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ABSTRACT. We introduce a technique that uses projection properties of fractal
percolation to establish dimension conservation results for sections of deter-
ministic self-similar sets. For example, let K be a self-similar subset of R?
with Hausdorff dimension dimy K > 1 such that the rotational components of
the underlying similarities generate the full rotation group. Then for all € > 0,
writing mg for projection onto the line Ly in direction 6, the Hausdorff dimen-
sions of the sections satisfy dimg (K N 7r9_1$) > dimpyg K — 1 — € for a set of
x € Ly of positive Lebesgue measure, for all directions 6 except for those in a
set of Hausdorff dimension 0. For a class of self-similar sets we obtain a similar
conclusion for all directions, but with lower box dimension replacing Hausdorff
dimensions of sections. We obtain similar inequalities for the dimensions of
sections of Mandelbrot percolation sets.

1. INTRODUCTION

Relating the Hausdorff dimension dimyg K of a set K C R? to the dimensions of
its sections and projections has a long history. The best-known result on projections
is that, if K is Borel or analytic, then, writing my : R? — V for orthogonal
projection onto the subspace V,

(1.1) dimyg 7y K = min(k, dimyg K),

for almost all k-dimensional subspaces V (with respect to the natural rotation-
invariant measure on subspaces). For sections of sets, for almost all k-dimensional
subspaces V', the dimensions of the sections or slices W‘;lx N K of K satisfy

dimy (K Ny ') < max(0,dimy K — k)

for Lebesgue almost all z € V' (we take dimy ) = —o0). Moreover, for all € > 0 and
almost all V', there is a set W, C V of positive k-dimensional Lebesgue measure
such that

(1.2) dimy (K N7y te) > max(0,dimy K — k) — €

for x € W,. These inequalities were obtained by Marstrand [19] for subsets of the
plane, and extended to general d and k by Mattila [21]. Kaufman [15] introduced
the potential theoretic method which is now commonly used in studying dimensions
of projections and sections of sets.

These properties are complemented by the fact [20] that, for all k-dimensional
subspaces V, for all 0 < A < d —k,

A+ dimg{z € V :dimg (KN 7r‘71:17) > A} <dimy K.
In particular, if dimy K > k then for all V'

dimgy (K Nryte) < dimyg K — k
1
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for Lebesgue almost all x € V. A good exposition of this material may be found in
[22, Chapters 9,10].

Fursternberg [9] introduced the notion of dimension conservation: given K C R?,
a projection 7y is said to be dimension conserving for K if there is a number A > 0
such that

(1.3) A+ dimg{z € V : dimyg (K N7y te) > A} > dimg K

In this paper we consider a slightly weaker property when dimyg K > k. We say
that a projection 7y is weakly dimension conserving if, for all € > 0,

(1.4) dimg (K N7yle) > dimg K —k—e  for allz € W,

where W is a ‘large’ subset of V, either with dimg W = k or with £F(W) > 0,
where £F denotes k-dimensional Lebesgue measure. It follows from (1.2) that 7y
is weakly dimension conserving for almost every k-dimensional subspace V.

There has been great interest recently in identifying classes of sets, in particular
classes of self-similar sets and their variants, for which these various inequalities
hold for all, rather than just almost all, subspaces. Several papers establish (1.1)
for all projections for classes of self-similar sets [9, 12, 25, 29] and for percolation
on self-similar sets [8, 26, 27, 28, 30]. Here we consider dimensions of sections, and
identify sets for which (1.4), or a similar inequality for box-counting dimension,
holds for all subspaces V.

Recall that an iterated function system (IFS) Z = {f;}7, on R? is a family of
2 < m < oo contractions f; : R? — R?. An IFS determines a unique non-empty
compact K C R? such that

(1.5) K= U fi(K),

called the attractor of the IFS, see [6, 13]. If the f; are all similarities then K is
self-similar. The IFS satisfies the strong separation condition (SSC) if the union
(1.5) is disjoint, and the open set condition (OSC) if there is a non-empty open set
U such that U™, f;(U) C U with this union disjoint. If either SSC or OSC hold
then dimy K = s where s is given by Zz";l r; = 1, where r; is the similarity ratio
of fz

We may write an IFS of (orientation preserving) similarities as

I=A{fi=mrRi +a;};>;

where R; € SO(d,R) is a rotation, r; is the scaling ratio and a; is a translation. If
the group G generated by {Ry,..., R} is dense in SO(d,R) we say that the IFS
has dense rotations.

A number of results on dimension conservation of self-similar sets have been
established. Furstenberg [9] showed that (1.3) holds for projections onto all sub-
spaces V for a class of ‘homogeneous’ sets. These include self-similar sets where
the IF'S 7 consists of contracting homotheties (i.e. similarities without rotation or
reflection so that R; = I for all 7) that satisfy SSC or OSC. For example, variants
on the Sierpiniski carpet are of this type, where the value of A in (1.3) depends
on the subspace V. There are detailed analyses of sections of the Sierpinski carpet
in [18, 16] and of sections of the Sierpinski gasket or triangle in [2]. In the case
where the IFS 7 satisfies OSC and the group generated by {R1,..., R} is finite,
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then every projection is dimension conserving, that is for all V' (1.3) holds for some
number A, see [8, 11].

In this paper we demonstrate that many self-similar sets K are weakly dimension
conserving for all, or virtually all, projections 7y. For self-similar sets in R% where T
satisfies OSC and has dense rotations and dimy K > 1, (1.4) holds with L(W) > 0
for all € > 0 and for projections onto all lines V', except for lines in a set of directions
of Hausdorff dimension 0 (Theorem 4.8). This depends on a result on the absolute
continuity of projections of measures (Theorem 4.5) which extends a theorem of
Shmerkin and Solomyak [29] but which is currently only known for measures on
the plane. For sections of sets in R?, provided that we replace Hausdorff dimension
by lower box dimension on the left-hand side of the inequality, we get (1.4) for
all k-dimensional subspaces V, for a large class of sets K that satisfy a certain
projection condition (Theorem 3.2). We also show that, almost surely, (1.4) is
true for all k-dimensional subspaces V for random subsets of R? obtained by the
Mandelbrot percolation process (Theorem 3.4).

The idea is to demonstrate weak dimension conservation for a deterministic
set K C R? (d > 2) by running a percolation-type process on K to ‘probe’ the
dimensions of its (d — k)-dimensional sections. We construct random sets K« C K
such that k < dim K < k + ¢/2 with positive probability. Writing L, for the
(d — k)-plane through x and perpendicular to V, if dim(K NL,) < dimK —k —¢
for some x € V there is a high probability that K“ N L, = ) or equivalently that
x & my K¥. By invoking results on projections of random sets that show that with
positive probability dim 7y K“ = k, we conclude that there must be a significant
subset of € V, indeed a subset of dimension k, for which this does not occur.

We formulate this principle in a general context in Propositions 2.1 and 2.2.
To apply it in various settings we utilise results on dimensions of projections of
percolation sets from [8, 26, 27, 28]. Theorems 4.6 and 4.8 depend on the absolute
continuity of projections of an alternative type of random measure, and this is
established in Theorem 4.5 which is a random version of a deterministic result of
Shmerkin and Solomyak [29].

We remark that the idea of estimating the dimension of certain random sets
by showing that they survive some percolation process goes back at least to the
work of Lyons [17] showing that the branching number of a tree equals the critical
percolation value, and even to [14] in a less specific setting.

The authors are grateful to Mike Hochman and to two referees for comments on
earlier versions of this paper.

2. ESTIMATES FOR DIMENSIONS OF SECTIONS USING RANDOM SUBSETS

In this section we present a general formulation of our method for obtaining lower
bounds for the dimensions of sections of a set given a knowledge of the dimensions
of projections of related random subsets. The method applies to sets that can be
modeled in terms of an infinite rooted tree. These include self-similar sets, where
the tree provides a natural description of the hierarchical construction of the set,
but extends to a many further fractals.

Let A ={1,...,m} be an alphabet of m > 2 symbols, with A denoting the set
of words of length n > 0. Let ¥, := U,>0A™ be the set of finite words and ¥ := AN
the corresponding symbolic space of all infinite words. For each i € X, denote by
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[i] C X the set of infinite words that start with i, that is the cylinder rooted at i.
We denote the diameter of a set A C RY by |A.

We consider fractals which are the image of a subset of symbolic space under a
continuous mapping ® : ¥ — RY where ¥ is equipped with the metric d(i,j) = m "
with & the length of the common initial subword of i and j, and R has the Euclidean
metric. For each i € ¥, we write Conv(®[i]) for the closed convex hull of ®[i]. We
also assume throughout that there is a number dy > 0 such that

inradius Conv(®[i])

>dy forallieX,
diameter Conv(®[i]) ~ 0 forallc

(the inradius of a closed convex set is the radius of the largest ball contained in the
set); thus the convex hulls cannot get ‘too long and thin’. We assume throughout
that ® satisfies the following two conditions:

(1) There exist 0 < ¢g, 1 < oo such that for all p € (0, ¢p), the set
(2.1) A, ={ie X, p<|P[i]] < c1p}

yields a finite covering of ¥, that is #A, < 0o and ¥ = Ujea, [if;

(2) There exists an integer ng such that for all p € (0,¢9) and = € R,

(2.2) #{ie A,z € Conv(®[i])} < ng.

These conditions will certainly be satisfied if ® codes the attractor of an IFS of
similarities satisfying OSC.

We may define measures of Hausdorff type on subsets of ®(X) by setting, for all
$>0,FC®(X)and § >0,

s

(2.3) Mi(F) = inf { Y [@fis][": @71 (F) € (Jlijl, |@fij)] <6}
J=1

1

.
Il

and
S(F) =1 S(F).

M (F) = lim M(F)
Then M?* is equivalent to the restriction of s-dimensional Hausdorff measure M?*
to ®(X). Clearly H*(F) < M*(F) for F C ®(X). For the opposite inequality (to
within a constant multiple), note that the number of sets ®[i| with i € A, that
overlap UN®(X) is bounded for all U C R™ with |U| = p < ¢p, from comparing the
volumes of maximal inscribed balls of Conv(®[i]) with that of some ball centered
in U of radius |U| and using (2.2). In particular, dimg F = inf{s : M*(F) =0} =
sup{s: M*(F) = oo} for F C ().

In a similar way, (2.1) and (2.2) imply that the box-counting dimension of subsets
of ®(X) may be found by counting cylinders. In particular, the lower box-counting
dimension of F' C ®(X) is given by

1 ieA,: F Dli
(2.4) dim, F = li 281 € Ay - F 0 Conv(@(i]) # 0}
p—0 - log p
Let By be the o-field generated by the cylinders of ¥. Let P be a probability
measure on By;. Let X% be a random subset of ¥ and let
io={ie X, [iinX¥ #0}.

We adopt the convention that A¥ := ANX* if A is a subset of ¥ and A¥ := ANXY¥
if A is a subset of X,.
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For o > 0 we say that X is an a-random subset of ¥ if there exists a constant
¢ < oo such that for all p € (0,¢0) and all i € A,

(2.5) P(ie Ay) < cap™.

For our applications, 3¢ will typically be the symbolic set underlying fractal per-
colation on K, so that ®(X¢¥) = K¥.

Let V be a k-dimensional subspace of R? and let 7y : R¢ — V denote orthogonal
projection onto V. We write £ for k-dimensional Lebesgue measure on V identified
with R¥ in the obvious way. (If k = 1 then V is a line and we write £ for Lebesgue
measure on V. )

The following two propositions are our principal tools. The first concerns the
Hausdorff dimension of sections and the second concerns their lower box dimension.
The first proposition has a stronger hypothesis than the latter on the projection
of the random subset involved, but on the other hand there is no condition on the
projection of the original fixed set.

Proposition 2.1. Let A € By. Let ¥“ be an a-random subset of ¥ for some
a >0, let®: Y — R? satisfy (1) and (2) above, and let V be a k-dimensional
subspace of R%. If P(L*(my (@(A¥))) > 0) > 0, then

Lz €V : dimpy (®(4) N7yt (2) > a} > 0.

Proof. Let

S={z eV :dimy (®(A) Nm'(z)) < a}.
Let € S. Using (2.3), for all ¢ > 0 we may find a set of words J C X, such that
o~ (®(A) Nyt (2) C Uies[i] and > i 5 |<I)[i]|a < e. Then ®(A¥) Nyl (z) C
Uie]mzf ®[i] and

E#{ic 7nxe}) =) PHexy) <c > || < ce,
ieg ieg
using (2.5), so P({i € 7 NEY} # 0) < cae. Since € is arbitrarily small, we conclude
that for all € S, ®(A¥) N7y, (z) = 0 almost surely.
By Fubini’s theorem, almost surely

L (S Ny (®(A%)) = L¥(z € S : ®(AY) N7yt (x) #0) = 0.
Hence, with positive probability,
0 < L (my (9(A))) = L¥ (my (2(A)) \ §) < L5 (v (B(4))\ §). O

The second general proposition concerns the lower box-counting dimension of
sections of sets. Here we require a condition used in Lemma 2.3 that, for all i € X,
the projection of ®[i] onto the subspace V' is the same as that of its convex hull; in
particular this will be the case if ®[i] is connected. Note that such a requirement
has been crucial in other questions concerning self-similar sets, for example in the
study [2] on sections of the Sierpiriski triangle and in connection with the dimension
of the visible sets [7].

Proposition 2.2. Let 3¢ be an a-random subset of ¥ for some o > 0, let ¢ : ¥ —
R satisfy (1) and (2) above, and let V be a line, that is a 1-dimensional subspace
of R%. Suppose that the projection of ®[i] onto V is the same as that of its convex
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hull Conv(®[i]) for alli € X,. If P(dimg 7y (®(X¥)) = 1) > 0, then for every
€ E (07 a)’
dimy {z € V : dimp (®(X) ﬂﬂ;l(x)) >a—e} =1

Proof. To keep the notation simple, we give the proof for ® : ¥ — R? where
the sections are intersections with lines perpendicular to the line V. The proof is
virtually identical for ® : ¥ — R? where d > 2. Write L, = ;' () for the line
through = € V perpendicular to V. For x € V and p € (0, ¢p) write

(26) N(z,p):=#{ieA,: Conv(P[i]) N L, #0} =#{ie A, : D[ijN L, # 0}

for the ‘box counting numbers’, where the equivalence follows as every line perpen-
dicular to V that intersects the convex hull Conv(®[i]) also intersects ®][i].

Here is the first of three subsidiary lemmas within this proof. This enables us
to reduce consideration of coverings of subsets of L, when estimating N(z, p) to a
small set of z. We identify V with R x {0} C R? in the obvious way.

Lemma 2.3. Let p € (0,c9) and M > 0. Let I C V be an interval with |I| < p
such that N(z,p) < M for some x € I. Then there exist x1,x9 € I with x1 < x4
such that

N(‘rlap)’N(x27p) < M
and such that, if x € I has N(x,p) < M, then, for alli € A, such that Conv(®[i])N
L, # 0, either Conv(®[i]) N Ly, # O or Conv(®[i]) N Ly, # 0.

Proof. Let o = inf{x € I : N(z,p) < M}. If N(z},p) < M then take z; = z].
Otherwise take x1 > 2 sufficiently close to z} to ensure that both N(z1,p) < M
and

{ie A, : Conv(®[i]) N L,, # 0}
={ie A, : Conv(®[i]) N Ly, # 0 and 7y (intConv(P[i])) N [x1, 00) # 0}.

In the same way, we may take xz2 to be sup{z € I : N(z,p) < M} or a slightly
smaller number if necessary. Clearly we may ensure that x; < zs. Since the
Conv(®[i]) with i € A, have diameter at least p and 9 — 21 < p, the conclusion of
the lemma, follows. O

We now write
N*(x,p) = #{i € A} : Conv(®[i]) N L, # 0}

for the random analogue of (2.6). Fix € € (0,a) and for p € (0,¢p) let S, be the
deterministic subset of V:

(2.7) S,={x €V :N(zp) <pot/?}.

The second subsidiary lemma shows that if € S, then the probability that L,
has non-empty intersection with ®(3¢) is small.

Lemma 2.4. Let p € (0,¢9) and let I CV be an interval with |I| < p such that
INS,#0. Then

(2.8) P(N“(x,p) > 0 for some z € INS,) < 2022,
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Proof. If I'NS, = 0 then (2.8) is trivial. Otherwise, applying Lemma 2.3 to the
interval I, taking M = p~“t¢/2 and noting (2.7), we may find z1,z, € I N S, such
that, for all z € IN S, all w, and all i € A% C A, with Conv(®[i]) N L, # 0, either
Conv(®[i]) N Ly, # 0 or Conv(®[i]) N Ly, # 0. In particular, for allz € IN S,

(2.9) N¥(z,p) < N¥(z1,p) + N¥ (22, p).
For j = 1,2, using (2.5) and (2.7),
E(N“(zj,p) = > {PA€AY):i€ A, Conv(®[i])N Ly, #0}

< Z {eap™ 1i€ Ay, Conv(®[i]) N Ly, # 0}
< c2p®N(zj,p)
< eappm
0
P(N“(zj,p) > 0) < cap/?.
The conclusion (2.8) follows from (2.9). O

Let
S={zx eV :dimg(®(X)NL,) <a—c¢}
Note that, for all p € (0,¢p), we have

(L) N L, = | J @] N L.
icA,

Thus, from (2.7), (2.6) and (2.4),
sc () U Sen,
N=Non=N

where we choose Ny so that 0 < 270 < ¢.
The final subsidiary lemma essentially shows that the Hausdorff dimension of S
cannot be too big.

Lemma 2.5. With S as above, dimpy (my (®(X¥))NS) < 1 —€/4 almost surely.
Proof. For p € (0,¢) write
K¢ = | J{Conv(®[i]) :i € A%} D B(T¥).
Let I C V be an interval with |I| = p < ¢o. If S, N T # 0 then by Lemma 2.4
P(ry (K%) NS, N1 #0) < 2e0p 2.

For n > Ny, let C,, be the family of closed binary subintervals of V' of lengths 27™.
Thus, for n > Ng,

E(#j : my(Kgin) N Soon N1 # 0,1 € Cp) < 2T D(X)[269277/2 = ¢z2n(1=¢/2),
In particular,

Z 2_n(1_6/4)E(#j : WV(K;77L) NSy—n N Ij 7& @7Ij S Cn) =cC3 Z 2—ne/4 < 0.
n=Np n=Np
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Then, for all N > Ny,

wv(i)(Z“’))ﬁS C 7rv(4>(2“))ﬂ [j So-—n
n=N

Ty (D(5¥)) N S-n

|
(@

n=N

(@G

- TrV(K;}—n) N Sg—n
n=N
o

c U U {&mv(ES ) NSy NI # 0},
n=N I;eC,

Hence, writing Hj for the s-dimensional Hausdorff §-premeasure, and H® for s-
dimensional Hausdorff measure, it follows on taking these covers of 7y (®(X¥)) NS
for each N that

E(H'~/*(my (B(¥)) N S))
=E( lim H, "/ (v (2(24) N S))

. . 1—e€/4 w
< l}\grilgofE(Hsz (v (2(2¥)) N S))

< Y EH M (rv(@(2) N S))

2—n
’I’L—No

< Z E(?in(lie/‘i) (#j : Wv(K‘;_n) N .Sy-n N Ij 7£ @,Ij S Cn))
’I’L:NO

< oQ.

It follows that almost surely H'~</*(my (®(X%))NS) < oo and so dim g (7 (S(2¥))N
S)<1-—¢/4 O

To complete the proof of Proposition 2.2, note that
dimy my (®(2¢)) = max { dimy (7y (®(2)) N S), dimg (v (P(Z*)) \ 5)}
so that, conditional on dimg my (®(X¢)) = 1, an event of positive probability by
the hypothesis of the proposition,
1 < max {1 —¢/4,dimp (my (®(X¥)) \ S)} < max {1 — ¢/4,dimp (7v (®(X))\ 5)}.

But this is a deterministic statement, so we conclude that dimg (my (®(X2)) \ S) =
1. (]

3. SECTIONS OF SELF-SIMILAR SETS AND PERCOLATION

Next we obtain a weak dimension conservation property for the lower box-
counting dimension of sections for self-similar sets with dense rotations (Theorem
3.2). We also do so for the Hausdorff dimension of sections of Mandelbrot percola-
tion sets (Theorem 3.4).

The best known model of fractal percolation is Mandelbrot percolation, based on
a decomposition of the d-dimensional cube into M? equal subcubes of sides M ~!;
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its topological properties have been studied extensively, see [3, 6, 28]. Nevertheless,
statistically self-similar subsets of any self-similar set may be constructed using a
similar percolation process which may be set up in terms of the symbolic space
formulation of Section 2.

Let Z = {f1,..., fm} be an IFS of similarities with attractor K. Intuitively,
percolation on K is performed by retaining or deleting components of the natural
hierarchical construction of K in a self-similar random manner. Starting with some
non-empty compact set D such that f;(D) C D for all 4, we select a subfamily of
the sets {f1(D),..., fm(D)} according to some probability distribution, and write
K for the union of the selected sets. Then, for each selected f;(D), we choose sub-
sets from {f;f1(D),..., fifm(D)} according to the same probability distribution,
independently for each i, with the union of these sets comprising K2. Continuing
in this way, we get a nested hierarchy K > K' D K2 O --. of random compact
sets, where K* denotes the union of the components remaining at the kth stage.
The random percolation set K“ C K is then given by K% = zioKk, see Figure 1.

FIGURE 1. A self-similar attractor of an IF'S with rotations and a
subset obtained by the percolation process

More formally, percolation on a self-similar set K is defined using the natural
representation of K by symbolic space. As in Section 2 we take A = {1,...,m} with
Y« = Up>oA"™ the set of finite words and ¥ = AN the infinite words. The canonical
map ® : ¥ — K C R? is given by ®(i1iz...) = N ofi, -+ fi, (D) for any non-
empty compact set D such that f;(D) C D fori=1,...,m. Then K = Ujex®(i),
with @ providing a (not necessarily injective) index to the points of K.

To define percolation on K, let (Q,A,P) be a probability space. Let X
(X1,...,X;) be a random vector taking values in {0,1}™. Let X = {X!
(X1, ..., X1 ))}ies, be a family of independent random vectors with values in {0,1}™,
each having the distribution of X, on the probability space (%= Ay, P®*-),
where Ay C A® is the o-algebra generated by X. This defines a random set
¢ = {iyig...€X: XgXi’ZlX;”2 -+- =1} C X. The percolation set K C K is the
image of ¥* under the canonical map, that is the random set K“ = &(3%).

By standard branching process theory [1], if E(#i : X; = 1) > 1 there is a
positive probability that X, and thus K“, is non-empty. Provided the IFS defining
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K satisfies OSC then, conditional on K% # (),

m

(3.1) dimp K = dimy K = s a.s where s satisfies E(ZXZT;S) =1,
i=1

where r; is the scaling ratio of f;, see [5, 23].

We say that the percolation process is standard with exponent « if the distri-
bution of X = (X3,...,X,,) is defined by P(X; = 1) = r® P(X; =0) =1 —r¥
independently for ¢ = 1,...,m. Then by (3.1), provided that o < dimpy K, there
is a positive probability that K“ # (), in which case dimyg K* = dimyg K — « a.s..

The following theorem on the dimension of projections of percolation subsets of
self-similar sets was obtained as a corollary of a more general theorem on projections
of random cascade measures on self-similar sets [8].

Theorem 3.1. [8] Let K be the attractor of an IFS of contracting similarities on
R? with dense rotations and satisfying OSC. Let P be a probability distribution of a
standard percolation process on K with BE(#i: X; = 1) > 1, so that the percolation
set K% # () with positive probability. Then, conditional on K“ # (), almost surely

dimgy 7y (K“) = min(k, dimy K¢),
for every k-dimensional subspace V.

Thus, conditional on non-extinction, the projections of K“ onto all subspaces
have the ‘generic’ dimension. We now apply Proposition 2.2 to sections of self-
similar sets. The conclusion applies to self-similar sets K such that their projection
onto each line is the same as that of the convex hull of K. This includes the
case where K is connected as well as many other self-similar sets. One way of
constructing such examples in the plane is to take a convex polygon P and position
smaller similar copies Pi,..., P, of P inside P such that in every direction the
orthogonal projection of [ J;~, P; is the same as that of P. Then the IFS consisting
of the similarities that map P onto the P; gives a set with this projetion property,
see Figure 2 for some examples. Similar constructions based on polytopes are
possible in higher dimensions.

2
g et 4
?"\& Pa it “fg‘:‘“
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};M - sk,
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Jok i ‘Nig ‘f’:};ﬁ,@%&}%&
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£l

. Ab %ﬁﬁ‘&%
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FIGURE 2. A connected and a totally disconnected self-similar set
with dense rotations satisfying the conditions of Theorem 3.2
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Theorem 3.2. Let I be an IFS of contracting similarities on R with dense rota-
tions and satisfying OSC. Let K be the attractor of T and suppose s = dimy K > 1
and that the projection of K onto every 1-dimensional subspace equals that of its
convex hull. Then for every I1-dimensional subspace V of R® and all € € (0,5 — 1),

(3.2) dimpy {z € V : dimg (K N7y (2)) > dimy K — 1 — €} = 1.

Proof. Let K have its symbolic representation ® : ¥ — R9. As ®[i] is similar to
K for all i € X, the projection of each ®[i] onto every 1-dimensional subspace is
the same as that of its convex hull. We set up standard percolation with exponent
s — 1 on K via its symbolic representation, as above. Then there is a positive
probability of non-extinction, conditional on which almost surely, dimg my (K“) =
min{l,dimyg K — (s — 1)} = 1 for every line V, using Theorem 3.1.

A consequence of OSC is that ® satisfies conditions (1) and (2) (at (2.1) and

(2.2)) with ¢g = |K| and ¢; = maxi<i<m ri_l. Moreover, if i;...7, € A, then
P(iy...ip € AY) =1 ---rf < |K[7%p%, so that (2.5) is satisfied. The conclusion
follows by Proposition 2.2 since ®(X) = K. i

It would be desirable to dispense with the requirement in Theorem 3.2 that the
projections of K are the same as those of its convex hull. Without such a condition
it is not hard to show that (3.2) can be replaced by the conclusion that

dimpy {z €V :d(z) >dimp K —1—¢} =1

where d(z) := lim, . log #N,(L%)/ —log p and where N,(L%) denotes the number
of i € A, such that Conv(®[i]) N L, # 0 for some y € [x — p,z + p]. (Here d(z) is a
kind of lower box-counting dimension conditioning on fibres that is always no less
than the actual lower box-counting dimension of the fibre, with possibility of being
strictly larger.)

Next we apply Proposition 2.1 to Mandelbrot percolation. Let K be the unit
cube in R?. Fix an integer M > 2 and a probability 0 < p < 1. We divide
K into M? subcubes of side 1/M in the natural way, and retain each subcube
independently with probability p to get a set K' formed as a union of the retained
subcubes. We repeat this process with the cubes in K', dividing each into M¢
subcubes of side 1/M? and choosing each with probability p to get a set K2, and so
on. This process, termed Mandelbrot percolation, leads to a percolation set, which
we write here as K = DZOZOK’“ to emphasize the dependence on p.

Of course, this may be regarded as percolation on the self-similar set defined by
the IFS T = {fiv-Ja : 1 < jy,...,js < M} on R? where

)

Ty (it —1 T4 +jd—1)
f (a:l,...,xd)—( M e M
as before the random construction may be represented in symbolic space, using an
alphabet of M? letters.

If p > M~ then, as above, that there is a positive probability that Ky #0,
conditional on which dimy K} = d +logp/log M. A useful observation is that for
0 < p,p’ < 1 the intersection of independent realizations of the two random sets
K} and K has the same distribution as that of K.

Rams and Simon [26, 27, 28] and Simon and V&gé [30] have recently obtained
results on the dimensions and Lebesgue measure of projections of Mandelbrot per-
colation that are almost surely valid for projections onto all subspaces.
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Theorem 3.3. [26, 30] Let 1 < k < d—1 and let K C R< be the random set
obtained by Mandelbrot percolation on the d-dimensional unit cube, using repeated
subdivision into M® subcubes, and selecting cubes independently with probability
p > 1/M¥*. Then, conditional on Ky # 0, dimg K = d +logp/logM > k,
and for every k-dimensional subspace V we have Ek(va]‘;) > 0, indeed, Ty K}
contains an open subset of V.

Applying Proposition 2.1 to Theorem 3.3 we obtain dimension conservation prop-
erties for Mandelbrot percolation.

Theorem 3.4. Let 1 < k <d-—1. Let K;) C R? be the random set obtained by
Mandelbrot percolation on the d-dimensional unit cube, using repeated subdivision
into M? subcubes and selecting cubes independently with probability p > 1/MI~F%.
For all e > 0, almost surely conditional on K} # 0, for all k-dimensional subspaces
v,

Lz eV dimg (K5 Nyt (2) > dimg Ky — k — e} > 0.

Proof. We may represent the hierarchy of M-ary subcubes of the unit cube in
symbolic space ¥ with an alphabet A of m = M? letters with ® : A — K = [0,1]¢
the natural cannonical mapping. With notation for percolation as above, let the
probability distribution (X71,..., X,,) on A be given by P(X; = 1) = p, P(X; =0) =
1 —p, independently for = 1,...,m. This defines a random set 3} C X such that
Ky = ®(%y) is the Mandelbrot percolation set, with dimy K} = d + logp/log M
conditional on non-extinction. Now let p/ = p~* M ~(4=5=¢) and let E;’,/ C Y be an
independent random set defined in the same way but using probability p’; we use
E;;’/l to ‘probe’ the dimensions of K.

The random set 337 N E;’,/ has the same distribution as a random set E;’;/,, con-
structed in the same way with probability pp’. Thus, conditional on XN E;j,/ # 0,
dimg ®(X5 N E;’;) =d+ logpp’'/log M = k + € almost surely, so by Theorem 3.3,

almost surely,

(3.3) LF (v (@(22 NEY))) >0

for all k-dimensional subspaces V. Using independence and /Fubini’s theorem, con-
ditional on X # ), almost surely conditional on X% N X% # 0, inequality (3.3)
holds for all V' (Note that, conditional on 3% # (), P(¥% N Z;;’,, #0)>0.)

We may regard E;,l as an a-random subset of ¥ where o = —logp’/log M =
logp/log M +d—k—e. Taking A = ¥ in Proposition 2.1 (so in the notation there
AY =300 E‘I‘)’,/) we conclude that, conditional on Y% # (),

LMz eV : dimy (®(z) N T (2)) > a} >0,
and the conclusion follows, noting that ®(%%) = K. O

4. ABSOLUTE CONTINUITY OF PROJECTIONS OF RANDOM SELF-SIMILAR
MEASURES

We now show that we have weak dimension conservation for the Hausdorff di-
mension of sections of plane self-similar sets in all directions apart from a set of
directions of Hausdorff dimension 0 (Theorem 4.8). To achieve this we use Proposi-
tion 2.1 together with a result on the absolute continuity of projections of a class of
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random measures supported by random subsets of self-similar sets (Theorem 4.5),
which is a extension of a result of Shmerkin and Solomyak [29] for deterministic
measures. We do this first for self-similar sets where the defining similarities are
translates of each other. Then a device of Peres and Shmerkin [25] enables us to
extend the conclusion to general similarities.

Let

(4.1) IT={fi=7rRe +ai}i~,

be an IFS in the plane, where r € (0,1) and Ry is the orthogonal rotation with
an angle 6 € [0,27). As before ® : ¥ + R? is the canonical mapping from the
symbolic space to the plane.

Let (2, A,P) be a probability space. Let

(4.2) X:Q»—){(ph...,pm)E[O,I]W:Zpizl}
=1

be a random probability vector allowing zero entries. For n € N denote by
Xn: N = Q

the projection from QN onto its nth coordinate. Then X = {X™) = X o x,, }nen
forms a i.i.d. sequence on the probability space (QV, Ay, P®N), where Ay C A®N
is the o-algebra generated by X. Let v be the random probability measure on %
defined by

4.3 v(fin. . ig) = XD X forall iy .. i € B
11 (27

Remark 4.1. Note that the measure v is not the same as the random cascade
measures studied, for example, in [8]. Here for k > 1 the ratio v([i1 ... igik+1]) ¢
v([iy...ix]) is the same for all iy...ix, € AF. The reason why we consider this
particular random measure is that its Fourier transform has a product structure,
which is essential for the proof of absolute continuity in Theorem 4.5.

Let Q be the probability measure on the product space ¥ x QN given by

Q(A) = /QN/ElA(i’“’) V(di) PPV (dw) for all A € By @ Ax.

Denote by 0 : ¥ x QY i+ ¥ x QN the left shift
U(ilig e, WiWe .. ) = (izig e, WoWs .. )
The next proposition and theorem are direct analogues of those obtained in [8]
for random cascade measures.

Proposition 4.2. The dynamical system (3 x QY. By ® Ay, 0,Q) is mizing.

Proof. The proof is similar to that of [8, Proposition 2.2]. Let B be the semialgebra
of By ® Ax consisting of sets of the form

{(,w) iy =3,X € BY}

for ke N,je A* be{l,...,k}, a € A and B’ Borel subsets of [0,1]. It is clear
that B generates By ® Ax, so we only need to verify that lim, ,. Q(c™™(A4) N
B) = Q(A)Q(B) for A, B € B. This follows since by the construction of B, given
A, B € B, there exists a positive integer ng such that c="(A) and B are independent
for all n > nyg. [l



14 KENNETH FALCONER AND XIONG JIN

Let m5 : R? — R? be orthogonal projection onto the line making an angle 3
with the z-axis. Write 4 = ®v for the measure defined by u(A4) = v(®~1A).
Starting from Proposition 4.2 and proceeding just as in [8], we obtain the following
projection property.

Theorem 4.3. Suppose that 8/7 is irrational. Then almost surely, for all 8 € [0,7)
dimpy mgp = min(1, dimg p).

Proof. When 0/ is irrational, the closed rotation group G generated by Ry is the
whole group SO(2,R). Given this, the proof follows exactly the same lines as in
of [8, Sections 2.7 & 4]. In particular, since G = SO(2,R), the dimension of the
projections equals the maximal possible value, just as in [8, Corollary 4.6], O

Theorem 4.5 below, a random analogue of [29, Theorem B], gives conditions for
the projections of the random measure p to be almost surely absolutely continuous
in all directions except for a set E of Hausdorff dimension 0. First, in the following
lemma, we specify the set E and verify that its dimension is 0. We adapt the
delicate estimates of [29, Lemmas 3.2 & 3.4] to our requirements, in particular
obtaining estimates for the dimensions of E, ;(d, N) that do not depend on ¢ or k.

For z € Rlet ||z|| = min{|z — j| : j € Z} and we write [N] = {1,..., N} for each
positive integer N.

Lemma 4.4. Fizr € (0,1), y € R, b € (0,00) and § € R with /7 irrational. For

5 € (0, %) and integers ¢,k > 1, N > 2, let E, (0, N) be the set of all B € [0,7)
such that

1 2qk
max, N#{n € [N] : [brrt= =) cos(8 + v — ngkt)]| < ’"1—5} >1-6,
and let

E = ﬂ U limsup E, ,(1/i, N).

i>3g,k>1 N7
Then dimyg E = 0.
Proof. For the time being we fix the integers ¢, k, N > 1 and abbreviate ¢ := br9,
0:=7"9% and a := qkf. Note that r29% /15 = 1/(15¢2). Let 7 € [1,4].
Given 8 € [0,7), for each n =1,..., N write

(4.4)  ertN""cos(B 4y — na) = ky, + €,, where k,, € Z and €, € [-1/2,1/2).
For z € R let w, = (cosx,sinx). Since o/ is irrational, the unique solution of the
equation

C1W2q + C2Wq = Wo,

is ¢ = —1 and ¢ = 2cosa. Clearly |c1],|ca| < 2.
Applying the formula (wg, wg4y—na) = cos(B + v —na —z) for x = 2a, «, 0 and
using (4.4) we get that

(4.5) 8152(143"4,_2 + ent2) + c2l(kny1 + €nt1) = kn +€n.
This implies that if
max{|en |, lent1], [enta|} < 1/(156%) < 1/(3(20% +2¢ + 1)),

then

|c18kny2 + calkpi1 — ky| < %,
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which means that k12 and k,41 uniquely determine k,,. On the other hand,
lc1lPen o + coleni1 —€n] <2041,

Hence for fixed ky, 42 and k, 41, there are at most [2(¢2 + £+ 1) + 1] < 7¢2 possible
values of k,. Also, from (4.4), there are at most (2¢f + 1)(2¢f? + 1) < (2b+ 1)2¢3
possible pairs of (kn, kn—1).

For § € (0,3) denote by [N]s the set of all subsets of [N] with cardinality no
less than (1 —§)N. For Ac [N]slet A:={0<n<N-2:n+2n+1,n¢c A}.
Then #A > (1 — 30)N — 3. This implies that the number of possible sequences
(kn)N_, corresponding to 3 € [0, 7) for which |e,| < 1/(15¢?) in (4.4) for all n € A,
is bounded above by

(2b 4 1)2£3(702)30N+3,
Note that once (ky,kny_1) is given, the possible values of the remaining k,, are
determined by (4.5), hence the value of 7 € [1,/] is irrelevant. Then, by Cher-
noft’s entropy inequality for binomial sums, see [4], or alternatively using Stirling’s
approximation,

[0N] N
#[N]s < Z (p) < gNI=5log5—(1-0) log(1-8)] < (CVEN
p=0

for all N and 6 € (0, 1), where C is a universal constant.
Combining these estimates, the number of possible sequences (k,))_; corre-
sponding to S € [0, 7) satisfying
1 N—n 2
mﬁw%] N#{n € [N]:||ert cos(B+ v —na)| <1/(156°)} > 1 -6,
TE(l,
is bounded above by
ec‘/gN(2b—|— 1)2£3<7€2)36N+3.
From (4.4), identically
e(kn-‘rl + €n+1)

_ =t —1(
f+7—na=ta (kn + €,) sina

—cota).

Since /7 is irrational, by estimating the derivatives of the function
f(z) =tan™" ((¢/sina) z — cot @),

there is a constant C’ depending only on ¢ and « such that
B € B(ja—~+ f(kjz1/k;), C'¢N)

where j may be 1 or 2 (to ensure that k; and ks are not both 0 when N is sufficiently
large). Hence the set E, (d, N) can be covered by

260\/3N(2b + 1)263(7£2)35N+3 _ 260\/31\7(% + 1)2r73qk(77,72qk)36N+3
balls of radius C'¢~—N = C'rikN,
Using these coverings, it follows that
CVd +36(log7 — 2qk1
dimg (limsup E, (6, N)) < Vot (log gklogr)
N =00 —qgklogr
< (64 (C+3log7)/ —logr)Vo.
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By countable stability of Hausdorff dimension, for ¢ > 3,
dimpg | ) limsup Egx(1/i, N) < (6 + (C + 3log7)/ — logr) /i,
q7k21 — 00

giving the conclusion. (]

Here is the theorem on the absolute continuity of projections of random measures
in all but a small set of exceptional directions when the underlying similarities are
translates of each other. The proof uses Fourier transforms along the lines of [29,
Theorem BJ.

Theorem 4.5. Suppose that 0/ is irrational and let T be an IFS of the form (4.1)
satisfying OSC. Then there exists a set E C [0,7) with dimyg E = 0 such that, for
every random self-similar measure y = v with respect to I of the form defined by
(4.2)—(4.3) and satisfying

(4.6) P(there exist 4, j € A such that X;, X; > p,) =1

for some p, > 0 and

(4.7 P(dimpgpu=s)=1

for some s > 1, almost surely for all B € [0,m) \ E, the projected measure mgp is

absolutely continuous with respect to Lebesque measure.

Proof. We write ang(z) for the angle between the line containing {0, z} and the
z-axis. For 4,j € A let E; ; be the set given by Lemma 4.4 for the ratio r and angle
6 in the IFS (4.1) with v = ang(a; — a;) + 60 and b = |a; — a;|. Let E = U; jer E; ;.
Then dimpg F = 0; we will show that the projected measures mgu are absolutely
continous when 8 € [0,7) \ E.

With p = ®v as stated, we may, by (4.6), choose ¢,j € A with |a; —a;| > 0 such
that

(4.8) P(X;, X; >pi) i=p>0;

these ¢ and j will remain fixed throughout the proof.
For each ¢ > 1, we may regard the attractor K of the IFS (4.1) as the attractor
of the iterated IFS

Iq = {fl = fil"'fiq ETqng-—l—aiZi:il...iq EAq}7

so that K = ®4(X,) where ¥, := {i1is... : i; € A%} and ®, is the canonical map.
Let v, be the random self-similar measure of the form (4.2)—(4.3) with respect to

q
X, = {Xqv(n) — (X.q’(n) = X_(nq*qul)) } .
! ' 11;[1 " imiy.igeds S n>1
Then p = ®4v, for all ¢ > 1. Note that u satisfies
(49) W= Z Xiq’(l)fi/lq7(1)7
ieAd

where p@(1 is the copy of u generated by {X®(+D} _n. In terms of Fourier
transforms, writing 7}, = R, equation (4.9) yields that for £ € R?,

(410) ﬁ(g) — Z Xf’(l)ei“<“"E>Tquq’(1)(f).
ieAq
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Iterating (4.10) and taking the limit,

(4.11) &) = [T v,

n=0
where, for n > 0,
\11%(5) — Z Xiq’(anl)eiW(T:(lhf).
icAq
From (4.11), for ¢ > 1 and k > 2, we can write p as a convolution of two measures
ftq,k * Ng.k, Where

Aen© = I i) and 7= [] wi(©.

kfn+1 kln+1

Notice that piq . is within the class of random self-similar measures of the form
(4.2)—(4.3); indeed it has the same law as the random self-similar measure with
respect to the IFS

{TF 4 fi o Fu (0,00 by sy et

and the random vector
,(1 J(k—1
P LIS ¢l W P

1

)

Thus, using (4.7) and noting the change in contraction ratios from r* to r*~
almost surely dimpg pg,r = % dimyg p = %s > 1 for some sufficiently large k
which we fix for the remainder of the proof. Applying Theorem 4.3 we can find a

set 1 with P(©4) = 1 such that, for all w € Oy, for all g € [0,7), ¢ > 1,
(412) dimH Talg k = 1.

The rest of the proof estimates the Fourier transform of mgn,; using Lemma
4.4. From (4.8), for ¢ > 1 and n > 0 the event

Ay = {X X > for some h=0,....q — 1)

has probability P(A,,) = 1—(1—p)?. Since {xa, ., fn>0 areii.d. random variables
for all ¢ > 1, by the strong law of large numbers we can find a set 23 with P(23) =1
such that for all w € Qo, for all ¢ > 1,

N
1
m — —1—(1—p)
(4.13) A}lm niOXAqu(w) 1-(1-p)“

By (4.6) we may also find a set 3 with P(Q3) = 1 such that for all n > 1,
(4.14) there exists £ € A such that Xé") > Py

(note that since X (n) is a probability vector, there is always one entry no less than
1/m so this is deterministically true).

Take w € 21 N Qs N Q3. The rest of the proof will be deterministic.

Let 8 € [0,7) \ E. By Lemma 4.4 there exists ig = ig(8) such that for all ¢ > 1
there exists Ny = No(8, ¢) such that 8 & E,x(1/ip, N) for all N > Ny. In other
words, for all N > Ny,

2qk

1 T
4.1 m —# NJ: q—qk(N—n) >
(4.15) Te[l,?i%k] N {” € [N]: [jbrr cos(B + v — ngk0)| > 15 } i’
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where v = ang(a; — a;) + 6 and b = |a; — a;|. Take ¢ large enough so that
(1 —p)? < 1/4ig. We show, in a similar manner to [29, Proposition 3.3], that the
projected measure mgng , has positive Fourier dimension. (Recall that the Fourier

dimension of a measure A is the supremum of o such that X({) =0(¢]777?).)
Writing wg = (cos §,sin 8) as before and applying the formula
ToA(t) = A(twg) (€ R)

for the Fourier transform of the projection of a measure A on R?, we obtain

T (t) = [ ] Wi, (tws).

n=1

By (4.13), we can find an integer Ny such that for all N > Ny,

N
(4.16) S Ny @) = N(1=2(1 = p)7) = N(1 = 1/2ip).
n=0

We claim that if x4, ,, (w) = 1, then there exist distinct i,i» € A? such that
>

(4.17) Xiql’(kn),Xiqz’(k”) (p«)%; ang(as, —a;,) = ang(a;—a;); |ai, —ai,| = bra—t

To see this, by (4.14) we can find iy,...,i; € A such that Xi(lq"H) > p, for all
1=0,...,¢g—1. Also X(qk"+h),X§qkn+h) > p, for some h € {0,...,q — 1} since

i
XAgn (@) = 1. Then it is easy to check that iy = 4y ...49,_1iipy1...74 and iy =
i1 ... ip—1Jing1 - - - ig satisfy (4.17). Hence for all n > 0 such that x4, ,, (w) =1 we

can write, for some dy, d; € R,

WO (twg) = 3 XPR G )
icAd
ei‘ﬂ'do <Xﬁ)(nk)+Xiq;(nk)eiﬂ%ankil(aiz—ail)ytw/3> + Z Xiq)(nk)eiﬂ-di>.
i s
Let t = 7(r~9%)N where 7 € [1,779%] and N > Ny := max{Np, N1}, where
No = No(B, q) is given for (4.15). Note that ang(ai, — ai,) =y — 0. Then

<T;k‘71(ai2 - ai1)7 twﬂ> = qu71t<T;Lk71w_,y+97 U)B>
= brra= N co5(B + v — ngkb).

Since ) Jicpa Xiq’(nk) = 1 and Xfl’("k),Xiqz’(nk) > (p«)9, there is a constant p =
p(p«,7,q,k) > 0 such that
W1 (twg)| < 1—p

whenever ||brrd=9*(N=") cos(B + v — ngk6)|| > 4% /15. From (4.15) and (4.16) we
deduce that
1 1 1
#{n € [N]: [, (twp)] < 1—p} > (_— - —,)N =—N.
20 220 2@0
Hence
|W(t)| < (1 _ p)N/Zio < t—log(l—p)/(Qioqklogr)7

provided ¢ > r=9*(N2F1) g5 wan, + has positive Fourier dimension.
It was shown in [29, Lemma 4.3] that the convolution of a measure of full Haus-
dorff dimension with one of positive Fourier dimension is absolutely continuous
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with respect to Lebesgue measure. Since dimpy mgpgr = 1 by (4.12), applying [29,
Lemma 4.3] to mgpiqr and man, i gives that mgpu is absolutely continuous. (]

We now apply Theorems 2.1 and 4.5 to get weak dimension conservation for
self-similar sets in R? where the IFS consists of similarities with irrational rotations
that are translates of each other and satisfy OSC.

Theorem 4.6. Let 0/7 be irrational and suppose that the IFS T = {f; = rRy -
+a; }™ on R2, with r > 1/m and satisfying OSC, has attractor K, so that s :=
dimpy K = —logm/logr > 1.

Then there is a set E C [0,7) with dimyg E = 0 such that for all € [0,7) \ E,
for alle € (0,s — 1),

LYz € mg(K): dimpy (Kﬂﬂ'ﬂ_l(l‘)) >s—1—¢}>0.

Proof. For each integer ¢ > log2/ — logr we may regard K as the attractor of
the IFS Z, := {fi, --- fi, + 1 < i1,...,iqg < m} so that K = ®,(X,) where X, :=
{i1iz... 1 i; € A%} and @, is the cannonical map. Let E,; C [0,7) be the set with
dimpy E,; = 0 given by that Theorem 4.5 for the IFS Z,. Take E' = Uy~ 1052/ —10g rEy
so that dimyg E = 0.

Now fix € € (0,s — 1). Let ¢ > log2/ —logr be an integer to be specified later.
Let

2 ma mi(+e)/s _ 9
418 = ( a(s—1-¢) — 7) = € 071 ’
( ) pq r md/) md — 2 md — 2 ( )
since 7* =m~! and 2 < 7 = m?/*. Let S, be a random subset of A? defined as
follows. First choose two different symbols from A? with uniform probability, then
select each of the remaining m? — 2 symbols with probability p,, all actions being
independent; in this way S, always contains at least two symbols. Moreover, for
each i € AY,
) 2 mi —2
P(l S Sq) = ﬁ + W
— Tq(s—l—e)_

Pq

Let {S’(gk) : k € N} be a sequence of independent copies of S;. Then the set
w . 1 2
5= S x S x -

is an a-random set, with a = logr?*=1=9) /logr4 = s — 1 — ¢, witn &, satisfying
(1) and (2) at (2.1) and (2.2).
Define a random vector X, in a uniform manner, that is,

X(iGSq)}
X, =< —*% ;
L

then (X,); > 1/m? := p, for at least two i € S,. Let {Xék) : k € N} be independent
copies of X, which are supported by S(gk). These random vectors define a random
measure v, on X, of the form described in (4.2) and (4.3) at the start of this section.
Then v, has support %, and ®,v, has support K = &,(3¢). From the strong law
of large numbers, and using OSC when mapping the measure under ®,, it follows
from [10], for example, that, almost surely,

E(log #Sq).

dimg @1y = —logrd
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Write Bin(n, p) to denote the binomial distribution with n points and probability
p. Then

E(log #5,) = E(log[Bin(m? — 2,p,) + 2]) = log(m1+97/5) — (1)
as ¢ — 00, on using (4.18) to express p, in terms of m together with a simple
application of Chebyshev’s inequality. Thus
log(ma(1+9)/) — o(1)

—logm~—a/¢ =lte—o(g')>1

dimy ®vy =

provided we now choose ¢ sufficiently large.

From Theorem 4.5, almost surely for all 5 € [0,7)\ E C [0,7)\ E,, the projected
measure mg®P,1, is absolutely continuous with respect to Lebesgue measure, so
LY(m5(K¥)) > 0. The conclusion follows from Proposition 2.1, taking A = %,
K=¢X)anda=s—1—¢. |

We now extend Theorem 4.6 to general sets of similarities using a technique of
Peres and Shmerkin [25, Proposition 6]. This allows us to reduce a general plane
IF'S to one where the similarities are mutual translates with the attractor a subset
of that of the original IF'S and of arbitraily close dimension to which we may apply
Theorem 4.6.

Proposition 4.7. Let T = {f; = r; Ry, - +a;}™, be an IFS on R? satisfying OSC
with attractor K. For all € > 0 there is an IFS I., satisfying SSC and formed by
a collection of compositions of maps from I, such that all the maps in Z. have the
same rotation Ry for some angle 8 and the same contraction ratio 0 < r < 1, and
with attractor K. C K such that dimyg K, > dimyg K — €.

Moreover, if T has dense rotations then we may take 0/7 to be irrational.

Proof. First we may assume that Z satisfies SSC, since there is an IFS formed by
compositions of the maps in 7 that satisfies SSC with attractor a subset of K and
with Hausdorff dimension arbitrarily close to that of K, see, for example, [24].

Next, as in the proof of [25, Proposition 6], we may find integers ny, ..., n,, such
that the IFS Z,. formed by all those compositions of the maps of Z taken in any
order such that f; occurs n; times for each ¢ = 1,...,m, has an attractor K, C K
with dimy K, > dimy K —e. All the maps in 7, have rotation Ry = Ry, 0,+-4n,,0,,
and contraction ratio r = rj* - rlim.

Now suppose that Z has dense rotations. If (n161 + - -+ 4+ ny,0,,) /7 is irrational
then there is nothing further to prove. Otherwise, at least one of the 6;, say 61, is
an irrational multiple of . By a slight modification of the proof of [25, Proposition
6] we may conclude that the attractor of the IFS Z! formed by the compositions
of the maps of Z such that f; occurs n; — 1 times and f; occurs n; times for i =
2,...,m, with attractor K. C K has dimyg K/ > dimg K —e. (We just note in [25,
Proposition 6] that the number of paths ending at a neighboring lattice point to v is
comparable to the number of paths ending at v.) Then ((ny —1)01 4+ +nmbpm)/7
is irrational so the conclusion holds for Z. O

Theorem 4.8. Let
Z={fi=riRy, - +a;}i*y
be an IFS on R? with dense rotations satisfying OSC, with attractor K and with

m

s = dimg K > 1, where s is given by > .", r{ = 1. Then there is a set E C [0,)

7
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with dimg E = 0 such that for all B € [0,7) \ E, for all e € (0,s — 1),
(4.19) LYz e mp(K) : dimy (K Nyt (x)) > s —1—€} > 0.

Proof. For each € > 0, applying Theorem 4.6 to the amended IFS 7, with attractor
K, given by Proposition 4.7 (replacing e by €/2 in both theorem and proposition),
there is a set E. C [0,7) with dimy E. = 0, such that (4.19) holds for all g € E..
So that the set of exceptional 5 does not depend on €, we let £ = U2, Eo-n,

n=ngo

where 2770 < s — 1, so that dimyg F = 0. O

5. FURTHER REMARKS

1. A natural question is whether these results can be strengthened from ‘weak
dimension conservation’ to ‘dimension conservation’, that is whether the ‘¢’ can be
removed in the conclusion of Proposition 2.2, and in Theorems 3.2, 3.4, 4.6 and 4.8.

2. Another natural question is whether, in Proposition 2.2, the condition on the
projection of Conv(®[i]) can be weakened, with a consequential weakening of the
corresponding condition on the projections of K in Theorem 3.2. Furthermore, can
dimp of the sections be replaced by dimy in the conclusions of Proposition 2.2 and
Theorem 3.27 An alternative approach would be to eliminate the exceptional set
of directions in Theorem 4.6 and thus Theorem 4.8.

This raises the question of whether the box-dimension and Hausdorff dimension
of sections of self-similar set are ‘typically’ equal for all, or perhaps ‘nearly all’
directions. If dimp (K N L) = dimy (K N L) for every line L, or at least for a large
set of lines, then one might be able to replace lower box dimension by Hausdorff
dimension in the conclusion of Theorem 3.2. There are plane self-similar sets defined
by homotheties with at least some sections having distinct Hausdorff and lower
box dimensions, for example for certain horizontal sections of the 1-dimensional
Sierpinski triangle, that is the attractor of the plane IFS with maps fi(z,y) =
(3, 1), falw,y) = (3a+2, 2y), falw,y) = (3o, Ly+2) (we are grateful to Thomas
Jordan for pointing out this example to us); see also [2]. Is this possible for self-
similar sets with dense rotations?

3. Similar conclusions to Proposition 2.2 and thus Theorem 3.2 might be expected
for projections onto k-dimensional subspaces V' where k£ > 2. However, it seems
hard to get an analogue of Lemma 2.3 in this case. One would need to show that
for any cube I C V with |I| < r there is a bounded number of points z; € V' with
N(z;,r) < M such that if N(x,r) < M for some x € I then some L, intersects
every set Conv(®[i]) such that i € A, that intersects L,. (Here N(x,r) is the
number of Conv(®[i]) with i € A, that intersect L,, the (d — k)-plane through
x € V and perpendicular to V.)

4. Our results have been presented for self-similar sets defined by orientation-
preserving similarities. It would be possible to extend them to allow some of the
maps to be orientation-reversing, for example by replacing an IF'S by one formed by
appropriate orientation-preserving compositions of the maps with little reduction
in the dimension of the attractor, as in the proof of [25, Proposition 6].
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