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Abstract 

 

This thesis describes a number of studies on organic semiconductors focused 

around using them as gain media for lasers. The photophysical properties of 

organic semiconductors are studied using a wide range of experimental 

techniques, allowing the evaluation of new materials and novel excitation 

schemes for use in organic semiconductor lasers.  

 

Polyfluorene is a well-established conjugated polymer laser gain medium and in 

this thesis its excellent lasing properties are combined with its two photon 

absorption properties to demonstrate a tunable two-photon pumped solid-state 

laser based on a commercially available organic semiconductor. 

 

A family of bisfluorene dendrimers was studied using a number of 

photophysical techniques to evaluate their potential as laser materials. 

Distributed feedback lasers based on one of the dendrimers are demonstrated 

with lasing thresholds comparable to polyfluorene. The same materials were 

found to have enhanced two-photon absorption properties in comparison to 

polyfluorene, leading to the fabrication of tunable two-photon pumped 

dendrimer lasers. 

 

A member of a novel family of star-shaped oligofluorene truxenes was 

evaluated as a laser gain material and the distributed feedback lasers made from 

them show some of the lowest lasing thresholds reported for organic 

semiconductors, partly as a consequence of exceptionally low waveguide losses 

in comparison to other single-material thin films. 

 

Finally, an organic laser dye is blended with a conjugated polymer, where the 

dye molecules harvest the excitation light of a GaN laser diode and transfer its 

energy to the polymer molecules. This is the first time such a scheme is used in 

an organic laser and in combination with a novel surface-emitting distributed 

Bragg reflector resonator allows the demonstration of a diode-pumped organic 

laser, a significant step towards simplifying organic lasers.
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1. Introduction 
 

Plastic materials have long played an important role in various technological 

applications mainly due to their ease of processing and flexibility of synthesis. 

The ability to produce and process them cheaply and in large amounts has made 

plastics perhaps the most successful and widespread category of man-made 

materials in existence today, with applications ranging from household items to 

industrial components and from disposable tools to unique equipment used in 

scientific endeavours. 

 

One of the properties thought to be common amongst plastics is the lack of 

electrical conductivity, leading to some of the most common applications of 

plastic materials being as electrical insulators. It was only in 1963 that the first 

reports on electrical conductivity in the polymer polypyrrole emerged [1], 

followed by the better known reports of electrical conductivity in polyacetylene 

in 1977.[2, 3] The world of science acknowledged the importance of this new 

category of materials by awarding a Nobel price in Chemistry for the discovery 

of conductive polymers in 2000 [4, 5] and the properties of these materials have 

been the object of intense research ever since. 

 

Light-emitting organic semiconductors are an even more recent discovery, as it 

was only in 1987 that electroluminescence was first observed in small 

molecules [6] and not until 1990 that the same effect was observed in 

conjugated polymers [7], leading to the first organic light-emitting diodes 

(OLEDs). Today these devices show very high efficiencies [8-10] and long 

operating times while the first commercial applications using OLED displays 

have appeared in the market and are taking the first step towards becoming an 

established and reliable displays technology [11, 12], while the idea of using 

white OLED lighting to replace the standard incandescent and fluorescent 

lighting tubes is increasing in popularity. [13] 

 

The first suggestion of the possibility of lasing under microwave excitation in 

organic materials came in 1961 [14] opening up a vast field of research over the 
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next years in organic laser gain media.[15] In 1992 the first demonstration of 

lasing in a conjugated polymer [16] highlighted materials suitable for lasing and 

in 1996 the first solid-state conjugated polymer lasers were reported [17], a 

development that sparked a renewed interest in organic semiconductor lasers. 

Some of the key lasing properties of organic semiconductor lasers are compared 

against other well-established solid-state laser gain media in Table 1.a. 

 

Gain medium Optical gain (cm
-1

) Gain bandwidth (nm) 

Ruby [18] 0.2 <1 

Nd:YAG [18] 0.05 <1 

ND:Glass [18] 0.03 28 

Ti:Sapphire [18] 0.2 180 

 GaN semiconductors [19] 50 - 200 50 

AlGaAs semiconductors [20] 100 – 800 20 

Organic semiconductors [21-23] 10 - 80 10 - 120 

 

Table 1.a Optical gain and gain bandwidth at room temperature for some of the 

key gain media used in solid-state lasers. 

 

The key advantage of organic semiconductor lasers comes from the 

combination of reasonably high values of optical gain with the excellent gain 

spectral bandwidth in materials that demonstrate ease of processing. This gives 

rise to a large family of organic semiconductor lasers that combine compact 

dimensions with output wavelength tunability that spans the visible 

spectrum.[21]  

 

The excitation of these lasers however is almost exclusively done optically due 

to the low charge mobilities of organic semiconductors [21], a fact that 

ultimately limits their minimum size.[24] The efforts of the scientific 

community have therefore lately concentrated on miniaturising the optical pump 

sources needed for organic lasers, leading to the use of an inorganic light-

emitting diode as the pump source for a laser based on a highly-efficient 

conjugated polymer.[25] Very recently there has been a report of an electrically-

pumped organic semiconductor laser in the literature [26] that could move some 

organic lasers away from optical excitation and would allow for devices directly 

comparable in terms of size and integration to their inorganic counterparts but 

the need for further improvement remains. 
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The key aspect in down-sizing the pump sources of organic semiconductor 

lasers is lowering the threshold of laser emission, as lower pump intensities are 

then required to achieve lasing, allowing the use of more compact pump 

sources. The two key parameters in achieving such improvements are the design 

of better optical resonators that enhance the feedback of the material’s emission 

and thus lower the lasing threshold and improving the gain medium itself by 

creating molecules that have improved optical properties, are more efficient at 

light emission and can reduce the additional losses that can sometimes inhibit 

the operation of organic lasers. 

 

At the beginning of this PhD project, the smallest organic semiconductor laser 

systems were pumped by microchip Nd:YAG lasers.[27] These laser sources 

are matchbox-sized and have replaced the much bulkier gas lasers and optical 

amplifiers that preceded them.[21] The lasing wavelength of Neodymium 

crystals however is 1064 nm that is far too long for optically exciting materials 

that emit in the visible part of the spectrum. Microchip lasers therefore have to 

include nonlinear crystals that convert the infrared light to green (532 nm) 

through second-harmonic generation and ultraviolet light (355 nm) through 

third-harmonic generation, increasing the complexity and price of these 

systems. 

 

This thesis focuses on photophysical studies of organic semiconductors with the 

scope of using them as laser gain media and demonstrates how improvements 

can be made in the optical pumping of organic semiconductor lasers. The 

material properties required for lasing are investigated in both commercially-

available materials as well as custom-synthesised molecules that were designed 

with efficient light-emission in mind. Additional nonlinear optical properties of 

organic semiconductors are studied, leading to the demonstration of lasers that 

utilise two-photon absorption for their optical pumping. This technique can be 

used to remove the nonlinear wavelength conversion from the pump source and 

into the gain material itself, leading to further simplification and downsizing of 

organic laser systems.  
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An introduction to organic semiconductors and their electronic, photophysical 

and optical properties is given in Chapter 2, where the various aspects of 

organic semiconductor lasers are also discussed. The different types of organic 

lasers are examined, with emphasis on distributed-feedback laser 

resonators.[28] This chapter also discusses some of the photophysical processes 

that were encountered in some of the experiments, such as two-photon 

absorption. Chapter 3 describes the experimental techniques and methods that 

were used to obtain the data in the rest of this thesis, from simple absorption 

measurements to femtosecond optical excitation of organic lasers. The 

fabrication and characterisation of organic semiconductor lasers are also 

discussed here, focusing on distributed-feedback (DFB) lasers. 

 

Chapter 4 focuses on the nonlinear optical properties of polyfluorene, one of the 

best-established conjugated polymers used for lasing.[29] The two-photon 

absorption properties of polyfluorene are investigated in two different time 

regimes providing a comprehensive study of the phenomena associated with 

nonlinear absorption and subsequent light emission. The information collected 

is then used to demonstrate a two-photon pumped solid-state polyfluorene laser 

using a distributed-feedback resonator structure, providing an alternative optical 

pumping scheme for a UV-absorbing organic laser material.[30] This is the first 

example of a two-photon pumped polyfluorene laser and one of only two 

demonstrations of two-photon induced lasing in conjugated polymers. 

 

A family of bisfluorene-cored dendrimers are the subject of chapter 5. 

Dendrimers are a novel category of organic semiconductors that consist of a 

light-emitting core onto which different arms called dendrons are attached that 

control different properties of the molecule such as the intermolecular 

interactions and solubility.[10] The dendrimers studied here are based on a 

blue-emitting core and have previously been known to exhibit optical gain.[31] 

A study of their photophysical properties is performed and the most efficient 

member of the family is used to make distributed-feedback lasers with low 

lasing threshold and wide tunability. [32] 
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The two-photon absorption properties of these dendrimers are also investigated 

across two different time domains and two-photon pumped lasers operating 

with both nanosecond and femtosecond pump pulses are fabricated. The lasing 

performance of the two-photon pumped dendrimer lasers is evaluated and 

compared to the one-photon pumped lasers from the same material, allowing for 

conclusions to be extracted on the efficiency of this alternative pumping scheme 

for organic semiconductor lasers.[33] 

 

A member of a new category of organic semiconductors, star-shaped 

oligofluorene truxenes, is studied in chapter 6 as a gain medium for organic 

lasers. These molecules have advantages that stem from their well-defined 

structure and make them particularly attractive for optoelectronics 

applications.[34] In this chapter, the combination of good film quality with high 

photoluminescence quantum yield and low optical losses allow the 

demonstration of an organic laser with very low lasing threshold and excellent 

tunability in the blue part of the spectrum.[35] The DFB lasers made from the 

truxene material are compared against polyfluorene lasers in a number of key 

areas that include device lifetime, one of the most important aspects for a 

practical laser system and prove to be an improvement on the already very good 

performance of polyfluorene. 

 

Organic semiconductor lasers have a number of advantages in comparison to 

their inorganic counterparts, but one of the areas where they currently lag 

behind is the requirement for optical excitation as the electrical properties are 

still not as good. A great amount of effort has been put in trying to downsize the 

optical pump source for organic lasers, from large regenerative optical 

amplifiers to more compact systems. Chapter 7 focuses on using an inorganic 

laser diode as the pump source for an organic semiconductor laser that uses 

energy transfer from a laser dye to a conjugated polymer to achieve lasing.[36] 

This is one of the few examples of a laser-diode organic laser in the literature 

and, in combination with the other publications on this field, has paved the way 

for the recent development of a LED-pumped polymer laser. [25] 
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As research continues on organic semiconductors lasers, a broad spectrum of 

potential benefits and unique applications begins to emerge. New materials 

continue to be synthesised in groups around the world that receive feedback 

from studies like this on material properties and there is very little doubt that 

organic lasers will move from the research stage to becoming an established 

technology for certain application areas such as optical spectroscopy, chemical 

[37] and bio sensing [38] and point-of-care medical diagnostics. The basic work 

outlined in this thesis should provide a guideline for studies on the optimization 

of the materials used as gain media in organic lasers in terms of the 

photophysical properties that affect optical gain and lasing and hopefully has 

contributed towards the further development of this exciting area of research. 
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2. Theory of organic semiconductor lasers 
 

The word “Laser” is an acronym that stands for “Light Amplification by 

Stimulated Emission of Radiation” and contains both the cause (stimulated 

emission) and the effect (light amplification) of these devices.[1] Every laser 

consists of three parts: a medium that can produce optical gain and hence light 

amplification, a resonator that allows multiple passes of the amplified light 

through the gain medium to increase the overall amplification and a pump 

source that provides the energy to the gain medium. Some organic 

semiconductors have shown the required properties of stimulated emission and 

light amplification, leading to the development of organic semiconductor 

lasers.[2]  

 

 
 

Figure 2.1 Lasing beam and far-field emission pattern from a two-dimensional 

distributed feedback laser based on the conjugated polymer MEH-PPV. 

 

This chapter reports on the background theory of organic semiconductors, 

giving an overview of their electronic and optical properties that make them 

attractive for use as laser gain media. A review of organic semiconductor lasers 

is also presented, with emphasis placed on the types of lasers studied later on in 

this thesis. 
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2.1. Introduction 

 

Organic semiconductors differ from other organic materials due to the nature of 

the bonds that connect adjacent carbon atoms. It is this special electronic 

structure that gives rise to their interesting properties such as electrical 

conductivity and light emission. It makes sense then to start by describing the 

electronic properties of organic semiconductors before proceeding to their 

photophysical properties. 

 

2.2. Electronic properties 

 

The basis of organic semiconductors is the conjugated nature of the carbon 

bonds that form their backbone. The alternation of single and double carbon 

bonds in organic semiconductor molecules gives rise to properties that are not 

found in other organic materials, such as electrical conductivity and light 

emission. To better understand the conjugation effect, it is helpful to look into 

how carbon atoms bond together and under which conditions conjugations 

appear. 

 

2.2.1. Electron delocalisation in carbon double bonds 

 

Carbon has six electrons and these are arranged in a number of different orbital 

surrounding the nucleus. The first two electrons occupy the 1s state that has a 

spherical symmetry around the nucleus, while the other four are split between 

the 2s state (2 electrons) and the 2p state (2 electrons), giving a total electronic 

configuration of 1s
2
 2s

2
 2p

2
. The symmetries of these states can be seen in 

Figure 2.2.  
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Figure 2.2 s and p electron orbitals (adapted from [3]) 

 

Hybrid orbitals are also possible, as is the case for ethylene (C2H4) where the 

two carbon atoms are connected by a double bond. Each carbon atom has three 

of its four valence electrons in sp
2
 hybridized orbitals, two of which are bound 

to the 1s orbitals of two hydrogen atoms and the other connects to the other 

carbon atom, leading to the formation of σ-bonds between all atoms involved. 

To minimise the electrostatic forces between the atoms, these sp
2
 hybrid orbitals 

dictate a 120
o
 angle of the σ-bonds. The fourth valence electron in each carbon 

atom remains in a p-orbital and these two p-orbital electrons form a π-bond 

between the carbon atoms, as seen in Figure 2.3.  

 
 

Figure 2.3 Molecular bonding in an ethylene molecule showing the σ and π 

bonds forming the double bond between neighbouring carbon atoms (adapted 

from [3]). 

 

s-orbital 

px-orbital pz-orbital py-orbital p-orbital 
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The π-bond is much weaker than the σ-bond, a fact that makes the π-electrons 

less strongly bound to the molecule, causing electron delocalisation across the 

molecule. This electronic delocalisation gives semiconducting properties to 

these so-called conjugated molecules, where the π-electrons are able to move 

along the conjugated bonds. In larger molecules, where many carbon atoms are 

connected through alternating single and double bonds, the delocalisation of the 

π-electrons can extend along the entire length of the molecule.  

 

2.2.2. Types of organic semiconductors 

 

There are several different types of organic semiconductors and they can be 

categorised based on their chemical structure and processing properties. The 

first category to be studied was crystals grown from organic molecules such as 

anthracene[4] (Figure 2.4a), but the difficulty in synthesis and handling of these 

materials meant that other materials became more widespread. Small molecule 

organic semiconductors were the next step, where deposition of thin films was 

done via evaporation. A typical example of a small molecule organic 

semiconductor used in light-emitting applications is aluminum tris(quinolate) 

(Alq3) [5] and is shown in Figure 2.4b. 
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Figure 2.4 Molecular structures of some typical organic semiconductors. (a) 

Anthracene (b) Alq3 (c) polyfluorene (d) MEH-PPV (e) bisfluorene-cored 

dendrimer (f) star-shaped oligomer (g) spiro-linked oligomer. 

 

Polymerisation techniques allowed the synthesis of conjugated polymers, where 

the electron delocalisation extends along the length of the molecule. Notable 

examples of conjugated polymers are the polyfluorenes[6] and the 

poly(phenylene vinylene)s,[7] examples of which are shown in Figure 2.4 (c) 

and (d) respectively . Conjugated polymers are solution processable, making it 

possible to process them using techniques such as spin-coating or inkjet 

printing, a great aid in simplifying device fabrication.  

 

Another category of organic semiconductors is conjugated dendrimers,[8] 

where a light-emitting core has conjugated arms known as dendrons attached to 

it with surface group at their ends, leading to highly branched architectures. The 

core defines the photophysical properties of the molecules while the dendrons 

control the intermolecular interactions by spacing the molecules apart and the 

surface groups control solubility. A conjugated denrdimer based on a 

bisfluorene core is shown in Figure 2.4e. Oligomers form another category of 

organic semiconductors, placing themselves between small molecules and 

conjugated polymers. These materials have a wide variety of geometries 

ranging from linear chains to star-shaped molecules (Figure 2.4f)[9], while a 

(f) 

(g) 
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particular type of molecule where two oligomers are linked by a spiro 

linkage[10] has proven very successful in lasers (Figure 2.4g). 

 

2.2.3. Energy levels and energy band gap 

 

The p-electrons that connect the two carbon atoms can interfere in different 

ways depending on the sign of their wavefunctions. The interference can be 

either constructive, resulting in a bonding π orbital that adds stability to the 

molecule, or destructive, leading to the formation of an anti-bonding π* orbital 

that destabilises the molecular bond. The presence of π and π* orbitals creates 

two energy levels in each double bond that are separated by an energy gap. 

These energy levels can be estimated using the Hückel approximation, whereby 

the number of p-electrons is equal to the number of energy levels, as seen in for 

ethylene. 

 
 

Figure 2.5 Molecular orbital energy levels for the p-bond in ethylene (adapted 

from [11]). 

 

In conjugated molecules that have a larger number of double bonds, the number 

of π and π* orbitals is greatly increased, leading to a more complicated energy 

level structure where the π and π* energy levels become wider energy bands. 

Sublevels of these energy levels also appear due to the vibrational degrees of 

freedom of each molecule, creating even more levels within the bands. Under 

thermal equilibrium, the highest π orbital is occupied by two electrons and is 

referred to as the highest occupied molecular orbital (HOMO), while the low-

energy π* orbital is called the lowest unoccupied molecular orbital (LUMO) of 

the molecule. The energy band gap can then be defined as 

HOMOLUMOg EEE −=        2-I 

 

π 

π* 

+ + 

+ - 

2 x 2p 
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Since two electrons can occupy each π or π* energy level, the spin of the 

electrons involved becomes important, leading to the appearance of two well-

defined spin states called singlet and triplet. We can imagine the different spin 

combinations at each energy level to be 

↓↓↓↑↑↓↑↑ ,,,        2-II 

 

The singlet state is anti-symmetric and therefore has a total angular momentum 

of zero, while the triplet is symmetric with a total angular momentum of one. 

These states can be represented using the Clebsch-Gordan coefficients as 

follows 

)(
2

1
0,0 ↓↑−↑↓=  (singlet state)      2-III 

 





















=↓↓−

↓↑+↑↓=

=↑↑

1,1

)(
2

1
0,1

1,1

 (triplet states)     2-IV 

 

The spin-conservation principle dictates that transitions are only allowed 

between same-spin states, i.e. singlet-singlet or triplet-triplet, while single-

triplet transitions are forbidden. 

 

2.3. Optical properties 

 

The optical properties of conjugated molecules have their origin in the 

transitions of the p-electrons between the π and π* energy levels as determined 

by their electronic structure and number of double bonds, as the energy gap is 

given by the energy difference between the LUMO and HOMO energy levels. 

Formal calculations of energy levels require density function theory models on 

supercomputers. To a first approximation, the length of a molecule determines 

the extent of the electron delocalisation. In analogy to electrons in an infinite 

potential well, longer conjugated molecules have lower energy gaps. The 

energy gap strongly depends on the specific molecular structure and can be 

tuned by means of synthetic chemistry, for example by changing the 
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conjugation length. It is therefore possible to make organic semiconductors that 

emit across the entire visible spectrum, as seen in Figure 2.6. The conservation 

of spin also plays an important role, particularly in the light emission of organic 

semiconductors as will be discussed later on in this chapter. 

 
 

Figure 2.6 Various organic semiconductors emitting across the visible spectrum 

under UV illumination. 

 

2.3.1. Absorption and emission 

 

When light is incident upon a conjugated molecule, absorption is caused by the 

π-π* transition of the p-electrons when the energy of the photons is equal to the 

energy gap between the π and π* levels. As the electrons move into the higher 

energy level they leave behind them a net positive charge know as an electron 

hole. The hole is bound to the electron by a Coulomb force forming an 

exciton,[12] so all the optical transitions are of excitonic nature in organic 

semiconductors. 

 

Absorption and emission in conjugated molecules is best explained by using a 

Franck-Condon diagram [13] as seen in Figure 2.7. The main optical transitions 

occur between the singlet states, shown below as S0 and S1.  
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Figure 2.7 A Frank-Condon diagram showing the key electronic transitions for 

light absorption and emission in conjugated molecules. 

 

Light is absorbed from the lowest vibrational level of S0 into one of the higher 

vibrational levels of S1. This can be explained using the Frank-Condon principle 

that states that “the intensity of a vibronic transition is proportional to the square 

of the overlap integral between the between the vibrational wavefunctions of the 

two states involved in the transition”. [13, 14] Since the electronic transitions 

are very fast (~10
-15

 s) compared to the movements of the nuclei (~10
-13

 s), 

transitions between vibrational levels are favoured when the wavefunction 

overlap occurs for a minimal change in the nuclear coordinates [15], a condition 

satisfied between the lowest vibronic of the ground state and a higher vibronic 

level of the first excited state as signified by the straight transition lines in the 

previous figure.  

 

The intensity of the incident light as it passes through a length z of material is 

determined by the Beer Lambert law, expressed as 

zeII α−= 0         2-V 

 

where I0 is the initial intensity and α is the absorption coefficient of the material 

that is a function of the energy of the incident light and the type of molecule.  
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When the molecules are in the S1 state they very quickly relax to its lowest 

vibrational level. Light emission occurs when the molecules relax from the S1 

state back to a higher vibrational level of S0 due again to the Frank-Condon 

principle. This type of emission is called fluorescence and is the strongest light 

emission mechanism in conjugated molecules as it is spin-allowed. The 

emission of conjugated molecules is red-shifted from their absorption due to the 

Stokes’ shift that occurs due to the change of nuclei positions following 

excitation, as the potential across the molecule changes in comparison to the 

ground state resulting in a rearrangement of the molecule’s morphology. This 

separation between absorption and emission can be further enhanced under the 

influence of the environment of the molecule, for example in the presence of a 

solvent. 

 

An alternative relaxation path is for molecules in the S1 state to convert their 

spin and thus move from a singlet to a triplet state, a process known as 

intersystem crossing. Light emission can then occur in the form of 

phosphorescence as the molecules relax from the T1 triplet state back to S0, but 

as this is a spin-forbidden transition it is less probable than fluorescence and so 

the relaxation times are much longer (milliseconds to seconds as compared to 

nanoseconds for fluorescence). In practice, in organic molecules nonradiative 

relaxation of the triplets is much faster than phosphorescence and so few triplet 

excitons emit a photon. 

 

Conjugated molecules show strong absorption and emission bands as a direct 

consequence of their electronic structure consisting of alternating single and 

double carbon bonds. In addition, the presence of additional vibronic states 

allows for separation between absorption and emission, a fact that enhances 

fluorescence by reducing self-absorption and also has consequences on 

achieving light amplification as discussed in a following section.  
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2.3.2. Two-photon absorption 

 

The energy required to bridge the band gap of a material usually comes from 

one photon of appropriate energy, hence the resulting absorption as also known 

as linear absorption (one photon per molecular transition). It is however 

possible for two photons that have half the energy of the band gap each to be 

absorbed simultaneously by the material in a nonlinear absorption process 

known as two-photon absorption, although at a much lower probability than 

linear absorption, resulting in orders of magnitude reduced strength for two-

photon absorption.[16, 17] 

 

Two-photon absorption follows different absorption transitions due to different 

symmetries that make the normal S0 to S1 absorption transition forbidden. The 

ground state energy level is double occupied (two electrons) and therefore has 

an Ag symmetry, meaning that the orbital at this energy level is symmetric.[18] 

The next energy level has an opposite symmetry denoted as Bu, after which the 

energy levels alternate again between the two spin symmetries. One-photon 

transitions are only allowed between states of opposite symmetries due to the 

need to conserve the angular momentum of the system, making Ag → Bu the 

transition for linear absorption. In contrast, the excited Ag states are accessible 

for two-photon being simultaneously absorbed, as shown in Figure 2.8. 

             
Figure 2.8 Different symmetry configurations in π-π* energy levels. 

 

The Ag energy levels sit higher in energy than the one-photon accessible Bu 

energy level system as shown in Figure 2.9. 

 

π 

π* 

Ag  

π 

π* 

Bu  

π 

π* 
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Figure 2.9 Linear (purple arrow) and two-photon (orange arrows) absorption 

processes in a simple energy level diagram. 

 

As a consequence, the photon energy for maximum two-photon absorption is 

higher than the value for the same material under one-photon excitation.[19] 

From the two-photon excited state the excitons relax very quickly back to the 

lowest vibronic of the Bu state (S1-0) so any further electronic transitions such as 

fluorescence are the same as for one-photon excitation.  

Theoretical predictions on the efficiency of the two-photon absorption process 

are extremely difficult and rely on complicated quantum chemistry calculations 

that run on dedicated mainframe computers. An indication of the two-photon 

absorption efficiency however is the percentage of photons absorbed through a 

given length of material in comparison to the same measurement for linear 

absorption. As an example, a film of a semiconducting polymer such as 

polyfluorene will absorb just over 1% of the incident two-photon excitation for 

a thickness of 600 nm, indicating the reduced probablitiy of the two-photon 

absorption process. In the case of linear absorption, practically all of the 

incident photons are absorbed in a film thickness of only 200 nm, an absorption 

strength that is over 300 times higher the=an the two-photon absorption. 

 

2.3.3. Stimulated emission 

 

Stimulated emission is the process behind the optical gain of a laser material 

and is one of the possible outcomes of a photon interacting with a material. 

 

A simple two-level energy system is a good starting point in studying light-

induced electronic transitions in a material, and the general analysis presented 

1 Bu 

1 Ag 

Fast 

m Ag 

1 Bu 
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here can be adapted to fit what is observed in organic semiconductors as well. 

This model system consists of a collection of molecules, each with two energy 

levels, E0 and E1, with E0 having the lowest energy. When the system is at 

thermal equilibrium, the molecules are distributed between the two levels E0 

and E1 that have populations N0 and N1 respectively with N1>N0 , as shown in 

Figure 2.10. 

 
Figure 2.10 A simple two-level system used to describe light-matter 

introductions. 

 

If photons of energy hv=E1-E0 are incident on the material, there are three 

possible interactions that can occur. 

 

The material can absorb the energy of the photon, whereby some of the 

molecules will be excited from E0 to E1. Molecules in excited states stay there 

for a brief period of time known as the lifetime τ of the excited state before 

returning to the ground state. The rate at which the population of E1 changes as 

a result of absorbing the photon energy is given by 

010
1 )( NvB

dt

dN
ρ=        2-VI 

 

where B10 is the Einstein coefficient of the transition and ρ(v) is the photon 

density. 

 

After staying in this excited state for a time period of τ, the molecules may 

spontaneously relax back to the ground state, resulting in fluorescence. The rate 

of change for the N1 population is then given by 

101
1 NA

dt

dN
−=        2-VII 

 

where A01 is the Einstein coefficient for spontaneous light emission, defined as 

the inverse of the excited state’s lifetime. 

 

E0 

E1 

N0 

N1 
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Alternatively, the presence of an incoming photon may cause a molecule from 

the excited state to relax to the ground state, emitting an additional photon of 

the same energy and phase, resulting in a pair of coherent photons. The rate of 

change in the N1 population can be written as 

110
1 )( NvB

dt

dN
ρ−=        2-VIII 

where  B10 is the Einstein coefficient for the E1 to E0 transition and is equal to 

B01 for absorption. Since this emission was stimulated by the presence of an 

external photon, it is called stimulated emission.[20, 21] 

 

In the case of stimulated emission, amplification of the input light occurs since 

for each input photon two photons are emitted. At low excitation energies 

however spontaneous emission is a much more likely transition path since 

N0>N1 as most of the molecules reside in the lower energy level with only a 

small proportion in the excited state due to a combination of external 

stimulation and temperature effects. To increase the probability of stimulated 

emission, the population of the excited state must be greatly increased, requiring 

therefore high excitation densities. At these higher excitation densities the 

coefficients for absorption and stimulated emission are the same (and are both 

higher than the spontaneous emission coefficient) and we can define three 

separate regimes. 

 

If N1<N0 then the absorption of light is stronger than the stimulated emission 

and no amplification can be observed. If N1=N0 then the rate of absorption 

becomes equal to the rate of stimulated emission, leading to a state of 

transparency for the incident photons. When N1>N0, stimulated emission 

becomes the dominating photophysical process. This condition is called 

population inversion and is responsible for the appearance of optical gain that 

leads to light amplification. 

It can be shown that, for a system in thermal equilibrium, the population of the 

two energy states are given by Boltzmann statistics 

)/exp(
0

1

0

1 Τ∆Ε−= k
g

g

N

N
      2-IX 
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where g1 and g0 are the degeneracies of levels E1 and E0 respectively and 

∆E=E1-E0.  

 

In a two-level system however the ground state has a much larger number of 

molecules. When the population of the excited state becomes comparable to that 

of the ground state, a photon interacting with the material has an equal 

probability to be absorbed as it has to cause stimulated emission (since the 

Einstein coefficients for these two processes are the same). As a consequence, 

the best attainable result in a two-level system is transparency but population 

inversion is impossible.  

 

The presence of additional vibronic energy levels in organic semiconductors 

means that they can be viewed as a 4-level energy system.[22] Figure 2.11 

shows the 4 energy levels in an organic semiconductor that can lead to 

stimulated emission and population inversion. 

 
Figure 2.11 The 4-level system of electronic transitions in organic 

semiconductors that makes population inversion possible. 

 

In the above scenario, absorption of light occurs between the lowest vibronic 

level S0-0 of the ground state and the highest vibronic level S1-2 of the excited 

state. The molecules than quickly relax through vibrational transitions to the 

lowest vibronic of the excited state S1-0. Population inversion then is possible 

between this level and the highest vibrational level of the ground state S0-2 

where fluorescence occurs, giving rise to strong amplification of light, as shown 

in Figure 2.12. The key to this process is the fast vibrational relaxation in the 

ground and excited states that deplete the highest vibrational levels of 

population and thus make stimulated emission and population inversion much 

easier to attain. 
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S1 
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Figure 2.12 Amplified spontaneous emission from a thin film of an 

oligofluorene truxene. The emission pattern is caused by the corrugated 

substrate. 

 

The population of the excited state can however be depleted by a number of 

additional processes. The presence of chemical defects within the material 

offers alternative paths for the excitons to relax, thus removing them from the 

S1-0 energy state.[23] In addition, the large number of excitons under high pump 

photon densities can lead to exciton-exciton annihilation, where excitons 

travelling along the backbone of a conjugated collide with one another and the 

energy they carry does not contribute to fluorescence.[24] 

 

Apart from the losses mentioned previously, the change in the intensity of light 

as it passes through a length l of material showing optical gain can be expressed 

using the following equation for intensity 

])exp[(0 lgII α−=        2-X 

where I0 is the initial intensity of the light, g is the gain coefficient (per unit 

length) and α is the optical loss coefficient (per unit length) of the material.  

 

The gain coefficient per unit length g can be expressed in terms of the 

populations of the excited state N1  and the ground state N0 as 

)( 01 NNg −= σ         2-XI 

where σ is the stimulated emission cross-section, measured in m
2
. 

 

The optical loss comes from a number of factors such as ground-state 

absorption and photoinduced absorption. The ground-state absorption comes 
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from the fact that there is a small overlap between the absorption and emission 

bands of conjugated molecules, although the Stokes’ shift alleviates this 

problem to a great extent. One of the ways to work around this type of loss is to 

split absorption and emission onto different materials using a nonradiative 

energy transfer mechanism known as Forster energy transfer.[25] This greatly 

reduces ground state absorption and allows for stronger light amplification that 

reduces the threshold for amplified spontaneous emission and lasing.[26, 27]  

 

Photoinduced absorption originates from two different sources, excited-state 

absorption and polaron absorption. Excited state absorption occurs when singlet 

excitons are re-excited into a higher singlet state, therefore reducing the number 

of excitons that contribute to fluorescence.[28] Polarons are formed when an 

unpaired electron in an excited state interacts with the surrounding molecule 

changing the polarisation around the charge carrier [29] creating a virtual 

particle called a polaron between the electron and the polarisation change in the 

medium around it. This virtual particle has its own absorption bands that are 

based on the first excited state of the molecule and can thus reduce the 

population of the excited state.[30] 

 

When all these loss mechanisms are taken into consideration, the optical gain 

per unit length available from organic semiconductors is still very high, with 

stimulated emission cross-sections up to 10
-16

 cm
2
.[7] The combination of high 

optical gain with low concentration quenching [31] allows for solid-state thin 

films that show strong light amplification within a few hundred nanometres of 

the material.[7] 

2.4. Organic semiconductor lasers 

 

A laser consists of an optical gain medium combined with a feedback 

mechanism that allows for multiple passes through the gain medium and 

therefore higher amplification of the light. The simplest example of a laser 

device is shown in Figure 2.13, where a slab of gain material is placed between 

two mirrors that form a Fabry-Perot cavity.[32] 
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Figure 2.13 A simple laser structure based on a Fabry-Perot resonator cavity 

 

The presence of a resonator cavity also has the effect that it imposes certain 

selection rules to the wavelengths that can be amplified within it. The two 

mirrors cause the field to form standing waves between them under the 

condition that an integer number of half wavelengths must fit into the cavity  

nLm =
2

λ
        2-XII 

where nL is the optical length of the cavity given by its physical length L 

multiplied by the refractive index n of the medium. This leads to the appearance 

of a multitude of longitudinal modes that are separated by  

nL2

2λ
δλ =         2-XIII 

 

2.4.1. Microcavity lasers 

 

The first organic semiconductor lasers were based on Fabry-Perot microcavities 

to provide optical feedback, with the organic medium being either in 

solution[33] or in the solid state in thin films.[34, 35] The novel element in the 

case of organic semiconductors in the solid state was that due to the high values 

of optical gain available within the material, layers of only 100 nm thickness 

were required to achieve population inversion and lasing. A photo of such a 

laser in operation is shown in Figure 2.14, where the gain medium is the red-

emitting polymer MEH-PPV pumped by a frequency-doubled ND:YAG 

microchip laser. Two dichroic mirrors form the Fabry-Perot microcavity that 

has a length equal to the thickness of the polymer layer (~200 nm). 
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Figure 2.14 A Fabry-Perot microcavity MEH-PPV laser. 

 

The ease of processing of organic semiconductors has since allowed a range of 

unusual resonator geometries to be developed, moving away from traditional 

flat cavities. Novel microcavity geometries include microrings,[36] 

microdisks[37] and microspheres[38] as shown in Figure 2.15, all of which are 

based on total internal reflection and whispering gallery modes to provide 

optical feedback. 

 
 

Figure 2.15 Whispering gallery-based organic microcavity lasers, (a) microring, 

(b) microdisk and (c) microsphere (adapted from [2]). 

As these resonators were not used in this work, a detailed review of their 

properties is not included. Their key property though is the large number of 

lasing modes they support, as seen in Figure 2.16 but the quality of the lasing 

beam they emit is usually not very good as light is emitted in all directions 

around the cavity. 

(a) (b) (c) 
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Figure 2.16 Emission spectrum from a microring laser based on DOOPPV 

(adapted from [39]) 

 

2.4.2. Distributed feedback lasers 

 

One of the best-studied categories of organic lasers is distributed feedback 

(DFB) lasers. The resonators in this case are microscopic with dimensions from 

100 µm to a few millimetres and make use of a periodic change in refractive 

index to provide optical feedback. A typical structure of a distributed feedback 

laser is seen in Figure 2.17. 

 
Figure 2.17 A thin-film one-dimensional distributed feedback organic laser 

(adapted from [2]). 

 

A thin organic semiconductor film is spin-coated on top of a corrugated fused 

silica substrate. The fluorescence from the material is waveguided in the higher 

refractive index organic film and gets scattered by the periodic corrugations. If 

the period of the corrugations is suitable, the scattered light from each 

corrugation can combine through constructive interference to create a “Bragg-

scattered” wave that also propagates within the film but in a different direction. 

This effect also depends on the angle of propagation, with different angles 

resulting in different Bragg-scattering conditions. 

β α 
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There is a case where a wave propagating in one direction through the plane of 

the film gets back-reflected due to Bragg scattering. This occurs if the 

wavelength λ of the light satisfies the Bragg equation 

Λ= effBragg nm 2λ        2-XIV 

where Λ is the period of the corrugation, neff is the effective refractive index of 

the combined structure and m is an integer that corresponds to the order of the 

diffraction. In addition, the periodic structure acts as a diffraction grating [40] 

for a wave incident at an angle α that is diffracted at a new angle β when the 

wavelength is given by 

Diffeff mn λβα ′=+Λ )sin(sin      2-XV 

For a wave resonating in the plane of the film (α = 90
o
) due to Bragg scattering 

it is possible to extract light perpendicularly to the surface of the film (β = 90
o
) 

through diffraction if the two wavelengths are the same, i.e. λBragg = λDiff that 

results in m = 2m'. In the simplest case m = 2 and m' = 1, so the feedback is 

provided in the plane of the film through second-order Bragg reflection and 

vertical output coupling results from first-order diffraction. This combination of 

properties makes DFB structures very attractive as it is generally difficult to 

fabricate a clean edge to the organic semiconductor waveguide, meaning that 

light that reaches the edges of a film is highly scattered in different directions. 

When combined with highly efficient materials, DFB resonators display some 

of the lowest lasing thresholds recorded in organic lasers as the light interacts 

with the gain medium over long distances (typically a few hundred micrometers 

or a few millimetres) in the plane of the waveguide.[41-45] 

 

The periodic corrugation is usually fabricated on the silica substrate, in which 

case the pattern is firstly defined by holography in a photoresist layer spin-

coated on the silica substrate. Chemical development of the resist followed by 

reactive-ion etching makes the corrugations permanent on the surface of the 

substrate.[46] Alternatively, a pattern from a master structure can be transferred 

onto the free surface of an organic film using techniques like nanoimprint 

lithography (NIL),[47] or solvent-assisted micro moulding (SAMiM).[48] 

Nanoimprint lithography consists of transferring the pattern from a master 

structure onto the surface of a softened organic film, a process that requires 
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pressure, UV light and/or heat that can have a great effect in the emission 

properties of the material.[49] The SAMiM technique on the other hand uses a 

small amount of solvent to ink an elastomeric mould, leading to the organic 

material being redissolved when in contact with the mould. The top surface of 

the film is then free to reshape itself following the corrugations of the mould 

that can be removed once the film is dry. 

Distributed feedback gratings can be one-dimensional or two-dimensional, as 

shown in Figure 2.18. This two-dimensional grating can be considered as the 

superposition of two one-dimensional gratings rotated by 90
o
 and therefore 

provide optical feedback in two directions in the plane of the film. This allows 

for stronger light amplification from the same optically excited area, leading to 

lower lasing thresholds.[50] 

 
Figure 2.18 One- (left) and two-dimensional (right) distributed feedback 

gratings, showing the direction of light. Images are taken using an atomic-force 

microscope (AFM). 

 

The quality of the output beam from distributed feedback lasers is an area where 

they have an advantage over the whispering gallery resonators. Below are two 

examples of emission from one-and two-dimensional DFB lasers.[51] 

 
 

Figure 2.19 Emission patterns of the output beam for a one-dimensional (left) 

and a two-dimensional organic DFB laser. 
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The emission pattern from a 1D DFB laser is made up by two arcs of light that 

are identical but in the opposite directions, while the 2D DFB emission consists 

of two such sets of arcs rotated by 90
o
. The 1D case is the simplest one to study 

and can provide insight into the scattering mechanism that causes light emission 

in DFB lasers [51], but similar arguments can be used for a 2D grating.[46] 

 

A one-dimensional distributed feedback grating is shown in Figure 2.20. We 

can define two directions of interest, one that runs perpendicular to the 

corrugation and one that is vertical to the surface of the film and therefore two 

angles, θ and φ that come away from them. 

 
Figure 2.20 A one-dimensional distributed feedback grating where the angles 

that play an important role in Bragg scattering are noted. φ lies in the plane of 

the film while θ moves away from the perpendicular to the surface of the film. 

 

For angles φ that are perpendicular to the in-plane axis, light travelling within 

the film does not experience a periodic change of refractive index and therefore 

no Bragg scattering occurs. Bragg scattering is strongest when φ is zero and so 

it makes sense to examine this condition to understand light emission for DFB 

gratings. The following discussion will therefore assume that φ=0
o
. Within the 

plane guide a critical angle θc can be defined, beyond which any light becomes 

trapped in the waveguide due to total internal reflection and is either coupled 

into a new mode or interferes destructively with it, resulting in either case to no 

out-of-plane emission. For this paradigm then it is also assumed that θ<θc. 

 

As described before, for surface emitting DFB gratings two different orders of 

Bragg scattering occur simultaneously, with the first order being responsible for 

coupling light out of (and into) the plane of the grating and the second order 

causing the optical feedback by forcing the waveguided light to be coupled into 

a counter-propagating optical mode. If light of a specific wavelength λ is 

φ 

θ 
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already travelling within a waveguided mode, it interacts with the grating and is 

coupled into a new mode. The momentum of the system needs to be conserved 

before and after this interaction and the momentum conservation is easier 

expressed using wavenumbers 

gratingebeforeafter mkkkk ±== modm     2-XVI 

where the ± symbols account for the different directions of propagation within 

the plane of the film and the in-plane wavevectors are defined as follows 
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where  Λ  is the period of the corrugation and neff is the effective refractive index 

for the mode travelling in the waveguide. 

The momentum conservation equation can then be written as 

Λ
±=

π
λ

π
θ

λ
π 22

)sin(
2
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m      2-XVIII 

 

Solving this equation for light travelling in each direction separately, we can 

calculate that for a given grating period and scattering angle two different 

wavelengths will be scattered out of the plane of the waveguide, with 

wavelength given by 

Λ
±

=±
m

neff )sin(θ
λ        2-XIX 

The previous equation can be used to plot the transmission of light through the 

gating as a function of both wavelength and the angle θ, as seen in Figure 2.21 

for a second order (m = 2) grating. 

 
Figure 2.21 Wavelength coupled out of the surface of a thin waveguide as a 

function of the angle to the surface vector (adapted from [51]). The dark regions 

correspond to areas of low transmission. 
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When looking at angles close to normal incidence (θ~0
ο
), the counter-

propagating modes due to second-order Bragg scattering are the same as the 

out-coupled modes of the first order. These two modes then interfere to produce 

a standing wave that has a periodicity equal to Λ/2. Based on symmetry 

arguments,[52] it has been shown that two such modes are supported that have 

nodes at either at the maxima or the minima of the fundamental spatial 

component of the grating wave-vector Λ/2. This means that the two standing 

waves that are supported for θ=0
ο
 have different energies, leading to the 

appearance of an energy gap between them as any modes with energy between 

the two standing waves cannot propagate within the waveguide. This means that 

any light with wavelength near the band gap wavelength cannot propagate in 

the plane of the waveguide and therefore has to exit the waveguide at an angle 

to the surface. This occurs around 610 nm in the example shown in Figure 2.21. 

Lasing will occur near the edge of the band gap in the top quarter of the graph 

in Figure 2.21. This is demonstrated in Figure 2.22 where an actual emission 

pattern is shown for a one-dimensional DFB laser based on MEH-PPV. 

 
Figure 2.22 Angle-dependent emission from a one-dimensional DFB laser 

operating above lasing threshold. A denotes the photonic bandgap, B is the 

lasing emission and C is the Bragg-scattered ASE (adapted from [51]). 

 

The same approach can account for higher order transverse modes within the 

waveguide, and also for cases where the wavelength of the mode does not 

exactly match the conditions for Bragg scattering at φ=0
o
. These conditions 

give rise to emission patterns that are similar in shape as the ones shown above 

but their centres are offset from normal incidence as shown in Figure 2.23, 
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where a longer grating period moves the arcs across the stop band on either side 

and a shorter period further separates them. 

 
Figure 2.23 Bragg-scattered amplified spontaneous emission from a laser dye 

matched to a 2D grating with a longer-than-ideal grating period (left) and from 

a green-emitting polymer with a shorter-than-ideal 2D DFB grating. 

 

2.4.3. Distributed Bragg reflector lasers 

 

This category of organic semiconductor lasers can be considered a variation of 

the distributed feedback resonators described previously. A distributed Bragg 

reflector (DBR) cavity consists of a one-dimensional distributed feedback 

grating that has a defect region in the middle, an area without corrugations. The 

presence of this defect creates additional modes that can resonate between the 

two corrugated areas, resembling to some extent a classic Fabry-Perot cavity 

where the two corrugated areas acts as Bragg mirrors and the flat region is the 

optical cavity in which the standing waves of the different modes oscillate. This 

configuration gives rise to multiple longitudinal lasing modes supported within 

the cavity as seen in Figure 2.24. 

 

Figure 2.24 Cavity modes from a distributed Bragg reflector cavity using MEH-

PPV as the gain medium. [44] 
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Usually DBRs are edge-emitting cavities, but in this thesis a surface-emitting 

DBR laser was used to circumvent the problem of poor edge-forming in organic 

waveguides. Its structure can be seen in Figure 2.25 where the amplification 

area is excited by a pump laser and laser emission is out-coupled by the Bragg 

mirrors on either end. 

 
 

Figure 2.25 A distributed Bragg reflector organic laser. 

 

The main advantage of DBR lasers is the separation of the optically pumped 

region from the Bragg grating that can introduce losses due to the fact that a 

thin film spin-coated on top of the corrugations can have increased surface 

roughness that reduces the quality of the waveguide. Separating the two regions 

can therefore reduce the waveguide losses and by doing that allow for lower 

lasing threshold in these structures.[53] More information on the spectral and 

spatial output of this resonator can be found in reference [44]. 

 Silica Amplification 

Excitation Emission Emission 
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3. Experimental methods 
 

3.1. Introduction 

 

This chapter gives an overview of the various experimental techniques and 

instruments that were used throughout this thesis. Several experimental setups 

were used for the preparation and characterization of the organic materials 

studied in this work and a number of laser devices were fabricated and 

evaluated in numerous ways.  

 

Any laser consists of three basic components: the gain medium, the feedback 

resonator and the pump source that provides energy to the gain medium. This 

thesis focuses mostly on the gain medium of organic semiconductor lasers and 

therefore the techniques used were aimed towards the photophysical and optical 

characterization of organic semiconductors.  

 

All the materials used in this thesis are solution-processable, so all of the 

samples studied here begin their life as solution in various organic solvents. 

Initial measurements are usually performed in solution before proceeding to 

measuring thin films, but the techniques used are the same. 

 

3.2. Sample preparation 

 

The first step in any characterization is preparing a suitable sample. All the 

materials used in this thesis are obtained in powder form and are added to a 

suitable solvent to prepare solutions. Once the exact amount of material is 

weighed and placed in a dark yellow vial to reduce UV light exposure, an 

appropriate amount of solvent is added and a magnetic stirrer is placed in the 

vial to help dissolve the material as the solution is placed on a stirrer plate. 

Different organic molecules are soluble to different degrees and therefore the 

time required can vary from near-instant to 24 hours, while some materials 

require heating at moderate temperatures (~60 
0
C) for brief periods of time to 
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dissolve properly. The concentrations prepared in this way vary between 1 and 

30 mg/ml depending on the solubility and the size of each molecule, with 

typical concentrations of 30 mg/ml for fluorene-based materials and 5 mg/ml 

for MEH-PPV.  

 

3.2.1. Thin film preparation 

 

Films of organic semiconductors can be prepared from solution using different 

techniques such as spin-coating, dip-coating or doctor-blade.[1] The method 

used in this work is spin-coating as it is better suited to the thin films required 

for lasing and allows for a more accurate control of the film thickness. This 

method also results in films of high optical quality (flat top surface of the films) 

that is required for efficient waveguiding within the film.  

 

The substrate on which the thin film will be deposited (usually glass or quartz) 

is cleaned by rinsing it in acetone and isopropanol inside an ultrasonic bath and 

is then placed on the holder of a spinner. The substrate is held there by a 

vacuum and a few drops of the solution are placed in its centre before it is spun 

at speeds ranging from 500 to 2000 rpm. The solution then spreads outwards 

under the influence of the centrifuge force, forming thin films of good optical 

quality that have a uniform thickness across most of their surface. The thickness 

of the spin-coated films is determined by the solution concentration, the spin 

speed and time as well as the solvent used and is measured using a surface 

profile meter. Usual film thicknesses for lasers are between 80 and 300 nm, 

although devices with film thickness up to a micron have been made.  
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3.3. Optical characterisation 

3.3.1. Variable angle spectroscopic ellipsometry 

 

Variable angle spectroscopic ellipsometry (VASE) is a powerful technique for 

characterising the dielectric properties of thin films. These properties include 

the complex refractive index n  of the material as defined by 

iknn +=        3-I 

where n is the refractive index of the material and k is the extinction coefficient 

that indicates the amount of absorption of an electromagnetic wave as it travels 

through the material. 

 

Ellipsometric measurements record the change in the polarisation of light that is 

reflected from a flat sample as a function of wavelength and angle of incidence 

for p (parallel) or s (senkrecht) polarised light.[2] Ellipsometry then determines 

the change in the coefficient Ψ and ∆ that are related to the reflection and 

transmission coefficients by 
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where pR̂ , pT̂ , sR̂ and sT̂  are the complex amplitude reflection ( R̂ ) and 

transmission ( T̂ ) coefficients for p and s polarized light. A sketch of a typical 

ellipsometry setup can be seen in Figure 3.1. 

 

Figure 3.1 A typical variable angle spectroscopic ellipsometry setup showing 

the relative orientation of the light source and photodetector arms of the 

instrument. 

Sample 

Light 
source 

Detector 
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The measured values of Ψ and ∆ do not directly relate to the optical constants of 

refractive index n and extinction coefficient k, so an optical model using 

iterative fitting is required to extract these coefficients. Fitting parameters 

include the optical constants, the oscillator model that best describes each 

molecule, the plane-parallel interfaces between layers, reflections of the beam 

through the material and the thickness of the film. Some organic molecules 

show a degree of preferential orientation within a thin film and therefore show 

some optical anisotropy that leads to birefringence, therefore producing a set of 

ordinary and extra-ordinary refractive indexes and extinction coefficients while 

others are randomly orientated leading to isotropic films. A typical ellipsometry 

measurement showing values for both Ψ and ∆ can be seen in Figure 3.2 for the 

range between 300 and 800 nm, the usual area of interest for organic light-

emitting molecules. Differrrent angles of   incidence display different degrees of 

change in the values of Ψ and ∆ depending on the thickness of the film 

measured and the orientation of the molecules. 
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Figure 3.2 Ellipsometry data for Ψ (top) and ∆ (bottom) collected between 300 

and 800 nm for a range of different angles. These measurements were 

performed on oligofluorene truxene thin films. 

 

The corresponding optical constants n and k that are extracted from the above 

parameters using the software’s fitting module for the same range can be seen 

below: 
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Figure 3.3 Refractive index and extinction coefficients of a thin film of an 

oligofluorene truxene as calculated through ellipsometry measurements. 
 

 The ellipsometric measurements in this thesis were performed using a 

J.A.Woolam Co. Inc. M-2000DI ellipsometer over a spectroscopic range of 200 

nm to 1700 nm for angles of 45° to 75° in steps of 5°. The fitting software, 

Wvase32, comes from the same company and uses a Levenberg-Marquardt 

algorithm to fit the experimental data.[3] 

 

3.4. Photophysical characterisation 

 

Once samples are prepared, their basic photophysical properties are 

characterised. These originate in the way the molecules of a material absorb 

light and the different paths they follow to relax back to their ground state and 

are the first step in evaluating any material for optoelectronics applications. 

 

3.4.1. Absorption and photoluminescence 

 

For all materials, absorption and photoluminescence measurements are 

performed. The absorption measurements are carried out on a Cary Varian 300 

UV-Vis absorption spectrometer, both in films and in solutions. For this 

measurement the substrate is always quartz (or quartz cuvettes for solutions) as 

the losses in the UV are smaller than plain glass. The sample is placed on one 
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arm of the instrument and a blank substrate (or empty cuvette) is placed in the 

other, allowing for correction of the losses due to the substrate. 

 

Photoluminescence measurements are performed using a Jobin Yvon 

Fluoromax 2 spectrometer. The desired excitation wavelength can be accurately 

selected across the emission spectrum of a xenon lamp using a monochromator, 

and the resulting photoluminescence is recorded through a second 

monochromator by a photomultiplier tube. The data is then processed using a 

calibration file that corrects the photomultiplier’s response across different 

wavelengths. 

 

A typical absorption and photoluminescence spectrum can be seen in Figure 3.4 

for a thin film of polyfluorene (PFO). 
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Figure 3.4 Absorption (red line) and emission (blue line) spectrum of 

polyfluorene for a thin film (thickness 100 nm). The inset shows the molecular 

structure of polyfluorene. 

 

3.4.2. Photoluminescence quantum yield 

 

The photoluminescence quantum yield (PLQY) of a material is the efficiency of 

its light emission. It is generally defined as the number of photons emitted by a 

sample of the material divided by the number of photons it absorbed.  
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Experimentally, a laser beam of a specific wavelength and known power is 

directed at a sample and the photoluminescence that the material produces is 

recorded using a calibrated photodiode.[4] In order to make sure that all of the 

emitted light is collected, the sample is placed within a hollow integrating 

sphere that is internally coated with a highly reflective layer. The integrating 

sphere has a number of openings, one for the pump beam to enter, another 

opening on the opposite side to allow for the transmitted excitation beam to be 

measured and one for the photodiode that includes a filter to cut off the 

excitation laser light, as seen in Figure 3.5.  

 

Figure 3.5 Typical setup for measurement of photoluminescence quantum yield 

in thin films of organic semiconductors. 

 

The readings from the photodiode need to be corrected to take into account the 

reflections from the sample and the transmitted laser power, allowing for a 

calculation of the actual absorbed power. Neglecting the spectral response of 

the photodiode, the quantum efficiency x from such a measurement is given by 

equation 3-III 
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where R is the reflectance of the sample and T is the transmittance. The 

additional factors in the above equation account for a number of additional 

sources of light that are recorded by the photodiode besides the material’s 

photoluminescence.  Xlaser is the signal that the photodiode measures as the laser 

light is hitting the walls of the integrating sphere without a sample in place in 

order to correct the measurement for scattered excitation light. Xsphere is the 

photodiode signal when the sample is illuminated indirectly by laser light that is 
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scattered from the sphere’s interior and finally Xsample is the recorded signal for 

direct laser excitation of the film. 

 

The spectral response of the photodiode across the material’s emission spectrum 

also needs to be taken into account. If a white light source such as a tungsten 

lamp has an emission spectrum Slamp(λ), this is modified by the reflectance of 

the sphere and becomes Ssphere(λ). The spectral response correction factor is then 

given by 
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where L(λ) is the emission spectrum from the material as recorded by a 

photoluminescence measurement, G(λ) is the quantum efficiency of the 

photodiode across different wavelengths, F(λ) is the transmission of the filter 

used and λexc is the excitation laser wavelength. 

 

The absolute photoluminescence quantum yield of a material is then given by 

x/y and can be as high as 100% for some very efficient organic materials.[5] 

 

3.5. Lasing studies 

 

Lasing studies of organic semiconductors require high excitation densities to 

explore what the material’s behaviour is under condition of population 

inversion when the material amplifies light. These studies include amplified 

spontaneous emission measurements to determine the threshold of amplified 

spontaneous emission, a precursor to lasing, and the values for optical gain and 

loss. In addition, the laser devices fabricated need to be characterised to 

determine their lasing threshold, slope efficiency and lifetime. 
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3.5.1. Excitation sources 

 

Three different laser systems were used for the majority of the lasing studies, a 

nanosecond optical parametric oscillator, a femtosecond optical parametric 

amplifier system and a microchip laser.  

3.5.1.1. Optical parametric oscillator 

 

For most of the experiments described in this thesis an optical parametric 

oscillator (OPO) was used as a widely-tunable pump source. An OPO contains a 

non-linear crystal that, when illuminated with laser light of a specific energy 

(specific wavelength), produces a pair of photons with lower energies (longer 

wavelengths) than the original pump photon. The sum of the energies of the two 

photons (called signal and idler photons) must be equal to the energy of the 

initial photon in order for the energy to be preserved in the system. This can be 

written as 

isp vvv +=        3-VI 

where νp is the frequency of the pump photon and νs, νi are the frequencies of 

the signal and idler photons respectively. 

 

In addition, momentum must also be preserved for the photons participating in 

this interaction, as described in the following equation 

0=−−=∆ isp kkkk       3-VII 

where the corresponding wavevectors for the pump, signal and idler photons 

must result in a zero overall momentum difference. In order for that to happen 

within a non-linear crystal, a technique called phase matching is used, which 

utilises the different refractive index of the crystal material at different electric 

field polarisations to allow for a pair of signal and idler photons to be produced 

from a given pump photon. This pair of photons can be tuned across a wide 

spectrum by changing the phase-matching condition, always keeping in mind 

the energy conservation principle. 

 

The OPO used in these experiments (Panther OPO, from Photonic Solutions) is 

pumped using the 3
rd

 harmonic of an Nd:YAG laser (355 nm), which has an 
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energy of 100 mJ per pulse. The OPO produces a wide range of output 

wavelengths from 410 nm up to 2500 nm (expandable into the UV using double 

crystals that allow the extraction of wavelengths as low as 220 nm) at energies 

of up to 14 mJ per pulse, with a pulse duration of 4 ns at a repetition rate of 20 

Hz. This OPO uses a BBO nonlinear crystal that is angle-tuned, meaning that 

the rotation of the crystal in relation to the path of the pump beam running 

through it changes the phase-matching condition to produce a different pair of 

signal and idler wavelengths. The BBO crystal is placed within a cavity that 

double passes the idler wavelengths (infra-red reflecting mirrors) to achieve 

self-seeding of the parametric process and increased conversion efficiency. A 

compensator crystal at the output of the cavity ensures that the wavelengths 

produced by angle-tuning of the nonlinear crystal exit the cavity in the same 

direction. 

 

The OPO was incorporated in the setup seen in Figure 3.6, which allows for the 

energy of the OPO beam to be varied using a set of two cube polarisers (to 

maintain a constant polarisation of the beam hitting the sample) mounted on 

rotating base plates, and also provides enough space on the optical table to 

insert various elements such as focusing optics, vacuum chambers, neutral 

density filters and an observation screen to observe the emission patterns from 

organic lasers. 

 

Figure 3.6 Photophysical measurements setup that uses the optical parametric 

oscillator for optical excitation of organic semiconductor samples. 
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The photoluminescence from the sample was recorded using a Jobin-Yvon 

Triax 180 spectrograph connected to a cooled CCD detector array that collected 

sample fluorescence through an optical fibre.  

 

3.5.1.2. Optical parametric amplifier system 

 

The pump light for the femtosecond experiments comes from a diode-pumped 

mode-locked Ti:Sapphire femtosecond laser emitting at 800 nm. This light is 

then passed through a Hurricane regenerative amplifier to increase the peak 

power of the beam. The amplified beam is then used as the pump source for an 

optical parametric amplifier (OPA) by Spectra Physics. Upon entering the OPA 

the beam is split into two parts, with the weakest part is tightly focused on a 

sapphire plate to generate a white-light continuum extending from 450 to 750 

nm. The main part of the 800 nm beam is used to optically pump a Beta Barium 

Borate (BBO) nonlinear crystal that can be rotated to satisfy the phase-matching 

equation for a different pair of signal and idler photons, thus selecting what 

wavelength from the white-light continuum spectrum that is also incident on the 

BBO crystal will be amplified. Further nonlinear processes such as sum and 

difference frequency mixing are possible that, along with second and third-

harmonic generation crystal can extend the tuning range of the system. The 

pump beam resulting from the above amplification stages has a pulse duration 

of 100 fs at a repetition rate of 5 kHz and can be tuned from 200 nm to 10 µm 

with energies in the range of tens of microjoules. 

 

3.5.1.3. Microchip laser 

 

At the beginning of this PhD, the microchip laser represents the most compact 

pump source for organic semiconductor lasers.[6, 7] Monolithic microchip 

lasers combine compact dimensions with high output efficiency, moderate 

output power and have been studied extensively, making them very robust and 

reliable.[8] 
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A typical microchip laser is based around a Neodymium-doped optical material, 

usually a crystal such as Yttrium Aluminium Garnet (Nd:YAG) or Yttrium 

Orthovanadate (Nd:YVO4) that is optically excited by an infrared laser diode 

emitting at 808 nm. The gain medium is Neodymium and the host material acts 

as a spacer for the molecules, allowing for population inversion and lasing that 

occurs at 1064 nm. These lasers can be Q-switched to achieve nanosecond 

pulses at kHz repetition rates that lead to higher optical powers. They can also 

include frequency doubling and tripling nonlinear crystals to produce 532 nm 

and 355 nm respectively, allowing microchip lasers to be used as optical 

pumping sources for a wide range of organic semiconductors. Two such 

microchip lasers were used in this work to pump organic distributed feedback 

lasers with nanosecond pulses. 

 

3.5.2. Amplified spontaneous emission measurements 

 

As discussed in the introduction, amplified spontaneous emission (ASE) is an 

important factor in evaluating the suitability of organic materials for lasing. 

ASE appears just as the material reaches population inversion and is 

accompanied by a narrowing of the fluorescence spectrum down to 4-6 nm 

(determined by the spectral broadening of the material’s optical gain). A low 

ASE threshold combined with a high-quality optical resonator results in low 

lasing thresholds. To investigate the appearance of ASE in a material and its 

properties, measurements in thin films are the most common approach. 

 

A thin film is spin coated onto a glass substrate from a solution containing the 

organic semiconductor of interest and this sample is placed within a vacuum 

chamber (10
-3

 to 10
-5

mbar pressure) to slow down photo oxidation. The pump 

beam from a laser source is focused to a thin stripe onto the surface of the film 

and the induced fluorescence that is waveguided through the film and is 

scattered out from the edges is recorded using a CCD spectrograph. The 

intensity and spectral width of the fluorescence is then recorded for increasing 

excitation powers using an optical fibre as seen in Figure 3.7. 
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Figure 3.7 Amplified spontaneous emission measurements setup. 

 

As the excitation power becomes progressively higher, the emission spectrum 

from the material begins to narrow from an original value of 40-50 nm to below 

10 nm as a consequence of the optical gain profile of ASE. At the same time, 

the intensity of the fluorescence increases in a nonlinear way as light within the 

gain curve is amplified by the material. The pump power threshold for these 

two observations is the ASE threshold and can be seen in Figure 3.8. 
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Figure 3.8 Emission (a) linewidth and (b) output intensity as a bisfluorene 

dendrimer crosses the amplified spontaneous emission threshold. 

 

Amplified spontaneous emission is also very useful for determining the optical 

gain and loss of organic semiconductors by using the variable stripe 

technique.[9] The same setup is used as for measuring ASE threshold but the 

dimensions and positions of the stripe change and the ASE scattered from the 

edge of the film is recorded for different stripe lengths and positions. 

 

When the material is above the ASE threshold and the length of the excitation 

stripe changes, the output intensity Iout from the edge of the film as a function of 

the stripe length is given by equation 3-VIII 

Organic film 

l 

x 

Light 

emission Collection optical fibre 
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where g(λ) is the optical gain, A(λ) is a constant of the material related to the 

spontaneous emission cross-section, Ip is the pump intensity and l is the length 

of the stripe. 

 

If instead of the length of the excitation stripe its distance x from the edge of the 

film is changed, the output ASE intensity is given by equation 3-IX 

x

out eII α−= 0        3-IX 

where I0 is the output intensity when the stripe is at the edge of the film and α is 

the waveguide loss coefficient of the film. 

 

Based on the above method, the optical gain and loss coefficients of a thin film 

of organic semiconductor can be calculated by fitting the collected data with the 

corresponding equations. An example of such measurements and fittings is 

shown in Figure 3.9 for a bisfluorene dendrimer. 
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Figure 3.9 Optical gain (top) and loss (bottom) measurements and fitting lines 

from an ASE measurement in a bisfluorene dendrimer. The intensity axes are in 

logarithmic scale. 

 

The optical gain and loss coefficients of a material can be used to evaluate its 

performance as a laser gain medium, with the combination of high gain and low 

losses being the markers for low-lasing thresholds when used with an 

appropriate resonator. 
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3.5.3. Lasing measurements 

 

Once the material has been evaluated, a laser using it as a gain medium is made. 

In this thesis all lasers presented are distributed feedback lasers, fabricated by 

spin-coating from solution onto a corrugated silica substrate. The devices are 

then placed inside a vacuum chamber to reduce photo-degradation and are 

optically excited by one of the laser sources described in section 3.5.1. Since all 

DFB gratings used in this work were chosen for surface emission, the pump 

beam is incident at an angle onto the surface of the film so that the 

perpendicularly emitted organic laser beam does not spatially overlap with the 

excitation laser beam, making it easier to observe and detect and reducing the 

possibility of high-intensity pump laser light reaching the spectrograph’s 

sensitive CCD. A schematic of the experimental setup used for measuring the 

performance of organic lasers can be seen in Figure 3.10. 

 

 
 

Figure 3.10 Experimental setup used for characterization of organic 

semiconductor lasers. 

 

The incident pump energy on the sample is attenuated by using metallic neutral 

density filters and is focused using spherical or cylindrical lenses. When the 

pump energy is lower than the lasing threshold, ASE emission that is being 

modified by the grating is visible on the observation screen as a set of thick 

arches, as shown in Figure 3.11 for a one-dimensional DFB grating. 
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Figure 3.11 Bragg-scattered ASE from an oligofluorene truxene DFB laser 

operating below threshold. The vacuum chamber is also visible in this photo, 

along with the observation screen and the pump beam focusing lens. 

 

The intensity of the emission is recorded using a CCD spectrograph that 

monitors both the spectral shape and the intensity of the fluorescence. As the 

pump energy is increased by changing to weaker neutral density filters, the 

organic laser comes above threshold and the slope of the emission changes due 

to stimulated emission.  This results in a characteristic “kink” in the graph of 

input vs. output graph, as seen in Figure 3.12, from which the slope efficiency 

of the laser above threshold can be calculated. 
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Figure 3.12 Output energy versus input energy for a bisfluorene dendrimer DFB 

laser. The slope efficiency in this example is 8.3%.[10] 
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3.6. Two-photon absorption techniques 

 

Characterising the two-photon absorption of a material includes studying both 

the absorption of the excitation light as it passes through a volume of the 

material, as well as measuring the properties of the two-photon induced 

fluorescence. These two properties are measured simultaneously to allow for a 

direct correlation between them based on a modified version of the two-photon 

excited fluorescence technique.[11]  

 

A solution is made from the material and is placed in a quartz cuvette. The 

cuvette is placed in the path of the pump beam that is made to pass near the 

edge of the cuvette to avoid re-absorption of the two-photon induced 

fluorescence. Because two-photon absorption is a nonlinear process, its 

magnitude is much smaller than that of the linear absorption and therefore an 

excitation source with high peak power is required. The optical parametric 

systems described previously were used for these measurements, where 

nanosecond pulses were provided by the OPO system and femtosecond from the 

OPA. The pump beam is gently focused within the solution and its power is 

measured before and after the cuvette to determine the two-photon absorption 

magnitude. The induced fluorescence is collected from the side of the cuvette 

using an optical fibre with collection optics connected to a CCD spectrograph 

that allows the monitoring of both intensity and spectrum of the material’s 

fluorescence. The excitation wavelength is changed across the one-photon 

transparency region of the material to locate the wavelength for which 

absorption of the pump light and subsequent fluorescence are highest. The 

energy of the pump beam is also varied to examine the energy dependence of 

two-photon absorption and fluorescence, as it contains valuable clues about the 

nature of the observed photophysical processes.  
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Figure 3.13 Two photon absorption (filled squares) and fluorescence (filled 

circles) measurements for a polyfluorene solution under two-photon excitation. 

 

A picture of the setup used for the two-photon measurements can be seen in 

Figure 3.14, where the cuvette containing the sample is excited by 640 nm light 

from the nanosecond OPO. The power meter monitors the transmitted power of 

the pump beam and the collection fibre connects to a CCD spectrograph to 

monitor the material’s two-photon induced fluorescence. 

 

 

Figure 3.14 Experimental setup of the two-photon absorption and fluorescence 

measurements. The cuvette contains a polyfluorene solution excited at 640 nm. 

 

The absorption of the pump beam was measured in two different ways. In the 

case of nanosecond excitation, where the two-photon absorption coefficient was 

large, the amount of light absorbed was in the region of 40-70%, which meant 

that measuring the absorption of the pump beam was done by measuring the 

power of the pump beam before and after the cuvette. Under femtosecond 
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excitation though, the amount of light absorbed was much lower, as little as 2-

5% for the thin film measurements. Small fluctuations in the power of the pump 

laser were of the same order, making reliable measurements difficult. In order 

to perform a more accurate measurement, two identical photodiodes were used 

to pick off a small percent of the pump beam before and after the sample. The 

two photodiodes were connected to two lock-in amplifiers and the ratio of their 

outputs was recorded over a period of time to allow for averaging of the 

measured absorption, thus reducing the effect of small fluctuations of the pump 

beam intensity. 

 

In both cases the quartz cuvette was filled with the solvent used for the solution 

and was placed in the path of the beam prior to the actual measurement. This 

helped determine any contribution coming either from the walls of the cuvette 

and the reflections they cause or from the solvent itself, as at such high 

excitation densities certain solvent display two photon absorption of their own 

that can interfere with the values measured for a material in solution. The 

baseline recorded this way was then subtracted from the two-photon absorption 

measurements, allowing for the net absorption of the organic material to be 

calculated in the final data sets. 

 

Two-photon pumped laser measurements were done using the same 

experimental setup as for one-photon lasers (described in section 3.5.3), with 

the only difference being that the excitation wavelength is changed to match the 

peak of the two-photon absorption intensity as determined be the above 

measurement technique.  
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4. Two-photon absorption and lasing in polyfluorene 
 

In this chapter a two-photon pumped polyfluorene laser is demonstrated for the 

first time. The two-photon absorption properties of polyfluorene are studied 

across two different time domains in solution and in film. The combination of 

two-photon absorption and high photoluminescence quantum efficiency leads to 

a tunable distributed feedback laser based on a commercially available 

conjugated polymer. 

 

4.1. Introduction 

 

Amongst the different light-emitting polymers, poly(9,9-dioctylfluorene) 

(polyfluorene, PFO) and its variations is one of the most thoroughly studied.[1] 

The simple, well-defined backbone structure of fluorene units (see top structure 

in Figure 4.1) allows for both good conducting properties and efficient light 

emission, while variations in the synthesis to create copolymers have allowed 

polyfluorenes to span the entire visible spectrum. Polyfluorenes have been used 

to fabricate efficient light-emitting diodes with results amongst the best for 

organic materials. [2, 3] Different types of polyfluorene have been developed by 

copolymerisation with other molecules to extend the photophysical properties, 

leading to materials such as poly[(9,9-dioctylfluorene)-co-(9,9-di(4-

methoxy)phenylfluorene)] (F8DP) and poly[(9,9-dioctylfluorene)-co-

(benzothiadiazole)] (F8BT) (Figure 4.1) that have shown excellent performance 

in optoelectronic devices such as solar cells, light-emitting diodes and lasers. 
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Figure 4.1 Chemical structures of some fluorene-based conjugated polymers. 

From top to bottom: (a) PFO, (b) F8DP and (c) F8BT. 

 

Lasing in particular is one of the areas where polyfluorenes have excelled. Their 

strong optical transitions give both high absorption coefficients and large 

stimulated emission cross-sections, while the photoluminescence quantum 

yields of PFO in thin films can be as high as 73% (as mentioned later in this 

chapter), with F8DP and F8BT having PLQY values between 50 and 60%.[4] 

Fluorene-based conjugated polymers also combine high optical gain with low 

waveguide losses, leading to some of the lowest lasing thresholds amongst all 

organic semiconductors.[5-8] In addition, the blue emission of PFO also makes 

it very attractive for accessing the blue part of the spectrum, where compact and 

tunable laser sources are less abundant. The morphology of the polymer chains 

in films can vary as PFO is a liquid crystalline material at high temperatures. 

The polymer chains can assume different conformations depending on the 

solvent environment they are exposed to, leading to different phases that change 

the photophysics of the polymer. [9-11] Some of the lowest lasing thresholds 

for organic semiconductors have been reported in polyfluorene distributed 
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feedback lasers where the β-phase of polyfluorene is used as the gain medium in 

a film consisting mostly of normal PFO.[12] The best PFO laser reported shows 

a lasing threshold energy of 0.8 nJ/pulse (3.2 µJ/cm
2
, or 3.2 kW/cm

2
), a very 

high slope efficiency of 7.8% from one side of the grating and tunability across 

~40 nm, as seen in Figure 4.2.[8] 

 

       
Figure 4.2 Lasing threshold (top) and tuning range (bottom) of the best reported 

polyfluorene laser. The inset of the bottom figure shows the dependence of the 

lasing threshold on the emission wavelength (adapted from [8]). 

 

The structure and symmetries of organic semiconductors also give rise to non-

linear absorption phenomena such as two-photon absorption.[13, 14] Several 

studies of this process have been performed in the past on polyfluorene and its 

derivatives [15-19], highlighting their suitability for use in applications that 

benefit from the nonlinear nature of absorption such as optical limiting, optical 

data storage, two-photon microscopy. [16, 20, 21] These reports however all 

cover different aspects of the two-photon absorption properties of PFO, leading 
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to a somewhat confusing picture of the material’s behaviour under different 

excitation conditions where the energy and wavelength of the pump pulses 

changes across a wide range of values. The effect of the excitation pulse 

duration in particular is one of the key areas where comparisons are scarce as 

the pump sources required to perform such studies are not usually combined 

within the same research group. As of the writing of this thesis there is no single 

report that extends across different time domains for the excitation pulses or 

makes any comparisons between solution and thin film measurements in 

polyfluorene. 

 

Of particular interest is the combination of the strong optical transitions of 

organic semiconductors with two-photon absorption giving the possibility to 

make two-photon pumped lasers, whereby the pump wavelength is shifted to 

approximately twice the wavelength of the material’s linear absorption. This 

approach could allow novel optical pumping schemes where the excitation 

wavelength is longer than the emission wavelength, thus shifting the required 

pump wavelength to more easily accessible parts of the spectrum where photo-

oxidation of organic semiconductors is reduced. Two-photon induced lasing has 

been previously studied in organic laser dyes, some of which are synthesised 

specifically for enhanced two-photon absorption and lasing. [22-26] Prior to the 

work in this thesis however there has only been a single example of a two-

photon pumped laser based on organic semiconductors using the green-emitting 

ladder-type polymer MeLPPP [27], while despite the two-photon absorption 

studies of PFO there are no published examples of a two-photon pumped 

polyfluorene laser. 

 

In this chapter the two-photon absorption and fluorescence of polyfluorene are 

studied as a function of both pump wavelength and energy density in the 

nanosecond and femtosecond time domains, making this a very thorough 

investigation of the two-photon properties of polyfluorene. The nonlinear 

optical properties of PFO are discussed and comparisons are made between 

measurements to understand the nonlinear optical properties of the material. In 

addition, the combination of the two-photon absorption properties of 

polyfluorene with its good lasing performance allows us to demonstrate the 
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world’s first tunable two-photon pumped polymer laser due to a combination of 

improved material synthesis and better understanding of the optimal excitation 

conditions that reduce additional losses. These results highlight both the 

excellent lasing properties of polyfluorene as well as the novel options available 

in organic semiconductor lasers based on their unique optical properties and 

provide an alternative pumping scheme for polymer lasers. 

 

4.2. Two-photon absorption measurements 

 

The first step towards examining the two-photon absorption properties of 

polyfluorene is determining the strength of the nonlinear absorption of a high 

intensity beam. In general it is expected that the wavelength for maximum two-

photon absorption will be blue-shifted by some amount in comparison to the 

peak of the material’s linear absorption. [28] This is due to the different spin-

allowed transitions for a nonlinear absorption process, making a detailed 

examination of the two-photon absorption essential, to obtain a detailed 

mapping of the transitions involved in two-photon absorption. To this end, 

solutions of PFO (10 mg/ml in toluene) were illuminated by a pump beam from 

a tunable laser source and the transmission of the pump beam through the 

material along with the induced fluorescence was recorded. Two pump sources 

were used, a 4-nanosecond pulse optical parametric oscillator (OPO) tuned in 

the region between 500 and 725 nm and a femtosecond optical parametric 

amplifier (OPA) system delivering 100 fs long pulses in the region between 580 

and 700 nm. The asymmetric pump beams were focused using a cylindrical lens 

for the nanosecond pulses to a spot of 4000 x 170 µm and a spherical lens for 

the femtosecond experiments leading to a spot size of 80 x 30 µm. The excited 

volume was assumed to be the spot size multiplied by the length of the cuvette 

due to the weak focusing of the excitation beam. 

 

The recorded two-photon absorption spectrum can be seen in Figure 4.3 where 

absorbance, defined as -log10(transmission), is plotted as a function of the pump 

wavelength for both nanosecond and femtosecond excitation pulses at the peak 
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excitation densities available from both systems (83 GW/cm
2
 for the 

nanosecond excitation and 167 GW/cm
2
 for the femtosecond excitation). 
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Figure 4.3 Two-photon absorbance as a function of the pump wavelength for a 

polyfluorene solution. 

 

The spectral dependence of two-photon absorption is very similar in the two 

time domains, with the maximum absorption occurring around 650 nm for both 

nanosecond and femtosecond pump pulses. When compared to twice the 

wavelength of the maximum for linear absorption at 760 nm (2x380 nm), the 

resulting peak is blue-shifted by approximately 100 nm, in good agreement with 

similar differences noted in the literature for two-photon absorption in other 

organic semiconductors.[28] There is a small redshift in the peak wavelength 

for the femtosecond case which could be due to a combination of factors. 

Firstly, the femtosecond beam is much broader spectrally (~10 nm) than the 

nanosecond excitation beam (< 1 nm), leading to some uncertainties as to the 

exact excitation wavelength. Secondly, the much faster femtosecond pulses 

induce less excited-state absorption in the material than the nanosecond pulses 

do which could account for a slightly different absorption spectrum as excited-

state absorption peaks at different wavelengths than two-photon absorption, 

leading to the absorption spectrum being a composite of two underlying spectra 

from the two absorption processes. [29] 

 

Other reports in the literature place the two-photon absorption peak of 

polyfluorene at 625 nm for nanosecond pump pulses [15] and at 670 nm for 
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femtosecond pulses [18], in good agreement with what is observed here. I 

should be noted though that this is the first time that these measurements are in 

direct comparison to each other for the same batch of material, creating a more 

complete picture of the two-photon absorption behaviour of polyfluorene. 

4.2.1. Energy dependence of two-photon absorption 

 

By studying the energy dependence of absorption at each wavelength, the two-

photon absorption coefficients of the material can be calculated. In the case of 

two-photon absorption the change in the intensity of the pump beam with 

propagation length is given by 

ININN
dz

dI
eESAeg σσ −−−= 2

2 )(
      4-I 

where I  is the pump beam intensity, σ2 is the two-photon absorption cross-

section, Ng is the ground state population, Ne the first excited state population 

and σESA is the excited-state cross-section. For low pump intensities we can 

assume that the population of the excited state Ne is negligible (and therefore 

also Ne<< Ng) , making the above equation  

20

2 I
dz

dI
α−=

        4-II 

where the absorption coefficient is defined as α2
0
 = σ2Ng. Assuming that the 

absorption coefficient is independent of the pump energy and by integrating the 

previous equation, we get  

pumpzI
T

21
1

α+=        4-III 

where T is the transmission of the pump beam through the sample, α2 is the two-

photon absorption coefficient (intensity-independent) and z is the thickness of 

the sample. 

 

The resulting plot should be a straight line going through transmission of one 

for zero pump intensity. Such a plot for the polyfluorene data can be seen in 

Figure 4.4. 

 



 68 

0 50 100 150
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Pump intensity (GW/cm
2
)

In
v

e
rs

e
 t

ra
n

s
m

is
s
io

n

 

Figure 4.4 Inverse transmission as a function of pump intensity for a 

polyfluorene solution under two-photon excitation with femtosecond pulses. 

The solid line corresponds to a linear fit based on equation 

 

The above graph shows good compliance with what is expected for two-photon 

absorption up to a certain pumping level. Above that, saturation of two-photon 

absorption becomes apparent as a roll-off in the inverse transmission data, as the 

large number of pump photons removing a significant number of the ground 

state electrons causing a change in the two-photon absorption coefficient.[17] 

The values for the two-photon absorption coefficient can still be calculated for 

the linear part of the above graph, as seen in Figure 4.5. 
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Figure 4.5 Two-photon absorption coefficients for different excitation 

wavelengths under nanosecond and femtosecond illumination in a polyfluorene 

solution. 
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Note here that the excitation wavelength difference in the peak of absorption 

between nanosecond and femtosecond data has been reduced. This means that 

the energy dependence of two-photon absorption is very similar in the two 

different time domains studied. 

 

 The two-photon absorption cross-section can be calculated using the equation 

ρ
α

δ
A

w

N

Mhv )(2=        4-IV 

where hv is the energy of the pumping photon, Mw is the molecular weight of 

the molecule, NA is the Avogadro number and ρ is the density of the system 

investigated. The unit for two-photon absorption cross-sections is 1 GM (named 

after its discoverer, Nobel laureate Maria Göppert-Mayer, who first predicted 

two-photon absorption) and is defined as 

11450101 −−− ⋅⋅= moleculephotonscmGM  

 

In polymer measurements there is an uncertainty in calculating these cross-

sections due to the difficulty in determining the relevant effective molecular 

weight of the chromophore. If the molecular weight of the polymer is used then 

the values calculated by the above formula are unrealistically high, while using 

the repetition unit’s molecular weight does not account for the extent of the 

excitation along a polymer chain. Here it is assumed that each chromophore 

consists of approximately 7 fluorene units, as the emission spectrum from a 7-

unit oligofluorene resembles very well the polymer fluorescence spectrum.[30] 

The resulting cross-section values for nanosecond and femtosecond pump 

pulses can be seen in Figure 4.6. 
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Figure 4.6 Two-photon absorption cross-sections at different excitation 

wavelengths for a polyfluorene solution. 

 

The calculated two-photon absorption cross-section values presented here are 

amongst the highest recorded for conjugated polymers, making polyfluorene a 

good candidate for applications where strong two-photon absorption is required 

such as two-photon pumped lasing.  

 

It is interesting to observe the difference between the values for the nanosecond 

and the femtosecond regime. This is attributed to the presence of excited state 

absorption. The magnitude of excited-state absorption depends on the 

population of the first excited state as it forms the ground level for this 

transition. For short excitation pulse lengths, the molecules that are initially 

excited in this first excited state have a very limited time in which to absorb 

more of the excitation pulse through excited-state absorption and the overall 

effect is relatively small. For long excitation pulses though, the molecules in the 

first excited state can interact with the pump pulse for the entire duration of the 

state’s lifetime, meaning that there is a higher probability that some of them will 

absorb the excitation light again and move to a higher excited state through 

excited-state absorption. [31]  

 

Separating the two phenomena is not easy as the excited state absorption also 

shows a square dependence on the pump intensity, since the first excited state’s 

population is provided by two-photon absorption. This leads to higher apparent 

two-photon absorption coefficients, as in the transmission measurements there 

is no discrimination between different types of absorption. In addition, it has 
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previously been found that, for pulses much longer than the excited state 

lifetime of the material, the contribution of excited state absorption is 

proportional to the duration of the pulse until the point where the pulse duration 

becomes greater than the first excited state lifetime, therefore the contribution 

of excited state absorption is expected to be higher in the nanosecond case.[29] 

These measurements show that the values for nanosecond pulses are indeed 

approximately three orders of magnitude higher than those of the femtosecond 

experiments, in good agreement with what has been reported in the 

literature.[32] 

4.2.2. Excited-state absorption 

 

One of the processes that can compete with two-photon absorption is excited-

state absorption. In this process the molecules that are being excited into the 

first excited energy state by the pump beam subsequently absorb another pump 

photon and are thus elevated a second excited state. This means that the overall 

absorption of the pump beam through the material appears to be enhanced in 

comparison to what is expected if excited-state absorption is not present. 

 

In the case of two-photon absorption followed by excited-state absorption, this 

phenomenon can be more easily explained by using a simple energy diagram 

that includes the basic transitions and populations under consideration. We can 

consider a 4-level system for this study, as shown in Figure 4.7. 

 

 

Figure 4.7 A 4-level energy diagram illustrating two-photon absorption 

followed by excited state absorption in a fluorescent material. 
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The first excited state is state number two, with excited-state absorption 

occurring between states 2 and 3. Let us consider the rate equations associated 

with the transitions mentioned above. If Nx is the population of the x-state, we 

can write 

1

1
0

2

1

2 τ
σ N

N
hv

I

dt

dN TPA −=       4-V 

2

3

3

2

2

1

12 N
hv

INNN

dt

dN ESAσ
τττ

−+−=     4-VI 

3

3
2

3

τ
σ N

N
hv

I

dt

dN ESA −=        4-VII 

where σTPA and σESA are the two-photon absorption and excited-state absorption 

cross-sections respectively, I is the intensity of the pump beam, hv is the pump 

photon energy and τx is the lifetime of the x-state. 

 

Under steady-state conditions we get: 

hv

IN
N

dt

dN TPA 1

2

0

1
1 0

τσ
=⇒=      4-VIII 

hv

IN
N

dt

dN ESA 32
3

3 0
τσ

=⇒=      4-IX 

 

Substituting the last two equations into equation 5.XIII, the population of the 

first-excited state in the steady-state case is: 

hv

IN
N

dt

dN TPA

2
0 2

2

0
2

2 τσ
=⇒=      4-X 

The base population for excited-state absorption in this case shows a square 

dependence on the pump intensity, making this transition indistinguishable from 

two-photon absorption in pump beam absorption measurements like the ones 

performed experimentally in this thesis.[31]  

 

It has previously been shown that for pulses much longer than the excited state 

lifetime of the material, the contribution of excited state absorption is 

proportional to the duration of the pump pulse, until the point where the pulse 

duration becomes greater than the first excited state lifetime.[24] Therefore the 
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contribution of excited state absorption is expected to be higher in the 

nanosecond case and this difference can be up to 10 - 10
3
 times depending on 

the strength of excited-state absorption.[29, 33] This explains why the values 

we measured experimentally show nanosecond absorption coefficients and 

cross-sections to be approximately 100 times higher than their femtosecond 

counterparts. 

 

4.2.3. Film measurements 

 

Two-photon absorption was also measured for a thin film of polyfluorene under 

femtosecond excitation to acquire a better insight into how the material would 

behave under conditions similar to those in future lasing experiments. Figure 

4.8 shows the recorded data for the inverse transmission as a function of the 

pump energy for a pump wavelength of 640 nm. Note that the line does not give 

100% transmission at zero pump power density due to additional absorption 

coming from the vacuum chamber in which the film was placed as well as not 

taking into account the reflectivity of the sample. 
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Figure 4.8 The inverse transmission of the pump beam as a function of different 

pump powers for a thin film of polyfluorene under femtosecond illumination. 

The red line corresponds to a linear fit. 

 

The measured two-photon absorption coefficient was 2.3 cm/GW, while for the 

same pumping conditions a 10 mg/ml solution of polyfluorene has a two-photon 
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absorption coefficient of 0.023 cm/GW. This difference of 100 times in favour 

of the film corresponds to the difference in concentration (the film is assumed to 

have a 1 g/ml concentration). This indicates that the increase in concentration 

when moving from the solution to the solid state does not introduce significant 

additional losses to the system for two-photon absorption processes. 

 

4.3. Two-photon photoluminescence excitation measurements 

 

When the pump beam is incident on the cuvette containing the polyfluorene 

solution, light emission is clearly visible as seen in Figure 4.9. When the pump 

beam is at  a wavelength suitable for one-photon absorption (410 nm), the high 

linear absorption coefficient means that most of the pump light absorption and 

therefore the material’s luminescence occurs in the very first millimetre or so of 

the cuvette. In contrast, when two-photon excitation is occurring, the lower 

absorption coefficient means that the pump beam travels through most of the 

volume of the solution, leading to light emission throughout the cuvette along 

the path of the pump beam. The weak focusing of the pump beam leads to an 

almost uniform pencil-shaped excitation and consequent emission along the 

path of the pump beam. 
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Figure 4.9 Polyfluorene fluorescence under one-photon (410 nm) and two 

photon (500 – 700 nm) excitation in a 10 mg/ml toluene solution. 

 

The recorded two-photon induced photoluminescence excitation spectra for 

both nanosecond and femtosecond pump pulses can be seen in Figure 4.10 as a 

function of the excitation wavelength. Each data point corresponds to 

approximately 15,000 pump pulses, giving an average photoluminescence 

intensity with an error no larger than the fluctuations of the pump energy 

(typically around 5%). 

410 nm 500 nm 

560 nm 600 nm 

660 nm 700 nm 
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Figure 4.10 Nanosecond and femtosecond two-photon-induced luminescence 

intensity as a function of pump wavelength for polyfluorene. 

 

As in the case of the two-photon absorbance, the spectra for the two time 

domains show a very good overlap, with a broad peak appearing around 650 

nm. The femtosecond data shows some additional structure though it is not clear 

if that is due to the reduced contribution of excited-state absorption allowing for 

a better mapping of the two-photon absorption states or due to experimental 

uncertainties in the data collection.  

 

4.3.1. Energy dependence of two-photon induced fluorescence 

 

Changes in the fluorescence emission of the polymer with the pump power can 

give a useful insight into the nature of the underlying processes. For pure two-

photon absorption, we expect the fluorescence to have a square dependence on 

the pump power. 

 

A plot showing the intensity of the two-photon induced fluorescence integrated 

across all emission wavelengths for different excitation energies can be seen in 

Figure 4.11 as a function of the pump wavelength. 
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Figure 4.11 Two-photon induced fluorescence intensity plotted against pump 

wavelength for a range of different pump energies. Top graph: nanosecond data, 

bottom graph: femtosecond data. 

 

When this data is plotted as a function of the excitation energy, a square 

dependence is expected. [17] in a double-log plot this should correspond to a 

linear graph with a slope of two, as seen in Figure 4.12, where a comparison 

between the calculated slopes for nanosecond and femtosecond excitation is 

also shown. The errors in these values come from the fitting software as well as 

the fluctuations in the excitation energy (typically 5%). 
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Figure 4.12 Left: Log-log plot of two-photon induced fluorescence intensity as 

a function of femtosecond incident pump power for a range of different 

excitation wavelengths. The solid line corresponds to square dependence. Right: 

The calculated best-fit slopes from the log-log plot showing the fluorescence 

intensity as a function of the pump energy across different wavelengths for both 

nanosecond and femtosecond excitation. The slope errors from the fittings are 

approximately 10% across all wavelengths. 

 

Both set of values show similar trends, but the changes in the nanosecond 

regime are more pronounced. The nanosecond values tend to peak as the 

excitation wavelength is moved towards the maximum of the two-photon 

absorption but flatten out across an area of 75 nm around that peak. The 

femtosecond values are generally higher, but no clear peak can be seen where 

the two-photon absorption is maximised. This behaviour signifies that, at 

progressively higher excitation densities, some of the excitation photons 

absorbed by the material do not contribute to light emission, hence the slope of 

the graph becomes less than two. Possible processes that might deplete the 

light-emitting state include exciton - exciton annihilation and excited-state 

absorption. Both are expected to have a dependence on the pump pulse intensity 

and duration, but excited-state absorption is known to be practically 

indistinguishable from two-photon absorption in a transmission measurement 

under steady-state conditions like the ones described earlier in this chapter.[31] 

It seems reasonable then to attribute this deviation of the fluorescence behaviour 

to the presence of excited-state absorption, a process known to be strong in 

polyfluorene and can have a profound effect on the light emission efficiency of 

the material.[29, 34] Exciton-exciton annihilation can also have an effect in 

two-photon induced fluorescence as the excitons created by the pump beam are 
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lost in collisions with one another, reducing the overall luminescence 

efficiency. [35, 36] 

 

From the above studies, it is clear that two-photon induced fluorescence is 

strongest in the region of 650 nm for both nanosecond and femtosecond time 

domains. It is also obvious that additional processes can deplete the light 

emitting state from excitations to a larger degree when nanosecond excitation 

pulses are used. For those reasons, a femtosecond pump beam at 640 nm was 

chosen as the source for two-photon pumped laser experiments in the next 

session, in an attempt to optimise the optical pumping of polyfluorene and 

minimise any additional losses that might affect the lasing threshold. 

 

4.4. Two-photon pumped lasing experiments 

 

Films were spin-coated from a toluene solution (20 mg/ml) onto square-array 

corrugated silica substrates. The period of the corrugation was 270 nm and was 

chosen to provide optical feedback at the peak of the material’s amplified 

spontaneous emission. The films were spun at speeds of 700 – 1000 rpm 

(corresponding film thickness: 560 – 760 nm) in a protective Nitrogen 

atmosphere inside a glovebox to reduce the absorption of oxygen and water 

molecules. The samples were placed inside a vacuum chamber that was pumped 

down to 10
-4

 mbar in order to slow down photodegradation. The femtosecond 

pump beam was focused onto the surface of the film using a spherical lens and 

the pump spot size was measured to be 80 x 30 µm. 

Upon increasing the pump energy, a narrow (<0.8 nm) peak appears in the 

emission of the material, as seen in Figure 4.13, signifying the onset of lasing. 
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Figure 4.13 Emission spectrum from a two-photon pumped polyfluorene laser 

as a function of different pump energy densities under femtosecond excitation. 

 

The input – output curve for a two-photon pumped polyfluorene laser is shown 

in Figure 4.14.  
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Figure 4.14 Output of a two-photon pumped polyfluorene laser as a function of 

the pump energy density under femtosecond excitation. The solid line 

corresponds to a linear fit. 

 

The lowest recorded threshold was 42 mJ/cm
2
 for a laser emitting at 443 nm, a 

value that is high in comparison to the one-photon pumped lasing threshold. 

Due to the fact that the material is being two-photon pumped though, the 

amount of pump energy absorbed is much lower. The absorbed energy density 

threshold can therefore be calculated by taking into account the amount of 

pump light that is actually absorbed. The fraction p of the light that is being 

absorbed by the film is given by 
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zI
ep 21

α−−=         4-XI 

where α2 is the two-photon absorption coefficient for the film, z is the film 

thickness and I is the pump intensity.  

The absorbed lasing threshold intensity can therefore be calculated as 

thr

abs

thr pII =                      4-XII 

Substituting the measured values for a polyfluorene film under femtosecond 

two-photon excitation, we can estimate the absorbed energy density lasing 

threshold to be 1.3 mJ/cm
2
. This is a relatively high value when compared to the 

one-photon lasing threshold of 4µJ/cm
2
, a difference that may be attributed to 

additional losses of excitations due to excited-state absorption.[34]  

 

The two-photon pumped laser thresholds recorded here are relatively high in 

comparison to the other two examples of solid-state two-photon pumped 

organic semiconductor lasers. [19, 27] Of particular interest is the comparison 

to the two-photon pumped bisfluorene dendrimer laser reported in Chapter 5 of 

this thesis, as the light-emitting part of the dendrimer is the same as the basic 

repetition unit of polyfluorene. The absorbed energy density threshold for the 

bisfluorene dendrimer was 5.2 µJ/cm
2
 and was directly comparable to the one-

photon pumped lasing threshold of 4.5 µJ/cm
2
. This large difference for 

polyfluorene shows just how different the polymer functions in comparison to 

the smaller dendrimer molecule, with additional loss mechanisms becoming 

more pronounced.  

 

By using different combinations of grating periods and film thicknesses it was 

possible to tune the output wavelength of these lasers across 28 nm, as seen in 

Figure 4.15. 
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Figure 4.15 Output wavelength range of two-photon pumped polyfluorene 

lasers under femtosecond excitation obtained for different combinations of laser 

grating periods and film thicknesses.  

 

As a result of the large thickness of the films fabricated, lasing in more than one 

transverse mode was observed, seen as two different lasing wavelengths in 

Figure 4.16. 
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Figure 4.16 Dual-wavelength lasing emission from a two-photon pumped DFB 

polyfluorene laser under femtosecond illumination. 

 

The multimode emission was also visible when imaging the output of the laser 

onto a white screen. The complicated pattern visible in Figure 4.17 is due to 
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laser light and some ASE being scattered out of the DFB grating in many 

modes, visible as extended criss-cross patterns on the observation screen. 

 

Figure 4.17 Multimode emission from a two-photon pumped polyfluorene laser 

under femtosecond excitation. The right-hand side of the image is covered by a 

blue filter that cuts out the scattered red pumping light. 
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4.5. Summary 

 

Two photon absorption and induced luminescence studies have been performed 

on polyfluorene, one of the most popular conjugated polymers. The two-photon 

absorption spectrum of polyfluorene has been measured across a wide range of 

wavelengths and pump energies using both nanosecond and femtosecond 

excitation pulses. These measurements make it possible to determine the two-

photon absorption coefficients and cross-sections of polyfluorene in both time 

domains, yielding results that are amongst the best recorded for conjugated 

polymers. The wavelength and pump energy dependence of two-photon induced 

luminescence was also studied using both nanosecond and femtosecond 

excitation pulses, making this one of the most complete two-photon absorption 

study of polyfluorene. The effects of pump pulse duration were discussed, 

highlighting the influence of additional transitions such as excited-state 

absorption on the two-photon behaviour of polyfluorene.  

 

This information was used to determine the optimal conditions for optically 

pumping thin films of polyfluorene on distributed feedback gratings. This led to 

the demonstration of the world’s first two-photon pumped solid-state 

polyfluorene laser. The output of this laser was tunable across 28 nm in the blue 

part of the visible spectrum, demonstrating the wide wavelength range of the 

available gain of polyfluorene even under nonlinear pumping conditions. The 

relatively high observed energy density threshold is a direct consequence of 

both the low absorption of the two-photon pump beam and additional excitation 

losses. This is only the second example of a two-photon pumped organic 

semiconductor laser and the only one based on a commercially available blue-

emitting conjugated polymer.  
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5. One- and two-photon lasing in bisfluorene-cored 

dendrimers 
 

In this chapter a family of bisfluorene-cored dendrimers is studied with the aim 

to use these materials as gain medium in solid-state organic lasers. 

Photophysical studies of these materials are performed and amplified 

spontaneous emission measurements help determine the most promising 

candidate for lasing. A tunable dendrimer laser is demonstrated that emits in the 

deep blue and performs similarly to the well-established polyfluorene lasers. 

 

In addition, the two-photon absorption properties of these dendrimers are 

studied, as the bisfluorene core has been previously studied in this respect and 

the addition of conjugated dendrons is known to increase the nonlinear 

absorption. One of the dendrimers is used to demonstrate the first two-photon 

pumped dendrimer laser, showing an alternative optical pumping scheme for 

organic lasers and highlighting the versatility of organic semiconductors. 

 

The author performed most of the photophysical measurements described in this 

chapter in collaboration with Dr. Jean-Charles Ribierre. Some of the steady-

state spectra were collected by Scott Richardson, who also contributed to the 

lasing results. 

 

5.1. Introduction 

 

Organic semiconductor materials are of particular interest for making lasers that 

can access the violet and blue part of the optical spectrum between 400 and 500 

nm. This is a wavelength regime where there is a relatively small number of 

available laser sources, constituting mainly from gas lasers, gas laser pumped 

dye lasers and nonlinear wavelength conversions of infrared lasers.[1] The main 

representatives for gas lasers are Argon-ion, Krypton and Helium-Cadmium 

lasers, while UV gas lasers such as Nitrogen lasers are used as pump sources for 

the dye lasers.[2] All these sources however are very bulky and expensive, 

require high operational voltages and at the same time offer limited tunability, 
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while the nonlinear conversions require expensive nonlinear crystals and have 

reduced efficiencies. Still, these systems have been very successful and dye 

lasers in particular are very widespread as they demonstrate great wavelength 

tunability and remain vital for accessing the visible spectrum below 500 nm 

with laser light.[3]  Organic semiconductors that can access this part of the 

spectrum are therefore of great interest, as their solution processability, high 

optical gain and synthesis flexibility can lead to inexpensive, compact and 

tunable laser systems to access the violet and blue parts of the spectrum.[4] 

 

Amongst the various organic semiconductors, the family of fluorene-based 

materials has emerged as the most important of the blue-emitting materials.[5, 

6] Conjugated polymers such as polyfluorene and its numerous derivatives are 

based around the fluorene unit shown in Figure 5.1 and have demonstrated 

efficient light emission across the visible spectrum, leading to the 

manufacturing of organic light-emitting diodes with very attractive properties 

for applications such as displays. [7-9] 

 

 

Figure 5.1 The basic fluorene unit, key component of many organic 

semiconductors 

 

In addition, the lasing properties of fluorene-based conjugated polymers are 

amongst the best for any organic semiconductors, leading to solid-state organic 

lasers with exceptionally low lasing thresholds. [10-12] The polymer nature of 

these materials though can lead to unwanted variations in their properties as a 

result of the polydispersity of their chains, whereby each polymer molecule is 

made up of a different number of repetitions units leading to slightly different 

morphology, absorption and emission features.[13-15]  

 

An alternative approach that attempts to circumvent these problems is the 

synthesis of smaller organic semiconductors that are based around fixed 

molecular structures rather than long polymer chains. The molecules produced 
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are typically larger than conventional laser dyes but are equally well-defined, 

allowing for accurate control of the material’s photophysical properties. 

 

5.2. Dendrimers 

 

One such category of materials is dendrimers, in which a core unit, selected for 

its photophysical properties, is surrounded by additional units called dendrons 

(see Figure 5.2).[16] The dendrons act as spacers between the individual cores, 

controlling the intermolecular interactions that affect both the fluorescence and 

the charge transport. Surface groups are attached at the end of the dendrons to 

control the solubility of the molecules, making dendrimers soluble in a large 

range of organic solvents. 

 

 

Figure 5.2 The basic dendrimer structure 

 

The great advantage of the dendrimer design comes from the ability to tune the 

properties of each part of the molecule separately without affecting the rest of 

the properties. A different type of dendron could, for example, be combined 

with the same core and surface groups to give a material with the same 

fluorescence wavelength and solubility but greater separation between 

molecules. 

 

Efficient light emission from dendrimer materials has been well documented in 

the literature, with organic light-emitting diodes reaching external quantum 

efficiencies up to 16 %,[17] though this is due to phosphorescence emission that 

Core 
 
 
 
Dendron 
 
 
 
Surface 
group 
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is unsuitable for lasing. Fluorescent cores have been used that demonstrate the 

potential for high available optical gain and good lasing properties, such as low 

lasing thresholds and high slope efficiencies.[18-20] 

 

In this work the photophysical properties of a family of blue-emitting 

bisfluorene-cored dendrimers were investigated and the most suitable member 

of that family was used to fabricate distributed feedback organic semiconductor 

lasers. In addition, an alternative optical pumping scheme is explored by using 

two-photon absorption to pump a blue-emitting bisfluorene dendrimer laser at a 

wavelength much longer then the material’s linear absorption and emission. 

 

5.2.1. Bisfluorene dendrimers 

 

The dendrimers studied as part of this work all share the same bisfluorene core 

onto which different dendrons are attached.[21] Figure 5.3 shows the molecular 

structure of the different dendrimers with biphenyl (BP), biphenyl-carbazol 

(BPCz) and E-stylbene (ES) dendrons attached to them. 
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Figure 5.3 Chemical structures of bisfluorene dendrimers with different 

dendrons: biphenyl (BP), biphenyl-carbazol (BPCz) and E-stylbene(ES) 

dendrons. 
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5.3. Photophysical measurements 

 

The absorption and fluorescence spectrum of the bisfluorene dendrimers can be 

seen in Figure 5.4. These materials all absorb in the UV and their emission 

spans the violet and blue parts of the spectrum. Dendrimers (BP) and (ES) have 

very similar emission spectra, while the (BPCz) dendrimer has a somewhat red-

shifted emission spectrum. These measurements were performed by Jean-

Charles Ribierre and Scott Richardson. 
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Figure 5.4 Absorption (red line) and fluorescence (blue line) spectra of the three 

bisfluorene-cored dendrimers. 

 

5.3.1. Photoluminescence quantum yield 

 

The photoluminescence quantum yield of each material was measured in film. 

The PLQY values are summarized in Table 5.a, where the dendrimer with BP 

dendrons presents an exceptionally high value of 92 %. 
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Dendron type Film PLQY (%) 

BP 92 

BPCz 43 

ES 52 

Table 5.a PLQY values for the bisfluorene dendrimers studied. 

 

5.3.2. Amplified spontaneous emission measurements 

 

As a precursor to lasing, amplified spontaneous emission (ASE) measurements 

provide a benchmark for the lasing performance of materials independent of the 

resonator structures be used in the actual device. To observe ASE a thin film is 

spin coated from solution onto a glass substrate and the sample is placed in a 

vacuum chamber where it is excited by a pump beam focused to a narrow stripe. 

The resulting fluorescence is waveguided by the film and is scattered out at the 

edges of the film where it is collected using a fibre connected to a spectrograph. 

As the intensity of the pump beam is increased above a certain threshold level, 

the emission from the material becomes narrower in comparison to the steady-

state fluorescence spectrum until it reaches a FWHM of approximately 5 nm, 

while the intensity of the output increases at a faster rate as the light is amplified 

as a result of ASE. This behaviour can be seen in Figure 5.5. 
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Figure 5.5 (a) Emission linewidth and (b) output intensity as the material 

crosses the amplified spontaneous emission threshold for a bisfluorene 

dendrimer. 
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 The ASE spectrum of the three dendrimers can be seen in Figure 5.6.  
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Figure 5.6 ASE spectra for the different bisfluorene dendrimers studied. 

 

ASE threshold measurements were performed for each dendrimer and the 

results are summarized in Table 5.b, where the peak wavelength of the ASE 

emission is recorded along with the corresponding ASE threshold.  

 

Dendron type λASE (nm) ASE threshold (µJ/cm
2
) 

BP 422.4 16 

BPCz 431.0 50 

ES 421.9 25 

Table 5.b ASE wavelength and energy density threshold values for the 

bisfluorene dendrimers. 

 

5.3.2.1. Optical gain and waveguide losses 

 

It is important when characterizing a new type of material to determine some of 

the key properties that will ultimately affect its lasing performance. The most 

useful set of parameters consists of determining the optical gain available per 

unit length as well as the waveguide losses per unit length as the fluorescence is 

waveguided through the film. Using the variable stripe technique [22] we were 

able to perform these measurements for all three bisfluorene dendrimers.  

 

Measuring the optical gain requires a thin film of the material excited by a 

pump beam focused to a thin stripe of varying length with a fibre placed near 
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the edge of the film to collect the intensity of the light scattered out. As 

described previously in Chapter 3, when the material is above the ASE 

threshold, the output intensity Iout from the edge of the film as a function of the 

stripe length is given by 

)1(
)(

)(
)(( −= lgp

out e
g

IA
I

λ

λ

λ
      5-I 

 

where g(λ) is the optical gain, A(λ) is a constant of the material related to the 

spontaneous emission cross-section, Ip is the pump intensity and l is the length 

of the stripe. The data from the optical gain measurements can be seen in Figure 

5.7 for all three bisfluorene dendrimers. 
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Figure 5.7 Amplified spontaneous emission intensity as a function of the 

excitation stripe length used to determine optical gain in bisfluorene 

dendrimers. 

 

The waveguide loss coefficient can be calculated if the length of the excitation 

stripe is kept constant but the stripe is moved away from the edge of the film. 

This means that the generated ASE is waveguided to the edge of the film where 

it is scattered out and collected by the optical fibre; the longer this distance is, 

the higher the attenuation of the ASE becomes as the light experiences both 

scattering and re-absorption by the material. The waveguide loss coefficient α 

can then be calculated by I=I0exp(-αx) , where I0 is the output intensity when 

the stripe is at the edge of the film. The data collected in this measurement for 

the bisfluorene dendrimers are shown in Figure 5.8. 
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Figure 5.8 ASE output intensity as a function of changing distance from the 

edge of the film used to determine the waveguide loss coefficients of the 

bisfluorene dendrimers. The solid lines correspond to exponential decay fits. 

 

The optical gain and waveguide loss data for the bisfluorene dendrimers are 

summarised in Table 5.c. 

 

Dendron type Gain (cm
-1

) Losses (cm
-1

) 

BP 51 4 

BPCz 8 10 

ES 21 10 

Table 5.c Optical gain and waveguide losses of bisfluorene dendrimers. 

 

5.3.2.2. Gain calculations 

 

In order to understand the observed differences in the ASE performance of the 

bisfluorene dendrimers and to understand the effect that the key photophysical 

properties such as optical gain and loss have on the potential of a material as a 

gain medium for lasers, it is useful to look at how some of these properties are 

linked together. Under steady-state conditions, the net optical gain g of a 

material is given by 

Ng σ=         5-II 

 

where σ is the stimulated emission cross-section and N is the population of the 

first excited state. We can rewrite the above equation as 
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τσPg =         5-III 

where P is the pumping rate and τ is the lifetime of the first excited state.  

 

The lifetime τ is a function of the radiative (kR) and non-radiative (kNR) decay 

rates of the material according to  

NRR kk +=
τ
1

        5-IV 

 

The photoluminescence quantum yield Φ can also be expressed as a function of 

the two decay rates, as it represents the radiative percentage of the total decay 

rate 

NRR

R

kk

k

+
=Φ         5-V 

 

The lifetime of the first excited state can therefore be written as 

Rk/Φ=τ         5-VI 

 

leading to the following expression for the optical gain 

Rk

P
g

Φ
= σ         5-VII 

 

When considering that the amplified fluorescence also has to travel through a 

waveguide that presents a loss coefficient α, the net gain gnet observed by the 

variable stripe technique is 

ασ −= Ng net        5-VIII 

 

It is therefore possible to theoretically calculate the optical gain available from 

the material based on the following expression: 

α
σ

−
Φ

=
R

net
k

P
g        5-IX 

where all the symbols are defined in the above set of equations.[21] Of these 

parameters, the pumping rate P can be calculated knowing the pump pulse 

duration (4 ns) and the ratio σ/kR does not depend on the gain medium 

considered due to the proportionality of the Einstein A and B coefficients.  
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Additional measurements have shown that in dendrimer (BP), σ has been found 

to be 3.4 × 10
-18

 cm
2
 and kR has been measured to be 1.28 × 10

9
 s

-1
.[23] These 

values are expected to be very similar for all three bisfluorene dendrimers 

studied in this chapter. 

 

Using this information, we can compare the gain coefficient values measured 

for the different dendrimers against the predictions from the above calculations. 

In Figure 5.9 the ASE threshold, waveguide losses and the measured and 

theoretical optical gain coefficients have been plotted as a function of the 

materials’ PLQY values to allow for better overview of these key properties: 

40 50 60 70 80 90 100
0

10

20

30

40

50

60  ASE threshold

PLQY (%)

A
S

E
 T

h
re

s
h

o
ld

 (
µµ µµ

J
/c

m
2
) 

0

10

20

30

40

50

60

70

80

(BP)

(ES)

(BPCz)

 Measured gain

 Measured optical losses

 Calculated (theoretical) gain

G
a
in

m
a
x
&

 L
o

s
s
 c

o
e

ff
ic

ie
n

t 
(c

m
-1
)

 

Figure 5.9 ASE threshold, waveguide losses, measured gain and theoretical gain 

(crosses) as a function of the PLQY of different bisfluorene dendrimers. The 

lines are guides for the eye. 

 

Since the emitting core remains the same across all dendrimers, the family 

forms a good model system for such calculations, allowing for direct 

comparisons of the effect the different dendrons have on the performance of the 

materials. 

 

From the ASE measurements it becomes obvious that the dendrimer with 

biphenyl dendrons (BP) combines very high film PLQY, high available optical 

gain and low ASE threshold, making it an ideal candidate for lasing. The lasing 

experiments therefore were performed using this dendrimer as the gain medium. 
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5.4. Lasing experiments 

 

Distributed feedback lasers were fabricated by spin coating thin films from 

chloroform solution (25 mg/ml) of the BP dendrimer onto corrugated silica 

substrates. Both 1-D and 2-D DFB gratings were used and the grating period 

was varied between 270 and 290 nm. The laser structures were pumped using a 

nanosecond optical parametric oscillator with pulse duration 4 ns and repetition 

rate 20 Hz. The pump beam was incident at an angle to the film and was 

focused to a spot size of 270 x 270 µm. 

A typical input-output measurement to determine the lasing threshold can be 

seen in Figure 5.10, where the lasing threshold is 16 µJ/cm
2
. 
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Figure 5.10 Output intensity as a function of the pump energy density for a DFB 

laser based on the bisfluorene dendrimer with biphenyl dendrons. The solid line 

is a linear fit above threshold. 

 

It is worth mentioning that by using pump pulses from a microchip laser with a 

shorter duration and a different spot size the lowest recorded threshold was 

measured to be 4.5 µJ/cm
2
 by Scott Richardson and Jean-Charles Ribierre as 

seen in Figure 5.11.[21] The slope efficiency of the same sample was found to 

be 8.3 % when including emission from only one side of the DFB laser. These 

results are directly comparable to those reported for polyfluorene, a benchmark 

organic semiconductor for blue emission, showing a lasing threshold of 4 

µJ/cm
2
 and 7.8% slope efficiency.[24] 
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Figure 5.11 Best recorded threshold lasing data from a BP bisfluorene 

dendrimer excited by a microchip laser .[21] 

 

By varying the DFB grating period, tuning of the dendrimer laser was possible 

across 10 nm, as seen in Figure 5.12. 
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Figure 5.12 Tuning curve of a BP dendrimer DFB laser 

 

5.5. Lasing summary 

 

The key photophysical properties of a family of bisfluorene-cored dendrimers 

have been studied, including amplified spontaneous emission studies to 

determine the available optical gain and waveguide losses in thin films. The 

best dendrimer was then used to make a blue tunable solid-state DFB laser that 

showed lasing performance similar to polyfluorene, the current benchmark 

blue-emitting organic semiconductor. 
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5.6. Two-photon absorption and lasing 

 

These bisfluorene dendrimers show excellent lasing performance and as such 

have great potential for use in more compact organic semiconductor lasers. 

They do however require excitation at ultraviolet wavelengths, where pump 

lasers are still relatively bulky and expensive. A different approach would be to 

use longer wavelengths to excite the materials via a nonlinear absorption 

process known as two-photon absorption, whereby two photons of half the 

energy (twice the wavelength) required to bridge the material’s band gap are 

absorbed simultaneously to excite the molecules to the first emissive state.[25] 

This pumping scheme builds on the nonlinear optical properties of organic 

semiconductors and could potentially lead to red laser diodes being used as 

pump sources, allowing for compact organic laser systems. Two-photon 

pumped lasing in organic materials has been investigated in depth for small 

liquid and solid-state dye solutions.[26-29] In organic semiconductors though 

there is only one previous published example of a solid-state two-photon 

pumped lasers, based on the ladder polymer MeLPPP, emitting in the green part 

of the spectrum.[30] Note here that in Chapter 4 of this thesis a two-photon 

pumped polyfluorene laser is presented, with a publication soon to follow. 

 

A suitable material for this approach needs to combine both good lasing 

performance as well as a strong two-photon absorption cross-section to enable 

effective harvesting of the longer-wavelength pump light. As the bisfluorene 

dendrimers studied here have demonstrated their merits as lasing materials, the 

question emerged as to their nonlinear optical properties. Previous studies on 

the bisfluorene core have shown good two-photon absorption properties for 

optical limiting applications, while the addition of dendrons in our materials can 

extend the p-electrons delocalisation, a property that is known to enhance two-

photon cross-section.[31-34] This study aims to determine the potential of 

bisfluorene dendrimers as gain media for two-photon lasing through a detailed 

photophysical analysis and use these results to demonstrate a blue-emitting 

solid-state two-photon pumped organic laser. 
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5.6.1. Two-photon absorption and emission studies 

 

The first step in evaluating the performance of the dendrimers under two-photon 

excitation is to determine the most efficient pump wavelength for light 

emission. To achieve this, an optical parametric oscillator was used to provide a 

tunable pump wavelength between 500 and 850 nm in 10 nm steps at energy 

levels sufficiently high to induce nonlinear absorption effects. The pump beam 

was incident onto a quartz cuvette containing a 30 mg/ml dendrimer solution in 

chloroform and the induced fluorescence was collected from the side of the 

cuvette using a Jobin-Yvon Triax CCD spectrograph with an optical fibre and a 

collection lens. Photos from this setup showing the observed two-photon 

induced fluorescence can be seen in Figure 5.13 for two different excitation 

wavelengths. 

 

 

Figure 5.13 Two-photon induced fluorescence in solutions of a bisfluorene-

cored dendrimer under nanosecond excitation. Two different pump wavelengths 

were used (580 nm on the left, 620 nm on the right. Also visible is the 

collecting optical fibre for the spectrograph. 

 

The resulting data can be seen in Figure 5.14, where fluorescence is plotted as a 

function of the pump wavelength from the OPO for all three bisfluorene 

dendrimers studied. The behaviour of the BP and ES dendrimers is very similar, 

showing a broad peak around 590 nm and no other significant features. The 
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Collection fibre to 
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BPCz dendrimer on the other hand shows a wider peak around 600 nm and a 

secondary peak at 680 nm. This second peak may be due to the addition of a 

nitrogen atom between the core and the dendrons. The observed two-photon 

induced fluorescence spectra can be compared with the linear absorption 

spectra, also shown in the same figure, giving a direct comparison between the 

wavelength dependence of the two processes. 
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Figure 5.14 Two-photon fluorescence excitation (solid squares) and linear 

absorption (blue line) spectra of bisfluorene-cored dendrimers in solution under 

nanosecond excitation. 

 

The shape of the linear absorption is reproduced well in the two-photon 

fluorescence excitation spectra for each dendrimer. The peaks are blue-shifted 

in the nonlinear absorption data by approximately 60-80 nm due to the fact that 

the one-photon transition (1 Ag to 1 Bu) is not spin-allowed for the 

simultaneous absorption of two photons. The two-photon transition is instead 

from 1 Ag to m Ag, leading to a slightly higher energy level being accessed by 

two-photon absorption. This m Ag energy level is 0.6-0.7 eV higher than the 1 
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Bu state to which the molecules quickly relax and proceed to return back to the 

relaxed state 1 Ag by emitting light, as seen in Figure 5.15. 

 

Figure 5.15 Linear (purple arrow) and two-photon (orange arrows) absorption 

processes in a simple energy level diagram for the bisfluorene dendrimers 

 

In order to confidently assign the observed fluorescence to a two-photon 

process, measurements of both fluorescence and pump beam transmission 

through the sample were performed as a function of pump intensity.  

 

For a two-photon absorption process, the fluorescence intensity should be 

proportional to the square of the pump intensity and when plotted against the 

square of the pump intensity the resulting graph should be a straight line. Figure 

5.16 shows such a graph for all three dendrimers pumped at the peak of their 

two-photon excitation spectra. The graph clearly verifies the square dependence 

of the observed fluorescence. 
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Figure 5.16 Two-photon induced fluorescence as a function of the square of the 

pump intensity for bisfluorene dendrimers in solution under nanosecond 

excitation. (BP) and (ES) dendrimers were pumped at 590 nm, while (BPCz) 

was pumped at 600 nm. The lines correspond to linear fits for the data. 

 

The transmission of the pump beam through the sample for two-photon 

absorption is also dependant on the pump intensity. More specifically, the 

inverse of the transmission as a function of the pump intensity can be written as: 

pumpzI
T

21
1

α+=        5-X 

 

where T is the transmission of the pump beam through the sample, α2 is the two-

photon absorption coefficient and z is the thickness of the sample.[35]  

 

The transmission data can be seen plotted in Figure 5.17 according to the above 

equation and are in good agreement with the expected two-photon absorption 

behaviour. 
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Figure 5.17 Inverse transmission as a function of pump intensity for three 

bisfluorene-cored dendrimers under nanosecond excitation. The pumping 

wavelength was 590 nm for the (BP) and (BPCz) dendrimers and 600 nm for 

the (ES) dendrimer. The lines correspond to linear fits. 

 

For the 1-cm long cuvettes used for these experiments, the slope of the above 

graph shows the two-photon absorption coefficient of each dendrimer. The 

resulting values are shown in Table 5.d for the three dendrimers studied. These 

measurements were performed using both nanosecond and femtosecond pump 

pulses and correspond to the peak of the two-photon absorption spectrum of 

each molecule in order to determine the impact of pump pulse duration on 

nonlinear absorption. The absorption coefficient values for a thin film of the 

material also are of great interest as it is in the solid state that two-photon lasing 

will take place. Since absorption coefficients are directly related to the 

concentration of the material, and by assuming a 1 g/ml concentration for the 

solid-state, the two-photon absorption coefficient for a thin film of bisfluorene 

dendrimer is shown to be 33.3 times higher than that measured in solution as 

seen in Table 5.d. 

Dendron type 
Solution α2

ns
 

[cm/GW] 

Film α2
ns

 

[cm/GW] 

Solution α2
fs
 

[cm/GW] 

Film α2
fs
 

[cm/GW] 

BP 27 899 0.073 2.4 

BPCz 35 1166 0.095 3.2 

ES 45 1499 0.118 3.9 

Table 5.d Two-photon absorption coefficients for 30 mg/ml toluene solutions 

(measured) and thin films (calculated) of bisfluorene dendrimers. 
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Note here that the values for nanosecond excitation are on average 370 times 

higher than the corresponding femtosecond values. This difference has been 

previously attributed to excited-state absorption and has been discussed in great 

detail in the previous chapter (Chapter 4).  

 

The two-photon absorption coefficients measured can then be translated into a 

concentration-independent two-photon absorption cross-section δ using the 

equation 

ρ
α

δ
A

w

N

Mhv )(2=        5-XI 

 

where hv is the energy of the pumping photon, Mw is the molecular weight of 

the molecule, NA is the Avogadro number and ρ is the density of the system 

investigated. The unit for two-photon absorption cross-section is 1 GM, defined 

as 

11450101 −−− ⋅⋅= moleculephotonscmGM  

 

An overview of the two-photon absorption coefficients and cross-sections for 

both nanosecond and femtosecond excitation can be seen in Table 5.e. 

 

Dendron type α2
ns

 [cm/GW] δ
ns

 [GM] α2
fs
 [cm/GW] δ

fs
 [GM] 

BP 27 85 0.073 0.30 

BPCz 35 120 0.095 0.33 

ES 45 148 0.118 0.39 

Table 5.e Two-photon absorption coefficient (α2
xx

) and cross-section (δ
xx

) 

values under nanosecond (ns) and femtosecond (fs) illumination at the peak of 

the photoexcitation spectrum for each dendrimer. 

 

It is worth noting that the two-photon absorption cross-section of a bare 

bisfluorene molecule like the core of the dendrimer studied here was measured 

under nanosecond illumination to be 60 GM.[36] The higher values measured 

for the dendrimers highlight the effect that the dendrons have on the two-photon 

absorption properties of these molecules, even though the excited states are 

mostly confined in the dendrimer cores, as is evident from the similarities in the 

linear absorption and fluorescence spectra. The addition of the dendrons 
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enhances the cross-section of all dendrimers for two-photon absorption by 

further delocalising the p-electrons from the core, a process known to enhance 

nonlinear absorption without altering the key photophysical properties of the 

core, a consequence of the modular architecture of dendrimers. 

 

The one- and two-photon studies can be combined to select the best candidate 

for a two-photon pumped laser. The ideal material should combine high 

photoluminescence quantum yield with substantial two-photon absorption. 

Considering this, the bisfluorene-cored dendrimer with biphenyl (BP) dendrons 

becomes the obvious choice as it combines a film PLQY of 92% with a 

reasonable two-photon absorption cross-section. This material has also 

demonstrated excellent one-photon lasing behaviour, with results comparable to 

those obtained for benchmark blue-emitting organic semiconductors.  All the 

experiments on two-photon pumped lasing were therefore performed using this 

dendrimer. 

 

5.7. Two-photon pumped lasing experiments 

 

Solid-state lasers were prepared from dendrimer solutions (25 mg/ml in toluene) 

by spin-coating under various spin speeds between 800 and 150 rpm. The 

resonator structures used were corrugated silica 1-D and 2-D distributed 

feedback gratings with periods between 260 and 280 nm and an average depth 

of 30 nm. The samples were kept in a vacuum chamber in pressures of 10
-4

 

mbar to slow down oxidation and photodegradation. 

 

The initial set of experiments was performed using nanosecond pump pulses 

from an optical parametric oscillator (OPO). The pump wavelength was 590 nm 

to match the maximum of the two-photon induced fluorescence and was 

focused using a cylindrical lens to a stripe with dimensions of 170 x 4000 µm in 

order to give a long interaction length between the excitation field and the 

material in a direction perpendicular to the 1D grating.  Figure 5.18 shows a 

two-photon pumped bisfluorene laser in operation inside a vacuum chamber 

when pumped at 590 nm. 
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Figure 5.18 A two-photon pumped bisfluorene dendrimer DFB laser (right-hand 

side of the photograph) under nanosecond excitation. The photo is taken 

through a blue filter to reduce the intensity of the pump light at 590 nm. The 

excited region of the film inside the vacuum chamber is visible as a horizontal 

stripe where the intensity of the emission has saturated the camera. 

 

The lasing spectrum from a bisfluorene DFB laser can be seen in Figure 5.19 

plotted against the Bragg-scattered emission peaks that originate in the emission 

pattern from DFB lasers as discussed in Section 2.4.2 when the fluorescence is 

collected below lasing threshold. 
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Figure 5.19 Lasing spectrum from a two-photon pumped bisfluorene DFB laser 

under nanosecond excitation. Also visible are the peaks from the Bragg-

scattering of the material’s spontaneous emission due to the presence of the 

grating. 

 

The input-output behaviour of the two-photon pumped BP dendrimer lasers 

made using different DFB gratings can be seen in Figure 5.20 and folloes the 

well-established lasing measurement techniques described previously in 
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Chapter 3 of this thesis. The pump energy was modified using a number of 

metallic neutral density filters, while the emission intensity was recorded using 

a CCD spectrograph with a collecting optical fibre. 
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Figure 5.20 Optical output as a function of the pump energy density for a series 

of BP dendrimer DFB lasers under nanosecond excitation. 

 

The lowest recorded threshold was 140 mJ/cm
2
, a value much higher than the 

one-photon pumped threshold of 16 µJ/cm
2
 using the same OPO source. To get 

a proper estimate of the difference between the two pumping schemes, it is 

important to consider the very low absorption of the two-photon pump beam in 

comparison to the very strong linear absorption. The fraction p of the light that 

is being absorbed by the film is given by 

zI
ep 21

α−−=        5-XII 

where α2 is the two-photon absorption coefficient for the film, z is the film 

thickness and I is the pump intensity. The absorbed lasing threshold intensity 

can therefore be calculated as 

thr

abs

thr pII =         5-XIII 

 

Given a threshold pump intensity of 0.14 GW/cm
2
, the absorbed intensity lasing 

threshold is 0.0875 GW/cm
2
 or 350 µJ/cm

2
. This value is approximately 22 

times higher than the one-photon pumped results, a difference that can be 

attributed to the additional loss of excitations due to the presence of excited-

state absorption. 
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The lasing output above threshold is expected to have a square dependence on 

the pump intensity as two pump photons are required for each emitted photon. 

A graph showing the laser output against the pump energy density in a double-

log scale therefore it is expected to show data points following a straight line 

with a slope of two. Such a graph is shown in Figure 5.21 where the measured 

slopes of the lasing output are also noted. 

10 100

0.1

1

Gratings

 1D, ΛΛΛΛ = 270 nm, slope: 2.6

 2D, ΛΛΛΛ = 270 nm, slope: 1.85

O
u

tp
u

t 
(a

.u
.)

Pump energy density (mJ/cm
2
)

 

Figure 5.21 Pump energy dependence of the lasing output from two-photon 

pumped bisfluorene dendrimer DFB lasers under nanosecond excitation. 

 

The observed slopes are close to the expected two-photon behaviour. It must be 

noted though that other lasers showed much higher slope values of up to 5, for 

which there is no clear explanation. 

 

To further study the two-photon lasing behaviour observed, different pump 

wavelengths were used to verify the position and origin of the two-photon 

pumped lasing. This was to make sure that these results were not the result of 

some additional excitation such as any residue of the 355 nm laser light from 

the Nd:YAG laser that pumps the OPO used as the source in these experiments, 

or even some wavelength produced somewhere in the setup due to the high 

intensities. Figure 5.22 shows a comparison of the lasing spectrum from a 

bisfluorene DFB laser when pumped at the one-photon absorption wavelength 

as well as a few pumping wavelengths along the two-photon photoluminescence 

excitation peak. This figure demonstrates that the lasing wavelength does not 
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change for different excitation wavelengths, further proving that the observed 

phenomenon is indeed lasing from the material. 
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Figure 5.22 Lasing spectrum of a bisfluorene-cored dendrimer DFB laser under 

nanosecond excitation at different wavelengths. 

 

A lasing spectrum was also taken using a lower resolution grating in the 

spectrograph to verify that there were no additional ultraviolet wavelength 

coming from the pump source when the dendrimer laser was pumped with 

longer wavelengths; indeed there were no evidence for this, as seen in Figure 

5.23, verifying that the lasing was indeed the result of two-photon excitation. 
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Figure 5.23 Lasing spectrum for a two-photon pumped dendrimer DFB laser 

acquired using a low resolution spectrograph grating, showing that there is no 

evidence of ultraviolet pump wavelengths. The rising slope of the graph at the 

longer wavelengths is the tail of the nanosecond excitation beam at 590 nm. 
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The lasing emission was tunable by using different DFB grating across 10 nm, 

as seen in Figure 5.24. This tuning range is exactly the same as for the one-

photon excited lasing experiments reported earlier in this chapter, showing that 

the two-photon excitation of the lasers does not introduce additional limitations 

in the lasing performance of the material. 
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Figure 5.24 Tuning spectrum of nanosecond two-photon pumped bisfluorene 

dendrimer lasers. 

 

The lasing threshold experiments were repeated using a femtosecond pulse 

pump source to investigate the impact of excited-state absorption. The resulting 

lasing threshold was much lower than that achieved under nanosecond 

excitation as seen in Figure 5.25. 
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Figure 5.25 Optical output as a function of the pump power density for a 

bisfluorene two-photon pumped laser under femtosecond excitation. The solid 

line corresponds to a second-order polynomial fit. 
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The energy dependence of the lasing output above threshold can be seen in 

Figure 5.26. 
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Figure 5.26 Pump energy density dependence of a femtosecond two-photon 

pumped bisfluorene dendrimer laser plotted on a double-log scale. The solid 

line corresponds to a linear fit with a slope value of 2.4 ± 0.3 

 

The observed energy dependence matches very well with the theoretical 

predictions for a two-photon pumped laser. This indicates that any additional 

loss mechanisms such as excited state absorption have only a small effect on the 

lasing performance of the material. The femtosecond lasing threshold was 

measured to be 4.9 mJ/cm
2
, whereas the absorbed energy density lasing 

threshold can be calculated to be 5.2 µJ/cm
2
. This compares favourably with the 

one-photon lasing threshold of 4.5 µJ/cm
2
, providing further evidence that, for 

femtosecond excitation pulses, the additional losses associated with two-photon 

absorption such as excited-stated absorption are very small. This is only the 

second published demonstration of solid-state two-photon pumped lasing in 

organic semiconductors and the only one where lasing is achieved in the deep 

blue and for both nanosecond and femtosecond excitation. The other published 

example is based on the ladder-type polymer MeLPPP, but the emission from 

that laser lies in the green part of the spectrum (498 nm) and lasing was only 

achieved with femtosecond pulses.[30]  
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5.8. Summary 

 

A new family of dendrimers was studied in this section with the aim of making 

one- and two-photon pumped lasers. The dendrimers consisted of a common 

bisfluorene core and three different types of dendrons attached to them. A 

complete set of photophysical measurements was performed to characterise the 

materials’ absorption and fluorescence properties as well as to evaluate their 

potential as laser gain media. Key parameters such as optical gain, waveguide 

losses and amplified spontaneous emission threshold in thin films were 

measured and compared across the different dendrimers to select the best 

candidate for lasing, a bisfluorene dendrimer with biphenyl dendrons that was 

used to make a tunable blue solid-state laser with lasing performance close to 

that of polyfluorene, a benchmark material for organic semiconductor lasers. 

 

The same family of materials was then investigated as to their two-photon 

absorption and subsequent emission properties, as branched organic materials 

can display large nonlinear absorption cross-sections. The two-photon induced 

fluorescence was mapped and the absorption coefficients and cross-sections 

were calculated under both nanosecond and femtosecond excitation, allowing 

for an estimate of the additional losses present in a nonlinear excitation scheme 

such as excited-state absorption. The dendrimer with biphenyl dendrons 

combined excellent one-photon lasing properties with good two-photon 

absorption behaviour and was therefore selected to make a tunable blue two-

photon pumped solid-state DFB laser pumped at 590 nm with both nanosecond 

and femtosecond pulses. The nanosecond lasing threshold was much higher 

than the femtosecond threshold, giving an insight to the effects that long pump 

pulses can have on the performance of a two-photon pumped organic laser. The 

femtosecond pumped lasing threshold of this laser is comparable to the one-

photon pumped threshold once the reduced pump light absorption is taken into 

consideration, showing that there are very few additional losses that affect 

lasing. This is one of the very few examples of two-photon pumped lasing in 

organic semiconductors and the first ever to be reported on dendrimers, 

highlighting the unique flexibility of organic materials for laser applications. 
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6. Lasing in oligofluorene truxenes 
 

In this chapter an oligofluorene truxene, T4, a member of a novel family of 

materials, is evaluated as a potential gain medium for organic semiconductor 

lasers. The key photophysical properties of the material are investigated and a 

blue-emitting distributed feedback solid-state laser is fabricated that shows 

lasing performance that improves upon the results reported for polyfluorene, the 

benchmark blue-emitting organic semiconductor gain medium.  

 

The author performed all the photophysical measurements, the ellipsometry and 

the lasing experiments described in this chapter. Contributions were made by 

two members of the Organic Semiconductor Optoelectronics group. Yue Wang 

performed the amplified spontaneous emission measurements and Paul Shaw 

assisted with the modelling of the ellipsometry data for thin waveguides made 

from the truxene material.  

 

6.1. Introduction 

 

The search for new light-emitting organic semiconductors continues to explore 

the different pathways that synthetic chemistry opens up with materials design. 

The key properties of well-known molecules are fine-tuned to achieve the best 

possible results while studies of the properties of these materials allow for better 

understanding of what works best when designing future organic 

semiconductors.[1]  

 

Fluorene-based materials are a great example of such progress in synthesis and 

optimisation of organic semiconductors.[2, 3] The interesting properties of 

polyfluorene, the first in this family of materials, such as highly-efficient light 

emission, high optical gain, low waveguide losses and good film quality when 

spun from solution have been the basis of some very interesting materials used 

in a variety of optoelectronics applications.[4] Materials such as F8BT, F8DP 

(see Chapter 4 for chemical structures), bisfluorene-cored dendrimers (see 

Chapter 5) and even a different phase of polyfluorene in thin films called beta 
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phase have shown that the basic polyfluorene structure can be adapted to 

optimise results in OLEDs, organic solar cells, optical amplifiers and organic 

lasers.[1, 5-8] 

 

One of the great challenges in organic semiconductor synthesis is achieving a 

high level of control over the properties of the material synthesised, something 

that is more difficult when conjugated polymers are concerned. It is difficult to 

synthesise long chains consisting of the same number of repeat units and so 

each polymer chain is slightly different. This has the disadvantage of making 

purification of the material following initial synthesis relatively difficult. 

Furthermore, the statistical distribution of the number of conjugated sites along 

the disordered chains leads to inhomogeneous broadening of the absorption and 

emission spectra depending on the number of repetition units involved in each 

chain.[4, 9] Even though this can have certain advantages in separating the 

absorption and emission bands,[10] the lack of precise control over the 

properties of the molecules makes predicting and optimising their behaviour 

more difficult. 

 

In this respect molecules made from a small and controlled number of repetition 

units, called oligomers, have become attractive as their exact composition and 

therefore photophysical and electrical properties of each molecule can be 

accurately determined at the synthesis stage. A number of publications explore 

both the synthesis and the photophysical characterisation of the different 

oligomers synthesised, yielding some interesting results in the area of fluorene-

based oligomers in particular, such as the red-shift of the absorption and 

emission bands with increasing number of fluorene units,[9, 11] and the 

increasing photoluminescence quantum efficiency that larger oligofluorenes 

have,[12] owning to the larger distances between adjacent molecules. Different 

geometries are also possible when synthesising oligomers, ranging from short 

linear fluorene chains to more complicated architectures extending in all three 

dimensions.[11] One such family of materials, star-shaped oligofluorene 

truxenes, forms the basis of the work described in this chapter. 
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6.2. Star-shaped oligofluorene truxenes 

 

The materials studied here are based around a hexahexyltruxene core (T0), an 

overlap of three fluorene unit as seen in Figure 6.1 and were synthesised in 

Strathclyde University by Prof Peter Skabara’s group. Details about the 

synthesis of these molecules can be found in reference [12]. 
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Figure 6.1 The hexahexyltruxene core (T0) that form the basis of the truxene-

fluorene oligomers family. 

 

Onto this core, arms consisting of bisfluorene units are attached with varying 

lengths leading to a family of truxene-fluorene oligomers, starting with the bare 

core (T0) and adding one (T1), two (T2), three (T3) and four (T4) bisfluorene 

units (Figure 6.2). 
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Figure 6.2 Chemical structure of the different oligofluorene truxenes Tn, where 

n is the number of fluorene units on each arm. 
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These molecules are large in dimensions, with radii starting from 1.5 nm for T1 

and moving to 2.3 nm for T2, 3.1 nm for T3 and 3.9 nm for T4, making T4 one 

of the largest known star-shaped conjugated systems, though recently even 

larger systems have been demonstrated.[13] 

 

A collection of data on some key photophysical measurements has been 

previously published, showing that the photoluminescence quantum yield of the 

truxene molecules increases as the number of fluorene units in each arm is 

increased, a change that is accompanied by a red-shift in the absorption and 

emission spectra.[12] An overview of the absorption (dashed lines) and 

fluorescence (solid lines) spectra for these truxenes can be seen in Figure 6.3 

below: 

 

Figure 6.3 Absorption (dashed lines) and fluorescence (solid lines) spectra for 

the various members of the oligofluorene truxenes family (graph taken from 

[12]). 

 

In this thesis only the T4 oligofluorene truxene is studied, as this molecule has 

been previously shown to have a high photoluminescence quantum yield, 

combined with deep blue emission, as shown in Table 6.a. 

 

Material PL max (nm) PLQY (%) 

T1 373 43 

T2 394 51 

T3 404 60 

T4 408 59 

Table 6.a Peak emission wavelength and PLQY values for thin films of truxene 

materials (taken from [12]). 
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6.3. Photophysical measurements 

 

The absorption and emission spectra of the T4 truxene can be seen in Figure 6.4 

for a thin film (98 nm) on a quartz substrate. 
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Figure 6.4 Absorption and fluorescence spectra of T4 truxene for a 98 nm thick 

film. 

 

The absorption peak of T4 is at 373 nm, while the main emission features are 

found at 419 nm (0-0 transition), 441 nm (0-1 transition), 468 nm (0-2 

transition) and 502 nm (0-3 transition). The changes in the relative intensity of 

the peaks in comparison to the literature spectrum of the emission are due to 

thin-film effects. 

 

It is interesting to compare this against the absorption and emission of standard 

polyfluorene that consists of the same repetition units but with a statistically 

distributed number of units per polymer chain. The corresponding absorption 

and emission spectra for a polyfluorene film of comparable thickness can be 

seen in Figure 6.5. 

 



 126 

250 300 350 400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
b

s
o

rb
a

n
c

e

Wavelength (nm)

0.0

0.5

1.0

 F
lu

o
re

s
c

e
n

c
e

 in
te

n
s

ity
 (a

.u
.)

 

Figure 6.5 Absorption and fluorescence spectra of a polyfluorene film (film 

thickness 96 nm). 

 

Even though the main features in the above spectra are similar, the wavelengths 

at which the different features appear are longer than for T4. The absorption 

maximum of polyfluorene is at 385 nm, 12 nm red-shifted in comparison to the 

T4 molecule, while the emission peaks are further red-shifted at 438 nm (0-0 

transition), 463 nm (0-1 transition), 493 nm (0-2 transition) and 526 nm (0-3 

transition). The red-shift for each peak is increasing for loner wavelengths, 

starting at 19 nm for the first peak and progressing to 22 nm for the second, 25 

nm for the third and 28 nm for the final peak. These differences are the result of 

the longer number of fluorene units in the polymer chains that tend to further 

delocalise the π-electrons and thus lower the energy gap of the material.[9] 

Photoluminescence quantum yield (PLQY) measurements were performed to 

evaluate the efficiency of light emission from the material. A number of thin 

films were spin-coated from a T4 truxene solution in toluene on quartz discs 

and were excited by a HeCd laser at 325 nm. The PLQY values recorded varied 

between 66 and 80% depending on the sample preparation and measurement 

errors (typically 10%), with an average value of 73% that matches the value 

measured for polyfluorene. 

 

As the optical pumping power is increased, a narrowing of the emission 

spectrum occurs and amplified spontaneous emission can be observed coming 
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from the film as seen in Figure 6.6, where the fluorescence spectrum is overlaid 

with the ASE peak. 
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Figure 6.6 Fluorescence (blue line) and amplified spontaneous emission (red 

line) from a thin film of T4 oligofluorene truxene. 

 

As is common in organic semiconductors, the ASE peak overlaps with the 0-1 

energy transition of the material. This is a good indication of the wavelength 

region where lasing is expected in the material, with the lowest thresholds 

expected when lasing occurs at the peak wavelength of ASE.[14] 

 

Optical gain and waveguide loss measurements were performed by Yue Wang  

by using the ASE variable stripe technique.[10] A comparison with 

polyfluorene can be seen in Table 6.b, where the polyfluorene data is taken 

from reference [15]. 

 

  Gain (cm
-1

) Losses (cm
-1

) 

ASE threshold 

(µJ/cm
2
) 

T4 truxene 19 2.3 15 

Polyfluorene 74 3.5 29 

Table 6.b Optical gain, waveguide losses and ASE threshold comparison 

between the T4 oligofluorene truxene and polyfluorene. 

 

The maximum optical gain available from T4 is lower than that of polyfluorene 

but the amplified spontaneous emission threshold is also lower as a 

consequence of the lower waveguide losses that the T4 films demonstrate. 
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6.4. Optical characterisation of films 

 

Ellipsometry was used to determine the optical constants for T4 oligofluorene 

truxene films. Six samples were prepared on silicon wafer substrates by spin-

coating from a toluene solution (25 mg/ml) at different speeds, resulting in 

different film thicknesses. By fitting the ellipsometry data across all samples, 

values for refractive index and extinction coefficients can be extracted across 

different wavelengths, as shown in Figure 6.7. 
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Figure 6.7 Refractive index and extinction coefficients of a thin film of T4 

oligofluorene truxene as calculated through ellipsometry measurements. 

 

These measurements are useful as they aid the design of distributed feedback 

lasers, where the wavelength for which optical feedback occurs is directly 

related to the effective refractive index of the waveguide by m λlasing=2 neff Λ, as 

described in Section 2.4.2. During the fitting of the ellipsometry data used to 

extract the above parameters it emerged that T4 oligofluorene truxene films are 

isotropic, meaning that there is no clear preference in the orientation of the 

molecules in the film.[16] Most conjugated polymers have been found to be 

birefringent, owning to the fact that the long polymer chains assume specific 

orientations within the bulk of the film, usually lying in the plane of the film, 

meaning that differently polarised light experiences a slightly different 

environment depending on the direction in which it is travelling through the 

film.[17, 18] These results highlight how isotropically-orientated organic 
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molecules in a thin film lead to high quality waveguides that demonstrate low 

optical losses .[19] 

 

6.5. Distributed feedback lasers 

 

The T4 truxene was used to fabricate distributed-feedback lasers by spin-

coating thin films on a corrugated silica substrate with a grating period of 280 

nm. As the energy of the pump is increased, waveguided fluorescence from the 

material is scattered out of the surface of the film by the grating structure, 

leading to the appearance of Bragg-scattered peaks at wavelengths defined by  

mneffBragg /2 Λ=λ        6-I 

where neff is the effective refractive index of the waveguide at that wavelength, 

Λ is the period of the grating and m is the order of diffraction (2 for surface-

emitting DFB lasers like the ones fabricated here). When the pump energy is 

further increased, the lasing peak emerges between the two Bragg-peaks as seen 

in Figure 6.8 and proceeds to dominate the emission from the laser at higher 

pump intensities. 
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Figure 6.8 Evolution of emission spectrum from a T4 oligofluorene truxene 

DFB laser near lasing threshold. The pump energy increases from the bottom up 

in these graphs from 88 nJ to 100 nj for the middle figure and up to 140 nJ for 

the top graph. 

 

The output intensity of the light emitted by these structures also changes once 

lasing threshold is achieved, as lasing causes the output to increase at a faster 

pace than normal fluorescence.[20] This results in the characteristic “kink” in 

the input-output curve of organic semiconductor lasers, as seen in Figure 6.9.  
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Figure 6.9 Input-output curve for a T4 oligofluorene truxene distributed 

feedback laser emitting at 435 nm. 

 

The lowest recorded threshold was 5.7 µJ/cm
2
 for lasing at 435 nm, which is 

somewhat higher than the value of 4 µJ/cm
2
 reported for polyfluorene. [14] This 

can be explained if we consider that the lasing emission for T4 at 435 nm is 

offset from the peak of the ASE at 442 nm, leading to higher lasing thresholds. 

This can be seen in where the lasing wavelength at 430 nm is offset by more 

than 10 nm from the ASE peak where a lot of the light is still being emitted. 
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Figure 6.10 Lasing peak (430 nm) at a wavelength much shorter than the ASE 

emission (440 nm). Note that the splitting of the ASE peak is due to Bragg-

scattering from the DFB grating.  

 

The emission pattern of this Bragg-scattered ASE is clearly visible as a set of 

two arcs emitted vertically from the surface of the grating when excited with a 
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UV laser, as seen in Figure 6.11. Note that the emitted arcs of light diverge 

much more than what is typically expected from a DFB laser due to the range of 

wavelengths included within them and the lack of spatial coherence. 

 

 
Figure 6.11 Bragg-scattered amplified spontaneous emission from a film of T4 

oligofluorene truxene on a one-dimensional corrugated silica substrate. 

 

Changing the film thickness between 145 to 190 nm by altering the spin speed 

allows for a range of lasing wavelengths from the same material, as seen in 

Figure 6.4. 
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Figure 6.12 Emission wavelengths from T4 truxene DFB lasers (A: 428.5 nm, 

B: 431 nm, C: 434.5 nm, D: 435.6 nm, E: 437.6 nm, F: 438 nm, G: 441 nm). 

Curve G was collected using a different spectrograph at a lower resolution than 

the rest of the peaks. 
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Recent experiments performed by Yue Wang on the same material using 

slightly longer-period gratings (301 nm) have shown that the lowest lasing 

threshold in T4 was 2.7 µJ/cm
2
 (270 W/cm

2
) for lasing at 446 nm, one of the 

lowest lasing thresholds reported in organic lasers.[21] The tuning range was 

also expanded to 453 nm, giving a total tuning range for T4 DFB lasers of 25 

nm. A careful optimisation of the structures and the fabrication of the laser 

devices should aim for an organic film that is as thin as possible to only support 

one lasing mode that would take up all the available gain and thus have the 

lowest lasing threshold combined with a grating period that is suitable for 

matching the Bragg-supported lasing wavelength to the peak of the ASE 

spectrum of the material.  

 

6.5.1. Laser devices lifetime 

 

The lifetime of organic semiconductor lasers is an important aspect of a 

materials’ lasing performance, as photo oxidation can lead to degradation of the 

material and a drop in the laser output, a damaged that is irreversible. The T4 

truxene is a new material with many similarities to polyfluorene, therefore it 

makes sense to compare its device lifetime to a similar device based on PFO. 

 

Devices were fabricated by spin-coating from toluene solutions (30 mg/ml) onto 

a corrugated silica substrate with a grating period of 270 nm. The third 

harmonic (355 nm) of a Nd:YVO4 laser with a pulse duration of 10 ns and a 

repetition rate of 1 kHz was used for optically pumping both the T4 and PFO-

based DFB lasers and was focused using a cylindrical lens to a spot size of 1300 

x 75 µm. The samples were placed inside a vacuum chamber (pressure 10
-3

 

mbar) to slow down photodegradation. Note that these are not the ideal 

conditions for an absolute lifetime measurement as the vacuum is not very high, 

but the objective was to compare the two materials under identical conditions 

rather than optimise the lifetime of the devices. 

 

The lasing spectra for the two lasers made can be seen in Figure 6.13. The T4 

truxene output wavelength matches the ASE peak of the material very well, 
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while the polyfluorene laser emits at a shorter wavelength (ASE for 

polyfluorene is approximately 460 nm).  

430 440 450 460
0.0

0.2

0.4

0.6

0.8

1.0 449 nm441.5 nm

O
u

tp
u

t 
(n

o
rm

a
li

s
e

d
)

Wavelength (nm)

 Polyfluorene DFB laser

 T4 truxene DFB laser

 

Figure 6.13 Output wavelength for two DFB lasers, one based on polyfluorene 

and the other on T4 truxene. 

 

The energy-dependant output for both lasers can be seen in Figure 6.14 plotted 

against the pump energy. The threshold of these two lasers are very close, 158 

nJ/pulse for the truxene laser and 199 nJ/pulse for the PFO laser.  
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Figure 6.14 Optical output as a function of the pump pulse energy for a 

polyfluorene and a T4 truxene laser. 

 

The two lasers were then pumped for an extended period of time at 2.5 times 

their respective thresholds and their optical output was measured at regular 

intervals to monitor the performance of the material. A comparison between the 



 135 

two materials can be seen in Figure 6.15, where the lasing output is plotted 

against the number of pump pulses on a linear scale. 
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Figure 6.15 Output from two DFB lasers based on polyfluorene and T4 truxene 

as a function of the number of pump pulses. The initial intensity has been 

normalised for both lasers to account for the differences in collection efficiency 

and output power. 

 

The difference becomes clearer if we compare the output of the laser when it is 

firstly pumped with that half way through the measurement after 150,000 pump 

pulses, as seen in Figure 6.16. 
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Figure 6.16 Evolution of lasing output from a polyfluorene and a T4 truxene 

DFB laser as a function of the number of pump pulses. 

 

There is a small advantage for the T4 truxene laser, though perhaps the 

mismatch of the lasing wavelength to the peak of the ASE for polyfluorene 

could account for the slightly shorter lifetime of the device. It’s safe to say then 
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that both materials have comparable performance under lasing conditions and 

that the T4 truxene studied here compares favourably against the well-

established PFO in all crucial aspects for use as gain medium in solid-state 

lasers.  

 

These measurements do not represent the best possible results for the lifetime of 

organic lasers and should only be used to compare the behaviour of two 

different materials under similar conditions. DFB lasers based on red-emitting 

polyfluorene derivatives have shown lifetimes of more than 2 million pulses 

under high vacuum [22], while similar protection can be achieved by 

encapsulation of the active layer by an inert medium. In a MEH-PPV DFB laser 

for example, the  lifetime of the device when the polymer film was encapsulated 

using a commercially available epoxy was increased by a factor of 2,500x in 

comparison to a non-encapsulated device to reach more than 1.5 million 

pulses.[23]  
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6.6. Summary 

 

The oligofluorene truxene family is of great interest for lasing applications as it 

combines the very desirable blue emission with a high level of molecular 

control and ease of chemical design. In this chapter the photophysical, optical 

and lasing properties of an oligofluorene truxene molecule have been studied in 

the interest of using this material as a gain medium for organic semiconductor 

lasers. [21] 

 

The photophysical characterisation of the T4 oligofluorene truxene investigated 

here are in line with the good properties that most fluorene-based organic 

semiconductors have in common. The combination of reasonable optical gain 

with very low waveguide optical losses leads to a low threshold for the 

appearance of amplified spontaneous emission, a precursor of lasing. The lasing 

performance of this material improves upon the already excellent performance 

of standard polyfluorene, one of the benchmark blue-emitting organic 

semiconductors used in lasers, with lower lasing threshold and comparable 

tuning range, while the device lifetime under the same conditions is also 

similar.  

 

These results demonstrate that the T4 truxene is an excellent lasing material and 

highlight the improvements possible on already successful organic 

semiconductors with the aid of synthetic chemistry and detailed understanding 

of the key properties that define an efficient organic semiconductor laser gain 

medium. 
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7. A diode-pumped polymer laser 
 

In this chapter a diode-pumped polymer laser is demonstrated, pumped by an 

inorganic GaN laser diode. The polymer used, MEH-PPV, has a low absorption 

at the emission wavelength of the dye, therefore it is blended with a Coumarin 

laser dye that absorbs most of the diode light and transfers the energy over to 

the polymer. This efficient host-guest blend is combined with a distributed 

Bragg reflector cavity that show low losses at the lasing wavelength and allows 

for the material to achieve population inversion when excited by the laser diode. 

This is the first example of an organic laser gain medium where a dye is used 

for light harvesting and one of the very few examples of a diode-pumped 

polymer laser. 

 

The author has performed all the measurements relating to the characterisation 

of the gain medium and has contributed to the lasing measurements. The 

resonator design and fabrication, as well as the lasing experiments were 

performed by Andreas Vasdekis. 

7.1. Introduction 

 

One of the main challenges for organic semiconductor lasers is the 

miniaturisation of the pump source which will allow them to be easily 

implemented in practical laser systems and compete with their inorganic 

counterparts [1]. In time, it is quite possible that the pumping of organic lasers 

will be done electrically, as is already the case for inorganic semiconductor 

lasers; in the meantime though the objective is to improve on the optical 

pumping sources required.  

 

The first organic lasers had to be pumped by large regenerative amplifiers, but 

the progress in materials and resonator research have allowed for a great 

downsizing of optical pump sources [2, 3]. The current compact all-solid-state 

pump sources for organic lasers are monolithic microchip lasers, a category of 

matchbox-sized devices based around neodymium crystals that are robust and 
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reasonably sized. These systems are wide-spread in laboratory environments 

and have significantly reduced the bulk of pump sources for organic lasers. [4, 

5] A microchip laser is based around an infrared laser diode pumping a 

neodymium crystal (such as ND:YAG or ND:YVO4) producing stimulated 

emission that lies in the infrared (1064 nm typically) [6, 7]. As organic 

semiconductors are visible emitters, additional components are required to 

produce suitable pump wavelengths in the visible or ultraviolet part of the 

spectrum. Frequency doubling, a nonlinear optical process, is used to produce 

green light at 532 nm and requires the presence of a suitable nonlinear crystal 

such as KTP or LBO, while frequency tripling produces ultraviolet light at 355 

nm. The two nonlinear conversion steps make pumping red and blue emitting 

materials possible but at the cost of increased complexity and price and 

decreased overall efficiency of the laser. 

 

Inorganic laser diodes emerge as a potential candidate to replace microchip 

lasers. They offer compact dimensions, excellent power efficiency and 

reasonable costs, while the ability to directly control their emission intensities 

through their current source allows for easy control of the whole laser system. 

So far though laser diodes operating at suitable wavelengths for providing 

energy to organic semiconductors have been lacking in output power, as the 

most efficient laser diodes are found in the near-infrared (NIR) and infrared 

(IR) parts of the spectrum, the emission regime of GaAs-based semiconductors 

and additional processes are involved in changing the emission wavelength, 

introducing further losses of optical power. 

 

This changed with the emergence of GaN light-emitting diodes and laser diodes 

(Figure 7.1) emitting in the blue part of the visible spectrum [8-11]. Their 

development has been rapid and has already reached considerable maturity, as 

evident by the abundance of blue GaN diodes in consumer electronics such as 

Blue-ray players for home entertainment.  
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Figure 7.1 A GaN violet-emitting laser diode (AFP/Getty Images) 

 

Blue laser emission from a solid-state device is quite attractive for a number of 

other applications such as optical spectroscopy, laser printing and projection 

displays to name but a few [12, 13]. The availability of high-power versions of 

these laser diodes also means that they could be of use for optically pumping 

organic semiconductor lasers offering a very compact optical pump source.  

 

The low optical output of GaN laser diodes however remains a restricting factor 

in using them as pump sources for organic lasers, meaning that for such a pump 

scheme to be successful the diode should be combined with organic lasers 

demonstrating very low threshold powers as a result of careful resonator design 

and very efficient materials. Most work has revolved around fluorene-based 

materials whose absorption spectrum overlaps with the short emission 

wavelengths of InGaN laser diodes combined with distributed feedback (DFB) 

grating for optical feedback [14, 15]. In this thesis a different approach was 

chosen whereby a GaN laser diode (670 pJ maximum pulse energy, 1ns pulse 

duration) was combined with the red-emitting polymer poly(2-methoxy-5-(2’-

ethyl-hexyloxy)-p-phenylenevinylene (MEH-PPV) as the gain medium and a 

distributed Bragg-reflector (DBR) cavity as the resonator structure. [16] 

7.2. Gain medium 

 

The absorption and emission spectrum of MEH-PPV can be seen in Figure 7.2 

for a thin film (100nm) on a quartz disc. 
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Figure 7.2 Absorption and emission spectrum of MEH-PPV (100 nm thin film). 

The violet line shows the emission wavelength from a GaN laser diode. The 

inset shows the chemical structure of the molecule. 

 

The emission wavelength of the GaN laser diode used in these experiments is 

409 nm, as that was the most powerful such diode available with pulse energy 

of 0.67 nJ, pulse duration of 1 ns and repetition rate 10kHz. The absorption of 

MEH-PPV however at 409 nm is very low, a fact that will lead to higher lasing 

thresholds under GaN excitation.  

 

Similar problems where the material’s absorption of the excitation light is not 

high enough can be dealt with by separating the roles of absorption and 

emission and assign them to different materials. One of the materials (donor) 

has a suitable absorption that allows for efficient harvesting of the laser diode 

light and that energy can then be transferred to the second material (acceptor) 

for subsequent emission. This process can be so efficient as to allow the 

acceptor material to reach population inversion. Examples of such donor-

acceptor schemes have been demonstrated using laser dyes and polymer blends, 

showing an enhancement of the operational characteristics of organic lasers [17-

20]. 

 

7.2.1. Förster energy transfer 

 

One of the processes by which energy transfer is carried out with minimal 

losses (and applies for the materials and conditions found in polymers) is 
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known as Förster energy transfer, a dipolar non-radiative excitation transfer 

process [21]. It is the dominant energy transfer mechanism when the 

intermolecular distances within the material exceed the sum of the van der 

Waals radii [46]. A transfer rate constant kD → A can be defined, given by  

 
6

0

4

282
108.8

rn

molxJK
k AD ⋅⋅

⋅⋅
=

−

→ τ
     7-I 

where K is an orientation factor, n the refractive index of the medium, τ0 the 

radiative lifetime of the donor, r the distance (cm) between donor (D) and 

acceptor (A), and J the spectral overlap (in coherent units cm
6
mol

–1
) between 

the absorption spectrum of the acceptor and the fluorescence spectrum of the 

donor. 

 

From the above equation, assuming that the intermolecular distances and the 

radiative lifetime of the donor are suitable for Förster energy transfer, the key 

factor is the overlap between the fluorescence and the absorption spectra of the 

donor and the acceptor respectively. This means that, in order for two materials 

to work well together, the photoluminescence spectrum of the donor material 

must overlap with the absorption spectrum of the acceptor, otherwise the energy 

transfer will not be efficient. 

 

7.3. Photophysical measurements 

 

Based on the above energy transfer process, suitable donor materials are 

required that combined both a strong absorption of the laser diode light and a 

large overlap of their emission spectrum with the absorption spectrum of MEH-

PPV. To this end two laser dyes were chosen from the Coumarin family, 

namely Coumarin 153 and Coumarin 102 (Lambda Physik), the chemical 

structures of which can be seen in Figure 7.3 along with their absorption spectra 

and the laser diode emission. 
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Figure 7.3 Absorption spectra of the two laser dyes (Coumarin 102 in blue, 

Coumarin 153 in red) used as energy donors, along with their chemical 

structures. Also visible is the emission of a GaN laser diode as 409 nm. 

 

A problem with creating a blend of materials that perform different roles lies 

with trying to optimise all important aspects of the composite material at the 

same time. In the case of the donor-acceptor scheme discussed here, the amount 

of dye required to harvest a large part of the GaN pump light has to be balanced 

against the lasing performance of MEH-PPV. In addition, blends of organic 

materials have been known to phase-separate, leading to isolated areas within 

the film that contain mostly one kind of material rather than a uniform blend. 

The ratio between the dye and the polymer concentrations was therefore varied 

in order to achieve the best balance between energy transfer efficiency and 

optical gain. The dye concentration was varied between 2.5, 5 and 7.5 mg/ml 

while the concentration of the polymer remained fixed at 5 mg/ml, giving 

blends where the ratio of concentrations was 1:2, 1:1 and 2:1 respectively. 

 

7.3.1. Absorption measurements 

 

The first step was to verify that the dye was active within the blend and that 

energy transfer was taking place. Absorption measurements were performed on 

thin films spin-coated from the different blend solutions and the recorded 

spectra can be seen in Figure 7.4. 
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Figure 7.4 Absorption spectra for laser dye – polymer blends. The violet line 

corresponds to the GaN laser diode emission. 

 

The effect of the dye in the blend in terms of absorption increase at 409 nm can 

be expressed as an enhancement factor, showing how many times the 

absorption of the blend at that wavelength has increased in comparison to a neat 

film of MEH-PPV as seen in Table 7.a. 

 

 Enhancement factor 

 Coumarin 153 Coumarin 102 

Neat MEH-PPV 1.0 1.0 

1:2 blend 2.3 1.9 

1:1 blend 3.3 2.7 

2:1 blend 1.9 3.3 

Table 7.a Enhancement of dye – polymer blend absorption at 409 nm for 

different blends tested. 
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From the above table it is clear that both types of dyes enhance the absorption 

of the polymer at the desired wavelength by up to 3.3 times, although that 

occurs for different blend ratios for each dye. In the case of Coumarin 153 it is 

interesting to notice that the enhancement factor for the blend with the highest 

dye concentration drops, indicating some problem in the energy transfer 

mechanism. This will be discussed in more detail later on in this chapter 

(section 7.3.4). 

 

7.3.2. Photoluminescence measurements 

 

The emission of the two laser dyes is plotted in Figure 7.5 along with the 

absorption spectrum of MEH-PPV. The large overlap between the dye emission 

and the polymer absorption contributes to efficient energy transfer. 
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Figure 7.5 Fluorescence of the two Coumarin dyes used in this study (in 

solution), along with the absorption spectrum of MEH-PPV. 

 

The dye – polymer blends under consideration should ideally exhibit as little of 

the dye emission as possible. If the dye is showing photoluminescence then part 

of the energy it absorbs at 409 nm is not transferred to the polymer, meaning 

that the overall donor – acceptor scheme is inefficient. The photoluminescence 

of the samples prepared can be seen in Figure 7.6 for excitation at 409 nm. 
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Figure 7.6 Steady-state photoluminescence spectra of dye–polymer blends 

excited at 409 nm. 

 

There are very little traces of dye emission in most samples, indicating that the 

energy-transfer process is very efficient. The only exception is the 1:2 blend of 

Coumarin 102, but even in this case an amount of dye equal to 2/3rds of the 

polymer shows emission more than 10 times lower than the polymer.  

 

7.3.3. Photoluminescence quantum yield measurements 

 

The best way to evaluate the efficiency of the prepared blends is to examine 

what effect the dye has on the photoluminescence quantum yield (PLQY) value 

of MEH-PPV. When the polymer molecules are closely packed in a film some 

of the energy they absorb does not contribute to light emission but is instead 

lost due to intermolecular interactions. The addition of a laser dye could 

separate the molecules further apart than in the neat film and thus increase the 
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PLQY even when the blend is excited at a wavelength where only the polymer 

absorbs light.  

 

Furthermore, in such concentrated dye films there is a possibility that the 

radiative and non-radiative decay processes compete with the energy transfer. 

As very little dye emission was observed under steady-state fluorescence 

measurements, it appears that energy transfer takes place. However, it is also 

possible that the non-radiative decay is stronger than the energy transfer, 

leading to very little dye emission combined with poor energy transfer to the 

polymer molecules. The PLQY measurements help in determining which of 

these two rates is faster by looking for changes in the light emission efficiency. 

 

PLQY measurements were performed at two different wavelengths to verify 

these hypotheses. One excitation wavelength was 514 nm, on the long side of 

the polymer’s absorption where neither laser dye absorbs any light, while 

measurements at 407 nm were also perform to investigate the behaviour of the 

blends when the dye molecules were excited. These measurements are 

summarised in Figure 7.7 for both laser dyes. 
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Figure 7.7 PLQY values for different dye – polymer blends at two different 

excitation wavelengths. 
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In the case of the 514 nm excitation, Coumarin 153 does not appear to have any 

significant effect on the performance of the material, while the addition of 

Coumarin 102 increases the PLQY of a neat MEH-PPV film from 24% to 42%, 

a factor of 1.7 times higher, indicating that the dye acts as an isolator for 

polymer chains in the film. When the excitation was at 407 nm, the addition of 

either dye increases the PLQY of the blend with Coumarin 102 showing a larger 

improvement than Coumarin 153 for equal concentrations. This means that both 

types of laser dye achieve some degree of energy transfer to MEH-PPV.  

 

From these measurements it is possible to calculate the actual energy transfer 

efficiency. If p is the percentage of light absorbed by either polymer or laser dye 

(as denoted by the subscripts), then the PLQY of the blend for 407 nm 

excitation is a result of the contribution of the individual PLQY values of the 

dye and polymer molecules and can be written as 

dyepolymer

polymerpolymerdyedye

dyepolymer

blend

blend
pp

PLQYpPLQYp

pp

PL
PLQY

+

⋅+⋅
=

+
=

407407

407
7-II 

 

Since in these samples the dye molecules are dispersed in a polymer matrix and 

therefore do not display the usual photoluminescence quenching associated with 

neat laser dye films, the PLQY of the dye molecules in the system can be 

estimated to be the PLQY of the blend when exciting the polymer multiplied by 

the transfer efficiency, n 

514514

blendpolymerdye PLQYnPLQYnPLQY ⋅=⋅=     7-III 

 

where the PLQY values of the polymer and the blend are the same for 514 nm 

excitation as the dye molecules do not absorb at this wavelength.  

Substituting in equation 7-II, the PLQY of the blend when excited at 407 nm 

becomes 
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Substituting the corresponding values from the absorption and PLQY 

measurements for the various blends, we can extract the energy transfer 

efficiency of each blend, as shown in Table 7.b. 

 

This approach works well for Coumarin 102 but it leads to invalid results for 

Coumarin 153. This is due to the fact that adding Coumarin 153 to MEH-PPV 

does not offer any improvement in the PLQY for 514 nm excitation, an 

indication that some aspect of the material’s properties was not as expected. 

This could be due to phase-separation between the laser dye and the polymer, 

leading to isolated areas of Coumarin 153 that only exchange energy at the 

interface with the MEH-PPV domains rather than throughout the bulk of the 

blend, as is the assumption for the calculations presented above. 

 

       Energy transfer efficiency 

  Coumarin 153 Coumarin 102 

1:2 blend 1.08 0.55 

1:1 blend 1.47 0.75 

2:1 blend 1.64 0.82 

Table 7.b Energy transfer efficiency of dye-polymer blends for excitation at 407 

nm. Note the incorrect (larger than 1) values for Coumarin 153. 
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7.4. Film quality 

 

As numerous films of both dye-polymer blends were made, it became apparent 

that the films containing Coumarin 153 were suffering from morphological 

degradation. Even though the films looked smooth and featureless when first 

made, within a few minutes there were visible changes in the uniformity of their 

surface. Some examples of this can be seen in Figure 7.8, where the surface of 

films made from the two laser dyes can be seen under an optical microscope 

(optical magnification of 5x). 

  

  

  

Figure 7.8 Images of the surface of films made from blends of laser dyes and 

MEH-PPV. On the left is Coumarin 153 blends, on the right Coumarin 102. 

 

It is obvious from these photos that the samples made using Coumarin 153 

display strong phase separation, whereby the two materials in the blend form 

2:1 blend 

1:1 blend 

1:2 blend 

Coumarin 153 Coumarin 102 
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their own separate domains in the bulk of the film [22, 23]. This means that the 

two materials are less likely to interact, leading to significantly impaired energy 

transfer efficiency as the significant amount of pump light absorbed occurs in 

dye-rich clusters within the film that don’t energy-transfer to MEH-PPV. This 

problem becomes more severe as the amount of laser dye added to the blend 

increases. In contrast, the samples made from the Coumarin 102 blends display 

no such problems as can be seen from the very homogenous image they 

presented under the optical microscope. Given that the only difference between 

the two dye molecules is the addition of a 3-F unit, it is likely that this group is 

responsible for the phase separation between Coumarin 153 and MEH-PPV and 

should probably be avoided in the future for similar blends. The choice was thus 

made to focus all further efforts on Coumarin 102 as the donor material from 

this point onwards. 

 

7.5. Amplified spontaneous emission experiments 

 

When MEH-PPV is excited at high intensities, amplified spontaneous emission 

(ASE) occurs as the light emitted by the material is preferentially amplified 

over a narrow range of wavelengths where the optical gain is stronger, leading 

to narrowing of the emission spectrum. [24]. The ASE spectrum of MEH-PPV 

has a peak at 630 nm and is shown in Figure 7.9, along with the emission 

spectrum for lower excitation power. 
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Figure 7.9 Amplified spontaneous emission and fluorescence (red line) spectra 

from a thin film of MEH-PPV. 
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ASE is a precursor to lasing and is therefore a good indication of the 

performance of a material as a laser gain medium regardless of resonator. 

Amplified spontaneous emission measurements were performed at two different 

pumping wavelengths, one at 410 near the emission wavelength of a GaN laser 

diode where the laser dye absorbs most of the light and one at 532 nm, where 

the absorption of the dye is minimal and the polymer absorbs the pump light 

directly. The results can be seen plotted in Figure 7.10, where the ASE 

threshold measured is plotted for the different dye-polymer blends for the two 

different pump wavelengths. 
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Figure 7.10 ASE thresholds (incident and absorbed energy) for different dye-

polymer blends. 
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The first thing to notice in the above graph is the higher ASE threshold value 

for a neat MEH-PPV film at 410 nm than at 532 nm. This is because only a 

small part of the incident pump light at 410 nm is absorbed by the polymer, 

highlighting the need for a donor-acceptor scheme if the MEH-PPV laser is to 

be pumped at that wavelength. 

 

The addition of the laser dye has a pronounced effect on the observed ASE 

threshold. For excitation at 410 nm, the ASE threshold is lowered with the 

addition of laser dye until it reaches a minimum for the 1:1 blend where the 

material’s performance becomes equivalent to the neat polymer excited at the 

maximum of its absorption. The addition of more dye does not improve the 

performance of the material as the measured ASE threshold starts increasing, as 

the balance between energy transfer and optical gain is disturbed, possibly due 

to an increase of the scattering losses within the film. 

 

For the 532 nm data, the addition of laser dye has a detrimental effect on the 

ASE threshold as it is greatly increased in comparison to the neat polymer film. 

This can be understood by considering that, for the same volume of material 

required to create a film on a glass substrate, the addition of a large amount of 

dye means that there will be less of the polymer material present, leading to 

reduced pump light absorption through the volume of the film. It could also be 

due to the fact that the larger amount of laser dye in the blend is causing more 

scattering as the light is waveguided through the film, meaning that the optical 

losses are increased. 

 

From the above studies it becomes clear that the blend containing equal 

amounts of the laser dye Coumarin 102 and MEH-PPV is the best candidate for 

the proposed energy transfer-based polymer laser. The combination of increased 

absorption and reduced ASE threshold makes this combination the best 

candidate for a laser pumped by a GaN laser diode. 
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7.6. Lasing experiments 

 

To evaluate the potential for a laser-diode pumped organic semiconductor laser 

a GaN laser diode was used, emitting 1 ns long pulses at 409 nm with an energy 

of 670 pJ per pulse, at a repetition rate of 10 kHz.  The output of the laser diode 

was focused using a spherical lens to a spot measuring 76 x 66 µm onto the 

surface of the sample. The resonator structures used were fabricated by Andreas 

Vasdekis, who also performed the bulk of the lasing measurements [25]. 

 

7.6.1. Laser resonator 

 

Making a successful laser system requires as low a lasing threshold as possible 

to account for the limited output power of GaN laser diodes. Achieving lasing 

under low pump powers requires not only a material with the right properties 

but also a feedback structure that displays low lasing thresholds. The optimal 

resonator should display low-loss feedback at the required lasing wavelength 

along with efficient light extraction, a balance which is not always 

straightforward. 

 

In these experiments a distributed Bragg reflector (DBR) cavity was used [26, 

27]. This type of cavity consists of two 40 x 100 µm
2
 Bragg-reflection mirrors 

where the grating period of 408 nm was chosen for surface-emitted output 

coupling and an amplification region width of 20 µm. The second order of 

Bragg reflection occurs in the plane of the film and creates a standing wave 

between the two Bragg reflectors that then work as the mirrors in a typical 

Fabry-Perot lasing cavity. The first order of diffraction at the Bragg reflectors is 

then responsible for extracting the light perpendicular to the mirrors, leading to 

a laser cavity with optical feedback in the plane of the structure and out-of-

plane light extraction. A 120 nm film from a dye-polymer blend solution was 

spin coated on top of the substrate leading to device architecture like the one 

shown in Figure 7.11. 
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Figure 7.11 A polymer laser based on a distributed Bragg reflector (DBR) 

cavity. 

 

7.6.2. Lasing performance 

 

When the diode light is incident on the laser structure, the emission spectrum is 

characteristic of a DBR laser showing a number of features at 624 nm, 625.7 

nm, 628.2 nm and 630.4 nm (see Figure 7.12). The shortest and longest modes 

originate in the Bragg scattered modes emitted within the Bragg mirrors, as the 

pump beam is larger than the amplification region of the DBR laser. The 

intermediate peaks at 625.7 nm and 628.2 nm originate in the different 

longitudinal modes present within the cavity.  
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Figure 7.12 Emission spectrum from a dye-polymer DBR laser at different 

pumping energies. [25] 

 

As the pumping energy is increased, the features in the emission spectrum all 

increase linearly in intensity. Above 0.42 nJ though, the peak at 625.7 nm 

increases faster than the other features, indicating the nonlinearity associated 

with stimulated emission near the threshold of a laser. At the same time, the 
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intensity of the background emission becomes “pinned” at a certain level as the 

available optical gain is taken up by lasing. This can be clearly seen in Figure 

7.13 where the intensity of both the 625.7 nm lasing peak and the emission at 

624 nm are plotted as a function of pump energy. As the lasing peaks graph 

changes slope and increases at a faster rate above 420 pJ, the spontaneous 

emission flattens out due to the onset of lasing at 625.7 nm. Similar 

performance was observed for a range of cavity lengths, but the 20 µm cavity 

reported here had the lowest lasing threshold. 
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Figure 7.13 Energy dependence of lasing (626 nm) and spontaneous emission 

(624 nm) peaks from a DBR laser based on a laser dye - MEH-PPV blend. 

 

Due to the limited energy available from the GaN laser diode however the 

polymer laser could only be pumped up to 1.5 times above threshold, meaning 

that the laser peak changes only by a modest amount. When comparing the 

spectra below and above threshold though, a clear change in the shape due to 

lasing can still be seen (Figure 7.14). 
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Figure 7.14 Output spectra for a DBR laser based on a dye-polymer energy 

transfer blend below and above threshold. 

 

When the pump energy is further increased by pumping with a microchip laser, 

the laser emission dominates completely, as seen in Figure 7.15. 

 

Figure 7.15 Lasing spectrum for a DBR laser based on a laser dye-MEH-PPV 

blend excited by a microchip laser. [25] 
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7.7. Summary 

 

In conclusion, a laser-diode pumped solid state polymer laser was 

demonstrated. The key components of this achievement are the acceptor-donor 

blend constituting of a Coumarin laser dye and the polymer MEH-PPV that 

allowed for efficient harvesting of the laser dye light, as well as a DBR 

resonator with exceptionally low lasing threshold. The combination of materials 

research and resonator design holds the key for advancements towards compact 

organic laser systems. This is the first example of a donor-acceptor blend where 

the dye harvests the excitation light and the polymer is responsible for lasing. 

 

As this thesis was being written, this is one of a very small number of laser 

diode pumped organic lasers.[14] The other published example concentrates 

around custom-synthesised fluorene-based materials that have inherently better 

lasing thresholds and are perhaps a better match to the emission wavelengths 

available from GaN laser diodes.[28] This research though uses commercially 

available materials to deliver results that are comparable to the literature, 

especially in terms of being able to pump these lasers high enough above 

threshold.  

 

Further progress has been made since this research was published. The basic 

principle of low lasing threshold materials and suitable resonators demonstrated 

here been further developed and has led to the recent demonstration by this 

group of a LED-pumped polymer laser, [29] helping to pave the way for more 

compact and practical organic lasers for implementation in applications where 

their unique properties will make them stand out against their inorganic 

counterparts. 
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8. Conclusions 
 

Organic semiconductor lasers have made great progress since their early 

demonstrations and have opened up a new applications field for organic 

semiconductors. The novel laser resonators that became possible as a result of 

the unique processing properties of organic semiconductors certainly have 

played an important role in establishing and enhancing these lasers but it is the 

materials themselves that have been the driving force in the development of 

organic lasers.[1] 

 

Research in new materials and new methods of using organic semiconductors 

for lasing is an ongoing process based on the combination of synthetic 

chemistry and photophysical measurements. The molecules synthesised in a 

chemistry lab are evaluated in a number of ways for their performance as laser 

gain media and the results are fed back to the people synthesising them to guide 

the development of improved materials. This process has lead to solution-

processable organic materials with very high values of photoluminescence 

quantum yield and optical gain, low waveguide losses and the ability to spin 

coat high-quality thin films, leading to compact, low lasing threshold lasers 

pumped by inorganic LEDs.[2] 

 

This thesis has dealt with some of the methods followed to evaluate organic 

semiconductors as optical gain media for solid-state surface-emitting lasers. It 

has also demonstrated a number of organic semiconductor lasers based on a 

range of both commercial and custom-synthesised molecules and explored some 

of the different pumping schemes available to achieve lasing. 

 

The first experimental chapter (chapter 4) explored an alternative optical 

pumping method for polyfluorene lasers based on two-photon absorption, a 

nonlinear process in which two photons of half the energy (twice the 

wavelength) of the  material’s bandgap are absorbed simultaneously. Two-

photon absorption has the advantage that the excitation wavelength moves away 

for the high-energy UV photons that can speed up photodegradation. The two-
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photon absorption properties of polyfluorene were investigated across a wide 

range of pump pulse wavelengths, energies and durations, making this a 

comprehensive study of the nonlinear properties of polyfluorene. This 

information was then used to demonstrate the first blue-emitting two-photon 

pumped polymer laser that was excited at 640 nm and had an absorbed energy 

density threshold of 1.3 mJ/cm
2
.[3] This nonlinear approach to optical 

excitation could eventually allow the use of red laser diodes that are cheaper 

than their UV counterparts for optically pumped organic lasers. 

 

The next chapter studied a new family of conjugated dendrimers that share a 

bisfluorene core. The key photophysical properties that are important for lasing 

of these molecules were investigated, highlighting some of the attractive 

properties of organic semiconductors such as high optical gain, low waveguide 

losses and large photoluminescence quantum yield in the solid state. The 

availability of a family of materials sharing the same fluorescence core was also 

used to relate the lasing threshold to the photoluminescence quantum yield. to  

The material with the highest gain was used to make a tunable deep-blue 

dendrimer laser based on distributed feedback resonators. The lowest lasing 

threshold recorded was 4.5 µJ/cm
2
, while the slope efficiency was also very 

high at 8.3% when including surface emission from only one side of the DFB 

laser.[4]  

 

Two-photon absorption in these same bisfluorene dendrimers was also studied, 

as branched organic molecules are expected to have higher nonlinear absorption 

coefficients. This allowed the demonstration of the first two-photon pumped 

dendrimer laser.[5] This had an absorbed energy density lasing threshold of 5.2 

µJ/cm
2
 that is directly comparable to the one-photon pumped threshold 

mentioned above. 

 

 It is interesting at this point to compare the two-photon absorption and two-

photon pumped lasing properties of polyfluorene and the bisfluorene 

dendrimers. The basic unit is the same for both materials and therefore some 

similarities are expected, as is also evident from their linear absorption and 

emission spectra. The resulting comparison can be seen in Table 8.a, where all 
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the values refer to solutions of the same concentration excited at the peak of the 

two-photon absorption spectrum of each material using identical setups as 

described previously in chapter 4 and 5. 

 

Table 8.a Overview of the two-photon absorption properties of polyfluorene and 

the bisfluorene-cored dendrimers studied in this thesis. 

 

The much larger size of the polyfluorene chromophore gives rise to much larger 

two-photon absorption cross-section δ for both nanosecond and femtosecond 

illumination. This increase in apparent absorption does not however lead to 

increased stimulated emission, as the lasing threshold for a two-photon pumped 

polyfluorene laser is approximately 10 times higher than the bisfluorene 

dendrimer laser. The advantage of the polyfluorene laser though lies in the fact 

that it is commercially available, whereas the bisfluorene dendrimers were 

custom-synthesised. 

 

Chapter 7 described the process of making a distributed feedback laser based on 

an oligofluorene truxene, a material consisting of a specific number of fluorene 

units that are joined together to create a star-shaped molecule.[6] The truxene 

material showed an exceptionally low (for a solution processable material) 

waveguide loss coefficient of 2.3 cm
-1

 that allowed the demonstration of a 

distributed feedback truxene laser with a very low lasing threshold of 270 

W/cm
2
, [7] placing the truxene into the small category of materials that could 

potentially be pumped by an inorganic LED.  Since the basic unit of the truxene 

molecule is also fluorene, it is interesting to compare the key photophysical 

properties between polyfluorene, the oligofluorene truxene and the bisfluorene 

dendrimers, as well as their lasing performance. This comparison is summarised 

in Table 8.b where all the materials where optically excited at the peak of their 

absorption spectra and the measurements were carried out using the variable 

Material PFO 
Bisfluorene 

(BP) 

Bisfluorene 

(BPCz) 

Bisfluorene 

(ES) 

α2
ns

 (cm/GW) 6.9 27 35 45 

α2
fs
 (cm/GW) 0.040 0.073 0.095 0.118 

δ
ns

 (GM) 9.6x10
4
 85 120 148 

δ
fs
 (GM) 557 0.3 0.33 0.39 

Lasing threshold (mJcm
-2

) 42 4.9 - - 

Absorbed lasing threshold (mJcm
-2

) 1.3 0.005 - - 
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stripe technique for the gain and loss values and similar setups for the lasing 

studies. 

Material Polyfluorene Bisfluorene dendrimer Truxene (T4) 

Optical gain (cm
-1

) 74 51 19 

Waveguide losses (cm
-1

) 3.5 4.0 2.3 

Film PLQY (%) 73 92 73 

ASE threshold (µJcm
-2

) 29 16 16 

Lasing threshold (kWcm
-2

) 4.0 1.13 0.27 

Table 8.b Comparison of the key parameters for lasing for the fluorene-based 

organic semiconductors studied here. Values for polyfluorene taken from [8]. 

 

These results show the advantages that can be achieved by the progress in 

material synthesis. The bisfluorene dendrimer had a lasing threshold that is 

almost one quarter of the polyfluorene threshold, while the truxene molecule 

showed a further reduction in the lasing threshold of almost 20 times in 

comparison to polyfluorene, in part due to the lower optical losses of the 

truxene films. 

 

The final experimental chapter reported the optimisation of the gain medium for 

a diode-pumped organic laser. The offset between the excitation wavelength of 

a GaN laser diode and the light-emitting polymer MEH-PPV was compensated 

by blending the polymer with a Coumarin laser dye that absorbed the pump 

light and then transferred it to MEH-PPV by Förster energy transfer. This is the 

first time light has been harvested by a dye and transferred to a polymer in a 

semiconducting laser gain medium and, in combination with a low-loss 

distributed Bragg reflector resonator lead to one of the very few examples of 

diode-pumped organic lasers.[9] 

 

The progress of organic semiconductor lasers has been as rapid as it has been 

exciting, with new materials synthesised based on better understanding of the 

key properties that improve the lasing performance. Organic lasers are now 

reaching a stage of maturity as a technology based on the combination of optical 

and photophysical properties with the ease of processing that organic 

semiconductors demonstrate. Further research can only bring more 

improvements that will help plastic lasers move from the lab environment to the 
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wider world of practical applications such as optical spectroscopy, chemical 

[10] and bio sensing [11] and point-of-care medical diagnostics, ultimately 

making a contribution to improving the world around us. 
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