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Abstract9

In quantitative genetics, the effects of developmental relationships among traits on microevolu-10

tion are generally represented by the contribution of pleiotropy to additive genetic covariances.11

Pleiotropic additive genetic covariances arise only from the average effects of alleles on mul-12

tiple traits, and therefore the evolutionary importance of non-linearities in development are13

generally neglected in quantitative genetic views on evolution. However, non-linearities in rela-14

tionships among traits at the level of whole organisms are undeniably important to biology in15

general, and therefore critical to understanding evolution. I outline a system for characterising16

key quantitative parameters in non-linear developmental systems, which yields expressions for17

quantities such as trait means and phenotypic and genetic covariance matrices. I then develop18

a system for quantitative prediction of evolution in non-linear developmental systems. I apply19

the system to generating a new hypothesis for why direct stabilising selection is rarely observed.20

Other uses will include separation of purely correlative from direct and indirect causal effects21

in studying mechanisms of selection, generation of predictions of medium-term evolutionary22

trajectories rather than immediate predictions of evolutionary change over single generation23

time-steps, and the development of efficient and biologically-motivated models for separating24

additive from epistatic genetic variances and covariances.25
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Introduction26

Evolutionary quantitative genetics provides a central conceptual backbone to studies of mi-27

croevolution because it quantitatively relates genetic variation and natural selection to evolu-28

tion. Most quantitative genetic theory, and virtually all empirical evolutionary quantitative29

genetic work, is based on the linear components of relationships among traits and between30

traits and fitness. The linear components of phenotypic or genetic relationships among traits31

and between traits and fitness can completely describe some specific aspects of evolutionary dy-32

namics, even if true relationships are not linear (Rice, 2004b). However, in general, non-linear33

aspects of relationships among traits, and between traits and fitness, can have profound effects34

on evolutionary outcomes (Hansen, 2014; Rice, 2002, 2004a). While there is increasing interest35

in evolution in non-linear systems (e.g., Hether and Hohenlohe 2014; Shaw and Shaw 2013), and36

some theoretical aspects of non-linear systems are known (Charlesworth, 1990; Wright, 1935),37

the relationships between non-linearities in processes determining genetic and selective patterns38

and key evolutionary quantitative genetic parameters, such as genetic (co)variance components39

and selection gradients, are not well established.40

A major appeal of the evolutionary quantitative genetic approach is that it defines explicit41

parameters, such as additive genetic (co)variances and selection gradients, in the specific terms42

by which they relate to one another and to evolution. These parameters and relationships43

transcend specific taxa, traits, and ecological circumstances, and therefore place evolutionary44

quantitative genetics at the centre of many aspects of evolutionary biology. So far, no frame-45

work specifically links the available pieces of theory pertaining to non-linear developmental46

systems in such a way that parameters in one system can be related to others in general ways.47

Some theory exists for analysis of function-valued traits, including developmental trajectories48

(Kirkpatrick and Heckman, 1989; Kirkpatrick et al., 1990; Meyer and Kirkpatrick, 2005). These49

approaches take a predominantely statistical and descriptive approach to the quantitative ge-50

netics of development. Approaches based on explanations for covariances among traits, i.e., on51

understanding the ‘genotype-phenotype map’, may be most profitably pursued at an organis-52

mal level (Travisano and Shaw, 2013). However general quantitative links between arbitrary53
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developmental systems and parameters summarising selection and genetics are not available.54

In fact, it has been argued that a separate theory, in contradistinction to quantitative genet-55

ics, is needed to link developmental perspectives to a formal quantitative theory of evolution56

(Rice, 2008). An integration of developmental perspectives into evolutionary quantitative ge-57

netic theory may allow better exploitation of information about why covariances occur both58

among traits, and between traits and fitness; this could alleviate some of the narrow ways in59

which evolutionary quantitative genetics must often technically be interpreted (Conner, 2012).60

Ultimately, a developmental approach could link the generation-to-generation scale at which61

quantitative genetics predicts evolutionary processes to larger scale phenomena such as the62

evolution of modularity and developmental memory (Watson et al., 2014), canalisation and63

genetic assimilation (Waddington, 1949, 1953), and the evolution of phenotypic discontinuities64

and discrete polymorphisms (Chevin and Lande, 2013).65

My first goal is to develop general formulae relating non-linear developmental relationships66

among traits to classical quantitative genetic parameters such as the additive genetic variance.67

I provide general formulae based on systems where inputs to the developmental system are68

multivariate normal, and result from many small additive genetic and environmental effects.69

These formulae allow calculation of quantities such as mean phenotype, and narrow- and broad-70

sense genetic and phenotypic covariance matrices, for any system that can be conceptualised71

as a non-linear developmental system with inputs and outputs. My second goal is to develop a72

framework that can describe evolution in non-linear developmental systems. I develop the idea73

from the first section of relating aspects of outputs (phenotypes) to distributions of inputs to a74

developmental system, for the special case of predicting population mean fitness as a function75

of inputs to a developmental system. Given calculation of mean fitness for an arbitrary develop-76

mental system, descriptions of how fitness changes as a function of inputs to the developmental77

system follow directly, leading to a formal quantitative genetic system for describing selection,78

genetics, and evolution in arbitrary developmental systems. This approach leads to general ex-79

pressions for the evolution of arbitrary properties of non-linear developmental systems, whereby80

the predictive capacity of evolutionary quantitative genetics can be extended to describe, for81

example, the evolution of phenotypic and genetic (co)variances, full evolutionary trajectories,82
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evolutionary optima, and evolution of higher (mixed) moments of phenotype.83

Model structure and general notation84

Throughout, I assume a very general model structure where exogenous inputs to a developmen-85

tal system are numerous, additive, and small. This is the infinitesimal model of quantitative86

genetics (Falconer, 1960; Fisher, 1918). Exogenous variables will be denoted by the symbol ε.87

Exogenous inputs may be decomposed into constituent components, for example, into additive88

genetic and residual effects. As such, the exogenous value of an individual, indexed i, for a given89

trait, may be represented as εi = εa,i + εe,i, where a and e denote additive genetic and residual90

effects. Traits will be denoted z. zi, i.e., the vector of trait values in individual i, may depend91

on one or more exogenous inputs within the vector of exogenous values, εi, for individual i, and92

additionally may depend on the values of other traits, and thus on exogenous inputs indirectly93

through those other traits. Fitness, W , or individual expected fitness E(W )i, can be treated94

mathematically as a trait, i.e., it can depend on trait values and exogenous inputs of variation95

that are independent of trait values.96

The term ‘phenotypic landscape’ will refer to the relationships between exogenous inputs and97

traits, among traits, and potentially also between traits and fitness. The term ‘developmental98

system’ will refer collectively to the phenotypic landscape and exogenous inputs, traits, and99

fitness where applicable. Diagrammatically, a developmental system may be depicted as a100

path diagram, wherein exogenous inputs, traits and fitness are represented as measured or101

latent quantities, and arrows represent the phenotypic landscape; several examples are given102

in figure 1. A phenotypic landscape is then represented as a vector-valued function, giving103

the multivariate phenotype (and fitness, when applicable) as a function of exogenous inputs104

to the developmental system. For example, the developmental system in figure 1(a) would be105
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represented by a vector-valued function of the form106

zi =


z1

z2

W


i

= f(ε)i =


f 1(ε1)

f 2(z1, ε2)

f 3(z2)

 .

For mathematical purposes, fitness will often be treated as just another trait. Fitness will107

generally be thought of as expected fitness, given trait values.108

Several, mostly conventional, notational details are worth summarising. σ is used to denote109

several aspects of (co)variation. With single subscripts, σ represents the standard deviation,110

and σ2 represents variance. σ with two subscripts represents covariance, and upper case sigma,111

Σ, represents a covariance matrix. Matrices and vectors are denoted with bold-faced text,112

as are functions returning vectors or matrices. Integration and differentiation are denoted in113

standard ways; a gradient matrix or vector is denoted with bold-faced variables, for example,114

δz
δε

represents the gradient matrix of phenotype with respect to exogenous values.115

Multi-dimensional integration is used in this article in expressions to obtain the average value116

of functions integrated over a distribution of inputs; this operation is expressed with the general117

form ¯f(x) =
∫
f(x)p(x)dx, where f(x) is a function, potentially vector-valued, determined by118

x, and where p(x) is the density function of x. I will primarily consider models where inputs119

to the developmental system (i.e., where ε is the x variable) are multivariate normal, such that120

p(x) is given as N(ε, ε̄,Σε), i.e., the normal density of ε, given the mean vector ε̄, and covariance121

matrix Σε. The parameters of the normal density of exogenous values, i.e., the mean vector122

and covariance matrix will generally be written explicitly, as they are key parameters in the123

theory. The key concept is that the product of the function f(x) and the probability at which124

its inputs x occur, given by p(x), is integrated over the components of those inputs. Generally,125

the mean of a variable x is given by
∫
xp(x)dx, essentially a continuous equivalent of a weighted126

average. In contrast,
∫
f(x)p(x)dx gives the average value of a function y = f(x), integrating127

not over y, but rather over x. This method of obtaining moments of arbitrary quantities, e.g.,128

mean fitness, given a phentoype-fitness function and a distribution of phenotype, is used, for129
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example, in the derivation of the Lande (1979) equation, and by Kimura and Crow (1978) to130

calculate mutant-specific selection coefficients, given allelic substitution effects, arbitrary trait131

distributions, and arbitrary trait-fitness functions. Specific notation for each application of this132

approach is described as it arises, and is summarised in table 1.133

The primary goal of this paper is to develop the theoretical framework for quantitative134

genetic analysis of non-linear developmental systems. Inference of the form and parameters of135

a phenotypic landscape is not directly treated. It should be noted, though, that the principles136

are applicable to the analysis of arbitrary phenotypic landscapes, no matter how they are137

obtained. The parallel to (linear) path analysis, for example in graphical model depictions138

as in figure 1, should not be taken to indicate that the theory is linked to any particular139

algorithm or paradigm for analysing observational data. Ideally, inferences about phenotypic140

landscapes would be obtained via a combination of functional analysis, experimentation, and141

also regression-based analysis of observational data. Indeed, observational data alone will be142

insufficient to parameterise some kinds of models of phenotypic landscapes, in particular when143

they involve simultaneity or recursive loops (Gianola and Sorensen, 2004). In conjunction with144

the principles and approaches in this paper, use of a wide range of data and approaches would145

lead to the greatest understanding, and serial improvement of the understanding, of evolution146

of particular systems, and of non-linear developmental systems in general.147

Means and (co)variance components of non-linear systems148

In this section, I give general expressions for calculating a number of key parameters of phe-149

notypic distributions and their components. The approach is expandable to descriptions of150

arbitrary aspects of phenotype: for example, to arbitrary higher mixed moments. I describe151

the calculation of several key parameters, rather than providing a comprehensive inventory of152

specific calculations for every parameter that may possibly be of interest. The approach in-153

volves integrating aspects of phenotype (expected value, deviation of expected value from the154

population mean, derivatives of the phenotypic landscape) over the full distribution of exoge-155

nous inputs to the developmental system. The integrals are necessary to make the expressions156
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applicable to any arbitrary developmental system. For conceptually or empirically tractable157

systems with modest numbers of traits, computations to evaluate any given expression will take158

between a few seconds and some minutes on a standard desktop computer.159

The mean vector of traits, z̄, in a non-linear developmental system is160

z̄ =

∫
f(ε)N(ε, ε̄,Σε) dε. (1)

Note that in a non-linear developmental system, the mean phenotype given a distribution of161

exogenous inputs is generally not the same as the phenotype of an individual with the mean162

of the exogenous inputs to the developmental system, i.e., in general, z̄ 6= f(ε̄) when f() is163

non-linear (this is Jensen’s 1906 inequality; see also Welsh et al. 1988). Rather, the mean164

phenotype is obtained by calculating the phenotypic value associated with all possible values165

of exogenous inputs, i.e., f(ε) for all possible values of k exogenous inputs, and integrating all166

of those values in proportion to the probability that each set of exogenous values occurs, i.e.,167

N(ε,µε,Σε).168

Phenotypic covariances of a non-linear developmental system are given by169

Σz =

∫ (
f(ε)f(ε)T

)
N(ε, ε̄,Σε) dε − z̄z̄T . (2)

Rice (2004a) also gives a system for calculating arbitrary moments of the distribution of pheno-170

type, given a distribution of inputs to that system, and mathematical functions characterising171

the system. Rice’s ‘tensor analysis’ approach provides for exact analytical calculations of quan-172

tities such as population mean and variance of phenotype, when the phenotypic landscape is173

finitely differentiable (for example, when the phenotypic landscape is quadratic, as in the ex-174

amples in Rice 2004a), and otherwise provides (potentially high-order) approximations. The175

approach that is begun in equations 1 and 2 allows calculation of moments of (and components176

of) phenotype, which is necessary for material that follows, but does not directly reduce to177

simple analytical solutions in special cases.178

Similarly to calculation of the population mean phenotype, the expected trait value(s) of179

an individual with a given vector of exogenous breeding values is generally not the phenotype180
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associated with an individual with the mean exogenous inputs (genetic and environmental)181

equal to that exogenous breeding value. Rather, the equivalent integration over all of the pos-182

sible environmental effects that may be experienced by an individual with a particular genetic183

composition is required; thus the broad-sense genetic value for phenotype, given particular184

exogenous breeding values εa is185

g(εa) =

∫
f(µε + εa + εe)N(εe,0,Σεe) dεe. (3)

This is equivalent to the un-numbered expression following equation 4 in Lande (1979), which186

gives the expected fitness conditional on genetic value, given an arbitrary trait-fitness function,187

by integrating over the distribution of environmental variation. Given equation 3, broad-sense188

genetic (co)variances are189

Σg =

∫ (
g(εa)g(εa)

T
)
N(εa,0,Σεa) dεa − z̄z̄T . (4)

Calculation of additive genetic covariances at the level of the phenotype (as opposed to190

exogenous inputs) requires a slightly different approach. We must obtain the effect on pheno-191

type of an (infinitesimally small) allelic substitution at the level of exogenous inputs, averaged192

over all possible phenotypes in which such an allelic substitution may occur. This gives the193

manifestation of any given component of the input to the developmental system, at the level194

of phenotype. It is notable here (as in the calculation of broad-sense individual genetic values)195

that both genetics and environmental effects at the level of inputs to the developmental system196

influence the manifestation of genetic effects at the level of phenotypes.197

Let aε be the effect on exogenous value of substituting an A1 allele for an A2 allele at an198

additive locus (all notation here follows Falconer 1960). The expected deviation from the pop-199

ulation mean in exogenous value for individuals for which an A1 allele has been so substituted200

is thus aε. The average value in a trait, among individuals subjected to the substitution, where201

the trait value depends on the exogenous value according to z = f(ε), is202

z̄A1 =

∫
f(ε+ aε)p(ε)dε,
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where p(ε) is the density of exogenous values of individuals for which the substitution has not203

been made. Given the Taylor series f(ε+ aε) = f(ε) + aε · f ′(ε)..., we obtain204

z̄A1 =

∫
[f(ε) + aε · f ′(ε)] p(ε)dε

in the limit of the infinitesimal model. The allelic substitution effect on z is then205

az = z̄A1 − z̄ =

∫
[f(ε) + aε · f ′(ε)] p(ε)dε−

∫
f(ε)p(ε)dε = aε ·

∫
f ′(ε)p(ε)dε. (5)

The derivation so far is equivalent in construction to that in Kimura and Crow (1978) for206

calculation of locus-specific selection coefficients for arbitrary fitness functions and phenotype207

distributions. Denote the key quantity, the slope of the developmental landscape averaged over208

inputs to the developmental system,
∫
f ′(ε)p(ε)dε = Φ, and so, az = Φa. The average excess209

(Falconer, 1960; Fisher, 1918, 1930) of the A1 allele in exogenous value is αε = aεp(1 − p),210

where p is the frequency of the A1 allele, and the corresponding average excess in the trait is211

αz = azp(1− p) = Φaεp(1− p). Thus average excesses for exogenous value and trait are related212

by αε
aε

= p(1−p) = αz
Φaε

, and so αz = Φαε. Variance in exogenous value attributable to the locus213

in question is thus σ2
a,ε = 2p(1 − p)α2

ε , assuming random mating, and the associated variance214

in the trait is σ2
a,z = 2p(1− p)α2

z = 2p(1− p)(Φαε)2. Additive genetic variances for exogenous215

value and trait are thus related according to
σ2
a,z

Φ2α2
ε

= 2p(1− p) =
σ2
a,ε

α2
ε

. Additive genetic variance216

in the trait caused by the projection of exogenous inputs onto trait values via the phenotypic217

landscape, is218

σ2
a,z = Φ2σ2

a,ε,

if additive genetic exogenous values are normally distributed. Parallel reasoning can be applied219

to obtain genetic covariances of traits given the genetic variance-covariance matrix of inputs220

to the developmental system. Compactly, the expressions can be written by first defining a221

multivariate version of Φ as the matrix of mean gradients of f(ε) integrated over the distribution222

of ε:223

Φ =

∫
δz

δε
N(ε, ε̄,Σε) dε. (6)
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The additive genetic variance or covariance matrix at the level of phenotype is then the pro-224

jection of the distribution of additive genetic effects at the level of exogenous inputs onto the225

phenotype, via the average phenotypic effects of infinitesimal inputs. If exogenous breeding226

values are multivariate normal:227

G = Σza = ΦΣεaΦT . (7)

More generally, the matrix Φ could be obtained as the gradient matrix of population mean228

phenotype with respect to population mean exogenous values. Such a formulation would allow229

analysis of phenotypic landscapes that contain discontinuous functions.230

Dominance variance is negligible in the general model that is considered here; as allelic sub-231

stitution effects approach zero (the limit defining the infinitesimal model), so too do the domi-232

nance effects arising from non-linearities in the developmental system. Consider the regression233

of genotypic values on genotype at a given locus (see, for example, figure 7.2 in Falconer 1960).234

The deviations of genetic values from this regression, averaged over all background genetic235

and environmental conditions, determine the dominance variance. Thus, in any developmental236

system where genetic value for phenotype is a continuous function of exogenous genetic val-237

ues (this can occur if a phenotypic landscape is non-continuous but where exogenous inputs238

include environmental effects), this regression will become approximately linear, over the range239

of effects generated by genotypic variation at a single locus, as the limiting conditions of the240

infinitesimal model are approached. Wright (1935) gives expressions for additive, dominance,241

and epistatic variances for a quadratic phenotypic landscape, or for a quadratic approximation242

to a phenotypic landscape, for arbitrary allelic substitution effects and allele frequencies. The243

additive and epistatic components are proportional to the square of the additive exogenous244

allelic substitution effect (Wright’s 1935 equations 20 and 27), while the dominance variance is245

proportional to the fourth power of the allelic substitution effect (Wright’s equation 22), and so246

dominance variance arising from developmental relationships among traits becomes negligible247

relative to additive and epistatic variances in the limit of the infinitesimal model.248

Non-linearities in the developmental system do manifest as epistatic (co)variances. The249

non-additive genetic component of phenotypic (co)variances will generally be a mix of additive250
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by additive, and typically higher-order, epistatic covariances. The total epistatic effects, how-251

ever, can be summarised compactly. For arbitrary developmental systems the total epistatic252

covariances are253

Σz,E = Σz,g −G, (8)

where Σg and G are obtained via equations 4 and 7, respectively. The total environmental254

covariances (additive and interactive) are obtainable similarly to the broad-sense genetic co-255

variances, and the total plasticity could be obtained by subtracting the broad-sense genetic256

covariances, and the total environmental covariances, from the total phenotypic covariances.257

Selection and evolution of non-linear developmental systems258

Consider now that the phenotype zi may influence an individual’s expected fitness E(W )i,259

potentially non-linearly. Motivated by the Lande equation (Lande, 1979), ∆z̄ = Gβ, the two260

key pieces of information that are considered necessary for characterising the microevolutionary261

process are the G matrix and the selection gradient β, the partial derivatives of mean relative262

fitness with respect to mean phenotype. However, these parameters will not entirely describe263

the dynamics of systems with non-linear phenotypic landscapes. The Lande equation holds264

for arbitrary trait-fitness relationships when the offspring-parent regression is linear. However,265

the parent-offspring regression will not typically be linear in non-linear developmental systems,266

which can lead to quantitative and qualitative deviation of predictions of the Lande equation267

from actual evolutionary trajectories (Heywood 2005; see also examples in Rice 2004a, especially268

the example associated with his figures 7 and 8, and Rice 2011). Theorematic approaches can269

provide exact descriptions of the dynamics of phenotype (Heywood, 2005; Price, 1970; Rice,270

2011), but without necessarily providing insight into why a given evolutionary trajectory occurs.271

A quantitative genetic approach can potentially yield a system for describing a population’s272

evolutionary trajectory and how it is shaped by development.273

Morrissey (2014) describes the “extended selection gradient” as the total effects of traits on274

(relative) fitness, denoted η, as opposed to the direct effects of traits on fitness, β. A key275

feature of η is that it represents the selective meaning of variation in traits, i.e., Sober’s (1984,276
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see also Endler 1986) concept of “selection for”. β represents “selection for” traits only when all277

covariances among traits are (or are assumed to be) irrelevant to the mechanism of selection.278

Another way of describing the extended selection gradient is that it is the vector of partial279

derivatives of mean relative fitness, not with respect to the traits, as is β, but rather with280

respect to the exogenous inputs of variance to each trait. To see this, consider developmental281

system such as that in figure 1a, with linear effects only; let the system be defined by the282

developmental system283

f(ε)i =


E(w)i

z2,i

z1,i

 =


1 + b2z2

a2 + b1z1 + ε2,i

a1 + ε1,i

 .
The selection gradients of such a system are βz1 = 0 and βz2 = b2, while the rules of path284

analysis, applicable to a strictly linear system, give the extended selection gradients as ηz1 = b1b2285

and ηz2 = b2 (Morrissey, 2014). It can be seen that the derivatives of relative fitness with286

respect to exogenous values also give η. Expected relative fitness in terms of εi is E(w)i =287

1 + b2(a2 + b1a1 + ε1,i + ε2,i). The derivatives of relative fitness with respect to exogenous values288

are dE(w)
dε2

= b2 = η2 and dE(w)
dε1

= b1b2 = η1. Given a strategy to calculate η in non-linear289

phenotypic landscapes, essentially a system of non-linear path analysis, we can use this kind290

of characterisation of natural selection to describe the evolution of inputs to developmental291

systems, which in turn can describe evolution of the phenotype.292

Take a characterisation of a developmental system, denoted here as a vector-valued function293

zi = f(εi), where expected (relative or absolute) fitness is one of the traits predicted from294

ε. That vector-valued function can be re-arranged so as to predict fitness from inputs to the295

developmental system, Wi = W (εi). Population mean fitness can then be calculated just as296

any trait that depends on inputs to development, as in equation 1, i.e.,297

W̄ (ε̄) =

∫
W (ε)N(ε, ε̄,Σε) dε. (9)

Extended directional and quadratic selection gradients are then obtainable (generally by nu-298
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merical methods) as299

ηj =
δW̄ (ε̄)

δε̄j
W̄−1, (10)

and300

θjk =
δ2W̄ (ε̄)

δε̄jδε̄k
W̄−1, (11)

where ε̄j is the mean of the exogenous inputs to variable j.301

If the phenotypic landscape f(ε), and the associated mean fitness function W̄ (ε̄), include302

one-to-one effects of exogenous variance on each trait, then the extended selection gradients as303

applied here are the extended selection gradients of both the traits and the exogenous values.304

If each exogenous value affects the associated trait by any other function than a 1:1 regression,305

η and θ as defined in equations 10 and 11 will be the extended selection gradients of the306

exogenous values; they will be extended selection gradients of the traits on an underlying scale,307

equivalent to the linear predictor scale in a generalised regression model. For example, if some308

trait zi within f(ε) takes the form zi = ef(z1...zi−1) + εi, then extended selection gradients309

calculated based on that f(ε) function will apply both at the level of the traits z and at the310

level of exogenous values ε. Alternatively, if zi were defined as zi = ef(z1...zi−1+εi), then extended311

selection gradients calculated using equations 10 and 11 would apply only to the exogenous312

values.313

The per-generation evolution of the mean vector of inputs to the developmental system is314

∆ε̄ = Gεη, (12)

where Gε is the additive genetic variance-covariance matrix of exogenous values. Equation 12315

is simply an application of the Lande (1979) equation to multivariate normal inputs of additive316

genetic variation to the developmental system. The Lande equation may be applied in this way317

because Gε describes the relationships among the traits before the developmental system is318

taken into account, and the extended selection gradient vector η represents the effects of traits319

on fitness, accounting for the developmental system. The influence of development on covariance320

among traits is simply shifted from the genetical inferences to the part of the system that321
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characterises selection. After selection, but before recombination and segregation, the change322

in Gε due to selection is Gε(θ−ηηT )Gε, which follows directly from Lande and Arnold’s (1983)323

expression for the within-generation change in G as a function of direct selection gradients.324

Morrissey (2014) gives evolution of the mean phenotype, in a linear developmental system,325

as ∆z̄ = ΦGεη. Essentially, Φ (see equation 6) is a function mapping an infinitesimally small326

change in exogenous variables, ε, onto changes in phenotype, z. Thus, ∆z̄ = ΦGεη gives327

the approximate evolutionary trajectory, when ∆ε̄ is small, in a non-linear system. Non-linear328

developmental systems will cause the evolutionary trajectory to curve away from this prediction,329

even in a single time-step (e.g., generation). Evolution of the mean phenotype can simply be330

obtained as the difference between population mean phenotype before selection in each of two331

subsequent generations, each of which can be calculated with equation 1. Re-writing equation332

1 as a function of population mean exogenous inputs, say z̄ = f ∗(ε̄), evolution of the mean333

vector of phenotype is334

∆z̄ = f ∗(ε̄+ Gεη)− f ∗(ε̄). (13)

Established evolutionary quantitative genetic theory only provides a comprehensive treat-335

ment of evolution of population mean phenotype, with only short term predictions. Technically,336

only ∆z̄ for a single generation is predicted by the breeder’s (Lush, 1937) and Lande (1979)337

equations. Some general theory exists to describe transient changes in genetic (co)variances338

due to gametic disequilibrium (Bulmer, 1971; Tallis, 1987; Tallis and Leppard, 1988; Turelli339

and Barton, 1994), but otherwise a general system for understanding the evolution of higher340

moments of phenotype is lacking. The incorporation of a phenotypic landscape perspective into341

evolutionary quantitative genetic theory provides a general mechanism for modelling the full342

joint distribution of phenotype, and of components of phenotypic (co)variation. The evolution343

of the G matrix, any other components of P, or higher (mixed) moments of the phenotype,344

are obtainable equivalently by substituting the appropriate function for f ∗(ε̄) in equation 13,345

i.e., using the different expressions given in the section ‘(Co)variance components in non-linear346

systems’, or straightforward extensions thereof.347

Equation 13 can be used to give evolution of moments of phenotype under either of two348
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assumptions. First, it will hold given gametic phase equilibrium, or assuming that the system349

being analysed is at a quasi-equilibrium state between the effects of selection and recombination350

on the gametic phase equilibrium effect on exogenous additive genetic variances and covariances.351

Alternatively, it can be seen as predicting the permanent component of the change in phenotype,352

i.e., that which would occur after relaxation of selection and restoration of gametic phase353

equilibrium. The change in phenotype, accounting for both the permanent evolutionary effects354

on mean exogenous genetic parameters, and transient changes in Gε could be made by allowing355

for changes in the exogenous (co)variances in the f ∗() functions used in the application of356

equation 13, according to standard theory (Bulmer, 1971).357

Selective evolutionary constraints arising from the developmental sys-358

tem359

While simple theoretical arguments suggest that stabilising selection should be common (Hansen360

and Houle, 2004; Lande, 1976), and models of evolutionary divergence with stabilising selection361

seem to best fit macroevolutionary trends (Estes and Arnold, 2007; Hunt, 2007; Uyeda et al.,362

2011), stabilising selection is surprisingly rarely directly detected. A large part of the lack of363

convincing evidence for stabilising selection could arise from the fact that statistical power in364

most studies is typically insufficient to detect non-linear selection (Haller and Hendry, 2014).365

However, meta-analyses of (direct) selection gradients (Kingsolver et al., 2001) have revealed366

that curvature of fitness functions is positive about as often as it is negative, and is typically367

modest relative to directional selection. Given these two observations, we cannot use low sta-368

tistical power as the primary explanation for a lack of direct evidence for stabilising selection369

in nature. Thus, the lack of direct evidence for stabilising selection, relative to the apparent370

preponderance of evidence for directional selection, remains to be explained.371

Stabilising selection, or non-linear selection in general, may arise from the developmental372

system. Many ecologically-relevant sets of traits will be related to one another by non-linear373

functions. Wright (1935) analysed a two trait model where z2 is a quadratic function of z1,374

and where z2 is monotonically related to fitness. The overall structure of this model could be375
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represented diagrammatically as in figure 1a, and is elaborated in figure 2. Wright’s (1935)376

model could be seen as a gentical version of Arnold’s (1983; see also Arnold 2003) ‘morphology-377

performance-fitness’ model. z2 might be a life history trait, narrowly-defined, i.e., a feature of378

a life table. All life history traits are monotonically directly related to fitness. Additionally,379

no traits other than life histories directly influence fitness, although they may have statistically380

direct effects (e.g., non-zero β and/or γ) in analyses that do not include life history traits.381

Stabilising selection in the Wright-Arnold model, and in reality, can therefore only occur via382

indirect effects of traits on fitness. The Wright-Arnold model is at equilibrium when the mean383

value of z1 is equal to the value that maximises z2 (this is strictly true if z1 is symmetrically384

distributed). Although it is intuitively clear that such a system is dominated by stabilising385

selection, this selection is not represented in any way by the parameters that are generally used386

in quantitative genetics, i.e., neither in the G matrix, nor in direct multivariate directional or387

quadratic selection gradients. Such stabilising selection can be modelled and quantified with388

extended selection gradients.389

Example: evolutionary prediction and interpretation of genetics and selection in390

the Wright-Arnold model391

In this section, I present more detailed analyses of the Wright-Arnold model under simple as-392

sumptions about the quantitative genetic basis of variation in exogenous values. The first goal393

is to generate an example of how the various expressions given above can be applied to an394

arbitrary developmental system. The second goal is to explore how different ways of charac-395

terising the genetics and selection of the system, and of predicting its evolutionary trajectory,396

perform in principle. In particular, I explore the Wright-Arnold model at equilibrium, and in397

a non-equilibrium state.398

In both the equilibrium and non-equilibrium cases, the parameters of the developmental399

system are assumed to be known. Such parameters could be estimated using mixed modelling400

techniques. For example, parameters of the phenotypic landscape can be estimated as effects401

of fixed covariates in mixed models, and exogenous variances can be estimated as variance402

components, conditioning on fixed covariates. For the equilibrium case, I assume that the403
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developmental system’s parameters are404

f(εi) =


z1,i

z2,i

E[W ]i

 =


α + ε1,i

10− z2
1,i

e
z2,i
10


and405

Σε,a =


0.5 0 0

0 0 0

0 0 0

 ,Σε,e =


0.5 0 0

0 0 0

0 0 0

 , ε̄ =


0

0

0


and for the non-equilibrium case, I assume that the mean exogenous value for z1, i.e., ε̄1, is406

-1 or +1. These values are useful for demonstration, but more complicated parameters, e.g.,407

non-zero exogenous variances of z2 and expected fitness, are easily accommodated. Note that408

these quantities pertain to variance in exogenous values, not phenotype. Both phenotypic traits409

and fitness are variable in this system, and the first steps of our analyses will be to calculate410

phenotypic means and variances.411

The equilibrium scenario412

The mean vector of phenotype, z̄, as calculated using equation 1, is413

z̄ =


z̄1

z̄2

W̄

 =


0

9

2.48


and the phenotypic variance-covariance matrix, calculated using equation 2 is414

P =


1 0 0

0 2 0.41

0 0.41 0.087

 .

The mechanics of equations 1 and 2 are depicted in figures 3 and 4. The first key to the415

analysis of non-linear systems, which is apparent in figure 3, is why it is necessary to integrate416
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over the distribution of all inputs to the developmental system in order to obtain parameters of417

the distribution of traits. An average individual for z1, i.e., z1 = 0 has a phenotype for z2 of 10,418

which is an extreme phenotype for z2. Individuals with non-average phenotypes for z1 produce419

less than maximal, i.e., < 10 phenotypes for z2, and so the mean of z2 is lower than the value420

of z2 corresponding to the mean of z1. The same reasoning applies to the variance: the mean421

squared difference from the mean of any individual for z2 is also a function of how the mean422

and variance of the distribution of z1 interact with the curved function describing the effect of423

z1 on z2.424

The average effects of all traits on each another, calculated using equation 6 are425

Φ =


1 0 0

0 1 0

0 0.25 1

 .

As for the phenotypic covariance of z1 and z2, there is no net effect of z1 and z2. This does not426

mean that there is no relationship, just that there is no average effect. The additive genetic427

covariance matrix of the two traits and absolute fitness is428

G =


0.5 0 0

0 0 0

0 0 0

 .

Since the only source of genetic variance to this system is the exogenous input to z1, and since429

z1 has no average effects on other traits in the equilibrium scenario, there is no additive genetic430

covariance between z1 and z2 or fitness, nor is there any additive genetic covariance of either431

trait with fitness.432

The total genetic (co)variances, calculated using equations 3 and 4, are433

ΣG =


0.5 0 0

0 0.5 0.1

0 0.1 0.021

 .



Morrissey, non-linear evolutionary quantitative genetics 20

Interestingly, empirical analysis of a Wright-Arnold system at equilibrium could easily mis-434

take the non-additive genetic variance for z2 for additive variance. Every pedigree relationship435

to which additive genetic variance contributes covariance will also have a contribution from436

epistatic variance (Lynch and Walsh 1998, table 7.2), if epistatic variance occurs in a given pop-437

ulation. So any standard analysis of σ2
a(z2), including parent-offspring regression, sib-analysis,438

or mixed model (e.g., ‘animal model’) analysis, would to some extent mistake epistatic vari-439

ance for additive variance. While pedigree designs exist that can in principle separate epistatic440

from additive genetic variance components, the task will probably rarely be feasible except441

in conjunction with a system for explaining why epistasis occurs, such as a model of non-442

linear development. If epistatic variance in z2 were mistaken for additive genetic variance in a443

Wright-Arnold system at equilibrium, an erroneous evolutionary prediction would result.444

The directional and quadratic direct and extended selection gradients of z1 and z2, as cal-445

culated using equations 10 and 11, are446

β =
dW̄

dz̄
W̄−1 =

 0

0.1

 , η =
dW̄

dε̄
W̄−1 =

 0

0.1

 ,
and447

γ =
d2W̄

dz̄2
W̄−1 =

0 0

0 0.01

 , θ =
d2W̄

dε̄2
W̄−1 =

−0.17 0

0 0.01

 .
Selection gradients have been defined for normal traits (Lande and Arnold, 1983). It is therefore448

not possible to give values of β and γ for the Wright-Arnold system that are consistent with449

all expressions given in Lande and Arnold (1983), since the quadratic effect of z1 on z2 causes450

the joint distribution of these traits to be non-normal. The values given here are those that451

would be obtained by standard regression analysis (e.g., application of equation 16 in Lande452

and Arnold (1983), and are consistent with the fact that there is no information about fitness453

in z1, given values of z2, and therefore correspond also to the definition of selection gradients454

as representing the direct effects of traits on relative fitness. Note that the values of β and γ455

for z1 would take the corresponding values of η and θ in a univariate analysis of selection of456

z1. This illustrates how (the true values) direct selection gradients a not only parameters of a457
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given biological system, but their (true) values also depend on the traits included in a given458

study (Morrissey, 2014). In this case a univariate analysis would recover useful information459

about the biology of the system. Such a univariate analysis would rarely be conducted when460

multivariate data are available, as multivariate analyses are generally understood, in principle,461

to provide the most robust inferences of evolutionary quantitative genetic parameters (Walsh462

and Blows, 2009). A study using only on univariate selection gradients would have to be463

motivated by a prior understanding of the non-linear properties of the developmental system464

– i.e., an understanding of how univariate selection gradients can sometimes provide inferences465

that extended gradients provide – and its results from such could only be interpreted with that466

developmental understanding.467

The (non)evolution of exogenous inputs in the equilibrium system is given by468

∆ε̄ = Gεη =

0.5 0

0 0

 0

0.1

 = 0,

and consequently ∆z̄ would be zero as well.469

This calculation gives the permanent component of the response to selection, i.e., that which470

would occur after several generations of random mating to restore gametic phase disequilibrium.471

This would be the expected total and immediate change in mean phenotype, if Gε was at an472

equilibrium value between selection and recombination. If, on the other hand, selection was473

applied to a previously unselected randomly mated population, the expected change in Gε474

could be calculated, and its effect on ∆z̄ could be obtained as well. The change in Gε due to475

selection, but before recombination is476

∆Gε = Gε(θ−ηη′)Gε =

0.5 0

0 0

−0.17 0

0 0.01

−
 0

0.1

[0 0.1
]0.5 0

0 0

 =

−0.04167 0

0 0

 .
If the population was previously unselected and randomly mated, Gε would be the equilibrium477

value. In the second generation, after one round of selection in parents, and one round of478

recombination in the production of offspring, the exogenous additive genetic covariance matrix479



Morrissey, non-linear evolutionary quantitative genetics 22

will be480

G′ε = Gε +
∆Gε

2
=

0.4791 0

0 0

 ,
assuming many unlinked loci (Bulmer, 1971). This transient evolution of Gε can then be used481

in equation 13 to predict the change in the distribution of phenotype in the next generation. In482

the Wright-Arnold example at equilibrium, the reduction in exogenous variance for z1 causes a483

slight increase in z2, with ∆z̄2 ≈ 0.02 due to the evolution of gametic phase disequilibrium in484

ε1.485

The key descriptor of the Wright-Arnold system at equilibrium is the extended quadratic486

selection gradient of z1, i.e., θ1,1 = −0.17. This is the key evolutionary parameter that describes487

the nature of such a system as being dominated by stabilising selection. In contrast, the direct488

quadratic selection gradient of z1 is zero in a model that includes z2, and is -0.17 in a model489

that includes z2. Both these values are correct, and illustrate the fact that the true value of490

the direct quadratic selection gradient is not merely a descriptor of the biology of multivariate491

selection, but also a function of the set of traits considered in a given study, as is the direct492

directional selection gradient (Morrissey, 2014).493

Non-equilibrium scenario494

Non-equilibrium scenarios in the Wright-Arnold model are instructive for two reasons. First,495

it is useful to explore the values of the evolutionary parameters of a non-linear system that496

is expected to evolve. Second, analysis of such a system yields further insights into just what497

stabilising selection means in the extended sense, generally, and in the equilibrium scenario498

especially. Note that the only difference between the equilibrium and non-equilibrium scenarios499

is the mean of the exogenous inputs to z1. All differences in microevolutionary parameters thus500

arise from the difference between two populations with genetically-based differences in mean501

values of inputs to development, but with the same developmental system, and the same direct502

effects of traits on fitness.503
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The mean vector and phenotypic covariances when ε̄1 = −1 are504

z̄ =


z̄1

z̄2

W̄

 =


−1

8

2.28

 P =


1 2 0.38

2 6 1.08

0.38 1.08 0.20

 .

Note that a very similar non-equilibrium scenario exists when ε̄1 = +1. In this alternative505

scenario (depicted in the right/bottom plots in figure 4), all evolutionary parameters are the506

same, except those relating to the relationship of z1 to other traits (i.e., genetic and phenotypic507

covariances with z2, and the directional extended sense selection gradient) are opposite in sign.508

The effects of all traits on one another are509

Φ =


1 0 0

2 1 0

0.38 0.23 1

 ,

and the additive genetic variance-covariance matrix of the traits and fitness is510

G =


0.5 1 0.19

1 2 0.38

0.19 0.38 0.072

 .

We can see that as there is now an average effect of z1 on z2, and as in the equilibrium scenario511

z2 still has an average effect on fitness, the exogenous genetic variance for z1 is projected onto512

z2, and ultimately onto fitness as well, in a way that does not occur in the equilibrium scenario.513

The direct and extended selection gradients are514

β =
dW̄

dz̄
W̄−1 =

 0

0.1

 , η =
dW̄

dε̄
W̄−1 =

0.17

0.1

 ,
and515

γ =
d2W̄

dz̄2
W̄−1 =

0 0

0 0.01

 , θ =
d2W̄

dε̄2
W̄−1 =

−0.13 0.016

0.016 0.01

 ,
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and evolution of the mean vector and covariance matrix of the traits, using equation 13 is516

∆z̄ =

0.083

0.16

 and ∆P =

 0 −0.15

−0.15 −0.61

 .
The non-equilibrium system is expected to evolve toward the parameters of the equilibrium517

system. Note that although the exogenous input to z2 does not evolve (in this instructive518

scenario, there is no exogenous additive genetic variance for z2), z2 evolves due to evolution of519

z1, combined with the effect of z1 on z2.520

In the alternative non-equilibrium state where ε̄1 = +1, η1 = −0.17. This illustrates the521

principle of stabilising selection in the extended sense: z1 is positively directionally selected522

when ε̄1 is below the optimum, and is negatively selected when it is above the optimum. Even523

though z2 is directionally-selected, its evolutionary trajectory is dominated by stabilising selec-524

tion of z1. It seems that many of the traits commonly studied in nature could be very much525

like z2. Most traits measured in field studies of natural selection reflect aspects of organismal526

performance that are certainly the product of much underlying behaviour and physiology. In527

many such cases, it is not surprising that directional selection dominates some traits (Kingsolver528

and Pfennig, 2004). As such, more detailed study of why and how traits that are subject to di-529

rection selection vary, i.e., by also studying traits more like z1, though they may be challenging530

to measure, may be necessary to test whether the stabilising selection that seems required to531

explain evolutionary dynamics (Estes and Arnold, 2007; Hunt, 2007; Uyeda et al., 2011) exists532

in contemporary populations.533

Power of the extended selection gradient approach534

It may initially seem that inference of extended selection gradients, whether directional or535

quadratic, is a greater statistical challenge than inference of direct selection gradients. In fact,536

extended selection gradients may often be estimated with greater precision, conditional on a537

model of a developmental system. Here I consider one aspect of how knowledge or assumptions538

about a developmental system may be harnessed to improve inference of selection. I consider539

that the basic structure of a linear system may be known, i.e., the ordering of effects may540
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reasonably be assumed, perhaps because of temporal ordering, but the statistical form of the541

effects may be unknown.542

Consider a Wright-Arnold developmental system with true values of543

f(εi) =


z1,i

z2,i

E[W ]i

 =


α + ε1,i

1− 0.3 · z2
1,i + ε2,i

e
z2,i
4


where realised individual fitness is Poisson-distributed with expectation E[W ], and544

Σε =


1 0 0

0 0.5 0

0 0 0

 , ε̄ =


0

0

0

 .

This system is very similar to that considered above and in figures 3 and 4, but more realistic545

(and less amenable to constructing instructive plots) in that there is exogenous variance for z2,546

and in that we consider stochastic (Poisson) variation in fitness. Alternatively, consider a pure547

directional selection model, where z2 = 1 + z1
4

+ ε2 is substituted for the middle equation in the548

phenotypic landscape. The extended selection gradients of z1 in these systems are: stabilising549

(i.e., when z2,i = 1− 0.3 · z2
1,i + ε2,i)550

ηz1 = 0, θz1 = −0.13,

and directional (i.e., when z2 = 1 + z1
4

+ ε2,i)551

ηz1 = 0.0625, θz1 = 0.004.

For studies with sample sizes between 50 and 500, I simulated data according to both devel-552

opmental systems. I then calculated three sets of measures of the extended selection gradients553

of z1. First I calculated the direct selection gradients in a univariate analysis considering only554

z1 as a predictor of fitness. This statistical machinery for calculating direct selection gradients555

is a valid approach to obtaining the extended selection gradients, if mediating traits (i.e., z2,556
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in this case) are identified and excluded from the analysis. It works using the same knowledge557

of the developmental system that is required to obtain extended selection gradients, in that it558

requires knowledge of what mediating traits need to be excluded in order for direct and ex-559

tended selection gradients to be equivalent. Second, I calculated extended selection gradients,560

by modelling the effect of z1 on z2 with a linear model with linear and quadratic terms, and the561

effect of z2 on fitness as a Poisson generalised linear model with both linear and squared terms.562

Third, I calculated extended selection gradients, again using a quadratic (i.e., containing linear563

and squared terms) model of the effect of z1 on z2, but using glm of the effect of z2 on fitness564

that contained only a (log) linear term. This third model represents a (correct) assumption by565

the investigator that the direct effect of z2 on fitness is monotonic and (log) linear.566

Explicit inclusion of the developmental system in inference of selection of z1 greatly im-567

proves statistical power in the simulated scenarios (figure 5). Direct selection gradient esti-568

mates (excluding the mediating trait in order to render direct and extended selection gradients569

equivalent) does not produce estimates that are sufficiently precise to allow robust inference570

of selection, even with appreciable sample sizes, despite the simplicity of the analysis (figure571

5a,d,g,j). This corroborates Haller and Hendry’s (2014) finding that typical sample sizes are572

inadequate to characterise (direct) quadratic selection gradients. However, for the same direc-573

tional and quadratic selection scenarios of z1, and indeed for the same simulated datasets, both574

versions of the explicit extended selection gradient analysis yield much more precise estimates,575

with the potential to distinguish between zero, and modest but non-trivial, selection gradients576

with reasonable certainty, and given reasonable sample sizes (figure 5).577

Discussion578

Integration of information about the developmental system into evolutionary quantitative ge-579

netics provides many advantages. These advantages ultimately come from shifting the emphasis580

from documenting the existence of phenotypic and genetic patterns of covariation among traits,581

to explaining why covariance occurs among traits and between traits and fitness. In the ex-582

amples here, I have focused on one possible benefit of a quantitative genetic developmental583
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approach, i.e., that it provides a new hypothesis to explain the lack of direct evidence for584

stabilising selection in nature. Other key benefits of this more mechanistic approach to quanti-585

tative genetic parameters may include efficient model-based procedures for separating additive586

and epistatic variance components, and ways to model the evolution of any arbitrary aspect587

of phenotype. Ultimately, these benefits require different kinds of information than do more588

descriptive common approaches to evolutionary quantitative genetics. However, this need for589

additional information should be seen primarily as an opportunity, where expressions such as590

those presented here could be seen as an insertion point into quantitative genetics for perspec-591

tives from environmental physiology and functional ecology.592

A great deal is known about many phenotypic landscapes. Many sub-fields of biology,593

in particular, functional ecology and environmental physiology, generate this information. For594

example, optimal foraging theory generates simple predictions about foraging phenotypes based595

on simple inherent trade-offs (Pyke et al., 1977). Similarly, ideas about energy and time budgets596

provide a variety of relatively simple ways to bring organismal biology views on relationships597

among traits into a quantitative framework (Zera and Harshman, 2001), and the phenotypic598

landscapes systems of some morphological characters are understood in fine detail (e.g., Salazar-599

Ciudad and Jernval 2010; Salazar-Ciudad and Marin-Riera 2013). Even when the specific form600

of the phenotypic landscape is unknown, informed decisions about the direct and indirect causal601

structures relating different aspects of phenotype to one another and to fitness will often be602

possible using common sense; for a start, subscription to a linear understanding of time and603

causality can go a long way.604

Estimation of the parameters of non-linear developmental systems will often be possible605

using standard statistical tools. Phenotypic landscapes composed of polynomial functions are606

generally estimable using multiple regression models. Simultaneous estimation of coefficients607

of phenotypic landscapes, and of exogenous (co)variance components, would require multiple608

regression mixed models of the sort commonly applied in quantitative genetic analysis of ex-609

perimental data and of natural populations. The main difference is that exogenous variance610

components are estimated by conditioning on endogenous effects, which is accomplished by611

including traits (or functions of traits) as fixed effects (see Morrissey 2014 for linear exam-612
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ples, from which extensions to polynomial effects of traits on one another is straightforward).613

Parameters of plastic phenotypic landscapes are similarly estimable using random regression614

mixed models (Meyer, 1998; Wilson et al., 2005; Zuur et al., 2009). It will generally be possi-615

ble as well to estimate parameters of non-linear phenotypic landscapes with functional forms616

that cannot be expressed as polynomial functions. For simple pedigree structures, for example,617

where (exogenous) genetic variances might be calculated from sire effects, parameters could be618

estimated using existing tools such the function nlme in the R package nlme (Pinheiro et al.,619

2013). Parameters of (non-polynomial) non-linear developmental systems can in principle be620

estimated using general pedigrees using Bayesian approaches and tools (e.g., using tools such621

as the bugs language, Plummer 2010; Spiegelhalter et al. 2003).622

Evolutionary quantitative genetic studies typically treat genetic influences on phenotype, and623

selective consequences of phenotype, i.e., effects of traits on fitness, as separate components624

of the microevolutionary process. However, it is a narrow perspective to view the causes of625

relationships among traits (a) in a primarily statistical framework to be tackled with P and626

G matrix estimation, and (b) as a matter of only genetics, not selection. In the Wright-627

Arnold model at equilibrium (figures 3 and 4), it is correct to say that z1 is not directly628

selected, nor is it genetically correlated with a directly selected trait, and therefore it will629

not evolve. However, it is equally correct to say that it is not expected to evolve because it630

is subject to stabilising selection (and is at the optimum). In either interpretation, studying631

constraint via the developmental system brings explanatory power that is not typically exploited632

in quantitative genetic studies that are motivated by the Lande equation.633

It seems probable that many traits of interest to evolutionary biologists could have a devel-634

opmental basis similar to that of z2 in the Wright-Arnold model. Indeed, while z2 is termed635

“performance” in Arnold’s (1983; 2003) works, any kind of trait, including morphology, could636

occupy the position of z2 in a developmental system. In particular, traits such as overall body637

size, or the size of sexual ornaments, may be determined not by maximisation, but rather by638

optimisation, of other traits. Individuals that grow the largest may do so, not by foraging very639

little, nor by foraging wildly and inefficiency, but by behaving in some optimal manner. In a640

population where foraging rate (z1) was optimised for maximal growth and body size (z2), and641
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where size was positively related to fitness, as is commonly observed (Kingsolver and Pfennig,642

2004), an explicitly developmental view may be useful for understanding the system. In such643

a system, any additive genetic variance in behaviour would be manifested entirely as epistatic644

variance for body size. Epistatic variance contributes to phenotypic covariances among all645

classes of relatives. Models that do not explicitly model epistatic genetic variance would in-646

terpret this covariance of body size among relatives as evidence for heritability, as is common647

(Postma, 2014). The observation of sub-optimal body size, or an observation of its failure to648

evolve larger values, would be a case of the common paradox of stasis. A developmental view649

could motivate a researcher to solve this problem, either by seeking to separate additive genetic650

and epistatic variance components for body size, a difficult but not an impossible task (Lynch651

and Walsh, 1998), or by seeking to hypothesise, measure, and model those traits that may be652

optimised by selection for large size.653

While it is conceptually useful to think of the developmental system as composed of three654

parts: exogenous inputs, the phenotypic landscape, and phenotypic outputs; they are not655

necessarily distinct. For example, because the phenotypic landscape may take any form, there is656

no reason why exogenous inputs cannot modulate the phenotypic landscape itself. For example,657

a phenotypic landscape taking the form f

ε1
ε2

 = f 1(ε1 · ε2) could be thought of as any658

arbitrary kind of interaction between the two inputs. Depending on the nature of the inputs, one659

may be considered a reaction norm, in which case a general model of the genetics, selection, and660

evolution of plasticity would result. Such an approach may be particularly useful in quantitative661

genetic studies of plasticity; reaction norms are often discussed as the ‘true targets of selection’,662

but of course reaction norms are only selected in the sense of extended selection gradients, i.e.,663

indirectly via the manifest phenotypes they shape. Analysis of phenotypic landscapes that are664

themselves functions of exogenous inputs, would lead to general models that cover different665

mechanisms of genetic assimilation and canalisation (Waddington, 1949, 1953) and evolution of666

disjunct phenotypic distributions (Chevin and Lande, 2013). Rice (2002; 2004a; 2008) provides a667

general theory of non-linear developmental relationships among traits. His theory is adaptable668

to evolutionary prediction by way of approximating the covariance of genetic factors in the669
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developmental system with relative fitness. This directly provides comprehensive evolutionary670

prediction for additive, normally-distributed, factors, but could be extended by predicting non-671

additive inheritance, in much the same way as Heywood (2005) obtained an exact form of672

the univariate breeder’s equation. The statistical genetic mechanics outlined here resolve the673

need for an extended view of how general developmental relationships influence evolution with674

the useful concept of the selection gradient. These mechanics assume that there is some level675

at which inputs to the developmental system can be considered additive. Such models will676

not necessarily always be appropriate, but given any knowledge (or suspicion) of non-linear677

developmental relationships, the assumption of normal inputs to a non-linear developmental678

system can at least be viewed as consistent with knowledge of development, where assumptions679

of breeder’s and Lande equations may be inconsistent.680

Conclusion681

Several attempts have already been made to show how developmental perspectives will eluci-682

date aspects of the microevolutionary process that are likely to be trivialised by established683

quantitative genetic approaches. Here, I have attempted to devise a general theory that retains684

the desirable and highly general perspective of evolutionary quantitative genetics, while pro-685

viding a flexible way of incorporating information about development into broadly meaningful686

ways of characterising genetic variation and natural selection. In this way it will be possible687

for quantitative genetic studies of evolution to more directly benefit from the wider biological688

study of how organisms work.689
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Table 1: Summary of notation.

symbol or expression description

(a) general labels
ε exogenous inputs to the developmental system
z traits, i.e., outputs of the developmental system
W absolute fitness, herein generally conceptualised as expected absolute fitness
w relative fitness, i.e., wi = Wi

W̄
a denotes additive genetic (co)variance components
e denotes residual or environmental (co)variance components

(b) quantities

εi, zi
the vectors of exogenous inputs experience by individual i and of individual
phenotype

ε̄ , z̄
population mean of exogenous inputs to the developmental system, and of phe-
notype

Σε variance-covariance matrix of exogenous inputs
Σε,a additive genetic variance-covariance matrix of exogenous inputs
Σε,e environmental variance-covariance matrix of exogenous inputs
P = Σz phenotypic covariance matrix
G = Σz,a additive genetic covariance matrix
Σz,E epistatic covariance matrix
Σz,g broad-sense genetic covariance matrix

Φ
the matrix of average first partial derivatives of traits with respect to exogenous
inputs

β the vector of direct directional selection gradients
γ the matrix of direct quadratic selection gradients
η the vector of extended directional selection gradients
θ the matrix of extended quadratic selection gradients

(c) functions

f(ε)
the ‘phenotypic landscape’: the vector-valued function returning individual phe-
notype as a function of individual exogenous inputs to the developmental system

N(x,µ,Σ)
the normal probability density function at vector x, given mean vector µ and
variance-covariance matrix σ

g(εa)
the broad-sense genetic value: expected phenotype of an individual with additive
genetic exogenous values εa, integrating over the distribution of environmental
effects

W (ε)i

scalar-valued function describing individual expected fitness as a function of
exogenous inputs to the developmental system, obtained from re-arrangement
of f(ε)

W̄ (ε̄)
scalar-valued function describing population mean expected fitness as a function
of population mean exogenous inputs to the developmental system

f∗(ε̄)
arbitrary moment of phenotype (e.g., mean phenotype) as a function of popula-
tion mean exogenous inputs (assuming a particular value of Σε)
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Figure 1: Examples of the basic model structures encompassed by the approach outlined in this paper. Each
structure could be referred to generally as a ‘developmental system’. Within each developmental system,
there are inputs of variation, denoted by ε, traits, denoted z, where fitness, W , may be treated as any trait.
These specific models are motivated by (a) the Wright-Arnold (Arnold, 1983, 2003; Wright, 1935) morphology-
performance-fitness model, (b) binodal regulatory motifs such as those recently investigated by Hether and
Hohenlohe (2014), and (c) a general set of relationships among exogenous inputs, traits, and fitness, such as
that often used in path analyses of natural selection. Values of functions comprising phenotypic landscapes
may be obtained in any way. Ideally, such models would be approached with a combination of theoretical and
functional analysis, experimental results, and observational data.

z1 z2 W

M

P

P

W

Figure 2: Depiction of Sewall Wright’s (1935) developmental model. A ‘primary scale’ trait, z1, equivalent to
‘morphology’ in Steven Arnold’s (1983, 2003) morphology-performance-fitness model, influences a ‘secondary
scale’ trait, z2, (equivalent to Arnold’s ‘performance’) via a non-linear function, depicted here as a quadratic
function with a maximum within the range of phenotype in the population. z2 influences fitness (W) mono-
tonically. Such a system is dominated by stabilising selection. However, this stabilising selection is neither
represented by standard representations of the genetics of the system, i.e., elements of the G matrix, nor
descriptions of selection, such as direct selection gradients, β and γ.
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Figure 3: The distribution of phenotype in a simple non-linear developmental system. If one trait, z1, influences
another, z2, via a non-linear function, then a complex distribution of the z2 results. For two traits in the
Wright-Arnold model (Wright’s and Arnold’s terminologies for a system as in figure 2 are, Wright: z1 =
“primary scale”, z2 = “secondary scale”, Arnold: z1 = “morphology”, z2 = “performance”) with a quadratic
phenotypic landscape, z2 = 10− z2

1 , the distribution of z2 results from a projection of z1 onto z2. This example
plots the expected value of z2, under the general model presented here (i.e., developmental systems that may
be described according to a vector-valued function and analysed using equations such as 1 to 13). Additional
variance may occur in a trait such as z2 over and above that which is associated with a traits such as z1; this
is not depicted in the example here, in order to make the plot simpler and instructive, although all associated
theory can accommodate such variance. Assuming that increased values of z2 are selected, the system is at an
equilibrium when the distribution of z1 maximises z2 (as on the right-hand set of panels). A key feature of
non-linear developmental systems is that the mean phenotype may be a complex function of the distribution of
inputs and the shape of the phenotypic landscape. Even in the simple scenario depicted here, the mean (means
indicated by asterisks) value of z2 does not directly relate to the value of z2 that results from the mean value
of z1, and so strategies are necessary that integrate over the full distribution of inputs to the developmental
system (in this case, the z1 is the ‘input’ in terms of creating the distribution of z2; see text).
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Figure 4: The full developmental system
in the Wright-Arnold model (figure 2) of
stabilising selection. The lower panels de-
pict the development of the second trait’s
distribution, p(z2), as a function of its
quadratic dependence on the first trait,
z1, which briefly depict the scheme given
in more detail in figure 3. The upper
panels depict the developmental depen-
dence of the distribution of expected fit-
ness p(E[W ]) on p(z2) and so ultimately
on p(z1). Together, the three distributions
of multivariate phenotype and fitness de-
pict non-linear selection in the extended
sense. Whereas the direct effects of traits
on fitness are either null (for z1) or mono-
tonic (for z2), the total effect of z1 on fit-
ness indicates stabilising selection. Either
increasing the mean of z1 (bottom & right
plots), or decreasing the mean of z1 (top
& left plots) leads to decreases in popu-
lation mean fitness, holding the develop-
mental system constant.
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Figure 5: Simulated distributions of estimated selection gradients. True values of selection gradients for each
scenario are plotted in grey lines (in all cases, analyses are unbiased, so this grey line overlaps closely on the
mean estimated values). Panels (a-f) show a scenario where there is stabilising selection, but no directional
selection, and panels (g-l) show a scenario where there is directional selection with no non-linear selection.
The left shows analyses of direct selection gradients, but where knowledge of the developmental system has
been used to omit moderating traits, such that the direct selection gradients are equivalent to the extended
selection gradients. The middle and right columns show analyses of extended selection gradients, assuming that
trait-fitness relationships are quadratic, and (log) linear, respectively.


