A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

P. B. Rimmer and Ch Helling
School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK; pr33@st-andrews.ac.uk
Received 2015 June 3; accepted 2015 October 22; published 2016 May 23

Abstract

There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and $30,000 \mathrm{~K}$. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple onedimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$, and O_{2}, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

Key words: astrobiology - atmospheric effects - molecular processes - planetary systems
Supporting material: machine-readable tables

1. INTRODUCTION

The potential connection between a focused source of energy and life was first made apparent in the Miller-Urey experiment (Miller 1953), set to test a hypothesis proposed by Haldane (1928). In this experiment, a gas composed of water vapor, ammonia, methane, and molecular hydrogen was circulated past an electric discharge. After a week's time, various biologically relevant chemicals had developed, including glycine and alanine, identified with a paper chromatrogram. A follow-up study of Miller's samples, carried out approximately 50 years later, discovered a much richer variety of prebiotic compounds than originally thought (Johnson et al. 2008). Since then, numerous related experiments have been carried out under a variety of conditions (see Miller \& Urey 1959; Cleaves et al. 2008, and references therein).
The input energy source and the initial chemistry have been varied across these different experiments. An energy source may have been important for the production of prebiotic species on Earth, because the pathways to formation have considerable activation barriers, often on the order of $0.1-1 \mathrm{eV}$. Patel et al. (2015) generated prebiotic species by exposing HCN and $\mathrm{H}_{2} \mathrm{~S}$ to ultraviolet light. The experimental results from Powner et al. (2009) suggest that the aqueous synthesis of amino acids, nucleobases, and ribose is predisposed, starting from glyceraldehyde and glycoaldehyde, which they suggest would most likely form through heating and UV irradiation. Shock synthesis of amino acids due to the atmospheric entry of cometary meteors and micrometeorites or thunder is also sufficient to overcome these barriers and produce amino acids (Bar-Nun et al. 1970).

The initial chemical conditions are naturally significant to the formation of prebiotic chemistry. Of course, in an environment where hydrogen or carbon were lacking, there would be no complex hydrocarbons. Nitrogen and phosphorus are also essential to the origins of terrestrial life, although some
scientists, such as Benner et al. (2004), have speculated that life could occur under very different chemistries; presently, we lack the ability to explore this possibility. The initial chemical composition also has an effect on the production of prebiotic chemical species. For example, hydrogen can be bound in a reducing species, CH_{4}, in an oxidizing species, $\mathrm{H}_{2} \mathrm{SO}_{4}$, or into the neutral species of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Both Schlesinger \& Miller (1983) and Miyakawa et al. (2002) have found that performing a Miller-Urey-like experiment in an oxidizing environment produces only trace amounts of prebiotic materials, whereas performing the experiment in a reducing environment produces a great number of prebiotic materials.

The atmosphere of Earth in its present state is oxidizing $\left(\approx 21 \% \mathrm{O}_{2}, 78 \% \mathrm{~N}_{2}\right)$. The atmosphere of the Earth during its first billion years (first 1 Gyr) would have had a very different composition, probably oxidizing or at least only weakly reducing (Kasting 1993), although Tian et al. (2005) suggest that the Earth's atmosphere was once highly reducing. Even if the Earth never possessed a strongly reducing atmosphere, other planets and moons are known to have both reducing atmospheres and active lighting and UV photochemistry, such as Jupiter, for example. Extrasolar planets may not simply have diverse compositions, but also widely varied gas-phase C/O ratios, either intrinsically at formation, as may be the case with Wasp-12b, XO-1b, and CoRoT-2b (Madhusudhan et al. 2011; Moses et al. 2013), and possibly the interior of 55 Cancri e (Madhusudhan et al. 2012; but see also Nissen 2013); or alternatively due to oxygen depletion into the cloud particles (Bilger et al. 2013; Helling et al. 2014). The question of the C/O ratio is not a settled matter (Benneke 2015).

These diverse planetary and exoplanetary environments provide unique "laboratories" within which to explore prebiotic chemistry. There are many potential drivers for prebiotic chemistry in planets and exoplanets, from the steep thermal gradients in hot Jupiters and close-in super-Earths to the thermal production of organics and complex hydrocarbons in

Saturn's storms (Moses et al. 2015) and photochemical production of complex organics in Titan (Yung et al. 1984; Loison et al. 2015). There is some evidence that cosmic rays drive the formation of hydrogen cyanide in Neptune (Lellouch et al. 1994). Molina-Cuberos et al. (1999) have proposed pathways to formation of a rich variety of nitriles via cosmic rays in Titan's atmosphere.

As mentioned above, electric discharges may also be an important source of energy driving the production of prebiotic species, and are ubiquitous throughout the gas giants. Discharges in the form of lightning are known to occur within our solar system, on Earth, Jupiter (Little et al. 1999), Saturn (Dyudina et al. 2007), Uranus (Zarka \& Pedersen 1986), and Neptune (Gurnett et al. 1990). There are some indications of lightning discharges on Venus (Taylor et al. 1979), and possibly also in Titan's nitrogen chemistry (Borucki et al. 1984), although these traces are still tentative. Lightning is hypothesized to occur on exoplanets (Aplin 2013; Helling et al. 2013) and brown dwarfs (Helling et al. 2013; Bailey et al. 2014). Simulated plasma discharges initiated within Jupiterlike gas compositions suggest that lightning on Jupiter may produce a significant amount of trace gases (Borucki et al. 1985). The comparison between experimental rates of the production of organic compounds in high-temperature plasmas to chemical equilibrium models is unsurprisingly poor (Scattergood et al. 1989), and indicates that a chemical kinetics approach will be important in explaining the results of these experiments. Chemical kinetics seems to be necessary for exploring any of these pathways to the formation of prebiotic species.

Chemical kinetics models have been applied to planetary and exoplanetary atmospheric conditions in such a diverse range that it is impractical to provide complete references, so a brief summary of the work will instead be provided. Photochemical models of the modern Earth have been applied in the context of one-dimensional (1D) models (Owens et al. 1985), up to fully coupled three-dimensional (3D) general circulation models (Roble \& Ridley 1994), and even within a flexible modular framework that can be included as a module within other codes (Sander et al. 2005). The Earth's atmosphere during its first billion years has been extensively modeled (Zahnle 1986; Kasting 1993). Chemical kinetics models have also been applied to Jupiter's atmosphere, from the deep atmosphere (Fegley \& Lodders 1994; Visscher et al. 2010) through the stratosphere (Zahnle et al. 1995; Moses et al. 2005). The atmosphere of the moon Titan has also been analyzed using ion-neutral chemical kinetics to better explain the abundance of rich hydrocarbons in its atmosphere and its stratospheric haze (Yung et al. 1984; Keller et al. 1998; Lavvas et al. 2008a, 2008b).

Chemical kinetics models for exoplanetary atmospheres have typically been developed for hot Jupiters, especially HD 189733b and HD 209458b (Zahnle et al. 2009; Moses et al. 2011; Venot et al. 2012). Almost all of the models for hot Jupiters have been applied only in two dimensions, and so have not taken a more complete account of the atmospheric dynamics, instead relying on a parameterization of vertical mixing using the eddy diffusion coefficient, $K_{z z}\left[\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right]$ (see Lee et al. 2015, their Section 4.2). Agúndez et al. (2014) have taken on the ambitious task of coupling a chemical kinetics model to two-dimensional (2D) dynamics for both HD 189733b and HD 209458b. Ion-neutral models have been
applied to exoplanets, taking into account photochemistry (Lavvas et al. 2014) and additionally cosmic-ray ionization (Walsh \& Millar 2011; Rimmer et al. 2014). Chemical kinetics models have also been applied to the extrasolar super-Earths (Hu et al. 2012, 2013; Hu \& Seager 2014), and have been used to explore possible biosignatures on rocky planets (Seager et al. 2013a, 2013b). There has also been some recent investigation into chemistry on helium-dominated exoplanets (Hu et al. 2015).
Lightning chemistry has been explored with some basic chemical kinetics models, e.g., within Earth's mesosphere (Luque \& Ebert 2009 and Parra-Rojas et al. 2013) and Saturn's lower ionosphere (Dubrovin et al. 2014). Dubrovin et al. (2014) present interesting results for Saturn's lower ionosphere, predicting that TLEs within this region would produce mostly H_{3}^{+}, what they identify as the primary positive charge carrier during the duration of the TLE and for sometime after. This would mimic the effect of cosmic-ray ionization. Parra-Rojas et al. (2013) presented similar results involving terrestrial nitrogen chemistry. The products of discharge chemistry in the upper part of both hydrogen-rich and nitrogen-rich atmospheres seem to be similar to the products of cosmic-ray chemistry in these same atmospheres.

There are many open questions about prebiotic chemistry in diverse planetary and exoplanetary environments, as well as in the lab. In this paper, we present a candidate network for exploring UV photochemistry, cosmic-ray chemistry, and lightning-driven chemistry, constructed from scratch. We will mostly explore the photochemistry and thermochemistry within this paper, leaving the exploration of lightning-driven chemistry and cosmic-ray chemistry to future work.

The largest task in developing this network has been the collation of a full set of chemical reactions that treat both reducing and oxidizing chemistries at temperatures ranging from 100 K through $30,000 \mathrm{~K}$ (the approximate peak temperature of lightning, see Orville 1968; Price et al. 1997) and the selection of rate constants when more than one is published. Since one interest is the investigation of the formation rate of prebiotic species in diverse environments, the network is made extensive enough to include the simplest amino acid, glycine. In this paper, we present this chemical network (Stand2015), and test in a diversity of environments. For these tests, we developed a simple 1D photochemistry/diffusion code (Argo). Argo was developed based on Nahoon (Wakelam et al. 2012) by including wavelength-dependent photochemistry, cosmicray transport, water condensation, and chemical mixing.
The Stand2015 network is presented in Section 2. We compare the predictions of our network using a simplified 1D photochemistry/diffusion code called Argo (Section 3). The model and network are then combined and tested against other model results for HD 209458b and the early Earth, and compared to observation for Jupiter and the present-day Earth in Section 4. Finally, in Section 5 we simulate a Miller-Ureytype experiment and explore the formation of glycine under various chemical conditions. Section 6 contains a short discussion of the results and possible future applications of this model.

2. THE CHEMICAL NETWORK

The Stand2015 Atmospheric Chemical Network is an H/C/ N/O network with reactions involving $\mathrm{He}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Cl}, \mathrm{Ar}$, K, Ti, and Fe , developed from scratch. It contains all known
reactions for species of up to six hydrogen, two carbon, two nitrogen, and three oxygen atoms, for which a rate constant has been published, as well as a less complete network involving species with three or more carbon atoms, three nitrogen atoms, and/or four oxygen atoms. A chemical network is effectively a list of chemical reactions and reaction rate constants. Rate constants are used to calculate the rates of production and loss of a particular molecular or ionic species, $P_{i}\left[\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right]$ and $L_{i}\left[\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right]$, respectively, and i is enumerated over the list of species. Rate constants are of zeroth order (e.g., source terms, $S_{i}\left[\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right]$), first order (involving interactions with particles not accounted in the network, such as photons or cosmic rays, $k_{1}\left[\mathrm{~s}^{-1}\right]$), second order (collisions between particle i and other particles within the network, $k_{2}\left[\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right]$), or third order (collisions between particle i and other particles, as well as a third body, denoted here as $\left.k_{3}\left[\mathrm{~cm}^{6} \mathrm{~s}^{-1}\right]\right)$. The rates of production and loss for a given species, i, in terms of rate constants, are generally:

$$
\begin{gather*}
P_{i}=S_{i}+\sum k_{1} n_{j}+\sum k_{2} n_{j} n_{k}+\sum k_{3} n_{\mathrm{gas}} n_{j} n_{k} \tag{1}\\
L_{i}=\sum k_{1} n_{i}+\sum k_{2} n_{j} n_{i}+\sum k_{3} n_{\mathrm{gas}} n_{j} n_{i} \tag{2}
\end{gather*}
$$

Summation is over all the relevant reactions, some involving species j and/or k, that result in the production (Equation (1)) or loss (Equation (2)) of species i. The symbol $n_{i}\left[\mathrm{~cm}^{-3}\right]$ denotes the number density of species i and $n_{\text {gas }}\left[\mathrm{cm}^{-3}\right]$ denotes the total gas number density.

The reaction rate constants have been assembled from various databases. With only a couple hundred exceptions, the rate constants for two-body and three-body neutral reactions have been assembled from the NIST Chemical Kinetics Database (Manion et al. 2013). Virtually all of the ion-neutral reactions were taken from Ikezoe et al. (1987). Several rate constants that we have used, relevant for terrestrial atmospheric chemistry, are taken from Sander et al. (2011). The KIDA database provided the rate constants for several dissociative recombination reactions (Wakelam et al. 2012). Coefficients for the cosmic-ray ionization rate constant were taken from the OSU chemical network (Harada et al. 2010).

Rate constants were compared to the publicly available networks of Moses et al. (2011) and Venot et al. (2012), and ion-neutral rate coefficients were checked against the KIDA database (Wakelam et al. 2012) ${ }^{1}$, as well as the OSU 092010 high-temperature network (Harada et al. 2010). ${ }^{2}$ Some further ion-neutral reactions involving the alkali ion chemistry were appropriated from Lavvas et al. (2014). Finally, ~ 20 more reactions for suspected formation pathways for glycine have been added to the network, from Blagojevic et al. (2003) and Patel et al. (2015). The full network and references are provided in Appendix A. The following subsections contain brief discussions about the different classes of reactions, their rate coefficients and whether reverse reactions have been included.

2.1. Two-body Neutral-Neutral and Ion-Neutral Reactions

Two-body neutral-neutral and ion-neutral reactions follow the basic scheme:

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{Y}+\mathrm{Z}, \text { and } \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{Y}^{+}+\mathrm{Z} \tag{4}
\end{equation*}
$$

\]

The rate constants for these reactions are approximated by the Kooij equation (Kooij 1893):

$$
\begin{equation*}
k_{2}=\alpha\left(\frac{T}{300 \mathrm{~K}}\right)^{\beta} e^{-\gamma / T}, \tag{5}
\end{equation*}
$$

where $T[\mathrm{~K}]$ is the gas temperature ${ }^{3}, k_{2}\left[\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right]$ is the rate constant, and $\alpha\left[\mathrm{cm}^{3} \mathrm{~s}^{-1}\right], \beta$, and γ are constants characterizing the reaction. All of these reactions are reversed in our network and we use the rate coefficients for the best characterized direction for each reaction, which is typically the exothermic direction. For neutral-neutral reactions, even when exothermic, there is often a sizable barrier to reaction, allowing certain elements to be locked into non-equilibrium configurations at low temperatures effectively for eternity, because the barrier to the lower energy state is too large to be overcome in the current environment.

Ion-neutral reactions do not typically have barriers in the exothermic direction, and in many cases the rate constants are altogether temperature-independent, closely approximating the Langevin approximation. A notable exception are chargeexchange reactions,

$$
\begin{equation*}
\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{~B}^{+}+\mathrm{A}, \tag{6}
\end{equation*}
$$

which, due to the differences in energy between ionic and neutral ground states, often contains barriers on the order of a few $\times 100 \mathrm{~K}$.

The rate constants for the forward reactions are given in Appendix A with the label " 2 n ," reactions 577-1352. These reactions are reversed following the scheme described in Appendix B. The ion-neutral reactions are also reversed, and are listed in Appendix A with " 2 i, " reactions 1353-2569.

2.2. Three-body Neutral Reactions, Dissociation Reactions, and Radiative Association Reactions

Reactions that involve a third body occur primarily in the two forms:

$$
\begin{align*}
& A+M \rightarrow Y+Z+M \tag{7}\\
& A+B+M \rightarrow Z+M \tag{8}
\end{align*}
$$

where M represents any third body. Decomposition reactions are well studied at high temperatures, being important for various combustion processes. Just as in Section 2.1, we choose the reactions best characterized, which in this case often involve endothermic reactions. The rate coefficients for the majority of these reactions follow the Lindemann form (Lindemann et al. 1922). In this form, we first determine the rate constants in the low-pressure ($k_{0}\left[\mathrm{~cm}^{6} \mathrm{~s}^{-1}\right]$) and highpressure $\left(k_{\infty}\left[\mathrm{cm}^{3} \mathrm{~s}^{-1}\right]\right)$ limits:

$$
\begin{align*}
k_{0} & =\alpha_{0}\left(\frac{T}{300 \mathrm{~K}}\right)^{\beta_{0}} e^{-\gamma_{0} / T} \tag{9}\\
k_{\infty} & =\alpha_{\infty}\left(\frac{T}{300 \mathrm{~K}}\right)^{\beta_{\infty}} e^{-\gamma_{\infty} / T} . \tag{10}
\end{align*}
$$

[^1]These are combined with the number density of the neutral third species, $[\mathrm{M}]\left[\mathrm{cm}^{-3}\right]$ to determine the reduced pressure, $p_{r}=k_{0}[\mathrm{M}] / k_{\infty}$, and this can then be utilized to set the pressure-dependent effective "two-body" rate:

$$
\begin{equation*}
k_{2}=\frac{k_{\infty} p_{r}}{1+p_{r}} \tag{11}
\end{equation*}
$$

Sometimes this expression is multiplied by a dimensionless function $F(p, T)$ to more accurately approximate the transition between the low-pressure and high-pressure limits, and this provides the Troe form (Troe 1983). The coefficients for the Troe form are not explicitly given.

We favor using the rate constants for three-body combination reactions, and reversing these reactions to determine the rate of thermal decomposition. In many cases, however, the rate constants are unavailable. When we have only the rate coefficients for the decomposition reactions, we add an additional 500 K barrier to both the decomposition and threebody combination rate constants. This barrier is added in order to limit runaway three-body reactions that can result from reversing decomposition reactions at low temperatures.

Additionally, we incorporate a small number of radiative association reactions, of the form:

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{Z}+\gamma \tag{12}
\end{equation*}
$$

where γ is the radiated photon that carries the excess energy from the association. We appropriate the Kooij form for this reaction, as with two-body neutral-neutral reactions, in order to determine the rate constant $k_{\mathrm{ra}}\left[\mathrm{cm}^{3} \mathrm{~s}^{-1}\right]$. We then apply this rate constant, along with the rate constant for the corresponding three-body reaction, to the adduct form of the overall rate constant (Hébrard et al. 2013, their Equation (B.2)):

$$
\begin{equation*}
k=\frac{\left(k_{0}[\mathrm{M}] F+k_{r}\right) k_{\infty}}{k_{0}[\mathrm{M}]+k_{\infty}} \tag{13}
\end{equation*}
$$

where the function F is from the Troe form of the transition from high to low pressure.

The rate constants for the forward reactions are given in Appendix A with the labels " 2 d " for the neutral species and " 3 i " for ion-neutral species. These reactions are reversed in the manner described by Appendix B. Reactions 1-420 are reactions of this type, for which each odd number reaction gives the low-pressure rate constant $k_{0}\left[\mathrm{~cm}^{6} \mathrm{~s}^{-1}\right]$ and each even number reaction gives the high-pressure rate constant k_{∞} $\left[\mathrm{cm}^{3} \mathrm{~s}^{-1}\right]$. Reactions labeled "ra" are radiative association reactions, numbered 2974-2980.

2.3. Thermal Ionization and Recombination Reactions

A special set of three-body reactions are thermal ionization and three-body recombination reactions, which proceed by the pair of equations (analogous to Equations (7) and (8)):

$$
\begin{align*}
& \mathrm{A}+\mathrm{M} \rightarrow \mathrm{Z}^{+}+e^{-}+\mathrm{M}, \tag{14}\\
& \mathrm{~A}^{+}+e^{-}+\mathrm{M} \rightarrow \mathrm{Z}+\mathrm{M} \tag{15}
\end{align*}
$$

For which we again use published rates wherever possible for the ionization reactions, (Equation (14)), but in many cases
here use the simple approximation:

$$
\begin{equation*}
k_{0}=\left(\frac{8 \pi e^{8}}{m_{e} k_{B} T}\right)^{1 / 2} e^{-I / k_{B} T} \tag{16}
\end{equation*}
$$

where $e=4.9032 \times 10^{-10}$ esu is the elementary charge, $k_{B}=1.38065 \times 10^{-16} \mathrm{erg} \mathrm{K}^{-1}$ is the Boltzmann constant, $m_{e}=9.1084 \times 10^{-28} \mathrm{~g}$ is the mass of the electron, and I is the ionization energy (here in units of erg) which we determine from the change in the Gibbs free energy for the reaction. k_{∞} is then estimated from k_{0}.

Three-body recombination and ionization reactions have been well studied, and in many cases have well characterized rate constants. Here we treat the three-body recombinations as the reverse reactions for the collisional ionization reactions, but the studied rate coefficients for these reactions generally have a temperature dependence of $T^{-4.5}$, at least for $T>1 \mathrm{~K}$ (Hahn 1997). This creates a problem for reversibility. Using these rates will not allow us to reproduce chemical equilibrium for plasmas and this is largely because we are not properly treating the time-dependent plasma conditions in which these rates are often measured. Many of these rate constants may accurately describe the time to achieve an equilibrium electron density in a regime where a strong ionizing source has recently been removed from the environment.

With this in mind, we instead set the recombination rate constants such that, when dissociative recombination reactions are disabled, the Saha equation is upheld.

These reactions and rate coefficients are also given in Appendix A. The ionization reactions are labeled "ti" and numbered 421-576. As with Section 2.2, the odd reactions are $k_{0}\left[\mathrm{~cm}^{6} \mathrm{~s}^{-1}\right]$ and the even numbers are $k_{\infty}\left[\mathrm{cm}^{3} \mathrm{~s}^{-1}\right]$.

Finally, we include a series of dissociative recombination reactions, which take the form:

$$
\begin{equation*}
\mathrm{A}^{+}+e^{-} \rightarrow \mathrm{Y}+\mathrm{Z} \tag{17}
\end{equation*}
$$

These have rate constants parameterized in the form of Equation (5). The reverse reactions can in principle be calculated, and their rate constants could be calculated straightforwardly using the same principles used for the three-body reactions. This would effectively be analogous to the rates of three-body recombination for any third body, and we do not find that reversing these reactions changes the results much. When we compare with chemical equilibrium, however, we disable these reactions. The dissociative recombination reactions are taken only from the OSU 092010 hightemperature network (Harada et al. 2010), and shown in Appendix A, numbered 2777-2973, and labeled "dr."

2.4. Photochemistry and Cosmic-ray Chemistry

Photochemistry is considered for the species $\mathrm{H}, \mathrm{H}^{-}, \mathrm{He}, \mathrm{C}$, $\mathrm{C}\left({ }^{1} \mathrm{D}\right), \mathrm{C}\left({ }^{1} \mathrm{~S}\right), \mathrm{N}, \mathrm{O}, \mathrm{O}\left({ }^{1} \mathrm{D}\right), \mathrm{O}\left({ }^{1} \mathrm{~S}\right), \mathrm{H}^{-}, \mathrm{C}_{2}, \mathrm{CH}, \mathrm{CN}, \mathrm{CO}, \mathrm{H}_{2}$, $\mathrm{N}_{2}, \mathrm{NO}, \mathrm{O}_{2}, \mathrm{OH}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}_{2}, \mathrm{HCN}, \mathrm{NH}_{2}, \mathrm{NO}_{2}, \mathrm{O}_{3}, \mathrm{C}_{2} \mathrm{H}_{2}$, $\mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{NO}_{3}, \mathrm{CH}_{4}, \mathrm{HCOOH}, \mathrm{HNO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{C}_{4} \mathrm{H}_{2}, \mathrm{C}_{4} \mathrm{H}_{4}, \mathrm{Na}, \mathrm{K}$, and HCl . The photoionization and photodissociation cross sections are taken almost entirely from PhIDRates ${ }^{4}$ (Huebner \& Carpenter 1979; Huebner et al. 1992; Huebner \& Mukherjee 2015), with the exception of $\mathrm{C}_{4} \mathrm{H}_{2}, \mathrm{C}_{4} \mathrm{H}_{4}$, and $\mathrm{N}_{2} \mathrm{O}_{3}$, the cross sections of

[^2]

Figure 1. Photodissociation cross sections of $\mathrm{NH}_{3} \rightarrow{ }^{1} \mathrm{NH}+\mathrm{H}_{2}, \sigma$ [$\left.\mathrm{cm}^{2}\right]$, as a function of wavelength, $\lambda(\AA)$, from PhIDRATES (original data from McNesby et al. 1962; Schurath et al. 1969, red line). The data is compared to our binned fit (blue line).
which are taken from the MPI-Mainz UV/VIS Spectral Atlas ${ }^{5}$ (Keller-Rudek et al. 2013).
We divide the cross sections between 200 bins each $\approx 50 \AA$ wide. A comparison between our binned cross sections and the raw cross sections from PhIDRates is plotted for an example reaction (Figure 1). The cross sections, both in the database and here are of the form $\sigma(\lambda)$ with σ in units cm^{2} and wavelength in units of \AA. The resolution for the UV cross sections is fairly low, and cannot encapsulate the fine structure of the UV emission lines or the UV cross sections. This is especially important when treating ionospheres of gas giants, since, e.g., the fine structure in the H_{2} bands leave small spectral windows through which photons can penetrate and effectively ionize deeper in the atmosphere. Such a low-resolution spectrum will effectively close these windows and underestimate the ion production in the ionosphere (Kim \& Fox 1994; Kim et al. 2014). High resolution is also a important for capturing where the UV flux and cross sections both peak; a low-resolution cross section can, in this case, underestimate the destruction rate of the species with this resonant photochemical cross section. As can be seen below, these issues do not significantly affect the comparisons of this model for HD 209458b, Jupiter, or Earth. For photoionization deep in the atmosphere, where high resolution is essential, the network itself need not be modified. The transport of UV photons line by line would need to be calculated.
The tabulated chemical cross sections are combined with $F(\lambda, z)$ [photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$], the radiant flux density onto a unit sphere (hereafter called the actinic flux) located at atmospheric height, $z[\mathrm{~cm}]$, to determine the photochemical rate constants,

$$
\begin{equation*}
k_{\mathrm{ph}, i}(z)=\tau_{f} \int_{1 \AA}^{10^{4} \AA} \sigma_{i} F(\lambda, z) d \lambda, \tag{18}
\end{equation*}
$$

where i is indexed over the molecules listed above, for which photochemistry is considered. τ_{f} is a dimensionless parameter representing the fraction of time (over a period much longer than the longest characteristic timescale for the atmosphere) the particular atmospheric region is irradiated; for tidally locked

[^3]planets, $\tau_{f}=1$ (dayside) or 0 (nightside), the diurnal average for a rotating planet is $\tau_{f}=1 / 2$. The photoionization and photodissociation reactions are listed in Appendix A, reactions numbered 2570-2693, and labeled "pi" for photoionization reactions and "pd" for photodissociation reactions.

Cosmic-ray ionization and dissociation is parameterized by ζ (Rimmer \& Helling 2013), to treat both direct ionization by galactic cosmic rays and ionization by secondary particles produced in air showers. The cosmic-ray ionization rate depends on the chemical species in question, since different species will have different chemical cross sections for the photons produced by cosmic rays, and this is accounted for by multiplying $\zeta(z)$ by a constant $\kappa_{\mathrm{CR}, i}$ such that:

$$
\begin{equation*}
k_{\mathrm{CR}, i}(z)=\kappa_{\mathrm{CR}, i} \zeta(z) \tag{19}
\end{equation*}
$$

We treat low-energy cosmic rays $(E<1 \mathrm{GeV})$ for these objects as though they have been significantly shielded by the astrospheres of the host stars, and therefore set the fitting parameters for the incident cosmic-ray flux to $\alpha=0.1$ and $\gamma=-1.3$ in the equation for the flux of cosmic-ray particles:

$$
j(E)= \begin{cases}j\left(E_{1}\right)\left(\frac{p(E)}{p\left(E_{1}\right)}\right)^{\gamma}, & \text { if } E>E_{2} \tag{20}\\ j\left(E_{1}\right)\left(\frac{p\left(E_{2}\right)}{p\left(E_{1}\right)}\right)^{\gamma}\left(\frac{p(E)}{p\left(E_{2}\right)}\right)^{\alpha}, & \text { if } E_{\mathrm{cut}}<E<E_{2} \\ 0, & \text { if } E<E_{\mathrm{cut}}\end{cases}
$$

where $\quad p(E)=\frac{1}{c} \sqrt{E^{2}+2 E E_{0}}, \quad E_{0}=9.38 \times 10^{8} \mathrm{eV}$, $E_{1}=10^{9} \mathrm{eV}$, and $E_{2}=2 \times 10^{8} \mathrm{eV}$, and the flux at E_{1} is set to $j\left(E_{1}\right)=0.22 \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}(\mathrm{GeV} / \text { nucleon })^{-1}$. All of these parameters except α are observationally well constrained (Indriolo et al. 2009). For a demonstration of how α affects the cosmic-ray spectrum, and a discussion of the Monte Carlo transport we use for cosmic rays of energy $<1 \mathrm{GeV}$, see Rimmer et al. (2012) and Rimmer \& Helling (2013). For ionization rate by cosmic rays of energy $>1 \mathrm{GeV}, Q_{\text {HECR }}$ $\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right.$], we use the analytical method of Velinov \& Mateev (2008).

Cosmic-ray reactions are listed in Appendix A, numbered 2694-2776, and labeled "cr."

2.5. Test for Chemical Equilibrium

At sufficiently high temperatures and pressures, a gas should rapidly settle into chemical equilibrium. An important test for a chemical network is that its steady state solution converges to the chemical equilibrium solution. To perform this test of our network, we solve the chemical kinetics at a single (T, p) point, using the rate constants from the Stand2015 network, disabling the cosmic-ray reactions, photochemistry, and dissociative recombination. We compute a time-dependent solution of the equation

$$
\begin{equation*}
\frac{d n_{i}}{d t}=P_{i}-L_{i} \tag{21}
\end{equation*}
$$

We solve this equation for $T=1000 \mathrm{~K}$ and $p=1 \mathrm{bar}$, with solar abundances from Asplund et al. (2009). We compare our results to chemical equilibrium calculations using the Burcat polynomials (Burcat \& Ruscic 2005), and plot our comparisons in Figure 2 and find excellent agreement. This agreement is not

Figure 2. Mixing ratios as a function of time [s] at 1 bar and 1000 K (dashed lines) compared to chemical equilibrium (solid lines) for $\mathrm{H}_{2}, \mathrm{H}, \mathrm{CO}, \mathrm{CH}_{4}$, and $\mathrm{H}_{2} \mathrm{O}$.
surprising; we have used the same thermochemical data to reverse our reactions, and only include reversed reactions in this test, so once the system achieves steady state, computationally achievable at this pressure and temperature, the chemistry has effectively settled into equilibrium.

We also compare our electron number density to the electron number density achieved using the Saha equation, this time at a pressure of 10^{-4} bar and over a range of temperatures from 1000 to $10,000 \mathrm{~K}$. This comparison is plotted in Figure 3. The comparison is virtually perfect when $T \gtrsim 2000 \mathrm{~K}$, unsurprising given the way the three-body recombination reactions are calculated (see Section 2.3). At $\sim 1000 \mathrm{~K}$, our results diverge from the Saha equation. This is because the integrator does not reliably calculate mixing ratios below $\sim 10^{-30}$. Indeed, at this stage, the electron number density achieves $\sim 10^{-300} \mathrm{~cm}^{-3}$ while the H^{+}number density rests at $\sim 10^{-60} \mathrm{~cm}^{-3}$, producing significant charge balance errors. These large errors in the charge balance fluctuate, and only appear when the ionization fraction is $\lesssim 10^{-30}$, at which point ion-neutral chemistry is inconsequential.

3. 1D PHOTOCHEMISTRY/DIFFUSION CODE

We have developed a simple 1D photochemistry/diffusion code (Argo) for the purposes of testing the Stand2015 network. The required inputs for Argo are as follows.

1. (p, T) profile of the atmosphere.
2. Vertical eddy diffusion ($K_{z z}\left[\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right]$) profile of the atmosphere (see discussion in Lee et al. 2015).
3. Atmospheric elemental abundances.
4. Boundary conditions at top and bottom of the p, T profile.
5. Actinic flux ${ }^{6}$ at the top of the atmosphere.
6. Chemical Network (in our case, Stand2015).
7. Initial chemical composition.

All of these inputs except the chemical composition are fixed.

[^4]

Figure 3. Mixing ratio as a function of temperature. The solid line is from the Saha equation and the dashed line is the result from our model calculation.

With these inputs, Argo solves molecular transport in a fully Lagrangian manner, similar to Alam \& Lin (2008) and Zahnle et al. (1995). The model consists of two parts: (1) A chemical transport model (Section 3.1), and (2) calculation of the photochemical and cosmic-ray chemical rate constants from cross sections and a depth-dependent actinic flux (Section 3.2). A conceptual illustration is shown in Figure 4.

3.1. The Continuity Equations for Chemical Species

The coupled 1D continuity equations describing the timedependent vertical atmospheric chemistry are

$$
\begin{equation*}
\frac{\partial n_{i}}{\partial t}=P_{i}-L_{i}-\frac{\partial \Phi_{i}}{\partial z} \tag{22}
\end{equation*}
$$

where $n_{i}\left[\mathrm{~cm}^{-3}\right]$ is the number density of species i, and $i=1, \ldots, N_{s}$, and N_{s} is the total number of species. P_{i} $\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]$ is the rate of production and $L_{i}\left[\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right]$ is the rate of loss of species i. The rightmost term is the vertical change in flux $\Phi_{i}\left[\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ and represents the flux due to both eddy ($K\left[\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right]$) and molecular diffusion ($D\left[\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right]$), respectively, related as (Banks \& Kockarts 1973, their Equation

Figure 4. Illustration representation of the model. The illustration on the left represents the motion of the single parcel from the bottom of the atmosphere, T_{1}, P_{1}, up to the top of the atmosphere, T_{4}, P_{4}, and then back down; see Section 3.1. Once this journey is completed, we irradiate the atmosphere by stacking up the parcel at different times, when it was located at different parts of the atmosphere. The illustration on the right represents the calculation of the depth-dependent actinic flux discussed in Section 3.2. Only photons of wavelength between 1 and $10000 \AA$ are considered. Figure 5 gives a flow chart for the calculation.
(15.14)),

$$
\begin{align*}
\Phi_{i}= & -K\left[\frac{\partial n_{i}}{\partial z}+n_{i}\left(\frac{1}{H_{0}}+\frac{1}{T} \frac{d T}{d z}\right)\right] \\
& -D\left[\frac{\partial n_{i}}{\partial z}+n_{i}\left(\frac{1}{H_{i}}+\frac{1+\alpha_{T}}{T} \frac{d T}{d z}\right)\right] \tag{23}
\end{align*}
$$

where $H_{0}[\mathrm{~cm}]$ is the pressure scale height of the atmosphere at $z[\mathrm{~cm}], H_{i}[\mathrm{~cm}]$ is the molecular scale height of the atmosphere for species i, and α_{T} is the thermal diffusion factor (Banks \& Kockarts 1973; Yung \& Demore 1999; Zahnle et al. 2006; Hu et al. 2012). For molecular diffusion coefficients, we adopt the Chapman-Enskog theory (Enskog 1917; Chapman \& Cowling 1991). Eddy diffusion coefficients are either determined empirically, as with Earth and Jupiter, or are derived from global circulation models, as is the case for HD 209458b.
In Equation (23), the terms dealing with eddy diffusion and molecular diffusion are separated out, clarifying the four regions that Equations (22) and (23) describe. (1) Deep within the atmosphere, where pressures and temperatures are sufficiently large, the thermochemistry dominates, and the equation simplifies to Equation (21). The atmospheric chemical composition converges to chemical equilibrium or at least to some stable quasi-equilibrium. (2) Higher in the atmosphere, the eddy diffusion may dominate, and the species are quenched. Their abundance is mixed evenly over a wide range of the atmosphere at timescales shorter than the chemical timescales. (3) Above this region, molecular diffusion may dominate, and at that point, species lighter than the mean molecular mass of the atmospheric gas will rise up, and species heaver than the mean molecular mass will settle down, and the chemistry will largely be determined by the individual scale heights of the atmospheric constituents. (4) Non-equilibrium processes, such as photochemistry or cosmic-ray chemistry, may create a fourth region, the composition of which is determined by irreversible chemical reactions.

Since the purpose of this paper is to introduce a new chemical kinetics network for lightning and prebiotic processes, our focus is not on the atmospheric dynamics (for this, see Lee et al. 2015). We therefore apply a simple approximation to Equation (22), inspired by Alam \& Lin (2008). We first cast Equation (22) in a Lagrangian formulation, and consider

Eddy diffusion to be moving small parcels of the gas vertically. We follow a single parcel as it moves up from the lower boundary of the temperature profile, and then returns down again. In reality, the parcel would be jostled in all three dimensions as it makes a complex journey up to the top of the atmosphere, but 1D transport models are unable to capture this effect in full.

The differential diffusion of molecules into and out of the parcel requires a different approach. The discrete formulas used by Hu et al. (2012, their Equation (9)) in the Lagrangian frame are

$$
\begin{align*}
\frac{\partial n_{i, j}}{\partial t}= & P_{i, j}-L_{i, j} n_{i, j}-d_{j+1 / 2} \frac{n_{\mathrm{ga}, j+1 / 2}}{n_{\mathrm{gas}, j+1}} n_{i, j+1} \\
& -\left(d_{j+1 / 2} \frac{n_{\mathrm{gas}, j+1 / 2}}{n_{\mathrm{gas}, j}}-d_{j-1 / 2} \frac{n_{\mathrm{gas}, j-1 / 2}}{n_{\mathrm{gas}, j}}\right) n_{i, j} \\
& +d_{j-1 / 2} \frac{n_{\mathrm{gas}, j-1 / 2}}{n_{\mathrm{gas}, j-1}} n_{i, j-1} . \tag{24}
\end{align*}
$$

Here, j represents the parcel being followed, $j-1$ the parcel directly beneath $j, j+1$ the parcel above j, and $j \pm 1 / 2$ an arithmetic average between j and $j \pm 1 . n$ without any i subscript represents $n_{\text {gas }}$ at the relevant parcel, and

$$
\begin{equation*}
d_{j \pm 1 / 2}=\frac{D_{j \pm 1 / 2}}{2(\Delta z)^{2}}\left[\frac{\left(\bar{m}-m_{i}\right) g \Delta z}{k_{B} T_{j \pm 1 / 2}}-\frac{\alpha_{T}}{T_{j \pm 1 / 2}}\left(T_{j \pm 1}-T_{j}\right)\right] . \tag{25}
\end{equation*}
$$

$\bar{m}[\mathrm{~g}]$ denotes the mean molecular mass of the atmosphere at z and $m_{i}[\mathrm{~g}]$ the mass of species i.

Both the third and last terms on the right-hand side of Equation (24) do not depend on n_{i} and can therefore be treated as source terms, P_{i}. The fourth term can be treated as a term in L_{i}, such that molecules "destroyed" by this reaction are "banked," A \rightarrow BA. The "banked" molecules re-enter the parcel at a rate determined by the third and last terms on the right-hand side of the equation, thus conserving mass throughout the parcel's travels. Violations of this conservation do not appear here, but can be accounted for via further reactions, settling, condensation and evaporation, outgassing and escape, discussed in Appendix C. Although it is straightforward to handle atmospheric escape with this method, we do not do so for any of the test cases in this paper.

Equation (24) is solved within Argo in the same numerical manner as Nahoon (Wakelam et al. 2012) by the implicit timedependent Gear method as incorporated by the Livermore Solver for Ordinary Differential Equations (DLSODE; Gear 1971; Brown \& Hindmarsh 1989).

3.2. Calculating the XUV and Cosmic-ray Flux

Once the fluid parcel has completed the atmospheric profile, the solar XUV actinic flux from 1 to $10000 \AA$ as a function of depth, $z[\mathrm{~cm}],{ }^{7}$ and wavelength $\lambda[\AA]$ is calculated. We consider both the direct and approximate diffusive actinic flux. The local height-dependent actinic flux is calculated without any iteration on the local temperature. The cross sections for various photochemical reactions (Section 2.4) are multiplied by each vertical step $(\Delta z)_{j}[\mathrm{~cm}]$, where $(\Delta z)_{j}$ is the size of the step

[^5]at height z_{j}. The total optical depth as a function of the wavelength takes the form
\[

$$
\begin{equation*}
\tau(\lambda, z)=\Sigma_{j}\left[(\Delta z)_{j} \Sigma_{i} \sigma_{i} n_{i j}\right]+\tau_{s} \tag{26}
\end{equation*}
$$

\]

where i is summed over all species for which photoabsorption is considered (see Section 2.4 for a list of these species). τ_{s} is the optical depth due to Rayleigh scattering, and the actinic flux as a function of depth is defined as (Hu et al. 2012)

$$
\begin{equation*}
F(\lambda, z)=F\left(\lambda, z_{\text {top }}\right) e^{-\tau(\lambda, z) / \mu_{0}}+F_{\mathrm{diff}} \tag{27}
\end{equation*}
$$

where $\mu_{0}=\cos \theta$, where θ is the stellar zenith angle; we set $\mu_{0}=1 / 2$ for all calculations within this paper (see Hu et al. 2012, their Figure 7). $F_{\text {diff }}$ denotes the actinic flux of the diffusive radiation, determined using the δ-Eddington twostream method (Toon et al. 1989). Once the actinic flux is calculated, the photochemical rates are determined as in Section 2.4. Once the depth-dependent flux, $F(z, \lambda)$ [$\mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$], is determined for all layers, the parcel's path through the atmospheric profile is repeated, now accounting for the photochemistry. The cosmic-ray ionization rate, $\zeta(z)\left[\mathrm{s}^{-1}\right]$, is likewise calculated in a depth-dependent manner following Rimmer \& Helling (2013) and incorporated into the chemistry (Section 2.4).

A new depth-dependent composition is constructed, then applied to Equation (26) to solve again for $F(z, \lambda)$. The value of $\zeta(z)$ does not change significantly between iterations. This process is repeated until the results converge; i.e., until the profile from the previous global calculation (transport + depthdependent flux) agrees to within 1% the profile from the current global calculation. The number of repetitions depends on the parameters, but is typically between 5 and 12 global iterations. This iterative process is represented as a flow chart in Figure 5.

This method is both simple and functional, requiring relatively little computational resources. It is also straightforward to adapt to diverse chemical environments, since it does not require the selection of "fast" and "slow" chemistry to ease computational speed. These strengths do not come without a cost: the simplistic dynamics does not transition as smoothly from the eddy diffusion regime to the molecular diffusion regime as the Eulerian formulation, and can result in steep changes over a handful of height steps.

3.3. Testing the Atmospheric Transport Model for Molecular Diffusion

In order to benchmark the Stand2015 chemical network in different planetary atmospheres, we test the molecular diffusion within Argo. We consider a 1D isothermal gas under a constant surface gravity, $g=10^{3} \mathrm{~cm} \mathrm{~s}^{-2}$, with temperature $T=300 \mathrm{~K}$, at hydrostatic equilibrium. The gas is initially composed of carbon and hydrogen atoms, each with a mixing ratio of $X_{0}(\mathrm{C})=n(\mathrm{C}) / n_{\text {gas }}=0.5$ and $X_{0}(\mathrm{O})=0.5$ throughout. All chemistry is disabled. It is expected that the heavier species, carbon, will settle into the atmosphere, and the lighter species, hydrogen, will rise up, until they stratify. The analytic solution to this system is well known. The mixing ratio should be determined by the scale heights of the individual species such that, for the carbon abundance,

$$
\begin{equation*}
X(\mathrm{C})=\frac{X_{0}(\mathrm{C}) e^{-z / H_{\mathrm{C}}}}{X_{0}(\mathrm{H}) e^{-z / H_{\mathrm{H}}}+X_{0}(\mathrm{C}) e^{-z / H_{\mathrm{C}}}} \tag{28}
\end{equation*}
$$

Figure 5. Flow chart representation for the program.
where $X(\mathrm{C})$ is the final steady state carbon mixing ratio, and H_{H} [cm] and $H_{\mathrm{C}}[\mathrm{cm}]$ are the atmospheric scale heights for the hydrogen and carbon.

The code is run until steady state is achieved, when the carbon in the very upper atmosphere diffuses into the lower atmosphere. The steady state mixing ratio, as a function of height is compared the analytic mixing ratio, Equation (28), in Figure 6. The comparison is reasonable through the extent of the atmosphere.

4. TESTING THE NETWORK FOR PLANETARY ENVIRONMENTS

The Stand2015 network contains chemical reactions for an $\mathrm{H} / \mathrm{C} / \mathrm{N} / \mathrm{O}$ gas, and including both highly reducing to highly oxidizing atmospheres, and for a temperature range of $100-30,000 \mathrm{~K}$. The network should then be tested for a variety of planetary atmospheres with different chemical compositions, from the (probably) oxidizing atmosphere of the early Earth to the highly reducing atmosphere of Jupiter. The large range of temperatures is tested for the irradiated exoplanet HD 209458 b. We also test our model against the height-dependent measurements of select trace species within the atmosphere of the present-day Earth. It would be interesting to apply our model to Titan, due to its rich nitrile and organic chemistry. Titan's atmosphere is a very rich and complex environment, and it is important to account for these complexities when modeling Titan. Titan has upper atmospheric hazes, temperatures low enough to condense several molecular species, and ionization

Figure 6. Carbon mixing ratio as a function of atmospheric height [km]. We test for diffusion, with chemistry turned off, for carbon atoms and hydrogen atoms in a gas at hydrostatic equilibrium for an isothermal gas $\left(g=10^{3} \mathrm{~cm} \mathrm{~s}^{-2}, T=300 \mathrm{~K}\right)$. The solid line is the result from Argo and the dashed line is the analytic result (Equation (28)).
and dissociation by energetic particles including cosmic rays, Saturn magnetospheric particles, solar wind protons, and interplanetary electrons. As useful as a study of the atmosphere of Titan would be for exploring Miller-Urey-like chemistry (Waite et al. 2007), though such a model is beyond the scope of this paper. The boundary conditions for these various objects are given in Section 4.1. We then compare our results to the results from other chemical kinetics models and, where possible, with observations, for HD 209458b (Section 4.2), Jupiter (Section 4.3), and the Earth (Section 4.4).

4.1. Boundary Conditions for Three Test Cases: HD 209458b, Jupiter, and the Earth

Below, we compare the results of our chemical kinetics to other results for HD 209458b and also for Jupiter and the Earth. Each of these objects has different boundary conditions and parameters. These conditions and parameters include the temperature profile of the object's atmosphere, the eddy diffusion profile, the elemental abundances, the initial composition at the lower boundary of the atmospheric profile, and the unattenuated UV flux. For HD 209458b, the conditions at the lower boundary of the atmospheric profile rapidly develop from the prescribed initial conditions toward chemical equilibrium. For Jupiter and the early Earth, the composition at the lower boundary is stable over the dynamical timescale $\left(d n_{i}(z=0) / d t \approx 0\right)$, and so the initial composition effectively acts as a lower boundary condition. The assumed elemental abundances and initial conditions at the lower boundary of the atmospheric profile are given in Table 1.

We take HD 209458b to have solar elemental abundances throughout its atmosphere, and set the initial conditions at the lower boundary of the atmosphere to be entirely atomic. The initial composition hardly matters here, since the composition quickly settles to chemical equilibrium at such a high temperature and pressure. The temperature profile and eddy diffusion profile for HD 209458b are both taken from Moses et al. (2011) so we can directly compare results.

Since HD 209458 is a G0 star, we use the solar UV flux. The unattenuated solar UV flux at 1 au is obtained from the SORCE data (Rottman et al. 2006) for $1-350 \AA$ and $1150-10000 \AA$ with

Table 1
Initial Conditions for the Chemistry at the Lower Boundary in Terms of $n(X) / n_{\text {gas }}$

Species	HD 209458b $^{\text {a }}$	Earth $^{\text {b }}$	Early Earth $^{\text {c }}$	Jupiter $^{\text {d }}$
H	$9.2092(-1)$	\ldots	\ldots	\ldots
He	$7.8383(-2)$	\ldots	\ldots	$1.3600(-1)$
C	$2.4787(-4)$	\ldots	\ldots	\ldots
N	$6.2262(-5)$	\ldots	\ldots	\ldots
O	$4.5105(-4)$	\ldots	\ldots	\ldots
Ar	$2.3133(-6)$	\ldots	$9.1150(-3)$	\ldots
K	$9.8766(-8)$	\ldots	\ldots	\ldots
Cl	$2.9122(-7)$	\ldots	\ldots	\ldots
Fe	$2.9122(-5)$	\ldots	\ldots	\ldots
Mg	$3.6663(-5)$	\ldots	\ldots	\ldots
Na	$1.6004(-6)$	\ldots	\ldots	\ldots
Si	$2.9800(-5)$	\ldots	\ldots	\ldots
Ti	$8.2077(-8)$	\ldots	\ldots	
CO_{C}	\ldots	$1.1300(-7)$	$4.9005(-5)$	$8.0000(-10)$
H_{2}	\ldots	$1.0000(-6)$	$9.8010(-4)$	$8.6219(-1)$
N_{2}	\ldots	$7.9172(-1)$	$7.8408(-1)$	\ldots
NO^{2}	\ldots	$2.4000(-11)$	\ldots	\ldots
O_{2}	\ldots	$1.9793(-1)$	\ldots	\ldots
CO_{2}	\ldots	$3.5000(-4)$	$1.9602(-1)$	\ldots
$\mathrm{H}_{2} \mathrm{O}$	\ldots	$1.0000(-2)$	$9.8010(-3)$	\ldots
$\mathrm{N}_{2} \mathrm{O}$	\ldots	$3.0200(-7)$	\ldots	\ldots
NH_{3}	\ldots	$2.4000(-10)$	\ldots	\ldots
CH_{4}	\ldots	$1.9390(-6)$	\ldots	$1.8100(-3)$

Notes.
${ }^{\text {a }}$ Solar metallicity from Asplund et al. (2009).
${ }^{\text {b }}$ Surface mixing ratios based on the US Standard Atmosphere 1976.
${ }^{c}$ Based on early Earth models (Kasting 1993).
${ }^{\mathrm{d}}$ Moses et al. (2005).

Figure 7. Solar flux used in our model [photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$], as a function of wavelength, $\lambda[\AA \AA]$, taken from Huebner \& Carpenter (1979), Huebner et al. (1992), and Huebner \& Mukherjee (2015). Weighted versions of this flux are used for HD 209458b and Jupiter. This flux is used, unadjusted, for the early Earth.
data from PhidRates for the $350-1150 \AA$ range. The binned flux we use is plotted in Figure 7. This flux is adapted to HD 209458b by multiplying the solar UV flux by a factor of $\left(d_{\oplus} / d_{p}\right)^{2}$, where $d_{\oplus}[\mathrm{au}]$ is the distance from the Earth to the Sun and $d_{p} \approx 0.047 \mathrm{au}$ is the approximate distance between HD 209458b and its host star. This may not be the most accurate approximation to the UV behavior of HD 209458, since it might have quite different activity from our Sun (Tu et al. 2015).

For Jupiter, we use the temperature and eddy profiles from Moses et al. (2005). For consistency, we set the initial conditions at the lower boundary of Jupiter's atmosphere to be the same as Moses et al. (2005); see Table 1. The solar UV spectrum at 1 au is used for Jupiter, although multiplied by a factor of $\left(d_{\oplus} / d_{J}\right)^{-2}$, where $d_{J} \approx 4.5 \mathrm{au}$ is the square of the distance between the sun and Jupiter.

For the present-day Earth, we use the measured surface mixing ratios from the US Standard Atmosphere 1976 (see Table 1) and the temperature profile from $\operatorname{Hedin}(1987,1991)$, Figure 13. We use the present-day solar flux at 1 au as our incident UV flux.

We use the same chemical lower boundary conditions as from Kasting (1993) for the atmosphere of the early Earth (Table 1). The temperature profile for the early Earth is assumed to be the same as that of the present Earth (Hedin 1987, 1991), Figure 13. The UV field used for this model is that of the young Sun calculated using the scaling relationships of Ribas et al. (2005) for wavelengths between 1 and $1200 \AA$ and the UV field of the solar analogue κ^{1} Cet above $1200 \AA$ (Ribas et al. 2010).

4.2. HD $209458 b$

HD 209458b was first observed by Henry et al. (2000), and is one of a growing number of Hot Jupiters to have a measured spectrum, via transit (e.g., Queloz et al. 2000), and also in emission (e.g., Knutson et al. 2008). Various molecular species have been tentatively identified in the spectrum, such as TiO (Désert et al. 2008), water (Madhusudhan \& Seager 2009; Swain et al. 2009; Beaulieu et al. 2010), $\mathrm{CO}, \mathrm{CO}_{2}$, and methane features (Madhusudhan \& Seager 2009; Swain et al. 2009). HD 209458b has been extensively modeled with retrieval modeling (Madhusudhan \& Seager 2009) and with hydrodynamic global circulation models (Showman et al. 2008). This planet has also been a popular target for nonequilibrium chemistry models such as those of Liang et al. (2003), Zahnle et al. (2009), Moses et al. (2011), Venot et al. (2012), Agúndez et al. (2014), and Lavvas et al. (2014).

We have chosen the atmosphere of HD 209458b as one candidate for benchmarking our results because it is well characterized and has been the subject of several nonequilibrium chemistry models, and it has a very high temperature even among Hot Jupiters. An additional benefit to HD 209458b is its suspected temperature inversion (Knutson et al. 2008, although this is debated; see also Schwarz et al. 2015), which allows us to test our chemistry at very high temperatures both at both high and low pressures. The thermal profile of HD 209458b from Moses et al. (2011) is shown in Figure 8. The local gas-phase temperature $T>2000 \mathrm{~K}$ both when $p>100$ bar and when the gas-phase pressure, $p<10^{-4}$ bar. This is a wide parameter space relevant for ion-neutral chemistry initiated via thermal ionization.

We compare our results to the predictions of two different chemical kinetics models. (1) We compare our results to the results of Moses et al. (2011) with the ion-neutral chemistry disabled. (2) We compare the ionic abundances for our most abundant ions to the results of Lavvas et al. (2014). Also in this case, we disable cosmic-ray chemistry in order to draw a better comparison to the ion-neutral chemistry.

We compare our network and transport model to Moses et al. (2011) by examining the volume mixing ratios of major neutral species: $\mathrm{H}, \mathrm{H}_{2}, \mathrm{He}$ (hydrogen/helium chemistry), $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}$,

Figure 8. Temperature profile for HD 209458b, T [K], as a function of p [bar], as used by Moses et al. (2011).
and O_{2} (oxygen/water chemistry), N_{2} and NH_{3} (nitrogen chemistry), and $\mathrm{CO}, \mathrm{CH}_{4}$, and CO_{2} (carbon chemistry). See Figure 9. These species were chosen because they are abundant and, in the case of H_{2} and N_{2}, play an important role in the nonequilibrium chemistry. N_{2} provides the reservoir for the transition between $\mathrm{N}_{2} \rightleftharpoons \mathrm{NH}_{3}$. Other species were chosen because they contribute to features observed in transit spectroscopy (e.g., CO_{2}). The molecules CO and $\mathrm{H}_{2} \mathrm{O}$ do both. Helium was chosen because its mixing ratio is not significantly affected by the chemistry. It changes with pressure due to molecular diffusion, and so it provides a useful comparison between our dynamical calculations and those of Moses et al. (2011).

The transition of carbon between CO and CH_{4}, and nitrogen between N_{2} and NH_{3} is very sensitive to non-equilibrium chemistry, as $\mathrm{CH}_{4} \approx \mathrm{CO}$ when $p \sim 100$ bar and $T \sim 2000 \mathrm{~K}$. As the pressure decreases rapidly while the temperature remains relatively high ($T>1000 \mathrm{~K}$), the thermochemical equilibrium ratio for $\mathrm{CH}_{4} / \mathrm{CO}$ plummets, approaching 10^{-7} at 0.1 bar in the HD 209458b atmosphere. The time it takes the carbon to meander from CH_{4} to CO , however, becomes significantly longer than the relevant dynamical timescales (for HD 209458b, this timescale is prescribed by the eddy diffusion coefficient; see Bilger et al. 2013), and the CH_{4} and CO abundances are quenched. The same sort of process governs the transition of nitrogen from N_{2} to NH_{3}.
The pathways for both $\mathrm{CH}_{4} \rightleftharpoons \mathrm{CO}$ and $\mathrm{N}_{2} \rightleftharpoons \mathrm{NH}_{3}$ interconversions are not well understood. In both cases, the paths competing with one another are often circuitous, and tend to be regulated by one of several reactions encountered along the journey, a slow rate-limiting step (Moses 2014). The timescale of the transition between species is almost entirely set by the rate by which that single reaction proceeds. As discussed in Section 2, rate coefficients can be frustratingly uncertain, with different estimations sometimes varying by more than an order of magnitude. For example, compare the rate experimental and theoretical rate constants for $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3}$ (Yang et al. 2009 and Kiefer et al. 2005, respectively). The path that one believes regulates these central transitions can be very different depending on what rate coefficients are used.

Figure 9. Mixing ratios for various chemical species as a function of pressure, p [bar]. A comparison between our model (solid lines) and that of Moses et al. (2011, dashed lines) is shown for $\mathrm{H} / \mathrm{H}_{2}$ chemistry, water and O_{2} chemistry, nitrogen chemistry, and carbon chemistry in the atmosphere of HD 209458 b.

An illustrative example is the reaction $\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$. Hidaka et al. (1989) has determined the rate for $\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Products, Reaction (29), proceeds with a barrier of $\approx 2670 \mathrm{~K}$ (see Visscher et al. 2010 for a discussion on this reaction). With reasonable assumptions of the branching ratios for this reaction, namely that the branching ratios do not change much with temperature, one would set the same barrier to $\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}$, as done by Venot et al. (2012). However, Moses et al. (2011) carried out quantum chemical calculations for this reaction using MOLPRO and estimate a barrier for this particular branch of $\approx 10380 \mathrm{~K}$, much larger than the activation energies of the other branches. With the smaller barrier, the path carbon takes from CH_{4} to CO proceeds as

$$
\begin{align*}
\mathrm{H}_{2}+\mathrm{M} & \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{M} \\
\mathrm{CH}_{4}+\mathrm{H} & \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \\
\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} \\
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} & \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \\
\mathrm{CH}_{2} \mathrm{OH}+\mathrm{M} & \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2}+\mathrm{M} \\
\mathrm{H}_{2} \mathrm{CO}+\mathrm{H} & \rightarrow \mathrm{HCO}+\mathrm{H}_{2} \\
\mathrm{HCO}+\mathrm{H} & \rightarrow \mathrm{CO}+\mathrm{H}_{2} \\
\mathrm{HCO}+\mathrm{M} & \rightarrow \mathrm{CO}+\mathrm{H}+\mathrm{M} \tag{29}
\end{align*}
$$

$$
\begin{equation*}
\overline{\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2} .} \tag{30}
\end{equation*}
$$

We adopt the rates of Moses et al. (2011) for this pathway, as well as the smaller rate coefficient for the three-body reaction $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$. An examination of our results would reveal that, as with Venot et al. (2012), the transition of carbon from CH_{4} to CO is much more efficient than with Moses et al. (2011). We have examined the rates at which reactions proceed in our network and find another formation pathway:

$$
\begin{align*}
\mathrm{H}_{2}+\mathrm{OH} & \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H} \\
\mathrm{OH}+\mathrm{O} & \rightarrow \mathrm{O}_{2}+\mathrm{H} \\
\mathrm{CH}_{4}+\mathrm{H} & \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \\
\mathrm{CH}_{3}+\mathrm{H} & \rightarrow \mathrm{CH}_{2}+\mathrm{H}_{2} \\
\mathrm{CH}_{2}+\mathrm{O}_{2} & \rightarrow \mathrm{COOH}+\mathrm{H} \\
\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{CH}_{2} \mathrm{O}_{2}+\mathrm{OH} \\
\mathrm{CH}_{2} \mathrm{O}_{2}+\mathrm{M} & \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}+\mathrm{M} \\
\mathrm{CO}_{2}+\mathrm{H} & \rightarrow \mathrm{CO}+\mathrm{OH} \tag{31}\\
\mathrm{CH}_{4}+\mathrm{O} & \rightarrow \mathrm{CO}+2 \mathrm{H}_{2}, \tag{32}
\end{align*}
$$

The atomic oxygen arises from thermal dissociation of OH or photodissociation of $\mathrm{H}_{2} \mathrm{O}$ followed by diffusion downward. This pathway is critically dependent on Reaction (31). To our knowledge, the three-body rate coefficient for this reaction has
not been determined. This reaction has instead appeared in our network as the reverse reaction of $\mathrm{CH}_{2} \mathrm{O}_{2}+\mathrm{OH} \rightarrow \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$, for which we use an estimate based on reaction energetics (Mansergas \& Anglada 2006). This pathway is highly uncertain, and removing it makes up the majority of the difference between our results and those of Moses et al. (2011) for methane between $1-10^{-4}$ bar. We suspect further differences owe to our different thermochemical constants and the use of slightly different solar abundances.

The path of nitrogen from NH_{3} to N_{2} is considerably more uncertain. The path is believed to roughly follow from NH_{3} to NH via hydrogen abstraction, which will in turn react with another NH_{X} species to form $\mathrm{N}_{2} \mathrm{H}_{Y}$. This species will be destroyed either by reacting with hydrogen or via thermal decomposition, to form N_{2}. The reactions $\mathrm{N}_{2} \mathrm{H}_{X+2} \rightarrow \mathrm{NH}_{2}+$ NH_{X} involve large uncertainties, which result in variations of the NH_{3} quenched abundance by an order of magnitude. We find, similar to Moses et al. (2011), that

$$
\begin{gather*}
\mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{H}+\mathrm{H}+\mathrm{M} \\
\mathrm{NH}_{3}+\mathrm{H} \rightarrow \mathrm{NH}_{2}+\mathrm{H}_{2} \\
\mathrm{NH}_{2}+\mathrm{H} \rightarrow \mathrm{NH}+\mathrm{H}_{2} \\
\mathrm{NH}_{2}+\mathrm{NH} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{2}+\mathrm{H} \\
\mathrm{~N}_{2} \mathrm{H}_{2}+\mathrm{H} \rightarrow \mathrm{NNH}^{2}+\mathrm{H}_{2} \\
\mathrm{NNH}+\mathrm{M} \rightarrow \mathrm{~N}_{2}+\mathrm{H}+\mathrm{M} \tag{33}
\end{gather*}
$$

$$
\begin{equation*}
\overline{2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}} \tag{34}
\end{equation*}
$$

with Reaction (33) as the rate-limiting step. The profile we have for NH_{3} deviates considerably from the results of Moses et al. (2011), but this is in large part due to a difference in the nitrogen thermochemistry and initial abundances at high pressures propagating up through the atmosphere. Figure 9 shows that our quenching height is, in both cases, higher than for Moses et al. (2011), suggesting that the nitrogen in NH_{3} migrates to N_{2} more slowly in our network, even overtaking Moses et al. (2011) at $\sim 10^{-4}$ bar, but that we start with less NH_{3} than Moses et al. (2011). The increase in NH_{3} abundance at $\sim 5 \times 10^{-6}$ bar is due to a formation path for NH_{3} in Moses et al. (2011) that is less efficient in our network.

We conclude this section with a brief discussion of the most neutral ions, in comparison with Lavvas et al. (2014). We have plotted the most abundant ions in Figure 10. Note that for this paper, $n_{\text {gas }}$ is a sum of all neutral gas particles, cations, ions, and electrons, so the mixing ratio of ions cannot increase above unity. This plot allows a direct comparison to Lavvas et al. (2014, their Figures 5 and 6). In our model, K^{+}is the most abundant ion deep within the atmosphere, followed by Mg^{+} and Fe^{+}. Lavvas et al. (2014) does not consider these species, but they do not seem to have very much affect on the abundances of other ions deep within the atmosphere. When the pressure delves to 10^{-2} bar, K^{+}deviates considerably between our results and those of Lavvas et al. (2014). This is likely due to the inclusion of several other ions in our model that become dominant charge carriers at this height, including several complex hydrocarbon ions, of the form $\mathrm{C}_{n} \mathrm{H}_{m}^{+}$. This indicates that ion-neutral chemistry can be significantly influenced by the variety of ions and neutral species under consideration. This will be especially true for the potassium chemistry. Our network contains a small number of potassium-

Figure 10. Mixing ratios for the dominant ionic species as a function of pressure, p [bar], for the atmosphere of HD 209458b.
bearing species. Including new species and reactions could significantly affect the degree of ionization. It will be interesting to discover how an expanded potassium and sodium chemistry affects the overall ion-neutral chemistry and the resulting abundances of trace species.

Between 10^{-3} and 10^{-4} bar, Na^{+}overtakes K^{+}as the dominant positive charge carrier, and remains so until $\sim 10^{-7}$ bar. This transition, the ratios between the ions, and the abundances of the ions are nearly identical between our model and that of Lavvas et al. (2014). Within the thermosphere of HD 209458b, there are some small discrepancies between our model and Lavvas et al. (2014) for He^{+}, and quite large discrepancies for C^{+}which we suggest are owing to the nonAlkali photochemistry that Lavvas et al. (2014) include, but that we have not included here.

4.3. Jupiter

The atmosphere of Jupiter is divided into three regions: (1) the troposphere, where the gas-phase temperature T decreases with atmospheric height, (2) the stratosphere, where T is roughly constant with increasing height, and (3) the thermosphere, where T increases with height. In this section, we consider the chemical composition of Jupiter's stratosphere. The stratosphere of Jupiter is rich in hydrocarbons, owing to its large gas-phase C/O ratio, because the majority of the oxygen is locked in water ice and then gravitationally settles to below the tropopause. This is predicted to lead to a C/O $\sim 2 \times 10^{6}$ (Moses et al. 2005) in the absence of external sources of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} (Feuchtgruber et al. 1997; Moses et al. 2000a, 2000b), such as Shoemaker-Levy 9 (Cavalié et al. 2012). Jupiter's stratosphere provides an extreme example of how surface deposition can radically affect the C / O ratio, an effect more recently predicted for exoplanets and brown dwarfs (Bilger et al. 2013; Helling et al. 2014). The high C/O ratio, in combination with the large abundance of hydrogen $\left(\mathrm{H}_{2}\right.$ and CH_{4} are the two most abundant volatiles in the stratosphere and lower thermosphere), means that the stratosphere of Jupiter is strongly reducing (Strobel 1983).

Figure 11. Temperature profile for Jupiter, $T[\mathrm{~K}]$, as a function of p [bar] (Moses et al. 2005).

Fouchet et al. (2000) have observed ethane and acetylene in Jupiter's stratosphere. Ethylene has also been observed by Bézard et al. (2001). The stratospheric chemistry of Jupiter has been modeled by several groups, including Gladstone et al. (1996) and Moses et al. (2005). We adopt the lower boundary conditions and temperature profile that Moses et al. (2005) used and model the carbon-oxygen chemistry in the stratosphere of Jupiter, ignoring the nitrogen chemistry (most of the nitrogen will be locked in NH_{3} ice). Boundary conditions are discussed in Section 4.1.

Our lower boundary is set to be identical to Moses et al. (2005). These boundary conditions are somewhat artificial; the carbon budget is controlled by the photochemistry and the dynamics. There is no effective destruction pathway for the stable hydrocarbons, but the timescale for their formation is often competing with the dynamical timescales. In the thermosphere, $\sim 10^{-7}-10^{-8}$ bar, these hydrocarbons are lost through photodissociation and photoionization as well as molecular diffusion. At the base, the chemistry is halted once the dynamical timescale is reached, effectively treating the bottom boundary as an open boundary through which the hydrocarbons would continue to diffuse. In reality, the complex hydrocarbons are carried into Jupiter's deep atmosphere, where the high temperatures and pressures dissociate these hydrocarbons, and force the carbon budget to return to chemical equilibrium values: CH_{4} with trace amounts of CO and other species. Visscher et al. (2010, their Figure 6) demonstrate how the carbon budget is set deep within Jupiter's atmosphere; we do not model this region.

With these reactions removed from the network, we ran the network using the temperature and $K_{z} z$ profiles from Moses et al. (2005), shown in Figure 11. Comparisons between our results and a representative set of observations for the depthdependent mixing ratios, for the species $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{4} \mathrm{H}_{2}$, are shown in Figure 12. The observations for CH_{4} are taken from Drossart et al. (1999) and Yelle et al. (1996), $\mathrm{C}_{2} \mathrm{H}_{2}$ observations are from Fouchet et al. (2000), Moses et al. (2005), and Kim et al. (2010), $\mathrm{C}_{2} \mathrm{H}_{4}$ observations are from Romani et al. (2008) and Moses et al. (2005), $\mathrm{C}_{2} \mathrm{H}_{6}$ observations are from Fouchet et al. (2000), Moses et al.
(2005), Yelle et al. (2001) and Kim et al. (2010), and the $\mathrm{C}_{4} \mathrm{H}_{2}$ observations are from Fouchet et al. (2000) and Moses et al. (2005). We also incorporate observations for $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{6}$ from Gladstone et al. (1996) and references therein.
Many of the published observations do not include error bars in atmospheric pressure. Additionally, there may seasonal in the pressure-temperature structure and the location of the homopause, which adds uncertainty to our predictions as a function of pressure. To account for these sources of uncertainty, we place error bars for the pressure at a factor of two above and below the published observations when errors in pressure were not given. These errors in pressure are of the same order as observations where errors in pressure are given. We do not compare our results for oxygen-bearing species, because the abundances of these species are expected to be greatly enhanced in the stratosphere by the addition of an external source of oxygen, such as Shoemaker-Levy 9.

The differences between our results and those of other models arise primarily because of different photochemistries and different rate constants, especially for the re-formation of methane after its photodissociation,

$$
\begin{align*}
& \mathrm{CH}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}, \text { and } \tag{35}\\
& \mathrm{CH}_{3}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{CH}_{4}+\mathrm{M} . \tag{36}
\end{align*}
$$

Differences between Jovian photochemical models can result in very large discrepancies between stratospheric abundances of complex hydrocarbons. The differences between Gladstone et al. (1996) and Moses et al. (2005) span several orders of magnitude in some cases (see Moses et al. 2005, their Figure 14).

Both ethane and acetylene agree reasonably well between our model and the observations, and the results for $\mathrm{C}_{4} \mathrm{H}_{2}$ lie more than a factor of five below the observational upper limits. Our predictions for the location of the methane homopause do not agree very well with observations. We use the eddy diffusion coefficient from Model C in Moses et al. (2005), and either this or the use of the Chapman-Enskog diffusion coefficient for Methane may be the source of the discrepancy. Our results are similar to the Model C results of Moses et al. (2005, their Figure 14). The molecule with the largest discrepancy between the two models is ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, with the largest discrepancy between our predictions and the 1 millibar observations (ignoring the observation from Gladstone et al. 1996 that predicts a mixing ratio of $\sim 10^{-8}$). In our model, the primary path of formation for ethylene follows from the photodissociation of ethane (Reaction 2679 in the network),

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{6}+\gamma \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \tag{37}
\end{equation*}
$$

and ethane is formed from CH_{4} following paths to formation like this one:

$$
\begin{gather*}
2\left(\mathrm{CH}_{4}+\gamma \rightarrow{ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2}\right) \\
2\left({ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{H}\right), \\
\mathrm{CH}_{3}+\mathrm{CH}_{3}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M} ; \\
\hline 2 \mathrm{CH}_{4}+2 \gamma \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{H} . \tag{38}
\end{gather*}
$$

These differences may be resolved by a more careful accounting of pressure-dependent branching ratios, such as those of

$$
\begin{equation*}
\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \tag{39}
\end{equation*}
$$

Figure 12. Mixing ratios for various chemical species as a function of pressure, p [bar]. A comparison between our model (solid lines) and that of various observations is shown for complex hydrocarbons in the stratosphere of Jupiter.
from Loison et al. (2015). We use the Kooij form for these reactions (Section 2.1), which does not account for the effect that pressure has on the rate constant.

Ion-neutral chemistry also makes a contribution, via the formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ from the reaction

$$
\begin{align*}
\mathrm{CH}_{5}^{+}+\mathrm{C}_{2} \mathrm{H}_{2} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}^{+}+\mathrm{CH}_{4} \\
\mathrm{C}_{2} \mathrm{H}_{3}^{+}+e^{-}+\mathrm{M} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M} \\
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{4} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3}, \tag{40}
\end{align*}
$$

and CH_{5}^{+}forms from a series of reactions starting with the photoionization of CH_{3} and then a series of hydrogen abstractions, $\mathrm{CH}_{x}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{x+1}^{+}+\mathrm{H}$. It should be emphasized that this is not the primary formation pathway for ethylene, but it is an important path of formation in our chemistry and makes some contribution to the mixing ratios at 1 millibar.

Finally, there is a large discrepancy for CO , but this is not due to differences in the chemistry. Rather, this results from Moses et al. (2005) injecting $\mathrm{CO}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ into Jupiter's stratosphere. The inclusion of this external source of oxygenbearing species is justified by a number of data model comparisons mentioned at the beginning of this section. We neglected to include these external sources, and therefore oxygen-bearing species, especially $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} (not shown), fail to agree with observations. Our results therefore suggest that some external source of oxygen-bearing species is necessary to explain the $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} observations in Jupiter's stratosphere.

4.4. The Earth

The Earth's atmosphere is well studied, and the profiles of trace species are well constrained, and the formation and destruction of these species is controlled by photochemistry and deposition. Comparing our results to the present-day Earth atmosphere therefore provides a comprehensive test of our

[^6]chemical network (Section 4.4.1). Additionally, the connection between lightning-driven and NO_{x} chemistry ${ }^{8}$ has been extensively studied with experiments, observations, and models, and provides a useful regime in which to compare the results of Stand2015 applied to a lightning shock model (Section 4.4.2). It is important to find out what our model predicts in habitable environments before the onset of life, and so we apply our model to the early Earth (Section 4.4.3).

4.4.1. Present-day Earth Atmosphere

The best understood planetary atmosphere, in terms of both models and observations, is the atmosphere of the present-day Earth. Earth's atmosphere has been studied in situ, with the use of countless balloon experiments used to measure various trace elements, and remotely, with satellite measurements. Models of Earth's atmosphere range from simple to complex, both dynamically (1D diffusion to 3D global circulation models) and chemically (from treating only oxygen and hydrogen chemistry to modeling the transport and chemistry of chlorofluorocarbons and biological aerosols). Seinfeld \& Pandis (2006) provide a useful introduction and review to the subject.

Our interest is in validating our photochemical network to the present-day Earth, and not in coupling Earth's geochemistry to its atmospheric chemistry. We therefore make some simplifying assumptions when we set our boundary conditions. We compare our model to the contemporary Earth by setting the lower boundary conditions, temperature profile, and external UV field as given in Section 4.1. We present these comparisons for $\mathrm{O}_{3}, \mathrm{CH}_{4}$, and $\mathrm{N}_{2} \mathrm{O}$ (Figure 14), NO and NO_{2} (Figure 15), and OH and $\mathrm{H}_{2} \mathrm{O}$ (Figure 16).

The data for $\mathrm{O}_{3}, \mathrm{CH}_{4}$, and $\mathrm{N}_{2} \mathrm{O}$ is taken from the globally averaged mixing ratios from Massie \& Hunten (1981). Following Hu et al. (2012), we apply error bars spanning an order of magnitude in mixing ratio to reflect the temporal and spatial variations. Our model fits the measured CH_{4} to within the error bars throughout the atmosphere. The O_{3} predicted by the model deviates from the data with errors at 15 km , and the

Figure 13. Temperature profile used for the early Earth chemistry, temperature [K] vs. height $[\mathrm{km}]$. This profile is a synthetic profile for the Earth's atmosphere generated with the MSIS-E-90 model for the date 2000/1/1 (Hedin 1987, 1991).

Figure 14. Mixing ratios of ozone, methane, and nitrous oxide as a function of atmospheric height $[\mathrm{km}]$ for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from globally averaged measurements (Massie \& Hunten 1981). Errors are set to an order of magnitude to account for diurnal and latitudinal variations.
$\mathrm{N}_{2} \mathrm{O}$ deviates from the data with errors between 40 and 55 km . This may be due to an overestimation of the optical depth. If more UV photons in the model penetrated through to $\sim 10 \mathrm{~km}$, the O_{3} mixing ratios would be enhanced at 15 km , and the $\mathrm{N}_{2} \mathrm{O}$ mixing ratios would be destroyed more efficiently deeper in the atmosphere.

The data for NO and NO_{2} is taken from balloon observations at 35 deg N in 1993 (Sen et al. 1998), and here also we apply error bars spanning an order of magnitude to reflect spatial and temporal variations. As with Hu et al. (2012), we seem to overpredict the abundance of NO in the upper atmosphere $(30-40 \mathrm{~km})$. We find that this overprediction is due to Reaction

Figure 15. Mixing ratios of NO and NO_{2} as a function of atmospheric height [km]for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from balloon measurements (Sen et al. 1998). Errors are set to an order of magnitude to account for diurnal and latitudinal variations. We also show the results from suppressing the rate constant for Reaction 1300 in the network by a factor of 2 (dashed) and a factor of 10 (dotted).

Figure 16. Mixing ratios of OH and $\mathrm{H}_{2} \mathrm{O}$ as a function of atmospheric height [km] for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from balloon measurements at various latitudes, heights, and times (Kovalenko et al. 2007).

1300 in the network:

$$
\begin{align*}
& \mathrm{N}_{2} \mathrm{O}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{NO}+\mathrm{NO} \\
& k=7.25 \times 10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \tag{41}
\end{align*}
$$

We use the rate suggested by the JPL Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (Sander et al. 2011). If the rate constant for this reaction is decreased by a factor somewhere between 2 and 10 , we come into much better agreement at $30-40 \mathrm{~km}$, and worse agreement between 20-30 km (see Figure 15).
Finally, the data from OH and $\mathrm{H}_{2} \mathrm{O}$ was taken from balloon measurements at various latitudes and heights in 2005 (Kovalenko et al. 2007). We plot each individual data point

Figure 17. Mixing ratios of NO (solid) and NO_{2} (dashed) vs. time [s] in a simulation of a lightning shock on a parcel of gas with an Earth-like atmospheric composition, initially at 300 K and 1 bar. The temperature and pressure vary as a function of time as described by Orville (1968), until $10^{-4} \mathrm{~s}$, at which time conditions are returned to 300 K and 1 bar , and the system is allowed to further evolve.
without error bars in order to represent the observed variations; changes at other points of the globe or at other times of the year or day may lead to more significant variations in the abundances. The $\mathrm{H}_{2} \mathrm{O}$ predictions are within a factor of five of the observed water abundance, and our OH predictions lie within the measurements, indicating that the model correctly reproduces the water and OH mixing ratios.

4.4.2. Lightning Shock Model and NO_{x} Chemistry

It is also useful to the model's NO_{x} lightning-driven chemistry in the present-day atmosphere. For this purpose, we apply a simple shock model in order to explore the formation of NO_{x} species due to lightning at a single small region in the atmosphere. We employ the temperature and pressure calculations of Orville (1968, his Figures 1 and 3) and the timescaled results of Jebens et al. (1992, their Figures 2 and 3), fitting these to an exponential function. We use the following functions of temperature and pressure:

$$
\begin{gather*}
T(t)=300 \mathrm{~K}+(29800.0 \mathrm{~K}) e^{-t /(55.56 \mu \mathrm{~s})} \tag{42}\\
P(t)=1.0 \mathrm{bar}+(7.0 \mathrm{bar}) e^{-t /(5.88 \mu \mathrm{~s})} \tag{43}
\end{gather*}
$$

We start with present-day atmospheric chemistry at the base of the troposphere, except without the $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}$, and NO_{2} species, and with $T=300 \mathrm{~K}$ and $p=1 \mathrm{bar}$. The shock occurs at 1 ns , and is allowed to evolve until 0.1 ms . At this point the calculation is terminated, and another calculation initiated using for its initial conditions the final conditions of the shock model, except with temperature and pressure returned to 300 K and 1 bar , respectively. This model is run until $10^{4} \mathrm{~s}$ and results are shown in Figure 17.

We find that the NO_{x} species are formed in our model thermally by the Zel'dovich mechanism (Zel'dovich \& Raizer 1996):

$$
\begin{gather*}
\mathrm{O}_{2}+\mathrm{M} \rightleftharpoons \mathrm{O}+\mathrm{O}+\mathrm{M}, \tag{44}\\
\mathrm{~N}_{2}+\mathrm{M} \rightleftharpoons \mathrm{~N}+\mathrm{N}+\mathrm{M}, \tag{45}\\
\mathrm{O}+\mathrm{N}_{2} \rightarrow \mathrm{NO}+\mathrm{N}, \tag{46}\\
\mathrm{~N}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{O}, \tag{47}\\
\overline{\mathrm{O}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NO} .} \tag{48}
\end{gather*}
$$

We compare our NO yield to the lightning discharge experiments performed by Navarro-González et al. (2001). We use for our NO mixing ratio the values found before the end of the shock ($10^{-4} \mathrm{~s}$ in Figure 17), between 10^{-2} and 10^{-3}, to (Navarro-González et al. 2001, their Equation (4)). We find that

$$
\begin{align*}
P(\mathrm{NO}) & \approx\left(2.4 \times 10^{22} \mathrm{~K} / \mathrm{J}\right) \frac{X(\mathrm{NO})}{T_{f}} \\
& \approx 2-20 \times 10^{16} \text { molecules } \mathrm{J}^{-1} \tag{49}
\end{align*}
$$

where $T_{f}[\mathrm{~K}]$ is the "freeze-out" temperature after which the NO mixing ratio does not change appreciably over the timescale of the experiment, which we set to 1000 K (the approximate temperature of our model at $t \approx 10^{-4} \mathrm{~s}$). This is consistent with the production of NO in the "hot core" region of the experiment. This is also roughly consistent with the literature values for NO production of 10^{17} molecules J^{-1} (Borucki et al. 1984; Price et al. 1997).

This is an order of magnitude comparison between the code and lightning experiments and models, and for a more complete comparison will need to be applied to a model atmosphere, where diffusion and photochemistry together will further process the NO_{x} species. We plan to do this in a future paper.

4.4.3. The Early Earth

The presence of life and the evolution of the Sun both have radically altered Earth's atmospheric chemistry. Oparin (1957) and Miller \& Urey (1959) thought that the atmosphere of the early Earth ${ }^{9}$ was largely reducing, dominated by methane, ammonia, and molecular hydrogen. Kasting (1993) made a compelling case that prebiotic formation of hydrogen would be too slow to allow for much molecular hydrogen in the atmosphere of the early Earth. Furthermore, a major constituent in the early Earth atmosphere needs to be a strong greenhouse gas, in order to compensate for the cooler young Sun. The atmospheric chemistry of the early Earth is difficult to determine, and a severe lack of data results in many possible early Earth chemistries. As an illustrative example, Tian et al. (2005) argue that hydrogen escape was less efficient during the first 1 Gyr as was previously thought. ${ }^{10}$ If Tian et al. (2005) are correct, then Earth's early atmospheric composition could have been reducing.

We present a model of the atmosphere of the early Earth, using the same lower boundary conditions as shown in Kasting (1993, his Figure 1), and a temperature profile for the present Earth (Hedin 1987, 1991) ${ }^{11}$, shown in Figure 13. The lower boundary conditions used for the early Earth are given in Section 4.1. We treat outgassing using the deposition method (Appendix C).

We compare our results to those of Kasting (1993, see his Figure 1). Our results are presented in Figure 18. The results compare reasonably well for CO and O_{2}, but not for $\mathrm{H}_{2} \mathrm{O}$ and O . The CO abundance begins to increase at $30 \mathrm{~km}, 10 \mathrm{~km}$ higher than for Kasting (1993), and achieves a mixing ratio of $\approx 5 \times 10^{-3}$ at 60 km , which is within a factor of 2 of Kasting (1993). The O_{2} likewise begins to rise above a mixing ratio of

[^7]

Figure 18. Mixing ratios for $\mathrm{O}, \mathrm{H}_{2}, \mathrm{CO}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, and CO_{2}, as a function of height [km], for early Earth photochemistry. These results can be compared to the results of Kasting (1993, his Figure 1).
$10^{-6} 10 \mathrm{~km}$ higher in the atmosphere, and also achieves a mixing ratio of $\approx 2.5 \times 10^{-3}$, again within a factor of 2 of Kasting (1993). The water vapor profile is quite different, however. Instead of falling below a mixing ratio of 10^{-6} at 10 km , the $\mathrm{H}_{2} \mathrm{O}$ mixing ratio in our model levels out at 5×10^{-4}, increasing slightly at $\sim 50 \mathrm{~km}$ before plummeting. Also, the oxygen mixing ratio only reaches $\approx 3 \times 10^{-6}$, approximately two orders of magnitude below the mixing ratio predicted by Kasting (1993). These differences may be due to the different young solar UV fields assumed between ourselves and Kasting (1993), but we suspect that the differences are more likely due either to differences in the water condensation or the temperature profiles used. This seems especially likely for atomic oxygen, which is primarily destroyed by the reaction

$$
\begin{equation*}
\mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH} \tag{50}
\end{equation*}
$$

in spite of the sizeable 7640 K barrier. When the water vapor drops off at $\sim 55 \mathrm{~km}$, this destruction route becomes unviable, and the atomic oxygen mixing ratio rapidly increases.

5. GLYCINE FORMATION IN A LABORATORY ENVIRONMENT

The formation of glycine, among several other amino acids, amines, and nucleotides, has been investigated for a variety of chemical compositions, from reducing (Miller 1953) to oxidizing (Schlesinger \& Miller 1983; Miyakawa et al. 2002; Cleaves et al. 2008), and exploring various energy sources (see Miller \& Urey 1959, and references therein). In a recent experiment, HCN and $\mathrm{H}_{2} \mathrm{~S}$ were exposed to UV light (peak frequency $2540 \AA$), resulting in the formation of numerous complex prebiotic compounds (Patel et al. 2015). The techniques used in this experiment afforded the experimenters to track the pathways of formation for these various species.

Prebiotic species are produced in smaller concentrations within a more oxidizing environments (Miller \& Urey 1959). Methane has been found to be important for the formation of prebiotic compounds (Schlesinger \& Miller 1983; Miyakawa et al. 2002). The correlation between reducing chemistry and
the efficient production of prebiotic molecules, combined with compelling evidence that the atmosphere of the early Earth was oxidizing (Kasting 1993), would suggest that other processes were responsible for producing the prebiotic chemical inventory on Earth. This process is hypothesized to have taken place within hydrothermal vents (e.g., Ferris 1992), on the surfaces of crystals (Vijayan 1980), or possibly within the interstellar medium (e.g., Greenberg et al. 1995).

Cleaves et al. (2008) have repeated Miller's experiment in a reducing environment, and discovered that amino acids can be efficiently produced in such environments, but that nitrites (e.g., HONO) destroy these species as quickly as they are produced. Adding ferrous iron, in the form of FeO or FeS_{2} (in the form of pyrite surfaces) effectively removes the nitrites and allows the amino acids to survive.

We explore the formation of glycine in the context of a weak radiating source. An unattenuated monochromatic beam of light at $\lambda_{0}=1000 \AA$ is applied with an intensity of $\approx 2 \times 10^{-3} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, corresponding to a flux of $F_{0}=10^{8}$ photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. This flux is applied to Equation (18) such that

$$
\begin{align*}
k_{\mathrm{ph}, i}(z) & =\int_{1 \AA}^{10^{4} \AA} \sigma_{i}(\lambda) F_{0} \delta\left(\lambda-\lambda_{0}\right) d \lambda \\
& =F_{0} \sigma_{i}\left(\lambda_{0}\right) \tag{51}
\end{align*}
$$

where δ is the Dirac delta function.
The formation pathways for glycine have not been rigorously determined, although there are some proposed pathways. We include four possible pathways to glycine formation in our network. First, we include glycine formation via the three-body interaction of various species. These reactions have significant barriers, and so will only occur efficiently at rather high temperatures. The reactions are

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HNO}_{2} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \tag{52}\\
\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NO}_{2} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \tag{53}\\
\mathrm{CH}_{3} \mathrm{NO}+\mathrm{H}_{2} \mathrm{CO} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \tag{54}
\end{gather*}
$$

with rate constants set equal to the three-body formation for analogous chemical species (e.g., $\mathrm{CH}_{2} \mathrm{COOH}$). Also included is the ion-neutral pathway proposed for interstellar formation for glycine from Charnley (1997),

$$
\begin{gather*}
\mathrm{CH}_{6} \mathrm{NO}^{+}+\mathrm{HCOOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \tag{55}\\
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{2}^{+}+e^{-} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H} \tag{56}
\end{gather*}
$$

Finally, the formation of glycine by a possible pathway similar to that suggested by Patel et al. (2015),

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{NO}+\mathrm{CH}_{3} \mathrm{O} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H} \tag{57}
\end{equation*}
$$

is included.
Additionally, we include FeO and reactions between FeO and nitrites. We also inject our gas with HCOOH in order to facilitate the ion-neutral formation pathway; it is likely that there are other presently unknown paths of formation for formic acid. We run this network for a set of five different initial compositions given in Table 2, labeled Model A-E. Model A is a strongly reducing environment, with only the gases $\mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{H}_{2}$ and $\mathrm{H}_{2} \mathrm{O}, \mathrm{FeO}$, and HCOOH (Model A). We transition to a more reducing environment in the successive models (Models B, C, D). Finally, for Model E, we run the experiment starting solely from $\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{FeO}$, and HCOOH . We run all models using the unattenuated UV flux, at

Table 2
Mixing Ratios for Laboratory Simulations ${ }^{\text {a }}$

Model	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}	NH_{3}	H_{2}	CO_{2}	$\mathrm{~N}_{2}$
A	0.80	0.08	0.08	0.04	0.0	0.0
B	0.80	0.06	0.06	0.04	0.02	0.02
C	0.80	0.04	0.04	0.04	0.04	0.04
D	0.80	0.02	0.02	0.04	0.06	0.06
E	0.84	0.00	0.00	0.00	0.08	0.08

Note.
${ }^{\text {a }}$ Not including the injected FeO and HCOOH .

1 bar pressure and 300 K temperature. The model is run to $t \approx$ 1 week. Our results are plotted in Figure 19.

Moving from Model B to E, less and less glycine is formed, falling from a mixing ratio of 10^{-6} for Model B to 10^{-8} for Model E. This is what is expected from the Miller-Urey experiments performed for various chemical compositions: as the chemistry becomes less reducing, it becomes more difficult to form prebiotic molecules.

More interesting is Model A. If all N_{2} and CO_{2} are removed, certain formation pathways to $\mathrm{NO}_{2}, \mathrm{HNO}_{2}$, and especially $\mathrm{H}_{2} \mathrm{CO}$ are inhibited. Additionally, HCNO forms more slowly from HCN , and especially the ionic form, CHNO^{+}(in its various permutations) is difficult to form without some excess unbonded atomic nitrogen or oxygen present in the gas. Model A produces virtually no glycine. We traced this back to the key reactions:

$$
\begin{gather*}
\mathrm{N}_{2}+\gamma \rightarrow \mathrm{N}_{2}^{+}+e^{-}, \\
\mathrm{N}_{2}^{+}+e^{-} \rightarrow \mathrm{N}+\mathrm{N}, \\
\mathrm{CO}_{2}+\gamma \rightarrow \mathrm{CO}+\mathrm{O}, \tag{58}
\end{gather*}
$$

which is the same formation pathway for amines in the early Earth as suggested by Zahnle (1986). In our case, however, the atomic nitrogen and oxygen are both important in completing the formation of HCNO and its isomers.

6. CONCLUSION

In this paper, we have presented a gas-phase chemical network, Stand2015. The photochemistry/diffusion code, Argo, was used to test the network. We have shown that the predictions from Stand2015 converge to chemical equilibrium under the appropriate conditions and also that the molecular diffusion modeled by Argo makes a reasonable approximation to analytical calculations of molecular diffusion for an isothermal gas in hydrostatic equilibrium. We have compared our model results (Stand2015+Argo) to chemical kinetics models for HD 209458b, Jupiter, and the Earth. For Jupiter, we found that ion-neutral chemistry may provide significant alternative pathways to formation of various hydrocarbons, especially ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$.

Finally, we numerically simulate a Urey-Miller-like experiment ${ }^{12}$ under various initial chemistries. We found that, in an artificial environment, when derivatives of FeO and pyrite $\left(\mathrm{FeS}_{2}\right)$ can destroy nitrites in the presence of a reservoir of formic acid, the formation of glycine is considerable also in reducing environments, approaching a mixing ratio of $\sim 10^{-6}$. For an environment more similar to the atmosphere of the early

[^8]

Figure 19. Mixing ratio of glycine as a function of time, for five lab simulations, labeled Models A-E, with parameters given in Table 2 and described in Section 5.

Earth, the mixing ratio drops to $\sim 10^{-8}$. Surprisingly, for a gas without any $\mathrm{CO}_{2}, \mathrm{O}_{2}$, or N_{2}, virtually no glycine is formed. If this result is robust for various other energy sources (shocks, thermal energy, etc.) and for other prebiotic species, this would suggest that the early Earth chemistry should not be too strongly reducing, or else the formation of glycine and other prebiotic species would be severely inhibited.

This network has limitations. It has only been tested for 1D atmosphere models, with non-self-consistent temperature profiles. Using this network within a global circulation model is presently unrealistic, but a reduced version of this network, constructed specifically for given atmospheres, could in principle be employed in 2D or 3D atmosphere simulations. Sulfur chemistry has been shown to play an important role in the formation of prebiotics, and is an essential constituent in volcano plumes. The inclusion of sulfur chemistry will be a natural next step to take the model. Additionally, the models of prebiotic chemistry should consider the formation of species other than glycine. The formation of ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}\right)$ of nucleotides, such as adenine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}\right)$, and of phosphorusbearing species should also be included to more fully encapsulate the formation of the prebiotic chemical reservoir.
One serious problem with this network, and indeed with any chemical kinetics network, is the uncertainty in rate coefficients. The effects of this uncertainty can be estimated using sensitivity analysis (e.g., within Venot et al. 2012), but can ultimately only be resolved slowly as better experimental and theoretical determinations of the reaction rates are made available. More accurate determinations, especially of the reaction rates for the nitrogen chemistry, would be extremely helpful. This network and model provide a window into a detailed analysis of prebiotic chemistry, but much work must still be done in order to accurately predict the full budget of prebiotic molecules in the variety of environments in which they may occur.

Both authors gratefully acknowledge the support of the ERC Starting Grant \#257431. P.B.R. is grateful to J.I. Moses for several helpful discussions about the network and model comparisons, to G. Laibe for his help with the Lagrangian numerical methods, and to C.R. Stark for his help understanding prebiotic formation in plasma environments. Both

Table 3
Bond Constants for Benson Additivity

Species	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}
C-H							
$300-1000 \mathrm{~K}$	1.1 E 0	-3.0E-3	$1.2 \mathrm{E}-5$	$5.8 \mathrm{E}-8$	$4.8 \mathrm{E}-12$	-2.5E3	-2.5E-2
1000-6000 K	$4.0 \mathrm{E}-1$	$2.3 \mathrm{E}-3$	-1.9E-6	$1.4 \mathrm{E}-10$	-8.3E-15	-2.0E3	2.8E0
C-C							
300-1000 K	$-2.4 \mathrm{E} 0$	$1.3 \mathrm{E}-3$	$-1.4 \mathrm{E}-5$	-2.8E-7	-5.0E-13	3.0 E 3	3.0 E 0
1000-6000 K	1.8 E 0	$1.5 \mathrm{E}-3$	$5.7 \mathrm{E}-7$	$4.0 \mathrm{E}-11$	-2.5E-15	2.5 E 2	-1.8E1
$\mathrm{C}-\mathrm{O}$							
300-1000 K	-6.8E-1	8.3E-3	$-1.0 \mathrm{E}-5$	-2.0E-7	-2.3E-12	9.0 E 2	$4.8 \mathrm{E}-1$
1000-6000 K	1.7 E 0	$1.3 \mathrm{E}-3$	8.3E-6	$5.5 \mathrm{E}-11$	-3.8E-15	$-6.5 \mathrm{E} 2$	-1.1E1
O-H							
300-1000 K	5.0E-2	-7.3E-3	1.8E-5	$1.2 \mathrm{E}-7$	8.5E-12	$-9.0 \mathrm{E} 3$	-4.2E0
$1000-6000 \mathrm{~K}$	-4.5E-1	-3.1E-3	-6.7E-6	-1.6E10	$-5.4 \mathrm{E}-14$	$-7.5 \mathrm{E} 3$	5.2 E 0

authors are grateful for the anonymous referee whose report has helped significantly improve this paper. They also express thanks to Ian Taylor at St. Andrews for his help with computational resources. Finally, they acknowledge the National Institute of Standards and Technology, the databases of which were essential to the completion of this project.

APPENDIX A
 LIST OF SPECIES, REACTIONS, AND RATES

The purpose of this appendix is to explicitly lay out the content of the chemical network itself. We list the species considered in the network and the reactions.

The species include the elements $\mathrm{H} / \mathrm{C} / \mathrm{N} / \mathrm{O}$, and the network includes a complete chemistry for molecules and ions of up to two carbon, six hydrogen, two nitrogen, and three oxygen atoms. The different chemical kinetics for various neutral molecular isomers is included as completely as possible, although much about branching ratios for reactions is presently not well understood. A list of all the neutral species is given in Table 4. This table lists the species considered and includes the formula as used in the network, the standard formula, the name of the molecule, and the source we used for the thermochemical data. In some cases, the chemical formula in the network is different from the standard chemical formula. This is because we incorporated our own method for distinguishing isomers in order to make sure that we did not incorporate the same molecule under two different formulas.

This list also includes some species with the elements Na , $\mathrm{Mg}, \mathrm{Si}, \mathrm{Cl}, \mathrm{K}, \mathrm{Ti}$, and Fe . The chemistry attempts to include only the dominant species with these elements, in which they would be present in the gas phase. These species are generally only present in the gas phase for very high temperatures (generally $>1000 \mathrm{~K}$). For cooler objects, these species are typically ignored. The noble gases He and Ar are included, both for the sake of completeness and because they can play an important role in organic ion-neutral chemistry through charge-exchange reactions.

Ions are also included, and a list of the ionic species is given in Table 5. In this case, the uncertainty in reaction rates and branching ratios is much more severe, and so we made no attempt at present to distinguish isomers of ionic species.

It is difficult to determine which rate constants to use for a specific reaction, since there are often many to choose from, and they do not always agree well with each other. We employed the following method for determining which rate constant to include in our network, after plotting all the rate constants versus temperature over a range of $100-30,000 \mathrm{~K}$.

1. If there exists only one published rate constant for a given reaction, we use that value.
2. Reject all rate constants that become unrealistically large at extreme temperature.
3. Choose rate constants that agree with each other over the range of validity.
4. If the most recent published rate constant disagrees with (3), and the authors give convincing arguments for why the previous rates were mistaken, we use the most recently published rate.
The full list of forward reactions and rate constants determined by this method comprise the Stand2015 network and are given in Table 6. Reverse reactions are not explicitly shown; when reactions are reversible, bidirectional arrows are shown. When they are irreversible, or simply not reversed in the network, only unidirectional arrows are shown. Table 6 additionally includes a full list of the references for the rate constants used for each given reaction.

APPENDIX B REVERSING REACTIONS

For reverse reactions, we follow the prescription given by Burcat \& Ruscic (2005). For the reaction

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{E} \tag{59}
\end{equation*}
$$

there is a rate constant, k_{f}. We resolve to determine the reverse rate constant, k_{r}, for the reaction

$$
\begin{equation*}
\mathrm{C}+\mathrm{D}+\mathrm{E} \rightarrow \mathrm{~A}+\mathrm{B} \tag{60}
\end{equation*}
$$

Note that the number of species is different between the righthand side and left-hand side of Equation (60). We denote this difference in number of reactants and products ($n_{\text {react }}$ and $n_{\text {prod }}$, respectively) by $\Delta \nu$, which in our case

Table 4
Neutral Species Included in the Stand2015 Network

Network Formula	Standard Formula	Name	Thermochem Data
H	H	Atomic hydrogen	Burcat
C	C	Atomic carbon	Burcat
$\mathrm{C}\left({ }^{1} \mathrm{D}\right)$	$\mathrm{C}\left({ }^{1} \mathrm{D}\right)$	Singlet D carbon	Burcat
$\mathrm{C}\left({ }^{1} \mathrm{~S}\right)$	$\mathrm{C}\left({ }^{1} \mathrm{~S}\right)$	Singlet S carbon	Burcat
N	N	Atomic nitrogen	Burcat
O	O	Atomic oxygen	Burcat
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)$	$\mathrm{O}\left({ }^{1} \mathrm{D}\right)$	Singlet D oxygen	Burcat
$\mathrm{O}\left({ }^{1} \mathrm{~S}\right)$	$\mathrm{O}\left({ }^{1} \mathrm{~S}\right)$	Singlet S oxygen	Burcat
He	He	Helium	Burcat
Na	Na	Atomic sodium	Burcat
Mg	Mg	Atomic magnesium	Burcat
Si	Si	Atomic silicon	Burcat
Cl	Cl	Atomic chlorine	Burcat
Ar	Ar	Argon	Burcat
K	K	Atomic potassium	Burcat
Ti	Ti	Atomic titanium	Burcat
Fe	Fe	Atomic iron	Burcat
H_{2}	H_{2}	Molecular hydrogen	Burcat
C_{2}	C_{2}	Dicarbon	Burcat
N_{2}	N_{2}	Molecular nitrogen	Burcat
O_{2}	O_{2}	Molecular oxygen	Burcat
$\mathrm{O}_{2}\left(\mathrm{a}^{1} \Delta\right)$	$\mathrm{O}_{2}\left(\mathrm{a}^{1} \Delta\right)$	Singlet oxygen	Burcat
CH	CH	Methylidyne radical	Burcat
HN	NH	Nitrogen monohydride	Burcat
$\mathrm{HN}\left(\mathrm{a}^{1} \Delta\right)$	$\mathrm{NH}\left(\mathrm{a}^{1} \Delta\right)$	Singlet nitrogen monohydride	Burcat
HO	OH	Hydroxyl radical	Burcat
CN	CN	Cyano radical	Burcat
CO	CO	Carbon monoxide	Burcat
KH	KH	Potassium hydride	Burcat
NO	NO	Nitric oxide	Burcat
HCl	HCl	Hydrogen chloride	Burcat
NaH	NaH	Sodium hydride	Burcat
MgO	MgO	Magnesium oxide	Burcat
SiH	SiH	Silylidyne	NASA-CEA
SiO	SiO	Silicon monoxide	NASA-CEA
KCl	KCl	Potassium chloride	Burcat
TiO	TiO	Titanium(II) oxide	NASA-CEA
FeO	FeO	Iron(II) oxide	Burcat
O_{3}	O_{3}	Ozone	Burcat
${ }^{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{2}\left(\mathrm{X}^{3} \mathrm{~B}_{1}\right)$	Triplet methylene	Burcat
${ }^{1} \mathrm{CH}_{2}$	$\mathrm{CH}_{2}\left(\mathrm{a}^{1} \mathrm{~A}_{1}\right)$	Singlet methylene	Burcat
${ }^{1} \mathrm{CH}_{2}$	$\mathrm{CH}_{2}\left(\mathrm{a}^{1} \mathrm{~A}_{1}\right)$	Singlet methylene	Burcat
$\mathrm{C}_{2} \mathrm{H}$	CCH	Ethynyl radical	Burcat
$\mathrm{H}_{2} \mathrm{~N}$	NH_{2}	Amidogen	Burcat
HN_{2}	$\mathrm{N}_{2} \mathrm{H}$	Amino radical	Burcat
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	Water	Burcat
HO_{2}	HO_{2}	Hydroperoxyl	Burcat
$\mathrm{C}_{2} \mathrm{~N}$	CCN	Cyano-methylidyne	Burcat
CNC	CNC	CNC radical	Burcat
CN_{2}	CNN	CNN radical	Burcat
$\mathrm{C}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{O}$	Dicarbon monoxide	Burcat
CO_{2}	CO_{2}	Carbon dioxide	Burcat
$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{N}_{2} \mathrm{O}$	Nitrous oxide	Burcat
NO_{2}	NO_{2}	Nitrogen dioxide	Burcat
HCN	HCN	Hydrogen cyanide	Burcat
HNC	HNC	Hydrogen isocyanide	Burcat
HNO	HNO	Nitroxyl	Burcat
NCO	NCO	Isocyanato radical	Burcat
NaOH	NaOH	Sodium hydroxide	Burcat
MgHO	MgOH	Magnesium	NASA-CEA
		monohydroxide	

Table 4
(Continued)

Network Formula	Standard Formula	Name	Thermochem Data
NaCl	NaCl	Sodium chloride	Burcat
SiH_{2}	SiH_{2}	Silylene	NASA-CEA
KOH	KOH	Potassium hydroxide	Burcat
FeO_{2}	FeO_{2}	Iron oxide	Burcat
CH_{3}	CH_{3}	Methyl radical	Burcat
$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{2}$	Acetylene	Burcat
$\mathrm{H}_{3} \mathrm{~N}$	NH_{3}	Ammonia	Burcat
$\mathrm{H}_{2} \mathrm{~N}_{2}$	$\mathrm{N}_{2} \mathrm{H}_{2}$	Diimide	Burcat
HNNH	HNNH	(Z)-Diazene	Burcat
$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen peroxide	Burcat
NCCN	$(\mathrm{CN})_{2}$	Cyanogen	Burcat
$\mathrm{H}_{2} \mathrm{CN}$	$\mathrm{H}_{2} \mathrm{CN}$	Dihydrogen cyanide	Burcat
HCCN	HCCN	HCCN radical	Burcat
CHN_{2}	HCNN	HCNN	Burcat
$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{CO}$	Formaldehyde	Burcat
HOCH	HCOH	Hydroxymethylene	Burcat
HCCO	HCCO	Ethynyloxy radical	Burcat
COOH	COOH	Hydrocarboxyl radical	Burcat
$\mathrm{NH}_{2} \mathrm{O}$	NHOH	NHOH	Burcat
HNO_{2}	HNO_{2}	Nitrous acid	Burcat
OCCN	NCCO	NCCO	Burcat
HCNO	HCNO	Fulminic acid	Burcat
HNCO	HNCO	Isocyanic acid	Burcat
CHNO	CHNO	Cyanic acid	Burcat
HCNO	HCNO	HCNO	Burcat
SiH_{3}	SiH_{3}	Silyl radical	Burcat
CH_{4}	CH_{4}	Methane	Burcat
$\mathrm{C}_{2} \mathrm{H}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{3}$	Vinyl radical	Burcat
$\mathrm{NH}_{2} \mathrm{NH}$	$\mathrm{NH}_{2} \mathrm{NH}$	Hydrazinyl radical	Burcat
$\mathrm{N}_{2} \mathrm{O}_{3}$	$\mathrm{N}_{2} \mathrm{O}_{3}$	Nitrogen trioxide	Burcat
$\mathrm{CH}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{NH}$	Methanimine	Burcat
$\mathrm{CH}_{2} \mathrm{CN}$	$\mathrm{CH}_{2} \mathrm{CN}$	Cyanomethyl radical	Burcat
$\mathrm{CH}_{2} \mathrm{~N}_{2}$	$\mathrm{CH}_{2} \mathrm{~N}_{2}$	Diazomethane	Burcat
$\mathrm{HC}_{3} \mathrm{~N}$...	Propiolonitrile	Burcat
$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OH}$	Hydroxymethyl radical	Burcat
$\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{O}$	Methoxy radical	Burcat
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{CCO}$	Ethenone	Burcat
HCOOH	HCOOH	Formic acid	Burcat
$\mathrm{CH}_{2} \mathrm{O}_{2}$	$\mathrm{CH}_{2} \mathrm{OO}$	CH2OO	Burcat
HNO_{3}	HNO_{3}	Nitric acid	Burcat
$\mathrm{NH}_{2} \mathrm{OH}$	$\mathrm{NH}_{2} \mathrm{OH}$	Hydroxylamine	Burcat
HCOCN	HCOCN	HCOCN	Benson
$\mathrm{MgO}_{2} \mathrm{H}_{2}$	$\mathrm{H}_{2} \mathrm{MgO}_{2}$	Magnesium hydroxide	NASA-CEA
SiH_{4}	SiH_{4}	Silane	Burcat
$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	Ethylene	Burcat
$\mathrm{C}_{3} \mathrm{H}_{3}$	\ldots	Propargyl radical	Burcat
$\mathrm{H}_{4} \mathrm{~N}_{2}$	$\mathrm{N}_{2} \mathrm{H}_{4}$	Hydrazine	Burcat
$\mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$	Water dimer	Burcat
$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{CH}_{3} \mathrm{CN}$	Acetonitrile	Burcat
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{CNH}$	$\mathrm{CH} 2=\mathrm{C}=\mathrm{NH}$	Burcat
$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{H}$	Methyl diazene	Burcat
$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{OH}$	Methanol	Burcat
$\mathrm{CH}_{3} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{O}_{2}$	CH3O2	Burcat
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CO}$	Acetyl radical	Burcat
cyc- $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$	Oxyranyl	Oxiranyl radical	Burcat
$\mathrm{CH}_{2} \mathrm{CHO}$	$\mathrm{CH}_{2} \mathrm{CHO}$	CH2CHO	Burcat
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}$...	2-Propynal	Benson
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$	$(\mathrm{CHO})_{2}$	Glyoxal	Burcat
$\mathrm{H}_{2} \mathrm{NNO}_{2}$	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{NO}_{2}$	H2N-NO2	Burcat
$\mathrm{CH}_{3} \mathrm{NO}$	HCONH_{2}	Formamide	Burcat

Table 4
(Continued)

Network Formula	Standard Formula	Name	Thermochem Data
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	Ethyl radical	Burcat
$\mathrm{C}_{3} \mathrm{H}_{4}$...	Propyne	Burcat
$\mathrm{CH}_{5} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	Methylamine	Burcat
$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$		Acrylonitrile	Burcat
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CHO}$	Acetaldehyde	Burcat
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{HOH}$	$\mathrm{CH}_{2} \mathrm{CHOH}$	Vinyl alcohol	Burcat
Oxirane	Oxirane	Oxirane	Burcat
$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$	\ldots	1-Oxoprop-2-3nyl	Burcat
$\mathrm{CH}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{OOH}$	Methyl peroxide	Burcat
$\mathrm{CH}_{3} \mathrm{OCO}$	$\mathrm{CH}_{3} \mathrm{OCO}$	CH3OC(\cdot (O)	Burcat
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	Nitromethane	Burcat
$\mathrm{CH}_{3} \mathrm{ONO}$	$\mathrm{CH}_{3} \mathrm{ONO}$	Methyl nitrite	Burcat
$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	Ethane	Burcat
$\mathrm{C}_{4} \mathrm{H}_{4}$...	1-Buten-3-yne	Burcat
$\mathrm{CH}_{2} \mathrm{NCH}_{3}$	$\mathrm{NH}_{2} \mathrm{NCH}_{3}$	N-Methyl methanimine	Benson
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid	Burcat
$\mathrm{CH}_{3} \mathrm{OCHO}$	CHOOCH_{3}	Methyl formate	Burcat
$\mathrm{CH}_{3} \mathrm{CHOH}$	$\mathrm{CH}_{3} \mathrm{CHOH}$	1-hydroxy Ethyl radical	Burcat
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$	Ethoxy radical	Burcat
$\mathrm{CH}_{3} \mathrm{OCH}_{2}$	$\mathrm{CH}_{3} \mathrm{OCH}_{2}$	Methoxymethyl radical	Burcat
$\mathrm{CH}_{3} \mathrm{NO}_{3}$	$\mathrm{CH}_{3} \mathrm{NO}_{3}$	Methyl nitrate	Burcat
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{2}$	Nitroethylene	Burcat
$\mathrm{Si}_{2} \mathrm{H}_{6}$	$\mathrm{Si}_{2} \mathrm{H}_{6}$	Disilane	Burcat
$\mathrm{C}_{3} \mathrm{H}_{6}$...	Propene	Burcat
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	Dimethyl amidogen	Burcat
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	Ethanol	Burcat
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OO}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OO}$	C2H5OO	Burcat
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$	$\mathrm{HOCH}_{2} \mathrm{COOH}$	Glycolic acid	Burcat
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	Dimethyl ether	Burcat
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$	Acetaldoxime	Benson
$\mathrm{C}_{4} \mathrm{H}_{6}$	\ldots	1,3-Butadiene	Burcat
$\left(\mathrm{CH}_{3} \mathrm{~N}\right)_{2}$	$\left(\mathrm{CH}_{3} \mathrm{~N}\right)_{2}$	Dimethyl diazene	Burcat
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$	Dimethyl peroxide	Burcat
$\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$	$\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$	1,2-Ethanediol	Burcat
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	Acetone	Burcat
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	Ethylene glycol	Burcat
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$	$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	Glycine	Burcat
aC 2 H 5 NO 2	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$	Nitroethane	Burcat
bC2H5NO2	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONO}$	Ethyl nitrate	Benson
$\mathrm{C}_{3} \mathrm{H}_{8}$...	Propane	Burcat
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2} \mathrm{O}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2} \mathrm{O}$	Dimethylnitrosamine	Benson
$\mathrm{C}_{4} \mathrm{H}_{10}$...	Butane	Burcat

(This table is available in machine-readable form.)
$=n_{\text {prod }}-n_{\text {react }}=2-3=-1$. We then solve for the reaction rate constant as (Burcat \& Ruscic 2005, their Equation (6))

$$
\begin{align*}
K_{c}= & (R T)^{-\Delta \nu} \exp \left(\Delta a_{1}(\log T-1)+\frac{\Delta a_{2} T}{2}+\frac{\Delta a_{3} T^{2}}{6}\right. \\
& \left.+\frac{\Delta a_{4} T^{3}}{12}+\frac{\Delta a_{5} T^{4}}{20}-\frac{\Delta a_{6}}{T}+\Delta a_{7}\right) \tag{61}
\end{align*}
$$

where $R=8.314472 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ is the gas constant, and $\Delta a_{i}=a_{i}(\mathrm{C}+\mathrm{D}+\mathrm{E})-a_{i}(\mathrm{~A}+\mathrm{B})$ for $1 \leqslant i \leqslant 7$ are the NASA thermodynamics coefficients, which Burcat \& Ruscic
(2005) describes and tabulates. It is important to emphasize here, as done by Visscher \& Moses (2011), the multiplicative factor $(R T)^{-\Delta \nu}$, which in our example would be $1.38065 \times 10^{-22} T$.

The Burcat values for the NASA coefficients have been used for all possible species (see Table 4). For some species, however, the coefficients had to be obtained from other sources. For sources with elements $\mathrm{Na}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Cl}, \mathrm{K}, \mathrm{Ti}$, and Fe , the Burcat values were sparse, so we made use instead of the NASA-CEA values (McBride et al. 1993; Gordon \& McBride 1999), which use nine-coefficient polynomials, so we fit them to a series of seven-coefficient polynomials for various temperature ranges. We do the same for the monatomic gases and ions at high temperatures $6000 \mathrm{~K}<T<20,000 \mathrm{~K}$, using fits to the polynomials provided by Gordon \& McBride (1999). For some species, the thermodynamic properties have not been determined. In these cases, for neutral species we use Benson's additivity method as described by Cohen \& Benson (1993).

Benson's additivity method can be naturally combined with the NASA and Burcat polynomial coefficients using the experimental values for the small alkanes listed within Cohen \& Benson (1993). For the arbitrary alcohol from Cohen \& Benson (1993), we use methanol, and for the arbitrary ether, we used dimethyl ether. The Benson coefficients are

$$
\begin{gather*}
P_{i}=\frac{1}{2} a_{i}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right), \tag{62}\\
S_{i}=a_{i}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)-a_{i}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right), \tag{63}\\
D_{i}=a_{i}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)-a_{i}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right), \tag{64}\\
F_{i}=a_{i}\left(\mathrm{CH}_{3} \mathrm{OH}\right)-a_{i}\left(\mathrm{CH}_{4}\right) . \tag{65}
\end{gather*}
$$

Here, $a_{i}(X)$ denotes the seven coefficients, $i=1, \ldots, 7$ for species X. The coefficients for fundamental bonds are calculated using these coefficients as follows:

$$
\begin{gather*}
a_{i}([\mathrm{C}-\mathrm{H}])=\frac{1}{2} P-\frac{1}{4} S, \tag{66}\\
a_{i}([\mathrm{C}-\mathrm{C}])=\frac{3}{2} S-P, \tag{67}\\
a_{i}([\mathrm{C}-\mathrm{O}])=\frac{1}{2} D+\frac{3}{4} S-\frac{1}{2} P, \tag{68}\\
a_{i}([\mathrm{O}-\mathrm{H}])=F-\frac{1}{2} D-\frac{1}{2} S . \tag{69}
\end{gather*}
$$

The values for these bonds are given in Table 3. The values for $[\mathrm{N}-\mathrm{H}],[\mathrm{N}-\mathrm{C}]$, and $[\mathrm{N}-\mathrm{O}]$ are similarly determined.

It has been suggested by Lias (1988) and Cohen \& Benson (1993) that using Benson's additivity method to determine the thermodynamic properties of ions, or at least strongly of strongly polarizing groups, can lead to large errors, because the thermodynamic properties of ions do not depend linearly on their length, although Hammerum \& Sølling (1999) have had some success applying Benson's method to ions.

We found, by investigating the thermodynamic properties of ionic species tabulated by Burcat \& Ruscic (2005), that the thermodynamic properties of ions do depend nonlinearly but predictably based on size. We therefore placed all the known thermodynamic properties of ions into a database, and have extrapolated to calculate the thermodynamic properties for the undetermined ions.

Table 5
List of Ions Included the Stand2015 Network

e^{-}	C^{+}	C^{-}	H^{+}	H^{-}	K^{+}	N^{+}
O^{+}	$\mathrm{O}^{+}\left({ }^{2} \mathrm{D}\right)$	$\mathrm{O}^{+}\left({ }^{3} \mathrm{P}\right)$	O^{-}	Ar^{+}	Cl^{+}	C_{2}^{+}
C_{2}^{-}	C_{3}^{+}	C_{4}^{+}	CH^{+}	CN^{+}	CN^{-}	CO^{+}
Fe^{+}	H_{2}^{+}	H_{3}^{+}	HN^{+}	HO^{+}	HO^{-}	He^{+}
Mg^{+}	Na^{+}	N_{2}^{+}	N_{3}^{+}	N_{3}^{-}	NO^{+}	NO^{-}
O_{2}^{+}	$\mathrm{O}_{2}^{+}\left(\mathrm{X}^{2} \Pi_{g}\right)$	O_{2}^{-}	O_{3}^{-}	Si^{+}	Ti^{+}	Ar_{2}^{+}
ArH^{+}	$\mathrm{C}_{2} \mathrm{H}^{+}$	$\mathrm{C}_{2} \mathrm{H}^{-}$	$\mathrm{C}_{2} \mathrm{~N}^{+}$	$\mathrm{C}_{2} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{H}^{+}$	$\mathrm{C}_{3} \mathrm{~N}^{+}$
$\mathrm{C}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{4} \mathrm{H}^{+}$	$\mathrm{C}_{5} \mathrm{~N}^{+}$	CH_{2}^{+}	CH_{3}^{+}	CH_{4}^{+}	CH_{5}^{+}
CHN^{+}	CHO^{+}	CN_{2}^{+}	CNO^{+}	CNO^{-}	CO_{2}^{+}	CO_{3}^{-}
CO_{4}^{+}	CO_{4}^{-}	FeO^{+}	$\mathrm{H}_{2} \mathrm{~N}^{+}$	$\mathrm{H}_{2} \mathrm{~N}^{-}$	$\mathrm{H}_{2} \mathrm{O}^{+}$	$\mathrm{H}_{3} \mathrm{~N}^{+}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{4} \mathrm{~N}^{+}$	HN_{2}^{+}	HN_{3}^{+}	HNO^{+}	HO_{2}^{+}	HO_{2}^{-}
HO_{4}^{+}	HSi^{+}	He_{2}^{+}	HeH^{+}	MgO^{+}	$\mathrm{N}_{2} \mathrm{O}^{+}$	NO_{2}^{+}
NO_{2}^{-}	NO_{3}^{-}	Si_{2}^{+}	SiH^{+}	SiO^{+}	TiO^{+}	$\mathrm{Ar}_{2} \mathrm{H}^{+}$
ArH_{3}^{+}	$\mathrm{C}_{2} \mathrm{H}_{2}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{2}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{3}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{3}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{4}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{5}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{6}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{7}^{+}$	$\mathrm{C}_{2} \mathrm{HN}^{+}$	$\mathrm{C}_{2} \mathrm{HO}^{+}$	$\mathrm{C}_{2} \mathrm{HO}^{-}$	$\mathrm{C}_{2} \mathrm{~N}_{2}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{2}^{+}$
$\mathrm{C}_{3} \mathrm{H}_{3}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{4}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{5}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{6}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{7}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{8}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{9}^{+}$
$\mathrm{C}_{3} \mathrm{HN}^{+}$	$\mathrm{C}_{3} \mathrm{~N}_{2}^{+}$	$\mathrm{C}_{3} \mathrm{~N}_{3}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{2}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{4}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{5}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{7}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{8}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{9}^{+}$	$\mathrm{C}_{5} \mathrm{HN}^{+}$	$\mathrm{CH}_{2} \mathrm{~N}^{+}$	$\mathrm{CH}_{2} \mathrm{O}^{+}$	$\mathrm{CH}_{3} \mathrm{~N}^{+}$
$\mathrm{CH}_{3} \mathrm{O}^{+}$	$\mathrm{CH}_{3} \mathrm{O}^{-}$	$\mathrm{CH}_{4} \mathrm{~N}^{+}$	$\mathrm{CH}_{4} \mathrm{~N}^{-}$	$\mathrm{CH}_{4} \mathrm{O}^{+}$	$\mathrm{CH}_{5} \mathrm{~N}^{+}$	$\mathrm{CH}_{5} \mathrm{O}^{+}$
$\mathrm{CH}_{6} \mathrm{~N}^{+}$	CHNO^{+}	CHO_{2}^{+}	CHO_{2}^{-}	FeO_{2}^{+}	$\mathrm{H}_{2} \mathrm{NO}^{+}$	$\mathrm{H}_{2} \mathrm{O}_{2}^{+}$
$\mathrm{H}_{3} \mathrm{O}_{2}^{+}$	$\mathrm{HN}_{2} \mathrm{O}^{+}$	HNO_{2}^{+}	MgHO^{+}	MgO_{2}^{+}	$\mathrm{Si}_{2} \mathrm{H}^{+}$	SiCH^{+}
SiH_{2}^{+}	SiH_{3}^{+}	SiH_{3}^{-}	SiH_{4}^{+}	SiH_{5}^{+}	SiHO^{+}	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}^{+}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{HN}_{2}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}^{+}$
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}^{+}$	$\mathrm{C}_{3} \mathrm{HN}_{2}^{+}$
$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}^{+}$	$\mathrm{CH}_{2} \mathrm{NO}^{+}$	$\mathrm{CH}_{3} \mathrm{NO}^{+}$	$\mathrm{CH}_{4} \mathrm{NO}^{+}$	$\mathrm{CH}_{5} \mathrm{NO}^{+}$	$\mathrm{CH}_{6} \mathrm{NO}^{+}$	$\mathrm{CH}_{2} \mathrm{O}_{2}^{+}$
$\mathrm{CH}_{2} \mathrm{OH}^{+}$	$\mathrm{CH}_{3} \mathrm{O}_{2}^{+}$	$\mathrm{H}_{2} \mathrm{NO}_{2}^{+}$	$\mathrm{H}_{2} \mathrm{NO}_{3}^{+}$	$\mathrm{Si}_{2} \mathrm{H}_{2}^{+}$	$\mathrm{Si}_{2} \mathrm{H}_{3}^{+}$	$\mathrm{Si}_{2} \mathrm{H}_{4}^{+}$
$\mathrm{Si}_{2} \mathrm{H}_{5}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{2}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{3}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{4}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{5}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{6}^{+}$	$\mathrm{Si}_{3} \mathrm{H}_{7}^{+}$
$\mathrm{Si}_{4} \mathrm{H}_{2}^{+}$	$\mathrm{Si}_{4} \mathrm{H}_{3}^{+}$	$\mathrm{Si}_{4} \mathrm{H}_{4}^{+}$	$\mathrm{Si}_{4} \mathrm{H}_{5}^{+}$	$\mathrm{Si}_{4} \mathrm{H}_{6}^{+}$	$\mathrm{Si}_{4} \mathrm{H}_{7}^{+}$	SiCH_{2}^{+}
SiCH_{3}^{+}	SiCH_{4}^{+}	SiCH_{5}^{+}	$\mathrm{SiC}_{2} \mathrm{H}^{+}$	$\mathrm{SiH}_{3} \mathrm{O}^{+}$	$\mathrm{SiH}_{3} \mathrm{O}^{-}$	aCHNO^{+}
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}^{+}$	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{+}$	$\mathrm{CH}_{2} \mathrm{NO}_{2}^{-}$	$\mathrm{CH}_{3} \mathrm{NO}_{2}^{+}$	$\mathrm{CH}_{4} \mathrm{NO}_{2}^{+}$	$\mathrm{MgH}_{2} \mathrm{O}_{2}^{+}$
$\mathrm{SiC}_{2} \mathrm{H}_{3}^{+}$	$\mathrm{SiC}_{2} \mathrm{H}_{4}^{+}$	$\mathrm{SiC}_{2} \mathrm{H}_{5}^{+}$	$\mathrm{SiC}_{2} \mathrm{H}_{6}^{+}$	$\mathrm{TiC}_{2} \mathrm{H}_{4}^{+}$		

APPENDIX C
 OUTGASSING, CONDENSATION, EVAPORATION, AND ESCAPE

Boundary conditions play a key role in determining the atmospheric compositions of planets. For rocky planets, these boundary conditions are set by outgassing and escape into the exosphere. At temperatures $\lesssim 1500 \mathrm{~K}$, metals such as silicates, iron, and corundum begin to condense out of the atmospheric gas phase. At much lower temperatures, various other species (e.g., water, ammonia, methane) may also condense out. It is important for comparison to previous models to consider both the atmospheric boundary conditions and atmospheric condensation.

As discussed in Section 3.1, there exist, in addition to the Stand2015 reactions, a series of "banking" reactions for all major species, that collect particles and reintroduce them to the fluid parcel at a rate determined by the diffusion timescales. The very bottom banking reaction can be set to act effectively as an outgassing rate. Imagine a particular reservoir for a species, A . This reservoir is outgassing into the atmosphere with a flux, $\Phi(\mathrm{A})\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$. This can be accounted by first taking a reservoir concentration of A , which for a large reservoir will be $\gg \mathrm{A}](z=0)$, the bottom of the atmosphere. For a reservoir that will not be appreciably depleted over the chemical-dynamical timescale of the
atmosphere, the rate is simply:

$$
\begin{equation*}
P_{\text {out }}(\mathrm{A})=\frac{\Phi(\mathrm{A})}{\Delta z} . \tag{70}
\end{equation*}
$$

For a finite reservoir, we can place the reservoir concentration into the bottom "bank" for the species in question, and the $t=0$ flux, $\Phi(\mathrm{A}, 0)$, and concentration ([BA]) can be used to determine the rate of outgassing,

$$
\begin{equation*}
P_{\text {out }}(\mathrm{A})=L(\mathrm{BA})[\mathrm{BA}], \tag{71}
\end{equation*}
$$

where

$$
\begin{equation*}
L(\mathrm{BA})=\frac{\Phi(\mathrm{A}, 0)}{[\mathrm{BA}(t=0)] \Delta z} \tag{72}
\end{equation*}
$$

These approximations are not used anywhere in this paper. For HD 209458b, we simply start with solar elemental abundances, with everything in atomic form at the bottom of the atmosphere. For both Jupiter and Earth, we start with fixed lower boundary conditions.

Condensation or evaporation of species A can be treated by the reactions ("JA" represents "A in condensate form"):

$$
\begin{gather*}
\text { A } \rightarrow \text { JA, } \quad \text { for condensation; } \tag{73}\\
\mathrm{JA} \rightarrow \mathrm{~A}, \quad \text { for evaporation. } \tag{74}
\end{gather*}
$$

Table 6
Stand2015 Chemical Kinetics Network

\#	Type	Reaction	α	β	γ	References
1	2d	$\mathrm{C}_{2} \leftrightharpoons \mathrm{C}+\mathrm{C}$	$2.49 \mathrm{e}-08$	0.00	71600	1
2	2d	$\mathrm{C}_{2} \leftrightharpoons \mathrm{C}+\mathrm{C}$	$6.01 \mathrm{e}+11$	-1.00	71600	\ldots
3	2d	$\mathrm{CH} \leftrightharpoons \mathrm{C}+\mathrm{H}$	$3.16 \mathrm{e}-10$	0.00	33700	2
4	2d	$\mathrm{CH} \leftrightharpoons \mathrm{C}+\mathrm{H}$	$7.63 \mathrm{e}+09$	-1.00	33700	\ldots
5	2d	$\mathrm{CN} \leftrightharpoons \mathrm{C}+\mathrm{N}$	$1.00 \mathrm{e}-09$	0.00	71000	3
6	2d	$\mathrm{CN} \leftrightharpoons \mathrm{C}+\mathrm{N}$	$2.42 \mathrm{e}+10$	0.00	71000	\ldots
7	2d	$\mathrm{CO} \leftrightharpoons \mathrm{C}+\mathrm{O}$	$1.52 \mathrm{e}-04$	-3.10	129000	4
8	2d	$\mathrm{CO} \leftrightharpoons \mathrm{C}+\mathrm{O}$	$3.67 \mathrm{e}+15$	-4.10	129000	\ldots
9	2d	$\mathrm{H}+\mathrm{H} \leftrightharpoons \mathrm{H}_{2}$	$9.13 \mathrm{e}-33$	-0.60	0	30
10	2d	$\mathrm{H}+\mathrm{H} \leftrightharpoons \mathrm{H}_{2}$	$1.00 \mathrm{e}-11$	0.00	0	5

Note.

References. (1) Kruse \& Roth (1997), (2) Dean \& Hanson (1992), (3) Tsang (1992), (4) Mick et al. (1993), (5) Baulch et al. (1992), (6) Deppe et al. (1998), (7) Tsang \& Hampson (1986), (8) Thielen \& Roth (1986), (9) Myerson (1973), (10) Javoy et al. (2003), (11) De Cobos \& Troe (1984), (12) Bauerle et al. (1995), (13) Husain \& Young (1975), (14) Lin et al. (1992), (15) Wagner \& Bowman (1987), (16) Mertens \& Hanson (1996), (17) Eremin et al. (1997), (18) Tsang \& Herron (1991), (19) Ross et al. (1997), (20) Fulle \& Hippler (1997), (21) Moses et al. (2005), (22) Yumura \& Asaba (1981), (23) Hanson \& Salimian (1984), (24) Graham \& Johnston (1978), (25) Bozzelli \& Dean (1995), (26) Natarajan et al. (1986), (27) Troe (2005), (28) Wu et al. (1990), (29) Lifshitz et al. (1997), (30) Baulch et al. (2005), (31) Vuitton et al. (2012), (32) Atkinson et al. (2004), (33) Baulch et al. (1994), (34) Meyer et al. (1969), (35) Dorko et al. (1979), (36) Klatt et al. (1995), (37) Schulz et al. (1985), (38) Fernandes et al. (2005), (39) Dean (1985), (40) Li et al. (2006), (41) Frank et al. (1988), (42) Kiefer et al. (1988), (43) Kern et al. (1988), (44) Yang et al. (2005), (45) Warnatz (1984, p. 197), (46) Chang \& Yu (1995), (47) Cribb et al. (1992), (48) Setser \& Rabinovitch (1962), (49) Chang et al. (2007), (50) Saito et al. (1984), (51) Ikeda \& Mackie (1996), (52) Wakamatsu \& Hidaka (2008), (53) O’Neal \& Benson (1962), (54) Atkinson et al. (1997), (55) Huynh \& Violi (2008), (56) Dombrowsky et al. (1991), (57) Koike et al. (2000), (58) Ing et al. (2003), (59) Yasunaga et al. (2008), (60) Herron (1999), (61) Lifshitz \& Tamburu (1998), (62) Lifshitz et al. (1993), (63) Oehlschlaeger et al. (2004), (64) Saito et al. (1990), (65) Lee \& Bozzelli (2003), (66) Miller et al. (2004), (67) Friedrichs et al. (2008), (68) Joshi et al. (2005), (69) Almatarneh et al. (2005), (70) Zaslonko et al. (1997), (71) Fernández-Ramos et al. (1998), (72) Zaslonko et al. (1993), (73) Tsang (2004), (74) Cook et al. (2009), (75) Imai \& Toyama (1962), (76) Hinshelwood \& Askey (1927), (77) Hunt et al. (1965), (78) Sheng et al. (2002), (79) DeSain et al. (2003), (80) Chuchani et al. (1993), (81) Petrov et al. (2009), (82) Batt \& Rattray (1979), (83) Blake \& Jackson (1969), (84) Duan \& Page (1995), (85) Spokes \& Benson (1967), (86) Glänzer \& Troe (1973), (87) Levy (1956), (88) Batt et al. (1975), (89) Li et al. (2004), (90) Natarajan \& Bhaskaran (1981), (91) Arenas et al. (2000), (92) Zalotai et al. (1983), (93) Lifshitz \& Tamburu (1994), (94) Sato \& Hidaka (2000), (95) Hoyermann et al. (1999), (96) Zhang et al. (2005), (97) Zhang et al. (2004), (98) Curran (2006), (99) Patrick \& Golden (1984), (100) Lavvas et al. (2014), (101) Baulch et al. (1981), (102) Crosley (1989), (103) Kretschmer \& Petersen (1963), (104) Fehsenfeld et al. (1974a), (105) Smith et al. (1982), (106) Raksit \& Warneck (1979), (107) Adams \& Smith (1977), (108) Ferguson \& Fehsenfeld (1968), (109) Graham et al. (1973), (110) Fehsenfeld et al. (1967a), (111) Burt et al. (1970), (112) Beaty \& Patterson (1965), (113) Märk \& Oskam (1971), (114) Fehsenfeld et al. (1975a), (115) Sieck (1978), (116) See Section 2.3, (117) Wang et al. (2001), (118) Slack \& Fishburne (1970), (119) Dean et al. (1991), (120) Andersson et al. (2003), (121) Mayer et al. (1967), (122) Whyte \& Phillips (1983), (123) Caridade et al. (2005), (124) Adam et al. (2005), (125) Cohen \& Westberg (1991), (126) Miller et al. (2005), (127) Bauer et al. (1985), (128) Sumathi \& Nguyen (1998), (129) Tsuboi \& Hashimoto (1981), (130) Röhrig \& Wagner (1994), (131) Nguyen et al. (2004), (132) Mousavipour \& Saheb (2007), (133) Bozzelli et al. (1994), (134) Su et al. (2002), (135) Shaw (1977), (136) Louge \& Hanson (1984), (137) Miller \& Melius (1992), (138) Szekely et al. (1985), (139) Corchado \& EspinosaGarcia (1997), (140) Linder et al. (1996), (141) Hsu et al. (1997), (142) He et al. (1993), (143) Senosiain et al. (2006), (144) Loison et al. (2015), (145) Tsang (1987), (146) Morris \& Niki (1973), (147) Boughton et al. (1997), (148) Knyazev et al. (1996), (149) Jamieson et al. (1970), (150) Ohmori et al. (1990), (151) Colberg \& Friedrichs (2006), (152) Li \& Williams (1996), (153) Vaghjiani (1995), (154) Sivaramakrishnan et al. (2009), (155) Lambert et al. (1967), (156) Lifshitz \& BenHamou (1983), (157) Zhang \& Bauer (1997), (158) Moortgat et al. (1977), (159) Aders \& Wagner (1973), (160) Mayer et al. (1966), (161) Brownsword et al. (1996), (162) Ibragimova (1986), (163) Harding et al. (1993), (164) Duff \& Sharma (1996), (165) Bose \& Candler (1996), (166) Brunetti \& Liuti (1975), (167) Lifshitz \& Frenklach (1980), (168) Avramenko \& Krasnen’kov (1966), (169) Sander et al. (2011), (170) Barnett et al. (1987), (171) Safrany \& Jaster (1968), (172) Cimas \& Largo (2006), (173) Wagner et al. (1971), (174) Xu \& Sun (1999), (175) Sun et al. (2004), (176) Takahashi (1972), (177) Paraskevopoulos \& Winkler (1967), (178) Forst et al. (1957), (179) Roscoe \& Roscoe (1973), (180) Lambert et al. (1968), (181) Fairbairn (1969), (182) Murrell \& Rodriguez (1986), (183) Frank (1986), (184) Zhu \& Lin (2007), (185) Korovkina (1976), (186) Harding \& Wagner (1989), (187) Karkach \& Osherov (1999), (188) Meagher \& Anderson (2000), (189) Cvetanović (1987), (190) Hack et al. (2005), (191) Dean \& Kistiakowsky (1971), (192) Harding et al. (2005), (193) Corchado et al. (1998), (194) Cobos \& Troe (1985), (195) Sridharan \& Kaufman (1983), (196) Mahmud et al. (1987), (197) Westenberg \& De Haas (1969), (198) Grotheer \& Just (1981), (199) Gehring et al. (1969), (200) Mayer \& Schieler (1968), (201) Bogan \& Hand (1978), (202) Miyoshi et al. (1993), (203) Kato \& Cvetanovic (1967), (204) Wu et al. (2007), (205) Takahashi et al. (2007), (206) Patterson \& Greene (1962), (207) Meaburn \& Gordon (1968), (208) Pshezhetskii et al. (1959), (209) Wilson (1972), (210) Kruse \& Roth (1999), (211) Fontijn et al. (2001), (212) Harding et al. (2008), (213) Matsui \& Nomaguchi (1978), (214) Geiger et al. (1999), (215) Bergeat et al. (1998), (216) Jachimowski (1977), (217) Lichtin et al. (1984), (218) Bergeat et al. (2009), (219) Tao et al. (2001), (220) Blitz et al. (1997), (221) Mulvihill \& Phillips (1975), (222) Rim \& Hershberger (1999), (223) Tzeng et al. (2009), (224) Wang et al. (2002), (225) Park \& Hershberger (1993), (226) Gannon et al. (2007), (227) Sayah et al. (1988), (228) Feng \& Hershberger (2007), (229) Pang et al. (2008), (230) Sun et al. (2006), (231) Sims et al. (1993), (232) You et al. (2007), (233) Tsuboi et al. (1981), (234) Roose et al. (1978), (235) Baldwin et al. (1961), (236) Davidson et al. (1990), (237) Quandt \& Hershberger (1995), (238) Xu \& Sun (1998), (239) Röhrig et al. (1994), (240) Miller \& Melius (1988), (241) Campomanes et al. (2001), (242) Gonzalez et al. (1992), (243) Mebel et al. (1996), (244) Srinivasan et al. (2007), (245) Ju et al. (2007), (246) Miller \& Melius (1989), (247) Breen \& Glass (1971), (248) Jasper et al. (2007), (249) Humpfer et al. (1995), (250) Xu \& Lin (2007), (251) Wooldridge et al. (1996), (252) Corchado et al. (1995), (253) Grussdorf et al. (1994), (254) Faravelli et al. (2000), (255) Vandooren \& Van Tiggelen (1977), (256) Bryukov et al. (2004), (257) Espinosa-Garcia et al. (1993), (258) Anglada (2004), (259) Lamb et al. (1984), (260) Liu et al. (2002), (261) Li \& Wang (2004), (262) Srinivasan et al. (2007), (263) Baldwin et al. (1984), (264) Cohen (1991), (265) Nielsen et al. (1991), (266) Atkinson et al. (2001), (267) Wu et al. (2003), (268) Zabarnick \& Heicklen (1985), (269) Sanders et al. (1987), (270) Thweatt et al. (2004), (271) Dammeier et al. (2007), (272) Lin et al. (1993), (273) Miller \& Glarborg (1999), (274) Park \& Lin (1997), (275) Vandooren et al. (1994), (276) Howard (1979), (277) Opansky \& Leone (1996a, 1996b), (278) Benson (1994), (279) Hennig \& Wagner (1994), (280) Tomeczek \& Gradoń (2003), (281) Mebel \& Lin (1997), (282) Striebel et al. (2004), (283) Laidler \& Wojciechowski (1961), (284) McKenney et al. (1963), (285) Becker et al. (1992b), (286) Williamson \& Bayes (1967), (287) Alvarez \& Moore (1994), (288) Dombrowsky \& Wagner (1992), (289) Nadtochenko et al. (1979), (290) Zhu \& Lin (2005), (291) Schacke et al. (1974), (292) Bozzelli \& Dean (1989), (293) Tang et al. (2008), (294) Reitel'boim et al. (1978), (295) Seery (1969), (296) Michael et al. (1999), (297) Marinov et al. (1998), (298)

Bogdanchikov et al. (2004), (299) Shaw (1978), (300) Neiman \& Feklisov (1961), (301) Bozzelli \& Dean (1990), (302) Baker et al. (1971), (303) Atkinson et al. (1973), (304) Yang et al. (2008), (305) Hastie et al. (1976), (306) Morrissey \& Schubert (1963), (307) Haworth et al. (2003), (308) Yee Quee \& Thynne (1968), (309) Stothard et al. (1995), (310) Sahetchian et al. (1987), (311) Hidaka et al. (1990), (312) Dong et al. (2005), (313) Baker et al. (1969), (314) Homann \& Wellmann (1983), (315) Frank et al. (1986), (316) Böhland et al. (1985), (317) Monks et al. (1993), (318) Xu \& Lin (2004), (319) Huynh \& Truong (2008), (320) Gao \& Macdonald (2006), (321) Macdonald (2007), (322) Sumathi \& Peyerimhoff (1996), (323) Glarborg et al. (1995), (324) Bulatov et al. (1980), (325) Mertens et al. (1991), (326) Thaxton et al. (1997), (327) Song et al. (2003), (328) Mebel \& Lin (1999), (329) England \& Corcoran (1975), (330) Choi \& Lin (2005), (331) He et al. (1988), (332) Glänzer \& Troe (1975), (333) Lloyd (1974), (334) Vardanyan et al. (1974), (335) Becker et al. (1992a), (336) Carstensen \& Dean (2008), (337) Borisov et al. (1977), (338) Trenwith (1960), (339) Srinivasan et al. (2005), (340) Canosa et al. (1979), (341) Johnston (1951), (342) Chan et al. (2001), (343) Atkinson et al. (1989), (344) Christie \& Voisey (1967), (345) Anastasi \& Hancock (1988), (346) Fifer (1975), (347) Lindley et al. (1979), (348) Hébrard et al. (2013), (349) Laufer \& Fahr (2004), (350) Woods \& Haynes (1994), (351) Skinner \& Ruehrwein (1959), (352) Tabayashi \& Bauer (1979), (353) Metcalfe et al. (1983), (354) Adachi et al. (1981), (355) Hassinen et al. (1990), (356) Ceursters et al. (2001), (357) Baldwin et al. (1971), (358) Saeys et al. (2006), (359) Donovan et al. (1971), (360) Seetula et al. (1986), (361) Gray \& Herod (1968), (362) Hidaka et al. (2000), (363) Thynne \& Gray (1963), (364) Sanders et al. (1980), (365) Musin \& Lin (1998), (366) Bravo-Pérez et al. (2002), (367) Daele et al. (1995), (368) Kukui et al. (1995), (369) Langer \& Ljungström (1995), (370) Biggs et al. (1995), (371) Langer \& Ljungström (1994), (372) Sun et al. (2001), (373) Peeters et al. (1995), (374) Carl et al. (2003), (375) Osborn (2003), (376) Meyer \& Hershberger (2005), (377) Petty et al. (1993), (378) Nizamov \& Dagdigian (2003), (379) Chakraborty \& Lin (1999), (380) Duran et al. (1988), (381) Knyazev et al. (1996b), (382) Levush et al. (1969), (383) Canosa et al. (1988), (384) Tanzawa \& Gardiner (1980), (385) J. I. Moses (2016, private communication), (386) Adamson et al. (1997), (387) Wallington \& Japar (1989), (388) Fahr \& Stein (1989), (389) Scherzer et al. (1987), (390) Kelly \& Heicklen (1978), (391) Thynne \& Gray (1963), (392) Moshkina et al. (1980), (393) Edwards et al. (1966), (394) Hoehlein \& Freeman (1970), (395) Laidler \& McKenney (1964), (396) Carstensen \& Dean (2005), (397) Horne \& Norrish (1970), (398) Herron (1988), (399) Atkinson et al. (1992), (400) Veyret et al. (1982), (401) Young (1958), (402) Gill et al. (1981), (403) Zhu \& Lin (2009), (404) Hassinen et al. (1985), (405) Tuazon et al. (1984), (406) Edelbüttel-Einhaus et al. (1992), (407) Song et al. (2005), (408) Suzaki et al. (2007), (409) Suzaki et al. (2006), (410) Batt et al. (1977), (411) Ray et al. (1996), (412) Natarajan \& Bhaskaran (1981), (413) Klemm (1965), (414) Hartmann et al. (1990), (415) Wijnen (1960), (416) Heicklen \& Johnston (1962), (417) Jensen (1982), (418) Allison et al. (1996), (419) Bryukov et al. (2006), (420) Husain \& Lee (1988), (421) Husain \& Marshall (1986), (422) Bolden et al. (1970), (423) Laudenslager et al. (1974), (424) Raksit \& Warneck (1980a), (425) Robertson et al. (1983), (426) Dotan \& Lindinger (1982), (427) Karpas et al. (1978), (428) Chau \& Bowers (1976), (429) Thomas et al. (1978), (430) Shul et al. (1987), (431) Lindinger et al. (1981), (432) Villinger et al. (1982), (433) Roche et al. (1971), (434) Lindinger (1973), (435) Lindinger et al. (1975f), (436) Raksit (1982), (437) Bohme et al. (1970), (438) Adams et al. (1970), (439) Shul et al. (1987), (440) Raksit \& Warneck (1981), (441) Huntress \& Baldeschwieler (1969), (442) Anicich et al. (1976), (443) Freeman et al. (1978b), (444) Schildcrout \& Franklin (1970), (445) Bohme et al. (1982), (446) Raksit \& Bohme (1985), (447) Cheng et al. (1973), (448) Cermak et al. (1970), (449) Adams \& Smith (1978), (450) Adams et al. (1978), (451) Szabo \& Derrick (1971), (452) Smith \& Adams (1977b), (453) Viggiano et al. (1980), (454) Schiff \& Bohme (1979), (455) Zielinska \& Wincel (1970), (456) McEwan et al. (1981), (457) Liddy et al. (1977a), (458) Wight \& Beauchamp (1980), (459) Wagner-Redeker et al. (1985), (460) Karpas \& Klein (1975), (461) Tanner et al. (1979b), (462) Mackay \& Bohme (1978), (463) Adams et al. (1978), (464) Mackay et al. (1977), (465) Mackay et al. (1976a), (466) Okada et al. (1972), (467) Mackay et al. (1981), (468) Kumakura et al. (1978a), (469) Raksit \& Bohme (1984), (470) Matsumoto et al. (1975), (471) Kasper \& Franklin (1972), (472) Betowski et al. (1975), (473) Anicich et al. (1986), (474) Debrou et al. (1978), (475) Freeman et al. (1978a), (476) Fluegge (1969a), (477) Smith \& Adams (1978), (478) Kumakura et al. (1978b), (479) Bohme \& Raksit (1985), (480) Kim et al. (1975), (481) Huntress et al. (1973), (482) Huntress \& Elleman (1970), (483) Fehsenfeld (1976), (484) Fluegge (1969b), (485) Huntress et al. (1980), (486) Warneck (1972), (487) Sieck \& Futrell (1968), (488) McAllister (1973), (489) Gupta et al. (1967), (490) Tanner et al. (1979a), (491) Mackay et al. (1978), (492) Bohme et al. (1980), (493) Hemsworth et al. (1973), (494) Munson \& Field (1969), (495) Hopkinson et al. (1979), (496) Lindinger et al. (1975c), (497) Hemsworth et al. (1974), (498) Ikezoe et al. (1987), (499) MeotNer et al. (1986), (500) Raksit et al. (1984), (501) McEwan et al. (1983), (502) Jaffe \& Klein (1974), (503) Fehsenfeld et al. (1972), (504) Raksit \& Warneck (1980c), (505) Raksit \& Warneck (1980b), (506) Fehsenfeld et al. (1971), (507) Fehsenfeld et al. (1970), (508) Ikezoe et al. (1987), (509) Miller et al. (1984), (510) Mackay et al. (1980), (511) Field et al. (1957), (512) Jarrold et al. (1983), (513) Mayer \& Lampe (1974a), (514) Vogt et al. (1978), (515) Melton \& Rudolph (1960), (516) Munson et al. (1964), (517) Büttrill et al. (1974), (518) Mayer \& Lampe (1974b), (519) Kumakura et al. (1979), (520) Strausz et al. (1970), (521) Hiraoka \& Kebarle (1980), (522) Ikezoe et al. (1987), (523) Ausloos \& Lias (1981), (524) Tanner et al. (1979a), (525) Dheandhanoo et al. (1984), (526) Dunbar et al. (1972), (527) Sieck \& Searles (1970), (528) Matsuoka \& Ikezoe (1988), (529) Clary et al. (1985), (530) Armentrout et al. (1978), (531) Adams et al. (1980), (532) Smith \& Adams (1980), (533) Herbst et al. (1975), (534) Fehsenfeld et al. (1976), (535) Howorka et al. (1974), (536) Ausloos (1975), (537) Jones et al. (1981a), (538) Lawson et al. (1976), (539) Ikezoe et al. (1987), (540) Fehsenfeld et al. (1975b), (541) Lindinger et al. (1975a), (542) Henis et al. (1973), (543) Cheng et al. (1974), (544) McAllister \& Pitman (1976), (545) Karpas et al. (1979), (546) Bowers et al. (1969), (547) Smith et al. (1976), (548) Stevenson \& Schissler (1955), (549) Barassin et al. (1983), (550) Huntress et al. (1971), (551) Dotan et al. (1980), (552) Durup-Ferguson et al. (1984), (553) Ikezoe et al. (1987), (554) Lindinger et al. (1975d), (555) Liddy et al. (1977b), (556) Adams \& Smith (1976b), (557) Smith \& Adams (1981), (558) Kemper et al. (1983), (559) Fehsenfeld et al. (1978), (560) Mackay et al. (1979), (561) Bohme \& Mackay (1981), (562) Bohme et al. (1979), (563) Smith \& Adams (1977a), (564) Ikezoe et al. (1987), (565) Cheng \& Lampe (1973), (566) Neilson et al. (1978), (567) Kappes \& Staley (1981), (568) Fehsenfeld et al. (1966b), Jones et al. (1979), (569) Adams \& Smith (1976a), (570) Bolden \& Twiddy (1972), Mauclaire et al. (1978), (571) Heimerl et al. (1969), (572) Theard \& Huntress (1974), (573) Rowe et al. (1981), (574) Smith et al. (1978), (575) Tichy' et al. (1979), (576) Williamson \& Beauchamp (1975), (577) Fehsenfeld (1977), (578) Fehsenfeld et al. (1969c), (579) Ferguson (1968), (580) Jaffe et al. (1973), (581) Johnsen et al. (1970), (582) Jones et al. (1981b), (583) Kemper \& Bowers (1984), (584) Lindinger (1976), (585) Glosik et al. (1978), (586) Lindinger et al. (1974), (587) Dunkin et al. (1971), (588) Rowe et al. (1980), (589) Fahey et al. (1981), (590) Fehsenfeld (1969), (591) Lindinger et al. (1975e), (592) Lindinger et al. (1979), (593) Raksit (1986), (594) Tonkyn \& Weisshaar (1986), (595) Johnsen et al. (1974), (596) Tanaka et al. (1976), (597) Fehsenfeld \& Ferguson (1970), (598) Mackay et al. (1982), (599) Moylan et al. (1985), (600) Mackay et al. (1976b), (601) Ausloos (1975), (602) Ikezoe et al. (1987), (603) Fehsenfeld (1975), (604) Albritton et al. (1983), (605) Fehsenfeld et al. (1974b), (606) Ikezoe et al. (1987), (607) Fehsenfeld et al. (1969b), (608) Bohme et al. (1974), (609) Bohme et al. (1971), (610) Lifshitz et al. (1978), (611) Lindinger et al. (1975b), (612) Fehsenfeld et al. (1973), (613) Dunkin et al. (1970), (614) Payzant et al. (1976), (615) Ferguson et al. (1969), (616) Tanner et al. (1981), (617) Bierbaum et al. (1976), (618) Faigle et al. (1976), (619) Howard et al. (1974), (620) Young et al. (1971), (621) Fehsenfeld et al. (1966a), (622) Ikezoe et al. (1987), (623) Bierbaum et al. (1984), (624) Grabowski (1983), (625) Streit (1982), (626) McFarland et al. (1972), (627) Parkes (1972a), (628) Parkes (1972b), (629) Bohme \& Fehsenfeld (1969), (630) Fehsenfeld et al. (1967b), (631) Viggiano \& Paulson (1983), (632) Lifshitz \& Tassa (1973), (633) Marx et al. (1973), (634) McKnight (1970), (635) Fehsenfeld et al. (1969a), (636) Lifshitz et al. (1977), (637) Fahey et al. (1982), (638) Dunkin et al. (1972), (639) 0.1-370 $\AA:$ Verner et al. (1993, 1996), Verner \& Yakovlev (1995), 375.8-1083 A: Badnell et al. (2005), (640) 0-120 A: Barfield et al. (1972), 120-310 A: Henry (1970), 313.3-1226 A: Badnell et al. (2005), (641) Bethe \& Salpeter (1957), (642) 0-20 Å: Verner et al. (1993, 1996), Verner \& Yakovlev (1995), 22.78-504.26 Å: Badnell et al. (2005), (643) 0.1-250 Å: Verner et al. (1993, 1996), Verner \& Yakovlev (1995), 256.8-851.3 Å: Badnell et al. (2005), (644) 0.1-230 A: Verner et al. (1993, 1996), Verner \& Yakovlev (1995), 235.9-910.44 $\AA:$ Badnell et al. (2005), (645) 1-130 $\AA:$ Barfield et al. (1972), 130-200 A: Henry (1970), 227.3-790.1 \AA : Badnell et al. (2005) (646) 180-16640 Å: Geltman (1962), Broad \& Reinhardt (1976), (647) 0.6-918 Å: Barfield et al. (1972), Padial et al. (1985), 918-1210 Å: Pouilly et al. (1983), Padial et al. (1985), (648) 12-617 Å: Walker \& Kelly (1972), 827-1170 Å: Barsuhn \& Nesbet (1978), van Dishoeck (1987), 1200-3589.9 Å: van Dishoeck (1987), branching ratio: Barsuhn \& Nesbet (1978), (649) 0.61-626.8 A: Barfield et al. (1972), 905.8-1108 A: Lavendy et al. (1984, 1987), (650) 89.6-564.5 Å: Masuoka \& Samson
(1981), 584.3-835.29 Å: Cairns \& Samson (1965), Kronebusch \& Berkowitz (1976), (651) 89.6-584 Å: Masuoka \& Samson (1981), Kronebusch \& Berkowitz (1976), (652) 0-1117.8 A: McElroy \& McConnell (1971), (653) 1-200 A: $\sigma\left(\mathrm{H}_{2}\right) \approx 2 \sigma(\mathrm{H}), 209.3-500 \AA$: Samson \& Cairns (1965), Browning \& Fryar (1973), 500-844 Å: Cook \& Metzger (1964), Browning \& Fryar (1973), (654) 9.9-247.2 Å: Huffman (1969), 303.8-1037 Å: Samson \& Cairns (1965), Cook \& Metzger (1964), Huffman et al. (1963), Kronebusch \& Berkowitz (1976), (655) 1-180 Å: Huebner \& Mukherjee (2015), 180-580 Å: Lee et al. (1973), Kronebusch \& Berkowitz (1976), 580-1350 Å: Watanabe et al. (1967), Kronebusch \& Berkowitz (1976), 1350-1910 Å: Marmo (1953), (656) 1-1771.2 Å: Barfield et al. (1972), Brion et al. (1979), 1771.2-2000 Å: Ackerman (1971, p. 149), 2000-2200 Å: Herman \& Mentall (1982), 2250-2423.7 Å: Shardanand \& Rao (1977), branching ratio: Huffman (1969), Samson \& Cairns (1964), Matsunaga \& Watanabe (1967), Brion et al. (1979), (657) Experimental: 0.61-625.8 Å: Barfield et al. (1972), 1150-1830 Å: Nee \& Lee (1984), Theoretical: van Dishoeck (1984), (658) 2-270 Å: Henry \& McElroy (1968), 303.78-555.26 A: Cairns \& Samson (1965), 580-1670 A: Nakata et al. (1965), branching ratio: Kronebusch \& Berkowitz (1976), Nakata et al. (1965), (659) 1-100 Å: Barfield et al. (1972), 180-700 Å: Phillips et al. (1977), Dibeler et al. (1966), 700-980.8 Å: Phillips et al. (1977), Katayama et al. (1973), Watanabe \& Jursa (1964), 980.8-1860 Å: Watanabe \& Jursa (1964), Watanabe \& Zelikoff (1953), branching ratio: McNesby et al. (1962), Slanger \& Black (1982), Kronebusch \& Berkowitz (1976), (660) 1-1950 Å: Huebner \& Mukherjee (2015), (661) 1-1850 A: Huebner \& Mukherjee (2015), (662) 0.61-625 A: Huebner \& Mukherjee (2015), Barfield et al. (1972), 1080-1700 Å: Zelikoff et al. (1953), 1730-2400 Å: Selwyn et al. (1977), branching ratio: Okabe et al. (1978), (663) 1-840 $\AA: \sigma\left(\mathrm{H}_{2} \mathrm{~N}\right) \approx 2 \sigma(\mathrm{H})+\sigma(\mathrm{N}), 1250-1970 \AA$: Saxon et al. (1983), (664) 0.6-940 $\AA:$ Huebner \& Mukherjee (2015), 1080-1800 A: Nakayama et al. (1959), 1850-3978 Å: Bass et al. (1976), branching ratio: Nakayama et al. (1959), (665) 0.6-742 $\AA: \sigma\left(\mathrm{O}_{3}\right) \approx 3 \sigma(\mathrm{O}), 1060-1360 \AA$: Tanaka et al. (1953), 1365-2000 Å: Ackerman (1971, p. 149), 2975-3300 A: Moortgat \& Warneck (1975), 3300-8500 Å: Griggs (1968), (666) 600-1000 Å: Metzger \& Cook (1964), 1050-2011 Å: Nakayama \& Watanabe (1964), branching ratio: Schoen (1962), Okabe (1981, 1983), (667) 0-500 Å: Barfield et al. (1972), 600-1760 Å: Mentall et al. (1971), 1760-1850 Å: Gentieu \& Mentall (1970), 2000-2634.7 Å: Calvert \& Pitts (1966), 2635.7-3531.7 Å: Rogers (1990), 3531.7-3740 Å: Calvert \& Pitts (1966), branching ratio: Clark et al. (1978), Mentall et al. (1971), Guyon et al. (1976), (668) $0.61-627 \AA$ A: Barfield et al. (1972), 1200-2000 Å: Okabe (1970), 2100-2550 Å: Dixon \& Kirby (1968), (669) 0.6-940 Å: Barfield et al. (1972), 2000-4000 Å: Cox \& Derwent (1977), 3120-3900 Å: Stockwell \& Calvert (1978), (670) 1-350 Å: Huebner \& Mukherjee (2015), 374.1-1650 Å: Sun \& Weissler (1955), Watanabe \& Sood (1965), 1650-2170 Å: Watanabe (1954), 2140-2330 Å: Thompson et al. (1963), branching ratio: McNesby et al. (1962), Schurath et al. (1969), Kronebusch \& Berkowitz (1976), (671) 0.6-630 A: Huebner \& Mukherjee (2015), 915-3980 $\AA: \sigma\left(\mathrm{NO}_{3}\right) \approx \sigma\left(\mathrm{NO}_{2}\right), 4000-7030 \AA$: Graham \& Johnston (1978), branching ratio: Magnotta \& Johnston (1980), (672) 23.6-1370 Å: Lukirskii et al. (1964),Rustgi (1964), Ditchburn (1955), 1380-1600 Å: Mount \& Moos (1978), branching ratio: Gorden \& Ausloos (1967), Calvert \& Pitts (1966), Stief et al. (1972), Slanger \& Black (1982), Kronebusch \& Berkowitz (1976), (673) 1-1100 Å: Huebner \& Mukherjee (2015), branching ratio: Gorden \& Ausloos (1961), Huebner \& Mukherjee (2015), (674) 0-1100 A: $\sigma\left(\mathrm{HNO}_{3}\right) \approx \sigma\left(\mathrm{NO}_{3}\right), 1100-1900 \AA:$ Okabe (1980), 1900-3300 Å: Molina \& Molina (1981), (675) 1-100 $\AA: \sigma\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \approx 2 \sigma(\mathrm{C})+4 \sigma(\mathrm{H}), 180-1065 \AA$: Lee et al. (1973), Schoen (1962), 1065-1960 Å: Schoen (1962), Zelikoff et al. (1953), branching ratio: Lee et al. (1973), McNesby \& Okabe (1964), Back \& Griffiths (1967), (676) 0.61-250 $\AA: \sigma\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \approx 2 \sigma(\mathrm{C})+6 \sigma(\mathrm{H})$, 354-1127 Å: Koch \& Skibowski (1971), 1160-1200 Å: Lombos et al. (1967), 1200-1380 Å: Okabe \& Becker (1963), 1380-1600 Å: Mount \& Moos (1978), branching ratio: Lias et al. (1970), Huebner \& Mukherjee (2015), (677) 2000-3450 Å: Baulch et al. (1982), branching ratio: Weaver et al. (1977), (678) 1200-2053 Å: Salahub \& Sandorfy (1971), branching ratio: Porter \& Noyes (1959), Huebner \& Mukherjee (2015), (679) 0.1-2412.63 Å: Verner et al. (1993, 1996), Verner \& Yakovlev (1995), (680) 0.1-2856.34 A.: Verner et al. (1993, 1996), Verner \& Yakovlev (1995), (681) 0.61-877.46 A: Barfield et al. (1972), 1050-1350 Å: Myer \& Samson (1970), 1400-2200 A: Inn (1975), (682) Harada et al. (2010), Rimmer \& Helling (2013), (683) Harada et al. (2010), (684) 1-3000 Å: $\sigma\left(\mathrm{N}_{2} \mathrm{O}_{3}\right) \approx \sigma\left(\mathrm{NO}_{2}\right)+\sigma(\mathrm{NO}), 3000-4000$ Å: Stockwell \& Calvert (1978), (685) Pitts et al. (1982), (686) Vakhtin et al. (2001), (687) Fahr \& Nayak (1994), Ferradaz et al. (2009), Friedrichs et al. (2002), Okabe (1981), (688) Fahr \& Nayak (1996), (689) Prasad \& Huntress (1980), (690) Ercolano \& Storey (2006).
(This table is available in its entirety in machine-readable form.)

This physical process is treated in two ways in this paper for Earth and Jupiter. The first method is by considering supersaturation concentrations, above which the species in question condenses out and below which the species in question will evaporate. This method is given by Hamill et al. (1977), Toon \& Farlow (1981), and (Hu et al. 2012), and has the form (for species A)

$$
\begin{gather*}
P=\frac{[\mathrm{A}]}{t_{c}}, \quad L=\frac{[\mathrm{JA}]}{t_{c}} \tag{75}\\
t_{c}=\frac{m_{\mathrm{A}} v_{\mathrm{th}}}{4 \rho_{\mathrm{nuc}}} \frac{n_{\mathrm{gas}}-n_{c}(T, p)}{a} \tag{76}
\end{gather*}
$$

where m_{A} [g] is the mass of the condensing species, $v_{\text {th }}$ is the thermal velocity of the gas, $\rho_{\text {nuc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$ is the material density of the condensation seed, $n_{\text {gas }}\left[\mathrm{cm}^{-3}\right.$] is the density of the gas, and $n_{c}\left[\mathrm{~cm}^{-3}\right]$ is the saturation number density, at the given temperature and pressure, and $a[\mathrm{~cm}]$ is the average radius of the nucleation site. We consider condensation only for low temperatures, so $n_{c}=p_{v} / k_{B} T$, where $p_{v}\left[\mathrm{dyn} \mathrm{cm}^{-2}\right]$ is the vapor pressure, and is estimated using the relatively simple Antoine equation:

$$
\begin{equation*}
\log p_{v}=A-\frac{B}{C+T} \tag{77}
\end{equation*}
$$

where A, B, and C are all parameters taken from the tabulated NIST chemistry webbook. ${ }^{13}$

Alternatively, one can use the method commonly used in the astrochemical context (Hasegawa et al. 1992; Caselli et al. 1998), where

$$
\begin{equation*}
L\left[\mathrm{~s}^{-1}\right]=\pi a^{2} v_{\mathrm{th}} n_{\mathrm{nuc}} \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\nu_{0}[\mathrm{JA}] e^{-E_{D} / k_{B} T} \tag{79}
\end{equation*}
$$

Here, E_{D} is the desorption energy, an empirically determined quantity, taken from Garrod et al. (2008). The frequency,

$$
\begin{equation*}
\nu_{0}[\mathrm{~Hz}]=\left(\frac{2 n_{s} E_{D}}{\pi^{2} m_{\mathrm{A}}}\right)^{1 / 2}, \tag{80}
\end{equation*}
$$

is the characteristic frequency of the surface. The number of sites is estimated, also empirically, by the relation $n_{s}=1.5 \times 10^{15} \mathrm{~cm}^{2}\left(a / a_{0}\right)^{2}$, where $a_{0}=0.1 \mu \mathrm{~m}$. The advantage of this approximation is that it is identical to the form generally used for complex surface chemistry in protoplanetary disks. This would allow one to take the results from disk chemistry and utilize them straightforwardly in atmospheric outgassing models.

[^9]It is worth pointing out that exponentiating Equation (78), dividing by k_{BT}, and then placing the resulting form of n_{c} into Equation (77) yields a form:

$$
\begin{equation*}
\frac{P}{L} \sim \frac{\text { Const. }}{v_{\text {th }}} e^{T_{c} / T}, \tag{81}
\end{equation*}
$$

where $T_{c} / T=B /(C+T)$ from Equation (78). The two forms are therefore analogous parameterizations, with the same temperature dependence, but the saturation approach is dependent on the parameterized vapor pressure, and the deposition approach is parameterized by the number of nucleation sites and the binding energy of the nucleation particle.

Neither the supersaturation method nor the deposition method explain where the condensation seeds first arise. It is assumed that the condensation seeds are already present, and therefore that condensation occurs whenever the supersaturation ratio $S \gtrsim 1$. In some environments like Earth, the condensation seeds come in the form of sand or ash particles, and the supersaturation ratio for water to condense is very small, $S \approx 1.01$. If the seed particles are not already present in the atmosphere, they must form within the gas phase by the growth from small to large, complex clusters. This requires a supersaturation ratio $S \gg 100$, which only occurs when $T \ll T_{c}$ (Helling \& Fomins 2013). Zsom et al. (2012) explore the microphysics of water condensation and cloud formation for Earth and Earth-like planets.

None of these reactions appear in the generic kinetic network, because their inclusion is atmosphere-dependent. Condensation is not considered at all for HD 209458b because it is too hot, but is considered for Earth and Jupiter for water. Ammonia and methane condensation can also be considered for Jupiter and methane and other condensation should be considered for even colder planets, such as Uranus and Neptune.

REFERENCES

Ackerman, M. 1971, Mesospheric Models and Related Experiments (Berlin: Springer)
Adachi, H., Basco, N., \& James, D. 1981, Int. J. Chem. Kin., 13, 1251
Adam, L., Hack, W., Zhu, H., Qu, Z., \& Schinke, R. 2005, JChPh, 122, 114301
Adams, N., Bohme, D., \& Ferguson, E. 1970, JChPh, 52, 5101
Adams, N., \& Smith, D. 1976a, JPhB, 9, 1439
Adams, N., \& Smith, D. 1976b, IJMIP, 21, 349
Adams, N., \& Smith, D. 1977, CPL, 47, 383
Adams, N., \& Smith, D. 1978, CPL, 54, 530
Adams, N., Smith, D., \& Grief, D. 1978, IJMIP, 26, 405
Adams, N. G., Smith, D., \& Paulson, J. F. 1980, JChPh, 72, 288
Adamson, J., DeSain, J., Curl, R., \& Glass, G. 1997, JPCA, 101, 864
Aders, W.-K., \& Wagner, H. G. 1973, Berich Bunsen Gesell, 77, 712
Agúndez, M., Parmentier, V., Venot, O., Hersant, F., \& Selsis, F. 2014, A\&A, 564, A73
Alam, J. M., \& Lin, J. C. 2008, MWRv, 136, 4653
Albritton, D., Dotan, I., Streit, G., et al. 1983, JChPh, 78, 6614
Allison, T. C., Lynch, G. C., Truhlar, D. G., \& Gordon, M. S. 1996, JPhCh, 100, 13575
Almatarneh, M., Flinn, C., \& Poirier, R. 2005, CaJCh, 83, 2082
Alvarez, R. A., \& Moore, C. B. 1994, JPhCh, 98, 174
Anastasi, C., \& Hancock, D. U. 1988, FaTr II, 84, 1697
Andersson, S., Markovic, N., \& Nyman, G. 2003, JPCA, 107, 5439
Anglada, J. M. 2004, JAChS, 126, 9809
Anicich, V. G., Huntress, W. T., \& Futrell, J. H. 1976, CPL, 40, 233
Anicich, V. G., Huntress, W. T., \& McEwan, M. J. 1986, JPhCh, 90, 2446
Aplin, K. L. 2013, Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond (1st ed.; Berlin: Springer)

Arenas, J. F., Marcos, J. I., López-Tocón, I., Otero, J. C., \& Soto, J. 2000, JChPh, 113, 2282
Armentrout, P., Berman, D., \& Beauchamp, J. 1978, CPL, 53, 255
Asplund, M., Grevesse, N., Sauval, A. J., \& Scott, P. 2009, ARA\&A, 47, 481
Atkinson, R., Baulch, D., Cox, R., et al. 1989, JPCRD, 18, 881
Atkinson, R., Baulch, D., Cox, R., et al. 1992, AtmEn A, 26, 1187
Atkinson, R., Baulch, D., Cox, R., et al. 1997, JPCRD, 26, 521
Atkinson, R., Baulch, D. L., Cox, R. A., et al. 2001, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry Web Version 1
Atkinson, R., Baulch, D., Cox, R., et al. 2004, ACP, 4, 1461
Atkinson, R., Finlayson, B., \& Pitts, J. 1973, JAChS, 95, 7592
Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H., \& Owen, T. C. 2003, P\&SS, 51, 105
Ausloos, P. 1975, in Interactions Between Ions and Molecules, ed. P. Ausloos (New York: Plenum), 489
Ausloos, P., \& Lias, S. 1981, JAChS, 103, 3641
Avramenko, L., \& Krasnen'kov, V. 1966, Russ. Chem. B, 15, 394
Back, R., \& Griffiths, D. 1967, JChPh, 46, 4839
Badnell, N. R., Bautista, M., Butler, K., et al. 2005, MNRAS, 360, 458
Bailey, R. L., Helling, Ch., Hodosán, G., Bilger, C., \& Stark, C. R. 2014, ApJ, 784, 43
Baker, R., Baldwin, R., \& Walker, R. 1971, in Int. Symp. on Combustion, Vol. 16 (Amsterdam: Elsevier), 291
Baker, R., Kerr, J., \& Trotman-Dickenson, A. 1969, J. Chem. Soc. A, 390
Baldwin, R. R., Booth, D., \& Brattan, D. 1961, CaJCh, 39, 2130
Baldwin, R. R., Keen, A., \& Walker, R. W. 1984, FaTr I, 80, 435
Baldwin, R. R., Langford, D., Matchan, M., Walker, R., \& Yorke, D. 1971, in Int. Symp. on Combustion, Vol. 16 (Amsterdam: Elsevier), 251
Banks, P. M., \& Kockarts, G. 1973, Aeronomy (Amsterdam: Elsevier)
Bar-Nun, A., Bar-Nun, N., Bauer, S. H., \& Sagan, C. 1970, Sci, 470, 170
Barassin, J., Barassin, A., \& Thomas, R. 1983, IJMIP, 49, 51
Barfield, W., Koontz, G., \& Huebner, W. 1972, JQSRT, 12, 1409
Barnett, A. J., Marston, G., \& Wayne, R. P. 1987, FaTr II, 83, 1453
Barsuhn, J., \& Nesbet, R. 1978, JChPh, 68, 2783
Bass, A. M., Ledford, A. E., \& Laufer, A. H. 1976, JRNBA, 80A, 143
Batt, L., McCulloch, R., \& Milne, R. 1975, Int. J. Chem. Kinet., 7, 1
Batt, L., Milne, R., \& McCulloch, R. 1977, Int. J. Chem. Kin., 9, 567
Batt, L., \& Rattray, G. 1979, Int. J. Chem. Kin., 11, 1183
Bauer, W., Becker, K., \& Meuser, R. 1985, Berich Bunsen Gesell, 89, 340
Bauerle, S., Klatt, M., \& Wagner, H. 1995, Berich Bunsen Gesell, 99, 870
Baulch, D., Bowman, C. T., Cobos, C. J., et al. 2005, JPCRD, 34, 757
Baulch, D., Cobos, C., Cox, R., et al. 1992, JPCRD, 21, 411
Baulch, D., Cobos, C., \& Cox, R. 1994, JPCRD, 23, 847
Baulch, D., Cox, R., Crutzen, P., et al. 1982, JPCRD, 11, 327
Baulch, D., Duxbury, J., Grant, S., \& Montague, D. 1981, Evaluated Kinetic Data for High Temperature Reactions, Homogeneous Gas Phase Reactions of Halogen-and Cyanide-Containing Species, Vol. 4, Tech. Rep., DTIC Document
Beaty, E., \& Patterson, P. 1965, PhRv, 137, A346
Beaulieu, J. P., Kipping, D. M., Batista, V., et al. 2010, MNRAS, 409, 963
Becker, E., Rahman, M., \& Schindler, R. 1992a, Berich Bunsen Gesell, 96, 776
Becker, K., König, R., Meuser, R., Wiesen, P., \& Bayes, K. D. 1992b, J. Photoch. Photobio A, 64, 1

Benneke, B. 2015, arXiv:1504.07655
Benner, S. A., Ricardo, A., \& Carrigan, M. A. 2004, Curr. Opin. Chem. Biol., 8, 672
Benson, S. W. 1994, Int. J. Chem. Kin., 26, 997
Bergeat, A., Calvo, T., Daugey, N., Loison, J.-C., \& Dorthe, G. 1998, JCPA, 102, 8124
Bergeat, A., Moisan, S., Méreau, R., \& Loison, J.-C. 2009, CPL, 480, 21
Bethe, H. A., \& Salpeter, E. E. 1957, Quantum Mechanics of One-and TwoElectron Atoms, Vol. 63 (Berlin: Springer)
Betowski, D., Payzant, J., Mackay, G. I., \& Bohme, D. 1975, CPL, 31, 321
Bézard, B., Drossart, P., Encrenaz, T., \& Feuchtgruber, H. 2001, Icar, 154, 492
Bierbaum, V. M., DePuy, C., Shapiro, R., \& Stewart, J. H. 1976, JAChS, 98, 4229
Bierbaum, V. M., Grabowski, J. J., \& DePuy, C. H. 1984, JPhCh, 88, 1389
Biggs, P., Canosa-Mass, C. E., Fracheboud, J.-M., Shallcross, D. E., \& Wayne, R. P. 1995, FaTr, 91, 817
Bilger, C., Rimmer, P., \& Helling, Ch. 2013, MNRAS, 435, 1888
Blagojevic, V., Petrie, S., \& Bohme, D. K. 2003, MNRAS, 339, L7
Blake, P., \& Jackson, G. 1969, J Chem Soc B, 94
Blitz, M., Johnson, D., Pilling, M., et al. 1997, JCS(FaTr), 93, 1473
Bogan, D. J., \& Hand, C. W. 1978, JPhCh, 82, 2067
Bogdanchikov, G., Baklanov, A., \& Parker, D. 2004, CPL, 385, 486

Böhland, T., Dõb, S., Temps, F., \& Wagner, H. G. 1985, Berichte Bunsen Gesell, 89, 1110
Bohme, D., Adams, N., Mosesman, M., Dunkin, D., \& Ferguson, E. 1970, JChPh, 52, 5094
Bohme, D. K., \& Fehsenfeld, F. 1969, CaJCh, 47, 2717
Bohme, D. K., Lee-Ruff, E., \& Young, L. B. 1971, JAChS, 93, 4608
Bohme, D. K., \& Mackay, G. I. 1981, JAChS, 103, 2173
Bohme, D. K., Mackay, G.-I., \& Schiff, H. 1980, JChPh, 73, 4976
Bohme, D. K., Mackay, G., Schiff, H., \& Hemsworth, R. 1974, JChPh, 61, 2175
Bohme, D. K., Mackay, G., \& Tanner, S. 1979, JAChS, 101, 3724
Bohme, D. K., \& Raksit, A. B. 1985, CaJCh, 63, 3007
Bohme, D. K., Raksit, A., \& Schiff, H. 1982, CPL, 93, 592
Bolden, R., Hemsworth, R., Shaw, M., \& Twiddy, N. 1970, JPhB, 3, 45
Bolden, R., \& Twiddy, N. 1972, FaDi, 53, 192
Borisov, A., Zamanskii, V., Potmishil, K., Skachkov, G., \& Foteenkov, V. 1977, Kinet. Catal. (USSR), 18, 307
Borucki, W., Kenzie, R. M., McKay, C., Duong, N., \& Boac, D. 1985, Icar, 64, 221
Borucki, W. J., McKay, C. P., \& Whitten, R. C. 1984, Icar, 60, 260
Bose, D., \& Candler, G. V. 1996, JChPh, 104, 2825
Boughton, J., Kristyan, S., \& Lin, M. 1997, CP, 214, 219
Bowers, M., Elleman, D., \& King, J. 1969, JChPh, 50, 4787
Bozzelli, J. W., Chang, A. Y., \& Dean, A. M. 1994, in Int. Symp. on Combustion, Vol. 25 (Amsterdam: Elsevier), 965
Bozzelli, J. W., \& Dean, A. M. 1989, JPhCh, 93, 1058
Bozzelli, J. W., \& Dean, A. M. 1990, JPhCh, 94, 3313
Bozzelli, J. W., \& Dean, A. M. 1995, Int. J. Chem. Kin., 27, 1097
Bravo-Pérez, G., Alvarez-Idaboy, J. R., Cruz-Torres, A., \& Ruíz, M. E. 2002, JCPA, 106, 4645
Breen, J., \& Glass, G. 1971, Int. J. Chem. Kin., 3, 145
Brion, C., Tan, K., Van der Wiel, M., \& Van der Leeuw, P. E. 1979, JESRP, 17, 101
Broad, J. T., \& Reinhardt, W. P. 1976, PhRvA, 14, 2159
Brown, P. N., \& Hindmarsh, A. C. 1989, ApMaC, 31, 40
Browning, R., \& Fryar, J. 1973, JPhB, 6, 364
Brownsword, R., Gatenby, S., Herbert, L., et al. 1996, FaTr, 92, 723
Brunetti, B., \& Liuti, G. 1975, ZPC, 94, 19
Bryukov, M. G., Dellinger, B., \& Knyazev, V. D. 2006, JPCA, 110, 936
Bryukov, M. G., Knyazev, V. D., Lomnicki, S. M., McFerrin, C. A., \& Dellinger, B. 2004, JCPA, 108, 10464
Bulatov, V., Buloyan, A., Cheskis, S., et al. 1980, CPL, 74, 288
Burcat, A., \& Ruscic, B. 2005, Third millenium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables (Argonne, IL: Argonne National Laboratory)
Burt, J., Dunn, J., McEwan, M., et al. 1970, JChPh, 52, 6062
Büttrill, S., Kim, J., \& Huntress, W. 1974, JChPh, 61, 2122
Cairns, R. B., \& Samson, J. A. R. 1965, JGR, 70, 99
Calvert, J., \& Pitts, J. 1966, Photochemistry (New York: Wiley)
Campomanes, P., Menéndez, I., \& Sordo, T. L. 2001, JPCA, 105, 229
Canosa, C., Penzhorn, R.-D., \& Von Sonntag, C. 1979, Berich Bunsen Gesell, 83, 217
Canosa, C., Smith, S. J., Toby, S., \& Wayne, R. P. 1988, FaTr II, 84, 263
Caridade, P., Rodrigues, S., Sousa, F., \& Varandas, A. 2005, JPCA, 109, 2356
Carl, S., Sun, Q., Teugels, L., \& Peeters, J. 2003, PCCP, 5, 5424
Carstensen, H.-H., \& Dean, A. M. 2005, P Combust Inst, 30, 995
Carstensen, H.-H., \& Dean, A. M. 2008, JCPA, 113, 367
Caselli, P., Hasegawa, T. I., \& Herbst, E. 1998, ApJ, 495, 309
Catling, D. C. 2006, Sci, 311, 38
Cavalié, T., Biver, N., Hartogh, P., et al. 2012, P\&SS, 61, 3
Cermak, V., Dalgarno, A., Ferguson, E., Friedman, L., \& McDaniel, E. 1970, Ion Molecule Reactions (New York: Wiley)
Ceursters, B., Nguyen, H. M. T., Nguyen, M. T., Peeters, J., \& Vereecken, L. 2001, PCCP, 3, 3070
Chakraborty, D., \& Lin, M. 1999, JCPA, 103, 601
Chakraborty, D., Park, J., \& Lin, M. 1998, CP, 231, 39
Chan, W.-T., Heck, S. M., \& Pritchard, H. O. 2001, PCCP, 3, 56
Chang, J.-G., Chen, H.-T., Xu, S., \& Lin, M. 2007, JPCA, 111, 6789
Chang, N.-Y., \& Yu, C.-H. 1995, CPL, 242, 232
Chapman, S., \& Cowling, T. G. 1991, The Mathematical Theory of Nonuniform Gases (Cambridge: Cambridge Univ. Press)
Charnley, S. B. 1997, in IAU Coll. 161: Astronomical and Biochemical Origins and the Search for Life in the Universe ed. C. Batalli Cosmovici, S. Bowyer, \& D. Werthimer (Warsaw: Warsaw Technical University), 89

Chau, M., \& Bowers, M. T. 1976, CPL, 44, 490

Cheng, T., \& Lampe, F. 1973, JPhCh, 77, 2841
Cheng, T., Yu, T.-Y., \& Lampe, F. 1973, JPhCh, 77, 2587
Cheng, T., Yu, T.-Y., \& Lampe, F. 1974, JPhCh, 78, 1184
Choi, Y., \& Lin, M. 2005, Int. J. Chem. Kin., 37, 261
Christie, M. I., \& Voisey, M. 1967, TrFa, 63, 2702
Chuchani, G., Martin, I., Rotinov, A., \& Dominguez, R. M. 1993, J Phys Org Chem, 6, 54
Cimas, A., \& Largo, A. 2006, JCPA, 110, 10912
Claire, M. W., Catling, D. C., \& Zahnle, K. J. 2006, Geobiology, 4, 239
Clark, J. H., Moore, C. B., \& Nogar, N. S. 1978, JChPh, 68, 1264
Clary, D., Smith, D., \& Adams, N. 1985, CPL, 119, 320
Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., \& Bada, J. L. 2008, OLEB, 38, 105
Cobos, C., \& Troe, J. 1985, JChPh, 83, 1010
Cohen, N. 1991, Int. J. Chem. Kin., 23, 397
Cohen, N., \& Benson, S. 1993, ChRv, 93, 2419
Cohen, N., \& Westberg, K. 1991, JPCRD, 20, 1211
Colberg, M., \& Friedrichs, G. 2006, JCPA, 110, 160
Cook, G., \& Metzger, P. 1964, JOSA, 54, 968
Cook, R. D., Davidson, D. F., \& Hanson, R. K. 2009, JPCA, 113, 9974
Corchado, J. C., \& Espinosa-Garcia, J. 1997, JChPh, 106, 4013
Corchado, J. C., Espinosa-Garcıa, J., Hu, W.-P., Rossi, I., \& Truhlar, D. G. 1995, JPhCh, 99, 687
Corchado, J. C., Espinosa-García, J., Roberto-Neto, O., Chuang, Y.-Y., \& Truhlar, D. G. 1998, JCPA, 102, 4899
Cox, R., \& Derwent, R. 1977, J Photochem, 6, 23
Cribb, P. H., Dove, J. E., \& Yamazaki, S. 1992, CoFl, 88, 169
Crosley, D. R. 1989, JPhCh, 93, 6273
Curran, H. 2006, Int. J. Chem. Kin., 38, 250
Cvetanović, R. J. 1987, JPCRD, 16, 261
Daele, V., Laverdet, G., Le Bras, G., \& Poulet, G. 1995, JPhCh, 99, 1470
Dammeier, J., Colberg, M., \& Friedrichs, G. 2007, PCCP, 9, 4177
Davidson, D. F., Kohse-Höinghaus, K., Chang, A. Y., \& Hanson, R. K. 1990, Int. J. Chem. Kin., 22, 513
De Cobos, A. E. C., \& Troe, J. 1984, Int. J. Chem. Kinet., 16, 1519
Dean, A. J. 1985, JPhCh, 89, 4600
Dean, A. J., Davidson, D., \& Hanson, R. 1991, JPhCh, 95, 183
Dean, A. J., \& Hanson, R. K. 1992, Int. J. Chem. Kin., 24, 517
Dean, A. J., \& Kistiakowsky, G. 1971, JChPh, 54, 1718
Debrou, G. B., Fulford, J. E., Lewars, E. G., \& March, R. E. 1978, IJMIP, 26, 345
Demott, P. J., Cziczo, D. J., Prenni, A. J., et al. 2003, PNAS, 100, 14655
Deppe, J., Friedrichs, G., Ibrahim, A., Römming, H.-J., \& Wagner, H. G. 1998, Berich Bunsen Gesell, 102, 1474
DeSain, J. D., Klippenstein, S. J., Miller, J. A., \& Taatjes, C. A. 2003, JCPA, 107, 4415
Désert, J.-M., Vidal-Madjar, A., Lecavelier Des Etangs, A., et al. 2008, A\&A, 492, 585
Dheandhanoo, S., Johnsen, R., \& Biondi, M. A. 1984, P\&SS, 32, 1301
Dibeler, V. H., Walker, J. A., \& Rosenstock, H. M. 1966, JRNBA, 70, 459
Ditchburn, R. 1955, RSPSA, 229, 44
Dixon, R., \& Kirby, G. 1968, TrFa, 64, 2002
Dombrowsky, C., Hoffmann, A., Klatt, M., et al. 1991, Berich Bunsen Gesell, 95, 1685
Dombrowsky, C., \& Wagner, H. G. 1992, Berich Bunsen Gesell, 96, 1048
Dong, H., Ding, Y.-h., \& Sun, C.-c. 2005, JChPh, 122, 204321
Donovan, T., Dorko, W., \& Harrison, A. 1971, CaJCh, 49, 828
Dorko, E. A., Pchelkin, N. R., Wert, J. C., \& Mueller, G. W. 1979, JPhCh, 83, 297
Dotan, I., \& Lindinger, W. 1982, JChPh, 76, 4972
Dotan, I., Lindinger, W., Rowe, B., et al. 1980, CPL, 72, 67
Drossart, P., Fouchet, T., Crovisier, J., et al. 1999, in The Universe as Seen by ISO, Vol. 427169
Duan, X., \& Page, M. 1995, JAChS, 117, 5114
Dubrovin, D., Luque, A., Gordillo-Vazquez, F. J., et al. 2014, Icar, 241, 313
Duff, J., \& Sharma, R. 1996, GeoRL, 23, 2777
Dunbar, R. C., Shen, J., \& Olah, G. A. 1972, JChPh, 56, 3794
Dunkin, D., Fehsenfeld, F., \& Ferguson, E. 1970, JChPh, 53, 987
Dunkin, D., Fehsenfeld, F., \& Ferguson, E. 1972, CPL, 15, 257
Dunkin, D., McFarland, M., Fehsenfeld, F., \& Ferguson, E. 1971, JGR, 76, 3820
Duran, R., Amorebieta, V., \& Colussi, A. 1988, JPhCh, 92, 636
Durup-Ferguson, M., Bohringer, H., Fahey, D. W., \& Ferguson, E. E. 1984, JChPh, 79, 265
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., et al. 2007, Icar, 190, 545

Edelbüttel-Einhaus, J., Hoyermann, K., Rohde, G., \& Seeba, J. 1992, in Int. Symp. on Combustion, Vol. 24 (Amsterdam: Elsevier), 661
Edwards, D., Kerr, J., Lloyd, A., \& Trotman-Dickenson, A. 1966, J Chem Soc A, 1500
England, C., \& Corcoran, W. H. 1975, Ind Eng Chem, 14, 55
Enskog, D. 1917, Kinetische Theorie der Vorgaenge in maessig verduennten Gasen. I. Allgemeiner Teil, Dissertation
Ercolano, B., \& Storey, P. J. 2006, MNRAS, 372, 1875
Eremin, A., Ziborov, V., Shumova, V., Voiki, D., \& Roth, P. 1997, Kin Catal, 38, 1
Espinosa-Garcia, J., Corchado, J., \& Sana, M. 1993, JCP, 90, 1181
Fahey, D., Böhringer, H., Fehsenfeld, F., \& Ferguson, E. 1982, JChPh, 76, 1799
Fahey, D., Fehsenfeld, F., Ferguson, E., \& Viehland, L. 1981, JChPh, 75, 669
Fahr, A., \& Nayak, A. 1994, CP, 189, 725
Fahr, A., \& Nayak, A. 1996, CP, 203, 351
Fahr, A., \& Stein, S. 1989, in Int. Symp. on Combustion, Vol. 22 (Amsterdam: Elsevier), 1023
Faigle, J. F. G., Isolani, P. C., \& Riveros, J. M. 1976, JAChS, 98, 2049
Fairbairn, A. 1969, RSPSA, 312, 207
Faravelli, T., Goldaniga, A., Zappella, L., et al. 2000, P Combust Inst, 28, 2601
Fegley, B., \& Lodders, K. 1994, Icar, 110, 117
Fehsenfeld, F. 1969, CaJCh, 47, 1808
Fehsenfeld, F. 1975, JChPh, 63, 1686
Fehsenfeld, F. 1976, ApJ, 209, 638
Fehsenfeld, F. 1977, P\&SS, 25, 195
Fehsenfeld, F., Albritton, D., Burt, J., \& Schiff, H. 1969a, CaJCh, 47, 1793
Fehsenfeld, F., Dotan, I., Albritton, D., Howard, C., \& Ferguson, E. 1978, JGRC, 83, 1333
Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1970, P\&SS, 18, 1267
Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1971, JGR, 76, 8453
Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1972, JChPh, 56, 3066
Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1974a, ApJ, 188, 43
Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1974b, JChPh, 61, 3181
Fehsenfeld, F., \& Ferguson, E. 1970, JChPh, 53, 2614
Fehsenfeld, F., Ferguson, E., \& Bohme, D. 1969b, P\&SS, 17, 1759
Fehsenfeld, F., Ferguson, E., \& Mosesman, M. 1969c, CPL, 4, 73
Fehsenfeld, F., Ferguson, E., \& Schmeltekopf, A. 1966a, JChPh, 45, 1844
Fehsenfeld, F., Howard, C. J., \& Ferguson, E. 1973, JChPh, 58, 5841
Fehsenfeld, F., Howard, C. J., \& Schmeltekopf, A. 1975a, JChPh, 63, 2835
Fehsenfeld, F., Lindinger, W., \& Albritton, D. 1975b, JChPh, 63, 443
Fehsenfeld, F., Lindinger, W., Schiff, H., Hemsworth, R., \& Bohme, D. 1976, JChPh, 64, 4887
Fehsenfeld, F., Schmeltekopf, A., \& Ferguson, E. 1967a, The JChPh, 46, 2802
Fehsenfeld, F., Schmeltekopf, A., Goldan, P., Schiff, H., \& Ferguson, E. 1966b, JChPh, 44, 4087
Fehsenfeld, F., Schmeltekopf, A., Schiff, H., \& Ferguson, E. 1967b, P\&SS, 15, 373
Feng, W., \& Hershberger, J. F. 2007, JCPA, 111, 3831
Ferguson, E. 1968, AEEP, 24, 1
Ferguson, E., \& Fehsenfeld, F. 1968, JGR, 73, 6215
Ferguson, E., Fehsenfeld, F., \& Schmeltekopf, A. L. 1969, Adv Chem Ser, 80, 83
Fernandes, R. X., Giri, B. R., Hippler, H., Kachiani, C., \& Striebel, F. 2005, JCPA, 109, 1063
Fernández-Ramos, A., Martínez-Núñez, E., Ríos, M. A., et al. 1998, JAChS, 120, 7594
Ferradaz, T., Benilan, Y., Fraya, A., et al. 2009, P\&SS, 57, 10
Ferris, J. P. 1992, OLEB, 22, 109
Feuchtgruber, H., Lellouch, E., de Graauw, T., et al. 1997, Natur, 389, 159
Field, F., Franklin, J., \& Lampe, F. 1957, JAChS, 79, 2419
Fifer, R. 1975, Ber Bunsenges Phys Chem, 10, 613
Fluegge, R. A. 1969a, BAPS, 14, 261
Fluegge, R. A. 1969b, JChPh, 50, 4373
Fontijn, A., Fernandez, A., Ristanovic, A., Randall, M. Y., \& Jankowiak, J. T. 2001, JCPA, 105, 3182
Forst, W., Evans, H., \& Winkler, C. 1957, JPhCh, 61, 320
Fouchet, T., Lellouch, E., Bézard, B., et al. 2000, A\&A, 355, L13
Frank, P. 1986, in 15th Int. Symp. on Rarefied Gas Dynamics (Tuebner)
Frank, P., Bhaskaran, K., \& Just, T. 1986, JPhCh, 90, 2226
Frank, P., Bhaskaran, K., \& Just, T. 1988, in The Int. Symp. on Combustion, Vol. 21 (Amsterdam: Elsevier), 885
Freeman, C., Harland, P., \& McEwan, M. 1978a, IJMIP, 28, 19
Freeman, C., Harland, P., \& McEwan, M. 1978b, AJCh, 31, 2157
Friedrichs, G., Colberg, M., Dammeier, J., Bentz, T., \& Olzmann, M. 2008, PCCP, 10, 6520

Friedrichs, G., DAvidson, D. F., \& Hanson, R. K. 2002, Int J Chem Kinet, 37, 374
Fulle, D., \& Hippler, H. 1997, JChPh, 106, 8691
Gannon, K. L., Glowacki, D. R., Blitz, M. A., et al. 2007, JPCA, 111, 6679
Gao, Y., \& Macdonald, R. G. 2006, JCPA, 110, 977
Garrod, R. T., Weaver, S. L. W., \& Herbst, E. 2008, ApJ, 682, 283
Gear, C. W. 1971, Comm ACM, 14, 185
Gehring, M., Hoyermann, K., Wagner, H. G., \& Wolfrum, J. 1969, Berich Bunsen Gesell, 73, 956
Geiger, H., Wiesen, P., \& Becker, K. H. 1999, PCCP, 1, 5601
Geltman, S. 1962, ApJ, 136, 935
Gentieu, E., \& Mentall, J. 1970, Sci, 169, 681
Gill, R., Johnson, W., \& Atkinson, G. 1981, CP, 58, 29
Gladstone, G. R., Allen, M., \& Yung, Y. L. 1996, Icar, 119, 1
Glänzer, K., \& Troe, J. 1973, AcHCh, 56, 577
Glänzer, K., \& Troe, J. 1975, Berich Bunsen Gesell, 79, 465
Glarborg, P., Dam-Johansen, K., \& Miller, J. A. 1995, Int J Chem Kinet, 27, 1207
Glosik, J., Raksit, A., Twiddy, N., Adams, N., \& Smith, D. 1978, JPhB, 11, 3365
Gonzalez, C., Theisen, J., Schlegel, H. B., Hase, W. L., \& Kaiser, E. 1992, JPhCh, 96, 1767
Gorden, R., \& Ausloos, P. 1961, JPhCh, 65, 1033
Gorden, R., \& Ausloos, P. 1967, JChPh, 46, 4823
Gordon, S., \& McBride, B. J. 1999, Thermodynamic Data to 20000 K for Monatomic Gases (Cleveland: NASA)
Grabowski, J. J. 1983, Doctoral thesis, Univ. Colorado
Graham, R. A., \& Johnston, H. S. 1978, JPhCh, 82, 254
Graham, E., James, D., Keever, W., et al. 1973, JChPh, 59, 4648
Gray, P., \& Herod, A. 1968, Transactions of the Faraday Society, 64, 2723
Greenberg, J. M., Kouchi, A., Niessen, W., et al. 1995, J Biol Phys, 20, 61
Griggs, M. 1968, JChPh, 49, 857
Grotheer, H., \& Just, T. 1981, CPL, 78, 71
Grussdorf, J., Nolte, J., Temps, F., \& Wagner, H. G. 1994, Berich Bunsen Gesell, 98, 546
Gupta, S., Jones, E., Harrison, A. G., \& Myher, J. J. 1967, CaJCh, 45, 3107
Gurnett, D. A., Kurth, W. S., Cairns, I. H., \& Granroth, L. J. 1990, STIN, 91, 11642
Guyon, P. M., Chupka, W. A., \& Berkowitz, J. 1976, JChPh, 64, 1419
Hack, W., Hold, M., Hoyermann, K., Wehmeyer, J., \& Zeuch, T. 2005, PCCP, 7, 1977
Hahn, Y. 1997, PhLA, 231, 82
Haldane, J. B. S. 1928, Ration Annu, 148, 3
Hamill, P., Toon, O. B., \& Kiang, C. S. 1977, JAtS, 34, 1104
Hammerum, S., \& Sølling, T. I. 1999, JAChS, 121, 6002
Hanson, R. K., \& Salimian, S. 1984, in Symp. on Combustion Chemistry (Berlin: Springer), 361
Harada, N., Herbst, E., \& Wakelam, V. 2010, ApJ, 721, 1570
Harding, L. B., Guadagnini, R., \& Schatz, G. C. 1993, JPhCh, 97, 5472
Harding, L. B., Klippenstein, S. J., \& Georgievskii, Y. 2005, P Combust Inst, 30, 985
Harding, L. B., Klippenstein, S. J., \& Miller, J. A. 2008, JPCA, 112, 522
Harding, L. B., \& Wagner, A. F. 1989, in Int. Symp. on Combustion, Vol. 22 (Amsterdam: Elsevier), 983
Hartmann, D., Karthäuser, J., Sawerysyn, J., \& Zellner, R. 1990, Berich Bunsen Gesell, 94, 639
Hasegawa, T. I., Herbst, E., \& Leung, C. M. 1992, ApJS, 82, 167
Hassinen, E., Kalliorinne, K., \& Koskikallio, J. 1990, Int. J. Chem. Kin., 22, 741
Hassinen, E., Riepponen, P., Blomqvist, K., et al. 1985, Int. J. Chem. Kin., 17, 1125
Hastie, D., Freeman, C., McEwan, M., \& Schiff, H. 1976, Int. J. Chem. Kin., 8, 307
Haworth, N. L., Mackie, J. C., \& Bacskay, G. B. 2003, JPCA, 107, 6792
He, Y., Liu, X., Lin, M., \& Melius, C. 1993, Int. J. Chem. Kin., 25, 845
He, Y., Sanders, W., \& Lin, M. 1988, JPhCh, 92, 5474
Hébrard, E., Dobrijevic, M., Loison, J. C., et al. 2013, A\&A, 552, A132
Hedin, A. E. 1987, JGRA, 92, 4649
Hedin, A. E. 1991, JGRA, 96, 1159
Heicklen, J., \& Johnston, H. S. 1962, JAChS, 84, 4394
Heimerl, J., Johnsen, R., \& Biondi, M. A. 1969, JChPh, 51, 5041
Helling, Ch., \& Fomins, A. 2013, RSPTA, 371, 20110581
Helling, Ch., Jardine, M., Diver, D., \& Witte, S. 2013, P\&SS, 77, 152
Helling, Ch., Woitke, P., Rimmer, P. B., et al. 2014, Life, 4, 142
Hemsworth, R., Payzant, J., Schiff, H., \& Bohme, D. 1974, CPL, 26, 417
Hemsworth, R., Rundle, H., Bohme, D., et al. 1973, JChPh, 59, 61

Henis, J., Stewart, G., \& Gaspar, P. 1973, JChPh, 58, 3639
Hennig, G., \& Wagner, H. 1994, Berich Bunsen Gesell, 98, 749
Henry, G. W., Marcy, G. W., Butler, R. P., \& Vogt, S. S. 2000, ApJL, 529, L41
Henry, R. J. 1970, ApJ, 161, 1153
Henry, R. J., \& McElroy, M. B. 1968, AdSpR, 1, 251
Herbst, E., Payzant, J., Schiff, H., \& Bohme, D. 1975, ApJ, 201, 603
Herman, J., \& Mentall, J. 1982, JGRC, 87, 8967
Herron, J. T. 1988, JPCRD, 17, 967
Herron, J. T. 1999, JPCRD, 28, 1453
Hidaka, Y., Nakamura, T., Tanaka, H., Inami, K., \& Kawano, H. 1990, Int. J. Chem. Kin., 22, 701
Hidaka, Y., Oki, T., Kawano, H., \& Higashihara, T. 1989, JPhCh, 93, 7134
Hidaka, Y., Sato, K., \& Yamane, M. 2000, CoFl, 123, 1
Hinshelwood, C., \& Askey, P. 1927, RSPSA, 115, 215
Hiraoka, K., \& Kebarle, P. 1980, CaJCh, 58, 2262
Hoehlein, G., \& Freeman, G. 1970, JAChS, 92, 6118
Homann, K., \& Wellmann, C. 1983, Berich Bunsen Gesell, 87, 609
Hopkinson, A., Mackay, G., \& Bohme, D. 1979, CaJCh, 57, 2996
Horne, D., \& Norrish, R. 1970, RSPSA, 315, 301
Howard, C. J. 1979, JChPh, 71, 2352
Howard, C. J., Fehsenfeld, F., \& McFarland, M. 1974, JChPh, 60, 5086
Howorka, F., Lindinger, W., \& Varney, R. N. 1974, JChPh, 61, 1180
Hoyermann, K., Olzmann, M., Seeba, J., \& Viskolcz, B. 1999, JPCA, 103, 5692
Hsu, C.-C., Lin, M., Mebel, A., \& Melius, C. 1997, JPCA, 101, 60
Hu, R., \& Seager, S. 2014, ApJ, 784, 63
Hu, R., Seager, S., \& Bains, W. 2012, ApJ, 761, 166
Hu, R., Seager, S., \& Bains, W. 2013, ApJ, 769, 6
Hu, R., Seager, S., \& Yung, Y. L. 2015, arXiv:1505.02221
Huebner, W. F., \& Carpenter, C. W. 1979, STIN, 80, 24243
Huebner, W. F., Keady, J. J., \& Lyon, S. P. 1992, Ap\&SS, 195, 1
Huebner, W. F., \& Mukherjee, J. 2015, P\&SS, 106, 11
Huffman, R. E. 1969, CaJCh, 47, 1823
Huffman, R. E., Tanaka, Y., \& Larrabee, J. 1963, JChPh, 39, 910
Humpfer, R., Oser, H., \& Grotheer, H.-H. 1995, Int. J. Chem. Kin., 27, 577
Hunt, M., Kerr, J., \& Trotman-Dickenson, A. 1965, J Chem Soc, 5074
Huntress, W. T., Anicich, V., McEwan, M., \& Karpas, Z. 1980, ApJS, 44, 481
Huntress, W. T., \& Baldeschwieler, J. D. 1969, Natur, 223, 468
Huntress, W. T., \& Elleman, D. 1970, JAChS, 92, 3565
Huntress, W. T., Mosesman, M. M., \& Elleman, D. D. 1971, JChPh, 54, 843
Huntress, W. T., Pinizzotto, R. F., \& Laudenslager, J. B. 1973, JAChS, 95, 4107
Husain, D., \& Lee, Y. 1988, Int. J. Chem. Kin., 20, 223
Husain, D., \& Marshall, P. 1986, Int. J. Chem. Kin., 18, 83
Husain, D., \& Young, A. N. 1975, FaTr II, 71, 525
Huynh, L. K., \& Truong, T. N. 2008, Theoretical Chemistry Accounts, 120, 107
Huynh, L. K., \& Violi, A. 2008, J Org Chem, 73, 94
Ibragimova, L. 1986, Kin Catal, 27, 467
Ikeda, E., \& Mackie, J. C. 1996, in Int. Symp. on Combustion, Vol. 26 (Amsterdam: Elsevier), 597
Ikezoe, Y., Matsuoka, S., \& Takebe, M. 1987, Gas phase ion-molecule reaction rate constants through 1986 (Ion reaction research group of the Mass spectroscopy society of Japan) (Tokyo: Maruzen Company)
Imai, N., \& Toyama, O. 1962, Bulletin of the Chemical Society of Japan, 35, 860
Indriolo, N., Fields, B. D., \& McCall, B. J. 2009, ApJ, 694, 257
Ing, W.-C., Sheng, C. Y., \& Bozzelli, J. W. 2003, Fuel Process Technol, 83, 111
Inn, E. C. 1975, JAtS, 32, 2375
Jachimowski, C. J. 1977, CoFl, 29, 55
Jaffe, S., Karpas, Z., \& Klein, F. S. 1973, JChPh, 58, 2190
Jaffe, S., \& Klein, F. 1974, IJMIP, 14, 459
Jamieson, J., Brown, G., \& Tanner, J. 1970, CaJCh, 48, 3619
Jarrold, M. F., Bass, L. M., Kemper, P. R., van Koppen, P. A., \& Bowers, M. T. 1983, JChPh, 78, 3756
Jasper, A. W., Klippenstein, S. J., Harding, L. B., \& Ruscic, B. 2007, JCPA, 111, 3932
Javoy, S., Naudet, V., Abid, S., \& Paillard, C. 2003, ExTFS, 27, 371
Jebens, D. S., Lakkaraju, H. S., McKay, C. P., \& Borucki, W. J. 1992, GRL, 19, 273
Jensen, D. E. 1982, FaTr I, 78, 2835
Johnsen, R., Brown, H., \& Biondi, M. A. 1970, JChPh, 52, 5080
Johnsen, R., Castell, F., \& Biondi, M. A. 1974, JChPh, 61, 5404
Johnson, A. P., Cleaves, H. J., Dworkin, J. P., et al. 2008, Sci, 322, 404
Johnston, H. S. 1951, JAChS, 73, 4542

Jones, J., Birkinshaw, K., \& Twiddy, N. 1981a, CPL, 77, 484
Jones, J., Birkinshaw, K., \& Twiddy, N. 1981b, JPhB, 14, 2705
Jones, J., Lister, D., \& Twiddy, N. 1979, JPhB, 12, 2723
Joshi, A., You, X., Barckholtz, T. A., \& Wang, H. 2005, JPCA, 109, 8016
Ju, L.-P., Han, K.-L., \& Varandas, A. J. 2007, Int. J. Chem. Kin., 39, 148
Kappes, M. M., \& Staley, R. H. 1981, JAChS, 103, 1286
Karkach, S. P., \& Osherov, V. I. 1999, JChPh, 110, 11918
Karpas, Z., Anicich, V., \& Huntress, W. 1978, CPL, 59, 84
Karpas, Z., Anicich, V., \& Huntress, W. 1979, JChPh, 70, 2877
Karpas, Z., \& Klein, F. S. 1975, IJMIP, 16, 289
Kasper, S., \& Franklin, J. 1972, JChPh, 56, 1156
Kasting, J. F. 1993, Sci, 259, 920
Katayama, D., Huffman, R., \& O'Bryan, C. 1973, JChPh, 59, 4309
Kato, A., \& Cvetanovic, R. 1967, CaJCh, 45, 1845
Keller, C., Anicich, V., \& Cravens, T. 1998, P\&SS, 46, 1157
Keller-Rudek, H., Moortgat, G. K., Sander, R., \& Sörensen, R. 2013, ESSD, 5, 365
Kelly, N., \& Heicklen, J. 1978, J Photochem, 8, 83
Kemper, P. R., \& Bowers, M. 1984, Int. J. Chem. Kin., 16, 707
Kemper, P. R., Bowers, M. T., Parent, D. C., et al. 1983, JChPh, 79, 160
Kern, R., Singh, H., \& Wu, C. 1988, Int. J. Chem. Kin., 20, 731
Kiefer, J., Mitchell, K., Kern, R., \& Yong, J. 1988, JPhCh, 92, 677
Kiefer, J., Santhanam, S., Srinivasan, N. K., et al. 2005, Proc. Combustion Institute, Vol. 30 (Amsterdam: Elsevier), 1129
Kim, J., Theard, L., \& Huntress, W.-T. 1975, JChPh, 62, 45
Kim, S. J., Geballe, T. R., Kim, J., et al. 2010, Icar, 208, 837
Kim, Y. H., \& Fox, J. L. 1994, Icar, 112, 310
Kim, Y. H., Fox, J. L., Black, J. H., \& Moses, J. I. 2014, JGRA, 119, 384
Klatt, M., Spindler, B., \& Wagner, H. G. 1995, ZPC, 191, 241
Klemm, R. 1965, CaJCh, 43, 2633
Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A., \& Megeath, S. T. 2008, ApJ, 673, 526
Knyazev, V. D., Benscura, Á, Stoliarov, S. I., et al. 1996, JPhCh, 100, 11346
Knyazev, V. D., Stoliarov, S. I., \& Slagle, I. R. 1996b, in Int. Symp. on Combustion, Vol. 26 (Amsterdam: Elsevier), 513
Koch, E.-E., \& Skibowski, d. M. 1971, CPL, 9, 429
Koike, T., Kudo, M., Maeda, I., \& Yamada, H. 2000, Int. J. Chem. Kin., 32, 1 Kooij, D. M. 1893, ZPC, 12, 155
Korovkina, T. 1976, High Energ Chem, 10, 75
Kovalenko, L. J., Jucks, K. W., Salawitch, R. J., et al. 2007, JGL, 34, 19801
Kretschmer, C., \& Petersen, H. 1963, JChPh, 39, 1772
Kronebusch, P., \& Berkowitz, J. 1976, IJMIP, 22, 283
Kruse, T., \& Roth, P. 1997, JCPA, 101, 2138
Kruse, T., \& Roth, P. 1999, Int. J. Chem. Kin., 31, 11
Kukui, A., Jungkamp, T., \& Schindler, R. 1995, Berich Bunsen Gesell, 99, 1565
Kumakura, M., Arakawa, K., \& Sugiura, T. 1978a, B Chem Soc Jpn, 51, 49
Kumakura, M., Arakawa, K., \& Sugiura, T. 1978b, IJMIP, 26, 303
Kumakura, M., Arakawa, K., \& Sugiura, T. 1979, IJMIP, 29, 21
Laidler, K., \& McKenney, D. 1964, RSPSA, 278, 517
Laidler, K., \& Wojciechowski, B. 1961, RSPSA, 260, 103
Lamb, J. J., Mozurkewich, M., \& Benson, S. W. 1984, JPhCh, 88, 6441
Lambert, R., Christie, M., Golesworthy, R., \& Linnett, J. 1968, RSPSA, 302, 167
Lambert, R., Christie, M., \& Linnett, J. 1967, Chem Commun (London), 8, 388
Langer, S., \& Ljungström, E. 1994, Int J Chem Kin, 26, 367
Langer, S., \& Ljungström, E. 1995, FaTr, 91, 405
Laudenslager, J. B., Huntress, W. T., \& Bowers, M. T. 1974, JChPh, 61, 4600
Laufer, A. H., \& Fahr, A. 2004, ChRv, 104, 2813
Lavendy, H., Gandara, G., \& Robbe, J. 1984, JMoSp, 106, 395
Lavendy, H., Robbe, J., \& Gandara, G. 1987, JPhB, 20, 3067
Lavvas, P., Coustenis, A., \& Vardavas, I. 2008a, P\&SS, 56, 27
Lavvas, P., Coustenis, A., \& Vardavas, I. 2008b, P\&SS, 56, 67
Lavvas, P., Koskinen, T., \& Yelle, R. V. 2014, ApJ, 796, 15
Lawson, G., Bonner, R. F., Mather, R. E., Todd, J. F., \& March, R. E. 1976, FaTr I, 72, 545
Lee, G., Helling, Ch., Dobbs-Dixon, I., \& Juncher, D. 2015, arXiv:1505.06576
Lee, J., \& Bozzelli, J. W. 2003, Int. J. Chem. Kin., 35, 20
Lee, L., Carlson, R., Judge, D., \& Ogawa, M. 1973, JQSRT, 13, 1023
Lellouch, E., Romani, P. N., \& Rosenqvist, J. 1994, Icar, 108, 112
Levush, S., Abadzhev, S., \& Shevchuk, V. 1969, Neftekhimiya, 9, 215
Levy, J. B. 1956, JAChS, 78, 1780
Li, Q.-S., \& Wang, C. Y. 2004, JCoCh, 25, 251
Li, Q. S., Zhang, Y., \& Zhang, S. 2004, JCPA, 108, 2014
Li, S., \& Williams, F. 1996, in Int. Symp. on Combustion, Vol. 26 (Amsterdam: Elsevier), 1017

Li, S., Zhang, Q., \& Wang, W. 2006, CPL, 428, 262
Liang, M.-C., Parkinson, C. D., Lee, A. Y.-T., Yung, Y. L., \& Seager, S. 2003, ApJL, 596, L247
Lias, S. 1988, JPCRD, 17, 1
Lias, S., Collin, G., Rebbert, R., \& Ausloos, P. 1970, JChPh, 52, 1841
Lichtin, D., Berman, M., \& Lin, M. 1984, CPL, 108, 18
Liddy, J., Freeman, C., \& McEwan, M. 1977a, MNRAS, 180, 683
Liddy, J., Freeman, C., \& McEwan, M. 1977b, IJMIP, 23, 153
Lifshitz, A., \& Ben-Hamou, H. 1983, JPhCh, 87, 1782
Lifshitz, A., \& Frenklach, M. 1980, Int. J. Chem. Kin., 12, 159
Lifshitz, A., \& Tamburu, C. 1994, JPhCh, 98, 1161
Lifshitz, A., \& Tamburu, C. 1998, Int. J. Chem. Kin., 30, 341
Lifshitz, A., Tamburu, C., \& Carroll, H. F. 1997, Int. J. Chem. Kin., 29, 839
Lifshitz, A., Tamburu, C., Frank, P., \& Just, T. 1993, JPhCh, 97, 4085
Lifshitz, C., \& Tassa, R. 1973, IJMIP, 12, 433
Lifshitz, C., Wu, R., Haartz, J., \& Tiernan, T. 1977, JChPh, 67, 2381
Lifshitz, C., Wu, R., Tiernan, T., \& Terwilliger, D. 1978, JChPh, 68, 247
Lin, M., He, Y., \& Melius, C. 1992, Int. J. Chem. Kin., 24, 1103
Lin, M., He, Y., \& Melius, C. 1993, JPhCh, 97, 9124
Lindemann, F. A., Arrhenius, S., Langmuir, I., et al. 1922, TrFa, 17, 598
Linder, D. P., Duan, X., \& Page, M. 1996, JChPh, 104, 6298
Lindinger, W. 1973, PhRvA, 7, 328
Lindinger, W. 1976, JChPh, 64, 3720
Lindinger, W., Albritton, D., \& Fehsenfeld, F. 1979, JChPh, 70, 2038
Lindinger, W., Albritton, D., Fehsenfeld, F., \& Ferguson, E. 1975a, JGR, 80, 3725
Lindinger, W., Albritton, D., Fehsenfeld, F., \& Ferguson, E. 1975b, JChPh, 63, 3238
Lindinger, W., Albritton, D., Fehsenfeld, F., Schmeltekopf, A., \& Ferguson, E. 1975c, JChPh, 62, 3549
Lindinger, W., Albritton, D., Howard, C. J., Fehsenfeld, F., \& Ferguson, E. 1975d, JChPh, 63, 5220
Lindinger, W., Albritton, D., McFarland, M., et al. 1975e, JChPh, 62, 4101
Lindinger, W., Fehsenfeld, F., Schmeltekopf, A., \& Ferguson, E. 1974, JGR, 79, 4753
Lindinger, W., Howorka, F., Lukac, P., et al. 1981, PhRvA, 23, 2319
Lindinger, W., McFarland, M., Fehsenfeld, F., et al. 1975f, JChPh, 63, 2175
Lindley, C. R., Calvert, J. G., \& Shaw, J. H. 1979, CPL, 67, 57
Little, B., Anger, C. D., Ingersoll, A. P., et al. 1999, Icar, 142, 306
Liu, G.-x., Ding, Y.-h., Li, Z.-s., et al. 2002, PCCP, 4, 1021
Lloyd, A. C. 1974, Int. J. Chem. Kin., 6, 169
Loison, J. C., Hébrard, E., Dobrijevic, M., et al. 2015, Icar, 247, 218
Lombos, B., Sauvageau, P., \& Sandorfy, C. 1967, JMoSp, 24, 253
Louge, M. Y., \& Hanson, R. K. 1984, CoFl, 58, 291
Lukirskii, A., Brytov, I., \& Zimkina, T. 1964, OptSp, 17, 234
Luque, A., \& Ebert, U. 2009, NatGe, 2, 757
Macdonald, R. G. 2007, PCCP, 9, 4301
Mackay, G. I., Betowski, L., Payzant, J., Schiff, H., \& Bohme, D. 1976a, JPhCh, 80, 2919
Mackay, G. I., \& Bohme, D. K. 1978, IJMIP, 26, 327
Mackay, G. I., Hemsworth, R. S., \& Bohme, D. K. 1976b, CaJCh, 54, 1624
Mackay, G. I., Hopkinson, A., \& Bohme, D. 1978, JAChS, 100, 7460
Mackay, G. I., Rakshit, A. B., \& Bohme, D. K. 1982, CaJCh, 60, 2594
Mackay, G. I., Schiff, H., \& Bohme, D. 1981, CaJCh, 59, 1771
Mackay, G. I., Tanaka, K., \& Bohme, D. K. 1977, IJMIP, 24, 125
Mackay, G. I., Tanner, S. D., Hopkinson, A. C., \& Bohme, D. K. 1979, CaJCh, 57, 1518
Mackay, G. I., Vlachos, G., Bohme, D.-K., \& Schiff, H. 1980, IJMIP, 36, 259
Madhusudhan, N., Harrington, J., Stevenson, K. B., et al. 2011, Natur, 469, 64
Madhusudhan, N., Lee, K. K. M., \& Mousis, O. 2012, ApJL, 759, L40
Madhusudhan, N., \& Seager, S. 2009, ApJ, 707, 24
Madronich, S. 1987, JGRD, 92, 9740
Magnotta, F., \& Johnston, H. S. 1980, GeoRL, 7, 769
Mahmud, K., Marshall, P., \& Fontijn, A. 1987, JPhCh, 91, 1568
Manion, J. A., Huie, R. E., Levin, R. D., et al. 2013, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2013.03

Mansergas, A., \& Anglada, J. M. 2006, JCPA, 110, 4001
Marinov, N. M., Pitz, W. J., Westbrook, C. K., et al. 1998, CoFl, 114, 192
Märk, T. D., \& Oskam, H. 1971, PhRvA, 4, 1445
Marmo, F. 1953, JOSA, 43, 1186
Marx, R., Mauclaire, G., Fehsenfeld, F., Dunkin, D., \& Ferguson, E. 1973, JChPh, 58, 3267
Massie, S. T., \& Hunten, D. M. 1981, JGR, 86, 9859
Masuoka, T., \& Samson, J. A. 1981, JChPh, 74, 1093
Matsui, Y., \& Nomaguchi, T. 1978, CoFl, 32, 205

Matsumoto, A., Okada, S., Misaki, T., Taniguchi, S., \& Hayakawa, T. 1975, B Chem Soc Jpn, 48, 794
Matsunaga, F., \& Watanabe, K. 1967, Sci Light, 16, 31
Matsuoka, S., \& Ikezoe, Y. 1988, JPhCh, 92, 1126
Mauclaire, G., Derai, R., \& Marx, R. 1978, IJMIP, 26, 289
Mayer, S., \& Schieler, L. 1968, JPhCh, 72, 2628
Mayer, S., Schieler, L., \& Johnston, H. S. 1966, JChPh, 45, 385
Mayer, S., Schieler, L., \& Johnston, H. S. 1967, in Int. Symp. on Combustion, Vol. 11 (Amsterdam: Elsevier), 837
Mayer, T., \& Lampe, F. 1974a, JPhCh, 78, 2645
Mayer, T., \& Lampe, F. 1974b, JPhCh, 78, 2433
McAllister, T. 1973, IJMIP, 10, 419
McAllister, T., \& Pitman, P. 1976, IJMIP, 19, 423
McBride, B. J., Gordon, S., \& Reno, M. A. 1993, NASA Technical Memorandum 4513, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species (Hampton, VA: NASA STI)
McElroy, M. B., \& McConnell, J. C. 1971, JGR, 76, 6674
McEwan, M., Anicich, V., \& Huntress, W. 1981, IJMIP, 37, 273
McEwan, M., Anicich, V., Huntress, W., Kemper, P., \& Bowers, M. 1983, IJMIP, 50, 179
McFarland, M., Dunkin, D., Fehsenfeld, F., Schmeltekopf, A., \& Ferguson, E. 1972, JChPh, 56, 2358
McKenney, D., Wojciechowski, B., \& Laidler, K. 1963, CaJCh, 41, 1993
McKnight, L. 1970, PhRvA, 2, 762
McNesby, J. R., \& Okabe, H. 1964, Adv Photochem, 3, 157
McNesby, J. R., Tanaka, I., \& Okabe, H. 1962, JChPh, 36, 605
Meaburn, G., \& Gordon, S. 1968, JPhCh, 72, 1592
Meagher, N. E., \& Anderson, W. R. 2000, JCPA, 104, 6013
Mebel, A., \& Lin, M. 1997, IRPC, 16, 249
Mebel, A., \& Lin, M. 1999, JCPA, 103, 2088
Mebel, A., Lin, M., Morokuma, K., \& Melius, C. 1996, Int. J. Chem. Kin., 28, 693
Melton, C., \& Rudolph, P. 1960, JChPh, 32, 1128
Mentall, J., Gentieu, E., Krauss, M., \& Neumann, D. 1971, JChPh, 55, 5471
Meot-Ner, M., Karpas, Z., \& Deakyne, C. A. 1986, JAChS, 108, 3913
Mertens, J. D., \& Hanson, R. K. 1996, in Int. Symp. on Combustion, Vol. 26 (Amsterdam: Elsevier), 551
Mertens, J. D., Kohse-Höinghaus, K., Hanson, R. K., \& Bowman, C. T. 1991, Int J Chem Kin, 23, 655
Metcalfe, E., Booth, D., McAndrew, H., \& Wooley, W. 1983, Fire Mater, 7, 185
Metzger, P., \& Cook, G. 1964, JChPh, 41, 642
Meyer, E., Olschewski, H., Troe, J., \& Wagner, H. G. 1969, in Int. Symp. on Combustion, Vol. 12 (Amsterdam: Elsevier), 345
Meyer, J. P., \& Hershberger, J. F. 2005, JCPA, 109, 4772
Michael, J., Kumaran, S., \& Su, M.-C. 1999, JPhCh A, 103, 5942
Mick, H.-J., Burmeister, M., \& Roth, P. 1993, AIAA, 31, 671
Miller, J. A., \& Glarborg, P. 1999, Int. J. Chem. Kin., 31, 757
Miller, J. A., \& Melius, C. F. 1988, in Int. Symp. on Combustion, Vol. 21 (Amsterdam: Elsevier), 919
Miller, J. A., \& Melius, C. F. 1989, in Int. Symp. on Combustion, Vol. 22 (Amsterdam: Elsevier), 1031
Miller, J. A., \& Melius, C. F. 1992, Int. J. Chem. Kin., 24, 421
Miller, J. A., Pilling, M. J., \& Troe, J. 2005, P Combust Inst, 30, 43
Miller, J. L., McCunn, L. R., Krisch, M. J., Butler, L. J., \& Shu, J. 2004, JChPh, 121, 1830
Miller, S. L. 1953, Sci, 117, 528
Miller, S. L., \& Urey, H. C. 1959, Sci, 130, 245
Miller, T. M., Wetterskog, R. E., \& Paulson, J. F. 1984, JChPh, 80, 4922
Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J., \& Miller, S. L. 2002, PNAS, 99, 14628
Miyoshi, A., Ohmori, K., Tsuchiya, K., \& Matsui, H. 1993, CPL, 204, 241
Molina, L. T., \& Molina, M. J. 1981, J Photochem, 15, 97
Molina-Cuberos, G. J., Lopez-Moreno, J. J., Rodrigo, R., Lara, L. M., \& O'Brien, K. 1999, P\&SS, 47, 1347
Monks, P., Romani, P., Nesbitt, F., Scanlon, M., \& Stief, L. 1993, JGRE, 98, 17115
Moortgat, G., ŠSlemr, F., \& Warneck, P. 1977, Int. J. Chem. Kin., 9, 249
Moortgat, G., \& Warneck, P. 1975, ZNatA, 30, 835
Morris, E., \& Niki, H. 1973, Int. J. Chem. Kin., 5, 47
Morrissey, R. J., \& Schubert, C. 1963, CoFl, 7, 263
Moses, J. I. 2014, RSPTA, 372, 20130073
Moses, J. I., Armstrong, E. S., Fletcher, L. N., et al. 2015, Icar, 261, 149
Moses, J. I., Bézard, B., Lellouch, E., et al. 2000a, Icar, 143, 244
Moses, J. I., Fouchet, T., Bézard, B., et al. 2005, JGRE, 110, 8001
Moses, J. I., Lellouch, E., Bézard, B., et al. 2000b, Icar, 145, 166

Moses, J. I., Madhusudhan, N., Visscher, C., \& Freedman, R. S. 2013, ApJ, 763, 25
Moses, J. I., Visscher, C., Fortney, J. J., et al. 2011, ApJ, 737, 15
Moshkina, R., Polyak, S., Sokolova, N., Masterovoi, I., \& Nalbandyan, A. 1980, Int. J. Chem. Kin., 12, 315
Mount, G., \& Moos, H. 1978, ApJL, 224, L35
Mousavipour, S. H., \& Saheb, V. 2007, B Chem Soc Jpn, 80, 1901
Moylan, C. R., Jasinski, J. M., \& Brauman, J. I. 1985, JAChS, 107, 1934
Mulvihill, J. N., \& Phillips, L. F. 1975, in Int. Symp. on Combustion, Vol. 15 (Amsterdam: Elsevier), 1113
Munson, M. S., \& Field, F. H. 1969, JAChS, 91, 3413
Munson, M. S., Franklin, J., \& Field, F. 1964, JPhCh, 68, 3098
Murrell, J., \& Rodriguez, J. 1986, JMoSt, 139, 267
Musin, R., \& Lin, M. 1998, JCPA, 102, 1808
Myer, J. A., \& Samson, J. A. 1970, JChPh, 52, 266
Myerson, A. L. 1973, In 14th Int. Simp. on Combustion (Amsterdam: Elsevier), 219
Nadtochenko, V., Sarkisov, O., \& Vedeneev, V. 1979, DoSSR, 244, 152
Nakata, R., Watanabe, K., \& Matsunaga, F. 1965, Sci Light, 14, 54V71
Nakayama, T., Kitamura, M. Y., \& Watanabe, K. 1959, JChPh, 30, 1180
Nakayama, T., \& Watanabe, K. 1964, JChPh, 40, 558
Natarajan, K., \& Bhaskaran, K. 1981, Experimental and Analytical Investigation of High Temperature Ignition of Ethanol, Tech. Rep. (Indian Inst of Tech: Madras Dept of Mechanical Engineering)
Natarajan, K., Thielen, K., Hermanns, H., \& Roth, P. 1986, Berich Bunsen Gesell, 90, 533
Navarro-González, R., Villagrán-Muniz, M., Sobral, H., Molina, L. T., \& Molina, M. J. 2001, GRL, 28, 3867
Nee, J. B., \& Lee, L. 1984, JChPh, 81, 31
Neilson, P. V., Bowers, M. T., Chau, M., Davidson, W. R., \& Aue, D. H. 1978, JAChS, 100, 3649
Neiman, M., \& Feklisov, G. 1961, Zh Fiz Khim, 35, 1064
Nissen, P. E. 2013, A\&A, 552, 10
Nguyen, H. M. T., Zhang, S., Peeters, J., Truong, T. N., \& Nguyen, M. T. 2004, CPL, 388, 94
Nielsen, O. J., Sidebottom, H. W., Donlon, M., \& Treacy, J. 1991, CPL, 178, 163
Nizamov, B., \& Dagdigian, P. J. 2003, JCPA, 107, 2256
Oehlschlaeger, M. A., Davidson, D. F., \& Hanson, R. K. 2004, JPCA, 108, 4247
Ohmori, K., Miyoshi, A., Matsui, H., \& Washida, N. 1990, JPhCh, 94, 3253
Okabe, H. 1970, JChPh, 53, 3507
Okabe, H. 1980, JChPh, 72, 6642
Okabe, H. 1981, JChPh, 75, 2772
Okabe, H. 1983, JChPh, 78, 1312
Okabe, H., \& Becker, D. 1963, JChPh, 39, 2549
Okabe, H., et al. 1978, Photochemistry of Small Molecules, Vol. 431 (New York: Wiley)
Okada, S., Matsumoto, A., Dohmaru, T., Taniguchi, S., \& Hayakawa, T. 1972, Mass Spectroscopy (Japan), 20, 311
O'Neal, E., \& Benson, S. W. 1962, JChPh, 36, 2196
Opansky, B. J., \& Leone, S. R. 1996a, JPhCh, 100, 4888
Opansky, B. J., \& Leone, S. R. 1996b, JPhCh, 100, 19904
Oparin, A. I. 1957, The Origin of Life on the Earth, (3rd ed.; New York: Academic Press)
Orville, R. E. 1968, JAtS, 25, 852
Osborn, D. L. 2003, JCPA, 107, 3728
Owens, A., Hales, C., Filkin, D., et al. 1985, JGRD, 90, 2283
Padial, N., Collins, L., \& Schneider, B. 1985, ApJ, 298, 369
Pang, J.-L., Xie, H.-B., Zhang, S.-W., Ding, Y.-H., \& Tang, A.-Q. 2008, JCPA, 112, 5251
Paraskevopoulos, G., \& Winkler, C. A. 1967, JPhCh, 71, 947
Park, J., \& Hershberger, J. F. 1993, JChPh, 99, 3488
Park, J., \& Lin, M. 1997, JCPA, 101, 5
Parkes, D. A. 1972a, FaTr I, 68, 613
Parkes, D. A. 1972b, FaTr I, 68, 627
Parra-Rojas, F. C., Luque, A., \& Gordillo-VáZquez, F. J. 2013, JGRA, 118, 5190
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D., \& Sutherland, J. D. 2015, NatCh, 7, 301
Patrick, R., \& Golden, D. M. 1984, Int. J. Chem. Kin., 16, 1567
Patterson, W., \& Greene, E. 1962, JChPh, 36, 1146
Payzant, J., Tanaka, K., Betowski, L., \& Bohme, D. 1976, JAChS, 98, 894
Peeters, J., Boullart, W., \& Devriendt, K. 1995, JPhCh, 99, 3583
Petrov, Y. P., Turetskii, S., \& Bulgakov, A. 2009, Kin Catal, 50, 344
Petty, J. T., Harrison, J. A., \& Moore, C. B. 1993, JPhCh, 97, 11194

Phillips, E., Lee, L., \& Judge, D. 1977, JQSRT, 18, 309
Pitts, W. M., Pasternack, L., \& McDonald, J. R. 1982, CP, 68, 417
Porter, R. P., \& Noyes, W. A. 1959, JAChS, 81, 2307
Pouilly, B., Robbe, J., Schamps, J., \& Roueff, E. 1983, JPhB, 16, 437
Powner, M. W., Gerland, B., \& Sutherland, J. D. 2009, Natur, 239459.7244
Prasad, S. S., \& Huntress, W. T. 1980, ApJ, 43, 1
Price, C., Penner, J., \& Prather, M. 1997, JGR, 102, 5929
Pshezhetskii, S. Y., Morozov, N., Kamenetskaya, S., Siryatskaya, V., \& Gribova, E. 1959, RJPCA, 33, 402
Quandt, R. W., \& Hershberger, J. F. 1995, JPhCh, 99, 16939
Queloz, D., Eggenberger, A., Mayor, M., et al. 2000, A\&A, 359, L13
Raksit, A. B. 1982, IJMIP, 41, 185
Raksit, A. B. 1986, IJMSI, 69, 45
Raksit, A. B., \& Bohme, D. K. 1984, IJMSI, 57, 211
Raksit, A. B., \& Bohme, D. K. 1985, IJMSI, 63, 217
Raksit, A. B., Schiff, H., \& Bohme, D. 1984, IJMSI, 56, 321
Raksit, A. B., \& Warneck, P. 1979, ZNatA, 34, 1410
Raksit, A. B., \& Warneck, P. 1980a, JChPh, 73, 2673
Raksit, A. B., \& Warneck, P. 1980b, IJMIP, 35, 23
Raksit, A. B., \& Warneck, P. 1980c, FaTr II, 76, 1084
Raksit, A. B., \& Warneck, P. 1981, JChPh, 74, 2853
Ray, A., Daële, V., Vassalli, I., Poulet, G., \& Le Bras, G. 1996, JPhCh, 100, 5737
Reitel'boim, M., Romanovich, L., \& Vedeneev, B. 1978, Kin Catal, 19, 1131
Ribas, I., Guinan, E. F., Güdel, M., \& Audard, M. 2005, ApJ, 622, 680
Ribas, I., Porto de Mello, G. F., Ferreira, L. D., et al. 2010, ApJ, 714, 384
Rim, K. T., \& Hershberger, J. F. 1999, JCPA, 103, 3721
Rimmer, P. B., Herbst, E., Morata, O., \& Roueff, E. 2012, A\&A, 537, A7
Rimmer, P. B., \& Helling, Ch. 2013, ApJ, 774, 108
Rimmer, P. B., Helling, Ch., \& Bilger, C. 2014, IJAsB, 13, 173
Robertson, R., Hils, D., Chatham, H., \& Gallagher, A. 1983, ApPhL, 43, 544
Roble, R., \& Ridley, E. 1994, GeoRL, 21, 417
Roche, A., Sutton, M., Bohme, D., \& Schiff, H. 1971, JChPh, 55, 5480
Rogers, J. D. 1990, JPhCh, 94, 4011
Röhrig, M., Römming, H.-J., \& Wagner, H. G. 1994, Berich Bunsen Gesell, 98, 1332
Röhrig, M., \& Wagner, H. G. 1994, in Int. Symp. on Combustion, Vol. 25 (Amsterdam: Elsevier), 975
Romani, P. N., Jennings, D. E., Bjoraker, P. V., et al. 2008, Icar, 198, 420
Roose, T., Hanson, R., \& Kruger, C. 1978, in 11th Int. Symp. on Shock Tubes and Waves (Seattle, WA: Univ. of Washington), 245
Roscoe, J. M., \& Roscoe, S. G. 1973, CaJCh, 51, 3671
Ross, S. K., Sutherland, J. W., Kuo, S.-C., \& Klemm, R. B. 1997, JPCA, 101, 1104
Rottman, G. J., Woods, T. N., \& McClintock, W. 2006, AdSpR, 37, 201
Rowe, B., Fahey, D., Fehsenfeld, F., \& Albritton, D. 1980, JChPh, 73, 194
Rowe, B., Fahey, D., Ferguson, E., \& Fehsenfeld, F. 1981, JChPh, 75, 3325
Rustgi, O. P. 1964, JOSA, 54, 464
Saeys, M., Reyniers, M.-F., Van Speybroeck, V., Waroquier, M., \& Marin, G. B. 2006, CPPC, 7, 188
Safrany, D. R., \& Jaster, W. 1968, JPhCh, 72, 3305
Sahetchian, K., Heiss, A., \& Rigny, R. 1987, JPhCh, 91, 2382
Saito, K., Kakumoto, T., \& Murakami, I. 1984, CPL, 110, 478
Saito, K., Mochizuki, Y., Yoshinobu, I., \& Imamura, A. 1990, CPL, 167, 347
Salahub, D., \& Sandorfy, C. 1971, CPL, 8, 71
Samson, J. A., \& Cairns, R. 1964, JGR, 69, 4583
Samson, J. A., \& Cairns, R. 1965, JOSA, 55, 1035
Sander, R., Kerkweg, A., Jöckel, P., \& Lelieveld, J. 2005, ACP, 5, 445
Sander, S. P., Friedl, R. R., Barker, J. R., et al. 2011, Chemical Kinetics and
Photochemical Data for use in Atmospheric Studies 17 (JPL Publications)
Sanders, N., Butler, J., Pasternack, L., \& McDonald, J. 1980, CP, 48, 203
Sanders, W., Lin, C., \& Lin, M. 1987, CST, 51, 103
Sato, K., \& Hidaka, Y. 2000, CoFl, 122, 291
Saxon, R. P., Lengsfield, B. H., III, \& Liu, B. 1983, JChPh, 78, 312
Sayah, N., Li, X., Caballero, J., \& Jackson, W. M. 1988, J. Photoch. Photobio A, 45, 177
Scattergood, T. W., McKay, C. P., Borucki, W. J., et al. 1989, Icar, 81, 413
Schacke, H., Schmatjko, K., \& Wolfrum, J. 1974, ArPSp, 5, 363
Scherzer, K., Löser, U., \& Stiller, W. 1987, ZCh, 27, 300
Schiff, H., \& Bohme, D. K. 1979, ApJ, 232, 740
Schildcrout, S. M., \& Franklin, J. 1970, JAChS, 92, 251
Schlesinger, G., \& Miller, S. L. 1983, JMolE, 19, 376
Schoen, R. I. 1962, JChPh, 37, 2032
Schulz, G., Klotz, H.-D., \& Spangenberg, H.-J. 1985, ZCh, 25, 88
Schurath, U., Tiedemann, P., \& Schindler, R. N. 1969, JPhCh, 73, 456

Schwarz, H., Brogi, M., de Kok, R., Birkby, J., \& Snellen, I. 2015, arXiv:1502.04713
Seager, S., Bains, W., \& Hu, R. 2013a, ApJ, 775, 104
Seager, S., Bains, W., \& Hu, R. 2013b, ApJ, 777, 95
Seery, D. 1969, in Int. Symp. on Combustion, Vol. 12 (Amsterdam: Elsevier), 12
Seetula, J., Blomqvist, K., Kalliorinne, K., \& Koskikallio, J. 1986, Acta Chem Scand, 40, 653
Seinfeld, J. H., \& Pandis, S. N. 2006, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2nd ed.; New Jersey: Wiley)
Selwyn, G., Podolske, J., \& Johnston, H. S. 1977, GeoRL, 4, 427
Sen, B., Toon, G. C., \& Osterman, G. B. 1998, JGR, 103, 3571
Senosiain, J. P., Klippenstein, S. J., \& Miller, J. A. 2006, JPCA, 110, 5772
Setser, D., \& Rabinovitch, B. 1962, CaJCh, 40, 1425
Shardanand, \& Rao, A. D. P. 1977, JQSRT, 17, 433
Shaw, R. 1977, Int. J. Chem. Kin., 9, 929
Shaw, R. 1978, JPCRD, 7, 1179
Sheng, C. Y., Bozzelli, J. W., Dean, A. M., \& Chang, A. Y. 2002, JPCA, 106, 7276
Showman, A. P., Cooper, C. S., Fortney, J. J., \& Marley, M. S. 2008, ApJ, 682, 559
Shul, R., Upschulte, B., Passarella, R., Keesee, R., \& Castleman, A. 1987, JPhCh, 91, 2556
Sieck, L. W. 1978, Int. J. Chem. Kin., 10, 335
Sieck, L. W., \& Futrell, J. 1968, JChPh, 48, 1409
Sieck, L. W., \& Searles, S. K. 1970, JChPh, 53, 2601
Sims, I. R., Queffelec, J.-L., Travers, D., et al. 1993, CPL, 211, 461
Sivaramakrishnan, R., Michael, J., \& Klippenstein, S. 2009, JPCA, 114, 755
Skinner, G. B., \& Ruehrwein, R. A. 1959, JPhCh, 63, 1736
Slack, M., \& Fishburne, E. 1970, JChPh, 52, 5830
Slanger, T. G., \& Black, G. 1982, JChPh, 77, 2432
Smith, D. L., \& Adams, N. 1977a, ApJ, 217, 741
Smith, D. L., \& Adams, N. 1977b, CPL, 47, 145
Smith, D. L., \& Adams, N. 1977c, IJMIP, 23, 123
Smith, D. L., \& Adams, N. 1978, CPL, 54, 535
Smith, D. L., \& Adams, N. 1980, CPL, 76, 418
Smith, D. L., \& Adams, N. 1981, MNRAS, 197, 377
Smith, D. L., Adams, N. G., \& Alge, E. 1982, JChPh, 77, 1261
Smith, D. L., Adams, N. G., \& Miller, T. 1978, JChPh, 69, 308
Smith, R. D., Smith, D. L., \& Futrell, J. H. 1976, IJMIP, 19, 369
Song, S., Golden, D. M., Hanson, R. K., et al. 2003, Int. J. Chem. Kin., 35, 304
Song, X., Hou, H., \& Wang, B. 2005, PCCP, 7, 3980
Spokes, G. N., \& Benson, S. W. 1967, JAChS, 89, 6030
Sridharan, U., \& Kaufman, F. 1983, CPL, 102, 45
Srinivasan, N., Su, M.-C., \& Michael, J. 2007, JPCA, 111, 3951
Srinivasan, N., Su, M.-C., Sutherland, J., \& Michael, J. 2005, JPCA, 109, 1857
Stevenson, D. P., \& Schissler, D. O. 1955, JChPh, 23, 1353
Stief, L., Donn, B., Glicker, S., Gentieu, E., \& Mentall, J. 1972, ApJ, 171, 21
Stockwell, W. R., \& Calvert, J. G. 1978, J Photochem, 8, 193
Stothard, N., Humpfer, R., \& Grotheer, H.-H. 1995, CPL, 240, 474
Strausz, O. P., Duholke, W., \& Gunning, H. E. 1970, JAChS, 92, 4128
Streit, G. E. 1982, JPhCh, 86, 2321
Striebel, F., Jusinski, L. E., Fahr, A., et al. 2004, PCCP, 6, 2216
Strobel, D. F. 1983, IRPC, 3, 145
Su, M.-C., Kumaran, S., Lim, K., et al. 2002, JPCA, 106, 8261
Sumathi, R., \& Nguyen, M. T. 1998, JCPA, 102, 8013
Sumathi, R., \& Peyerimhoff, S. 1996, CPL, 263, 742
Sun, F., DeSain, J., Scott, G., et al. 2001, JPCA, 105, 6121
Sun, H., He, H.-Q., Hong, B., et al. 2006, IJQC, 106, 894
Sun, H., \& Weissler, G. 1955, JChPh, 23, 1160
Sun, Y., Zhang, Q.-y., Ai, X.-c., Zhang, J.-p., \& Sun, C.-c. 2004, JMoSt, 686, 123
Suzaki, K., Kanno, N., Tonokura, K., et al. 2006, CPL, 425, 179
Suzaki, K., Tsuchiya, K., Koshi, M., \& Tezaki, A. 2007, JPCA, 111, 3776
Swain, M. R., Tinetti, G., Vasisht, G., et al. 2009, ApJ, 704, 1616
Szabo, I., \& Derrick, P. 1971, IJMIP, 7, 55
Szekely, A., Hanson, R. K., \& Bowman, C. T. 1985, in Int. Symp. on Combustion, Vol. 20 (Amsterdam: Elsevier), 647
Tabayashi, K., \& Bauer, S. 1979, CoFl, 34, 63
Takahashi, K., Yamamoto, O., Inomata, T., \& Kogoma, M. 2007, Int. J. Chem. Kin., 39, 97
Takahashi, S. 1972, Mem Def Acad: Phys Chem Eng, 12, 149
Tanaka, K., Betowksi, L., Mackay, G., \& Bohme, D. 1976, JCP, 65, 3203
Tanaka, Y., Inn, E. C., \& Watanabe, K. 1953, JChPh, 21, 1651
Tang, Y., Wang, R., \& Wang, B. 2008, JCPA, 112, 5295
Tanner, S. D., Mackay, G. I., \& Bohme, D. K. 1979a, CaJCh, 57, 2350

Tanner, S. D., Mackay, G. I., \& Bohme, D. K. 1979b, CaJCh, 57, 2996
Tanner, S. D., Mackay, G. I., \& Bohme, D. K. 1981, CaJCh, 59, 1615
Tanner, S. D., Mackay, G. I., Hopkinson, A., \& Bohme, D. K. 1979b, IJMIP, 29, 153
Tanzawa, T., \& Gardiner, W. 1980, JPhCh, 84, 236
Tao, Y.-g., Ding, Y.-h., Li, Z.-s., Huang, X.-r., \& Sun, C.-C. 2001, JCPA, 105, 9598
Taylor, W. W. L., Scarf, F. L., Russell, C. T., \& Brace, L. H. 1979, Natur, 279, 614
Thaxton, A. G., Hsu, C.-C., \& Lin, M. 1997, Int. J. Chem. Kin., 29, 245
Theard, L. P., \& Huntress, W. T. 1974, JChPh, 60, 2840
Thielen, K., \& Roth, P. 1986, AIAA, 24, 1102
Thomas, R., Barassin, A., \& Burke, R. 1978, IJMSI, 28, 275
Thompson, B., Harteck, P., \& Reeves, R. 1963, JGR, 68, 6431
Thweatt, W. D., Erickson, M. A., \& Hershberger, J. F. 2004, JPCA, 108, 74
Thynne, J., \& Gray, P. 1962, TrFa, 58, 2403
Thynne, J., \& Gray, P. 1963, TrFa, 59, 1149
Tian, F., Toon, O. B., Pavlov, A. A., \& De Sterck, H. 2005, Sci, 308, 1014
Tichy', M., Raksit, A., Lister, D., et al. 1979, IJMIP, 29, 231
Tomeczek, J., \& Gradoń, B. 2003, CoFl, 133, 311
Tonkyn, R., \& Weisshaar, J. C. 1986, JPhCh, 90, 2305
Toon, O. B., \& Farlow, N. H. 1981, AREPS, 9, 19
Toon, O. B., McKay, C. P., Ackerman, T. P., \& Santhanam, K. 1989, JGR, 94, 16287
Trenwith, A. 1960, J Chem Soc, 3722
Troe, J. 1983, Berich Bunsen Gesell, 87, 161
Troe, J. 2005, JCPA, 109, 8320
Tsang, W. 1987, JPCRD, 16, 471
Tsang, W. 1992, JPCRD, 21, 753
Tsang, W. 2004, Int. J. Chem. Kin., 36, 456
Tsang, W., \& Hampson, R. 1986, JPCRD, 15, 1087
Tsang, W., \& Herron, J. T. 1991, JPCRD, 20, 609
Tsuboi, T., \& Hashimoto, K. 1981, CoFl, 42, 61
Tsuboi, T., Katoh, M., Kikuchi, S., \& Hashimoto, K. 1981, JaJAP, 20, 985
Tu, L., Johnstone, C. P., Güdel, M., \& Lammer, H. 2015, arXiv:1504.04546
Tuazon, E. C., Carter, W. P., Atkinson, R., Winer, A. M., \& Pitts, J. N. 1984, EnST, 18, 49
Tzeng, S.-Y., Chen, P.-H., Wang, N. S., et al. 2009, JPCA, 113, 6314
Vaghjiani, G. L. 1995, Int. J. Chem. Kin., 27, 777
Vakhtin, A. B., Hard, D. E., Smith, I. W. M., \& Leone, S. R. 2001, CPL, 344, 317
van Dishoeck, E. F. 1984, Dissertation
van Dishoeck, E. F. 1987, JChPh, 86, 196
Vandooren, J., Bian, J., \& Van Tiggelen, P. 1994, CoFl, 98, 402
Vandooren, J., \& Van Tiggelen, P. 1977, (Amsterdam: Elsevier), 1133-44
Vardanyan, I., Sachyan, G., Philiposyan, A., \& Nalbandyan, A. 1974, CoFl, 22, 153
Velinov, P. I. Y., \& Mateev, L. N. 2008, JASTP, 70, 574
Venot, O., Hébrard, E., Agúndez, M., et al. 2012, A\&A, 546, A43
Verner, D., Ferland, G., Korista, K., \& Yakovlev, D. 1996, ApJ, 465, 487
Verner, D., \& Yakovlev, D. 1995, A\&AS, 109, 125
Verner, D., Yakovlev, D., Band, I., \& Trzhaskovskaya, M. 1993, ADNDT, 55, 233
Veyret, B., Rayez, J. C., \& Lesclaux, R. 1982, JPhCh, 86, 3424
Viggiano, A., Albritton, D., Fehsenfeld, F., et al. 1980, ApJ, 236, 492
Viggiano, A., \& Paulson, J. F. 1983, JChPh, 79, 2241
Vijayan, M. 1980, FEBS Lett, 112, 135
Villinger, H., Futrell, J., Howorka, F., Duric, N., \& Lindinger, W. 1982, JChPh, 76, 3529
Visscher, C., \& Moses, J. I. 2011, ApJ, 738, 72
Visscher, C., Moses, J. I., \& Saslow, S. A. 2010, Icar, 209, 602
Vogt, J., Williamson, A. D., \& Beauchamp, J. 1978, JAChS, 100, 3478
Vuitton, V., Yelle, R. V., Lavvas, P., \& Klippenstein, S. J. 2012, ApJ, 744, 11
Wagner, A. F., \& Bowman, J. M. 1987, JPhCh, 91, 5314
Wagner, H. G., Warnatz, J., \& Zetzsch, C. 1971, An Asoc Quim Argent, 59, 169
Wagner-Redeker, W., Kemper, P. R., Jarrold, M. F., \& Bowers, M. T. 1985, JChPh, 83, 1121
Waite, J. H., Young, D. T., Cravens, T. E., et al. 2007, Sci, $870,316.5826$
Wakamatsu, H., \& Hidaka, Y. 2008, Int. J. Chem. Kin., 40, 320
Wakelam, V., Herbst, E., Loison, J.-C., et al. 2012, ApJS, 199, 21
Walker, T., \& Kelly, H. 1972, CPL, 16, 511
Wallington, T. J., \& Japar, S. M. 1989, JAtC, 9, 399
Walsh, C., \& Millar, T. J. 2011, in IAU Symp. 280 ed. J. Cernicharo, \& R. Bachiller, 56

Wang, C. Y., Zhang, S., \& Li, Q. S. 2002, Theor Chem Acc, 108, 341

Wang, S., Cui, J.-P., He, Y.-Z., Fan, B.-C., \& Wang, J. 2001, ChPhL, 18, 289
Warnatz, J. 1984, Combustion Chemistry (Berlin: Springer)
Warneck, P. 1972, Berich Bunsen Gesell, 76, 421
Watanabe, K. 1954, JChPh, 22, 1564
Watanabe, K., \& Jursa, A. 1964, JChPh, 41, 1650
Watanabe, K., Matsunaga, F. M., \& Sakai, H. 1967, ApOpt, 6, 391
Watanabe, K., \& Sood, S. 1965, Sci Light, 14, 36
Watanabe, K., \& Zelikoff, M. 1953, JOSA, 43, 753
Weaver, J., Meagher, J., \& Heicklen, J. 1977, J Photochem, 6, 111
Westenberg, A. A., \& De Haas, N. 1969, JPhCh, 73, 1181
Whyte, A., \& Phillips, L. 1983, CPL, 98, 590
Wight, C. A., \& Beauchamp, J. 1980, JPhCh, 84, 2503
Wijnen, M. 1960, JAChS, 82, 3034
Williamson, A. D., \& Beauchamp, J. 1975, JAChS, 97, 5714
Williamson, D. G., \& Bayes, K. D. 1967, JAChS, 89, 3390
Wilson, W. E. 1972, JPCRD, 1, 535
Woods, I., \& Haynes, B. 1994, in Int. Symp. on Combustion, Vol. 25 (Amsterdam: Elsevier), 909
Wooldridge, M. S., Hanson, R. K., \& Bowman, C. T. 1996, Int. J. Chem. Kin., 28, 361
Wu, C., Wang, H., Lin, M., \& Fifer, R. 1990, JPhCh, 94, 3344
Wu, C.-W., Lee, Y.-P., Xu, S., \& Lin, M. 2007, JPCA, 111, 6693
Wu, J.-Y., Liu, J.-Y., Li, Z.-S., \& Sun, C.-c. 2003, JChPh, 118, 10986
Xu, S., \& Lin, M. 2007, JCPA, 111, 6730
Xu, Z.-F., \& Lin, M. 2004, Int. J. Chem. Kin., 36, 205
Xu, Z.-F., \& Sun, C.-C. 1999, JMoSt, 459, 37
Xu, Z.-F., \& Sun, J.-Z. 1998, JCPA, 102, 1194
Yang, J., Li, Q. S., \& Zhang, S. 2008, JCoCh, 29, 247
Yang, X., Goldsmith, C. F., \& Tranter, R. S. 2009, JPCA, 113, 8307
Yang, Y., Zhang, W., Pei, S., et al. 2005, JMoSt, 725, 133
Yasunaga, K., Kubo, S., Hoshikawa, H., Kamesawa, T., \& Hidaka, Y. 2008, Int. J. Chem. Kin., 40, 73
Yee Quee, M., \& Thynne, J. 1968, Berich Bunsen Gesell, 72, 211
Yelle, R. V., Griffith, C. A., \& Young, L. A. 2001, Icar, 152, 331

Yelle, R. V., Young, L. A., Vervack, R. J., et al. 1996, JGR, 101, 2149
You, X., Wang, H., Goos, E., Sung, C.-J., \& Klippenstein, S. J. 2007, JCPA, 111, 4031
Young, J. 1958, J Chem Soc, 2909
Young, L. B., Lee-Ruff, E., \& Bohme, D. 1971, CaJCh, 49, 979
Yumura, M., \& Asaba, T. 1981, in Int. Symp. on Combustion, Vol. 18 (Amsterdam: Elsevier), 863
Yung, Y. L., Allen, M., \& Pinto, J. P. 1984, ApJS, 55, 465
Yung, Y. L., \& Demore, W. B. (ed.) 1999, Photochemistry of Planetary Atmospheres (New York: OUP), 9
Zabarnick, S., \& Heicklen, J. 1985, Int. J. Chem. Kin., 17, 455
Zahnle, K. 1986, JGRD, 91, 2819
Zahnle, K., Claire, M., \& Catling, D. 2006, Geobiology, 4, 271
Zahnle, K., Mac Low, M.-M., Lodders, K., \& Fegley, B. 1995, GeoRL, 22, 1593
Zahnle, K., Marley, M. S., Freedman, R. S., Lodders, K., \& Fortney, J. J. 2009, ApJL, 701, L20
Zalotai, L., Hunyadi-zoltán, Z., Bérces, T., \& Marta, F. 1983, Int J Chem Kin, 15, 505
Zarka, P., \& Pedersen, B. M. 1986, Natur, 323, 605
Zaslonko, I., Petrov, Y. P., \& Smirnov, V. 1997, Kinetics and Catalysis, 38, 321
Zaslonko, I., Smirnov, V., \& Tereza, A. 1993, Kin Catal, 34, 531
Zel'dovich, Y. B., \& Raizer, Y. P. 1996, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (New York, NY: Academic)
Zelikoff, M., Watanabe, K., \& Inn, E. C. 1953, JChPh, 21, 1643
Zhang, Y.-X., \& Bauer, S. 1997, JPCB, 101, 8717
Zhang, Y.-X., Zhang, S., \& Li, Q. S. 2004, CP, 296, 79
Zhang, Y.-X., Zhang, S., \& Li, Q. S. 2005, CP, 308, 109
Zhu, R., \& Lin, M. 2003, JChPh, 119, 10667
Zhu, R., \& Lin, M. 2007, JCPA, 111, 6766
Zhu, R., \& Lin, M. 2009, CPL, 478, 11
Zhu, R., \& Lin, M.-C. 2005, Int. J. Chem. Kin., 37, 593
Zielinska, T. J., \& Wincel, H. 1970, Nukleonika, 15, 343
Zsom, A., Kaltenegger, L., \& Goldblatt, C. 2012, Icar, 221, 603

[^0]: 1 http://kida.obs.u-bordeaux1.fr/
 2 http://faculty.virginia.edu/ericherb/research.html

[^1]: 3 Surface chemistry is not considered in this paper, and the temperature of all chemical species including electrons is set equal to the gas-phase temperature.

[^2]: 4 phidrates.space.swri.edu

[^3]: 5 http://satellite.mpic.de/spectral_atlas/index.html

[^4]: 6 The actinic flux is the radiance integrated over all angles, expressing flow of energy through a unit sphere. There are subtle differences between the actinic flux and the spectral irradiance; see Madronich (1987).

[^5]: 7 The depth for this model extends from $z=0$, the bottom of the temperature profile for the planet in question, to $z=z_{\text {top }}$, the top of the profile.

[^6]: 8 Referring primarily to NO and NO_{2} chemistry.

[^7]: 9 "Early Earth" in this context means the Earth in its first 1 Gyr.
 ${ }^{10}$ The debate is ongoing (Catling 2006; Claire et al. 2006).
 ${ }^{11} \mathrm{http}$://omniweb.sci.gsfc.nasa.gov/vitmo/

[^8]: ${ }^{12}$ The experiment we simulate is more like that of Patel et al. (2015).

[^9]: ${ }^{13} \mathrm{http}: / /$ webbook.nist.gov/chemistry/

