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Abstract—Visual recognition and vision based retrieval of
objects from large databases are tasks with a wide spectrum
of potential applications. In this paper we propose a novel
recognition method from video sequences suitable for retrieval
from databases acquired in highly unconstrained conditions e.g.
using a mobile consumer-level device such as a phone. On the
lowest level, we represent each sequence as a 3D mesh of densely
packed local appearance descriptors. While image plane geometry
is captured implicitly by a large overlap of neighbouring regions
from which the descriptors are extracted, 3D information is
extracted by means of a descriptor transition table, learnt from
a single sequence for each known gallery object. These allow
us to connect local descriptors along the 3rd dimension (which
corresponds to viewpoint changes), thus resulting in a set of
variable length Markov chains for each video. The matching of
two sets of such chains is formulated as a statistical hypothesis
test, whereby a subset of each is chosen to maximize the likelihood
that the corresponding video sequences show the same object. The
effectiveness of the proposed algorithm is empirically evaluated
on the Amsterdam Library of Object Images and a new highly
challenging video data set acquired using a mobile phone. On both
data sets our method is shown to be successful in recognition in
the presence of background clutter and large viewpoint changes.

I. INTRODUCTION

Owing to its pervasive application potential, computer
based object recognition has been a focus of much computer
vision research in the last decade. Successful proof-of-concept
as well as commercial applications have been demonstrated
in the context of large-scale image retrieval [1], urban scene
recognition [2], augmented reality, and others. While most
existing methods address the problem of object recognition
using individual images, in this paper we focus on recognition
from video. In other words a sequence of frames (images) of
an unknown, query object is matched against a database of
sequences of known, gallery objects. This problem setting is
of an increasing significance considering the ease with which
users can acquire and store videos (e.g. using a mobile phone
camera and cloud storage), and the recognition robustness that
the availability of additional data (in comparison with a single
image) can provide (e.g. with respect to viewpoint).

II. PREVIOUS WORK

Automatic object recognition has attracted considerable
research effort. Here we briefly review some of the directions
taken by previously proposed approaches in the literature.

(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Fig. 1. Typical frames from videos of the same object, acquired at different
times and in different backgrounds. Recognition of untextured (“smooth”)
objects across pose and illumination changes, and the presence of clutter poses
a major challenge to existing methods.

A. Holistic representations

An important source of difficulties that arise in an attempt
to understand the content encoded by pixel intensities is the
distributed nature of the information that can be potentially
relevant to grouping decisions. The observation that the ul-
timate interpretation of an image fragment in the context
of object recognition more often than not depends on its
context, if not on the entire image, motivates the use of holistic
representations.

a) Prototypes: One of the most common ways of
representing objects is by a set of appearance prototypes
or exemplars [3], [4]. This representation is simple, directly
measurable and can thus be used irrespective of object scale
or data quality in general. It also has a clear probabilistic
interpretation, which means that any of a number of well
understood off-the-shelf statistical methods can be applied to it.
The entirety of an object’s appearance is effectively described
by the underlying probability density function which describes
the object’s possible appearance variation [5], [6].

At its core, the representation is in fact the image itself and



is thus not invariant to virtually anything at all. Background
clutter poses a significant problem, just as does occlusion, as
well as in the case of general, non-planar objects, changing
viewpoint and illumination. Depending on the nature of the
object (planarity and reflectance properties) a large number
of exemplars may be needed to capture the entire corpus of
appearance variation [4].

b) Model based: Model based object representation
is rather different in nature from the previously discussed
prototypes and the only truly view-invariant representation.
Rather than describing an object in terms of how it appears
in images, an object is characterized by its inherent properties
such as shape and texture. As a result, this representation is
not directly measurable from images. Instead, given models
of objects of interest, recognition is performed by finding the
model that best fits the image using back-projection: using a
postulated set of viewing parameters (e.g. camera angle and
illumination direction) the model is used to predict what the
image should look like, which is then compared to the actual,
observed appearance [7], [8], [9]. More generally, it need not
be appearances that are compared but rather any measurable
image features [10]. However, due to the constrained nature of
this representation, it is generally suitable only for recognition
within a narrow class of objects.

B. Local representations

In contrast to holistic approaches, local methods focus
on describing different parts of objects first, building the
representation of an entire object from bottom up.

c) Part based representations: The pictorial structures
approach [11], [12] is a typical example from the group of part
based representations [13]. Simultaneously using appearance
and spatial information, an object is represented by a geomet-
rically deformable configuration of different predefined (and
typically manually chosen) parts. Successful examples from
the literature include faces (with the eyes, the mouth and the
nose as parts), the human body (with the limbs and the head
as parts), motorcycles and aeroplanes. In the context of this
paper, part based representations suffer from similar limitations
as model based approaches.

d) Local feature based methods: In general object
recognition tasks, part based approaches are largely over-
shadowed by the success of representations which use local
descriptors [1], [14], [15], [16]. The idea is simple: at the
lowest level small image patches are represented by feature
vectors, which are at higher levels integrated into a consistent
object description. Thus, there are three main design areas
which have given rise to a variety of methods:

• which image patches are considered [17],

• how each patch is represented [15], [16], and

• how local descriptors are used to describe the entirety
of an object [18], [19].

In spirit, the method proposed in this paper is local feature
based with most of our contributions falling within the scope
of the last of the aforementioned design issues.

III. PROPOSED METHOD

Our general approach in recognizing the object in a novel,
query image sequence is to compare it to training sequences of
all “known” objects in the gallery and assign it to the one with
the highest degree of similarity. Since the object of interest
has unknown, arbitrary shape and appearance, and may be
embedded in significant background clutter, extracting a model
of the object’s appearance from each sequence in isolation
for the purpose of comparing model parameters is difficult
without imposing constraints on the class, shape, or appearance
of the object or the background (as was done for example by
Arandjelović and Zisserman [1] who constrained their attention
to sculptures which allowed them to learn and perform super-
pixel-level background/foreground segmentation).

Hence in order to avoid the need for overly restrictive
assumptions, we take a different approach. We merely assume
that the object of interest is roughly in the centre of the video.
Then when two sequences are compared with each other (one
from the gallery of known objects, the other a query sequence)
we seek to find the model parameters which best explain both
sequences i.e. that automatically infer the common appearance
elements between them. Thus, each comparison, even of
sequences which correspond to different objects, produces a
hypothesised model of an object. The aim is that the hypothe-
sised model produced when correctly matching sequences are
compared is that with the highest likelihood. We now explain
how each of the components of our algorithm fits into the
overall framework which accomplishes this. In summary, our
algorithm comprises the following sequence of steps:

• Motion parallax based frame-wise scale normalization,

• Extraction of low-level spatio-termporal appearance
features,

• Model parameter fitting via cross-sequence mutual
likelihood maximization, and

• Quasi-volumetric foreground/background video se-
quence segmentation and model likelihood estimation.

A. Baseline appearance representation

At the bottom-most level, our method is based on describ-
ing small image patches i.e. local appearance [20]. This is
motivated by observing that if such patches are chosen wisely,
they correspond to object parts with consistent geometry and
texture, and are thus less sensitive in appearance to variation
in viewpoint. For such regions, representations such as the
Scale Invariant Features Transform (SIFT) [21] and the related
Histograms of Oriented Gradients (HOGs) [22] descriptors
have been proposed and demonstrated effective in a variety
of applications [23]. Being based on image intensity gradients
they also show low sensitivity to illumination changes [24],
[25], [26].

Most local descriptor based methods employ descriptors
in a sparse fashion by focusing on a set of detected interest
points [16]. When the number of detections is large this can
achieve impressive robustness to partial occlusion and image
clutter. However, a serious limitation of this approach is that
it cannot handle untextured objects [1], [27]. A related prob-
lem is that of enforcing geometric constraints between local



descriptors. If no geometric constraints are used (e.g. as in
the bag-of-words approach [1], [28]), the representation lacks
discriminative power to distinguish between similar objects,
especially two objects of the same category, or complex objects
with the same basic building element [29]. For example,
with this representation, both a bicycle and a metal rail
fence may end up looking very similar indeed. On the other
hand, devising geometric constraints suitable for general, 3D
object is challenging. Lowe’s use of the Hough transform
effectively restricts the class of objects to nearly-planar ones
or, alternatively, restricts camera viewpoint to only very small
deviations.

1) Capturing view geometry through redundancy: We
tackle the issue of geometry, that is, geometric constraints
between different appearance features, using two complemen-
tary approaches. The first of these deals with image plane
geometry i.e. the relationship between extracted local patches
in a single frame. This is realized implicitly, by making the
relative shift (∆x,∆y) between neighbouring patches smaller
than their dimensions sx and sy , i.e. sx > ∆x and sy > ∆y,
resulting in patch overlap. For our experiments we used 90%
overlap between neighbouring pathes both in the vertical and
the horizontal direction:

∆x/sx = ∆y/sy = 0.1, (1)

as illustrated conceptually in Fig 2.

(a) Dense grid (b) Neighbouring patch overlap

Fig. 2. (a) We describe the appearance of an entire video sequence, and
thus both of the object of interest as well as any present clutter, by collecting
local image patches collected over a dense grid. (b) Geometric relationship
between patches is captured implicitly by making grid spacing smaller than
the patch size. The resulting patch overlap means that the same image region
contributes to multiple local descriptors.

To see how this approach captures geometric constraints in
the image plane, notice that for any two arbitrary patches there
is a sequence of patches, each neighbouring the previous one,
that connects them. Since neighbouring patches greatly overlap
and objects tend to be smooth, the difference in their appear-
ance is small and the aforementioned patch sequence describes
a manifold-like structure in the image space (for a similar idea
in a different domain, that of temporal topic modelling, see the
methods and analyses in [30], [31]). Extending this to the entire
set of object image patches collected over our dense grid, it
can be seen that this set then describes a 2D surface in the
image space. At the same time, the proposed overlap solves
the problem of object-grid alignment too. Because our patches
are densely packed, while translating the object relative to the
grid may change the appearance of any single patch, it leaves
the entire set collected over the image unchanged.

a) Representing local appearance: Following previous
work, we use the SIFT descriptor to describe each patch in
our dense grid and then quantize it by assigning it to the
nearest of the k clusters, or descriptor words, estimated by
k-means clustering all descriptors extracted from all frames of
the training image sequences (we used k = 500).

B. Scale normalization

As already mentioned in Sec II most of the existing
local appearance based recognition algorithms are sparse in
the sense that they focus on a relatively small number of
salient, stable loci. These can be detected using one of a
number of keypoint detectors [14], [32]. Considering that all
modern keypoint detection algorithms explicitly consider the
scale of the keypoint, local descriptors are extracted at the
corresponding scale thereby achieving scale invariance. Given
that in the proposed method local descriptors are collected over
a dense grid, the benefit of scale invariance does not come
so readily and requires a preceding normalization stage. Our
approach is broadly motion parallax based.

We start by computing the optic flow field, using a variant
of the well-known Lucas-Kanade algorithm. This field is mod-
elled as comprising a translatory component (recall that our
aim is to handle videos acquired in unconstrained conditions
using handheld devices) and a rotational component. To correct
for the former, we subtract the mean flow vector computed
over a frame from the entire field. Since the remaining flow
field is generated by a rotational movement of the camera
with the object of interest in the centre of the view, motion
parallax effected by the depth differential between the object
and the background is demonstrated by a discontinuity in the
magnitude of the optic flow field at the object edges. By
detecting the rough object boundary based on this discontinuity
the rough object size within the frame can be estimated and
normalized by re-scaling the frame.

C. Descriptor transition tables

In Sec III-A1 we explained how the proposed method
implicitly captures image plane geometry, that is, the relation-
ships between different local features extracted from a single
video sequence frame. We now explain how 3-dimensional
geometry is learnt. The key idea revolves around the descriptor
transition table representation which plays the central role in
our foreground/background segmentation and the estimation of
the likelihood that two sequences (gallery and query) contain
the same object.

Consider an image of an object overlaid with a dense
grid of overlapping image patches, such as the one previously
introduced in Fig 2, and within it a particular patch at the
location (x, y) with the corresponding descriptor word w0. As
the viewpoint is changed, the appearance of the patch at (x, y)
changes as well, eventually sufficiently so to correspond to an
entirely different descriptor word. Depending on the direction
of viewpoint variation, the word observed at (x, y) may change
from w0 to any one of the words in the set of all descriptor
words {wi}.

The above allows to to define what we term the descriptor
transition table (DTT) which corresponds to a particular video
sequence seen in training. The value in the descriptor transition



table T at row j and column k is the probability that the
observed descriptor word wj makes the transition to the word
wk for a small viewpoint change:

T (j, k) = p(wj → wk). (2)

The probabilities of a transition table can be readily seen
to capture the relationship between appearances of the same
object from different views and thereby, implicitly, its geom-
etry too. Broadly speaking, the spirit of the key idea here is
similar to that of e.g. spatio-temporal interest points [33] or
3D LBPs [34].

b) Learning a descriptor transition table: Following
our definition of a descriptor transition table, it is tempting
to consider changes of descriptor words between successive
frames only in the estimation of the aforementioned probabil-
ities p(wj → wk) which correspond to different table entries.
We do not adopt this approach as it is inherently sensitive to
the actual ordering of objects views observed in a particular
sequence. In other words, different video sequences can con-
tain exactly the same views of an object but ordered differently.
Thus we argue that for the purpose of DTT estimation, training
video frames should be treated as a set, rather than an ordered
sequence.

Our approach to populating a DTT from a training video se-
quence consists of considering all possible frame successions.
We say that two frames Ii and Ij are “possibly successive” if
their normalized distance in the image space is less than the
threshold t:

‖Ii − Ij‖ / ‖Ii‖ ≤ t, (3)

as illustrated in Fig 3 (in this work we used t = 0.1). Not
only does this approach accomplish the desired independence
of view sequencing [35] but it also has the advantage of using
in the estimation multiple transitions per frame, rather than
only a single one actually observed.

Fig. 3. The proposed learning of the descriptor transition table corresponding
to an object in a training video sequence does not rely on the ordering of object
views in the video. Instead we consider all descriptor word transitions between
all “possibly successive” pairs of frames (after coarse background removal)
as determined by their distance in the image space.

c) Applying the DTT model: We now wish to apply
the learnt object appearance model in the form of a descriptor
transition table, to a novel video sequence of an unknown
object. We treat each track of descriptor words through a video
sequence as a first order Markov chain, where the probability
of observing a word wi at “time” n+1 in the chain is governed

by the learnt DTT:

p(Xn+1 = wi|Xn = wj) = T (j, i). (4)

The track starting in the first frame at the word X0 = wi(0) is
then produced by maximizing the likelihood:

p(wi(1)|wi(0)) p(wi(2)|wi(1)) . . . p(wi(N)|wi(N−1)) (5)

under the “bound velocity” constraint on patch correspon-
dence: ∥∥∥∥( xn+1

yn+1

)
−
(
xn
yn

)∥∥∥∥ ≤ d, (6)

where (xn, yn) is the location of the n-th patch in the chain
and d =

√
2 (restricting the possible transition loci to the 3×3

neighbourhood), as illustrated in Fig 4. This maximization is
readily achieved using dynamic programming and the well-
known Viterbi algorithm.

D. Quasi-volumetric segmentation

At this stage from a query video we have produced a set
of descriptor word transitions through the sequence. Let’s call
one such track of transitions ti:

ti =
{

(w
(i)
1 , x

(i)
1 , y

(i)
1 ), . . . , (w

(i)
Ni
, x

(i)
Ni
, y

(i)
Ni

)
}
, (7)

where w(i)
j is the word at (x

(i)
j , y

(i)
j ) that transitions to w(i)

j+1 at
(x

(i)
j+1, y

(i)
j+1). By construction, meaningful tracks should weave

through the object and not trough the background. Thus, we
seek to choose optimally a subset of tracks To which explains
the object’s appearance.

Our approach uses the Graph Cuts algorithm [36]. Mo-
tivated by the argument laid out above and in contrast to
previous methods, we apply it on the descriptor track level.
Unlike in the case when Graph Cuts is used on a single image,
the potential of our tracks to diverge, interlace or intercept
means that the underlying graph and its structure are not
inherent in the basic elements that are being discriminated.
Instead we construct it as follows:

• each track corresponds to a graph node

• the cost of assigning the label “background” to the
track tj is the probability of the corresponding Markov
chain in (5)

• nodes corresponding to tracks ti and tj are connected
iff in any frame the distance between the patches they
pass through is less than 2 pixels:

∃k. (x
(i)
k − x

(j)
k )2 + (y

(i)
k − y

(j)
k )2 < 22 (8)

• the cost of assigning different labels to tracks ti and
tj is:

eij =
∑
k

[
(x

(i)
k − x

(j)
k )2 + (y

(i)
k − y

(j)
k )2

]−1
. (9)

Following the application of Graph Cuts, the tracks labelled as
foreground define a 2D+time volume which allow the object
to be segmented out, as illustrated in Fig 5. Finally, the like-
lihood of the same object being present in the two compared
sequences can be obtained by computing the likelihood in (5)
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(a) Descriptor word transitions inference

Start of Video

End of Video

(b) Segmentation using coherence of transition paths

Fig. 4. Descriptor word transitions: (a) possible transitions are considered in
frame-to-frame 9 × 9 neighbourhood (using the grid illustrated in Fig 2 and
defined in Sec III-A1), and (b) word trajectories through the time dimension
are used to perform Graph Cuts based quasi-volumetric segmentation of
foreground/background in a video; see Fig 5.

using only tracks segmented out as belonging to the foreground
(i.e. the best object hypothesis for the comparison).

IV. EVALUATION

In this section we turn our attention to the evaluation of
the proposed method. We begin by describing the data which
was used to train and query different algorithms, continue
with a summary of the existing methods we compared our
approach with, and finish with a presentation of the results
and a discussion.

A. Data sets

To evaluate the performance of the proposed algorithm and
compare it to previously proposed approaches, we used two
pertinent data sets. These are the publicly available Amsterdam
Library of Object Images (ALOI) [37] and a highly challenging
data set of video sequences acquired using a mobile phone,
collected by ourselves. A comprehensive description of the
ALOI can be found in the original publication. In the context
of the present work it suffices to summarize it by noting that
the data set is very large, comprising sets of images of 1000
objects. The set of images of a particular object corresponds
to 72 different viewpoints at uniformly sampled yaw values
i.e. at successive 5◦ rotations about the vertical axis. The
ALOI contains a diverse range of objects, some of which are
very much alike one another, sharing similar appearances or
shapes. Examples are shown in Fig 6. The data was acquired
in controlled conditions (uniform viewpoint sampling, uniform
background) which allowed us to design a well-controlled
evaluation protocol as a means of gaining initial insight into
the strengths and weaknesses of different evaluated methods.

Unlike the ALOI, the second set we used for evaluation
was acquired in highly uncontrolled conditions. In particular it

(a) Original image input (single frame from a sequence)

(b) Corresponding slice through quasi-volumetric segmentation

Fig. 5. (a) Typical frame from a raw video sequence, and (b) the same
frame with the background removed following the proposed quasi-volumetric
foreground/background segmentation of the video.

comprises 100 video sequences acquired using a mobile phone,
with 2 sequences for each of the 50 objects. Objects were
imaged in a room lit by artificial lighting. The placement of an
object in the two sequences was different, with major changes
in background clutter, illumination, pose, scale, and camera
motion. Some of the challenges were already illustrated in
Fig 1, while Fig 7 shows some additional examples of objects
in the data set. Notice that some of the objects are untextured
and some “wiry” (e.g. respectively the dining plate and the
molecular model in Fig 7). In addition to general clutter, also
observe the presence of shadows as well as specular reflections.
We purposefully included similar objects such as, for example,
a stapler and a hole-punch.

B. Baseline methods

We consider several baseline set representations which
either demonstrate state-of-the-art performance in comparable
recognition tasks or which have been recently described in
the literature. These are: (i) sets of SIFT local descriptors,
(ii) Gaussian mixture models, (iii) linear subspaces. As usual
we fit Gaussian mixtures by employing probabilistic princi-
pal component mixtures and minimizing the corresponding
model+data description length; following recommendations
from prior work [38] for the subspaces based baseline we adopt
6-dimensional subspaces.

We adopt two baseline set similarity measures, again moti-
vated by the reports of their good performance in the existing



(a) Digital clock (b) Rubik’s cube (c) Box of tissues (d) Dinner plate

(e) Printer (f) Coffee mug (g) Box of pills (h) Molecular model

Fig. 7. Newly collected database of object video sequences: examples. Shown are representative frames from the corresponding video sequences and a succinct
description of the imaged object.

Fig. 6. Examples of objects from the Amsterdam Library of Object Images.
The library includes a large number of objects (1000) with varying textural
and shape properties, with many objects sharing similar appearance or shape.

literature. The first of these is the Kullback-Leibler diver-
gence [39] applied in the context of the Gaussian mixture based
representation and estimated numerically as no analytical solu-
tion exists (we shall refer to this method as Appearance+KLD).
The second similarity measure we adopted and which we
applied in the context of SIFT descriptor sets and linear
subspaces is the algebraic method based on the maximum
correlation between pairs of vectors lying in two subspaces (we
shall refer to this method as SIFT+COS), which is an extension
of the maximum maximorum (‘max-max’) cosine similarity
between sets of exemplars maxf1∈S1,f2∈S2

fT1 f2/‖f1‖/‖f2‖
[40], [41], [42]. In recent experiments [38] this method was

shown to outperform a number of alternatives including by
a large margin the pyramid match kernel of Grauman and
Darrell [43] and the locality-constrained linear coding (LLC)
of Wang et al. [44]. Lastly we also apply the aforementioned
maximum correlation based distance on raw appearance too
(Appearance+COS).

C. Results and discussion

We started our evaluation by experiments on the ALOI,
designed to examine how well our algorithm copes with recog-
nition across viewpoint changes. Generalization from a limited
viewpoint range to a different, also limited viewpoint range,
is a major challenge yet one that is frequently encountered in
practice. We adopted the following evaluation protocol:

• for all possible viewpoint angles α (relative to an
arbitrary origin of choice), the images in the viewpoint
range (α, α+∆φ) of breadth ∆φ are used as a training
sequence/set,

• for all possible viewpoint range shifts ∆α, the images
in the viewpoint range (α + ∆α, α + ∆α + ∆φ) are
used as the query sequence/set,

• the performance at the shift of ∆α is quantified by
the average recognition rate over all test cases.

Because all training and query sequences contain only a limited
range of views, this protocol is much more challenging than
when views are chosen as random subsets of the original
72 views. For clarity, all results reported in this paper were
produced using ∆φ = 40◦ – we found that the results obtained
using this value are representative, qualitatively speaking, of
general performance trends across different methods examined.

The key results are summarized by the plot in Fig 8
which shows the variation in the rank-1 recognition rate
achieved using different methods as a function of the viewpoint
change between the training and query sequences. As expected



TABLE I. THE PERFORMANCE OF DIFFERENT METHODS ON OUR NEW DATA SET OF VIDEO SEQUENCES ACQUIRED USING A MOBILE PHONE CAMERA IN
THE PRESENCE OF MAJOR CLUTTER, ILLUMINATION, AND VIEWPOINT CHANGES. IN ADDITION TO THE AVERAGE RANK-1 RECOGNITION RATE THE

CONFIDENCE OF CORRECT RECOGNITIONS IS QUANTIFIED BY THE RATIO OF THE SIMILARITY BETWEEN THE QUERY AND CORRECT MATCH, AND THE
QUERY AND THE SECOND BEST MATCH (APPEARANCE+KLD AND APPEARANCE+COS ALGORITHMS RECOGNIZED NO OBJECT CORRECTLY SO THE

CORRESPONDING QUANTITY IS UNDEFINED).

Method SIFT+COS Appearance+KLD Appearance+COS Proposed method

Rank-1 rate 0.06 0.00 0.00 1.00

Separation 1.22 N / A N / A 1.92
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Fig. 8. The average rank-1 recognition rate achieved using different methods
across viewpoint changes, using image sets constructed from the Amsterdam
Library of Object Images. As expected the performance of all methods
deteriorates with the increase in the viewpoint difference between training
and query sequences. However the proposed method demonstrates far superior
behaviour than all other methods.

both from theory and previous reports in the literature, the
performance of all methods deteriorates with an increase in
the viewpoint difference between training and query sequences.
The most rapid deterioration is observed for the KLD based
method which highlights the inherent inability of probability
density based methods to generalize – if the training set does
not contain representative variability, recognition performance
for arbitrary novel input is likely to be poor. For viewpoint
changes of moderate extent (∆α < 40◦) generalization is
improved with subspace modelling and the use of a more
invariant correlation based similarity measure (also consistent
with the previous findings in the literature [38]), as witnessed
by markedly better performance of the Appearance+COS algo-
rithm. Interestingly this initial improvement is not maintained
for large viewpoint changes of over 40◦. Considering the
nonlinear distribution of object appearance within the corre-
sponding image space, deterioration for linear subspace based
approaches is certainly expected, yet it is unclear why it would
be any greater than for the density based KLD algorithm. The
use of the SIFT descriptor, which itself has been shown to show
good resilience to both illumination and viewpoint, confers
further benefit, with the corresponding SIFT+COS algorithm
exhibiting even slower deterioration across a wide range of
viewpoint changes (∆α < 55◦, and most significantly so for
∆α < 40◦). However this method too is outperformed by
the simple Appearance+KLD approach for changes of over
55◦. Lastly, the proposed method is readily seen to exhibit
vastly superior performance in comparison with all of the other
methods and across the entire range of viewpoint changes.
Even for the extreme change of 70◦ it attains over 70% correct
recognition rate. In comparison, the recognition rate of the
Appearance+KLD approach drops to the same level already

for a 30◦ viewpoint differential, for Appearance+COS for 37◦,
and SIFT+COS for 46◦.

Following the highly promising findings on the ALOI in
terms of the superiority of the proposed method, we next
sought to evaluate how the algorithms perform on truly realistic
video sequences and the newly introduced data set described
in Sec IV-A. We used one of the image sequences of an object
for training, and the other one (recall, in a different context,
with changes in background clutter, viewpoint, camera motion,
and illumination) as query. As before we initially examined the
rank-1 recognition rate of different algorithms, that is, the rate
at which the correct gallery sequence was found to be the best
match to the query. The results are summarized in Table I (first
data row). It can be immediately seen that the superiority of our
algorithm over the evaluated alternatives is demonstrated best
in highly challenging conditions such as those present in this
data set. Our algorithm correctly identified the query object in
all cases, thereby achieving perfect recognition performance.
In contrast, the two appearance based approaches (Appear-
ance+KLD and Appearance+COS) recognized none of the
objects correctly, with the SIFT based algorithm coping with
the challenges somewhat better but still poorly in comparison
with the proposed method.

Lastly, to assess the confidence of the successful recogni-
tions, when a successful recognition is observed we examined
the ratio of the likelihoods corresponding to the top (i.e.
the correct) match and the second best match (which is by
implication incorrect). The results can be found in Table I (sec-
ond data row). Since Appearance+KLD and Appearance+COS
methods recognized no object correctly, no measurement could
be taken. Comparing the results of the proposed method and
that of SIFT+COS approach, we can see that not only did our
algorithm exhibit vastly superior performance in terms of rank-
1 recognition but also that its correct decisions were made with
much greater confidence (over 50% greater class separation).

V. CONCLUSIONS

We described a novel method for object recognition that
uses video sequences both as training and query input. The
main novelty lies in the framework used to employ discretized
local features to describe a video sequence, as well as the
manner in which such features are selected in the matching
process. One of the key ideas is that of the descriptor transition
table which implicitly captures the 3D geometry of an object
by considering the transition of a local feature from one
descriptor word to another as the camera viewpoint changes.
The proposed method was demonstrated as effective an in
empirical evaluation on the publicly available Amsterdam
Library of Object Images and a new highly challenging data
set of video sequences acquired using a mobile phone.
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