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SUMMARY 15 

1. Many animals communicate using sequences of discrete acoustic elements which can be complex, 16 

vary in their degree of stereotypy, and are potentially open-ended. Variation in sequences can 17 

provide important ecological, behavioural, or evolutionary information about the structure and 18 

connectivity of populations, mechanisms for vocal cultural evolution, and the underlying drivers 19 

responsible for these processes. Various mathematical techniques have been used to form a 20 

realistic approximation of sequence similarity for such tasks.  21 

2. Here, we use both simulated and empirical datasets from animal vocal sequences (rock hyrax, 22 

Procavia capensis; humpback whale, Megaptera novaeangliae; bottlenose dolphin, Tursiops 23 

truncatus; and Carolina chickadee, Poecile carolinensis) to test which of eight sequence analysis 24 

metrics are more likely to reconstruct the information encoded in the sequences, and to test the 25 

fidelity of estimation of model parameters, when the sequences are assumed to conform to 26 

particular statistical models.  27 

3. Results from the simulated data indicated that multiple metrics were equally successful in 28 

reconstructing the information encoded in the sequences of simulated individuals (Markov chains, 29 

n-gram models, repeat distribution, and edit distance), and data generated by different stochastic 30 

processes (entropy rate and n-grams). However, the string edit (Levenshtein) distance performed 31 

consistently and significantly better than all other tested metrics (including entropy, Markov 32 

chains, n-grams, mutual information) for all empirical datasets, despite being less commonly used 33 

in the field of animal acoustic communication.  34 

4. The Levenshtein distance metric provides a robust analytical approach that should be considered 35 

in the comparison of animal acoustic sequences in preference to other commonly employed 36 

techniques (such as Markov chains, hidden Markov models, or Shannon entropy). The recent 37 

discovery that non-Markovian vocal sequences may be more common in animal communication 38 

than previously thought, provides a rich area for future research that requires non-Markovian 39 

based analysis techniques to investigate animal grammars and potentially the origin of human 40 

language. 41 
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INTRODUCTION 43 

Many animals communicate using sequences of discrete acoustic elements, the best known example 44 

being bird song, which is composed of multiple notes combined in a distinctive order. These 45 

sequences are often complex, non-stereotyped, and potentially open-ended; that is, individuals may 46 

use an almost unlimited repertoire of sequences by making subtle or large variations to the order of 47 

notes (reviewed in Catchpole & Slater 2003). The role of such sequences varies among species. In 48 

some cases, sequences appear to advertise male quality through sequence complexity, e.g., in marsh 49 

warblers, Acrocephalus palustris (Darolová et al. 2012); zebra finches, Taeniopygia guttata (Holveck 50 

et al. 2008; Neubauer 1999; Searcy & Andersson 1986); and song sparrows, Melospiza melodia (Pfaff 51 

et al. 2007). In other cases, researchers have proposed that sequences contain detailed communicative 52 

information such as individual identity, e.g., bottlenose dolphins, Tursiops truncatus (Sayigh et al. 53 

1999). It is also possible that in some species, acoustic sequences are essentially stochastic with little 54 

significance to their precise composition. 55 

Identifying the role of acoustic sequences in a particular species often involves comparing sequences 56 

within and between individuals, as well as within and between populations, so that the nature of the 57 

variation can be quantified and potentially correlated to ecological or behavioural factors. The task of 58 

comparing acoustic sequences presumes an unequivocal and globally relevant measure of sequence 59 

similarity, or difference. However, in practice, no such metric exists. It could be postulated that a 60 

measure of sequence similarity should reflect the proximal processes taking place in the brains of 61 

intended conspecific signal receivers; i.e., the best measure of sequence similarity is the one used by 62 

the animal itself (Kershenbaum et al. 2014). Given that such knowledge is essentially hidden in 63 

practice, various mathematical techniques have been used to form a realistic approximation of signal 64 

similarity (Ashby & Perrin 1988; Navarro 2001; Ranjard 2010; Young & Hamer 1994). It is possible 65 

to categorise similarity measures into two distinct approaches. Firstly, it is usually possible to 66 

characterise a sequence by measuring a small number of metrics that are inherent to the sequence 67 

itself; examples of this include length, or entropy (Freeberg & Lucas 2012). Sequences can then be 68 

compared by calculating the sum of square differences between each of these metrics. This is 69 
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equivalent to representing each sequence as a “feature vector” in some relatively compact feature 70 

space, and measuring the distance between two sequences as the Euclidean distance between their two 71 

feature vectors. While this method is straightforward, there is an assumption that it is possible to 72 

represent every sequence in a compact way, i.e., that some sufficiently large combination of metrics 73 

can "summarise" the properties of a sequence in a biologically meaningful way. However, it is far 74 

from clear that there exists a compact, yet exact, mathematical representation of a sequence, short of 75 

the trivial task of writing down the entire sequence of elements and attempting to measure the 76 

Euclidean distance between the full representations of two sequences, which is unlikely to produce the 77 

desired results. An alternative approach is to use aggregate techniques that measure properties of a 78 

large number of sequences, and summarise the characteristics of a corpus. For example, sequence 79 

transition tables and element frequency histograms have been used in previous studies (Jin & 80 

Kozhevnikov 2011). In these cases, each vector in feature space represents a collection of sequences, 81 

and the Euclidean distance between vectors measures the difference between the sequences from two 82 

sets of vocalisations, rather than between individual sequences. However, it is questionable whether 83 

any of these techniques, individual or aggregate, can represent the nature of the sequences with 84 

adequate fidelity. Since we do not know what cognitive processes an animal uses to interpret such 85 

sequences, we cannot be sure that any particular summary metric accurately reflects the interpretation 86 

of the sequence by the receiving individual. We refer to all of these above metrics as “unary”, as they 87 

are derived from measurements on each string sequence in isolation, even if distances are eventually 88 

calculated on an aggregate of sequences. 89 

Secondly, it is possible to measure the difference between a pair of sequences directly (Levenshtein 90 

1966), thereby bypassing the construction of a feature space, and generating a series of pairwise 91 

comparisons between sequences. Analysing the sequence of elements in animal vocalisations can be 92 

considered analogous to analysing the sequence of nucleotides in DNA, and some non-aggregate 93 

techniques have been borrowed from the field of bioinformatics to capture the similarity or difference 94 

between two sequences. This approach provides a direct measure of pairwise differences, in the form 95 

of a distance matrix, but without a Euclidean feature space. We refer to these metrics as “binary”, as 96 
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they can only be calculated as a pairwise comparison between exactly two sequences. Binary 97 

difference measures are attractive, as they do not rely on the fidelity of a particular unary metric in 98 

representing the properties of a sequence. Rather, binary metrics are an unequivocal measure of the 99 

similarity/difference between two sequences; although it cannot be assumed that this measure of 100 

similarity is the same as that used by the animal itself in distinguishing between sequences. Such 101 

metrics have long been proposed for the analysis of birdsong (Bradley & Bradly 1983; Ranjard et al. 102 

2010), but have not been widely adopted. One disadvantage of binary metrics is that a number of 103 

common machine learning algorithms often used for clustering the results of similarity analyses (e.g., 104 

k-means, neural networks) rely on data presented as a Euclidean feature space, although there are 105 

exceptions, e.g. Ranjard & Ross (2008). To use such clustering techniques, it would be necessary to 106 

derive a series of feature vectors from the binary metric distance matrix. This can be done using 107 

techniques such as multidimensional scaling or principal component analysis to convert a distance 108 

matrix to feature vectors. 109 

Here, we compare the performance of eight different methods for analysing animal vocal sequences, 110 

using both aggregate statistical metrics and a direct pairwise distance measure. We use simulated and 111 

empirical sequences to test which approach is more likely to reconstruct the information encoded in 112 

the sequences, and to test the fidelity of estimation of model parameters when the sequences are 113 

assumed to conform to particular statistical models. This direct comparison of a number of commonly 114 

employed analytical algorithms provides a comprehensive evaluation of the utility of these 115 

approaches to real-world data sets, and demonstrates the utility of comparing at least two different 116 

methods when assessing novel algorithms to ensure that results are robust under a range of analytical 117 

approaches.  118 

 119 

METHODS 120 

We performed two sets of tests (viz. artificial and empirical) to evaluate the performance of each 121 

metric. In the first tests, we generated artificial random sequences and used the different similarity 122 
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metrics to reconstruct the parameters used to generate these sequences, and the stochastic model 123 

types. In the second set of tests, we analysed recordings of animal vocalisations and used both unary 124 

and binary difference metrics to determine contextual information known to exist in these sequences. 125 

We used the signature whistles of the bottlenose dolphin (Kershenbaum, Sayigh & Janik 2013; Sayigh 126 

et al. 2007; Sayigh et al. 2007), to reconstruct individual identity, and the songs of the rock hyrax, 127 

Procavia capensis (Kershenbaum et al. 2012), the humpback whale, Megaptera novaeangliae 128 

(Garland et al. 2012), and the calls of the Carolina chickadee, Poecile carolinensis (Freeberg 2012), 129 

to reconstruct geographical dialect. In the case of the hyrax, humpback whale, and chickadee, the calls 130 

consisted of a sequence of discrete acoustic elements. In contrast, bottlenose dolphin whistles are 131 

often produced in isolation (rather than as a sequence of whistles); therefore we analysed the sequence 132 

of frequency modulation components (e.g., up, down, constant) within whistles, taking these 133 

modulation components as the acoustic elements (for more details see Kershenbaum, Sayigh & Janik 134 

2013). In both our analysis of artificial sequences, and empirical animal vocal sequences, we evaluate 135 

a number of similarity metrics, both binary and unary. Before providing details of the simulation 136 

experiments and empirical data analysis, we describe each of the metrics used. 137 

 138 

Binary metric 139 

Levenshtein distance (LD) 140 

The Levenshtein distance (Levenshtein 1966) is a type of string edit distance metric, as it provides a 141 

quantitative measurement of the difference between two string sequences regardless of string length. 142 

Specifically, the Levenshtein distance measures the minimum number of point operations (additions, 143 

deletions, and substitutions) needed to convert one string into another (Levenshtein 1966). By 144 

comparing the position of elements within a string and calculating the number of changes that it takes 145 

to change one string into the other, this metric relies more on the sequence of elements and less on the 146 

overall structural pattern. It has been used extensively in other fields, e.g., bioinformatics (Likic 2008) 147 

and text search/retrieve (Reis et al. 2004), and in a small number of previous studies of animal 148 
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sequences (e.g., Garland et al. 2012; Garland et al. 2013; Kershenbaum et al. 2012; Krull et al. 2012), 149 

and is related to the better known dynamic time warping algorithm (Buck & Tyack 1993). However, 150 

LD itself remains somewhat unknown in the field of animal acoustic communication. In practice, 151 

string edit distances are often paired with string alignment algorithms or additional standardisations, 152 

particularly when the strings being compared are of different lengths: Figure 1; see Kershenbaum et 153 

al. (2012) and Garland et al. (2012) for additional information on metric calculation. Importantly, the 154 

Levenshtein distance forms the basis of the Needleman-Wunsch string alignment (Likic 2008; 155 

Needleman & Wunsch 1970) that is used extensively in bioinformatics research to compare sections 156 

of DNA. In our implementation of the LD algorithm, we assign an equal cost (of 1) to any correction 157 

operation (addition, deletion, substitution), no cost (0) for a matching element, and no cost for 158 

differences in sequence lengths after optimal alignment. 159 

Although other binary metrics exist apart from LD, they are in general unsuitable for the task at hand. 160 

For example, the Hamming distance requires sequences of the same length, and the most frequent k 161 

characters simply provides a count of the most common symbol/element. These therefore provide less 162 

information than the Levenshtein distance metric. 163 

 164 

Unary metrics 165 

Transition table (TT) 166 

Acoustic sequences have often been modelled as a Markov chain (Berwick et al. 2011; Briefer et al. 167 

2010; Briefer et al. 2010), in which the probability of a particular element occurring depends only on 168 

the preceding element (or sometimes, more than one preceding element). These conditional 169 

probabilities of each element, given the preceding element(s), can be expressed as a transition matrix 170 

T, in which the element Ti,j represents the probability of the element j occurring after the element i. 171 

For a sequence consisting of C distinct element types, a C x C transition matrix can be estimated from 172 

empirical data. When comparing two sequences A and B, the similarity between the transition 173 

matrices TA and TB is an indication of the similarity between the sequences (Jin & Kozhevnikov 174 
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2011). To calculate a difference metric DTT = f(TA,TB), we can express each matrix as a C2 175 

dimensional feature vector V, where the elements of the vector are equal to the elements of the 176 

transition matrix T, i.e., 𝑉 = 𝑇(∙). We then calculate the Euclidean distance between the two vectors 177 

derived from sequences A and B: 178 

𝐷𝑇𝑇(𝐴, 𝐵) = √∑(𝑉𝐴 − 𝑉𝐵)2 

However, such a metric would not be expected to produce a meaningful measure for sequences 179 

composed of non-overlapping element types (e.g. ABCABC, and DEFDEF). Therefore we sort 180 

vectors VA and VB in order of transition probability before comparison. This allows a comparison of 181 

transition probability distributions, independent of element type. 182 

 183 

N-gram distribution (NG) 184 

Researchers have previously proposed that an important property of animal sequences is the nature of 185 

repeating units within the sequence (Cane 1959; Kershenbaum et al. 2014; Pruscha & Maurus 1979). 186 

A sequence of length L consists of L-n+1 sub-sequences of length n. Thus, the five-element sequence 187 

ABBAC consists of 5-2+1=4 two-element sub-sequences: AB, BB, BA, and AC. For a sequence 188 

consisting of C distinct element types, there are a total of Cn distinct n-element possible sub-189 

sequences. The vector of sub-sequence frequencies, P(iCn) can be considered a feature vector, and 190 

the distance between two strings calculated in a similar way to that shown above: 191 

𝐷𝑁𝐺(𝐴, 𝐵) = √∑(𝑃𝐴 − 𝑃𝐵)2 

In the following analyses, we chose the n-gram distribution for n = 3, as this provides a good balance 192 

between coverage and diversity. For a comparison of different length n-grams in analysing birdsong, 193 

see Jin & Kozhevnikov (2011). 194 

 195 
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Shannon entropy (SE) 196 

Information theory approaches to analysing animal vocal communication have become popular in 197 

recent years. One metric that is simple to understand and easy to apply is the Shannon entropy 198 

(Shannon et al. 1949), and this has been used in a number of studies to measure the complexity of 199 

animal vocal sequences (Da Silva, Piqueira & Vielliard 2000; Doyle et al. 2008; McCowan, Hanser & 200 

Doyle 1999; McCowan, Hanser & Doyle 1999; Suzuki, Buck & Tyack 2006). Shannon entropy 201 

measures the unpredictability of a sequence, or the lack of uniformity of a sequence, so that a 202 

completely predictable sequence (e.g., consisting of the same element repeated over and over) would 203 

have an entropy of zero, whereas a completely unpredictable (random) sequence would have an 204 

entropy of one. The equation for Shannon entropy H is as follows: 205 

𝐻 = − ∑ 𝑃𝑖 log𝐶 𝑃𝑖

𝑖∈1…𝐶

 

where Pi is the probability of element i, drawn from a set of the C elements occurring in the union of 206 

all sequences. 207 

Our SE metric compares two sequences by taking the ratio of the Shannon entropies of the sequences 208 

A and B: 209 

𝐷𝑆𝐸(𝐴, 𝐵) = 𝐻𝐴 𝐻𝐵⁄  where 𝐻𝐴 < 𝐻𝐵 

Although SE is calculated as a single comparison between single measurements on two sequences (in 210 

contrast to the TT and NG metrics described above, both of which result in multiple measurements on 211 

a single sequence), SE should still be considered a unary metric, because it does not directly measure 212 

the distance between two sequences, but rather the difference in a derived metric from each. 213 

 214 

Entropy rate (ER) 215 

Entropy rate has been shown to be a useful metric for measuring vocal sequence complexity 216 

(Kershenbaum 2013). Entropy rate is derived from the transition table of a sequence, and can be 217 
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thought of as a measure of transition table diversity, i.e., the extent to which different transitions 218 

between notes are of uniform or non-uniform probability. Given a transition table Ti,j as described 219 

above, entropy rate ER is defined as: 220 

𝐸𝑅 = − ∑ 𝜋𝑖

𝑖∈1…𝐶

∑ 𝑇𝑖,𝑗 log 𝑇𝑖,𝑗

𝑗∈1…𝐶

 

where i is the stationary probability of element i, i.e., the overall probability of i occurring in the 221 

sequence; see Kershenbaum (2013) for additional information on metric calculation. As with Shannon 222 

entropy, we define a metric DER for the difference between sequences A and B: 223 

𝐷𝐸𝑅(𝐴, 𝐵) = 𝐸𝑅𝐴 𝐸𝑅𝐵⁄  where 𝐸𝑅𝐴 < 𝐸𝑅𝐵 

 224 

Repeat distribution (RD) 225 

The repeat number distribution was used in a recent study to compare the similarity between natural 226 

and synthetic songs of Bengalese finches, Lonchura striata var. domestica (Jin & Kozhevnikov 227 

2011). It is an aggregate measure, calculated on a corpus of sequences. For each set of sequences a 228 

histogram is generated showing the probabilities Pn that any element occurred in isolation (n = 1), was 229 

repeated twice (n = 2), three times (n = 3), and so on. As with the n-gram distribution, we define a 230 

metric that measures the difference between two such histograms, generated from sequences A and B, 231 

where PA and PB are the feature vectors of sequences A and B, comprising the repeat distributions for 232 

all the elements: 233 

𝐷𝑅𝐷(𝐴, 𝐵) = √∑(𝑃𝐴 − 𝑃𝐵)2 

 234 

Mutual information (MI) 235 
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Mutual information is an information theory measure that can be applied easily to quantify the 236 

similarity of two sequences. MI combines both measures of the inherent complexity in a sequence 237 

(via Shannon entropy), and the joint entropy of the sequences, which measures the probability that a 238 

particular pair of elements will occur at the same point in two sequences; see Kershenbaum et al. 239 

(2012) for additional information on metric calculation. MI is defined as follows: 240 

𝑀𝐼 = 𝐻(𝐴) + 𝐻(𝐵) − ∑ ∑ 𝑝𝑖,𝑗 log 𝑝𝑖,𝑗

𝑗
𝑖

 

where H(A) is the Shannon entropy of sequence A, H(B) is the Shannon entropy of sequence B, and 241 

pi,j is the probability that elements i and j occur at the same point in sequences A and B. As with 242 

Shannon entropy, we define a metric DMI for the difference between sequences A and B: 243 

𝐷𝑀𝐼 = 𝑀𝐼𝐴 𝑀𝐼𝐵⁄  where 𝑀𝐼𝐴 < 𝑀𝐼𝐵 

 244 

Lempel-Ziv (LZ) 245 

The Lempel-Ziv complexity (Lempel & Ziv 1976) is an important algorithm used for data 246 

compression, as it is a measure of the number of distinct patterns in a sequence. As a metric of 247 

sequence complexity and an approximation to Kolmogorov complexity (Evans & Barnett 2002), it is 248 

potentially a useful indicator of the diversity of an animal vocal sequence. Although it has not been 249 

widely used in animal studies, Suzuki, Buck & Tyack (2006) suggested the use of the LZ metric for 250 

the analysis of humpback whale song, and Kershenbaum (2013) showed that the LZ metric 251 

outperformed Shannon entropy (SE) in quantifying realistic length acoustic sequences. LZ complexity 252 

was calculated using the Applied Nonlinear Time Series Analysis library for Matlab (Small 2005). 253 

𝐿𝑍 =
𝑐 log 𝐿

𝐿 log 𝐾
 

where c is the number of distinct substrings in a sequence of length L, and K is the maximum number 254 

of possible distinct substrings. 255 
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Sequences for analysis 256 

Artificial sequences 257 

In the first test, we evaluated the utility of each of the similarity metrics by their ability to identify 258 

correctly the stochastic process model from which artificial sequences were generated. We generated 259 

artificial sequences using three different stochastic processes, often used to model animal vocal 260 

sequences (Kershenbaum et al. 2014) : the zero-order Markov process (ZOMP), the first-order 261 

Markov process (FOMP), and the semi-Markov renewal process (RP). The ZOMP is an independent 262 

stochastic process, in which the probability of any particular element occurring at a particular point in 263 

a sequence is determined solely by the prior probability of that element. In the FOMP, element 264 

probabilities are determined by a transition table, where the probability of a particular element 265 

depends on the immediately preceding element. The RP has been shown to be a more realistic model 266 

of animal vocal sequence production (Kershenbaum et al. 2014) in which the number of repeated 267 

elements is drawn from a Poisson distribution, rather than being determined by the diagonal of a 268 

transition table. In each case, we examined 10 sequences of 10 elements each, drawn from five 269 

possible elements (A-E). We generated 30 sequences, 10 from each of the stochastic processes, 270 

ZOMP, FOMP, and RP. The ZOMP was modelled by selecting five random prior probabilities, one 271 

for each element type, and renormalising to sum to unity. We then generated the sequences by 272 

selecting elements according to these prior probabilities. The FOMP was modelled by generating a 273 

random 5 x 5 transition table in a similar way to the ZOMP prior probabilities, so that the rows of the 274 

transition matrix summed to unity. A random initial element was chosen for each 10-element 275 

sequence, and the remaining nine elements in each sequence were chosen randomly according to the 276 

probabilities in the transition table. The RP was modelled in a similar way to the FOMP, except that 277 

for each element generated, a random number of repeats were drawn from a Poisson distribution with 278 

mean five (to give 95% confidence of ≤ 9 repeats). Having generated 30 sequences of 10 elements, we 279 

then calculated a 30 x 30 distance matrix for each of the similarity metrics. We then used an Adaptive 280 

Resonance Theory (ART) artificial neural network to cluster these 30 points into natural groupings, 281 

setting a maximum of 100 possible clusters. ART networks have been used in a number of previous 282 
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studies to cluster data derived from animal vocalisations (Deecke & Janik 2006; Janik 1999; Quick & 283 

Janik 2012). We then calculated the normalised mutual information (NMI) as a metric of goodness of 284 

clustering (Zhong & Ghosh 2005), by comparing the composition of the generated clusters H(Y) with 285 

the true generation process of each H(Ŷ). Thus, NMI indicates the proportion of uncertainty predicted 286 

by the metric. We then repeated this process 100 times using new random transition matrices, 287 

generating 3000 sequences in total. 288 

In the second test using artificial sequences, we simulated “individuals” by generating 100 random RP 289 

transition matrices, and from each of them producing a set of 10 sequences of 10 elements each. We 290 

used the RP generation process, rather than a Markovian ZOMP or FOMP, as the RP more reliably 291 

describes many types of animal vocal sequences (Kershenbaum et al. 2014). Each sequence generated 292 

from a single transition matrix would be expected to be more similar to other sequences from the 293 

same transition matrix, than sequences generated by a different random transition matrix, therefore we 294 

used a similar clustering approach as in the stochastic process analysis above. We calculated the 100 x 295 

100 distance matrix for each similarity metric, obtained by comparing the sequences from each of the 296 

100 transition matrices, and clustered the results as before, measuring the NMI as an indication of 297 

clustering success. 298 

For a final test using artificial sequences, we examined the effect of typical sample sizes (number of 299 

sequences) on each of the similarity metrics. Using the sequences generated in the individual 300 

simulation above, we varied the number of sequences analysed from one to ten, recalculated the 301 

distance matrices and clustering, and measured the NMI. 302 

 303 

Animal sequences 304 

We tested the performance of the above metrics using empirical sequences of animal vocalisations, 305 

where those sequences are thought to contain information that is known a priori. Very few examples 306 

exist where contextual information is objectively known to exist in animal vocal sequences. However, 307 

the signature whistles of bottlenose dolphins have been shown to encode individual identity in the 308 
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sequence of up-down frequency shifts, known as a Parsons code (Kershenbaum, Sayigh & Janik 309 

2013). We used a data set consisting of 400 signature whistles, 20 from each of 20 individual 310 

dolphins, recorded during capture-release events; see Sayigh et al. (2007) and Kershenbaum, Sayigh 311 

& Janik (2013) for additional details. We converted each whistle into a 9-element Parsons code, with 312 

seven possible element values (‘‘large drop’’, ‘‘medium drop’’, ‘‘small drop’’, ‘‘no change’’, ‘‘small 313 

rise’’, ‘‘medium rise’’, and ‘‘large rise’’). We then calculated distance matrices using each of the 314 

similarity metrics described above, and clustered using an ART network. For the calculation of NMI, 315 

we compared the generated clusters to the known clusters of individual identity. As empirical data do 316 

not allow the generation of unlimited data sets as with artificial sequences, we estimated confidence 317 

intervals for each of the empirical data sets by randomly selecting 80% of the calls for clustering and 318 

calculation of NMI, and repeated this process 100 times.  319 

We analysed three further empirical data sets for which contextual information in vocal sequences has 320 

been proposed. The first data set used recordings of humpback whales (for details see Garland et al. 321 

2012), the second data set used recordings of rock hyraxes (see Kershenbaum et al. 2012), and the 322 

third set Carolina chickadees (see Freeberg 2012). Previous studies have shown that in the humpback 323 

whale, rock hyrax, and Carolina chickadee, song syntax varies according to the geographical origin of 324 

the population. For example, not only does chickadee song syntax vary between locations, but there 325 

appear to be different functional use of certain sequences in the different populations (Freeberg 2012). 326 

The humpback whale data set consisted of 202 songs composed of 20 different element types 327 

(themes), recorded from 42 individuals. Humpback whale song is a complex, stereotyped, repetitive, 328 

long, male display that has multiple levels of hierarchy in its organisation (Herman & Tavolga 1980; 329 

Payne & Payne 1985; Payne & McVay 1971). A few sounds (units) are arranged in a stereotyped 330 

phrase which is repeated multiple times to make a theme (Payne & McVay 1971). A number of 331 

themes, sung in a particular order, are combined to form a song. The order and content of the themes 332 

are highly stereotyped, and all males within a population adhere to the same arrangement and content 333 

of the song at any given time as the display is constantly changing (Frumhoff 1983; Payne, Tyack & 334 

Payne 1983; Payne & Payne 1985). This analysis focused on the theme level in the hierarchical 335 
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arrangement of humpback whale song. Each string therefore represented the sequence of themes 336 

(elements) that comprised a song; e.g., theme 1, theme 2, theme 3, theme 4, theme 5; see Garland et 337 

al. (2012) for further information and example sequences. This level within the hierarchy takes into 338 

account information on the sequence of units and the repetition of phrases at a higher level, but does 339 

not examine these lower levels explicitly. Strings were classified according to their geographical 340 

location: New Caledonia, Vanuatu, or eastern Australia, and this geographical origin was compared to 341 

the clusters generated by the ART network. Humpback whale song is constantly changing, and has 342 

been shown to undergo complete song revolutions in this region (Garland et al. 2011; Garland et al. 343 

2011; Noad et al. 2000). The current analysis incorporates two different song types (lineages) that 344 

contain different themes (vocabulary), and are present in these populations at various points over the 345 

four years of recording. Therefore, each metric must be robust to the underlying transmission 346 

dynamics of this display.  347 

The hyrax data consisted of 1130 song sequences composed of five different element types, recorded 348 

from a single individual at each of 18 different locations in Israel. The Carolina chickadee data 349 

consisted of 1184 sequences of calls, recorded from 60 sites in the states of Tennessee and Indiana, 350 

USA. Links to these data sets are available in the supplemental information. 351 

 352 

RESULTS 353 

Artificial sequences 354 

For sequences generated by different stochastic processes, the entropy rate (ER) metric provided the 355 

best clustering, with a NMI value of 0.518 ± 0.005 (standard error) (Figure 2a), while the binary 356 

Levenshtein distance (LD) metric gave a NMI of 0.476 ± 0.006. A post-hoc Tukey test following 357 

ANOVA showed significant differences between the NMI scores of these two metrics. All other 358 

metrics produced significantly lower NMI values. 359 
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Results from clustering sequences of simulated "individuals" (sequences generated by stochastic 360 

processes with similar parameters), indicated that NG produced the highest NMI score 0.751 ± 0.001, 361 

while the LD, RD, and TT metrics all produced high but slightly lower NMI scores (greater than 0.7; 362 

Figure 2b), with no significant differences among the NMI values of these three metrics. 363 

Both the LD and NG metrics that performed well on the above clustering tasks were also robust to 364 

sample size (Figure 3). Most other metrics were also relatively unaffected by sample size. However, 365 

the RD performed poorly at smaller sample sizes (≤ 4), and the MI declined with increasing corpus 366 

size (> 2). 367 

 368 

Animal sequences  369 

When clustering to reconstruct the individual identity from bottlenose dolphin signature whistles, the 370 

Levenshtein distance (LD) performed significantly better than all other tested metrics, with an NMI of 371 

0.661 ± 0.001 (Figure 4a). The n-gram distribution (NG) also performed well, with an NMI of 0.63p ± 372 

0.001. Clustering of the humpback whale song data to indicate population (geographic) origin, 373 

showed the LD again performed significantly better than all other tested metrics (NMI of 0.491 ± 374 

0.005; Figure 4b). The NG provided the second best, although significantly poorer, metric (NMI of 375 

0.367 ± 0.005). All metrics performed poorly in clustering the geographical origin of hyrax songs; 376 

however, the LD metric was again significantly better than all others tested (NMI 0.1684 ± 0.001, 377 

compared to the next best NMI of 0.130 ± 0.001 for TT; Figure 4c). Clustering of the chickadee data 378 

to distinguish between birds recorded in Tennessee and those recorded in Indiana, showed the LD 379 

performed significantly better than all other metrics (NMI of 0.450 ± 0.001; Figure 4d), followed by 380 

NG (NMI 0.369 ± 0.001). 381 

 382 

DISCUSSION 383 
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We analysed the performance of eight different techniques from two broad approaches, to investigate 384 

the utility of each approach in the comparison of animal sequences. The unary and binary metrics 385 

performed similarly well in the artificial sequence tests, with the entropy rate (ER) metric slightly 386 

better than the Levenshtein distance binary metric (LD), in distinguishing between data generated by 387 

different stochastic processes, and n-gram (NG) slightly better in distinguishing simulated individuals. 388 

However, the LD metric performed significantly better than all other tested metrics when presented 389 

with empirical animal sequences. This result emphasises that caution should be used when using 390 

artificially generated sequences based on simple stochastic models to simulate animal vocal 391 

sequences. Recent work has shown that assumptions of simple models for animal vocal production are 392 

likely to be inaccurate (Kershenbaum et al. 2014), and similar conclusions have been indicated for 393 

cetacean song (Miksis-Olds et al. 2008). The difference between metric performance on artificial and 394 

on empirical data is striking. Little is known of the cognitive mechanisms by which animals encode 395 

and decode information in vocalisations (Thornton, Clayton & Grodzinski 2012); researchers must 396 

rely on isolated examples where information content is known a priori to draw conclusions about 397 

which analytical techniques are best suited for vocal sequence data. Our results clearly show that the 398 

LD metric outperforms other metrics on empirical data, despite performing less effectively on 399 

simulated data. This indicates that the sequential order of the sequences varied across 400 

location/individual while the level of complexity is similar. The Levenshtein distance was the metric 401 

of choice for clustering dolphin signature whistles into individuals, humpback whale song into 402 

populations, hyrax songs into geographical region, and chickadee calls into state of origin. Analysis of 403 

the sensitivity of the different metrics to sample size showed that most of the metrics that performed 404 

well across the data sets (LD, NG, LZ), were also robust to sample size.  405 

Results from the current paper in combination with previous work (Eriksen et al. 2005; Garland et al. 406 

2012; Garland et al. 2013; Helweg et al. 1998; Tougaard & Eriksen 2006), highlight the success of 407 

the Levenshtein distance (LD) metric in the analysis of sequence content and comparison of 408 

humpback whale song. A large body of work has previously shown that song differences among 409 

humpback whale populations can indicate geographic origin of a singer (e.g., Garland et al. 2015; 410 
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Helweg et al. 1998; Payne & Guinee 1983). Despite dynamic song transmission in the South Pacific 411 

region, fine-scale song differences allow the identification of population origin (Garland et al. 2011; 412 

Garland et al. 2012; Garland et al. 2013; Garland et al. 2015). The current paper examined the theme 413 

sequences (i.e., a set of phrases under a single label) as part of the largest analysis to date of sequence 414 

comparison algorithms for humpback whale song (Garland et al. 2013), which indicated the LD out 415 

performed all other tested metrics. We suggest when comparing song sequences, the LD metric 416 

should be employed preferentially, while if the complexity or information content of each song is the 417 

focus of study, the researcher should employ other techniques such as entropy.  418 

Previous studies of sequence comparison in hyrax song (Kershenbaum et al. 2012) have shown 419 

geographical variation in sequence structure using the LD metric, as these findings were supported by 420 

application of an unrelated (unary) metric, mutual information (MI). In the current study, MI 421 

performed very poorly on both simulated and empirical data, although MI performance was somewhat 422 

better on the hyrax data than on the other data sets. This implies that the aspect of the sequences that 423 

is measured by MI does not vary in correlation with geographic location or individual. While not all 424 

studies can compare large numbers of analytical algorithms, this emphasises the utility of comparing 425 

at least two different techniques when assessing novel algorithms, to ensure that results are robust 426 

under a range of analytical approaches. 427 

Despite all tested metrics performing poorly in the assessment of geographic origin in hyrax song, the 428 

LD metric was significantly better than all others. In previous work, (Kershenbaum et al. 2012) 429 

measured the correlation between sequence similarity and the distance between populations, rather 430 

than classification success, and the latter suggests that distinct dialects are not present in the hyrax. 431 

Rather, small but significant differences are present between all pairs of populations, depending on 432 

geographic isolation. In contrast, humpback whales, chickadees, and bottlenose dolphins show strong 433 

discrimination between in-group and out-group sequences, indicating that the differences between the 434 

vocal sequences of different individuals or populations are much more marked. This may indicate an 435 

adaptive role to distinctive vocalisations in dolphins and whales, such as individual identification 436 

(Janik & Slater 1998; Janik, Sayigh & Wells 2006; Quick & Janik 2012), while in chickadees 437 
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adaptive, developmental, and phylogenetic explanations for regional dialects have been suggested 438 

(Freeberg 2012). Humpback whale song is hypothesised to contain information about the reproductive 439 

fitness and population origin of the signaller (Helweg et al. 1992; Helweg et al. 1992; Payne & 440 

Guinee 1983). Hyrax song complexity is not thought to contain contextual information beyond male 441 

fitness (Demartsev et al. 2014; Koren & Geffen 2009), although this assumption is currently untested. 442 

In contrast, dolphin signature whistles are known to be individually distinctive whistles that can be 443 

identified by the unique pattern of frequency modulations (Janik, Sayigh & Wells 2006). The 444 

characterisation of signature whistles based on a 7-element Parsons code in a previous study 445 

(Kershenbaum, Sayigh & Janik 2013) allows individual identification of the whistler. The LD 446 

significantly outperformed all other models in clustering to reconstruct not only the individual identity 447 

from signature whistles, but the geographic origin for humpback whale song, chickadee calls, and 448 

hyrax song, highlighting the importance of evaluating different metrics with a priori information.  449 

One likely explanation for the higher performance of the LD metric is that it alone among the metrics 450 

analysed uses a direct comparison of the vocal sequences between samples, thereby using more 451 

information about the sequences than the other metrics. The LD metric by design can solely be 452 

employed to compare two strings and it excels at this task; it does not provide an understanding of the 453 

information content within each string, or the sequence structure. By necessity this means that LD 454 

also compares the vocabularies of a pair of sequences, and therefore two sequences that are based on 455 

the same set of sequence elements are likely to have a lower LD value than two sequences that are 456 

composed of different elements, but have similar sequence structure. Regional differences in the 457 

vocabulary (e.g., humpback song themes) provide important information on the connectivity of 458 

populations at a broad-scale despite an overall similarity in song structure (hierarchical arrangement). 459 

To establish the influence of overlapping vocabulary is beyond the scope of this paper (although two 460 

of the three humpback populations switched between two vocabularies – song types – over the course 461 

of this study), but we present as supplemental information (Figure S1) the element distributions of the 462 

different data sets, which in most cases were quite consistent.  463 
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Sample sizes can be constrained in the study of wild animals and particularly in marine mammal 464 

studies. Samples may be collected infrequently and with a patchy distribution due to the challenging 465 

conditions presented in collecting such data. Understanding how a metric reacts to a small sample size 466 

is invaluable in metric choice. The robust nature of the LD and NG to smaller sample sizes and their 467 

high performance in the comparison task makes them appealing for analysis. The data presented here 468 

indicated that LD and NG performed well with a sample size of three or less, while TT and RD should 469 

not be considered as a metric for analysis until a sample size of four or more is available.  470 

Here, we have presented a robust understanding of which metric should be preferentially employed in 471 

studies involving the comparison of individual- or group-specific vocalisations, such as signature 472 

whistles. The success in identifying individual/geographic variations in vocal sequences has 473 

implications for assessing population structure, song transmission, and dialect similarity, particularly 474 

for populations where rapid song changes occur. For example, the analysis of humpback whale song 475 

presented here was able to identify population origin despite rapid song dynamics (Garland et al. 476 

2011; Garland et al. 2012; Garland et al. 2013). We suggest that the LD can be applied to any level 477 

within a complex display, but suggest future studies strive for the lowest level sequence within the 478 

hierarchy (i.e., sequence of units or phrases), to increase the amount of information directly compared 479 

and thus encapsulated by the sequence. 480 

The LD method provides a metric to compare sequence content and organisation (and thus songs) 481 

within and among multiple individuals, populations, years, and locations. In particular, transmission 482 

of humpback whale song is largely cultural, and the level and rate of change remains unparalleled in 483 

any other non-human animal as complete population-wide changes are replicated in multiple 484 

populations at a vast geographic scale (Garland et al. 2011). Thus, fundamental questions in animal 485 

culture, vocal learning, and cultural evolution can be explored using humpback whale song as a 486 

model, and with the help of the LD metric. Further, the evolution of complex vocal labels (i.e., 487 

signature whistles) and the underlying cognitive abilities required for such evolution, are extremely 488 

important in understanding the evolution of vocal complexity (Janik 2014). Robust metrics that 489 

capture the information encoded in the sequences with the highest fidelity are thus required to address 490 
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these far-reaching evolutionary questions. We suggest the LD should be utilised in such comparison 491 

studies in preference to Markov and information theory based models.  492 

 493 

Conclusions 494 

The Levenshtein distance (LD; binary metric) significantly outperformed all other tested metrics in 495 

our comparative analysis of animal acoustic sequences. It provides a direct measure of pairwise 496 

differences among sequences, instead of a comparison of aggregate similarity. N-grams (Markov 497 

chains) were the second most successful metric; the underlying issue that the tested species’ 498 

vocalisations may be governed by non-Markovian dynamics and the consistent success of the LD 499 

metric, suggests n-grams should always be a second choice. Given the inherent interest in the origins 500 

of human language and the evolution of signalling complexity, robust and reliable metrics that can 501 

capture the content and arrangement of the signal are essential to address these fundamental questions 502 

in animal communication and cultural evolution.  503 
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FIGURES 693 

 694 

 695 

Figure 1. Examples of string alignment and edit distance. (a) Two unaligned strings with a LD of 7. 696 

(b) After aligning the strings to minimise the difference, LD = 1. (c) Two hyrax bouts which are 697 

highly different, LD = 11. (d) Two bouts which are very similar, LD = 1. Reproduced from 698 

(Kershenbaum et al. 2012). 699 
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 701 

 702 

Figure 2. Results of the normalised mutual information (NMI) scores for each metric using a) 703 

synthetic processes, and b) synthetic individuals. Metric labels: Levenshtein distance (LD), Repeat 704 

distribution (RD), Transition table (TT), Shannon entropy (SE), Lempel-Ziv (LZ), N-gram (NG), 705 

Mutual information (MI), and entropy rate (ER). A-F indicate post-hoc Tukey groupings. 706 
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 708 

 709 

Figure 3. Results of the effect of sample (corpus) size on the NMI scores (± standard error) for each 710 

similarity metric. Metric labels are the same as Figure 2. 711 
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 713 

 714 

Figure 4. Results of the NMI (normalised mutual information) scores for each metric using a) 715 

bottlenose dolphin signature whistles, b) humpback whale songs, c) rock hyrax songs, and d) Carolina 716 

chickadee calls. Metric labels are the same as Figure 2. A-F indicate post-hoc Tukey groupings. 717 
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