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ABSTRACT. In intraplate orogens tectonothermal activity occurs at a site removed
from a plate margin and is considered to result from localization of far-field plate-
boundary stresses through a combination of pre-existing structural features and
modification of lithospheric properties through fluid alteration, enhanced heat flow
and potential thermal blanketing effects. The mid-Paleozoic Kwangsian Orogeny
(460–400 Ma) in the South China Craton is geodynamically associated with the
far-field response to convergence along the northern margin of east Gondwana.
Deformation is focused adjacent to the site of both early Neoproterozoic suturing of
the Yangtze and Cathaysia blocks and mid-Neoproterozoic rifting within the craton.
Furthermore, this region is one of high crustal heat flow and of widespread fluid
release and localized crustal melting during orogenesis. In the late Neoproterozoic-
Cambrian, the South China Craton constituted part of the lithosphere of greater India
and was separated from Australia by the Kuunga Ocean. The closure of the Kuunga
Ocean during Cambrian-Ordovician time, resulting in final assembly of Gondwana,
permitted the stresses sourced from the Terra Australis accretionary orogen in East
Gondwana to propagate inboard across the supercontinent. These stresses localized
along the site of the Neoproterozoic Nanhua Rift Basin of South China resulting in
basin inversion and development of the intraplate Kwangsian Orogeny.

Keywords: Intraplate, Kwangsian Orogeny, South China, Kuungan Orogeny,
Assembly of Gondwana

introduction
Tectonothermal activity in intraplate orogenic belts is commonly linked via

far-field stresses to contemporaneous plate convergence in collisional or accretionary
orogenic belts (Cawood and others, 2009; Aitken and others, 2013; Raimondo and
others, 2014). Active examples include Cenozoic intraplate deformation of central
Asia responding to India-Asia collision (Yang and Liu, 2009; Yin, 2010; Cunningham,
2013; Raimondo and others, 2014) and the Cenozoic Central Andes Orogen respond-
ing to flat-slab subduction of the Nazca plate (Ramos and others, 2002; Ramos and
Folguera, 2009). Older intraplate events include the Neoproterozoic-Paleozoic Peter-
mann and Alice Springs orogenies of central Australia (Atiken and others, 2009, 2013;
Raimondo and others, 2010, 2014) and the Borborema Province of northeastern Brazil
(Tommasi and Vauchez, 1997; Neves, 2003). However, linking intraplate and plate
margin processes in ancient examples is hindered by the absence of a preserved
kinematic framework.

Early to mid-Paleozoic orogenesis in South China is considered intraplate in
origin based on an absence of sutures or other evidence for closure of an ocean basin
or plate margin of appropriate age, as well as the presence of pre-, syn-, and
post-orogenic sedimentary units that can be correlated across the region (Shu and
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others, 2008, 2014; Faure and others, 2009; Li and others, 2010; Chen and others,
2010, 2012b, 2014; Wang and others, 2010; Charvet and others, 2010; Charvet, 2013).
This event is referred to as the Kwangsian Orogeny (Ting, 1929) but the region
affected has also been variously termed the South China Caledonian fold belt (Ren,
1991; Charvet and others, 1999; Faure and others, 2009) or the Wuyi-Yunkai Orogen
(Li and others, 2010). Orogenesis is marked by a regional unconformity between
pre-Devonian and Devonian strata, and widespread magmatic and metamorphic
events are dated between 460 to 400 Ma in the southeastern part of the South China
Craton (Li and others, 2010; Wang and others, 2011c, 2012b, 2013c; Xu and others,
2011; Zhang and others, 2012; Yao and others, 2012; Wang and others, 2013a; Xia, and
others, 2014). On the basis of the temporal equivalence of tectonothermal activity,
orogenesis likely extended northeast to include activity on the Korean peninsula (Kim
and others, 2006, 2014) and southwest into the Indochina Block (Carter and others,
2001; Nagy and others, 2001; Roger and others, 2007; Lepvrier and others, 2008; Usuki
and others, 2009). The tectonic driver for the Kwangsian Orogeny has been related to
a far-field response to the subduction/collision between the South China and North
China blocks during the Silurian (Wang and others, 2007) or plate interaction on the
northern margin of east Gondwana (Li, 1998; Li and others, 2010; Wang and others,
2010). But the controls on the localization of intraplate deformation to specific regions
such as South China are unresolved and are the focus of this paper. We present an
analysis of the geology of South China including the potential for variations in
lithospheric rheology related to the disposition of inherited lithospheric discontinui-
ties, the impact of heat flow and potential thermal blanketing effects, and the effects of
fluid alteration on lithologic properties. Such features are known to play a significant
role in intraplate deformation of other regions and we argue that in South China they
enabled stress localization and intraplate deformation well removed from an active
plate margin.

geological setting
The South China Craton incorporates the Yangtze Block to the northwest and the

Cathaysia Block to the southeast (fig. 1A). These blocks include Archean and Paleopro-
terozoic basement units that were assembled and accreted via a series of early to
mid-Neoproterozoic accretionary arc complexes during the assembly of Rodinia (Zhao
and Cawood, 1999; Zhao and others, 2011; Zhou and others, 2002; Cawood and others,
2013; Wang and others, 2013e). A failed continental rift system of mid-Neoproterozoic
age (820–725 Ma, Wang and Li, 2003; Zhang and others, 2008) occurs within the
central (Nanhua Rift) and western (Kangdian Rift) portions of the craton (fig. 1A and
fig. 1B). These rifts are characterized by widespread bimodal magmatism and associ-
ated sedimentary successions, and their formation is related to breakup of the Rodinia
supercontinent (Wang and Li, 2003; Li and others, 2003, 2008a; Li and others, 2008b;
Shu and others, 2011; Zhao and Cawood, 2012).

The Neoproterozoic succession in South China passes conformably into a lower
Paleozoic succession that can be traced across the craton and which shows significant
facies variation (fig. 1C). On the Cathaysia Block, Cambrian and Ordovician strata are
siliciclastic-dominated with interstratified limestone. Abundant sedimentary structures
include rhythmic bedding, cross-bedding, and wavy scour marks indicating accumula-
tion in a littoral-neritic depositional environment (Wang and others, 2010; Shu and
others, 2014). Silurian sequences are generally absent, except for the Qinzhou-
Fangchenggang area in the south. In the eastern Yangtze Block, early Cambrian strata
are characterized by black shale and chert sequences developed in a deep-water basin
that shallowed upwards into an interstratified carbonate-siliciclastic succession during
the late Cambrian to Ordovician. The Silurian succession is separated from the Ordovician
strata by an angular unconformity but the contact changes to a disconformity to the west
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(Wang and others, 2010; Yu and others, 2014b). In the central-western Yangtze, a
carbonate platform prevailed during the Cambrian and Ordovician (fig. 1C). Silurian
strata conformably overlie the Cambrian-Ordovician succession and mark a change to
siliciclastic sedimentation (fig. 2) (Wang and others, 2010; Xu and others, 2013). U-Pb
ages and Hf isotope compositions of detrital zircons preserved in the early Paleozoic
siliciclastic rocks reveal that these rocks contain a large amount of detritus derived
from late Mesoproterozoic (ca. 1120 Ma), early Neoproterozoic (ca. 960 Ma), and late
Neoproterozoic (ca. 590 Ma) source rocks (Wang and others, 2010; Yao and others,
2011; Xu and others, 2013, 2014a; Yao and others, 2014a, 2014b). Integrated with
paleocurrent data for Cambrian - Lower Silurian sandstones, which indicate flow from
the southeast, the sources have been considered to lie beyond the current exposed
limit of the craton in East Gondwana (Wang and others, 2010; Cawood and others,
2013; Xu and others, 2013).

character and distribution of the kwangsian orogeny
Regional-scale tectonothermal activity associated with the Kwangsian Orogeny is

focused in southeastern South China to the east of the Jiangnan–Xuefeng Domain and
to the west of the Zhenghe-Dapu Fault (fig. 1A) (Charvet and others, 2010; Shu and
others, 2014).

Kwangsian metamorphism ranges from amphibolite facies in Cathaysia to green-
schist facies in the eastern Yangtze (Wang and others, 2012b; Shu and others, 2014). In
addition, isolated areas of upper amphibolite and granulite-facies metamorphic rocks
crop out in the Wuyishan and Yunkai domains in the northeastern and southwestern
parts of the Cathaysia Block, respectively (fig. 1A)(Chen and Zhuang, 1994; Yu and
others, 2005, 2014a; Wang and others, 2012b). Zircon U–Pb and monazite U-Th-Pb
dating of migmatized amphibolites and granulite-facies pelites yield ages in the range
460 to 423 Ma with a peak at 435 Ma interpreted as the time of orogenic related-
metamorphism (fig. 2; Supplementary Dataset, http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2016/Xu) (Yu and others, 2005, 2014a; Charvet and others, 2010;
Li and others, 2010; Wang and others, 2013a). Ar–Ar dating of biotite, muscovite and
hornblende from mylonitic rocks in the Wuyishan and Yunkai domains yielded cooling
ages in the range 438 to 406 Ma (fig. 2; Supplementary Dataset, http://earth.geology.
yale.edu/%7eajs/SupplementaryData/2016/Xu; Shu and others, 1999, 2008, 2014; Li
and others, 2010; Xu and others, 2011). These geochronological data, integrated with
a clockwise P-T path displaying isothermal decompression (Zhao and Cawood, 1999; Li
and others, 2010; Wang and others, 2012b, 2013c; Feng and others, 2014), suggest an
overall regime of crustal thickening at 460 to 435 Ma followed by exhumation and
cooling from 435 to 400 Ma.

Fig. 2. Schematic stratigraphic relations and tectonothermal activity during the Cambrian to Devonian
in the South China Craton. Orange areas indicate sedimentation, whereas white areas indicate absence of
strata. Black arrows suggest the boundaries of litho- and biofacies change responding to the Kwangsian
Orogeny (after Chen and others, 2014). Numbers on data points refer to the following sources: 1 (Wang and
others, 2011c), 2 (Wang and others, 2007), 3 (Li and others, 2010), 4 (Liu and others, 2010), 5 (Shu and
others, 2014), 6 (Xu and others, 2011), 7 (Xia and others, 2014), 8 (Xu and others, 2009), 9 (Zeng
and others, 2008), 10 (Zhang and others, 2012a), 11 (Guan and others, 2014), 12 (Zhao and others, 2013),
13 (Wang and others, 2013a), 14 (Feng and others, 2014), 15 (Zhong and others, 2013), 16 (Yang and
others, 2010), 17 (Wang and others, 2013c), 18 (Huang and others, 2013), 19 (Wan and others, 2010), 20
(Chen and others, 2012a), 21 (Wang and others, 2013b), 22 (Wang and others, 2011b), 23 (Zhang and
others, 2010a), 24 (Zhang and others, 2010b), 25 (Zhang and others, 2011b), 26 (Zhang and others, 2011c),
27 (Yang and others, 2014), 28 (Wang and others, 2012b), 29 (Zhang and others, 2011a), 30 (Yu and others,
2005), 31 (Wan and others, 2007), 32 (Chen and others, 2008), 33 (Charvet and others, 2010), 34 (Faure
and others, 2009), 35 (Shu and others, 1999), 36 (Shu and others, 2008), 37 (Yao and others, 2012), 38 (Yu
and others, 2014a). Data details are given in Appendix table A1.
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Deformation features include widespread folding and thrusting with ductile
shearing (Shu and others, 2014). Kinematic indicators (shearing foliation, stretching
lineation and asymmetric fabric elements) change from top-to-the-southeast in the
southeastern Cathaysia Block to top-to-the-northwest in the northwest portion of the
block and are interpreted to form a positive-flower structure (fig. 1D) (Shu and others,
2008, 2014; Charvet and others, 2010).

Voluminous gneissic granite and massive granite occur between the Zhenghe-
Dapu Fault and the Anhua-Luocheng Fault (fig. 1A). These plutons are mainly S-type
peraluminous granites that originated from crustal anatexis and range in age from 460
to 400 Ma (fig. 2) (Charvet and others, 1996, 1999, 2010; Wan and others, 2007, 2010;
Wang and others, 2007, 2011c; Li and others, 2010; Yang and others, 2010; Zhang and
others, 2010a, 2010b). In addition, minor A-type granites and associated mafic intru-
sions ranging in age from 435 to 410 Ma outcrop in the central Cathaysia Block (fig. 2)
(Yao and others, 2012; Wang and others, 2013c; Zhong and others, 2014; Feng and
others, 2014).

Stratigraphic and biostratigraphic data from east of the Jiangnan-Xuefeng Do-
main suggest that the Kwangsian Orogeny developed diachronously from south to
north (Chen and others, 2010, 2012b, 2014). Uplift of the Cathaysian crust as a
response to orogenesis was initially focused along the southeastern coast of South
China in the Sandbian age of the Late Ordovician (fig. 2) (ca. 455 Ma, Walker and
others, 2013). This was marked by a change in sedimentary facies to the east of Yunkai
Domain from graptolitic shale to nearshore shallow-water, coarse clastic rocks, with the
development of an angular unconformity between upper Ordovician and Devonian
strata. The event progressively propagated northward and affected the southeastern
margin of the Yangtze Block during the late Rhuddannian stage of the early Silurian
(fig. 2) (ca. 440 Ma, Walker and others, 2013), and is recorded by the angular
unconformity between Silurian and Devonian strata around the Jiangnan-Xuefeng
Domain. U-Pb detrital zircon age patterns from the Silurian-Devonian strata display a
similar age distribution to those of underlying Cambrian-Ordovician strata but with
additional input of detritus from early to mid-Neoproterozoic accretionary arc com-
plexes (870–820 Ma) and continental rift succession (820–725 Ma) and the Kwang-
sian granites (0.46–0.4 Ga) (figs. 3A, 3B, 3C, and 3D) (Xu and others, 2012; Yu and
others, 2014b). Thus, these patterns indicate uplift and exposure of the Cathaysian
basement and the syn-orogenic granites.

early paleozoic lithospheric architecture of south china and strain location
Causes for the localization of stress in a continental interior removed from a plate

margin, during intraplate orogenesis, remain enigmatic (Braun and Shaw, 1998;
Sandiford and others, 2004). It is generally accepted that strain localization reflects
spatial and temporal variation in lithospheric strength (Raimondo and others, 2014).
Strong lithosphere permits transmission of stresses sourced from plate boundaries,
whereas weak lithosphere tends to form sites of stress accumulation (Ziegler and
others, 1995; Heidbach and others, 2010, Raimondo and others, 2014). Lithospheric
strength is related to rheological architecture and there are two end-member models
of lithospheric rheology, which are colloquially referred to as the “Jelly Sandwich”
(Chen and Molnar, 1983) and “Crème Brûlée” models (Maggi and others, 2000;
Jackson, 2002). These models have been mainly applied to modern tectonic settings
such as the Himalayas (Burov and Watts, 2006; Chen and others, 2014), and their
applicability to understanding the behavior of ancient lithosphere is limited due to
subsequent tectonic reworking modifying lithospheric structure. Factors likely to
influence lithospheric strength, whether in modern or ancient settings, include
inherited lithospheric discontinuities, crustal heat flow, and weakening of the litho-
sphere through fluid alteration (Raimondo and others, 2014).
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Fig. 3. Summary of detrital zircon age distributions of samples from the early Paleozoic-Devonian in
South China (A, B, C, D) (data from Wang and others, 2010; Xiang and Shu, 2010; Yao and others, 2011; Xu
and others, 2012, 2013, 2014a; Wang and others, 2014a; Yu and others, 2014b), North India margin of
Gondwana (E) (data from Gehrels and others, 2006a, 2006b; Myrow and others, 2009, 2010; Hughes and
others, 2011; Long and others, 2011; McQuarrie and others, 2008, 2013), Sanya in Hainan Island (F, G, H)
(data from Xu and others, 2014b) and Western Australia (I) (data from Ksienzyk and others, 2012). Detrital
zircon age distributions of the early Paleozoic sequences from South China are similar to that of the
Himalaya region of North India, suggesting South China was linked to North India (Xu and others, 2013,
2014a). Detrital zircon age distributions of samples from strata across the Cambrian to Ordovician
unconformity in Hainan Island show a change of sediments sourcing from Western Australia in the
Cambrian to mixed sources including Western Australia and South China (including Hainan Island) in the
Ordovician, indicating an amalgamation of South China-India and Western Australia along the Kuunga
suture (Xu and others, 2014b). s � number of samples, n � total number of analyses. All data based on
analyses within 90%–110% of concordance. Ages greater than 1000 Ma calculated using 207Pb/206Pb ratios,
and ages less than 1000 Ma calculated from 206Pb/238U ratios. Data details and references are given
in supplementary tables A2-A4 (http://earth.geology.yale.edu/�ajs/SupplementaryData/2016/
XuTables).
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Inherited Lithospheric Discontinuities
The presence and orientation of pre-existing lithospheric discontinuities reflect-

ing the amalgamation of contrasting lithologic assemblages has been invoked as an
important control in the localization of subsequent intraplate activity (Gorczyk and
others, 2013; Cloetingh and others, 2013; Raimodo and others, 2014). Penetrative
faults and suture zones have the potential to constitute significant rheological disconti-
nuities and provide favored sites for strain localization (Stewart and others, 2000;
Braun and Shaw, 2001; Holdsworth and others, 2001; Gueydan and others, 2003;
Marsh and others, 2009; Gorczyk and others, 2013).

The South China Carton formed through amalgamation of the Yangtze and
Cathaysia blocks along the early Neoproterozoic Jiang-Shao suture zone currently
exposed along the Jiang-Shao Fault. The suture zone is marked by the juxtaposition of
mafic-ultramafic intrusions, MORB-affinity tholeiite, boninite, and arc-affinity igneous
and associated sedimentary rocks. (Zhao and Cawood, 2012; Zhao and Asimow, 2014).
Thus, the Jiang-Shao suture marks a fundamental discontinuity within the South China
lithosphere and displays abrupt lateral variation in rock compositions and physical
properties (Zhang and others, 2013; Lu and others, 2014; Deng and others, 2014). The
Jiang-Shao suture zone, along with the adjoining segments of the Yangtze and
Cathaysia blocks, were the sites of lithospheric extension in the mid-Neoproterozoic
responding to the breakup of Rodinia and forming the Nanhua rift. The rift was the
locus for accumulation of a volcanic-sedimentary assemblage and related plutonic
activity (fig. 1B). Sediment thickness within the rift reached 5000 m (Wang and Li,
2003). An array of lithospheric-scale faults was active during rifting including the
Anhua-Luocheng, Jiang-Shao, and Zhenghe-Dapu faults (fig. 1A) (Charvet and others,
1996, 2010; Faure and others, 2009; Wang and others, 2010; Zhang and others, 2012;
Charvet, 2013) and resulting extension very likely reduced the thickness of continental
lithosphere in the southeast part of South China. Thus, assembly of South China and
subsequent lithospheric extension of the craton during the mid-Neoproterozoic
resulted in a mechanically weakened zone of lithosphere. This zone was the locus for
further re-activation during the Kwangsian Orogeny.

Thermal Effects
The thermal structure of lithosphere exerts a first-order control on its strength

(Sandiford and McLaren, 2002; Sandiford and others, 2002; Jackson and others, 2008;
Korhonen and Johnson, 2015). Lateral variations in the geotherm may be responsible
for rheological heterogeneities in the continental lithosphere and thus influence the
localization of intraplate deformation (McLaren and Sandiford, 2001; Sandiford and
others, 2001; Raimondo and others, 2014). The formation of an anomalous thermal
domain depends on two factors: (1) local enrichment of radiogenic heat-producing
elements (mainly U, Th and K) (Neves and others, 2008; Vilà, and others, 2010; Bea,
2012) and (2) efficient thermal insulation such as that provided by a thick sedimentary
blanket (Sandiford and Hand, 1998; Hand and Sandiford, 1999; Sandiford and
McLaren, 2002). Mantle heat flux is also significant at regional scales, but is less easy to
quantify (Neves and others, 2008). In general, U, Th and K constitute incompatible
elements in the mantle and are preferentially concentrated in the crust. The distribu-
tion of U, Th and K within the crust varies as a result of petrogenetic processes and they
are enriched in felsic rocks and their sedimentary and low grade metamorphic
derivates, especially granites and siliciclastic rocks (Vilà and others, 2010).

The Neoproterozoic continental crust of South China is characterized by wide-
spread emplacement of granite, related to the assembly of the South China Craton and
the mid-Neoproterozoic formation of continental rift systems (Li and others, 2003; Li
and others, 2008b; Wang and others, 2011a; Wang and others, 2014b). These granites
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have average heat production values of 3.0 �Wm�3 (Zhao and others, 1995), more
than twice that of typical continental crust (1–1.2 �Wm�3, Bea, 2012).

The extent of intraplate deformation during the Kwangsian Orogeny does not
display a direct correspondence with the areas of Neoproterozoic rocks with anoma-
lously high heat production (fig. 1A). This is because lithospheric weakening related to
thermal effects also incorporates effects from thermal insulation provided by a thick
sedimentary cover above a high heat producing basement (Sandiford and Hand, 1998;
Hand and Sandiford, 1999; Sandiford and McLaren, 2002). Late Neoproterozoic to
Ordovician sedimentary rocks predating the Kwangsian Orogeny range from a siliciclas-
tic dominated succession in the Cathaysia interior to an interstratified carbonate-
siliciclastic succession in the eastern Yangtze and a carbonate-dominated succession in
the central Yangtze (fig. 1C) (Wang and others, 2010; Xu and others, 2013). In
general, siliciclastic rocks have higher heat production than carbonate-rich sedimen-
tary rocks (Vilà and others, 2010). In the case of South China, the average heat
production of late Neoproterozoic-Ordovician siliciclastic rocks developed in the
southeastern part of the craton range from 2.13 to 2.43 �Wm�3 (Zhao and others,
1995), and are higher than the worldwide statistical average value of 1.19 �Wm�3 for
siliciclastic rocks (Vilà and others, 2010). Consequently, the Cathaysia Block and
neighboring regions covered by siliciclastic rocks display the highest heat production,
whereas the crust beneath the Cenozoic Sichuan Basin in the northwest of the Yangtze
Block acted as a cold, stable domain (fig. 4). This is also consistent with seismic
observations, suggesting the abrupt lateral variation of crustal structure near the
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eastern margin of the current Sichuan Basin (Zhang and others, 2013; Lu and others,
2014). For example, shear wave splitting measurements in the Sichuan Basin show no
anisotropy, whereas belt-parallel anisotropy oriented NE-SW occurs along the southeast-
ern margin of the Yangtze Block (Lu and others, 2014).

Fluid Effects
Fluids play a role in most orogenic processes (Miller and others, 2002; Jackson and

others, 2004; Yardley, 2009; Putnis and Austrheim, 2010; Raimondo and others, 2014).
Their effects include lithospheric weakening by metasomatic alteration (Jackson and
others, 2004; Niemeijer and Spiers, 2005), fracturing induced by increased fluid
pressures and reaction-induced volume change (Jamtveit and others, 2008, 2009;
Wannamaker and others, 2009), and crustal anatexis generated by fluid fluxing (Miller
and others, 2002; Brown, 2013). The weakening of large-scale continental lithosphere
by fluid infiltration requires a plausible deep crustal or mantle fluid source, which is
not self-evident for dry and refractory continental lithosphere that has undergone
multiple metamorphic cycles. Thus, external sources of fluid are often invoked
(Raimondo and others, 2014), particularly where the ancient subducted slab or the
breakdown of hydrous minerals produces significant fluid influx via dehydration
reactions (Cartwright and Barnicoat, 2003; Barnes and others, 2004; Buick and others,
2008; Wannamaker and others, 2009).

In South China, Silurian gabbros (fig. 1A) exposed in the southern part of the
Cathaysia Block are inferred to have been derived from a source modified by slab- and
sediment-derived melts plus fluid fluxing from Neoproterozoic subduction associated
with assembly of the South China Craton (Wang and others, 2013c). An additional
source of fluid that may have affected crustal strength is from the breakdown of
hydrous minerals. The petrogenesis of Kwangsian magmatic and metamorphic rocks
suggests that the widespread granitic magma and migmatization in South China was
generated from the anatexis of Precambrian rocks through the breakdown of hydrous
minerals (Wan and others, 2007, 2010; Li and others, 2010; Liu and others, 2010; Wang
and others, 2011c, 2012; Chen and others, 2012a; Zhang and others, 2012; Wang and
others, 2013a; Xia and others, 2014). Thus, lithospheric weakening of the southeast
part of South China was likely assisted by this fluid flux.

geodynamic model for the intraplate kwangsian orogeny
The plate kinematic framework for ancient orogenic systems is not preserved.

However, temporal associations, and where available, spatial associations provide
important data in linking plate margin and intraplate orogenic associations. The
magmatic, deformational, metamorphic and stratigraphic events related to the Kwang-
sian Orogeny occurred between 460 to 400 Ma (fig. 2). This involved an initial phase of
orogenesis commencing at ca. 460 Ma and extending to around 435 to 430 Ma that
involved reactivation and inversion of the Nanhua Basin, with associated crustal
thickening and widespread anatexis (Yu and others, 2005; Wan and others, 2007, 2010;
Li and others, 2010; Liu and others, 2010; Wang and others, 2011c, 2012; Chen and
others, 2012a; Wang and others, 2013a; Shu and others, 2014; Xia and others, 2014).
The later phases of orogenesis, related to exhumation and cooling of the thickened
crustal pile, occurred between ca. 435 to 400 Ma and were related to lithospheric
extension (Yao and others, 2012; Wang and others, 2013c; Xia and others, 2014).

There is general agreement that the Kwangsian Orogeny occurred in an intraplate
setting but a variety of geodynamic models have been proposed (fig. 5). Faure and
others (2009) suggested an asymmetrical model involving northwest-directed intra-
plate underthrusting of the Cathaysia Block beneath the southeastern margin of the
Yangtze Block along the Jiangshao Fault (fig. 5A). This model suggests a progressive
propagation of orogenesis from northwest to southeast in Cathaysia and is thus at odds
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with the observation that deformation migrated from the southeastern part of Cathay-
sia to the north towards the eastern margin of the Yangtze Block. The model is also
inconsistent with the spatial change of metamorphic grade, as the highest grade rocks
related to Kwangsian orogenesis occur within the Wuyishan and Yunkai domains (fig.
1A) away from the proposed zone of intraplate underthrusting, with lower grade rocks
closer to the boundary. Li and others (2010) invoked a foreland basin model to explain
the Kwangsian magmatism and metamorphism, with the inversion of the Nanhua rift
basin through NW-directed overthrusting of the Cathaysia Block in response to South
China colliding with India during the Ediacaran-Cambrian (fig. 5B) (see also Yao and
others, 2014a, 2014b). However stratigraphic relations including provenance data for
sedimentary rocks in South China indicate derivation from northern Gondwana,
including India, with no evidence for an intervening oceanic basin during the
Neoproterozoic-early Paleozoic (Jiang and others, 2003; Yu and others, 2008; Cawood
and others, 2013; Xu and others, 2013, 2014a, 2014b). Furthermore, kinematic
observations and geochronology of the ductile sheared rocks revealed a quasi-
symmetrical positive flower structure across the Cathaysia Block, with southeastward
ductile thrusting in the southeastern Cathaysia Block and northwestward ductile
thrusting in the northwestern Cathaysia Block with Ar-Ar ages of 430 to 390 Ma (Shu
and others, 2008, 2014; Charvet and others, 2010; Xu and others, 2011), which is
inconsistent with asymmetric deformation developed in a foreland basin. Charvet and
others (2010) and Shu and others (2014) proposed that the symmetrical shortening of
the Nanhua rift occurred in response to intraplate subduction of “the split South
China Sea Oldland”, which they suggested represented a southern extension of the
Cathaysia Block (Shu and others, 2014, p. 178) now beneath the current Cathaysia
Block. This process resulted in inversion of pre-existing normal faults to form a positive
flower structure across the Jiang-Shao Fault (fig. 5C). This symmetrical shortening
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Fig. 5. The models for the Kwangsian Orogen suggested by (A) Faure and others (2009), (B) Li and
others (2010), and (C) Shu and others, (2014).
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model best accounts for the observed tectonothermal activity of the Kwangsian
Orogeny but as with the other models it does not look at the broader scale geodynamic
setting.

Figure 6 presents a tectonic model for the early Paleozoic including the timeframe
of the Kwangsian Orogeny and places South China within its regional framework as
part of the Gondwana supercontinent. Thus, it incorporates information on the
temporally and spatially evolving nature of the plate boundaries around the Gondwana
margin (Cawood, 2005; Cawood and Buchan, 2007; Cawood and others, 2007). In the
late Neoproterozoic-Cambrian, the South China Craton was situated off northeast
India (fig. 6A) (Jiang and others, 2003; Yu and others, 2008; Cawood and others, 2013;
Xu and others, 2013). Abundant siliciclastic sediments, sourced from India and
environs, were transported northward and deposited in the southern part of South
China (Yu and others, 2008; Wang and others, 2010; Yao and others, 2011; Cawood and
others, 2013; Xu and others, 2013, 2014a; Wang and others, 2014a; Yao and others,
2014a, 2014b). This is shown by similar age distributions of detrital zircons from the
Cambrian to Ordovician sedimentary rocks to that of the North India margin (figs. 3C,
3D, and 3E). The united India-South China block was separated from Australia and
Antarctica by an ocean basin (Xu and others, 2013, 2014b), now delineated by the
Kuunga suture (Meert and others, 1995; Xu and others, 2014b; figs. 6A and 6B). The
main lines of evidence for this intervening ocean include the remnants of accretionary
prism and island arc rock types now forming parts of Japan (Isozaki and others, 2010,
2015; Isozaki 2011), Hainan Island (Ding and others, 2002; Xu and others, 2007,
2008), and the Song Ma belt (Findlay, 1997). The Cambrian succession in the Sanya
Block at the southern end of current Hainan Island contains detritus derived from the
West Australia Craton and has a distinctly different source from equivalent successions
on the mainland of South China (figs. 3D and 3G) (Xu and others, 2014b). Further-
more, abundant specimens of the morphologically distinctive early middle Cambrian
Xystriduriid trilobite genera Xystridura and Galahetes in the Sanya Block mimic their
prolific occurrence in similar facies in Australia (Öpik, 1975; Kruse, 1990), but are
absent from the well-studied middle Cambrian fauna of South China.

The ocean separating the Sanya Block (and Australia) from mainland South
China (and India) closed during Cambrian-Ordovician time (fig. 6C). Evidence for
this includes the presence of dikelokephalinid trilobites found in both South China
and Australia in the Early Ordovician (Torsvik and Cocks, 2009) as well as the similarity
of Early Devonian fresh water fish in South China, Vietnam, and the Canning Basin of
Western Australia (Burrett and others, 1990). Paleomagnetic records revealed that
India and Australia were separated by over 30° of latitude at ca. 750 Ma (Torsvik and
others, 2001; Pisarevsky and others, 2003; Zhang and others, 2013a), but were adjacent
to each other in the equatorial position by the end Neoproterozoic to early Paleozoic
(ca. 600–520 Ma) in an assembled Gondwana (Powell and others, 1993; Powell and
Pisarevsky, 2002). The middle Cambrian and Silurian paleomagnetic data from the
South China Craton show that it was most probably in an equatorial position and close
to Western Australia (Yang and others, 2004).

Closure of the Kuunga Ocean in the Cambrian-early Ordovician resulted in final
assembly of East Gondwana and the development of a major mountain chain across the
supercontinent (Boger and others, 2001; Gehrels and others, 2006a, 2006b; Squire and
others, 2006; Cawood and Buchan, 2007; Cawood and others, 2007; Xu and others,
2013, 2014a; Gardner and others, 2014). Along the southern margin of South China
this final assembly is expressed in the juxtaposition of the Sanya Block, Hainan Island
(fig. 6C), with the remainder of the craton and is recorded in the development of
unconformity between the Cambrian and Ordovician strata (named as the Yu’nanian
Orogeny) and the compositional evolution of the detrital zircon signature, which
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resulted in the mixing of sources from South China and Australia (figs. 3F, 3G, 3H, and
3I) (Xu and others, 2014b). The ca. 490 Ma metamorphic event in the southeastern
part of South China (Zhang and others, 2011a) is also a likely expression of this event.
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Kwangsian orogenesis post-dates Gondwana assembly (fig. 7) thus removing the
Cathaysia Block from any spatial association with an active plate boundary. The South
China Craton constituted part of the lithosphere of greater India (Cawood and others,
2013) with the north and northwestern margins of the Yangtze Block facing the proto-
Tethys (fig. 6A). The nature of the plate margin of northern Gondwana is poorly
constrained, in part due to its fragmentation into various continental blocks during
opening and closure of the Tethys and subsequent overprinting associated with the
India-Asia collision. Thus, the northern margin of the Yangtze Block has been proposed as
both a passive and convergent margin (Wang and others, 2007; Wu and others, 2009;
Dong and others, 2013). Wang and others (2007) suggested that deformation in South
China is related to collision with North China along the Qinling belt in the period 460 to
400 Ma following divergent two-sided subduction beneath the southern margin of the
North China Craton and the northern margin of the South China Craton (Yangtze Block).
The age of tectonothermal activity in the Qinling belt corresponds with that of Kwangsian
orogenesis. However, the absence of any arc-related magmatism along the northern
Yangtze margin (Wu and others, 2009; Dong and others, 2013, 2014) argues against the
applicability of this model as a driver for Kwangsian orogenesis.

The timing of orogenesis in South China overlaps in part with intraplate events in
central Australia (Appendix fig. A6-1). In particular, the overall time range of orogen-
esis from 460 to 400 Ma corresponds with the commencement of the Alice Springs
Orogeny (fig. 8). Tectonothermal activity during the Alice Springs event, especially its
early history between ca. 460 to 400 Ma has been tied to pulses of activity along the
Terra Australis accretionary orogen reflecting coupling between the proto-Pacific
oceanic plate and the Gondwana continental margin (Collins, 2002; Cawood, 2005).
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There is little evidence for terrane accretion across the proto-Pacific-Gondwana
boundary and coupling is likely a response to changing rates of convergence or
periodic flattening of the slab (Collins, 2002; Cawood and others, 2009; Cawood and
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others, 2011). Stress localization inboard of the east Australian margin in central
Australia was related to the thermal and rheological properties of the crust (Raimondo
and others, 2014). Given this overlap between plate margin and intraplate activity in
eastern and central Australia respectively, as well as the timing of Kwangsian orogenesis
post-dating final Gondwana assembly, we speculate that stress propagation from the
East Gondwana convergent margin extended across Gondwana as far as South China
and concentrated along the site of the pre-existing Nanhua Rift Basin (fig. 6B) and
consequently resulted in basin inversion (fig. 6D). The overall longer history of
intraplate orogenesis in central Australia versus South China suggests that initial stress
localization was focused in South China but after 400 Ma only the central Australian
region continued as a locus for intraplate activity.

The role of the Qinling orogenic belt in intraplate orogeny in South China is not
clear at this stage, but given spatial and temporal relations it could have acted as a key
backstop to the intraplate deformation system together with the cold, stable Yangtze
Block.

conclusions

The mid-Paleozoic Kwangsian Orogeny in the southeast part of South China is an
intraplate orogenic event derived by the propagation of compressive stresses related to
subduction of the Proto-Pacific Ocean along the margin of east Australia during the
460 to 400 Ma period. The lithospheric architecture of pre-Kwangsian South China
profoundly affected the localization of stresses, primarily inherited lithospheric discon-
tinuities, thermal effects and fluid function. They contributed together in weakening
the Cathaysian lithosphere beneath the Nanhua Basin, contrasting with the colder and
more rigid Yangtze Block to the west. As a result, the stress sourced from subduction of
the Proto-Pacific Ocean along the margin of east Australia was localized within the
weakened Nanhua Basin and developed the intraplate Kwangsian Orogeny.
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The Kwangsian tectonothermal events in South China
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Appendix A2

Table A2

U–Pb data for detrital zircons from the: Cambrian in South China, the Ordovician in South China, the Silurian in
the Yangzte of South China, the Devonian in South China, the Cambrian in Sanya, Hainan Island, the Precambiran in

Hainan Island, and the Ordovician in Sanya, Hainan Island
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2016/Xu/TableA2.xls

Appendix A3

Table A3

U–Pb data for detrital zircons from the Cambrian-Ordovician along the northern margin of Indian Himalaya
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2016/Xu/TableA3.xls

Appendix A4

Table A4

U–Pb data for detrital zircons from the Northampton Complex, Western Australia
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2016/Xu/TableA4.xls
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Appendix A5

Table A5

The tectonothermal events along the northern margin of east Gondwana
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Appendix A6

Table A6

Compilation of Palaeozoic U-Pb geochronological data from the Alice Springs Orogen
(the Arunta Region)
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others, 1999), 3 (Scrimgeour and Raith, 2001), 4 (Maidment, 2005), 5 (Maidment and others, 2013), 6
(Raimondo and others, 2012), 7 (McLaren and others, 2009), 8 (Cartwright and others, 1999), 9 (Dunlap
and others, 1991), 10 (Allen and Stubbs, 1982). Data details and references are given in table A6.
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Fig. A6-2. Probability density of ages for the tectonothermal events associated with the Alice Springs
Orogeny in Central Australia. The data indicate a correlation of the event with subduction along the
Proto-Pacific margin of east Australia. Numbers on data points refer to the following sources: 1 (Buick and
others, 2008), 2 (Hand and others, 1999), 3 (Scrimgeour and Raith, 2001), 4 (Maidment, 2005), 5
(Maidment and others, 2013), 6 (Raimondo and others, 2012), 7 (McLaren and others, 2009), 8 (Cartwright
and others, 1999), 9 (Dunlap and others, 1991), 10 (Allen and Stubbs, 1982). Data details and references are
given in table A6.
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