑝

2 

3(d) --- 𝐵𝛼𝑐𝑆𝑐 = −0.1∆𝑡𝑝
2 + 0.65 

Table 2: Pulse actions used to fit the experimental data in Fig. 3. 
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