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Abstract: 

Safeguarding biodiversity has been one of the most important issues on the environmental and forest 

policies agenda since the 1990's. The problem remains in terms of decisions and knowledge on where to 

set appropriate conservation targets.  Hence, we need detailed and reliable information about habitat 

structure and composition and methods for estimating this information over the whole spatial domain. 

In answer to this target, in France, the Ministry of Ecology launched an ambitious project to map the 

terrestrial vegetation at a scale of 1:25 000 known as CarHab. This project initiated in 2011, will be used 

as a strategic spatial planning tool in answer to key issues in relation to biodiversity, conservation, green 

infrastructures and to report on the conservation status of habitats and species of community interest. 

We use species-distribution models (SDMs) to identify areas that are ecologically suitable for the 

presence of species based on specific habitat characteristics. Available techniques using graph theory 

enable identification of groups of species (assemblages) based on ecological affinities. Species co-

occurrences (present within the same assessment plot), revealing a shared ecological niche, are analysed 

using algorithms derived from graph theory in order to define different nodes of species affinities. Thus, 

the resulting assemblages are based on ecological similarities. Hence, these assemblages are used to 

develop models of the potential distribution of alpine vegetation communities. The BIOMOD platform is 

used to facilitate the simultaneous implementation of different modelling approaches that can be 

compared in order to choose the most suitable and accurate for each species assemblage obtained from 

graph theory. Using the different relevant spatially explicit results provides a more comprehensive vision 

of the communities' spatial distributions.  
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I. Introduction 

Predictive models of species distributions are being increasingly used to address questions related to the 

ecology, biogeography, and conservation of species (see Peterson, 2007). Detailed knowledge of 

ecological and geographic distributions of species and vegetation is fundamental for conservation 

planning and forecasting (Ferrier 2002, Funk and Richardson 2002, Rushton et al. 2004) and for 

understanding ecological factors of spatial patterns of biodiversity (Rosenzweig 1995, Brown and 

Lomolino 1998, Ricklefs 2004, Graham and Hijmans 2006). 

In the framework of the French national project CarHAB, this research aims at exploring the potential of 

predictive vegetation modelling to improve and support detailed vegetation mapping. CarHAB project 

aims at mapping natural and semi-natural vegetation of the French territory at a scale of 1:25 000 (EEA 

2014). It addresses three major challenges based on stakeholders needs: i) to provide a comprehensive 

inventory of vegetation and habitats, ii) to assess their conservation status and iii) to provide the 

baselines for related planning and conservation projects. Vegetation mapping relies on achieving base-

map learning about the physiognomic and environmental characteristics of vegetation. These base-maps 

are aimed at providing support for the extrapolation of phytosociological surveys conducted in the field 

before the completion of the final vegetation maps based on remote sensing data derived from different 

satellites. The work presented was tested in a complex mountainous environment in the French Alps 

(Isere Department). In all, the approach developed opens innovative ways towards a replicable 

classification scheme for vegetation mapping over open environments based on graph theory to 

delineate ecologically-consistent species assemblages to be modelled. 
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II. Background and Study Area 

The study area is a testing ground on a crystalline mountain range (Belledonne, Grandes-Rousses, Ecrins, 

Oisans; Figure 1), extending to 5000 km² and located in the Isère French Department. The area is 

dominated by siliceous grasslands from sub-alpine and alpines belts ranging from 1,500 to more than 

3,000 meters above sea level – the timberline being at about 2,200 m. Sub- and alpine grasslands show a 

great diversity according to ecological factors, such as temperature, elevation and solar radiation. 

Topographic position at the alpine belt is a key factor because it influences snow cover duration, which is 

known to determine plants’ ecophysiology and adaptation. Micro-topography and consequent rapid 

changes of environmental conditions in space and time are also important features of alpine glacier-

shaped landscapes that strongly influence the plant community properties. 

 

 

Figure 1: Belledonne, Grandes-Rousses, Ecrins, Oisans - mountain range located in the Isère French Department. 
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III. Methods 

III.1. Graph theory to uncover species assemblage patterns 

Graph theory has recently gained much attention in various fields of science. In the ecological sciences, it 

was first used to analyse webs of real biological interactions, such as food-webs, gene and protein 

networks and pollination networks (Proulx et al. 2005). The first application of graph theory to 

vegetation-plot data (species*sites table) was conducted by Yarranton (1973) to test the homogeneity of 

phytosociological tables. Dale (1977a, b) suggested later that graph theory could be used to detect plant 

species interactions in temperate forests at different scales.  The method enables the properties and 

behaviour of networks to be quantified and visualized with friendly graphical outputs.  

A graph is a mathematical object corresponding to a network. It is composed of a set of units, called 

nodes, connected by edges. A module is a subset of highly-connected nodes with looser connections to 

the rest of the graph (Figure 2-b). The nodes can represent units at most levels of the biological hierarchy 

(e.g. from genes to proteins, from individuals in a population to species in a community). Edges usually 

represent interactions between nodes. The co-occurrence of species that is derived from vegetation-plot 

data represents a sort of statistical interaction. Depending on the scale of the dataset (plot size and 

extent), the co-occurrence species can be linked to different kinds of ecological processes that graph 

theory can help to explain. Dale (1977a, b) showed facilitation patterns in forests with very fine-scale 

data. Fine-scale data like in this study are relevant to look at the ecological requirements of species 

(niche). Yet large-scale data could be used to reveal nestedness and other biogeography-related patterns 

of communities’ species composition. 

Here the goal is to delineate alpine-grasslands plants’ assemblages based on the ecological requirements 

of species in order to use ecological gradients to model assemblages’ distribution patterns. We start with 

the hypothesis that all species have specific habitat requirements, which can be described by habitat 

factors. These factors are inter-related to critical habitat characteristics, e.g. to those of vegetation and 

soil, but also areas surrounding the habitat (e.g. the spatial structure of landscape elements). The 

assemblages were then defined by applying a graph theory approach to a dataset of 4,280 

phytosociological vegetation plots corresponding to acidophilous sub- and alpine grasslands, collected by 

the National Botanical Conservatory of the Alps (CBNA). Information within plots includes location and 

plant species list (abundance) occurring within vegetation’ stands. Our concern was to elaborate species 

assemblages (or modules) that are not constrained by phyto-sociological principles but based on the 

species co-occurrence at the monitoring plot level. 
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The co-occurrences between pairs of species were derived from the vegetation-plot dataset. They were 

then translated into a graph where the nodes represent each species and the thickness of edges 

represents the degree of co-occurrence between pairs of species ( 

Figure 2). We used the U index (Bruelheide 2000) as a statistical measure of co-occurrence (edge weight) 

instead of the exact co-occurrence within the dataset. Edges with a low level of co-occurrence (i.e. a low 

level of information) according to a certain U threshold were removed to provide a sharper graph 

without losing valuable information (Tumminello et al. 2011a,b). 

 
 
Figure 2: Construction of a network of species from vegetation-plot data and ecological interpretation: (A) 
vegetation-plot dataset consists of sites/species tables with presence/absence data; (B) an index of co-occurrence 
between pairs of species (U) is computed from the table and allows a network to be constructed: the nodes 
represent each species and the edge thicknesses the index U; (C) here the structure of the network is assumed to be 
caused by ecological requirements of species: each cluster of nodes (representing species with similar ecological 
requirements), called module (1), is a representation of plant communities (2) based on their ecological affinities. 
These communities can then be associated with specific ecological compartments (3) along ecological gradients (4). 

 

Co-occurrence of pairs of species within a particular plot is assumed to be caused mainly by the same or 

similar ecological requirements ( 

Figure 2 (C); i.e. habitat filtering, Lortie et al. 2004) with no detection of biotic interactions between 

species (biotic filtering). In this way using graph theory enables identification of groups of species based 

on ecological affinities. 

A first level of analysis of the species’ assemblage patterns from a graph structure is to detect the 

presence of modules of highly-interconnected species. Among a large array of module detection 

algorithms developed by the graph theory community we used an algorithm derived from the 

information theory called ‘maps of random walks’ also referred to as infomap (Rosvall and Bergstrom 

2008). It allows the delineation of modules where species are much more likely to occur together in real-
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world communities rather than species from other modules because they share similar ecological 

requirements. 

A second level of analysis of a graph structure is to analyse in more detail the role of each node (species) 

according to their pattern of intra- and inter-module connections (Guimerà and Amaral 2005). They 

define a within module degree (z) which measures how well-connected is a vertex to other vertices 

inside the module and a participation coefficient (C) which measures how well-distributed the edges of a 

vertex are among other modules. A species with both high z and low C - called ‘provincial hubs’ - is 

believed to be a good indicator of module habitats conditions (i.e. called here ecological compartment) 

because it shares ecological requirements with many other species of the same module. We expected 

these species to be widely distributed among plant communities inside this particular ecological 

compartment, whereas species with low z and C – called ‘peripheral hubs’– have stronger ecological 

requirements and are very likely to occur in more specialized plant communities in more constrained 

ecological sub-compartments. This ratio z/C is particularly interesting when studying species strategies 

(ubiquist/endemic/indicator) and will help us choose the most ‘provincial’ species to represent best the 

ecological behaviour of each module. 

III.2. Ecological gradients 

A small set of continuous ecological variables (Table 1) was recognized to affect spatial distribution of 

grasslands alpine species at the mapping scale used (25 m grid resolution on 5,000 Km² of study area). 

Plot size (4-50 m²) is smaller than variable resolution (25*25 m) but we assumed here the spatial 

homogeneity of species assemblages at the pixel level. Therefore, species-environment relationships and 

variability were well-captured at this resolution. 

Table 1: Ecological gradients used to characterize species-environment relationships for the species distribution 
models (SDMs).  All variables have a 25m resolution (grid, raster) 

Gradients Relevance Description 
Source and 

references 

Altitude 

Indirect variable for temperature 

considered as a major ecological 

factor affecting plant and vegetation 

distribution particularly in mountain 

environments 

DEM from contour lines IGN, France 

Total 

Insolation 

Direct variable through direct impacts 

on plants physiology and indirect 

variable on snow cover duration 

Total solar energy, on each pixel 

(direct + diffuse insolation) 

DEM derived, 

Wilson & Gallant 

(2000) 

Topographic 

Wetness 

index 

Indirect resource variable accounting 

for soil water content 

Modified Topographic Wetness 

Index : log(SWI) 

DEM derived, 

Boehner et al. 

(2002) 
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Degree of 

convexity 

Indirect variable affecting snow cover 

duration, local temperature and wind 

conditions 

Topographic analysis : radius of 

50m for micro-topography, 

radius of 500m for main relief 

features 

DEM derived, 

Weiss (2001) 

Spatial 

dependence 

Climatic gradient across study area 

(NW/SE gradient) 
log(latitude/longitude) 

Derived from 

localisation 

 

III.3. Modelling platform 

We used a multi-modelling platform, Biomod2 (see Thuiller et al. 2009; Thuiller et al, 2013), which 

allowed the use of 10 statistical models to calibrate the relationship between explanatory variables and 

occurrences of modules (Table 2). 

Table 2: Statistical models of Biomod2 platform 

Type Model Key references 

Regressions 

GLM 

Generalised Linear Models 

Guisan et al., 2002; Pearce 

& Ferrier, 2000 ; Vincent 

and Haworth, 1982 ; 

Guisan et al., 1998 

GAM 

Generalised Additive Models 

Yee & Mitchell, 1991; 

Guisan et al., 2002; Pearce 

& Ferrier, 2000 

MARS 

Multivariate Adaptive Regression Splines 
Friedman, 1991 

FDA 

Flexible Discriminant Analysis 

Hastie, T., Tibshirani, R. and 

Buja, A.,1994; Manel, D., 

Dias, J. M., Buckton, S. T. 

and Ormerod, S. J.,1999 

Decision trees 

CTA 

Classification Tree Analysis 
Breiman et al., 1984 

RF 

Random Forest 
Breiman, 2001 

Regression on decision trees 
GBM 

Generalized Boosting Model 
Ridgeway 1999 

Environmental envelope 
SRE 

Rectilinear Envelope 

Busby, 1991; 

Walker & Cocks, 1991 

Learning methods 

Maxent 

Maximum entropy 

Phillips et al., 2005 ; Phillips 

et al., 2006 

ANN 

Artificial Neural Networks 
Pearson et al., 2002  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

The resulting models were compared based on their relative performance in fitting the observed data 

(Elith et al. 2006). A first statistical assessment was performed using ROC sensitivity analysis, which was 

calculated for each model on 1,000 repetitions using 75 per cent of the sampled data. Statistical 

assessment was also supported with expert assessments conducted on the final distribution maps. Both 

outcomes were combined to produce the best distribution models that were used at the end for 

mapping ecological compartments. 

IV. Results 

IV.1. Species network 

Figure 3 shows the resulting network derived from vegetation-plot data after application of the co-

occurrence index (U) threshold and filtering on siliceous alpine grasslands species. The U index value – 

empirically set to 15 – results from a trade-off between (i) an excessive amount of low-level information 

(i.e. low U, poorly-connected species) but high number of species and (ii) high-level information (i.e. high 

U, highly-connected species) but low number of species. Modules 1 and 3 are very sharp owing to 

species with very low participation coefficient on average. Modules 2, 4 and 5 are fairly sharp with 

relatively higher participation coefficients. Module 6 is significantly connected to its neighbours through 

‘connector-hub’ species and, therefore, was not modelled. For each module, species showing the best 

C/z profile (low C and high z) were selected as indicator species. 

 

Figure 3: Network of 166 species of siliceous alpine grasslands with 697 edges. (a) Modules are labelled according 
to Table 1; one central species is highlighted for each module together with edges to its neighbours. (b) C/z 
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parameter space helps characterize each species and module role in the network; central species are chosen within 
the upper left square of provincial hubs (I). Following and simplifying Guimerà and Amaral (2005) other principal 
roles of nodes are peripheral nodes (II), connector hubs (III i.e. module 6) and non-hub connector (IV). 

 

Species inside a module are linked with each other by their ecological affinities (common niche) and not 

by botanical characteristics, supporting the use of ecological datasets to predict vegetation potential 

distribution. 

IV.2. Modules, ecological compartments and indicator species 

Based on a modularity analysis and on an expert examination of the resulting species’ network, 5 

assemblages (M1, M2, M3, M4, M5) were selected (Table 3) for their wide representation in the field, 

their botanical consistency and their ecological dissimilarities. The modules are exclusive and therefore, 

in the modelling process, the presence points of a specified module were considered as absence points 

for all other modules. 

Table 3: Expert characterization of modules yielded by the infomap modularity analysis and indicator species. (*) 
Module 6 was not modelled, providing its transitional positioning (high C value of species); the resulting ecological 
compartment strongly overlaps with the ones of other modules. 

Modules Number of 

plots 

Expert characterization Indicator species 

1 125 Subalpine, cool and humid, tall-herbs 

communities 

Agrostis agrostiflora, Imperatoria 

ostruthium 

2 124 Subalpine, mesophilous, Nardus stricta 

grasslands 

Arnica montana, Potentilla aurea, 

Pseudorchis albida 

3 425 Subalpine, thermophilous, open Festuca 

paniculata grasslands 

Potentilla grandiflora, Senecio 

doronicum, Centaurea uniflora 

4 250 Alpine, long snow cover duration 

(chionophilous species), vegetated snow-

patches 

Veronica alpina, Omalotheca 

supina 

5 312 Alpine, short snow cover duration 

(cryophilous species), alpine open grasslands, 

swards 

Festuca halleri, Minuartia sedoides 

6 (*) Alpine, medium snow cover duration, alpine 

grasslands 

Phyteuma hemisphaericum, Carex 

sempervirens 

 

IV.3. Modelling results 

Using the 6 ecological gradients and modules’ presence point data, we computed 10 species-distribution 

models (SDMs) for each of the 5 alpine species assemblages delineated by the graph approach in order 

to predict the potential distribution of their ecological compartments. 
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Four types of models showed ROC cut-off values above 0.85 – the threshold above which a model is 

considered here to have a good sensitivity or sufficient statistical relevance. The models that performed 

best were a GLM and a GAM, an RF, a GBM and a MaxEnt (see Table 2). The GLM successfully handled 

the expert assessment stage because it provided maps with both consistent probability levels and spatial 

extent closest to reality. MaxEnt also showed good spatial extent but low-probability levels whereas 

other types of models showed a trend to either over-estimate or limit spatial extent. For all models, 

around 80 per cent of presence data were properly predicted on average (sensitivity relevant) with 

relatively weak differences among modules. The same percentage and pattern were properly predicted 

for absences data. The importance of variables was in agreement with expert knowledge and underlined 

altitude as the key ecological factor influencing species-environment relationships. Close examination of 

the importance of variables is, nevertheless, beyond the scope of this proceedings paper. It is worth 

noticing that the degree of convexity at small scale (radius of 50m) did not show any statistical 

significance. 

IV.4. Resulting map 

At the end, all best-performing models (only GLMs) were mapped together (Figure 4). Each grid-cell was 

assigned to the model with the highest probability only if the differences with all other modules’ 

probabilities were higher than 0.2. Otherwise, if the difference with another module was lower than 0.2 

it was labelled as an overlap grid-cell (not shown here). Thus, the map represents the cores of the 

ecological compartments. Probabilities lower than 0.5, indicating a weak probability of occurrence; have 

clearer colours on the map in order to identify the zones of modelling uncertainty. 

At the end, the different ecological compartments when mapped together present coherent spatial 

extents and probabilities with very good landscape coverage across the study area. 
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Figure 4: Example of modelling results for all compartments mapped together: (A) North Belledonne; (B) Lac Blanc 
area; (C) Lac du Vallon area (D) part of Ecrins’ National Parc. Only non-overlapping results are shown to focus on the 
‘core areas’ of ecological compartments. Models are numbered according to Table 3. 
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V. Discussion 

Application of graph theory to vegetation-plot data combined with species distribution models has 

revealed ecologically-coherent species’ assemblages and consistent ecological compartments’ 

distribution. Compared to classical ecological clustering using environmental data, this modelling 

method yields ecological compartments that take into account vegetation’s ecological requirements. 

This approach was successful to reveal gradual changes in environmental conditions: probabilities gently 

follow the topographic gradients, which are typically marked in the mountain environment. The 

transitional zones (i.e. the overlaps between ecological compartments) which represent 22.5 % of the 

area were in most cases ecologically relevant. The most frequently found were the transition between 

nival and cryophilous conditions (between modules 4 and 5: alpine belt) and the transition between 

mesophilous and thermophilic conditions (modules 2 and 3: subalpine belt). 

Applying SDM at the landscape scale using explanatory variables derived from Digital Elevation Model 

(DEM) with a resolution of 25 m is quite rare in the literature. However, these variables, chosen to be 

close to plants’ direct resources (e.g. total insolation for solar energy or topographic wetness index for 

soil water content) and generics for plants’ pattern delineation in mountains’ environments, are relevant 

to predict ecological compartments. Besides, it makes it useful to vegetation scientists because at this 

scale predictive maps are close to their on-ground perception. 

Significant explanatory variables of species’ assemblages’ distributions are in accordance with our 

models. Altitude and total solar radiation were the most important variables, followed by the large-scale 

topographic position (convexity with radius of 500m). The spatial dependence variable played also a 

significant role, especially in the delineation of thermophilic subalpine ecological compartment (module 

3) as it occurs much more in the southern part of the area. The small-scale topographic position 

(convexity with radius of 50m) seemed not to account for micro-topographic patterns due in part to the 

mismatch of resolution with the DEM used (25 m). Thus, a high resolution DEM will be very helpful in the 

near future to improve fine-scale distribution patterns. Another improvement would be the use of a time 

series’ analysis of NDVI (Normalized Difference Vegetation Index) images that would allow a better 

evaluation of the snow cover and the different phenologies of vegetation. 

The approach here allows optimizing time and field efforts to map vegetation in complex mountain 

areas. In particular, it will serve as key input within the framework of CarHab project, by providing pre-

defined vegetation’s series outlines. It is then possible to produce probabilistic maps of vegetation by 

coupling modelled ecological compartments with physiognomies extracted from remote sensing 

classification. 
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In all, graph theory has proven to be suitable to analyse vegetation-plot data under a community-based 

approach and to propose species assemblages as objects to be modelled across complex landscapes. 

When vegetation data are available, using SDM with well-defined indicator species in addition to simple 

and generic explanatory variables allows the production of relevant ecological compartments in 

conformity with fields’ expert knowledge. 
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Highlights (max 85 characters per bullet point, including spaces) 

 species’ geographic distributions supports conservation planning and forecasting 

 mapping natural and semi-natural habitats of complex mountain vegetation mosaics 

 Spatial approach provides different alternatives for policy makers to help conservation targets 

 we propose species assemblages as objects to be modelled across complex landscapes 

 graph theory suitable to analyse vegetation-plot data under a community-based approach 


