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Abstract

Antimicrobial peptides (AMPs) are found throughout the animal kingdom and act as a

natural defence against a broad spectrum of pathogens. These peptides are toxic to

invading organisms without acting on host cells, so are of interest for their potential to

act as potent new drugs against pathogenic organisms. AMPs traverse the cell wall and

predominantly target the plasma membrane, resulting in destabilisation, leakage of

intracellular components and cell death. In this thesis the mode of action of several

AMPs was investigated. The role of the cell wall was studied and found to mediate

peptide binding, the inhibition of certain cell wall components also increased peptide

action, subsequent internalisation events were observed with varying localisation

patterns and the effect of several genes that alter cell susceptibility to AMP were

examined.

Several Candida albicans mutants, each deficient in cell wall protein mannosylation,

were tested in relation to their susceptibility to AMPs. It was discovered that cells

lacking or deficient in the phosphomannan fraction, with a concomitant reduction in

surface negative charge, correlated with reduced susceptibility to AMP action. To

ascertain whether peptide binds to negatively charged phosphate, the effect of

exogenous glucosamine 6-phosphate (but not glucosamine hydrochloride) was studied

demonstrating that peptide efficacy was reduced due to the presence of exogenous

phosphate. More specifically, sequestration of the truncated cationic AMP dermaseptin

S3 (DsS3(1-16)) was reduced in these phosphomannan deficient mutants. Microscopy
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analysis of fluorescein tagged DsS3(1-16) also revealed the differential localisation

patterns of this AMP: transiently binding to the plasma membrane, localisation to the

vacuole or diffuse distribution throughout the cytoplasm. It is proposed that for these

cationic AMPs to exert their full antifungal action they must first bind to the negatively

charged phosphate.

The echinocandins are a relatively new class of antifungal that function by inhibiting 1,3-

β glucan synthase resulting in reduced 1,3-β glucan in the cell wall. As AMPs have to 

traverse the cell wall it was postulated that cells lacking this fraction would display

increased AMP binding to the membrane. Clinical isolate strains of Candida and

Cryptococcus spp. were acquired to test their susceptibility to AMP and echinocandin

combinations. Comparing the fractional inhibitory concentration index (FICI) (supported

by viable cell counts and on a solid surface using disc diffusion assays) synergy was

observed between caspofungin, anidulafungin and several AMPs in vitro. In vitro toxicity

assays revealed no increase in haemolytic or cytotoxic action on combination. These

synergistic combinations could provide a novel treatment against fungal pathogens.

The final area of study was based upon work that identified genes whose expression

altered cell susceptibility to AMPs. Three genes were selected for investigation that

upon deletion increased the action of DsS3(1-16) or magainin 2 on S. cerevisiae. Results

from growth analysis, peptide sequestration and cell viability counts confirmed that

deletion of HAL5, LDB7 or IMP2’ did increase susceptibility. Additionally, deletion of
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HAL5 increased the probability of cell depolarisation upon peptide exposure. Expression

of GFP-tagged Imp2’ also increased when cells were exposed to DsS3(1-16). It was

concluded that deletion of HAL5 increases depolarisation due to insufficient potassium

efflux, leading to ion leakage and cell death facilitated by AMP action. Double strand

break repair and DNA protection are probably compromised upon deletion of LDB7 and

IMP2’, increasing the inhibitory action of DsS3(1-16) that has previously been shown to

bind to DNA.



v

Acknowledgements

I would like to thank my supervisor, Dr Peter Coote for his help and guidance over the

years. Thanks also to Prof Thomas Meagher for kindly letting me use his Cytometer, John

Nicholson for the many hours of use from the DeltaVision and Prof Neil Gow for

donating various yeast strains. I would also like to thank all members of the PJC and

MFW groups, past and present who share a lab and for the use of various pieces of lab

equipment. More specifically I’d like to thank Des for tirelessly looking through my

chapter drafts and covering them in pencil marks, it is much appreciated. Thanks also to

Liz for all her friendly banter and encouragement, you will finish soon I’m sure! Thanks

to Shirley who has been in our little office even longer than me. When you tutored me

through my honours project I didn’t expect I’d be saying thanks four years later! A big

thanks also to my ex-lab buddy Lynne who was so kind and supportive through my initial

time as a postgraduate, full of wit and always upbeat. You are gone but most certainly

not forgotten. I also thank Graham for always being there for me, especially since I’ve

been in the flat non-stop for the best part of six months. You always manage to cheer

me up and motivate me when I’m feeling the pressure. Finally I’d like to thank my

parents for their encouragement and generosity throughout the years, without you both

this wouldn’t have been possible.



vi

Abbreviations

a.a. Amino acid
AIDS Acquired immune deficiency syndrome
AIF Apoptosis-inducing factor
AMP Antimicrobial peptide
AU Absorbance unit
CCCP Carbonyl cyanide m-chlorophenyl hydrazone
CFU Colony forming units
CTG CellTracker™ Green
DAPI 4’,6-diamidino-2-phenylindole
diS-C3(3) 3,3’-dipropylthiacarbocyanine iodide
DNA Deoxyribonucleic acid
DsS3(1-16) Dermaseptin S3(1-16)-NH2

FICI Fractional inhibitory concentration index
Flu-DsS3(1-16) Fluorescein tagged DsS3(1-16)
G-6-P Glucosamine 6-phosphate
GFP Green fluorescent protein
GHCl Glucosamine hydrochloride
Gom Gomesin
HAL HALotolerance
HIV Human immunodeficiency virus
HS Human serum
IMP Inner membrane protease
IZH Implicated in zinc homeostasis
LB Luria-Bertani medium
LDB Low dye binding
Mag 2 Magainin 2
MATa Mating-type locus
MEB Malt extract broth
MIC Minimum inhibitory concentration
MNT MaNnosylTransferase
MNN MaNNosyltransferase
MOPS 3-(N-morpholino propane sulfonic acid
OCH Outer CHain elongation
OD600 Optical density at 600 nm
PBS Phosphate buffer saline
PCR Polymerase chain reaction
PI Propidium iodide
PMR Plasma Membrane ATPase Related
Rana Ranalexin
RNA Ribonucleic acid
RPMI Roswell Park Memorial Institute medium
SD Standard deviation
WT Wild-type
YEPD Yeast extract peptone dextrose
YNB Yeast nitrogen base



vii

County/State abbreviations

BRK Berkshire
BUX Buckinghamshire
CA California
CBE Cambridgeshire
DOR Dorset
GLR Gloucester
HFD Hertfordshire
HPH Hampshire
IA Iowa
KNT Kent
LEC Leicestershire
MA Massachusetts
NJ New Jersey
NY New York
OFE Oxfordshire
SCD Strathclyde
SXW West Sussex
VT Vermont
WA Washington
WLT Wiltshire
YSS South Yorkshire



viii

Contents

Declaration i
Abstract ii
Acknowledgements v
Abbreviations vi
County / State abbreviations vii
List of contents viii
List of figures xii
List of tables xv

Chapter 1. General introduction 1

1.1 Antimicrobial peptides 2

1.2 Antimicrobial peptide characterisation 4

 1.2.1 Linear peptides with an α-helical structure    4 

 1.2.2 Peptides predominantly consisting of β-strands connected by   

intramolecular disulphide bridges 6

1.2.3 Peptides characterised by over-representation of one or more

amino acids 6

1.3 Mechanisms of action 8

1.3.1 The barrel-stave model 9

1.3.2 The carpet model 10

1.3.3 The aggregate channel model 12

1.3.4 Alternative mechanisms of action 13

1.4 Antimicrobial peptides under investigation 13

1.4.1 DsS3(1-16) 14

1.4.2 Magainin 2 16

1.4.3 Ranalexin 19

1.4.4 Cyclic peptides: gomesin, 6752 and GS14K4 21

1.5 Antifungal drugs 24

1.5.1 Polyenes 24

1.5.2 Azoles 25

1.5.3 Echinocandins 27

1.6 Yeast pathogenicity and drug susceptibility 29

1.6.1 C. albicans 29

1.6.2 C. glabrata 32

1.6.3 C. neoformans 34

1.6.4 S. cerevisiae as a model organism 35

1.7 Aims of this study 36



ix

Chapter 2. Materials and methods 37

2.1 Yeast and bacterial strains 38

2.2 Growth media 39

2.3 Optical density versus viable cell number calibration curves 40

2.4 Antifungal peptides and echinocandins 41

2.5 MIC determination 42

2.6 Synergy studies 42

2.7 Effect of salt, pH, temperature and human serum on AMP viability 44

2.8 Disc diffusion assay of yeast growth inhibition 45

2.9 Growth of yeast strains 45

2.10 Yeast cell viability 45

2.11 Population viability using fluorescence microscopy 46

2.12 Quantification of Flu-DsS3(1-16) binding and internalisation 47

2.13 Intracellular localisation of Flu-DsS3(1-16) using fluorescence microscopy 48

2.14 GFP-tagging of LDB7, IMP2’ and HAL5 49

2.15 Cytometric analysis of membrane potential 51

2.16 In vitro haemolytic assay of echinocandins and AMPs 51

2.17 In vitro mammalian cell cytotoxicity assay of echinocandins and AMPs 52

2.18 Efficacy in vivo of the combination of caspofungin with ranalexin in a

murine model of disseminated Candidiasis. 53

2.19 Expression analysis of IZH2 54

2.19.1 S. cerevisiae gene cloning and PCR amplification of IZH2 54

2.19.2 Reintegration of IZH2 55

2.19.3 Overexpression of IZH2 56

2.19.4 Transformant growth analysis 56

2.20 Growth and cell number of all yeast strains 57

Chapter 3. Effect of alterations in the cell wall composition of Candida albicans

on susceptibility to several cationic antimicrobial peptides 64

3.1 Introduction 65

3.2 Results 69

3.2.1 MIC determination 69

3.2.2 Growth of cell wall mutants 71

3.2.3 Growth inhibition on exposure to peptide 72

3.2.4 Population viability using fluorescence microscopy 77

3.2.5 Flu-DsS3(1-16) sequestration 80

3.2.6 Peptide action in the presence of exogenous phosphate 81

3.2.7 Visualisation and quantification of Flu-DsS3(1-16) with CAI-4,

pmr1Δ and mnn4Δ        87 

3.3 Discussion 91



x

Chapter 4. The inhibitory effects of the echinocandins in combination with

several structurally diverse antimicrobial peptides. 98

4.1 Introduction 99

4.2 Results 102
4.2.1 Initial studies using S. cerevisiae and caspofungin 102
4.2.2 Growth of C. glabrata, C. albicans hospital isolate and SC5314
strains in the presence of caspofungin with DsS3(1-16), magainin 2,
ranalexin, 6752 or GS14K4. 111
4.2.3 Growth of C. glabrata, C. albicans hospital isolate and SC5314
strains in the presence of anidulafungin and micafungin with
DsS3(1-16), magainin 2, ranalexin, 6752 or GS14K4. 121
4.2.4 Intracellular localisation of Flu-DsS3(1-16) using fluorescence
microscopy. 125

4.3 Discussion 131

Chapter 5. The cytotoxic, haemolytic and antifungal activity of cationic
antimicrobial peptides. 137
5.1 Introduction 138
5.2 Results 139

5.2.1 Effects of salt, pH, temperature and human serum on AMP
antifungal activity. 139
5.2.2 In vitro haemolytic assay of echinocandins and AMPs 142
5.2.3 In vitro mammalian cell cytotoxicity assay of echinocandins and
AMPs 144
5.2.4 Efficacy in vivo of the combination of caspofungin with ranalexin
in a murine model of disseminated Candidiasis 148

5.2 Discussion 149

Chapter 6. Deletion of HAL5, LDB7 and IMP2’ in S. cerevisiae results in
increased susceptibility to several cationic antimicrobial peptides. 154
6.1 Introduction 155
6.2 Results 158

6.2.1 MIC determination 158
6.2.2 Growth of deletion mutants 158
6.2.3 Quantification of Flu-DsS3(1-16) binding and internalisation by
S. cerevisiae cells 164
6.2.4 Population viability using fluorescence microscopy 165
6.2.5 GFP-tagging of HAL5, LDB7 and IMP2’ 167
6.2.6 Cytometer analysis of membrane potential 170

6.3 Discussion 176

Chapter 7. Discussion 180
7.1 Final discussion 181
7.2 Future work 186

References 189



xi

Appendices 207
Appendix I: Plasmid maps 207
Appendix II: Growth of glycosylation mutants with AMP and in the presence
or absence of exogenous phosphate 209
Appendix III: MICs of all strains exposed to each AMP in MEB or RPMI 211
Appendix IV: Visual growth assays used for determination of FICs 213
Appendix V: Disc diffusion assays 222
Appendix VI: MIC determination of S. cerevisiae deletion mutants 224
Appendix VII: Sensitivity of IZH2 transformations to DsS3(1-16) 225
Appendix VIII: Publications 226



xii

List of figures

1.1 The toroidal pore, barrel-stave and carpet models of antimicrobial
action. 9

1.2 Solution structure of magainin 2. 17

1.3 The amino acid sequence and solution structure of ranalexin. 21

1.4 Mode of action of the polyene, azole and echinocandin classes of
antifungals. 27

1.5 Structural diagrams of micafungin, caspofungin and anidulafungin. 29

2.1 Synergistic, additive and antagonistic growth patterns. 43

2.2 Fluorescent intensity of Flu-DsS3(1-16) in MEB. 48

2.3 Images from gel electrophoresis of GFP PCR products. 50

2.4 Images from gel electrophoresis of IZH2 DNA and pRS313 or pRS423
products. 56

2.5 Growth of S. cerevisiae in MEB. 58

2.6 Growth of C. albicans in MEB. 58

2.7 Growth of C. albicans SC5314 in MEB. 59

2.8 Growth of C. glabrata in MEB. 59

2.9 Growth of C. neoformans in MEB. 60

2.10 Growth of CAI-4(Clp10) in MEB. 60

2.11 Growth of mnt1-mnt2Δ(Clp10) in MEB.     61 

2.12 Growth of mnt3/mnt5Δ(Clp10) in MEB.     61 

2.13 Growth of och1Δ(Clp10) in MEB.      62 

2.14 Growth of pmr1Δ(Clp10) in MEB.      62 

2.15 Growth of mnn4Δ(Clp10) in MEB.      63 

3.1 Schematic diagram of the Candida cell wall. 66

3.2 Morphology of the C. albicans cell wall showing the structure of the
N- and O-linked glycans. 67

3.3 Growth of CAI-4 and all deletion strains. 71



xiii

3.4 Growth of mnt1Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. 72 

3.5 Growth of mnt2Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. 73 

3.6 Growth of mnt1-mnt2Δ and CAI-4 when exposed to DsS3(1-16), mag 2. 
or rana. 74

3.7 Growth of mnt3/mnt5Δ and CAI-4 when exposed to DsS3(1-16), mag 2  
or rana. 75

3.8 Growth of pmr1Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. 76 

3.9 Growth of mnn4Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. 77 

3.10 Percentage of each cell population fluorescing with CellTracker™ green,
propidium iodide or dual staining when exposed to DsS3(1-16). 78

3.11 Cell viability count after exposure to DsS3(1-16). 79

3.12 Cell wall mutant Flu-DsS3(1-16) sequestration. 81

3.13 Growth of CAI-4 with and without the presence of 15 mM glucosamine
hydrochloride or 15 mM glucosamine 6-phosphate. 83

3.14 Growth of CAI-4 with and without the presence of 15 mM glucosamine
hydrochloride or 15 mM glucosamine 6-phosphate. 84

3.15 Peptide action against CAI-4, pmr1Δ and mnn4Δ strains with exogenous 
phosphate. 86

3.16 Differential peptide localisation using fluorescent microscopy. 87

3.17 Percentage of cell population showing no fluorescence, vacuolar
fluorescence or cytoplasmic fluorescence after DsS3(1-16) treatment. 89

3.18 Image series representative of the changing Flu-DsS3(1-16) localisation in
CAI-4 with 15 mM glucosamine hydrochloride or 15 mM glucosamine
6-phosphate. 90

3.19 TEM micrographs of cell wall morphology of CAI-4, pmr1Δ and mnn4Δ. 94 

4.1 Checkerboard assays determining the effects of increasing
concentrations of caspofungin on S. cerevisiae. 103

4.2 Growth of S. cerevisiae when exposed to DsS3(1-16), mag2 or rana alone
or in combination with caspofungin. 105

4.3 Cell viability assays of S. cerevisiae with AMP and caspofungin. 108



xiv

4.4 Disc diffusion assays monitoring inhibition of S. cerevisiae with AMP
and caspofungin. 110

4.5 Growth of S. cerevisiae, C. glabrata and C. albicans in RPMI 1640. 112

4.6 Representative checkerboard assays used to determine FICs with
SC5314 and C. glabrata. 115

4.7 Disc diffusion assays monitoring inhibition of SC5314 with AMP and
caspofungin. 117

4.8 Cell viability assays of C. albicans SC5314 with AMP and caspofungin. 120

4.9 Disc diffusion assays monitoring inhibition of SC5314 with AMP and
anidulafungin. 124

4.10 Fluorescent microscopy study quantifying cell viability and peptide
sequestration in C. albicans SC5314. 128

4.11 Image series representative of Flu-DsS3(1-16) localisation and PI staining. 130

5.1 Mammalian cell cytotoxicity assay with echinocandins. 146

5.2 Mammalian cell cytotoxicity assay with AMPs. 146

5.3 Mammalian cell cytotoxicity assay with combinations of AMP and
caspofungin. 147

5.4 Mammalian cell cytotoxicity assay with combinations of AMP and
anidulafungin. 147

6.1 Growth of ldb7Δ and wt strains when exposed to various concentrations  
of DsS3(1-16), mag 2 or rana. 161

6.2 Growth of imp2’Δ and wt strains when exposed to various concentrations  
of DsS3(1-16), mag 2 or rana. 162

6.3 Growth of hal5Δ and wt strains when exposed to various concentrations  
of DsS3(1-16), mag 2 or rana. 163

6.4 Peptide sequestration by wt, hal5Δ, ldb7Δ and imp2’Δ.   165 

6.5 Percentage of each cell population fluorescing with CTG, PI or dual
staining when exposed to DsS3(1-16). 166

6.6 Cell viability after exposure to DsS3(1-16). 167

6.7 Representative images acquired from fluorescent microscopy of
GFP-labelled proteins. 169



xv

6.8 Fluorescent histograms displaying log fluorescence against number of
events recorded with wt and ldb7Δ.      174 

6.9 Fluorescent histograms displaying log fluorescence against number of
events recorded with wt, hal5Δ and imp2’Δ.     175 

7.1 Summary of proposed AMP mechanisms of action and fungal
susceptibility. 185

List of tables

1.1 Classification and origin of structurally representative AMPs. 8

2.1 S. cerevisiae deletion strains used in this study. 38

2.2 CAI-4 cell wall mutants used in this study. 39

2.3 Antimicrobial peptides used in this study. 41

2.4 Sequences used to generate GFP-tagged HAL5, LDB7 and IMP2’ strains. 49

2.5 Sequences used to amplify IZH2 gene. 54

2.6 Exponential growth period of all strains in MEB with CFU/ml. 57

3.1 MIC determination for three AMPs against CAI-4 and various cell wall
mutants. 70

3.2 MIC determination for CAI-4, pmr1Δ and mnn4Δ strains.   85 

4.1 FICI for C. neoformans and S. cerevisiae in combination with caspofungin
and DsS3(1-16), mag2 or rana. 102

4.2 FICI for C. albicans and C. glabrata in combination with caspofungin and
DsS3(1-16), mag 2, rana, 6752 or GS14K4. 114

4.3 MIC values for all peptides in RPMI 1640 against C. albicans strains and
C. glabrata. 114

4.4 FICI for C. albicans and C. glabrata in combination with micafungin and
DsS3(1-16), mag 2 or rana. 122

4.5 FICI for C. albicans and C. glabrata in combination with anidulafungin and
DsS3(1-16), mag 2, rana, 6752 or GS14K4. 122

5.1 MIC determination for each AMP against S. cerevisiae exposed to various
concentrations of NaCl. 141



xvi

5.2 MIC determination for each AMP against S. cerevisiae at various pH
values. 141

5.3 MIC determination for each AMP exposed to various temperatures
against S. cerevisiae. 141

5.4 MIC determination for each AMP against S. cerevisiae exposed to
various concentrations of active HS. 141

5.5 MIC determination for each AMP against S. cerevisiae exposed to
various concentrations of heat-inactivated HS. 141

5.6 Erythrocytes exposed to various concentrations of AMP or echinocandin. 143

5.7 Erythrocytes exposed to various concentrations of AMP with
echinocandin. 143

5.8 The effect of combination treatment with caspofungin and ranalexin
compared to the individual treatments alone on kidney burden of
C. albicans SC5314 and animal weight in a mouse model of disseminated
Candidiasis. 148

6.1 MIC values of wt, hal5Δ, ldb7Δ and imp2’Δ when exposed to DsS3(1-16),  
mag 2 and rana. 158

6.2 Changes in diS-C3(3) fluorescence in S. cerevisiae mutants upon exposure
to DsS3(1-16). 173



1

C
h

ap
te

r
1



2

1. General Introduction

1.1 Antimicrobial Peptides

Antimicrobial peptides (AMPs) function throughout the animal kingdom as a means of

protection against microbes. Many hundreds of AMPs have now been characterized that

have actions against eukaryotic cells, bacteria, fungi and viruses (Giuliani et al, 2008).

Specificity exists preventing toxic effects on host cells that rely on the core differences

found between mammalian and microbial cells. This comprises mainly membrane

composition, including expression of lipopolysaccharide, peptidoglycan and sterols

(Powers et al, 2003). This specificity is strengthened due to interactions with the lipid

bilayer through electrostatic interactions arising from mainly cationic AMPs with anionic

phospholipids found on target cells (La Rocca et al, 1999).

It is becoming clear that AMPs are an integral part of the immune system, providing a

fast and effective means of defence against invading organisms. Pathogens frequently

enter host organisms via ingestion, inhalation and through wounds. The adaptive

immune response does not affect these organisms until they begin to multiply in the

body leading to infection (Giuliani et al, 2008). The innate immune response is required

to combat these pathogens before this occurs. AMPs play an important role in this

innate system as a first line of defence and are found in a wide range of organisms from

mammals to plants (Hancock et al, 1998). They are released after microbial infection and

act to kill a broad spectrum of pathogens. AMPs represent ancient elements of the

immune responses of a wide spectrum of life (Hancock et al, 1998). Throughout the

course of evolution they have changed little and have highly conserved induction
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pathways in vertebrates, insects, and plants. The majority of these peptides share

several common properties: most have a molecular weight below 10 kDa, they are

hydrophobic or amphipathic and have an overall positive charge so many are cationic

(Bechinger et al, 2006).

AMPs are of interest due to the rise in resistance of fungal pathogens against antifungal

drugs. Currently around 420 peptides with antifungal action have been identified

(Antimicrobial peptide database website, 2009) and can be classified by their secondary

structure. These peptides may be linear or cyclic in structure and display hydrophobic or

amphipathic (hydrophobic and hydrophilic sections) properties.

Some peptides cause cell lysis by interacting with the membrane lipid bilayer resulting in

leakage of certain cellular components (Shai, 1995). This may be due to pore formation

(Bechinger, 1997) or interaction with intracellular targets (Hugosson et al, 1994). Many

of these peptides are disordered in water, but when attached to membranes become

ordered and able to exert their killing action. As antifungal peptides have a small size,

nuclear magnetic resonance (NMR) has emerged as a useful technique for structural

studies of these peptides. This technique has been used for the majority of AMP

structures currently known.
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1.2 Antimicrobial peptide characterisation

The number and diversity of AMPs discovered thus far makes it problematic to

categorise them. This variability is likely to be a result of the species specific microbial

environments occupied by pathogenic microorganisms that peptides have evolved to

combat. Attempts have been made to group them broadly according to their secondary

structure (van’t Hof et al, 2001). Peptides generally fall into three main categories: linear

peptides with an α-helical structure, peptides consisting predominantly of β-strands 

connected by intramolecular disulphide bridges and peptides characterised by over-

representation of one or more amino acids. These categories will be discussed with

examples of AMPs representative of each section (Table 1.1).

1.2.1 Linear peptides with an α-helical structure 

The majority of peptides discovered thus far have an α-helical structure. These peptides 

can be divided into; linear helical peptides, helical peptides containing cysteine bridges

or a combination of linear and loop structures. They have the propensity to be

disordered in aqueous solution but become structured forming amphipathic helices in

hydrophobic solvents or when in contact with cytoplasmic membranes (Oren et al,

1998). Known as interfacial folding, this is crucial for antimicrobial action as it is required

for peptide attachment and insertion into the membrane; e.g., the human cathelicidin

LL-37 is disordered in water but in the presence of hydrophobic solvents forms an α-

helix. This orientates the residues such that they bind to the lipid head groups and the

helix inserts into the membrane. Furthermore, the strength of the helical conformation

increases its antimicrobial activity (Johansson et al, 1998).
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The temporins are a group of small peptides (10-16 a.a.) with a linear α-helical structure 

(Lu et al, 2006). In contrast to other AMPs in this group, they show reduced specificity

towards anionic membranes and may target zwitterionic membranes resulting in

increased haemolytic and cytotoxic effects (Mangoni et al, 2000). Temporin L has the

strongest antimicrobial action among the temporins and displays strong lipid binding

affinity. The use of CD spectroscopy demonstrated that temporin L formed α-helical 

conformations more readily and strongly than other temporins (D’Abramo et al 2006).

This highlights the correlation between peptide conformation in solution and extent of

antimicrobial activity.

The helical content of this group of peptides has also been linked to their cytolytic

activity. Studies using derivatives of paradaxin and melittin lacking the natural α-helical 

structure also lack haemolytic activity but still retain their activity against bacteria. This

has been demonstrated with model membranes where native melittin binds strongly to

both negatively charged and zwitterionic membranes while the analogues bind only to

the former (Shai et al, 1996; Oren et al, 1997). Thus for some peptides in this family, the

α-helical conformation is more contributory in determining eukaryotic selectivity than 

microbial selectivity.
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1.2.2 Peptides predominantly consisting of β-strands connected by intramolecular 

disulphide bridges.

Relative to α-helical AMPs, few peptides adopt a β-sheet conformation. These are longer 

chain peptides generally over 25 a.a in length to facilitate β-sheet formation. They are 

structured as β-sheet in aqueous solution that may become strengthened in solvents or 

membranous environments. The amphipathicity of these peptides is achieved through

antiparallel β-sheet and β-hairpin conformations that are essential for antimicrobial 

action, with hydrophobic residues orientated on one surface and hydrophilic residues on

the other. This allows the hydrophilic residues to interact with the lipid head groups

while the hydrophobic residues insert and interact with the lipid tail groups.

The defensins are among the most studied and well characterised AMPs in this category

and consist mainly of β-sheet (Ganz et al, 1985). They are cysteine rich (six cysteines

forming three disulphide bonds) and are found in both vertebrates and invertebrates.

They function by inserting and forming channels in the membrane leading to efflux of

ions (Kagan et al, 1990). The cysteine residues are essential for their antimicrobial

activity and stability as mutation leads to peptide inactivation.

1.2.3 Peptides characterised by over-representation of one or more amino acids.

Each member of this group is characterised by sequences rich in one or more specific

amino acids such as histidine, tryptophan or proline. The amphipathicity of this group

originates primarily from their residue distribution. The histatins are a well characterised
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group of AMPs produced by the salivary glands and are rich in histidine. They adopt

weak amphipathic helical structures in hydrophobic solvents and form transient pores

(Helmerhorst et al, 1997). They do not cause disintegration of the plasma membrane but

instead target the mitochondria (Helmerhorsta et al, 1999). Tryptophan is an uncommon

amino acid in peptides and proteins but is found at a high percentage in indolicidin.

Tryptophan facilitates entry of peptides into the plasma membrane due to the

propensity to position itself in or near the lipid bilayer. The mode of action of indolicidin

involves pore formation. Using CD spectroscopy it was shown to be unordered in water

taking on a more ordered conformation in lipid bilayers (Rozek et al, 2000). The bacterial

selectivity of indolicidin can be enhanced by the substitution of several tryptophan

residues with leucines while retaining specific tryptophans at certain positions

(Subbalakshmi et al, 2000). Subsequently it was shown that tryptophan mediates

interactions with zwitterionic bilayers while the positively charged N-terminus and

amidated C-terminus mediate the mode of action of indolicidin with bacterial

membranes (Staubitz et al, 2001).

Several other AMPs have been identified with differing structures that do not belong to

any of the three categories above. These include peptides with a cyclic structure such as

gramicidin S and Rhesus theta defensin 1 (RTD-1). The gramicidins are a group of six

peptides originally derived from Bacillus brevis. Gramicidin S is a derivative forming a

cyclic peptide chain constructed from two pentapeptides joined head to tail. Its mode of
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action is unclear, however, it has been proposed to induce membrane defects of varying

sizes leading to destabilisation of the bilayer (Ashrafuzzaman, et al, 2008).

The RTDs were isolated from monkey leukocytes and bone marrow and are short (18

a.a.) cyclic peptides. The cyclic backbone of RTD-1 contains three disulphide bonds

producing a β-sheet connected by β-turns (Trabi et al, 2001). The cyclic conformation

enhances antimicrobial activity as the linear form is 3-fold less active (Tang et al, 1999).

The RTDs have broad spectrum antimicrobial activity with little cytotoxicity. It was found

that this lack of cytotoxicity was not dependent on the cyclic structure. They are thought

to cause lysis through pore formation and membrane disruption (Tran et al, 2008).

Table 1.1 Classification and origin of structurally representative AMPs.

1.3 Mechanisms of Action

Two general mechanisms were originally proposed to describe the action of AMPs on

phospholipid membranes. These were the ‘barrel-stave’ model (Hogosson et al, 1994)

and the ‘carpet’ model (Pouny et al, 1992). In the carpet model peptide monomers may

also form ‘toroidal’ pores (Figure 1.1). A third model, aggregate channel formation

Group Name Sequence Origin

I α-helix cathelicidin LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES mammalian lysosomes

DsS3(1-16) ALWKNMLKGIGKLAGK Phyllomedusa sauvagii

magainin 2 GIGKFLHSAKKFGKAFVGEIMNS Xenopus laevis

ranalexin (kinked helix) FLGGLIKIVPAMICAVTKKC Rana catesbeiana

temporin L LLPIVGNLLKSLL-Am Rana temporaria

II β-sheet defensins (eg DEFB1) DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK human neutrophils

gomesin ZCRRLCYKQRCVTYCRGR Acanthoscurria gomesiana

III unusual a.a. composition histatin-5 DSHAKRHHGYKRKFHEKHHSHRGY human saliva

indolicidin ILPWKWPWWPWRR-Am bovine neutrophils

IV other structures (cyclic) gramicidin S cyclo(VOLFP)2 Bacillus brevis

RTD-1 GFCRCLCRRGVCRCICTR Rhesus macaque monocytes and neutrophils

Am represents an amidated C-terminus.
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(Hancock et al, 1999), was also proposed that does not cause significant membrane

depolarisation.

Figure 1.1. The toroidal pore, barrel-stave and carpet models of antimicrobial action. Phospholipid bilayer with
peptide monomers represented by red cylinders.

1.3.1 The barrel-stave model

This model was first proposed as the mode of action for α-helical peptides (Boman et al,

1993). Peptide monomers first associate with the membrane surface due to electrostatic

interactions from the side chains and re-orientate themselves perpendicular to the

bilayer and span the membrane. Pore size may increase with the association of

additional monomers, however, with certain peptides only three monomers are

required for pore formation (Papo et al, 2003). Once inserted, the peptides associate
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such that their non-polar side chains face the hydrophobic lipid core and the hydrophilic

surfaces of the peptides point inward. These pores cause disruption of gradients and

leakage of intracellular components ultimately leading to cell death (Shai, 1999). Pore

formation can occur on the surface of the membrane or within the core: hydrophobic

peptides can span membranes as monomers forming within the core while amphipathic

α-helical peptides associate on the surface of the membrane before insertion as it is 

energetically unfavourable for a single α-helical monomer to insert into the bilayer (Ben-

Efraim et al, 1993).

Insertion of the peptide into the membrane relies heavily on hydrophobic interactions; it

is only the initial interaction with the membrane surface that is controlled by charge

interactions. The net charge of the α-helix should be close to neutral to allow pore 

formation as a result of the proximity of the hydrophilic regions of monomers at the

pore centre (Ben-Efraim et al, 1997). These properties are thought to result in peptides

with decreased cell selectivity making them toxic to both prokaryotic and eukaryotic

cells (Shai, 1999).

1.3.2 The carpet model and toroidal pore formation

Some AMPs were found to deviate from the barrel-stave model. The carpet model was

first proposed to describe the mode of action of dermaseptin S (Pouny et al, 1992) and

later applied to other peptides (Gazit et al, 1995). In the carpet model peptides are not

inserted into the membrane, but are aligned in parallel to the bilayer while remaining in

contact with the lipid head groups, thus coating the surrounding area. The peptide binds



11

to lipid head groups and forms an amphipathic structure. This stage is dependent on

target membrane type: the peptide may cover the whole membrane, or alternatively, it

may be present in various peptide regions forming local carpets (Oren et al, 1998).

Peptide monomers align themselves so that the hydrophilic surface is facing the lipid

head groups. The hydrophobic residues then interact with the lipid core causing

reorientation of the monomers leading to disruption of bilayer curvature. This causes

membrane cracks, leakage of cytoplasmic contents, disrupted membrane potential, and

eventually the disintegration of the membrane (Oren et al, 1998).

Prior to membrane lysis it has been suggested that pores called toroidal pores form to

allow the passage of low molecular weight molecules. This was used to describe the

mode of action of various AMPs including dermaseptin (Mor2 et al, 1994), and magainin

(Ludtke et al, 1996). In the toroidal model the lipid bends back on itself like the inside of

a torus (a rounded ridge, Figure 1.1) allowing additional peptide monomers to bind to

the inner membrane forming a structure of organized holes (Yang et al, 2000). The

membrane lipids are important as they carry a net negative charge that allows the

peptide carpet to form by reducing the positive charge repelling action between

peptides. Recently a variation on the toroidal pore model has been proposed in which

large pores (>4.6 nm) are formed in bacterial cells sufficient to caused protein leakage

(Yoneyama et al, 2009).

In the carpet model, when the peptide binds to the membrane, monomers remain in

constant contact with the phospholipid head groups throughout the permeation
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process. No specific structure needs to be adopted: they can have varying secondary

structures, lengths, and can be either linear or cyclic, but they must possess a certain

level of hydrophobicity and a number of positive charges (Bechinger et al, 2006).

1.3.3 The aggregate channel model

Membrane depolarisation in itself may not be enough to account for the antimicrobial

potency of several peptides. For example, studies with gramicidin S against gram

positive bacteria showed that at a concentration below the peptides MIC, the target cell

displayed the highest levels of membrane depolarisation. This indicates that

depolarisation is not necessarily the stage that causes cell apoptosis and so the

aggregate channel model was proposed (Hancock et al, 1999). In this model, the

peptides are allowed to cross the membrane through pores formed by other peptide

monomers but also have one or more intracellular targets (Hancock et al, 1999). The

peptides first bind to the phospholipid head groups and then insert into the lipid bilayer.

Unstructured aggregates of peptides then form, spanning the membrane. These are

thought to contain water molecules providing channels for leakage of ions and larger

molecules through the membrane. This model differs from the previous two in that the

clusters that are formed are only present for a short time. These channels allow the

peptides to cross the membrane without causing significant membrane depolarization.

When the peptides have travelled through the membrane they exert their activity on

their specific intracellular targets leading to cell death.
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1.3.4 Alternative mechanisms of action

Recently there have been a number of studies that indicate that as well as causing

membrane disruption, peptides may also act on intracellular targets including DNA and

RNA and interfere with metabolic processes (Mortona et al, 2007; Hale et al, 2007). For

example, the peptide PR-39 binds to the membrane of E. coli cells but does not cause

membrane permeabilisation (Cabiaux et al, 1994). Instead it is internalised and

interferes with DNA and protein synthesis, killing the bacterial cells (Boman et al, 1993).

Moreover, peptides may act as signalling molecules to strengthen the immune response.

For example, the defensins can increase local neutrophil numbers at sites of host

infection (Welling et al, 1998).

1.4 Antimicrobial peptides under investigation

Amphibians are a major source of antimicrobial peptides, accounting for over half of the

eukaryotic peptides identified. The majority have been isolated from the Hylidae of

South Africa and the Ranidae of Asia, Europe and North America. The peptides used in

this study, DsS3(1-16), magainin 2 (mag 2) and ranalexin (rana), are cationic,

amphipathic and linear in structure ranging from 16 – 23 a.a. in length (Coote et al,

1998; Zasloff, 1987; Clark et al, 1994). Other peptides of interest in this study are the

naturally occurring cyclic peptide gomesin, and the synthetic cyclic peptides; 6752 and

GS14K4 (Silva et al, 2000; Dartois et al, 2005; Kondejewski et al, 2002).
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1.4.1 DsS3(1-16)

The dermaseptins are a group of polycationic peptides subdivided into S1 – S13 (Nicolas

et al, 2009). These peptides originated from the South American frog Phyllomedusa

sauvagii. Dermaseptins are naturally produced and stored in granular glands located on

the skin and when ruptured peptide is excreted onto the skin surface. This superfamily

has between 25 and 34 a.a. arranged in an amphipathic α-helical structure (Nicolas et al,

2009). The first to be identified was dermaseptin S1 in the early 1990s that displays

broad spectrum action against bacteria (Mor et al, 1991). It was the first eukaryotic

peptide with lytic action against pathogenic filamentous fungi to be characterised.

Subsequently, other members of the dermaseptin family were rapidly isolated and

characterised. The majority display broad spectrum activity against bacteria, fungi and

protozoa. Dermaseptins S1-S5 display antiviral activity against herpes simplex virus and

HIV-1 (Lorin et al, 2005) and S4 has recently been cited for its spermicidal activity as a

potential contraceptive (Zairi et al, 2008).

The dermaseptins contain a conserved tryptophan residue at position 3 (with the

exception of S13) and several lysine residues that contribute to the positive charge (Mor

et al, 1994). A dermaseptin S1 derivative in which the tryptophan was replaced by a

phenyl side chain had reduced antibacterial activity (Savoia et al, 2008). This highlights

the importance of conserved tryptophan as it is thought to anchor the helix to the

membrane. The addition of lysine to the N-terminal also improves antimicrobial action

by increasing the net-positive charge of the peptide (Savoia et al, 2008). Dermaseptin S4

displays haemolytic activity that can be reduced by decreasing hydrophobicity or by
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increasing the net-positive charge. As a result, derivatives have been produced with

reduced toxicity towards erythrocytes (Navon-Venezia et al, 2002). The antimicrobial

activity of this superfamily is thought to arise when the peptides bind to the acidic areas

of cell membranes causing destabilisation of the phospholipids when a threshold

concentration is achieved, disrupting the osmotic balance of the cell. This results in

leakage of cell components and apoptosis (Shai, 2002).

A 16-residue truncation of dermaseptin S3 (DsS3(1-16); Coote et al, 1998) that retains its

antimicrobial activity was investigated in this study. Much of the antimicrobial potency

of dermaseptin S3 is thought to derive from the NH2-terminal α-helical segment from 

residues 1-16, because derivatives comprising residues 14-34 lack all antimicrobial

potency (Mor and Nicholas, 1994). Shortening of the chain to residues 1-16 did not

affect activity. A further reduction in a.a. content reduced activity. However, derivatives

with as few as 10 residues remained fully active against several bacterial and fungal

strains (Mor et al, 1994). DsS3(1-16) monomers are too short to span the membrane but

have been proposed to penetrate to the depth of the hydrocarbon layer (Shepherd et al,

2003). Simulation studies of DsS3(1-16) indicate that the aromatic residues at the N-

terminal region are essential for peptide association with the lipid bilayer, that is driven

by the tryptophan residue. The binding of tryptophan to lipid bilayers has been observed

(Wimley et al, 1996) and is likely to contribute to the hydrophobic binding of the

peptide. Simulations also show that the helix increases in rigidity as the chain interacts

with the lipid bilayer (Shepherd et al, 2003). Recent work shows that DSs3(1-16)
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damages DNA indirectly in S. cerevisiae and induces programmed cell death via an Aif1p

dependent pathway (Mortona et al, 2007).

In clinical terms, dermaseptins may be useful in combating a variety of opportunistic

fungal infections including Candida sp., which are prevalent fungal pathogens. Unlike

many other AMPs, the dermaseptins do not lyse erythrocytes, greatly increasing their

therapeutic applications (Helmerhorstb et al, 1999). The lack of resistance and rapid

killing mechanisms of these peptides make them of interest.

1.4.2 Magainin 2

The magainins are a family of peptides originally isolated from the African clawed frog

Xenopus laevis (Zasloff, 1987). They are cationic, amphipathic peptides and exhibit both

antibacterial and antifungal activity. Interestingly, they also show anti-cancer properties;

they kill both hematopoietic and solid tumour cell lines at concentrations that are up to

10-fold lower than concentrations that kill normal human neutrophils and lymphocytes

(Jacob et al, 1994). Magainin 2 has 23 a.a. that give an well-defined helix comprising

residues 4-20 (Figure 1.2). By using NMR it was shown that magainins are randomly

coiled in aqueous solution while in the presence of phospholipid bilayers or organic

solvents they assume right-handed α-helical conformations. The helix is hydrophilic and 

cationic on one side and hydrophobic on the other with a net charge of +3 at neutral pH

(Bechinger, 1997).
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large unilamillar vesicles was monitored and a large increase in pore formation was

observed with the octamer, displaying a 13.4-fold increase in activity compared to native

mag 2 (Arnusch et al, 2007). The action of mag 2 on the bending rigidity of vesicles has

also been studied: it was found that the rigidity was severely reduced at <1% surface

area coverage by peptide suggesting membrane integrity is compromised even at low

peptide concentrations (Bouvrais et al, 2008).

The action of mag 2 has also been observed with mammalian membranes. This mode of

action differs from the above: deformation and budding of the membrane was observed,

with large molecules (140 kDa) able to enter the cell, suggesting that mag 2 causes a

massive disruption of mammalian membranes in a carpet-like mechanism. This is

opposed to the toroidal model observed in bacteria.

The antimicrobial activity of magainin has been studied in some detail with the creation

of several analogues that aim to maximise this action. For example, the creation of the

MSI-78 analogue with increased positive charge (+9) enhanced antimicrobial activity.

Increasing the charge from 0 to +6 in these analogues resulted in strengthened binding

to phospholipid bilayers. However, if the charge is increased beyond +5 it was found to

increase binding to zwitterionic membranes and become significantly haemolytic (Dathe

et al, 2001). From molecular dynamics simulations of mag 2 and MSI-78 on lipid bilayers

it was found that the lysine residues had strongest binding affinity to the oxygens on the

lipid head groups. As the MSI-78 analogue has more lysine residues, it showed increased

binding and stability. This demonstrates that binding of these peptides is predominantly
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mediated by lysine residues forming hydrogen bonds with oxygen atoms on the lipid

heads (Kandasamy et al, 2004).

1.4.3 Ranalexin

The genus Rana is part of the family Ranidae. From this genus at least 36 species are

found in North America (Duellman et al, 1994). Ranid frogs produce several

antimicrobial peptides that are stored in granular glands on the skin and are discharged

when these glands are ruptured. The peptides produced by this group vary greatly with

no single peptide with the same a.a. sequenced expressed by any two species. The AMPs

produced by this genus have been divided into several families (e.g. brevanins,

ranateurins) with various isoforms produced in a single species. Despite the structural

differences in ranid peptides, the peptide precursors, such as the a.a. sequences of the

signal peptide (required for export of the peptide via secretory pathways), are well

conserved. These similarities also extend to the Hylidae (including the dermaseptins)

which are also structurally dissimilar to the ranid peptides. These two families share

structural similarities in peptide precursors indicating all these peptides originated from

a common gene in a shared ancestor (Vanhoye et al, 2003).

Ranalexin (rana) is a cationic peptide first isolated from the North American bullfrog

Rana catesbeiana (Clark et al, 1994) and has potent antimicrobial action against gram-

positive bacteria and fungi (Giacometti et al, 2000). It shows less activity against gram-

negative bacteria and is inactive against infectious strains such as Proteus mirabilis
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(Giacometti et al, 1998). Three isoforms have been identified that are found in Rana

grylio and Rana clamitans. The primary structures are similar with only minor

substitutions of hydrophobic a.a. (Conlon et al, 2004).

Ranalexin contains 20 a.a. structured to form a cyclic heptapeptide ring from a single

intramolecular disulphide bond (Figure 1.3). This bond does not have a large effect on

antimicrobial activity or the conformation of the peptide (Vignal et al, 1998). Rana is

unstructured in water but forms an α-helical conformation when in hydrophobic 

solvents. It is amphipathic in nature with a lysine residue present in the hydrophilic face

and hydrophobic residues grouped in a hydrophobic face that form the α-helix (Clark et

al, 1994). Removal of any of these hydrophobic a.a. negates the antimicrobial activity of

the peptide. Deletion of the cysteine required for the ring structure results in reduced

potency, suggesting it is needed for optimal peptide action (Clark et al, 1994). The mode

of action of this peptide still remains unclear but it has been proposed that the basic a.a.

residues are involved in the binding and transport across the phospholipid membrane

while the hydrophobic residues cause disruption of the membrane leading to cell death

(Conlon et al, 2004). Rana is similar in structure to the polymyxin antibiotics that also

target cell membranes. Polymyxin also has a ring structure that is important for

antimicrobial activity. Within the ring there are several residues that are present in both

rana and polymyxin, in particular the positively charges lysine residues (Kurihara et al,

1972). It has been proposed that they may share similar modes of action (Clark et al,

1994). Studies on rats show that rana can reduce mortality from septic shock, retaining
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with MICs <3.15 M. These included Aspergillus fumigatus, Fusarium culmorum and

Nectria haematococca. Gomesin also has a marked activity against various yeast strains

including Candida tropicalis, Saccharomyces cerevisiae and C. albicans all with MICs

<6.25 M (Silva et al, 2000). However, it demonstrates haemolytic activity at low

concentrations (16 % haemolysis at 1 µM).

CD spectroscopy showed that removal of both disulphide bonds resulted in reduced

antimicrobial and haemolytic activity. Both are required for optimal antimicrobial

potency and stability in human serum. The presence of a single disulphide bond resulted

in a structure similar to that of native gomesin (Fazio et al, 2006). Several gomesin

analogues have been designed that adopt an α-helical conformation. These were slightly 

less active against bacteria but as active against C. albicans and 3-fold less haemolytic. A

single analogue was also as stable in human serum as the native gomesin (Fazio et al,

2006).

Gramicidin S is a cyclic β-sheet peptide and has wide spectrum antimicrobial activity but 

also targets human erythrocytes. In an attempt to decrease haemolytic activity the ring

size was increased from 10 a.a. to 14 a.a., producing the peptide GS14. Further changes

were made to increase specificity for microbial membranes by substituting enantiomers

(D-lysine at position 4) to decrease amphipathicity producing the peptide GS14K4

(Kondejewski et al, 2002). In this peptide class high amphipathicity results in high

haemolytic activity so GS14K4 was synthesized with reduced haemolytic activity

producing a peptide with optimal hydrophobicity maintaining antimicrobial potency. The
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mode of action of GS14K4 has not been reported, however, gramicidin S induces

membrane defects of varying sizes leading to destabilisation of the bilayer

(Ashrafuzzaman et al, 2008). This cyclic peptide has a higher therapeutic index

(propensity to act on microbial rather than mammalian membranes) than gramicidin S

(Lee et al, 2003) and exhibits strong antimicrobial action against a range of bacteria and

fungi including Staphylococcus aureus, S. epidermis and C. albicans (Kondejewski et al,

2002).

The screening of combinatorial libraries of cyclic D,L-α-peptides (alternating D- and L-α-

amino acids) for antimicrobial activity yielded six peptides that were optimised with

substitutions for selectivity towards bacterial membranes. From this group the D,L-α-

peptide ‘6752’ was active at 8 µg/ml against S. aureus and displayed favourable

tolerances with an in vivo thigh model of S. aureus infection. It was shown to be

systemically active for as long as vancomycin with good stability and resistance to

proteolytic degradation in serum (Dartois et al, 2005). D,L-α-peptides are thought to 

self-assemble at lipid bilayers and form multimeric pores through a carpet-like

mechanism causing loss of membrane gradients leading to cell death (Fernandez-Lopez

et al, 2001).
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1.5 Antifungal drugs

The previous two decades have seen an increasing occurrence of invasive fungal

infections. These infections are primarily found in patients with HIV, cancer,

transplantation and other medically invasive procedures where suppression of the

immune system exists. Current antifungal drugs include the polyenes, the azoles and the

echinocandins (Figure 1.4) (Kleinberg, 2006; Chen et al, 2005; Denning, 2003).

1.5.1 Polyenes

The polyenes are a group of antifungals containing a cyclic ester ring with multiple

carbon-carbon double bonds. They are used to treat systemic or oral fungal infections

and include amphotericin B, nystatin and natamycin. Discovered in 1955, several

amphotericin compounds were developed but only amphotericin B is used today due to

its higher activity (Oura et al, 1955). Amphotericin B does display nephrotoxicity

(leading to renal failure) but because of its high antifungal activity and broad spectrum

of action (candidiasis, blastomycosis, coccidioidomycosis, cryptococcosis, aspergillosis,

zygomycosis, sporotrichosis, fusariosis and phaeohyphomycosis) is one of the most

frequently used antifungals. Additionally, it initiates very low levels of fungal resistance.

Amphotericin B functions by interacting with ergosterol at the fungal cell membrane,

forming trans-membrane pores inducing leakage of cations, reduction in intracellular

potassium levels, and cell death (Baginski et al, 2005). Amphotericin B has a strong

affinity for ergosterol but may also bind to the sterols present on mammalian cells

increasing its toxicity. There have been several preparations developed to reduce

toxicity that have been approved by the Food and Drug Administration (FDA) including
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liposomal amphotericin B (Wong-Beringer et al, 1998). The liposomal formulation allows

increased dosages and high tissue concentrations but its use is hampered due to high

production costs. Liposomal treatments display reduced nephrotoxicity although this still

limits treatment compared to other antifungal drugs (Wong-Beringer et al, 1998). A

drawback of amphotericin B treatment is the lack of an oral preparation as it has to be

administered intravenously although oral administration is in development (Wasan et al,

2009).

1.5.2 Azoles

Azoles interfere with the synthesis of ergosterol, a constituent of fungal cell membranes.

Azole treatment displays low toxicity with no nephrotoxic effects and was commonly

used to treat invasive fungal infections. The azole antifungal agents can be split into two

groups: the imidazoles (miconazole and ketoconazole) and the triazoles (fluconazole,

itraconazole, voriconazole and posaconazole). The imidazoles have replaced the triazoles

in the treatment of systemic fungal infections as they display increased

pharmacokinetics and safety profiles (Kauffman et al, 1997). Their mode of action

involves inhibiting the cytochrome P450 enzyme that is required for the conversion of

lanosterol to ergosterol (Chen et al, 2007). As the imidazoles have less affinity for this

enzyme in fungal models a higher dosage is required. They are mainly used for the

treatment of superficial skin or mucosal infections. However, resistance to this class is

becoming common and the mortality rate from such infections remains high (Mareş et

al, 2008). Resistance mechanisms include overexpression of drug efflux pumps encoded

by CDR1, CDR2 and MDR1 and overexpression of ERG11 that encodes 14-α lanosterol 
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demethylase (Sanglard et al, 1997; Sanglard et al, 1995; White et al, 1998). Azole

resistance is also associated with polyene resistance originating from lack of ergosterol

(Sanglard et al, 2003). This ergosterol reduction decreases the role of cytochrome P450,

reducing the action of azoles on cell viability.

Several side-effects have been reported that depend on the preparation administered.

Itraconazole has been associated with peripheral oedema and hepatic failure while

fluconazole may cause chapped lips and skin dryness (Tan et al, 2006). Liver toxicity is

the main adverse reaction associated with all azoles. This can range from elevated levels

of transaminases to clinical hepatitis and liver failure. These cases are rare with only 5 %

of patients requiring treatment termination (Sheehan et al, 1999). The azoles also

display drug-drug interactions with many other treatments due to the mode of action

with cytochrome P450. Inhibition of these enzymes results in elevated levels of drug

metabolism resulting in additional toxicity (Gubbins et al, 2005).
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et al, 2003). The echinocandins are fungicidal against a wide range of species and

fungistatic against moulds as they block hyphal tip growth and are also effective against

biofilms (Bachmann et al, 2002; Douglas, 2006). They show reduced efficacy (MIC >16

µg/ml) against Cryptococcus neoformans and Fusarium, Scedosporium and Zygomycetes

sp. (Denning, 2003; Pfaller et al, 1998). They are as effective as amphotericin B and some

studies show them to be more so (Villanueva et al, 2002; Arathoon et al, 2002). The

echinocandins are also effective against strains of Candida that display resistance to

amphotericin B and azoles such as Candida glabrata, Candida tropicalis and Candida

krusei (Zaoutis et al, 2005). As the echinocandins are not metabolised via cytochrome

P450 there show minimal drug-drug interactions. An exception is cyclosporine as the

combination results in elevated transaminase levels (Denning, 2003). In comparison to

other antifungal drugs, the echinocandins have extremely low levels of toxicity. The

most common side-effects reported are urticaria (hives), pruritus (itching) and elevation

in transaminase levels (Cappelletty et al, 2007).
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commensals in the gastrointestinal tract and oral cavity (Calderone, 2002). The key to its

pathogenicity is the ability to colonise available niches within the host facilitated by

phenotypic switching between morphogenic forms. When conditions are favourable

they can invade the oral and vaginal epithelium and in severe cases can invade the blood

stream and disseminate, leading to a systemic infection (Calderone, 2002).

To combat candidiasis several classes of drug have been developed that act on the cell

membrane or cell wall to exert their antifungal action (Denning, 2003; Chen et al, 2005;

Kleinberg, 2006). As C. albicans can survive in a variety of niches within the host it has a

series of well characterised stress responses that are activated during changes in

temperature, pH and osmolarity (Cannon et al, 2007). These stress responses contribute

to resistance from host defence mechanisms. Resistance is frequently due to genetic

mutation targeted by these drugs or enzymes involved in metabolic pathways. For

example, the cell wall integrity pathway is responsible for glucan synthesis and cell wall

repair (Navarro-Garcia et al, 1998). A change in this pathway can lead to echinocandin

resistance. Resistant strains have mutations in the 1,3-β glucan synthase subunits Fks1p

and Gsc1p (Balashov et al, 2006; Baixench et al, 2007). However, resistance to the

echinocandins has been reported only rarely, this could be due to their relatively recent

introduction (Perlin, 2007). The increase in MIC associated with a decrease in

susceptibility is greater with caspofungin and micafungin than anidulafungin. The reason

for these differences is not yet fully understood. C. albicans strains that show azole

resistance may display mutations in ERG3, lowering the ergosterol content in the

membrane and so reducing the effectiveness of both the azoles and amphotericin B
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(Sanglard, 2003). Erg11p is the target of azole drugs and point mutations in this gene

reduce drug affinity leading to resistance (White et al, 1998). The regulators of ERG

genes have also been implicated in resistance, for example, deletion of UPC2 resulted in

C. albicans cells that were hypersensitive to fluconazole and ketoconazole, whereas

overexpression increased resistance to these drugs (MacPherson et al, 2005). Clinical

strains of C. albicans also over-express Cdr1p and Cdr2p, two phospholipid transporters

that can increase azole resistance, indeed, deletion of these genes decreases azole

action by 8-fold (Tsao et al, 2009). It has also been reported that inactivation of a sterol

(Δ5,6-desaturase) involved in the final stage of ergosterol synthesis decreases azole

susceptibility (White, 2007).

C. albicans resistance to amphotericin B is rare and not fully understood. A decrease in

ergosterol content decreases susceptibility and is thought to be associated with

mutations in the genes involved with the regulation of ergosterol production. The

susceptibility of C. albicans biofilms has also been investigated and it was found that

several genes encoding enzymes of the ergosterol (ERG1, ERG2) and β-1,6-glucan (SKN1,

KRE1) pathways were differentially regulated. It was hypothesised that changes to

susceptibility originate from changes to both the cell membrane and cell wall (Khot et al,

2006).

As cases of resistance have been reported in all the major drug groups introduced to

combat Candidiasis, it is important that new treatments are pursued. Antimicrobial

peptides have the potential to act as this new form of defence as they display potent
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antimicrobial action against a range of pathogenic microbes including Candida sp.

(Giuliani et al, 2008).

1.6.2 C. glabrata

C. glabrata has only recently been recognised as a human pathogen as it was previously

considered a non-pathogenic component in the microbial flora of healthy individuals

(Stenderup et al, 1962). Thus far no sexual phase has been reported and it is thought

that this species reproduces clonally. C. glabrata causes mucosal and bloodstream

infections and is commonly isolated in combination with C. albicans (Redding et al,

1999). It is becoming increasingly infectious, especially in immunocompromised patients

suffering from AIDS or cancer. As with C. albicans, C. glabrata can undergo phenotypic

switching and hyphal transformation which contributes to pathogenicity, allowing

colonies to rapidly adapt in response to antifungal treatment or the host immune

response (Lachke et al, 2000).

C. glabrata is increasing in prevalence but is still very difficult to treat, even more so

when it is found in combination with other Candida strains (Redding et al, 2000; 2002;

2004). Although C. glabrata is classified with other Candida sp. it is genetically quite

dissimilar, based on analysis of 204 related species (Kurtzman et al, 1997). As a result,

conventional antifungal agents effective against C. albicans have reduced or abolished

efficacy against C. glabrata. For example, C. glabrata is resistant to several cationic

AMPs including the histatins and magainins (Helmerhorst et al, 2005). When exposed to
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human β-defensins 2 and 3, membrane disruption was observed with C. albicans but not

C. glabrata suggesting a species specific mechanism (Feng et al, 2005). Colonies show

resistance to the azole drug class including fluconazole and ketoconazole (Rex et al,

1995). Azole resistance is similar to that of C. albicans and has been linked to

overexpression of drug efflux pumps encoded by CgCDR1, PDH1 and CgCDR2 (Kanafani

et al, 2008). This could also account for their resistance to cationic AMPs (Helmerhorst

et al, 2005). Additionally, expression of CgPDR1 increases azole resistance by regulating

the expression of drug efflux pumps (Tsai et al, 2006).

C. glabrata is responsible for both systemic and mucosal Candidiasis and is most

frequently found colonising the oral cavity. The occurrence of such infections has been

shown to increase with age due to the changing microenvironment (Qi et al, 2005).

Systemic infections have a high mortality rate and are difficult to treat due to increasing

resistance to azole drugs. Amphotericin B is commonly used to treat infection,

especially in immunocompromised patients. However, it has recently been reported that

several hospital isolates are now amphotericin B resistant (Rezusta et al, 2008).

Resistance to the polyenes is still rare so these resistance mechanisms are poorly

understood. One study focused on a resistant strain that displayed pseudohyphal

growth. A mutation in CgERG6 was found to disrupt the ergosterol biosynthesis

pathway, resulting in amphotericin resistance (Vandeputte et al, 2007). Caspofungin

appears to be a viable alternative to amphotericin B and is more effective, reducing

toxicity in clinical trials against invasive candidiasis (Mora-Duarte, 2002). Resistance to
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the echinocandins is similar to that of C. albicans and involves mutations in FKS2 the

subunit of 1,3-β glucan synthase (FKS1 homologue) (Katiyar et al, 2006).

1.6.3 C. neoformans

C. neoformans is a budding yeast that has a worldwide distribution and is often found

naturally in the soil. There are three variants (v) of this species with differences in

virulence: C. neoformans, v. grubii, v. gattii and v. neoformans. V. grubii accounts for the

majority of Cryptococcal infections that are predominantly found in

immunocompromised hosts and cause subacute meningitis and meningoencephalitis

(Casadevall et al, 1998). V. gattii and v. neoformans infections are less common,

however, v. gattii can also infect immunocompetent individuals. Several virulence

factors have been documented including capsule size, laccase expression (leading to

polymerised melanin) and sporulation (leading to lung infection) (Kwon-Chung et al,

1986; Wang, 1994; Salas et al, 1996). The sequencing of the genome in 2005 has

provided initial understanding of virulence factors, stress responses and translation

repression required for such responses (Loftus et al, 2005; Brown et al, 2007). The

presence of the capsule makes it unique among eukaryotic pathogens and is estimated

to play the largest roll in C. neoformans virulence (McClelland et al, 2006).

C. neoformans is resistant to echinocandins by a mechanism that is not completely

understood. This resistance is not similar to the Candida mechanism as it has been

demonstrated that C. neoformans 1,3-β glucan synthase is sensitive to caspofungin 
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(Maligie et al, 2005). This indicates a different resistance mechanism is present that may

include the action of efflux pumps or degradation pathways (Feldmesser et al, 2000).

Serious cases of Cryptococcus are treated with liposomal amphotericin at 0.6 - 1.0 mg/kg

per day. This lessens the side effects in AIDS patients but has a high cost and problems

associated with toxicity so limits its use (Bohde, 2002). Amphotericin B resistant strains

are uncommon but have reduced ergosterol content (Dick et al, 1980). Side effects

include: drug-related fever, nausea, kidney problems and anaemia. Thus it remains

important to investigate potential new drug treatments.

1.6.4 S. cerevisiae as a model organism

S. cerevisiae is a budding yeast and an intensely studied model organism. The genome of

this eukaryote was the first to be sequenced and contains 5885 potential protein-

encoding genes (Goffeau et al, 1996). It is advantageous to study this yeast as it shares

many cell processes with metazoan cells and similarly contains Mitochondria, Golgi,

Nucleus and Endoplasmic Reticulum. The Saccharomyces genome database

(www.yeastgenome.org) is an invaluable tool for understanding the genetics and

physiology of eukaryotic cells and is the accumulation of years of intensive research.

Therefore, it is the ideal organism for molecular techniques and genetic manipulation.

These, usually haploid, cells have a short generation time of ~2 hours in optimal growth

conditions and can be stored at low temperature (typically -70 °C) without affecting

viability. S. cerevisiae is a very uncommon source of infection in humans, but several

cases have emerged within the last decade displaying various forms of invasive infection

(McCullough et al, 1998; Cassone et al, 2003; Graf et al, 2007). It has been estimated to
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be responsible for up to 3.6 % of fungemic infections (Lherm et al, 2002). Over 60 cases

of S. cerevisiae infection have been reported ranging from isolated fungemia,

endocarditis, disseminated disease and liver abscesses. Fluconazole and amphotericin B

are generally used to combat infection although it is becoming increasingly resistant to

the azole class (Salonen et al, 2000). Infection carries a relatively high mortality rate of

28 % (Munoz et al, 2005).

1.7 Aims of this study

The main aim of this study is to gain insight into the mode of action and efficacy of

antimicrobial peptides against pathogenic fungi. More specifically, areas of study include

the role of the cell wall in mediating antimicrobial activity, the use of antimicrobial

peptides when combined with currently available treatments for fungal infections, the

analysis of genes whose expression confers susceptibility changes to antimicrobial action

and assessment of the viability of antimicrobial peptides as new clinical therapeutics.
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2. Materials and Methods

2.1 Yeast and bacterial strains

The strain of S. cerevisiae used in this study was BY4741, a derivative of S288C (genotype

MATa his31 leu20 met150 ura30) obtained from the Research Genetics BY4741

MATa haploid genome deletion set. Gene deletion mutants were from the Research

Genetics BY4741 MATa haploid genome deletion mutant set (Table 2.1). Deletion strains

were selected on yeast extract peptone dextrose agar (YEPD; 2 % glucose, 2 % agar, 1 %

bactopeptone, 1 % yeast extract) with 150 µg/ml geneticin (Sigma-Aldrich Ltd, DOR, UK).

Table 2.1. S. cerevisiae deletion strains used in this study.

Clinical isolates of C. albicans, C. glabrata and C. neoformans were provided by Dr. Cyril

Lafong (Fife Area Laboratory, Victoria Hospital, Kirkcaldy). C. albicans SC5314 was

provided by Prof. Frank Odds (School of Medical Sciences, University of Aberdeen). CAI-4

and cell wall deletion mutants were provided by Prof. Neil Gow (School of Medical

Sciences, University of Aberdeen) (Table 2.2).

Strain Genotype

BY4741a MAT a hisΔ1 leu2Δ0 met15Δ ura3Δ0

hal5 Δ BY4714a hal5 Δ::KanMX4

HAL5-GFP BY4741a HAL5-GFP ::HIS3

ldb7 Δ BY4714a ldb7 Δ::KanMX4

LDB7-GFP BY4741a LDB7-GFP ::HIS3

imp2' Δ BY4714a imp2' Δ::KanMX4

IMP2'-GFP BY4741a IMP2' -GFP ::HIS3

izh2 Δ BY4714a izh2 Δ::KanMX4

Izh2 comp BY4714a izh2 Δ::KanMX4 [pRS313::IZH2]

Izh2 ovexp BY4714a izh2 Δ::KanMX4 [pRS423::IZH2]

wt313 BY4741a [pRS313]

wt423 BY4741a [pRS423]
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Table 2.2. CAI-4 cell wall mutants used in this study.

The E. coli strain used for transformations was DH5α (Invitrogen Inc., SCD, UK). 

All yeast and E. coli cultures were prepared with 15 % (v/v) glycerol and stored at –80 °C.

Vero cells (African green monkey kidney cells, ‘fibroblast-like’, non-cancerous (Health

Protection Agency Culture Collections, WLT, UK)) were cultured in RPMI-1640 medium

(Sigma-Aldrich Ltd, DOR, UK) supplemented with 10 % bovine calf serum (Cambrex, IA,

USA) and 0.3 % Penicillin/Streptomycin (Sigma-Aldrich Ltd, DOR, UK).

2.2 Growth Media

Malt extract broth [pH 7] (MEB; 1 % glucose, 0.6 % malt extract, 0.12 % yeast extract)

(Difco Laboratories, OFE, UK).

Malt broth agarose plates [pH 7] (2% agarose).

RPMI-1640 Media [pH 6.4] (Sigma-Aldrich Ltd, DOR, UK) with addition of 2 % 3-(N-

morpholino) propane sulfonic acid (MOPS; Sigma-Aldrich Ltd, DOR, UK), 10 % bovine calf

serum (Cambrex, IA, USA).

Description Strain Phenotype Source

CAI-4+Clp10 NGY152 parent strain Brand et al, 2004

mnt1 Δ+CIp10 NGY158 reduced Man2-Man5 residues Munro et al, 2005

mnt1 Δ+CIp10-MNT1 NGY148 parent strain phenotype Munro et al, 2005

mnt2 Δ+CIp10 NGY145 reduced Man2-Man5 residues Munro et al, 2005

mnt2 Δ+CIp10-MNT2 NGY149 parent strain phenotype Munro et al, 2005

mnt1-mnt2 Δ+CIp10 NGY337 reduced Man2-Man5 residues, inc Man1 residues Munro et al, 2005

mnt1-mnt2 Δ+CIp10-MNT1 NGY335 parent strain phenotype Munro et al, 2005

mnt1-mnt2 Δ+CIp10-MNT2 NGY336 parent strain phenotype Munro et al, 2005

mnn4 Δ+CIp10 CDH15 severe mannosylphosphate reduction Hobson et al, 2004

mnn4 Δ+CIp10-MNN4 CDH13 parent strain phenotype Hobson et al, 2004

pmr1 Δ+CIp10 HGY355 severe mannose reduction Bates et al, 2005

pmr1 Δ+CIp10-PMR1 NGY356 parent strain phenotype Bates et al, 2005

och1 Δ+CIp10 NGY357 no α-1,6-linked polymannose Bates et al, 2006

och1 Δ+CIp10-OCH1 NGY358 parent strain phenotype Bates et al, 2006

mnt3 Δ mnt5 Δ+CIp10 NGY1227 mannosylphosphate reduction Mora-Montes & Gow, unpublished

mnt3 Δ mnt5 Δ+CIp10-MNT3 NGY1228 parent strain phenotype Mora-Montes & Gow, unpublished
mnt3 Δ mnt5 Δ+CIp10-MNT5 NGY1229 parent strain phenotype Mora-Montes & Gow, unpublished
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RPMI-1640 agarose plates [pH 7] (2 % agarose, 1 % RPMI-1640 medium Auto-modTM

(Sigma-Aldrich Ltd, DOR, UK), 0.4 % Sodium bicarbonate (Sigma-Aldrich Ltd, DOR, UK),

2 % MOPS (Sigma-Aldrich Ltd, DOR, UK)).

YEPD agar (2 % glucose, 2 % agar, 1 % bactopeptone, 1 % yeast extract).

Luria-Bertani media (LB; 1 % Bacto-peptone, 0.5 % Bacto-yeast extract, 1 % NaCl).

Minimal yeast nitrogen base agarose [pH7] (YNB; 2 % glucose, 2 % agarose, 5 g/L

ammonium sulphate, 5 mg/L potassium dihydrogen orthophosphate, 1 mg/L magnesium

sulphate, 0.2 mg/L sodium chloride, 0.002 mg/L biotin, 0.4 mg/L Ca-panthotenate, 0.002

mg/L Folic acid, 2 mg/L inositol, 0.4 mg/L nicotinic acid, 0.2 mg/L p-aminobenzoic

acid, 0.4 mg/L pyridoxine-HCl, 0.2 mg/L riboflavin, 0.4 mg/L thiamine HCl, 0.5 mg/L boric

acid, 0.04 mg/L copper sulphate, 0.1 mg/L potassium iodide, 0.2 mg/L ferric chloride, 0.4

mg/L manganese sulphate, 0.2 mg/L sodium molybdate, 0.4 mg/L Zinc sulphate).

2.3 Optical density versus viable cell number calibration curves

Yeast strains were cultured in MEB from a single colony in 100 ml flasks (30oC, 200 rpm).

Cell viability was measured by serial dilution in fresh media and plating onto YEPD agar.

Plates were incubated at 30 °C for 24 h. Numbers of yeast cells were calculated by

constructing calibration curves plotting each cultures optical density at 600 nm (OD600)

against viable cell number per ml. Cultures were sampled every 30 min (MEB, pH 7,

100ml flasks, OD600) and viable cell numbers determined (Table 2.6 and Figures 2.6 –

2.15).
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2.4 Antifungal peptides and echinocandins

Peptides were synthesised (Peptide Protein Research Ltd, HPH, UK) to a purity of >95%

(verified by HPLC and mass spectrometry) (Table 2.3).

Table 2.3. Antimicrobial peptides used in this study.

6752 and GS14K4: residues with D stereochemistry are in lowercase.

In addition, DsS3(1-16) was synthesised with a fluorescein tag attached to the N-

terminal lysine (Flu-DsS3(1-16)). The attached fluorescein adds 17.2 % to the overall

weight of the peptide, and so, peptide concentrations were adjusted to account for this.

Peptides were solubilised in distilled water (dH2O) and stored at -80°C.

Linear peptides were solubilised in dH20, cyclic peptides were solubilised in Dimethyl

sulfoxide (Fisher Scientific Ltd., LEC, UK) (50 mg/ml, stored at -80 °C).

Caspofungin (Merck & Co., NJ, USA) and micafungin (Astellas, MIDDX, UK) were diluted

into 10 mg/ml aliquots with ddH2O.

Anidulafungin (Pfizer Inc., NY, USA) was diluted into 10 mg/ml aliquots with 20 % (v/v)

ethanol.

Antimicrobial Peptide Abbreviation Amino Acid Sequence
Dermaseptin S3(1-16)-NH2 DsS3(1-16) ALWKNMLKGIGKLAGK

Magainin 2 Mag 2 GIGKFLHSAKKFGKAFVGEIMNS

Ranalexin Rana FLGGLIKIVPAMICAVTKKC

Gomesin Gom ZCRRLCYKQRCVTYCRGR

6752 6752 cyclo (SwFkTkSk)
GS14K4 GS14K4 cyclo (VKLkVyPLKVKLyP)
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2.5 MIC determination

To each well of a 96-well microtitre plate (Greiner Bio-one Ltd, GLR, UK) was dispensed

150 µl sterile MEB or RPMI-1640 in the presence or absence of glucosamine

hydrochloride (Sigma-Aldrich Ltd, DOR, UK) or glucosamine 6-phosphate (Sigma-Aldrich

Ltd, DOR, UK) (Section 3.2.6) or in the presence or absence of echinocandin (Sections

4.2.1 - 4.2.3). Various concentrations of AMP were added to wells that were then

inoculated to 1.0 x 103 cells per well with yeast cells from a mid-exponential culture and

plates were incubated (30 °C, 48 h, 200 rpm). Plates were then scanned using an

ImageScanner (GE Healthcare UK Ltd, BUX, UK) with ImageMaster Labscan v.3 software

(GE Healthcare UK Ltd, Chalfont St. Giles, UK) and MIC determined by visible growth.

2.6 Synergy studies

Checkerboard assays were performed with various drug combinations to determine if

each displayed more antimicrobial activity than the sum of their effects alone. In these

assays increasing concentrations of two antimicrobial agents were added to a 96-well

microtitre plate so that each row or column contained a defined amount of one drug

and increasing amounts of the second drug. There are various patterns of inhibition that

were encountered when performing these assays (Figure 2.1). If the combined agents

have no interaction then inhibition would be proportional to drug concentration. If

synergy were present then increased inhibition would occur forming a concave pattern.

If the combination was antagonistic then wells containing growth would form a convex

pattern. The extent of concavity or convexity is also indicative of the extent of synergy or

antagonism respectively.
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displayed synergy from those that did not.
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The methodology is as follows:

fractional inhibitory concentration = A + B

where:

A = (MIC of drug X combination) / (MIC of X alone)

B = (MIC of drug Y combination) / (MIC of Y alone)

Results should be interpreted as synergy with FIC ≤ 0.5, antagonism with FIC > 4.0 and 

no interaction (additive) with FIC > 0.5 – 4.0 (Odds, 2003).

2.7 Effect of salt, pH, temperature and human serum on AMP viability.

To each well of a 96-well microtitre plate (Greiner Bio-one Ltd, GLR, UK) sterile MEB (150

µl) was added with Human serum (HS; Lonza biologics plc., BRK, UK) or NaCl and AMP.

Wells were inoculated with yeast cells from a mid-exponential culture (1.0 x 103 cells per

well) and plates were incubated (30 °C, 48 h). Images were captured as described

previously (Section 2.5). HS was inactivated at 56 °C for 30 min. The pH of MEB was

adjusted using HCl (Fisher Scientific Ltd., LEC, UK ) or NaOH (Fisher Scientific Ltd., LEC,

UK).
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2.8 Disc diffusion assay of yeast growth inhibition

Sterile paper discs (6mm, Aa, Whatman International Ltd., KNT, UK) were impregnated

with peptide in the presence or absence of echinocandin. These were left overnight to

dry at room temperature. A 100 µl volume of mid-exponential phase cultures (OD600 =

0.3 for S. cerevisiae, OD600 = 0.6 for C. albicans and C. glabrata) was spread onto MEB or

RPMI-1640 agarose plates and left to dry for 1 h at room temperature. The discs were

then applied to the surface and the plates and incubated (30 °C, 48 h). Images of plates

were acquired as described previously (Section 2.5).

2.9 Growth of yeast strains

Cells (cultured as Section 2.3) were used to inoculate each well of a 48-well plate

(Greiner Bio-one Ltd, GLR, UK) so that each well contained 300 µl MEB and 2 x 103 cells.

Peptide was added to the required concentration. Plates were incubated (30 °C, 48 h,

shaking intensity of ‘2’) and OD600 readings were taken every 15 min on a PowerWave XS

automated microplate spectrophotometer (Bio-tek Instruments Inc., VT, USA).

2.10 Yeast cell viability

Yeast strains were incubated overnight (100 ml flasks, 20 ml MEB, 30 °C, 200 rpm) and

inoculated into fresh MEB or RPMI-1640 in the presence or absence of 15 mM

glucosamine hydrochloride or 15 mM glucosamine 6-phosphate (Chapter 3), to 1.0 x 106

cells ml-1. Cultures were then exposed to peptide in the presence or absence of

echinocandin (Chapter 4). The cultures were incubated as Section 2.3 and OD600 readings
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were taken every 60 min until an optical density of 0.3 (S. cerevisiae mid-exponential) or

0.6 (Candida mid-exponential) was attained. Viability assays at each time point were

determined by serial dilutions that were plated onto YEPD agar plates (30 °C, 48 h).

2.11 Population viability using fluorescence microscopy

To monitor cell viability visually, CellTrackerTM Green 5-chloromethylfluorescein

diacetate (CTG; Invitrogen Ltd., SCD, UK) was used to label metabolically active cells

(FITC filter - excitation λ = 490/520 nm; emission λ = 528/38 nm), propidium iodide (PI; 

Invitrogen Ltd., SCD, UK) was used to stain cells with compromised membranes (RD-TR-

PE filter - excitation λ = 490/520 nm; emission λ = 528/38 nm) and CellTrackerTM Blue 7-

amino-4-chloromethylcoumarin (CMAC; Invitrogen Ltd., SCD, UK) was used to stain yeast

vacuoles (Makrantoni et al, 2007). Images were captured on an Olympus IX70

DeltaVision microscope (Applied Precision Inc., WA, USA) and image processing and

analysis performed using SoftWoRx Explorer 1.3 (Applied Precision Inc., WA, USA).

Prior to staining, yeast cells (cultured to mid-exponential phase as Section 2.3) were

harvested and diluted into 1 ml aliquots with MEB to 2 x 106 cells ml-1. DsS3(1-16) was

added to give various concentrations and then incubated (30 oC, 5 min). PI (stock of 3.75

mM in ethanol) and CTG (stock of 10 mM in DMSO) were added to give concentrations

of 1.8 µM and 10 µM respectively. The 1 ml reaction mixture was then incubated in the

dark (30 oC, 25 min). Unbound dye was removed by centrifugation (1 min, 12,000 x g).

The resulting pellet was washed with 500 µl dH2O, centrifuged (1 min, 12,000 x g) and

re-suspended in 20 µl MEB. Two microlitre aliquots of the stained cells were fixed with 2
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µl 1 % low-melting-point agarose (Biogene Ltd., CBE, UK). Samples were placed on ice

and kept in the dark until inspected as above.

In addition, Flu-DsS3(1-16) (FITC filter) was added to cells prepared as above at various

concentrations and incubated in the dark (30 °C, 30 min). Unbound peptide was

removed by centrifugation (8 min at 3,000 x g), washing in 500 µl dH2O, centrifugation (8

min at 3,000 x g) and re-suspension in 20 µl MEB. Samples were fixed as above.

2.12 Quantification of Flu-DsS3(1-16) binding and internalisation

Fluorescence emission spectra of Flu-DsS3(1-16) was measured on a Cary Eclipse

Fluorescence Spectrophotometer (Varian Inc., CA, USA) equipped with a xenon lamp.

Excitation and emission wavelengths were 494 nm and 521 nm, respectively. Readings

were taken in a Quartz SUPRASIL Micro cuvette (700 µl volume) (Perkin Elmer, MA,

USA). Peptide bound to cells was calculated via a calibration curve with increasing

concentrations of Flu-DsS3(1-16) in MEB, against fluorescence intensity (a.u.). One

millilitre of cells (OD600 = 0.3 for S. cerevisiae; OD600 = 0.6 for C. albicans) was aliquoted

and Flu-DsS3(1-16) added at various concentrations. Cells were incubated in the dark (30

oC, 30 min). The suspension was centrifuged (10,000 x g, 2 min) to remove the cells and

bound peptide. Residual fluorescence remaining in the supernatant was measured.

A concentration to fluorescence ratio was calculated so that when a known

concentration of peptide was added, the sequestered peptide could be calculated based
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on the fluorescent intensity of the media. Flu-DsS3(1-16) was added to MEB at 5, 10, 15

and 20 µg/ml concentrations and the fluorescent intensity was measured. Each

condition was performed in duplicate and a mean was calculated. These data produced

a direct correlation between peptide alone and fluorescence (Figure 2.2). It was

calculated that 1 µg/ml Flu-DsS3(1-16) was equal to a fluorescent intensity (a.u.) of

33.05.

Figure 2.2. Fluorescent intensity of Flu-DsS3(1-16) in MEB. The average reading from each concentration was
plotted. A line of best fit was placed over the points with the equation showing above. From this the Flu-DsS3(1-16)
/ fluorescent intensity ratio was calculated to be: 1 µg/ml = 33.05 a.u; n = 2.

2.13 Intracellular localisation of Flu-DsS3(1-16) using fluorescence microscopy.

The phase-contrast and fluorescent peptide images were generated using the FITC filter

(Ex λ = 490/20 nm, Em λ = 528/38 nm). P.I. (Invitrogen Ltd., SCD, UK) was used to identify

dead cells (RD-TR-PE, Ex λ = 490/20 nm, Em λ = 528/38 nm). Cells were cultured in MEB 

and harvested at mid exponential phase. A volume equivalent to 2 x 106 cells/ml was

removed from each assay, centrifuged (2 min, 12,000 x g), washed in 500 µl dH2O and

resuspended in 1 ml of RPMI-1640 or MEB. The desired concentrations of echinocandin
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in the presence or absence of Flu-DsS3(1-16) were added with P.I. (1.8 µM) and

incubated (2 h, 30 oC, in dark). The unbound dye and peptide were removed by

centrifugation (8 min, 3,000 x g). The resulting pellet was washed in dH2O, centrifuged (8

min, 3,000 x g) and resuspended in 20 µl RPMI-1640 or MEB. Two microlitre aliquots of

the stained cells were fixed with 2 µl of 1 % low-melting-point agarose (Biogene Ltd.,

CBE, UK). Samples were placed on ice and kept in the dark until analysis. Images were

captured and edited as described previously (Section 2.11).

2.14 GFP-tagging of LDB7, IMP2’ and HAL5

HAL5, LDB7 and IMP2’ were chromosomally tagged at the 3’ end with GFP-HIS1

cassettes using the method of Sheff and Thorn (2004). The pKT209 plasmid (Appendix I)

was amplified and tagging was verified by diagnostic PCR. Primers were designed using

Integrated DNA Technologies software (http://eu.idtdna.com/Scitools/Scitools.aspx) and

synthesized by Eurofins MWG Operon, Germany (Table 2.4). Gels were visualised using a

UV transiluminator (Ultra-Violet Products Ltd., CBE, UK), and photographed with a

BioDoc-It™ imaging system (Ultra-Violet Products Ltd., CBE, UK) (Figure 2.3).

Table 2.4. Sequences used to generate GFP- tagged HAL5, LDB7 and IMP2' strains. Forward (F) and reverse (R)
oligos.

Oligo Sequence (5'-3')

HAL5 F CTGTGTAGTTTATAGACACTTACATACCAAGGTTAGTAAAGGTGACGGTGCTGGTTTA

R GTAATAATAAATACTTAAGCATTTTTTGTTTTGTATATCTTCGATGAATTCGAGCTCG

LDB7 F CCATAGGCGGTCTCAACTTAGAGAACATGCCTGCGTAGATGGTGACGGTGCTGGTTTA

R TTTCTACGAAGCAACATTCTACCTCTATCAATTACATGGTTCGATGAATTCGAGCTCG

IMP2' F CTGAAACGTGCCAAGCGCAAGGGCATCAGCGAGTGACCAAGGTGACGGTGCTGGTTTA

R TATATAAGTATGTGTTGCTAAAAAGGAATTAGTGCAGTGATCGATGAATTCGAGCTCG
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Figure 2.3. Images from gel electrophoresis of GFP PCR products
showing approximate sizes of the constructs. HAL5-GFP ~2.3 kb,
IMP2’-GFP ~1.6 kb, LDB7-GFP ~1.3 kb.

Localisation and expression of GFP-tagged Hal5, Ldb7 and Imp2’ images were acquired

as described above using the FITC and DAPI filters. Briefly, yeast cultures were

harvested at mid-exponential phase (OD600 0.3) and diluted with MEB to give 2 x 106

cells ml-1. Cells were incubated in the presence or absence of peptide (60 min, 30 °C) and

fixed with 10 µl Mowiol-DAPI solution (10% Mowiol (Sigma-Aldrich Ltd, DOR, UK), 25%

glycerol, 100 mM Tris–HCl, 1μg/ml DAPI (Sigma-Aldrich Ltd, DOR, UK)) prior to image

acquisition.
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2.15 Cytometric analysis of membrane potential

Stock solution of 3,3’-dipropylthiacarbocyanine iodide (diS-C3(3)) was prepared (10-4 M

in ethanol). Cells were cultured (MEB, OD600 = 0.3), then harvested by centrifugation

(3,000 rpm, 10 min) and washed in dH2O. Cells were resuspended in citrate-phosphate

buffer (1 M citric acid (Sigma-Aldrich Ltd, DOR, UK), 1M Na2HPO4 (Sigma-Aldrich Ltd,

DOR, UK), pH6.5) to a final concentration of 5 x 106 cells/ml. Cells were labelled with

diS-C3(3) giving a working concentration of 2 x 10-7 M. The time needed for probe

equilibrium in suspensions of S. cerevisiae is 20 min (Gaskova et al, 1998). Peptide was

added to the desired concentration and incubated for a further 20 min. Cultures were

vortexed prior to cytometry to dissipate any aggregates. An Epics XL-MCL flow

cytometer (Beckman Coulter Ltd, BUX, UK) with Expo32 ADC software (Applied

Cytometry, YSS, UK) was used. Prior to sampling, dH2O was passed through until no

artefacts were observed. Flow rate was adjusted to keep readings below 1,000 events

per second during analysis. A total of 10,000 cells were counted for each assay to

generate data. Fluorescence of diS-C3(3) was monitored in fluorescence channel FL2 (CT-

SNARF, BR, PKH-26). Amphotericin B was used as a control as it causes significant

membrane depolarisation so a consequent reduction in fluorescent maximum would be

expected, caused by probe outflow from the cell (Henry-Toulmé et al, 1989).

2.16 In vitro haemolytic assay of echinocandins and AMPs

Defibrinated horse blood (2 %) (Oxoid Ltd, HPH, UK) was diluted in phosphate buffer

saline (PBS). Horse blood (2 %) in dH2O was used as a positive control. To each well of a

96-well microplate, 150 µl of blood was added with appropriate concentrations of
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echinocandin or AMP. Blood cell turbidity was measured spectrophotometrically (570

nm) every 15 min over 4 h. A reduction in OD570 deviating from the control would

indicate haemolysis of erythrocytes.

2.17 In vitro mammalian cell cytotoxicity assay of echinocandins and AMPs

The method is as described by Yang et al. (2006). Vero cells were cultured in 75 cm2

culture flasks (Greiner Bio-one Ltd, GLR, UK) (37 °C, 95% humidity, 5% CO2). Cells (25,000

per well) were dispensed into microplate wells and incubated (37 °C, 24 h). Appropriate

concentrations of echinocandins, AMPs or combinations were prepared in RPMI-1640,

added to the wells and incubated for 48 h. The proportion of viable cells was determined

by neutral red (Sigma-Aldrich Ltd, DOR, UK) procedure (10 mg/ml stock in PBS) adapted

from that described by Borenfreund and Puerner (1984). After incubation with the

antifungals, cells were washed with PBS and incubated (37 °C, 90 min) with RPMI-1640

media containing neutral red (166 µg/ml). The plate was then washed to remove

extracellular dye prior to the addition of acidified isopropanol (Fisher Scientific Ltd., LEC,

UK ) (0.33% HCl) to lyse the viable cells and release any retained neutral red. Released

dye was measured spectrophotometrically at 540 nm. Viable cells were expressed as the

proportion retaining neutral red after exposure to antifungals relative to untreated

controls. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP; Sigma-Aldrich Ltd, DOR,

UK) was used as a positive control (0.15 µg/ml).
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2.18 Efficacy in vivo of the combination of caspofungin with ranalexin in a murine

model of disseminated Candidiasis

This work was performed by Prof. Frank Odds group, School of Medical Sciences,

University of Aberdeen. Basic details of the intravenous challenge model for

disseminated C. albicans infection have been published previously (MacCallum et al,

2005). Briefly, female BALB/c mice were infected intravenously (IV) with C. albicans at a

dose of 3±1 x 104 CFU/g body weight. Animals were humanely terminated 72 h after

challenge, and body weight changes (which correlate with survival times and fungal

burdens in kidney homogenates) were determined. Caspofungin IV preparation was

diluted in saline as required. Combination therapy with caspofungin and ranalexin was

investigated in two experiments. In the first, caspofungin was dosed at 0.01 mg/kg

intraperitoneal (IP), every day (qd), and ranalexin at 10 mg/kg IV, qd. Saline IV and IP

were used as placebo, and animals given caspofungin or ranalexin monotherapy were

concomitantly dosed with saline by the IV and IP routes, respectively. The first

treatments were given 1 h after challenge and repeated at 24 and 48 h. In the second

experiment, caspofungin was dosed at 0.05 mg/kg IV, qd, and ranalexin was dosed IV at

10 mg/kg bid. The first treatments were given 1 h after challenge. Saline IV was used as

placebo. All animal experimentation was approved by the local ethical review committee

and was performed under UK Home Office regulations. Statistical analysis of the data

was by Mann-Whitney U-test.
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2.19 Expression analysis of IZH2 (Appendix VII)

2.19.1 S. cerevisiae gene cloning and PCR amplification of IZH2

The IZH2 gene from S. cerevisiae was cloned under the control of its own promoter into

the pGEM-T® Easy Vector (Promega, HPH, UK; Appendix I) and then into the single copy

pRS313 vector according to the method of Sambrook et al, 1989. IZH2 was amplified

from S. cerevisiae genomic DNA using Taq polymerase (Promega, HPH, UK) with gene

specific primers (Table 2.5). The control contained no template DNA. PCR products were

added to a 1 % agarose gel and the resulting IZH2 DNA was excised and extracted using a

gel extraction kit (Qiagen Ltd., SXW, UK) according to manufacturer’s instructions. The

extracted DNA was ligated into the linearised pGEM-T® Easy Vector using: 1 x ligation

buffer, 100 ng pGEM-T® Easy Vector, 1 µl T4 DNA ligase, 100 ng IZH2 DNA (control

contained no DNA) and incubated overnight at 4 °C.

Table 2.5. Sequences used to amplify IZH2 gene.

The resulting ligation mix (10 µl) was added to 100 µl competent E. coli and left on ice

for 30 min before heat shocking (42 °C, 90 s). The mixture was placed on ice for 2 min

before 500 µl of LB was added and incubated (37 °C, 1 h). Cells were harvested by

centrifugation (13,000 rpm, 30 s) and resuspended in 100 µl dH2O. Cells were then

plated onto LB agar plates with 100 µg/ml ampicillin and incubated (37 °C overnight).

IZH2 gene insertions were verified by PCR. IZH2 transformed E. coli cells were used

Oligo Sequence (5'-3') Product Length

IZH2 Forward CGGTCTTCCGTTGTTGAGCTCTTT

IZH2 Reverse GTGCACAAATCCTGCTTCCCTTCT
1272 bp
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instead of template DNA. Products were confirmed using 1 % agarose gel displaying

either amplification of IZH2 into pGEM-T® Easy Vector.

2.19.2 Reintegration of IZH2

IZH2 was reintegrated into the respective deletion strain using pRS313 (New England

Biolabs, HFD, UK; Appendix I). Initially the IZH2 gene was cut using the restriction

enzyme Not 1 (Promega, HPH, UK). Digestion of IZH2 pGEM-T with pRS313 was

performed with: 1 x reaction buffer, 0.5 µl Not 1, 1 µg IZH2 pGEM-T plasmid and pRS313

DNA. This was incubated overnight (37 °C) and run on a 1 % agarose gel before the IZH2

gene and pRS313 DNA bands were excised using a QIAquick Gel extraction kit (Qiagen

Ltd., SXW, UK) (Figure 2.4) following the manufacturer’s instructions.

The IZH2 gene and pRS313 vector ligation was prepared with a control lacking IZH2 DNA.

The reaction mixture was as follows: 1 x reaction buffer, 100 ng pRS313 vector, 100 ng

IZH2 DNA, 1 µl ligase. The mixture was incubated for 2 h at room temperature before

transformation into competent yeast cells (BY4741a) using the method of Gietz et al,

1995 and selected using the His 3 marker. Integration was confirmed using PCR.
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Sodium chloride and Calcium chloride of their original concentration to minimise peptide

interactions.

2.20 Growth and cell number of all yeast strains

Cells used in viability studies were from mid-exponential phase cultures. Periods of

exponential growth were determined from optical density versus cell number calibration

curves (Figures 2.6 - 2.15). Exponential growth was recorded for all strains between ~0.2

- 1.0 and cells were selected for experimentation at OD600 = 0.6 (Table 2.6). S. cerevisiae

exponential growth was recorded at a reduced OD600, therefore cultures were selected

for analysis at OD600 = 0.3. C. glabrata had the greatest number of cells present per ml of

culture at OD600 = 0.6. All cell wall mutant C. albicans strains had a reduction in cell

number at OD600 compared to the CAI-4 parent strain.

Table 2.6. Exponential growth period of all strains in MEB with CFU/ml at OD600 = 0.6 (OD600 = 0.3 for S. cerevisiae).

strain exponential growth cfu/ml

S. cerevisiae 0.14-0.47 3,913,304

C. albicans isolate 0.29-1.01 7,208,009

CASC5314 0.22-1.02 10,345,819

C. glabrata 0.34-1.22 30,713,409

C. neoformans 0.21-0.97 13,408,926

CAI-4(Clp10) 0.31-1.39 5,937,039

mnt1-mnt2Δ(Clp10) 0.22-1.35 2,437,209

mnt3 /mnt5Δ (Clp10) 0.18-1.15 3,679,252

och1Δ(Clp10) 0.16-1.43 4,033,131

pmr1Δ(Clp10) 0.16-0.63 2,505,017
mnn4Δ(Clp10) 0.28-2.22 4,700,541
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Figure 2.5. Growth of S. cerevisiae in MEB. Cell density was measured every 30 min over a 900 min period; n = 3
mean ± 2 SD.

Figure 2.6. Growth of C. albicans in MEB. Cell density was measured every 30 min over a 540 min period; n = 3 mean
± 2 SD.
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Figure 2.7. Growth of C. albicans SC5314 in MEB. Cell density was measured every 30 min over a 450 min period; n =
3 mean ± 2 SD.

Figure 2.8. Growth of C. glabrata in MEB. Cell density was measured every 30 min over a 510 min period; n = 3
mean ± 2 SD.
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Figure 2.9. Growth of C. neoformans in MEB. Cell density was measured every 30 min over a 720 min period; n = 3
mean ± 2 SD.

Figure 2.10. Growth of CAI-4(Clp10) in MEB. Cell density was measured every 30 min over a 480 min period; n = 3
mean ± 2 SD.
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Figure 2.11. Growth of mnt1-mnt2Δ(Clp10) in MEB. Cell density was measured every 30 min over a 540 min period; 
n = 3 mean ± 2 SD.

Figure 2.12. Growth of mnt3/mnt5Δ(Clp10) in MEB. Cell density was measured every 30 min over a 480 min period; 
n = 3 mean ± 2 SD.
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Figure 2.13. Growth of och1Δ(Clp10) in MEB. Cell density was measured every 30 min over a 480 min period; n = 3 
mean ± 2 SD.

Figure 2.14. Growth of pmr1Δ(Clp10) in MEB. Cell density was measured every 30 min over a 480 min period; n = 3 
mean ± 2 SD.
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Figure 2.15. Growth of mnn4Δ(Clp10) in MEB. Cell density was measured every 30 min over a 540 min period; n = 3 
mean ± 2 SD.

5

5.5

6

6.5

7

7.5

8

0

0.4

0.8

1.2

1.6

2

2.4

0 100 200 300 400 500 600

lo
g (

1
0

)
C

FU
/m

l

O
D

6
0

0
(A

U
)

Time (min)

mnn4Δ(Clp10)

CFU



64

C
h

ap
te

r
3



65

3. Effect of alterations in the cell wall composition of Candida

albicans on susceptibility to several cationic antimicrobial

peptides.

3.1 Introduction

The Candida cell wall consists of an outer layer of mannoproteins and inner layers of

various carbohydrate polymers such as glucans, chitin and galactomannan (Figure 3.1)

(Latge et al, 2005; Ruiz-Herrera et al, 2006). These are essential components and even

minor modifications can reduce viability in vitro, so maintenance of its integrity is

essential. The glucans and chitin polymers give the wall structure and rigidity (Ruiz-

Herrera et al, 1994) whilst the mannosyl content mediates adhesion to host cells,

enhancing virulence (Netea et al, 2008). In C. albicans the inner layer is predominantly

1,3-β glucan and 1,3-α glucan with lesser amounts of 1,6-β glucan and chitin. The cell 

wall of C. albicans also contains a mannosylphosphate-containing fraction with N-linked

regions structured with an 1,6-α linked polymannose backbone with 1,2-α and 1,3-α-

linked oligomannosides and one to fourteen 1,2-β mannose residues attached via 

mannosylphosphate and anchored by phosphodiester linkages (Figure 3.2). Loss of

mannosylphosphate from the cell wall in S. cerevisiae causes a reduction in negative

charge while changes in the outer layer of mannoproteins influence cell wall porosity

(Ballou, 1990; de Nobel et al, 1990).
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is hypersensitive to the cell wall perturbation agent Calcofluor White (Munro et al,

2005). OCH1 encodes a 1,6-α mannosyltransferase that is responsible for outer-chain 

branching of N-glycans, null-mutants lack the 1,6-α linked polymannose fraction (Bates 

et al, 2006). The final gene mutated is PMR1. The C. albicans homolog of PMR1 in S.

cerevisiae encodes a P-type ATPase which supplies the Golgi with calcium and

magnesium ions (Rudolph et al, 1989). In C. albicans the null mutant displays severe

glycosylation defects with an 80 % reduction in mannose content and is hypersensitive

to Calcofluor white. As these mutants display varying changes in cell wall architecture

they may influence the action of cationic antimicrobial peptides either in their

interaction with the cell wall or the membrane beneath. The following investigation

aimed to explore whether changes to cell wall structure influenced the action of three

cationic peptides: DsS3(1-16), mag 2 and rana.
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3.2 Results

3.2.1 MIC determination

MICs were determined for the three peptides (DsS3(1-16), mag 2 and rana) against the

parent strain (CAI-4) and each of the cell wall mutant strains (Table 3.1). The wild type

strain, CAI-4, had a MIC for DsS3(1-16) of 5 µg/ml. The mnt1Δ and mnt2Δ strains had

MICs similar to CAI-4 (6 µg/ml and 5 µg/ml respectively). The mnt1-mnt2Δ double

deletion was more sensitive to DsS3(1-16) than the parent, with growth inhibited at 4

µg/ml. The mnt3/mnt5Δ double deletion and the och1Δ were intermediately sensitive to

the peptide with MICs of 7 µg/ml. Least sensitivity to DsS3(1-16) was seen with pmr1Δ

and mnn4Δ which had MICs of 11 µg/ml and 14 µg/ml respectively which are more than

double the MIC of the parent strain and nearly triple the MIC for mnn4Δ.

The mag 2 plate shows a similar trend but with greater concentrations of peptide

required to inhibit growth. CAI-4, mnt1Δ and the double deletion mnt1-mnt2Δ had MICs

of 22 µg/ml. mnt2Δ again showed a slight decrease in susceptibility as well as

mnt3/mnt5Δ and och1Δ, with 24 µg/ml of mag 2 needed for complete visual growth

inhibition. Peptide efficacy was noticeably reduced in the pmr1Δ and mnn4Δ mutants

with MICs of 28 µg/ml and 32 µg/ml respectively. This shows a 1.5x increase in peptide

needed to inhibit the growth of the mnn4Δ mutant.

When the cell wall mutants were exposed to rana they showed similar patterns to those

observed with mag 2 and DsS3(1-16), with MICs ranging from 4 µg/ml to 24 µg/ml. The
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CAI-4 control and mnt1Δ-mnt2Δ double deletion mutants had MICs of 12 µg/ml, whilst

mnt1Δ, mnt2Δ and och1Δ, all had MICs of 14 µg/ml. mnt3/mnt5Δ growth was inhibited

at 16 µg/ml. The lowest levels of susceptibility were displayed by pmr1Δ and mnn4Δ.

Peptide action against pmr1Δ appears to be the least effective with a MIC of 22 µg/ml,

almost double that of the wild type strain. The mnn4Δ mutant does not show the least

susceptibility here, but the MIC of 18 µg/ml is still substantially higher than the parent

strain.

Table 3.1. MIC determination for three AMPs (DsS3(1-16), mag 2 and rana) against CAI-4 (the parent C. albicans
strain) and various cell wall mutants; n = 3, std. dev. in brackets. Representative plates are shown in Appendix II.

MIC (mean µg/ml)

DsS3(1-16) Magainin 2 Ranalexin

CAI-4 (Clp10) 5 (0.58) 22 (1.15) 12 (0)

mnt1Δ (Clp10) 6   (0.58) 22   (0) 14   (0) 

mnt2Δ (Clp10) 5   (0) 24   (2) 14  (2.31) 

mnt1-mnt2Δ (Clp10) 4   (0) 22   (2.31) 12  (1.15) 

mnt3/mnt5Δ (Clp10) 7   (1.15) 24   (0) 16  (1.15) 

pmr1Δ (Clp10) 11 (1) 28   (3.06) 22  (0) 

och1Δ (Clp10) 7   (0.58) 24   (2.31) 14  (1.15) 

mnn4Δ (Clp10) 14 (1.15) 32   (3.06) 18  (2.31) 

Reintegration strains for each deletion were also tested against each peptide and

displayed levels of peptide susceptibility equal to that of the CAI-4 parent strain.
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3.2.2 Growth of cell wall mutants

Figure 3.3. Growth of CAI-4 and all deletion strains. Graph displays the differences in population density between
mutant strains; n = 2.

Growth of the parent and each mutant strain was monitored during 48 h (Figure 3.3).

For the CAI-4 strain the lag phase lasted ~10 h followed by a period of exponential

growth (11-18 h). Growth then slowed as the culture approached stationary phase. The

final reading was taken at 48 h with an OD600 of 1.15. mnt1Δ, mnt2Δ, mnt1-mnt2Δ and

mnn4Δ all grew similarly to the parent strain. The pmr1Δ and mnt3/mnt5Δ double

deletion had a longer lag phase compared to CAI-4 and grew more slowly during

exponential phase. Exponential phase lasted for approximately 12 h for mnt3/mnt5Δ

and 9 h with the pmr1Δ strain. The och1Δ mutant had a long lag phase (~18 h) followed

by slow growth and at 48 h the OD600 was 0.77 AU. The apparent erratic nature of the

readings recorded, especially between 24 and 30 h incubation, was probably due to cell

clumping, a commonly encountered phenotype in this strain (Bates et al, 2005).
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3.2.3 Growth inhibition on exposure to peptide

The growth of the parent strain and each of the cell wall mutants was monitored in the

presence of DsS3(1-16), mag 2 or rana.

Figure 3.4. Growth of mnt1Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was measured
every 15 min over a 48 h period; n = 3.

mnt1Δ: With the addition of 6 µg/ml DsS3(1-16), both the mnt1Δ and CAI-4 showed

initial inhibition then displayed similar levels of growth. mnt1Δ appeared to be slightly

more inhibited. When 18 µg/ml of mag 2 was added, growth of the mnt1Δ strain was

observed after an extended lag phase of 18 h while growth of the parent strain was

completely inhibited. In the presence of 12 µg/ml rana, both strains displayed growth

after initial inhibition. All mnt1Δ cultures recorded a drop in population density after

exponential growth.
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Figure 3.5. Growth of mnt2Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was measured
every 15 min over a 48 h period; n = 3.

mnt2Δ: At a concentration of 7 µg/ml DsS3(1-16) the mnt2Δ mutant showed growth

after an extended lag phase lasting 34 h. CAI-4 displayed no growth at the same level

indicating decreased susceptibility in the mutant strain. When 14 µg/ml mag 2 was

present, similar results were obtained with mnt2Δ entering exponential growth, while

CAI-4 displayed no change in population density. mnt2Δ was also less susceptible to rana

displaying exponential growth with 14 µg/ml, while the parent strain did not grow at the

same concentration.
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Figure 3.6. Growth of mnt1-mnt2Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was
measured every 15 min over a 48 h period; n = 3.

mnt1-mnt2Δ: With 8 µg/ml of DsS3(1-16) the double deletion showed significant growth

inhibition, however, at the same concentration no CAI-4 growth was recorded. In the

presence of mag 2 the mnt1-mnt2Δ strain displayed no growth at 12 µg/ml. The CAI-4

strain entered exponential growth at the same concentration. The presence of rana

generated similar results, with growth of the parent strain but no mnt1-mnt2Δ growth.

This data reaffirms the slight increase in sensitivity seen with this mutant. This mutant

did show a reduction in CFU/ml compared to the parent strain that could account for the

increased sensitivity (Table 2.6).
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Figure 3.7. Growth of mnt3/mnt5Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was
measured every 15 min over a 48 h period; n = 3.

mnt3/mnt5Δ: With the addition of 7 µg/ml of DsS3(1-16) the parent strain did not grow,

while the mnt3/mnt5Δ mutant was relatively unaffected with a slight increase in lag

phase. At 14 µg/ml of mag 2, growth of mnt3/mnt5Δ was inhibited. Results were similar

with the parent strain. When rana was present, the CAI-4 strain displayed less

susceptibility, growing at 12 µg/ml while mnt3/mnt5Δ growth did not occur.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45

O
D

6
0

0
(A

U
)

time (hours)

CAI-4 control

mnt3/mnt5Δ 7 µg/ml DsS3

CAI-4 7 µg/ml DsS3

mnt3/mnt5Δ 14 µg/ml Mag 2

CAI-4 14 µg/ml Mag 2

mnt3/mnt5Δ 12 µg/ml Rana

CAI-4 12 µg/ml Rana

mnt3/mnt5Δ control



76

Figure 3.8. Growth of pmr1Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was measured
every 15 min over a 48 h period; n = 3.

pmr1Δ: The pmr1Δ growth curve data displayed decreased susceptibility to all three of

the peptides. Concentrations that prevented growth in the parent strain did not inhibit

growth of the deletion strain when compared to the growth observed with the pmr1Δ 

control.
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Figure 3.9. Growth of mnn4Δ and CAI-4 when exposed to DsS3(1-16), mag 2 or rana. Cell density was measured
every 15 min over a 48 h period n = 3.

mnn4Δ: The mnn4Δ mutant displayed the least susceptibility to peptide action. With no

growth recorded in the parent strain, these same concentrations have little effect on

mnn4Δ growth, which closely mirrors that of the CAI-4 control. 

It was not possible to gather data for och1Δ as the cell clumping phenotype was

observed and this increased with increasing peptide concentration, thus interfering with

the optical density readings.

3.2.4 Population viability using fluorescence microscopy

Fluorescence microscopy was employed to observe viability of the C. albicans cell wall

mutants in the presence of increasing concentrations of DsS3(1-16). For all strains in the
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absence of peptide, as expected, most cells (>97 %) were viable as they stained with CTG

(Figure 3.10). As the concentration of Flu-DsS3(1-16) was increased to 5, 10 and 15

µg/ml, so the proportion of PI stained cells concomitantly increased e.g. for CAI-4 the

proportion of PI fluorescent cells in the population increased from 0.2 % (no peptide) to

94.9 % (15 µg/ml peptide). Again, considerable differences in peptide efficacy were

observed when comparing CAI-4 with the pmr1Δ and mnn4Δ mutants. For example, at 5

µg/ml, 50.8 % of the parent strain population was stained with PI compared to 3.8 % and

6.9 % PI stained cells in the mnn4Δ and pmr1Δ populations respectively. The mnt1-

mnt2Δ, och1Δ and mnt3/mnt5Δ populations all displayed intermediate proportions of PI

stained cells; less than the parent strain but greater than the pmr1Δ/mnn4Δ strains.

Figure 3.10. Percentage of each cell population fluorescing with CellTracker™ green, propidium iodide or dual
staining when exposed to DsS3(1-16) . For each assay a minimum of 300 cells were counted and quantified into a
percentage of the sampled population; n = 2.
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Viability counts were performed simultaneously to confirm the microscope data (Figure

3.11). The mnt1-mnt2Δ double deletion showed similar viability to the parent strain,

with both displaying a one log reduction in CFU/ml at 15 µg/ml peptide compared to the

untreated control. pmr1Δ, mnn4Δ and mnt3/mnt5Δ were less susceptible to the peptide

with only a 0.22 log reduction at 15 µg/ml. The colony count data corroborated the

microscopy data in terms of the susceptibility of each strain to the peptide with the

pmr1Δ and mnn4Δ strains displaying the smallest reduction in cell numbers and the 

highest proportion of metabolically active cells as demonstrated through CTG staining.

Figure 3.11. Cell viability count after exposure to DsS3(1-16). The results are plotted as colony forming units (CFU)
per ml in log scale; n = 2 ± 1 SD.
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3.2.5 Flu-DsS3(1-16) sequestration

To further understand the phenotypes recorded with the glycosylation mutants, an

assay was designed to measure the sequestration of Flu-DsS3(1-16) by yeast cells. The

MIC of Flu-DsS3(1-16) against CAI-4 was 30 µg/ml which was higher than the untagged

peptide (MIC 5 µg/ml) (Appendix III). The cell wall mutants that expressed the greatest

variation in peptide susceptibility (mnt3/mnt5Δ, och1Δ, pmr1Δ, mnn4Δ) were incubated 

in the presence of Flu-DsS3(1-16) (5 , 10 , 15 and 20 µg/ml), separated from the media

and the fluorescence of the supernatant was measured.

Results show that as peptide concentration increased, the total mass of peptide

sequestered decreased (Figure 3.12). With 5 µg/ml, cells of the parent strain

sequestered 83.2% of available peptide. At 20 µg/ml the same strain bound 49.2% of the

Flu-DsS3(1-16). There were also noteworthy strain differences: CAI-4 sequestered the

greatest percentage of peptide (83.2 %) followed by mnt3/mnt5Δ (66.6 %), och1Δ (64.4

%), pmr1Δ (57.8 %) and lastly mnn4Δ (46 %). Differences were most apparent between

CAI-4 and the mnn4Δ mutant e.g. at 5 µg/ml, CAI-4 was responsible for removing 83.2%

of Flu-DsS3(1-16), whereas mnn4Δ cells removed 46%. This data set correlates with the

previous studies on visible growth inhibition, microscope fluorescence levels and CFU

counts showing the lowest levels of peptide susceptibility in mnn4Δ, followed by pmr1Δ,

mnt3/mnt5Δ, och1Δ and lastly the mnt1Δ and mnt2Δ mutants.
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Regarding previous data, it appears that in the mutants whose walls are deficient in

phosphomannan, namely pmr1Δ and mnn4Δ, show decreased susceptibility towards

16), mag 2 and rana. Thus, it could be postulated that,

bial peptides to exert their full effect, it is important that they

charged phosphomannan component of the cell wall. Therefore

adding exogenous phosphate (that could compete with phosphate on the cell wall)

16) was determined against CAI-4, pmr1Δ and 

81

16) was added at 5, 10, 15 or 20 µg/ml to an
mnt2Δ). Fluorescent intensity of

sequestered by each cell population was

Regarding previous data, it appears that in the mutants whose walls are deficient in

decreased susceptibility towards

in order for cationic

bial peptides to exert their full effect, it is important that they bind to the

Therefore, the effect of

(that could compete with phosphate on the cell wall) on

Δ and mnn4Δ. Glucosamine 
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6-phosphate (G-6-P) was selected as a phosphate source, with glucosamine

hydrochloride (GHCl) as a negative control. Glucosamine itself is an abundant

monosaccharide that functions as a precursor for the production of chitin and was

considered a suitable molecule from which to study the effects of attached phosphate

on peptide action.

Plate reader assays monitored growth of the CAI-4 strain in the presence or absence of

GHCl or G-6-P (Figure 3.13). The GHCl incubated cultures had a reduced exponential

growth rate (doubling time = 120 min) compared to the control (doubling time = 105

min), however, the population density after 48 h was similar (OD600 = 1.3 in the GHCl,

OD600 = ~1.24 in the control). G-6-P treated cultures had a reduced OD600 of ~0.85

compared to the control at ~0.97 after 48 h. The subsequent stationary phase displayed

reduced growth compared to the control. The G-6-P cultures finished with an OD600 of

0.99 AU.
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Figure 3.13. Growth of CAI-4 with and without the presence of 15 mM Glucosamine hydrochloride or 15 mM
Glucosamine 6-phosphate. Readings were taken every 15 min for 48 h. The experiment was carried out in duplicate
and both versions are plotted above.

CAI-4 growth was monitored in the presence of absence of GHCl and G-6-P in media

containing 6 or 9 µg/ml of DsS3(1-16) (Figure 3.14). The addition of 6 µg/ml of peptide,

prevented growth in the GHCl and control cultures. Growth of the G-6-P treated cultures

was inhibited with an increased lag phase. The initial growth readings were erratic

suggesting possible clumping of the cells. With the addition of 9 µg/ml DsS3(1-16), the

lag phase was extended to 19 h suggesting inhibition. Growth inhibition by DsS3(1-16)

was diminished in the presence of G-6-P.
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Figure 3.14. Growth of CAI-4 with and without the presence of 15 mM Glucosamine hydrochloride or 15 mM
Glucosamine 6-phosphate and DsS3(1-16). Readings were taken every 15 min over 48h.

The glycosylation mutants were cultured with 5, 10 or 15 mM of either G-6-P or GHCl

and incubated in the presence of increasing concentrations of DsS3(1-16) (Table 3.2,

plate scans in Appendix II). GHCl had a slight effect on peptide action in the CAI-4 and

pmr1Δ strains, increasing the MIC by 1 µg/ml and 2 µg/ml respectively. Greatest

variation was observed in the G-6-P treated media and as the G-6-P concentration

increased, the peptide activity reduced. This trend was apparent in the three strains

tested. For CAI-4 and pmr1Δ approximately twice the concentration of peptide was

needed to prevent visible growth at 15 mM G-6-P when compared to the negative

control. Notably, this may be even higher for CAI-4 as there was visible growth at the

greatest peptide concentration (13 µg/ml). mnn4Δ also displayed reduced growth

inhibition with the MIC increasing from 16 µg/ml in the GHCl media to 22 µg/ml in the

presence of G-6-P.
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Table 3.2. MIC determination for CAI-4, pmr1Δ and mnn4Δ strains. Wells contained increasing concentrations of
DsS3(1-16) with 5, 10 or 15 mM of either Glucosamine hydrochloride or Glucosamine 6-phosphate; n = 3, ± 1 SD in
brackets.

MIC (mean µg/ml)

CAI-4 pmr1Δ mnn4Δ 

control 0 6 (0.82) 10 (1.47) 16 (1.60)

Glucosamine 5 7 (0) 12 (0.82) 16 (0.41)
hydrochloride (mM) 10 7 (0) 12 (1.10) 16 (0)

15 7 (0.84) 12 (0.75) 16 (2.35)

Glucosamine 5 8 (1.17) 14 (1.75) 18 (2.34)

6-phosphate (mM) 10 10 (1.86) 18 (3.67) 18 (2.23)

15 >13 (0) 22 (2.31) 22 (2.31)

For each strain, viability cell counts were also performed in the presence of GHCl or G-6-

P with various concentrations of DsS3(1-16). G-6-P treated cells were less susceptible to

the killing effects of DsS3(1-16) (Figure 3.15) e.g. 30 min after CAI-4 was exposed to 20

µl DsS3(1-16) there was a 0.3 log reduction in viable count for the control compared to a

0.4 log reduction in the G-6-P treatment. For the pmr1Δ, at 60 min there was a 0.4 log 

reduction in viable cell count and after 90 min the mnn4Δ viable count reduced by 0.86

log. The three strains tested show a clear reduction in viable cell number in the control

cultures when compared to the G-6-P treatment.
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Figure 3.15. Peptide action against CAI-4, pmr1Δ and mnn4Δ strains with exogenous phosphate. Initial
readings were taken prior to DsS3(1-16) addition. To CAI-4, 20 µg/ml DsS3(1-16) was added, 30 µg/ml was
added to pmr1Δ and 40 µg/ml was added to mnn4Δ cultures. Three assays were performed for each strain;
the first with peptide only, the second with peptide and 15 mM Glucosamine hydrochloride and the third
with peptide and 15 mM Glucosamine 6-phosphate; n = 3 mean ± 2 SD.
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3.2.7 Visualisation and quantification of Flu

Flu-DsS3(1-16) uptake by

DeltaVision microscope.

cells were observed. First the

presence of the vacuolar stain CellTracker™ Blue

localised throughout the cytosol

bound to the cell surface though this was observed

quantified in the following assays

Figure 3.16. Differential peptide localisation using fluorescent microscopy
CAI-4, and show peptide localisation after incubation with
DsS3(1-16) internalised in the vacuole, as confirmed by the presence of Cel
DsS3(1-16) occupying the cytosol. Row C shows a cell that has bound peptide around the periphery
may be bound to the cell wall and/or membrane

Visualisation and quantification of Flu-DsS3(1-16) with CAI-4,

uptake by CAI-4, pmr1Δ and mnn4Δ cultures was observed with a

DeltaVision microscope. Three distinct phases of peptide interaction with

First the peptide was taken up into vacuoles

the vacuolar stain CellTracker™ Blue (Figure 3.16-

throughout the cytosol (Figure 3.16-B). Finally the peptide

bound to the cell surface though this was observed infrequently

quantified in the following assays (Figure 3.16-C).

Figure 3.16. Differential peptide localisation using fluorescent microscopy. Cells capture
and show peptide localisation after incubation with 20 µg/ml Flu-DsS3(1-16); scale bar = 5 µM
16) internalised in the vacuole, as confirmed by the presence of CellTracker™ Blue (CTB).
16) occupying the cytosol. Row C shows a cell that has bound peptide around the periphery

y be bound to the cell wall and/or membrane.

87

4, pmr1Δ and mnn4Δ.

cultures was observed with a

Three distinct phases of peptide interaction with C. albicans

was taken up into vacuoles, as confirmed by the

-A). Next the peptide

the peptide appeared to be

infrequently and so was not

. Cells captured are of the parent strain,
; scale bar = 5 µM. Row A shows

lTracker™ Blue (CTB). Row B shows Flu-
16) occupying the cytosol. Row C shows a cell that has bound peptide around the periphery of the cell. This
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Cells from each strain treated with GHCl or G-6-P were grouped into those that showed

no fluorescence, those with vacuolar fluorescence, and those with whole cell cytosolic

fluorescence (Figure 3.17). The majority of cells in all assays showed no fluorescence,

with the highest proportion of vacuolar/whole cell fluorescence at 46.4 % in the CAI-4

strain and lower proportions of 14 % in pmr1Δ and 19.1 % in mnn4Δ. With the addition

of G-6-P, total fluorescence decreased in CAI-4, mnn4Δ and pmr1Δ by 26.8 %, 14.5 % and

11.9 % respectively. Again, the addition of G-6-P had a negative effect on peptide

efficacy. However, the GHCl also appears to have affected Flu-DsS3(1-16) action e.g.

there was a 0.6 % difference between GHCl and G-6-P treatments with mnn4Δ. In all 

strains, the proportion of cells displaying whole cell fluorescence dropped on exposure

to G-6-P (1 - 2 %) and similar decreases were observed in vacuolar staining with mnn4Δ 

(11.9% - 4.3 %) and pmr1Δ (5.7 % - 2 %). Vacuolar staining in CAI-4 remained at similar 

levels through the treatments.
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Figure 3.17. Percentage of cell population showing no fluorescence, vacuolar fluorescence or cytoplasmic
fluorescence after DsS3(1-16) treatment. Cells from mnn4Δ, pmr1Δ or the parent CAI-4 were incubated with 20
µg/ml Flu-DsS3(1-16) and 15 mM Glucosamine hydrochloride or 15 mM Glucosamine 6-phosphate. A minimum of
200 cells (generally ~300) from each assay were quantified to give the final result; n = 2.

With CAI-4, in the presence of peptide only, the majority of cells displaying peptide

staining had cytosolic Flu-DsS3(1-16) localisation. However in the presence of GHCl there

was a mixture of both complete and cytosolic fluorescence, while the cells in the G-6-P

treated culture only showed vacuolar fluorescence (Figure 3.18).
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Figure 3.18. Image series representative of
glucosamine hydrochloride or 15 mM g
Figure 3.18. Image series representative of the changing Flu-DsS3(1-16) localisation in

osamine hydrochloride or 15 mM glucosamine 6-phosphate; scale bar = 10 µM.

90

16) localisation in CAI-4 with 15 mM
bar = 10 µM.
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3.3. Discussion

C. albicans cell wall mutants were variably susceptible to the action of three cationic

AMPs; DsS3(1-16), mag 2 and rana. Visual growth, viability assays and microscope

observations showed that the mnn4Δ and prm1Δ mutants were less susceptible to

peptide action. pmr1Δ is defective in up to 80 % of mannose content and lacks the

phosphomannan fraction while mnn4Δ is also phosphomannan deficient (Bates et al,

2005; Hobson et al, 2004). These data indicate that decreased peptide susceptibility is

conferred with a reduction in the cell wall phosphate content. It is likely that to exert

their full antimicrobial potential, cationic AMPs must first bind to negatively charged

phosphate on the cell wall. This is supported by Alcian blue binding affinity in these

mutants. With this cationic dye, loss of negatively charged phosphomannan is directly

comparable to the extent of Alcian blue binding. Mannosylphosphate loss correlates

with a decrease in dye binding (Friis et al, 1970). Several studies have quantified the

mutants ability to bind this cationic dye and its link to loss of cell wall negative charge:

when compared to the parent strain, the mnt1-mnt2Δ mutant displayed a 10% reduction

in binding (Mora-Montes and Gow, unpublished results), mnt3/mnt5Δ displayed 50%

reduced binding (Mora-Montes and Gow, unpublished results), och1Δ displayed 83%

reduced binding (Netea et al, 2006), pmr1Δ displayed 95% reduced binding and lastly,

the mnn4Δ strain lacked any ability to bind Alcian blue (Bates et al, 2005).

The extent of Alcian blue binding correlates with the degree of peptide susceptibility

found in these mutants. As och1Δ displays a significant reduction in binding, it would be

expected that this would show lower levels of susceptibility than mnt3/mnt5Δ, however,
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results are fairly similar when comparing both, especially in terms of MIC values perhaps

in part due to the slow growth of och1Δ. The mnn4Δ mutant displayed the least 

susceptibility to peptide, lower than pmr1Δ levels even with the extensive loss of 

mannan in this mutant. However, pmr1Δ still retains a small proportion of

phosphomannan that may account for this while mnn4Δ has no detectable levels of

phosphomannan. The phosphomannan fraction of the cell wall is acid-labile and

composed of a chain of 1,2-β mannose residues. These are attached to 1,2-α mannan 

chains by phosphodiester linkages. It is reduction in these negatively charged residues

that confers decreased susceptibility, presumably through reduced peptide binding

affinity.

The ability of the mnn4Δ mutant to bind Alcian blue would suggest that the wall was

completely devoid of phosphate. This however may not be the case: in a separate study,

detectable levels were found when mannan was purified from this deletion strain

(Singleton et al, 2005). Similar results were gathered when studying the MNN4 ortholog

in S. cerevisiae (Friis et al, 1970) where it was speculated that phosphate was still

present in the cell wall but in deeper, less exposed areas. These are likely to be

inaccessible to Alcian blue and possibly attached to N-linked glycans in the core portion

of the cell wall (Odani et al, 1996) or may be from other sources such as the

phospholipomannan fraction thought to play a role in cell wall adhesion (Dalle et al,

2003). This would perhaps explain the continued action of AMPs on this mutant as a

fraction of the phosphate content is still present in less exposed areas of the cell wall
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that may facilitate peptide binding, especially in truncated peptides such as DsS3(1-16)

with its relatively small 16 a.a. composition.

The severe reduction in the mannan levels of pmr1Δ reduces cell wall thickness in this

strain (Figure 3.19) (Netea et al, 2006). It was expected that the cells with thinner cell

walls would show increased susceptibility to peptide action due to increased membrane

accessibility allowing greater accumulation of peptide; however, this is not the case. The

parent strain CAI-4 has a wall thickness of approximately 140 nm, mnn4Δ has a similar

thickness of 135 nm, while pmr1Δ is greatly reduced at only 65 nm. The severe wall

disruption in pmr1Δ causes increased sensitivity to known cell wall perturbing agents

such as Calcofluor White and Congo Red (Bates et al, 2006). The och1Δ, mnt1-mnt2Δ and

mnt3/mnt5Δ strains also show this increase indicating all are more sensitive to cell wall

stress (Bates et al, 2005; Munro et al, 2005; Mora-Montes and Gow, unpublished data).

Conversely, mnn4Δ displays no such decrease in cell wall integrity (Hobson et al, 2004).

Even with mnn4Δ and pmr1Δ displaying similar levels of peptide susceptibility, in terms

of cell wall integrity and thickness, there seems to be no correlation between this and

the decreased peptide susceptibility found in both mutants. This data indicates that

changes to cell wall integrity and thickness caused by glycosylation defects do not seem

to affect the action of DsS3(1-16) in C. albicans.
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Figure 3.19. TEM micrographs of cell wall morphology of, from left to right, CAI-4, pmr1Δ and mnn4Δ showing
changes in cell wall thickness (Netea et al, 2006). Bar represents 100 nm.

Several other studies have reported binding of antimicrobial compounds to the

phosphomannan component of the yeast cell wall (Ibeas et al, 2000; Monk et al, 2005).

A decrease in the cationic protein osmotin resulted when MNN4 was disrupted while

disruption of MNN6 also conferred similar levels of susceptibility. MNN4 and MNN6 are

both directly implicated in the transfer of mannosylphosphate to N- and O-linked glycans

in S. cerevisiae (Odani et al, 1996). Only 10 % of normal phosphate levels are retained in

these mutants. These mutants again showed greatly reduced Alcian blue binding.

In the fluorescent microscopy study, there was a percentage of cells in each population

that displayed both CTG and PI staining. This was surprising as these markers are

designed to label very different cell states. PI is a measure of membrane integrity,

entering cells whose membranes have been compromised and binding to DNA and RNA,

so staining non-viable cells. CTG freely permeabilises through the membrane of viable

cells, is cleaved by esterases, and subsequently fluoresces. The dual staining may be

explained by initial fluorescence from the CTG in metabolically active cells followed by

increasing peptide action that leads to loss of viability and resulting PI staining prior to
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microscope image acquisition. The double staining may also have occurred in cells with

CTG staining that, as a result of peptide action, have destabilised membranes allowing

moderate entry of PI into the cell while still remaining viable. This increased membrane

permeability to PI has been documented in other studies on exposure to the cationic

AMP Histatin-5: at 1 µM Histatin-5, ~27 % of C. albicans cells were labelled with PI while

only ~9 % were non-viable (Helmerhorsta et al, 1999). This indicates that viable cells are

internalising PI due to an increase in membrane porosity.

Images acquired during the examination of Flu-DsS3(1-16) and its interaction with

Candida cells show three distinct patterns of localisation. Firstly, peptide was observed

binding round the periphery of the cell, possibly causing phospholipid disruption (Shai,

2001). This was only observed on a few occasions possibly due to the transient nature of

this stage. If image acquisition was possible directly after peptide exposure it is likely

that a greater proportion of the population would have displayed this binding. It is

probable that this phase leads to the other phase observed, where peptide was

observed uniformly throughout the cytoplasm. This peptide translocation may also lead

to intracellular targeting, resulting in programmed cell death possibly via DNA damage

(Mortona et al, 2007). When peptide binding is not so prolific, it is proposed that peptide

is sequestered from the plasma membrane into the vacuole via endocytosis; this could

be an effective means of quarantining toxic peptide from the cytosol preventing DNA

damage. Indeed, it has been demonstrated that genes involved in vacuolar transport are

vital for decreasing susceptibility to DsS3(1-16) (Mortona et al, 2007). A study using

Histatin-5, also an α-helical cationic peptide, found similar distinct vacuolar and 
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cytoplasmic populations (Mochon et al, 2008). The increase in MIC observed when

fluorescein is attached to the peptide (5 µg/ml untagged, 30 µg/ml tagged), could be

due to fluorescein interfering with peptide binding affinity. As the mode of action of

DsS3(1-16) is proposed to resemble the carpet model (Netea et al, 2006), the overall

clustering of peptide may be reduced. If the monomers cannot cluster sufficiently, this

would affect the extent of membrane destabilisation causing a reduction in

antimicrobial efficacy.

At lower concentrations of Flu-DsS3(1-16), and indeed in the presence of G-6-P, the

proportion of the population showing vacuolar localisation was increased while those

displaying cytoplasmic localisation were diminished. Conversely, at higher peptide

concentrations or in the absence of G-6-P, the proportion of the cell population showing

cytoplasmic peptide localisation was much greater, indicating that endocytosis of

DsS3(1-16) occurs when lower levels have bound to the membrane. CAI-4 parent strain,

pmr1Δ and mnn4Δ all displayed decreased susceptibility to peptide with G-6-P. 

Exogenous phosphate from G-6-P may have sequestered a fraction of the DsS3(1-16)

limiting its binding to the phosphomannan on the cell wall and the plasma membrane.

When bound, this peptide is then translocated to the vacuole where the concentration

builds but may not be sufficient to cause cell death. If the concentration increases

sufficiently in the vacuole, peptide may leak into the cytoplasm and cause cell lysis.

Vacuolar peptide may also destabilise the vacuolar membrane causing it to burst. At

elevated DsS3(1-16) concentrations, more peptide binds to the plasma membrane

causing rapid destabilisation, cytoplasmic internalisation and killing. This is possibly to
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prevent the relatively slow process of endocytosis and subsequent removal of peptide

from the membrane, lessening the likelihood of phospholipid disintegration. Hence,

these differential internalisation pathways probably give rise to the two distinct cell

populations recorded in this investigation.

Using growth curves, cell viability counts, fluorescent cell labelling and quantification

with fluorescein tagged peptide to compare cell wall compromised mutants, it is clear

that C. albicans cell wall N-linked mannosylphosphate is required for optimum

antimicrobial action of DsS3(1-16). Additional data indicates that this is also the case for

the linear cationic antimicrobial peptides mag 2 and rana. Exogenous negatively charged

phosphate was shown to interfere with peptide action, possibly by binding DsS3(1-16),

hence the mode of action of these peptides seems enhanced by binding to negatively

charged phosphate in the cell wall. Fluorescently labelled DsS3(1-16) has also been

visualised with differential localisation on the surface of the cell, sequestration to the

vacuole and diffuse localisation throughout the cytoplasm and it has been concluded

that localisation within the cell is related to the extent of peptide bound to the cell

membrane.
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4. The inhibitory effects of the echinocandins in combination

with several structurally diverse antimicrobial peptides.

4.1. Introduction

The clinically available echinocandins are synthetically modified papulacandins originally

derived from Papularia sphaerosperma and consist of cyclic hexapeptides linked to a

long chain fatty acid. Due to the large molecular size (MW = 1093.31 g-1270.28 g) they

are only administered intravenously due to poor oral absorption. Effective dosages for

candidiasis lie in the range of 70 mg per day for caspofungin and 100 mg per day for

micafungin and anidulafungin (www.pbm.va.gov). Echinocandins show reduced toxicity

towards C. neoformans (Dannaoui et al, 2008), however, relatively high concentrations

of caspofungin have been shown to reduce the number of 1,3-β glucan linkages leaving 

other linkages intact (Feldmesser et al, 2000). Reduced susceptibility may be due to a

resistance of 1,3-β glucan synthase to the inhibitory effects of caspofungin in C.

neoformans. Within the last few years there have been several cases of caspofungin

resistant strains of Candida where mutations in the subunits of 1,3-β glucan synthase 

have caused highly elevated MICs (Balashov et al, 2006). These are still relatively rare,

possibly due to the short clinical usage of this drug class (Baixench et al, 2007). Hospital

isolate strains of C. neoformans, C. glabrata and C. albicans were acquired to test their

susceptibility towards echinocandin and AMP combination treatments. Studies were

initially carried out against S. cerevisiae.
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The strains used in this study have varying levels of susceptibility to conventionally used

antifungal agents. Levels of resistance are likely to increase against all major classes of

drug due to the development of drug-resistant strains in patients undergoing treatment.

Testing for potentially increased drug action with combination treatment is essential to

combat this and prolong the shelf life of existing antifungal agents. Synergistic

interactions help to slow down the emergence of resistance and allow lower dosages to

be given while still retaining their effectiveness, reducing both toxicity and cost (Lupetti

et al, 2003).

Several antimicrobial peptides under investigation in this study have previously been

shown to work in synergy with other antimicrobial agents. For example, mag 2 was

demonstrated to work in synergy with the antimicrobial peptide PGLa (Hoffman et al.,

1983) and in combination displayed a marked increase in effectiveness against bacteria,

tumour cells and artificial membranes (Matsuzaki et al., 1998). The combination had a

marked increase in potency against C. albicans but was ineffective against C. glabrata

(Helmerhorstb et al, 1999; Helmerhorst et al, 2005). Synergy was also shown with the

dermaseptins. One study looked at the effects of combining dermaseptin s1, s2, s3, s4

and s5. The effects were observed on various microorganisms including C. albicans. In

some cases a 100-fold increase in activity was recorded. DsS3(1-16) was especially

potent when combined with others; against C. albicans it showed a drop in MIC from 10

M to 3 M (Mor† et al., 1994). There have been no reports of rana synergy in yeasts,

however, synergy versus other species was observed including the gram positive

bacteria S. aureus (Giacometti et al., 2000; Graham et al, 2007). As the echinocandins
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inhibit the synthesis of 1,3-β glucan linkages it was reasoned that disruption of this cell 

wall component would increase the access of AMPs to the cell membrane. Combinations

of various echinocandins and a range of structurally diverse antimicrobial peptides were

tested in combination in the following study.
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4.2 Results

4.2.1 Initial studies using S. cerevisiae and caspofungin

Checkerboard assay of yeast growth inhibition

To investigate the inhibitory effects of the echinocandins and AMPs, initial studies were

carried out using S. cerevisiae. Checkerboard growth assays (Section 2.6) were prepared

in 96-well plates to which increasing concentrations of caspofungin were added to each

column and increasing concentrations of DsS3(1-16), mag 2, rana or gomesin were

added to each row. Initial plate scans indicated synergy was present between the linear

peptides and caspofungin (Figure 4.1). Data from all checkerboard work was gathered to

calculate the corresponding FICs displayed by each combination of echinocandin and

AMP. Against S. cerevisiae, rana and mag 2 in combination with caspofungin produce

values of 0.516 and 0.529 respectively, slightly above the synergy range (Table 4.1).

DsS3(1-16) gives a higher value of 0.667, indicating the combination is additive. The

compounds in MEB against C. neoformans were also tested but display no synergy, with

FICs ranging from 1.09 - 1.36.

Table 4.1. FICI for C. neoformans and S. cerevisiae in combination with caspofungin and DsS3(1-16), mag 2 or rana.

Values were determined from 96-well plate growth assays. FIC ≤ 0.5; synergy, FIC > 4.0; no interaction, FIC > 0.5 – 

4.0; antagonism.

Peptide C. neoformans S. cerevisiae

DsS3(1-16) 1.36 0.667

Ranalexin 1.14 0.516

Magainin 2 1.09 0.529

Caspofungin



Figure 4.1. Representative checkerboard assay
plate was inoculated to give 1.0 x 10
images for each are shown. Lines separate wells where growth was present from wells where growth was absent.

heckerboard assays used to determine FICs with S. cerevisiae
to give 1.0 x 10

3
cells per well. Experiments were carried out in triplicate and

for each are shown. Lines separate wells where growth was present from wells where growth was absent.
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S. cerevisiae. Each well of a 96-well
ls per well. Experiments were carried out in triplicate and representative

for each are shown. Lines separate wells where growth was present from wells where growth was absent.
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Growth of S. cerevisiae

After the initial plate scans, growth was monitored over a 48 h period at OD600 using

similar combination treatments (Figure 4.2). DsS3(1-16), mag 2 and rana were selected

as they displayed patterns of synergistic growth inhibition. In the DsS3(1-16) treatment,

addition of 1.5 µg/ml caused little growth inhibition with exponential growth after 14 h.

When 0.035 µg/ml caspofungin was present there was inhibition of growth with an

extended lag phase lasting an additional 11 h compared to the control. The culture

reached stationary phase with a reduced population density (OD600 = 0.771). When a

combination of DsS3(1-16) and caspofungin was present no growth was recorded. In the

mag 2 / caspofungin growth analysis similar results were obtained. In the presence of 2

µg/ml mag 2, growth closely mirrored that of the control. In combination, no growth

was recorded over the 48 h period. The rana / caspofungin results were similar: with

0.025 µg/ml caspofungin there was an extended lag phase of 3 h, a reduced exponential

growth rate and stationary phase population density. When both agents were present

no growth was recorded. There results show that with caspofungin alone there was

slight growth inhibition, while in combination no growth was recorded.
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Figure 4.2. Growth of S. cerevisiae when exposed to DsS3(1-16), mag 2 or rana alone or in combination with
caspofungin. Cell density was measured every 15 min over a 48 h period in MEB at 30 °C. Each experiment was
carried out in triplicate and representative graphs for each are show.
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Cell viability

To determine if the synergistic inhibition of the combinations enhanced the fungicidal

activity of the AMPs and caspofungin, the combined effect on viability of S. cerevisiae

cultures was monitored. Caspofungin and AMP were added at mid-exponential phase

and readings were taken every 15 min (Figure 4.3).

With the DsS3(1-16) treatment, peptide and caspofungin were added to the cultures

after 360 min, prior to the initial CFU/ml reading. Compared to the control, the

caspofungin treated cells showed a reduction in growth. This reduction was also

reflected in terms of CFU/ml. Changes in cell number were apparent directly after

compound addition. At the final time point, caspofungin treated cells were similar to the

control at 6.32 log CFU/ml and 6.36 log CFU/ml respectively. Cell viability was reduced in

the DsS3(1-16) treatment dropping to 5.77 CFU/ml. The dual treatment displayed the

greatest decrease in cell number ending at 5.15 log CFU/ml. This is a 0.62 log reduction

when compared to the DsS3(1-16) treatment alone.

The mag 2 with caspofungin data set displayed differences between the various

treatments. Changes to population density became apparent 3 h after treatment. The

control culture continued to increase in cell density to OD600 = 0.47 while the treated

cultures all show reduced growth. Again, the dual treatment resulted in the greatest

decrease in population density. This was also observed in terms of CFU/ml with the

control ending with a reading of 6.51 log CFU/ml followed by a slight reduction in the

caspofungin and mag 2 treatments at 6.31 and 6.13 CFU/ml respectively and then a
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decrease in cell number on combination to 5.2 log CFU/ml; a reduction of 0.93 log

CFU/ml on combination when compared to mag 2 on its own.

The rana and caspofungin assays also show variance in cell viability. The control culture

displays continuous growth until the final reading and ends on an OD600 of 0.45. The

rana, caspofungin and dual treatments all displayed reduced growth 2 h after addition.

This was reflected in terms of cell number, with final readings of 6.51 log CFU/ml for the

control, 6.22 for the rana treatment, 6.32 for the caspofungin treatment and 5.63 in

combination. This represents a decrease in cell number of 0.59 log CFU/ml when

compared to rana alone. The AMPs in combination with caspofungin all result in a

decrease in both population density and cell viability indicating synergistic fungicidal

killing.
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Figure 4.3. Optical density versus viable cell number assays of S. cerevisiae with AMP and caspofungin. Viability was recorded
over 5 h at 60 min time intervals. Initial viability readings were taken prior to peptide addition. Concentrations of 2 µg/ml
DsS3(1-16), 4 µg/ml of mag 2 and 5 µg/ml of rana and 0.04 µg/ml of caspofungin were used.
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Disc diffusion assay of yeast inhibition

The increase in antifungal action observed on combination with caspofungin was

visualised in terms of area of growth inhibition over a solid medium (Figure 4.4). With

caspofungin alone there was no inhibition of growth up to 0.03 µg and a small ring

around the disc where no growth was apparent at 0.035 µg. With DsS3(1-16) there was

also no growth inhibition. When DsS3(1-16) and caspofungin were combined, clear

zones of inhibition were formed even at the lowest concentrations of both compounds.

The zone progressively increased as the concentrations were increased until a zone of

approximately 3 mm formed around the disc. Mag 2 acting alone displayed inhibition at

6 µg, 8 µg and 10 µg, with a 1 - 2 mm zone forming at the later concentration. In

combination with caspofungin there were clear zones of inhibition formed around all

discs even at the lowest concentration. With 10 µg mag 2 and 0.035 µg caspofungin

there was a 5 - 6 mm zone where no growth was apparent. On exposure to rana alone,

there were no visual signs of growth inhibition around the discs. In combination there

was a zone at 6 µg of rana and 0.02 µg caspofungin that increased in size up to the

greatest concentration of each, where a zone of 4 - 5 mm was measured from the disc.
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Figure 4.4. Disc diffusion assays monitoring inhibition of S. cerevisiae with AMP and caspofungin. Discs were
impregnated with increasing concentrations of peptide in the presence or absence of caspofungin. Plates were
spread with mid-exponential phase S. cerevisiae culture. The assay was carried out in duplicate.
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There appeared to be no increase in antifungal action on combination with peptide or

caspofungin against C. neoformans indicating additive rather than synergistic killing

(Appendix IV).

4.2.2 Growth of C. glabrata, C. albicans hospital isolate and SC5314 strains

in the presence of caspofungin with DsS3(1-16), magainin 2, ranalexin,

6752 or GS14K4.

This section investigates the action of caspofungin with the three linear AMPs used

previously and two cyclic peptides. The cyclic peptides, 6752 and GS14K4, were

employed to test varying peptide structures and their effect on combination with

caspofungin. The strains tested with these peptides were C. albicans and C. glabrata

hospital isolates and C. albicans SC5314 commonly used for in vivo studies. Additionally,

all strains were cultured in RPMI 1640 media or MEB. The MEB data set is presented in

Appendix IV. An RPMI 1640 data set was obtained as this is the standard medium for

echinocandin in vitro susceptibility testing (Odds et al, 2004). This additional data set

would provide useful standardised data for any future studies progressing to in vivo

work. The growth of each strain in RPMI 1640 media was initially monitored over a 48 h

period (Figure 4.5). S. cerevisiae did not grow in RPMI 1640 media. Both strains of C.

albicans began exponential growth after 13 h incubation and approached stationary

phase at a density of OD600 = 0.2. C. glabrata also began exponential growth after 13 h,

the population density increased at a greater rate and cells entered stationary phase at

an OD600 of 0.25.
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Figure 4.5. Growth of S. cerevisiae, C. glabrata and C. albicans in RPMI 1640. Cell density was recorded every 15 min
over a 48 h period. Each experiment was carried out in triplicate and representative graphs for each are shown.
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with combinations of AMPs and caspofungin, micafungin or anidulafungin (Appendix

IV).

FIC values of the C. albicans and C. glabrata strains in MEB and RPMI with caspofungin

were calculated next (Table 4.2). Focusing initially on the SC5314 strain, DsS3(1-16)

displays synergy with a value of 0.486, while mag 2 and rana have values of 0.553 and

0.508 respectively in MEB. The cyclic peptides have elevated values of up to 1.125 for

GS14K4, indicative of an additive effect. In RPMI media, all peptides in combination with

caspofungin displayed reduced FICs when compared to MEB values. These all group in

the synergy range with values of 0.144 to 0.267. The values obtained while monitoring

the C. albicans hospital isolate strain in MEB show values above 0.5, mag 2 is fractionally

above at 0.507. The remaining peptides give values of 0.671 - 0.844 displaying additive

killing. In RPMI there was up to a 5.2 x reduction in FIC values. All peptides again fall

below the synergy value, indicative of synergistic killing in combination with

caspofungin. When C. glabrata was cultured in MEB in combination, DsS3(1-16) and

GS14K4 produce values of 0.499 and 0.479 respectively, demonstrating synergistic

killing. Mag 2 falls just outside the range, with an FIC of 0.55. Rana and 6752 have

elevated FICs in comparison, indicating limited interaction. Values from the RPMI media

data set are all between 0.186 and 0.347, well below the 0.5 indicative of synergy.
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Table 4.2. FICI for C. albicans and C. glabrata in combination with caspofungin and DsS3(1-16), mag 2, rana, 6752 or

GS14K4.  Values were determined from 96-well plate growth assays. FIC ≤ 0.5; synergy, FIC > 4.0; no interaction, FIC > 

0.5 – 4.0; antagonism.

Table 4.3. MIC values for all peptides in RPMI 1640 against C. albicans strains and C. glabrata. Scans of the 96-well

plates used in determining these values can be found in Appendix III. Each well of a 96-well plate, containing RPMI

1640 was inoculated to give 1.0 x 10
3

cells per well. The experiment was carried out in duplicate producing identical

MIC values.

Peptide MEB RPMI 1640 MEB RPMI 1640 MEB RPMI 1640

DsS3(1-16) 0.486 0.164 0.844 0.164 0.499 0.282

Ranalexin 0.508 0.221 0.673 0.164 0.761 0.186

Magainin 2 0.553 0.144 0.507 0.135 0.55 0.278

6752 0.619 0.15 0.671 0.289 1.94 0.347

GS24K4 1.125 0.267 0.725 0.139 0.479 0.269

C. albicans SC5314 C. albicans (Hospital isolate) C. glabrata

Caspofungin

Peptide C. albicans SC5314 C. albicans (hospital isolate) C. glabrata

MIC (µg/ml) MIC (µg/ml) MIC (µg/ml)

DsS3(1-16) 256 128 >512

Ranalexin 128 128 256

Magainin 2 512 512 >512

6752 256 256 >512

GS14K4 64 128 256
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Figure 4.6. Representative checkerboard assays used to determine FICs with SC5314 and C. glabrata. Each experiment was
carried out in triplicate and representative images for each are shown. Lines separate wells where growth was present
from wells where growth was absent.
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Disc diffusion assays of yeast growth inhibition

As with S. cerevisiae, disc diffusion assays were prepared using C. albicans and C.

glabrata to determine the inhibitory effects of caspofungin with DsS3(1-16), mag 2 and

rana on a solid porous surface (Figure 4.7; C. glabrata and C. albicans hospital isolate

Appendix V). At caspofungin concentrations greater than 0.025 µg there were areas of

inhibition of up to 1.5 mm round the discs. With all three peptides, as with the previous

strain, there were no signs of growth inhibition up to 25 µg. However, when discs were

impregnated with the combination of AMP and caspofungin there were clear zones of

inhibition. The lowest combination treatments produced areas where no growth was

apparent that increased in size as the concentrations were increased. At the greatest

concentration clear areas round each disc of 5.5 mm, 5 mm and 7 mm were produced

for DsS3(1-16), mag 2 and rana respectively. C. glabrata was tested only using MEB

agarose plates as growth was not visible on RPMI agarose after 48 h resulting in similar

inhibited areas. These disc diffusion experiments demonstrate the increased fungicidal

action of DsS3(1-16), mag 2 and rana when combined with caspofungin on a solid

surface, producing at least a two to three fold increase in the zone of inhibition

surrounding these treatment areas for C. glabrata and both C. albicans strains.



117

Figure 4.7. Disc diffusion assays monitoring inhibition of SC5314 with AMP and caspofungin. Discs were
impregnated with increasing concentrations of peptide in the presence or absence of caspofungin. C. albicans
SC5314 mid-exponential phase cells were spread onto plates. The experiment was carried out in duplicate and
representative images are displayed.



118

Yeast cell viability

Regarding previous experiments, it appears that caspofungin in combination with

various AMPs causes increased inhibition of growth in C. albicans. To quantify this in

terms of cell viability, growth curves and cell survival were calculated on exposure to

caspofungin, AMP or in combination (Figure 4.8). In the DsS3(1-16) and caspofungin

growth curve, the antifungal agents were added after 240 min of growth. At 4 µg/ml,

DsS3(1-16) had little effect on growth which closely mirrored that of the control. With

the addition of 0.01 µg/ml caspofungin and dual treatments, growth was reduced. These

readings were reflected in terms of cell number, with the control and DsS3(1-16) treated

cultures finishing with counts of 7.33 log CFU/ml and 7.28 log CFU/ml respectively.

Inhibition of growth was recorded on addition of 0.01 µg/ml caspofungin finishing with a

count of 7.15 log CFU/ml. When DsS3(1-16) and caspofungin were present, cell number

was reduced at each time point with a final reading of 6.7 log CFU/ml giving a reduction

of 0.63 log CFU/ml on combination.

The mag 2 and caspofungin treated cells displayed a marked effect upon exposure.

When 10 µg/ml mag 2 was added to cultures, there was a slight reduction in growth.

When both agents were present there was increased inhibition with cell number

continuously reduced after exposure, reaching 6.38 log CFU/ml for the final reading. This

gives a 0.82 log reduction compared to caspofungin alone and a 1.18 log reduction

compared to the control population at 7.56 log CFU/ml.
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Rana data displayed a similar trend, with the control and peptide only treatment at

similar levels in both growth and cell number. On treatment with 0.01 µg/ml

caspofungin there was reduced growth and cell number reducing to 7.35 log CFU/ml. On

combination, growth reduction was observed 60 min after exposure and continued to

decrease to OD600 = 0.51 (6.43 CFU/ml). This was a 0.87 log reduction compared to the

caspofungin only treatment and a 1.17 log reduction compared to the control.

This data would further indicate that a synergistic interaction was present causing

increased loss of cell viability through an increase in the fungicidal action of the

antimicrobial peptides, caspofungin or both. In the following section the action of

anidulafungin and micafungin is investigated.
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Figure 4.8. Optical density versus viable cell number assays monitoring inhibition of C. albicans SC5314 with AMP and
caspofungin. Viability was recorded over 5 h (4 h with DsS3(1-16)). Initial viability readings were taken prior to peptide
addition. These were carried out in MEB due to the reduced growth in RPMI 1640 media. Concentrations of 20 µg/ml DsS3(1-
16), 10 µg/ml mag 2 or 9 µg/ml rana were added with 0.01 µg/ml of caspofungin.
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4.2.3 Growth of C. glabrata, C. albicans hospital isolate and SC5314 strains

in the presence of anidulafungin and micafungin with DsS3(1-16),

magainin 2, ranalexin, 6752 or GS14K4.

Checkerboard assays of yeast growth inhibition

Micafungin FIC values in MEB for all strains were similar, ranging from 1.08 - 1.48,

strongly indicating that no interaction was taking place (Table 4.4). Combinations in

RPMI display reduced FICs that were still outside the synergy range. Only DsS3(1-16) and

micafungin against SC5314 was below 0.5 at 0.487. All other FIC values with micafungin

indicate a purely additive effect on growth inhibition.

With anidulafungin and the SC5314 strain, only the rana combination has a FIC ≤0.5, 

falling into the synergy range (Table 4.5). DsS3(1-16), mag 2 and GS14K4 have values

ranging from 0.619 - 0.917, indicating no interaction was present. The cyclic peptide,

6752, displayed antagonism when combined with anidulafungin, with a highly elevated

FIC of 5.04. The value in RPMI was also increased at 0.773, higher than all other

peptides. DsS3(1-16), rana, mag 2 and GS14K4 displayed low synergistic values, ranging

from 0.095 to 0.142. The FIC values calculated using the C. albicans hospital isolate in

MEB indicate synergy was occurring with Dss3(1-16), rana and possibly GS14K4, which

falls slightly outside the synergy cut-off at 0.531. The mag 2 treatment produced a value

of 0.667, so an additive effect is probable. 6752 again displayed an elevated FIC of 3.19,

approaching a value at which antagonism would be indicated. In RPMI media all

peptides had values indicative of synergy, ranging from 0.111 with DsS3(1-16) and rana

to 0.287 with GS14K4. The 6752 peptide again displayed a substantial reduction in FIC to
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0.563 in RPMI media, just outside the synergy range. FICs in MEB using C. glabrata

displayed increased inhibition upon combination with values of 0.490 and 0.282 for

DsS3(1-16) and GS14K4 respectively. Rana and mag 2 fall outside the synergy range at

0.75 and 0.622 respectively. 6752, as with the other strains, had a relatively high FIC at

3.03, approaching a value that would be considered antagonistic. Results for C. glabrata

in RPMI media would indicate an increase in fungicidal action in combination, with

values in the range of 0.287 with DsS3(1-16) and 0.443 with rana. 6752 with a value of

0.737 indicates no interaction with anidulafungin against C. glabrata. In summary, all

peptides (with the exception of 6752) in combination with anidulafungin generate FIC

values that demonstrate the strong synergistic interactions against C. albicans and C.

glabrata in RPMI media.

Table 4.4. FICI for C. albicans and C. glabrata in combination with micafungin and DsS3(1-16), mag 2 or rana. Values were

determined from 96-well plate growth assays. FIC ≤ 0.5; synergy, FIC > 4.0; no interaction, FIC > 0.5 – 4.0; antagonism. 

Table 4.5. FICI for C. albicans and C. glabrata in combination with anidulafungin and DsS3(1-16), mag 2, rana, 6752 or GS14K4.

Values were determined from 96-well plate growth assays. FIC ≤ 0.5; synergy, FIC > 4.0; no interaction, FIC > 0.5 – 4.0; 

antagonism.

Peptide MEB RPMI 1640 MEB RPMI 1640 MEB RPMI 1640

DsS3(1-16) 1.43 0.487 1.08 0.687 1.45 0.589

Ranalexin 1.31 0.677 1.48 0.715 1.33 0.581

Magainin 2 0.93 0.706 1.4 0.656 1.34 0.686

Micafungin

C. albicans SC5314 C. albicans (Hospital isolate) C. glabrata

Peptide MEB RPMI 1640 MEB RPMI 1640 MEB RPMI 1640

DsS3(1-16) 0.619 0.107 0.361 0.111 0.49 0.287

Ranalexin 0.452 0.106 0.291 0.111 0.75 0.443

Magainin 2 0.917 0.095 0.667 0.087 0.622 0.376

6752 5.04 0.773 3.19 0.563 NA 0.737

GS24K4 0.633 0.142 0.531 0.287 0.282 0.341

Anidulafungin

C. albicans SC5314 C. albicans (Hospital isolate) C. glabrata
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Disc diffusion assays of yeast growth inhibition

Disc diffusion assays were undertaken with both C. albicans strains on RPMI 1640

agarose. For SC5314, with anidulafungin alone there were no areas of inhibition

observed up to 0.02 µg (Figure 4.9). At 0.025 µg there was a small area of 0.5 mm round

one section of the disk. With DsS3(1-16) and mag 2, up to concentrations of 25 µg, there

were no inhibited areas while in the rana treatment there was no inhibition up to 20 µg.

DsS3(1-16) on combination with anidulafungin produced zones of inhibition at 10 - 25 µg

of peptide. At 25 µg DsS3(1-16) and 0.025 µg of anidulafungin, a clear area was observed

that extended between 3 mm and 5 mm round the circumference of the disc. The dual

treatment using mag 2 produced inhibition at 15 - 25 µg of peptide in combination with

increasing concentrations of anidulafungin. At the greatest concentration, a zone of 4

mm was visible from the disc. On exposure to the combination with rana, zones of

inhibition were observable from 10 µg of peptide and 0.012 µg of anidulafungin giving a

3 mm inhibited zone at 25 µg. Results were similar when monitoring inhibition of the C.

albicans hospital isolate (Appendix V).

These results demonstrate the increased inhibition of growth on a solid medium and

possible killing of both strains of C. albicans with a combination of AMP and

anidulafungin. In general, no inhibition was observed at the greatest concentrations of

each compound alone, however, when in combination growth was inhibited with clear

areas radiating up to 5 mm from the discs.
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Figure 4.9. Disc diffusion assays monitoring inhibition of SC5314 with AMP and anidulafungin. Discs were
impregnated with increasing concentrations of peptide and anidulafungin. Mid-exponential C. albicans SC5314
culture was spread onto RPMI 1640 agarose plates. The experiment was carried out in duplicate and representative
images are displayed.
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4.2.4 Intracellular localisation of Flu-DsS3(1-16) using fluorescence

microscopy.

To understand the basis of the increased antimicrobial action of AMPs in combination

with caspofungin and anidulafungin, Flu-DsS3(1-16) was employed in a microscope

study. This aimed to investigate the uptake of Flu-DsS3(1-16) in C. albicans SC5314 cells

and monitor changes to localisation in the presence of echinocandin. PI was also used to

correlate stages of peptide uptake with loss of viability. Cells displaying whole cell

fluorescence with Flu-DsS3(1-16) also stained with P.I. so were grouped together. Flu-

DsS3(1-16) in combination with caspofungin produced a FIC value of 0.175,

demonstrating synergy was present at levels observed with native DsS3(1-16) (Appendix

IV). Three distinct groups of cells were visible and quantified as such in the following

graphs (Figure 4.10).

In MEB with 20 µg/ml of Flu-DsS3(1-16), 64.3 % of cells displayed no fluorescence, 4.8 %

displayed vacuolar localisation, while 30.9 % displayed disseminated fluorescence

(Figure 4.10, top). Exposure to 0.001 µg/ml caspofungin resulted in ~5 % of cell staining

with PI. On exposure to a combination of caspofungin and Flu-DsS3(1-16) ~27 % of the

population stained with PI and Flu-DsS3(1-16). Exposure to 0.01 µg/ml caspofungin

resulted in 57.6 % PI staining while a combination of Flu-DsS3(1-16) and caspofungin

caused 72.3 % of the population to stain with PI and Flu-DsS3(1-16). This increase in PI

staining and Flu-DsS3(1-16) internalisation in combination was also observed upon

exposure to 0.05 - 1 µg/ml caspofungin. Paradoxically, at these concentrations the
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proportion of cells that were PI-positive decreased when compared to the decreased

concentrations of 0.001 µg/ml and 0.01 µg/ml caspofungin.

When the assay was performed in RPMI media, 20 µg/ml of Flu-DsS3(1-16) had a

reduced effect, with only 3.7 % of cells displaying whole cell peptide incorporation and

P.I staining (Figure 4.10, centre). Exposure to 0.001 µg/ml caspofungin resulted in ~16 %

of cells staining with PI. Upon combination treatment the PI-positive and Flu-DsS3(1-16)

stained fraction increased to ~35 %. Exposure to 0.01 and 0.05 µg/ml caspofungin

resulted in ~24 and ~26 % staining with PI. The combination of Flu-DsS3(1-16) and 0.01 –

0.05 µg/ml caspofungin increased the PI-positive proportion to 32 and 37 % respectively.

Exposure to 0.1 and 1 µg/ml caspofungin resulted in a reduction in PI-positive cells to

~18 % in both treatments. In combination with Flu-DsS3(1-16) there was an increase in

PI-positive cells and Flu-DsS3(1-16) staining at 24 – 26 %. Additionally, as the proportion

of cells displaying dissemination of Flu-DsS3(1-16) increased, so the proportion

displaying vacuolar localisation decreased.

In the anidulafungin experiment, 20 µg/ml Flu-DsS3(1-16) produced 1.6 % whole cell

fluorescence and 17.8 % vacuolar fluorescence (Figure 4.10, bottom). Results with

anidulafungin in RPMI were similar with increases in PI-positive cells and Flu-DsS3(1-16)

staining when used in combination. This was most noticeable on exposure to 0.005

µg/ml anidulafungin. Individually anidulafungin caused ~5 % PI staining while in

combination with Flu-DsS3(1-16) the proportion increased to ~ 35 % PI-positive and Flu-
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DsS3(1-16) staining. As with caspofungin, vacuolar localisation decreased as the

proportion of cells displaying disseminated peptide localisation increased.
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Figure 4.10. Fluorescent microscopy study quantifying cell viability and peptide sequestration in C. albicans
SC5314. Cultures were incubated with Flu-DsS3(1-16) and echinocandin with P.I. A minimum of 200 cells
(generally 300) from each assay were quantified to give the final results. Percent of cell population displaying
whole cell/P.I. or vacuolar fluorescence in MEB with caspofungin (top), RPMI with caspofungin (middle) and
RPMI with anidulafungin (bottom) are displayed; n = 2.
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Representative images acquired from the microscope are presented (Figure 4.11). The

initial set of three images (top) shows the fluorescence from Flu-(DsS3(1-16), from P.I.

and a composite image of both. The three cells staining with P.I. were also seen to

fluoresce throughout with Flu-DsS3(1-16). The two remaining cells have concentrated

peptide present in their vacuoles and are absent of any P.I. staining. This demonstrates

that cells with vacuolar localisation were viable while cells with fluorescence occurring

throughout were non-viable. Representative images captured during an experiment

using anidulafungin are also presented (Figure 4.11). Few cells were P.I. positive at

concentrations of 0.0005 µg/ml and 0.001 µg/ml. At 0.005 µg/ml proportionally more

cells display P.I. staining in the dual treatment. This also occurs at greater

concentrations, although in reduced numbers. With 20 µg/ml, peptide vacuolarisation

was observed up to 0.001 µg/ml of anidulafungin. These three data sets show that upon

exposure to caspofungin or anidulafungin, the number of cells that show peptide

internalisation and whole cell localisation was greatly increased.



Figure 4.11. Image series representative of Flu-DsS3(1-16) localisation and PI staining.
the SC5314 cells leading to loss of cell viability. Flu-DsS3(1
representative images from the anidulafungin assay displaying
intermediate concentrations of 0.005 µg/ml and 0.01 µg/ml in combination

16) localisation and PI staining. Initial three images (top) demonstrating P.I. staining when peptide has localised throughout
DsS3(1-16) that has localised to the vacuole display no P.I. staining indicating these cells remained viable. Below is a series of

nidulafungin assay displaying peptide vacuolarisation at low anidulafungin concentrations and increased P.I. and peptide incorporation at
intermediate concentrations of 0.005 µg/ml and 0.01 µg/ml in combination; scale bar = 10 µM.
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demonstrating P.I. staining when peptide has localised throughout
no P.I. staining indicating these cells remained viable. Below is a series of

dulafungin concentrations and increased P.I. and peptide incorporation at
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4.3 Discussion

The echinocandins are a relatively new class of antifungals that are active against

Candida and Aspergillus species. They act by damaging the cell wall, inhibiting the

synthesis of 1,3-β glucan. There are currently no reports of synergy between the 

echinocandins and antimicrobial peptides. As AMPs have to traverse the cell wall to

access the plasma membrane it was postulated that the lack of 1,3-β glucan would 

increase peptide binding, leading to increased fungicidal killing. The results gathered in

this chapter reveal the increased action of these antimicrobial agents when combined.

The use of growth assays, disc diffusion assays, cell viability assays and fluorescent

microscopy demonstrate the synergistic action of caspofungin and anidulafungin when

combined with DsS3(1-16), mag 2, rana or GS14K4. Loss of viability was observed in S.

cerevisiae, C. albicans SC5314 and clinical isolates of C. albicans and C. glabrata. This was

further elucidated when FICs were calculated for each combination with the majority

recording values of ≤0.5. In general, FICs with C. glabrata were higher than for the C.

albicans clinical isolates. C. glabrata is genetically quite dissimilar from other Candida sp.

and many conventional drugs are ineffective (Kurtzman et al, 1997) e.g. resistant to the

azoles (Rex et al, 1995). They also display decreased susceptibility to the peptides used

in this study.

The cyclic peptide gomesin, containing cysteine with two disulphide bonds, did not

display synergistic characteristics against S. cerevisiae in initial studies with an additive

growth pattern in combination with caspofungin. The cyclic synthetic peptide 6752

displayed no synergy in MEB with caspofungin while in combination with anidulafungin
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the FIC values were increased further, approaching values that would indicate

antagonism. The presence of 6752 substantially increased the anidulafungin MIC

indicating peptide interference with anidulafungin activity on 1,3-β glucan synthase 

while retaining its antimicrobial activity (MICs for 6752 remained constant). As GS14K4

displayed strong synergistic killing in identical assays it is unlikely that this lack of action

by 6752 was solely due to the cyclic structure. The action of 6752 against bacteria has

been demonstrated (Dartois et al, 2005); however, its action against fungi was unknown.

In this study the antifungal action of this peptide has been demonstrated. In terms of

efficacy, levels of antifungal activity are comparable to mag 2 and rana. The

antimicrobial activity of GS14K4 was previously determined (Kondejewski et al, 2002)

and has now been demonstrated to kill C. glabrata and S. cerevisiae cells with levels

similar to those observed with DsS3(1-16), which is effective at 3.45 µg/ml (Coote et al,

1998). These peptides are both short chains and so will be relatively inexpensive to

synthesize and are effective at killing infectious strains of Candida so have the potential

to be used as clinical antifungals. Their haemolytic and cytotoxic effects are analysed in

Chapter 5.

All strains displayed severely inhibited growth in combinations of echinocandin and AMP

with the exception of C. neoformans, where no interaction was observed, producing FIC

values of 1.09 - 1.36. As the echinocandins are relatively ineffective against C.

neoformans, with MICs ranging from 8 - 16 µg/ml (Dannaoui et al, 2008), this was not

surprising. This resistance is not yet understood as it has been demonstrated that 1,3-β 

glucan synthase in C. neoformans is very sensitive to caspofungin. Other possible
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mechanisms of resistance are currently under investigation including multidrug

resistance pumps and degradation pathways (Maligie et al, 2005).

Both caspofungin and anidulafungin displayed potent synergistic killing, this however

was not observed with micafungin. As demonstrated in the visible growth assays and

disc diffusion assay (Section 4.2.4 and Appendix V), there was no observable increase in

fungicidal action with micafungin on combination with DsS3(1-16), mag 2 or rana in

RPMI media or MEB. FIC values in MEB (0.93 - 1.48) strongly indicated an additive rather

than synergistic inhibitory effect. Values in RPMI ranged from 0.581 - 0.715 (with the

exception of DsS3(1-16) against SC5314), again indicating no interaction was present. As

the echinocandins differ in chemical structure there may be specific differences in

peptide interaction (Denning, 2003). Micafungin contains a sulphate moiety, which

increases its water solubility, that is absent in both caspofungin and anidulafungin

(Figure 1.5). However, it is unlikely that this would be responsible for the lack of synergy.

As the mode of action of all echinocandins is to inhibit 1,3-β glucan synthase, potentially 

allowing greater access to the plasma membrane, it is puzzling that similar results were

not observed with micafungin.

The experiments performed in RPMI media generated consistently increased FIC values

when compared to MEB media. Peptide action was also diminished with elevated MICs

observed for all peptides. Cation interference for binding sites is unlikely as pH levels

were maintained with MOPS. This decrease in activity may result from peptide binding



134

to proteins in the bovine calf serum. It is also likely that the salt content in this media

was interfering with the peptides as RPMI 1640 contains 0.4 g/L KCL and 6 g/L NaCl. Salt

leads to increased compaction of the membrane, increasing its structural integrity and

reducing the destabilisation effect of AMPs (Kandasamy et al, 2006). For example, the

activity of magainin was significantly reduced in the presence of 100 mM NaCl (Lee et al,

1997). However, on combination with caspofungin or anidulafungin, mag 2 is again more

effective (inhibition at 5 µg/ml). This is a substantial decrease, proportionally far greater

than levels displayed in MEB. The synergistic effects of this combination could be due to

the reduced growth rate and diminished population densities of each strain when

cultured in RPMI when compared to MEB. Cells may display increased inhibition and

susceptibility if their growth rates and final population densities are reduced.

Data from the fluorescent microscopy study using Flu-DsS3(1-16) indicates that with

peptide alone, few cells displayed peptide internalisation, especially in RPMI media. In

the presence of caspofungin and anidulafungin the internalisation of peptide greatly

increased. It is likely that the action of these echinocandins was increasing the peptide

bound to the membrane by inhibiting the synthesis of 1,3-β glucan, thereby increasing 

the access of peptide to the membrane. This in turn may result in increased peptide

internalisation. The images acquired during the study also demonstrate that cells that

have sequestered peptide into their vacuoles (possibly via endocytosis) retain their

viability as no P.I. staining occurred. Cells that display diffuse cytoplasmic localisation

however have lost their viability as P.I. staining was present. This work also highlighted

the reduced susceptibility of C. albicans cells at higher concentrations of echinocandin.
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This phenomenon has been documented in several papers and is known as the

paradoxical effect (Wiederhold et al, 2005; Stevens et al, 2006; Fleischhacker et al,

2008). One study observed this effect in 40 % of C. albicans strains tested when exposed

to caspofungin and anidulafungin (Chamilos et al, 2007). The cause of the reduced

efficacy is not clear, however, some studies suggest the involvement of the protein

kinase C cell wall integrity pathway (Reinoso-Martin et al, 2003). An increase in chitin

production (898 %) in Candida cells undergoing the paradoxical effect has also been

proposed to compensate for the decrease in 1,3-β glucan and 1,6-β glucan following 

caspofungin treatment (Smits et al, 2001; Stevens et al, 2006).

It has been demonstrated in this chapter that combinations of cationic linear or cyclic

AMPs with caspofungin or anidulafungin act synergistically to kill S. cerevisiae, C.

albicans and C. glabrata strains. Cationic peptides have yet to be successfully developed

into clinical antimicrobial drugs due to sensitivity to proteolytic degradation, toxicity

levels and high cost of synthesis. Several have been developed for topical use only,

including the protegrins and defensins (Chen et al, 2000; Cole et al, 2005). Combinations

of drugs that act synergistically may be a route to clinical approval and application

resulting in reduced dosages and toxicity, while still retaining their antimicrobial efficacy.

It has also been demonstrated that these combinations result in effective killing of

clinical infectious strains cultured on a porous solid surface resulting in large areas of

inhibition around the treatment area. This combination treatment may have potential

use as a topical treatment for invasive medical devices or for mucosal infection. The use
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of caspofungin or anidulafungin with cationic antimicrobial peptides is patent pending as

of 8th September 2009 (No. GB0817121.7).
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5. The cytotoxic, haemolytic and antifungal activity of cationic

antimicrobial peptides.

5.1 Introduction

Antimicrobial peptides are found throughout nature and constitute the first line of

defence against infection from pathogenic microbes (Hancock et al, 1998). Many

cationic AMPs have now been discovered that are potent killers of bacteria, fungi and

viruses (Giuliani et al, 2008). Due to their potency they are of interest in the

development of potential new antimicrobial therapeutics. Ideally these peptides should

have potent antimicrobial activity with minimal cytotoxicity towards host cells. The

effects of salt, ionic strength, temperature and exposure to proteins and

macromolecules encountered in the changing microenvironments found in the human

body must also be considered. Peptides may lose their antimicrobial action in biological

fluids such as human serum where proteases may degrade AMPs (Tanaka et al, 2000).

Components of human serum are also present in the mouth during inflammation,

potentially affecting AMPs used in the treatment of oral fungal infections. This chapter

aims to study the antimicrobial potency of several AMPs from various structural classes

under different conditions in vitro against S. cerevisiae and assess their cytotoxic and

haemolytic effects. The AMPs under investigation are the cationic α-helical peptides 

DsS3(1-16) and mag 2, the cationic peptides containing cysteine with one or two

disulphide bonds (rana and gomesin respectively) and the synthetic cyclic peptides

GS14K4 and 6752.
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5.2 Results

5.2.1 Effects of salt, pH, temperature and human serum on AMP antifungal activity.

Growth of S. cerevisiae cultures was monitored in the presence of AMPs and the effects

of NaCl, pH, temperature and human serum were analysed. MICs were obtained for

each AMP against S. cerevisiae in MEB. Gomesin displayed potent antifungal action with

an MIC of 1.5 µg/ml followed by GS14K4 (2 µg/ml), DsS3(1-16) (5 µg/ml), 6752 (8 µg/ml),

rana (11 µg/ml) and finally mag 2 (13 µg/ml) (Table 5.1). The presence of NaCl decreased

the antifungal potency of each AMP. The MICs increased as salt concentration increased

and were >100 µg/ml (the highest concentration tested) for DsS3(1-16), mag 2 and 6752

at 200 mM NaCl. Gomesin’s MIC increased to 30 µg/ml, GS14K4’s MIC increased to 50

µg/ml and rana’s MIC increased to 50 µg/ml at 200 mM NaCl.

For each AMP, greatest antifungal activity was observed at pH 7 (Table 5.2). As the

media pH increased or decreased away from neutrality there was a concomitant

decrease in antifungal efficacy e.g. 6752 had a MIC of 8 µg/ml at pH 7 but at pH 9 this

increased to 11 µg/ml whilst at pH 5 the MIC was 14 µg/ml. All AMPs with the exception

of mag 2 were more affected by increased acidity compared to increased basicity.

After incubation of AMP at temperatures up to 100 °C, all peptides retained antifungal

activity with only a slight increase in MIC for DsS3(1-16) (1 µg/ml), mag 2 (3 µg/ml), 6752

(2 µg/ml) and GS14K4 (2 µg/ml) (Table 5.3). There was no change in the potency of rana
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and there was a slight increase in the MIC of gomesin (0.25 µg/ml). There was no change

in MIC values comparing the 80 °C and 100 °C incubated peptide aliquots.

At concentrations above 6 % human serum (HS; active or inactive), growth of S.

cerevisiae was inhibited, as such, concentrations of up to 5 % were used at which no

inhibition was observed (Tables 5.4 and 5.5). As the concentration of active HS in the

media increased so the MIC values for each peptide also increased. This was most

noticeable for 6752, which had a MIC of 8 µg/ml in the absence of HS, but in 1 % HS the

MIC increased to 25 µg/ml. MICs were even higher for 6752 in 3 – 5 % HS (50 µg/ml).

Rana and mag 2 generated MICs above 50 µg/ml (the greatest concentration used).

Gomesin was least affected by HS with no increase in MIC at 1 % and a slight increase (to

4 µg/ml) at 3 – 5 %. The results with inactivated HS showed similar trends of inhibition of

action but the AMPs were affected to a reduced degree.



141

Table 5.1. MIC determination for each AMP against S. cerevisiae exposed to various concentrations of NaCl; n = 2, ±
1 SD in brackets.

Table 5.2. MIC determination for each AMP against S. cerevisiae at various pH values; n = 2, ± 1 SD in brackets.

Table 5.3. MIC determination for each AMP exposed to various temperatures (prior to peptide addition) against S.
cerevisiae; n = 2, ± 1 SD in brackets.

Table 5.4. MIC determination for each AMP against S. cerevisiae exposed to various concentrations of active HS; n =
2, ± 1 SD in brackets.

Table 5.5. MIC determination for each AMP against S. cerevisiae exposed to various concentrations of heat-
inactivated HS; n = 2, ± 1 SD in brackets.

NaCl DsS3(1-16) Ranalexin Magainin 2 Gomesin 6752 GS14K4

control 5 (0) 11 (0.58) 13 (1.15) 1.5 (0.14) 8 (0) 2 (0)

50 mM 20 (2.89) 15 (0) 15 (2.89) 2 (0) 30 (2.89) 2 (0.29)

100 mM 50 (0) 50 (11.5) 100 (28.9) 4 (0) 50 (0) 10 (1.15)

150 mM 100 (0) 50 (0) >100 (0) 8 (1.15) 100 (28.9) 30 (11.5)

200 mM >100 (0) 50 (0) >100 (0) 30 (2.89) >100 (0) 50 (0)

pH DsS3(1-16) Ranalexin Magainin 2 Gomesin 6752 GS14K4

5 12 (1) 22 (2.31) 25 (2.31) 2 (0.14) 14 (1.15) 7 (1.53)

6 6 (0) 20 (1.53) 15 (1) 1.25 (0.14) 10 (1.15) 2 (0.25)

7 5 (0) 11 (0) 13 (0.58) 1 (0) 8 (0.58) 2 (0.14)

8 5 (0) 18 (0.58) 17 (1.15) 1 (0) 9 (1.73) 3 (0)

9 7 (0.58) 20 (0.58) 25 (0.73) 1.25 (0.25) 14 (1.53) 6 (0.58)

temp. (°C) DsS3(1-16) Ranalexin Magainin 2 Gomesin 6752 GS14K4

30 5 (0) 11 (0) 13 (0) 1.5 (0) 8 (0) 2 (0)

80 6 (0.58) 11 (0) 15 (0) 1.25 (0) 10 (0) 3 (0.29)

100 6 (0) 11 (0) 15 (0) 1.25 (0.14) 10 (1.15) 4 (0.29)

% HS (Active) DsS3(1-16) Ranalexin Magainin 2 Gomesin 6752 GS14K4

0 5 (0) 12 (0.58) 14 (0.58) 1.5 (0) 8 (0) 2 (0)

1 22 (1.15) 25 (2.31) 30 (0) 1.5 (0.25) 25 (0) 8 (1.15)

2 25 (2.31) 50 (0) 50 (0) 2 (0.14) 30 (11.5) 15 (1.73)

3 30 (2.31) >50 (0) >50 (11.5) 4 (0) 50 (0) 25 (0)

5 30 (0) >50 (0) >50 (0) 4 (0.58) 50 (0) 25 (2.89)

% HS (Inactive) DsS3(1-16) Ranalexin Magainin 2 Gomesin 6752 GS14K4

0 5 (0) 12 (0.58) 14 (0.58) 1.5 (0) 8 (0) 2 (0)

1 20 (1.15) 30 (2.89) 30 (0) 2 (0.29) 25 (0) 8 (1.15)

2 22 (2) 30 (2.89) 50 (14.4) 4 (1.15) 25 (2.89) 20 (0)

3 25 (0) 50 (11.5) 50 (0) 4 (1) 30 (11.5) 25 (2.89)

5 25 (0) 50 (0) 50 (0) 5 (0.58) 30 (0) 25 (0)
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5.2.2 In vitro haemolytic assay of echinocandins and AMPs

The lytic activities of the AMPs and echinocandins (anidulafungin and caspofungin) were

assessed against horse erythrocytes. (Tables 5.6 – 5.7). AMPs were not lytic at 2 µg/ml

(Table 5.6), but at 5 µg/ml, rana, 6752 and GS14K4 caused low level haemolysis (0.5 –

4.1 %). Haemolytic activity of these peptides increased in a concentration dependent

manner. DsS3(1-16) and gomesin were not lytic even at 50 µg/ml followed by mag 2 (5.2

%), 6752 (5.3 %), GS14K4 (8.3 %) and rana (19.1 %). Caspofungin was non-haemolytic up

to 30 µg/ml (10 %) while increasing to 50 µg/ml caused 32 % lysis. Anidulafungin was

haemolytic at 1 µg/ml (6.7 %) through 50 µg/ml (47.5 %). As anidulafungin was

solubilised in 20 % (v/v) ethanol this was used as an additional control and generated no

haemolytic activity.

Combinations of echinocandin and peptide were subsequently monitored (Table 5.7). In

the presence of caspofungin there was no lysis recorded up to 10 µg/ml of caspofungin

and 30 µg/ml of AMP. At the highest concentration tested there was no lysis with

gomesin followed by DsS3(1-16) (3.1 %), 6752 (3.5 %), mag 2 (5 %), GS14K4 (10 %) and

rana (14.6 %). The combination of anidulafungin and AMP caused increased lysis with up

to 16.7 % at 1 µg/ml anidulafungin and 10 µg/ml of peptide. At the greatest

concentration, lysis was increased to 31.9 – 34.9 % for all AMPs with the exception of

6752 recording 76.6 % haemolysis.
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In summary, DsS3(1-16) and gomesin displayed no toxicity towards erythrocytes. A

combination of caspofungin and AMP produced low levels of toxicity while combinations

of anidulafungin and AMP displayed lysis at the lowest concentrations tested.

Table 5.6. Erythrocytes exposed to various concentrations of AMP or echinocandin. Lytic activity was determined at
OD570. Results are displayed as percentage haemolysis compared to the control. Water was used as a positive
control and reference point for complete lysis; n = 3, ± 1 SD in brackets.

Table 5.7. Erythrocytes exposed to various concentrations of AMP with echinocandin. Lytic activity was determined
at OD570. Results are displayed as percentage haemolysis compared to the control. Water was used as a positive
control and reference point for complete lysis; n = 3, ± 1 SD in brackets.

Concentration (µg/ml)

1 2 5 10 20 30 50

DsS3(1-16) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Ranalexin 0 (0) 0 (0) 4.1 (3.4) 6.2 (2.1) 4.7 (1.3) 6.8 (5.1) 19.1 (4.9)

Magainin 2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 5.2 (3.2)

Gomesin 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

6752 0 (0) 0 (0) 0.7 (0.5) 0.7 (0.5) 0 (0) 0 (0) 5.3 (1.7)

GS14K4 0 (0) 0 (0) 0.5 (0.5) 0 (0) 9.1 (4.5) 7.9 (5.1) 8.3 (5)

Caspofungin 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 10 (2.6) 32 (7.9)

Anidulafungin 6.7 (3.2) 6.9 (5.5) 23 (13.5) 38.8 (23.3) 36.8 (18.2) 36.1 (17.9) 47.5 (18.4)

Concentration (µg/ml)

1 & 10 5 & 20 10 & 30 15 & 50

Caspofungin & DsS3(1-16) 0 (0) 0 (0) 0 (0) 3.1 (1.1)

Caspofungin & Ranalexin 0 (0) 0 (0) 0 (0) 14.6 (4.6)

Caspofungin & Magainin 2 0 (0) 0 (0) 0 (0) 5 (0.3)

Caspofungin & Gomesin 0 (0) 0 (0) 0 (0) 0 (0)

Caspofungin & 6752 0 (0) 0 (0) 0 (0) 3.5 (2.7)

Caspofungin & GS14K4 0 (0) 0 (0) 0 (0) 10 (3.1)

Anidulafungin & DsS3(1-16) 11.9 (2.9) 14.5 (5.8) 23.7 (4.2) 34.9 (4.9)

Anidulafungin & Ranalexin 16.1 (5) 18.7 (4.6) 22.8 (6.3) 33.1 (6.6)

Anidulafungin & Magainin 2 11.3 (2.8) 22.7 (7) 25.8 (4) 26.9 (7)

Anidulafungin & Gomesin 8.6 (0.7) 10.7 (1.2) 18.3 (1.9) 31.9 (5.4)

Anidulafungin & 6752 0 (0) 18.7 (1.1) 19.1 (6.4) 76.6 (9.9)

Anidulafungin & GS14K4 16.7 (2.5) 15.3 (2.6) 24.7 (2.5) 33.9 (5.2)
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5.2.3 In vitro mammalian cell cytotoxicity assay of echinocandins and AMPs

Cytotoxicity assays were performed using Vero cells with a fibroblast morphology, the

most common cell type in connective tissue. This lineage can be replicated through

many cycles of division without senescence so was selected (Yasamura et al, 1963).

Viability was measured after exposure to AMP and echinocandin using the neutral red

procedure (Borenfreund et al, 1985). Cell viability was unaffected by caspofungin up to

50 µg/ml (Figure 5.1). Anidulafungin at 10 µg/ml reduced cell viability to 89 % but similar

viability reductions were seen up to 50 µg/ml (87 % viability). Vero cell viability after

exposure to AMPs remained unchanged up to 50 µg/ml (97.3 – 100 %) (Figure 5.2). As

AMP concentration increased to 100 µg/ml, cytotoxicity was apparent with rana (79.2

%), gomesin (64.5 %) and GS14K4 (33.9 %). Exposure to DsS3(1-16), mag 2 and 6752

resulted in only slight reductions in viability (95.1 – 99.8 %).

Vero cell viability was assessed with combinations of echinocandin with AMPs (Figures

5.3 – 5.4). At low concentrations there was no cytotoxicity with caspofungin and AMP.

At 15 µg/ml caspofungin and 50 µg/ml AMP there was reduced viability with rana (85.5

%) and gomesin (96 %). At 100 µg/ml caspofungin and AMP further reductions were

observed: GS14K4 (51.1 % viable), rana (72 %), DsS3(1-16) (82.7 %), gomesin (83.4 %),

6752 (94.9 %) and mag 2 (97.3 %). With 10 µg/ml anidulafungin, cytotoxicity was

apparent with DsS3(1-16) (11.2 %) and gomesin (10.7 %). At 100 µg/ml anidulafungin

and AMP, viability was reduced further: GS14K4 (16.5 % viable), gomesin (36 %), mag 2

(42.4 %), 6752 (65.7 %), DsS3(1-16) (67.4 %) and rana (78.6 %). As a positive control,

CCCP was added at 0.15 µg/ml and rendered 76.7 % of cells non-viable.
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In summary, DsS3(1-16), mag 2 and 6752 displayed no cytotoxicity against Vero cells

when used individually up to 100 µg/ml. In combination with caspofungin, cytotoxicity

was observed only at the highest concentrations. In combination with anidulafungin,

cytotoxicity was increased and observed with all AMPs at reduced concentrations

compared to caspofungin. However, these concentrations are much greater than those

required to inhibit growth of C. albicans in vitro.
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Figure 5.1. Mammalian cell cytotoxicity assay with echinocandins. Vero cells were exposed to echinocandins and
cytotoxicity was determined via the neutral red assay. Viability was determined by percentage of control value; n =
2 ± 1 SD.

Figure 5.2. Mammalian cell cytotoxicity assay with AMPs. Vero cells were exposed to AMPs and cytotoxicity was
determined via the neutral red assay. Viability was determined by percentage of control value; n = 2 ± 1 SD.
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Figure 5.3. Mammalian cell cytotoxicity assay with combinations of AMP and caspofungin. Vero cells were exposed
to AMPs with caspofungin and cytotoxicity was determined via the neutral red assay. Viability was determined by
percentage of control value; n = 2 ± 1 SD.

Figure 5.4. Mammalian cell cytotoxicity assay with combinations of AMP and anidulafungin. Vero cells were
exposed to AMPs with anidulafungin and cytotoxicity was determined via the neutral red assay. Viability was
determined by percentage of control value; n = 2 ± 1 SD.
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5.2.4 Efficacy in vivo of the combination of caspofungin with ranalexin in a murine

model of disseminated Candidiasis

This work was performed by Prof. Frank Odds group, School of Medical Sciences,

University of Aberdeen. In the first experiment, with caspofungin given IP at 0.01 mg/kg,

the 72 h kidney burden was reduced significantly below placebo (p<0.05) in mice given

the caspofungin/ranalexin combination: however, the extent of the effect was less than

a 1-log burden reduction (Table 5.8). No significant reduction in weight loss relative to

placebo-treated mice was seen for any of the test agents. In the second experiment,

with a greater caspofungin dose of 0.05 mg/kg, IV dosing of both test agents, and BID

dosing of ranalexin, highly significant (p<0.01) reductions in kidney burdens and 3-day

weight loss were seen for groups of animals receiving treatments that included

caspofungin. Disappointingly, the combination treatment did not result in enhanced

efficacy compared to the single treatments.

Table 5.8. The effect of combination treatment with caspofungin and ranalexin compared to the individual
treatments alone on kidney burden of C. albicans SC5314 and animal weight in a mouse model of disseminal
Candidiasis. Mean ± 1 SD.

kidney log10 weight change (%)

treatment CFU/g mean day 0 - day 3 mean

saline IP/saline IV 4.1 (0.6) 0.3 (3.5)

caspofungin (0.01 mg/kg) IP/saline IV 3.4 (0.4) 1.4 (2.5)

saline IP/ranalexin IV 3.8 (0.6) -1.0 (2.4)

caspofungin IP/ranalexin IV 3.4 (0.3) -1.1 (1.9)

saline IV 4.0 (0.3) -5.8 (0.9)

caspofungin (0.05 mg/kg) IV 2.5 (0.3) -2.2 (1.4)

ranalexin (10 mg/kg) IV 4.5 (0.7) -5.0 (3.3)

caspofungin & ranalexin IV 3.2 (0.2) -1.5 (1.6)

*p<0.05 and **p<0.01 relative to placebo-treated group (Mann-Whitney U test).
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5.3 Discussion

Resistance to conventional antimicrobials is increasingly prevalent and treatment with

drugs can be complicated by toxicity and the emergence of drug-resistant strains (Pfaller

et al, 2007). To combat drug resistant pathogens new antimicrobial treatments must be

considered. As antimicrobial peptides have a wide spectrum of activity against many

pathogenic microorganisms and resistance events are extremely rare due to their mode

of action they are of interest for the development of new treatments (van’t Hof et al,

2001). Therefore, it is important that new drugs have low toxicity, long half-life in the

body and retain antimicrobial activity in vivo. In this chapter the efficacy of several AMPs

has been determined against S. cerevisiae in the presence of various salt, pH,

temperature and human serum conditions. AMPs had reduced efficacy in salt conditions,

at pH values deviating from neutral and with HS, but were not affected by exposure to

high temperature. The haemolytic and cytotoxic properties of these peptides have also

been investigated with no increase in lytic activity when echinocandins and AMPs were

combined.

All AMPs were inhibited by NaCl with a 25-fold increase in MIC with one peptide. This

will be problematic for future treatment considering that physiological NaCl

concentrations are in the range of 150 mM (Maeda et al, 1990) and also for topical

treatments given the salt content of sweat which contains ~ 0.9 g/L sodium (Montain et

al, 2007). NaCl resistance is important for the activity of AMPs in vivo. For example, an

increase in NaCl concentration in the lungs to 120 mM decreased the activity of AMPs

produced on the mucosal surface (Goldman et al, 1997). The presence of divalent
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cations such as CaCl2 and MgCl2 also resulted in decreased activity of several mammalian

AMPs (Lehrer et al, 1988). The ability of AMPs to resist high salt concentrations is

important for the development of future therapeutic applications.

The pH also influenced the efficacy of AMPs with increased MICs in acidic or basic

conditions. The action of all peptides was greatest at neutral pH values. As the pH is

decreased this would result in neutralisation of the negative charges found on the

membrane surface (Dychala et al, 1991) which, in turn, would reduce the binding affinity

of cationic AMPs, probably reducing their activity. This is problematic for future topical

applications given the acidic conditions on the skin surface (~pH 5.6) and in the stomach.

If used intravenously, the blood has a closely regulated pH of 7.35 - 7.45 so ionic

interference would be less problematic. However HS substantially increased the MIC of

each peptide probably due to the presence of inhibiting proteins, peptidases or other

macromolecules or salts which competitively bind peptide monomers. The serum may

also contain molecules that could obscure the sites of peptide action on the yeast cell

wall or membrane. Active HS had the greatest effect on peptide action, however, both

decreased antifungal action suggesting the proteins and peptidases contribute but are

not wholly responsible to loss of efficacy (Panyutich et al, 1991). In order to reduce HS

interference, derivatives of these AMPs may have to be developed with reduced affinity

from interfering components that would increase therapeutic potential.
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All peptides displayed low-level haemolytic activity at concentrations in excess of those

required for S. cerevisiae inhibition with the exception of rana. Similar results were

obtained for caspofungin. With combinations of AMP and caspofungin there was no

increase in haemolytic activity when comparing individual results to combined, while on

combination with anidulafungin a slight increase in haemolysis was observed.

All peptides displayed no cytotoxicity towards mammalian Vero cells up to 50 µg/ml. In

combination with caspofungin there was no increase in cytotoxicity. In combination with

anidulafungin there was only a slight increase in cytotoxicity. C. albicans cultures were

rendered non-viable at concentrations >100 µg/ml in RPMI (Chapter 4), at similar

concentrations cytotoxicity against Vero cells was observed with rana, gomesin and

GS14K4 indicating these AMPs are cytotoxic to mammalian cells at fungicidal

concentrations. However, DsS3(1-16), mag 2 and 6752 did not display cytotoxic activity

either individually or in combination with caspofungin so may warrant further

investigation. Additionally, gomesin displayed no haemolytic activity so should also be

considered. The mode of action of mag 2 against mammalian cells is different from that

of microbes. Instead of forming toroidal pores (Tachi et al, 2002) it caused membrane

deformation including budding on mammalian membranes displaying a ‘carpet-like’

action (Imura et al, 2008). Mag 2 has previously been shown to cause haemolysis but at

far greater concentrations than bactericidal and fungicidal levels (Imura et al, 2008).

Importantly, the study revealed that concentrations of the antifungals in combination

that are much greater than concentrations necessary to completely inhibit growth of C.

albicans in vitro did not induce cytotoxicity in vitro.
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The combination treatment was further investigated using a murine model for

preliminary in vivo studies. Effectiveness was monitored using fungal kidney burden and

animal weight. A single combination of caspofungin and rana was tested at one

concentration and selected as previous work using this peptide had generated

appropriate in vivo dosages that were non-toxic. Disappointingly, there was no

indication of enhanced efficacy of these antifungal agents in the murine models, some of

which demonstrated rana toxicity. As only one combination was tested due to limited

resources there is still scope for further investigation using antimicrobial peptides that

show reduced toxicity in vivo.

The dermaseptins show very low levels of haemolytic activity at levels far above their

antimicrobial concentrations (Helmerhorstb et al, 1999; Brand et al, 2002). A truncated

16 a.a. derivative of Dermaseptin S4 displayed good antimicrobial activity in a murine

model with no toxicity (Navon-Venezia et al, 2002). Recently Dermaseptin 01 has been

shown to have no significant lytic effect on mammalian erythrocytes or tissues in vivo

(Leite et al, 2008). DsS3(1-16) displays similar characteristics in vitro and is a truncated

version of the native form increasing its suitability for peptide synthesis. Future work will

be beneficial in establishing its therapeutic index. Gomesin displayed levels of

cytotoxicity towards mammalian cells which have been reported previously (Fazio et al,

2006). Several gomesin analogues have been developed that retain the same

antimicrobial activity and reduce the cytotoxic effects increasing its therapeutic index

(Fazio et al, 2007). These results indicate that derivatives of gomesin are of increased
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interest in terms of their therapeutic potential even with the lack of synergy on

combination with echinocandins (Chapter 4).
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6. Deletion of HAL5, LDB7 and IMP2’ in S. cerevisiae results in

increased susceptibility to several cationic antimicrobial

peptides.

6.1. Introduction

Most studies suggest that AMPs exert their antifungal action by interacting with the

plasma membrane, however, AMPs may also affect intracellular targets (Mortona et al,

2007; Hale et al, 2007). These alternative modes of action may function as

complementary mechanisms that are required to kill certain pathogens. For example,

thrombin-induced platelet microbicidal protein (tPMP) acts to permeabilise the

membrane of S. aureus cells. After this membrane action, cells were found to remain

viable long after exposure. It was discovered that tPMP acts to inhibit DNA and RNA

synthesis some 30 min after membrane permeabilisation (Xiong et al, 2002).

Furthermore, cells were exposed to antibiotics immediately prior to peptide addition

that inhibited DNA or protein synthesis and prevented tPMP killing. Thus an additional

mode of action of certain cationic peptides may be to bind negatively charged nucleic

acids, causing or further increasing their antimicrobial action. AMPs have also been

discovered that inhibit intracellular organelles. For example, the cationic peptide

histatin-5 was found to perturb the membrane and inhibit mitochondrial

transmembrane potential (Helmerhorsta et al, 1999).
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A study comparing the inhibitory effects of mag 2 and DsS3(1-16) on the model fungus S.

cerevisiae employed global deletion mutant library phenotypic screening and expression

analysis. This involved the screening of 4,847 nonessential gene deletions in S. cerevisiae

BY4741 MATa. Of these genes, it was found that 0.7 % showed sensitivity to both

peptides, 1.7 % showed DsS3(1-16) sensitivity only and 0.4 % showed mag 2 sensitivity

only (Mortonb et al, 2007). Three such genes that confer sensitivity upon deletion to

both peptides were LDB7, IMP2’ and HAL5. Moreover, HAL5 was the only gene found to

become up-regulated upon treatment with mag 2 and DsS3(1-16).

The low-dye-binding (LDB) genes are involved in the RSC (Remodelling the Structure of

Chromatin) chromatin remodelling complex that is implicated in nuclear protein

transport and chromatin structure. Ldb7 encodes the protein Rsc14 that is a subunit

forming the RSC complex (Wilson et al, 2006) and is involved in the transfer of

mannosylphosphate groups into the N-linked oligosaccharides on the cell wall (Corbacho

et al, 2004). This complex is also required to maintain cell wall integrity as rsc14Δ 

mutants displayed cell wall defects. Additionally, RSC is involved in DNA damage

response; it was shown that deletion of RSC7 confers more sensitivity to DNA damaging

agents (Wilson et al, 2006). This complex has also been implicated in double-strand

break repair (Chai et al, 2005).

IMP2’ encodes a transcription factor and is involved in glucose signalling. It also

indirectly regulates GAL gene expression, which is involved in galactose metabolism
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(Alberti et al, 2003). The role of IMP2’ may be more extensive, as IMP2’ mutants are

hypersensitive to temperature, oxidative damage and osmotic stress. IMP2’ encodes a

protein that protects the cell against DNA-damage from oxidative agents as imp2’

mutants display an increase in genetic recombination (Masson et al, 1996).

HAL5 acts with HAL4 to regulate the Trk1-Trk2 potassium transporter. It acts by

increasing the influx of potassium and decreasing the electrical membrane potential and

is activated by low potassium levels and sodium stress (Ramos et al, 1990). This is

achieved via the regulation of the potassium transporter, Trk1-Trk2. Over expression of

both HAL4 and HAL5 increase sodium and lithium tolerance by reducing accumulation

and increasing intracellular potassium while deletion confers sensitivity (Mulet et al,

1999). It has since been discovered that Hal4 and Hal5 kinases are involved in the

stability of the Trk1 transporter. These potassium transporters are degraded on deletion

of these genes while over-expression results in an increased build up of Trk1 in the

plasma membrane (Perez-Valle et al, 2007). HAL5 is an indirect regulator of membrane

potential and therefore may influence the susceptibility of the cell to cationic

antimicrobial agents. Deletion of HAL4 and HAL5 also confers increased sensitivity to

several chemotherapeutic agents due to loss of selectivity of plasma membrane

transporters resulting in increased drug transport (Thornton et al, 2005). As LDB7, IMP2’

and HAL5 confer changes in sensitivity to both DsS3(1-16) and mag 2 and phenotype

screening shows their change in regulation upon exposure, these genes were selected

for additional studies to elucidate their involvement in response to AMP action.
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6.2 Results

6.2.1 MIC determination

MICs with DsS3(1-16), mag 2 and rana were determined with deletion strains and

performed as described previously (Section 3.2.1). The BY4741a wt strain had a MIC of

20 µg/ml for rana, 8 µg/ml for DsS3(1-16) and 14 µg/ml for mag 2 (Table 6.1). The

mutant strains were more sensitive to the action of all the peptides. The ldb7Δ strain 

was more susceptible to rana (MIC of 18 µg/ml), DsS3(1-16) (MIC of 6 µg/ml) and mag 2

(MIC of 12 µg/ml). Similarly, the hal5Δ mutant had reduced MICs compared to the 

parent strain against rana, DsS3(1-16) and mag 2 with MICs of 18, 4 and 10 µg/ml

respectively. Moreover, with the imp2’Δ deletion strain MICs for rana, DsS3(1-16) and 

mag2 were 18, 6 and 12 µg/ml respectively. All deletion mutants selected here displayed

increased sensitivity when exposed to DsS3(1-16), mag 2 and rana.

Table 6.1. MIC values of wt, hal5Δ, ldb7Δ and imp2’Δ when exposed to DsS3(1-16), mag 2 and rana. Plate scans in 
appendix II; n = 3.

MIC (µg/ml)

DsS3(1-16) Magainin 2 Ranalexin

wt 8 14 20

hal5Δ 4 10 18

ldb7Δ 6 12 18

imp2'Δ 6 12 18

6.2.2 Growth of deletion mutants

To further study the increased susceptibility of S. cerevisiae cells on deletion of HAL5,

LDB7 and IMP2’ to the action of AMPs, growth curves were produced (Figures 6.1 – 6.3).

All deletion strains had reduced growth compared to the parent strain in the absence of



159

peptide. Compared to the wt, the ldb7Δ strain showed reduced growth after 48 h (Figure 

6.1). At 5 µg/ml DsS3(1-16), growth of the wt was inhibited with an increased lag phase

(31.25 h) compared to the control (13.5 h). At the same DsS3(1-16) concentration, there

was no growth of the ldb7Δ mutant. At 10 µg/ml of mag 2, inhibition was apparent in 

both the wt and ldb7Δ strains with increased lag phases of 2.5 h. With 12 µg/ml mag 2 

growth was inhibited in the wt strain and absent in the ldb7Δ mutant. On exposure to 

rana, similar results were observed. Growth at 16 µg/ml was inhibited in both strains

with increased lag phases of 1 h (wt) and 9.5 h (ldb7Δ). With 22 µg/ml rana, growth of 

the wt strain was inhibited further, with an increased lag phase and reduced growth. In

comparison, the ldb7Δ strain displayed no growth after 48 h.  

Results with imp2’Δ were similar (Figure 6.2). On exposure to 4 µg/ml DsS3(1-16), both 

strains displayed inhibited growth. With 5 µg/ml, the wt was inhibited with an increase

in lag phase of 15.25 h while the imp2’Δ strain displayed no growth. At 10 µg/ml of mag 

2, growth of the wt strain was inhibited while no growth with imp2’Δ was recorded. 

With 16 µg/ml of rana the imp2’Δ strain displayed no growth.  

Compared to the wt strain, the hal5Δ mutant had an extended lag phase lasting an 

additional 4.5 h (Figure 6.3). Growth with 3 µg/ml DsS3(1-16) was inhibitory to hal5Δ, 

with an increase in lag phase of 6.5 h. At 5 µg/ml DsS3(1-16), inhibition of the wt strain

was observed with a doubling in lag phase (27 h) while there was no growth of hal5Δ. At 

10 µg/ml mag 2 the wt displayed an increase in lag phase of 11.75 h while the deletion
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strain failed to grow. With 18 µg/ml rana, the wt strain was inhibited with a doubling in

lag phase (26 h) while the hal5Δ deletion strain displayed no growth. These results 

indicate that in the presence of DsS3(1-16), mag 2 and ranalexin there was increased

inhibition upon deletion of HAL5, LDB7 and IMP2’. However, all three mutants appear to

have a reduced growth phenotype in the absence of peptide compared to the parent

strain. Studies with rana also highlight the increase in population density observed when

sub-lethal concentrations of peptide were present after 48 h of incubation.
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Figure 6.1. Growth of ldb7Δ and wt strains when exposed to various concentrations of DsS3(1-16), mag 2 or
rana. Cell density (OD600) was measured every 15 min over a 48 h period. Each experiment was carried out in
duplicate and representative graphs for each are shown.
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Figure 6.2. Growth of imp2’Δ and wt strains when exposed to various concentrations of DsS3(1-16), mag 2 or
rana. Cell density (OD600) was measured every 15 min over a 48 h period. Each experiment was carried out in
duplicate and representative graphs for each are shown.
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Figure 6.3. Growth of hal5Δ and wt strains when exposed to various concentrations of DsS3(1-16), mag 2 or
rana. Cell density (OD600) was measured every 15 min over a 48 h period. Each experiment was carried out in
duplicate and representative graphs for each are shown.
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6.2.3 Quantification of Flu-DsS3(1-16) binding and internalisation by S. cerevisiae cells.

Deletion of HAL5, LDB7 and IMP2’ caused increased susceptibility of S. cerevisiae cells to

several cationic AMPs. It is possible that this increased peptide action is the result of an

increase in peptide binding and internalisation. Peptide sequestration was monitored

using Flu-DsS3(1-16) as before (Section 3.2.5).

There was increased Flu-DsS3(1-16) sequestration by the deletion strains compared to

the wt at lower concentrations of peptide (Figure 6.4). However, at the greatest

concentration used (20 µg/ml), the differences were less obvious as may be expected

due to cell saturation with peptide (Section 3.2.5). At 5 µg/ml, after 30 min, the wt

population sequestered 41 % of the available peptide, hal5Δ sequestered 45.6 %, imp2Δ 

sequestered 49 % and ldb7Δ sequestered 51 %. At 10 and 15 µg/ml the wt sequestered 

35.6 % and 39.55 % of the available peptide respectively, whilst the hal5Δ and ldb7Δ 

strains sequestered more peptide (43.5 - 45.9 %). The imp2’Δ mutant strain sequestered 

the greatest percentage of available peptide at 10 µg/ml (51.7 %) and 15 µg/ml (50.23

%). This data indicates that these strains show increased peptide binding and

internalisation on deletion with differences of up to 16.1 % increased peptide

sequestration compared to the wt S. cerevisiae strain. Consequently there is a

correlation between degree of peptide binding and sensitivity to the inhibitory action of

the peptides.
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Figure 6.4. Peptide sequestration by wt, hal5Δ, ldb7Δ and imp2’Δ. Flu-DsS3(1-16) was added at 5, 10, 15 or 20 µg/ml
to an equal number of cells from each deletion strain. The percentage of Flu-DsS3(1-16) sequestered by each cell
population was calculated and plotted; n = 3 mean ± 1 SD.

6.2.4 Population viability using fluorescence microscopy

To quantify cell viability, cells were stained with PI or CTG after exposure to DsS3(1-16)

(Figure 6.5). A group of cells in each assay stained with both PI and CTG so were labelled

as ‘dual staining’. In the absence of Flu-DsS3(1-16) 90.1 - 94.4 % of the cells in the wt,

hal5Δ and imp2’Δ populations stained with CTG, whilst only 79.1 % of the ldb7Δ 

population staining with CTG. As the concentration of DsS3(1-16) was increased, so the

proportion of cells with CTG staining decreased indicating reduced viability in the cell

populations. At all concentrations of peptide, the wt strain had the lowest susceptibility

to the peptide compared to the deletion strains. This was most apparent at 4 µg/ml of

DsS3(1-16) where 81.3 % of wt cells stained with CTG compared to 43.7 %, 44.9 % and

38.4 % in the hal5Δ, ldb7Δ and imp2’Δ deletion strains respectively. At 2 µg/ml, ldb7Δ 

0

10

20

30

40

50

60

w
.t

.

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ

w
.t

.

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ

w
.t

.

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ

w
.t

.

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ

5 10 15 20

%
Fl

u
-D

sS
3

(1
-1

6
)

se
q

u
e

st
e

re
d

Flu-DsS3(1-16) (µg/ml)



was most sensitive to pepti

was the imp2’Δ mutant that showed more sensitivity. 

Figure 6.5. Percentage of each cell population flu
For each assay a minimum of 300 cells were counted and quantified into a percentage of the
= 2.

Concomitantly, cell viability was assessed by dilution and plating (

strain had the smallest decrease in viability

survivors at 8 µg/ml of DsS3(1

57.1 % at 2 µg/ml DsS3(1

imp2’Δ decreased to 5.6 % at 8

reduction in viability was

action, the wt strain was least susceptible followed by

the most susceptible. The extent of killing in this viability assay would indicate that cells

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
w

t
h

al
5

Δ

ld
b

7
Δ

im
p

2
'Δ w
t

0 µg/ml

Fl
u

o
re

sc
en

t
ce

lls

was most sensitive to peptide action, however, as the concentration was increased it

Δ mutant that showed more sensitivity. 

. Percentage of each cell population fluorescing with CTG, PI or dual staining when exposed to
For each assay a minimum of 300 cells were counted and quantified into a percentage of the

Concomitantly, cell viability was assessed by dilution and plating (

strain had the smallest decrease in viability over the concentration range, with 40.2 %

µg/ml of DsS3(1-16). The ldb7Δ mutant’s viability reduced gradually from 

l DsS3(1-16) to 17.3 % at 8 µg/ml of DsS3(1-16). Cell survival with

Δ decreased to 5.6 % at 8 µg/ml of DsS3(1-16). The strain that had the greatest

reduction in viability was hal5Δ with 3.1 % survivorship at 8 µg/ml. In terms of peptide

action, the wt strain was least susceptible followed by ldb7Δ, imp2’

the most susceptible. The extent of killing in this viability assay would indicate that cells

w
t

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ w
t

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ w
t

h
al

5
Δ

ld
b

7
Δ

im
p

2
'Δ w
t

h
al

5
Δ

ld
b

7
Δ

2 µg/ml 4 µg/ml 6 µg/ml 8 µg/ml

DsS3(1-16)

166

de action, however, as the concentration was increased it
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which had stained with both CTG and PI were non-viable e.g. the wt strain decreased to

40.2 % survivorship at 8 µg/ml DsS3(1-16)) and displayed an increase in dual staining of

66 % compared to the no peptide control.

Figure 6.6. Cell viability count after exposure to DsS3(1-16). The results are plotted as percent survivors; n = 3 mean
±2SD.

6.2.5 GFP-tagging of HAL5, LDB7 and IMP2’

GFP constructs were created to monitor changes in protein expression and localisation

upon peptide exposure. In the absence of peptide, LDB7-GFP localised at the nucleus

corresponding with fluorescence from the DAPI staining (Figure 6.7). As LDB7 encodes

Rsc14 that is involved in chromatin remodelling, this localisation at the nucleus would be

expected (Wilson et al, 2006). With the addition of 6 µg/ml DsS3(1-16) there were no

observable differences in localisation and expression 60 min after peptide exposure.

When observing the HAL5-GFP population in the absence of peptide, diffuse expression
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occurred throughout the cell. HAL5 encodes Trk1 and Trk2 which regulate potassium

transport and are found in the membrane, as a result whole cell expression would be

expected. With the addition of 6 µg/ml of DsS3(1-16) no observable expression or

localisation changes were observed when comparing the two populations. Culturing of

the IMP2’-GFP revealed little fluorescence in the absence of DsS3(1-16). Levels were low

throughout the population, as a result, localisation patterns were not observable. Upon

exposure to 6 µg/ml of DsS3(1-16) there was an increase in fluorescing cells throughout

the population.



Figure 6.7. Representative images acquired from fluorescent microscopy of GFP
were incubated in the presence or absence of DsS3(1
Localisation and expression of Hal5 and Ldb7 remained unchanged in the presence of DsS3(1
however, upregulation of Imp2’ was observed; scale bar = 5 µM.

. Representative images acquired from fluorescent microscopy of GFP
e presence or absence of DsS3(1-16) for 60 min prior to image acquisition.

Localisation and expression of Hal5 and Ldb7 remained unchanged in the presence of DsS3(1
however, upregulation of Imp2’ was observed; scale bar = 5 µM.
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. Representative images acquired from fluorescent microscopy of GFP-labelled proteins. Cells
prior to image acquisition.

Localisation and expression of Hal5 and Ldb7 remained unchanged in the presence of DsS3(1-16),
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6.2.6 Cytometric analysis of membrane potential

Changes to membrane potential in wt and mutant strains on exposure to DsS3(1-16)

were recorded. As the proposed initial interaction of DsS3(1-16) is with the membrane

surface, a resulting shift in membrane potential may occur. HAL5 is of particular interest

as it encodes a protein kinase that acts to stabilise potassium transporters found in the

plasma membrane so may produce more pronounced changes in membrane potential

upon peptide exposure. To monitor membrane potential changes a fluorescent

redistribution probe (diS-C3(3)) was used. Hal5Δ, ldb7Δ, imp2’Δ and wt strains were 

incubated with diS-C3(3) and DsS3(1-16). A representative data set is presented (Table

6.2) and corresponding diS-C3(3) log fluorescent histograms were generated (Figures 6.8

and 6.9). These graphs display the relative fluorescence plotted against the number of

events. Sections A (all events), B (low level fluorescence) and C (high level fluorescence)

in the table correspond to sections A, B and C in each graph. A bimodal distribution was

generated by all strains.

When exposed to 10 µg/ml or 20 µg/ml of DsS3(1-16), the wt population displayed a

slight increase in fluorescence with the median increasing from 5.8 to 6.5 in both

treatments. Fluorescence in the two sub-populations (B and C) also increased with a

concurrent increase in gated cells to 26.2 % (B) and 57.2 % (C). The culture treated with

6.5 µM of amphotericin B displayed a marked decrease in median fluorescence, reducing

from 5.8 to 3.4. There was also an increase in the population of cells displaying low

fluorescence (B), from 26.2 % in the negative control to 31.7 % in the amphotericin B

positive control. This data demonstrates the depolarising effects of amphotericin B and
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subsequent efflux of dS-C3(3) producing a decrease in fluorescence. However, with the

addition of DsS3(1-16) no such decrease was observed indicating no change in

membrane potential 20 min after peptide exposure.

The ldb7Δ strain displayed decreased levels of probe uptake compared to the wt strain, 

with medians of 2.3 and 5.8 respectively. There was also a higher proportion of cells in

section B (60.2 %) compared to the wt (26.2 %). As with the wt, there was an increase in

fluorescence upon exposure to DsS3(1-16), with the median increasing to 2.8 at 10

µg/ml and 2.7 at 20 µg/ml. The percentage of gated cells remained unchanged on

peptide addition between populations B and C.

The imp2’Δ cells generated decreased fluorescence levels when compared to the wt, 

with 45.2 % gated in the lower fluorescent population (B) compared to 26.2 % of wt

cells. The medians generated were also reduced. On peptide addition there was a

gradual increase in the percentage of gated cells in population B, from 45.2 % in the

control to 46.5 % at 10 µg/ml and 48.7 % at 20 µg/ml. This change was very minor so it is

difficult to attribute this with increased depolarisation.

The hal5Δ mutant control data was similar to the wt strain with gating levels at 25.2 % 

(B) and 58.1 % (C). Median values were also comparable to the wt control (6). When

cultures were exposed to peptide there was little change in median value (6.3 at 10

µg/ml). However, the percentage of cells observed in section B (reduced fluorescence)

increased as the DsS3(1-16) concentration increased. At 10 µg/ml this increased by 1.15

%, while at 20 µg/ml there was an increase of 35.1 % giving 60.2 % gated in section B.
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This was indicative of depolarisation and diS-C3(3) efflux from cells in the population.

This fluorescent reduction may be linked to peptide concentration as the highest

percentage of cells gated occurred at the highest AMP concentration.

The data from the cytometer experiments show strain variation in terms of initial probe

uptake. These strain distribution differences could result from differential activity of

MDR efflux pumps that are responsible for diS-C3(3) distribution and equilibrium within

the cell or from differences in resting membrane potential between the mutants (Malac

et al, 2005). The wt, ldb7Δ and imp2’Δ strains display minor changes in fluorescence 

levels as peptide was added without a considerable increase in depolarisation at 20

µg/ml Dss3(1-16). However, the wt strain displayed depolarisation in the presence of

amphotericin B indicating the assay was sensitive to changes in membrane potential.

The hal5Δ strain showed overall decreases in fluorescence when monitoring the 

percentage of gated cells displaying low fluorescence (section B). This indicates that Hal5

may protect cells from peptide action by inhibiting membrane depolarisation and

increasing stability while Ldb7 and Imp2’ have different protective mechanisms.
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Table 6.2. Changes in dS-C3(3) fluorescence in S. cerevisiae mutants upon exposure to DsS3(1-16) or
amphotericin B (AMP). ‘A’ records all events, ‘B’ records the cells displaying reduced fluorescence, ‘C’ records
the percentage of cells with increased diS-C3(3) fluorescence. At least 98.5 % of events were gated in section
A.

Section % Gated x-Median

wt control A 99.08 5.8
B 26.16 1.7

C 57.17 8.3
wt 10 µg/ml DsS3(1-16) A 99.39 6.5

B 28.57 2.2

C 59.55 8.6
wt 20 µg/ml DsS3(1-16) A 99.5 6.5

B 28.01 2.2

C 58.65 8.8
wt AMP control 6.5 µM A 99.79 3.4

B 31.7 0.6

C 50.47 7
ldb7 Δ control A 98.58 2.3

B 60.22 1.2

C 33.67 11.7
ldb7 Δ 10 µg/ml DsS3(1-16) A 99.22 2.8

B 61.7 1.5

C 33.55 13.7
ldb7 Δ 20 µg/ml DsS3(1-16) A 98.87 2.7

B 60.59 1.4

C 33.94 13.8
imp2' Δ control A 98.96 4.7

B 45.22 1.7

C 37.33 11.5
imp2' Δ 10 µg/ml DsS3(1-16) A 99.47 5

B 46.49 1.9

C 38.2 11.9
imp2' Δ 20 µg/ml DsS3(1-16) A 99.44 4.4

B 48.7 1.8

C 37.01 11.7
hal5 Δ control A 98.78 6

B 25.16 1.4

C 58.1 8.5
hal5 Δ 10 µg/ml DsS3(1-16) A 98.5 6.3

B 26.31 1.5

C 56.74 9.2
hal5 Δ 20 µg/ml DsS3(1-16) A 98.93 5.8

B 60.22 1.2
C 33.67 11.7



Figure 6.8. Fluorescent histograms displaying log fluorescence
correspond to sections A, B and C displayed in each graph. T
positive control, amphotericin B (AMPB). The experiment was carried out in triplicate and a representative run is presented.

fluorescence (FL2) against number of events recorded with wt and ldb7Δ. The sections quantified in
graph. Top: wt strain, bottom: ldb7Δ. Results are displayed with increasing concent

The experiment was carried out in triplicate and a representative run is presented.
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. The sections quantified in table 6.2
with increasing concentrations of DsS3(1-16) and the



Figure 6.9. Fluorescent histograms displaying log fluorescence
correspond to sections A, B and C displayed in each graph. T
experiment was carried out in triplicate and a representative run is presented

fluorescence (FL2) against number of events recorded with hal5Δ and imp2’Δ
C displayed in each graph. Top: hal5Δ, bottom: imp2’Δ. Results are displayed with increasing concent

xperiment was carried out in triplicate and a representative run is presented.
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Δ. The sections quantified in table 6.2
with increasing concentrations of DsS3(1-16). The
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6.3 Discussion

In a previous investigation a genetic screen of all non-essential genes in S. cerevisiae

demonstrated that upon deletion 1.7 % showed DsS3(1-16) sensitivity, 0.4 % showed

mag 2 sensitivity and 0.7 % showed sensitivity to both peptides (Mortonb et al, 2007). Of

the genes conferring dual sensitivity, HAL5, LDB7 and IMP2’ were selected for further

analysis. The results from this present chapter confirm a previous report that HAL5,

LDB7 and IMP2’ mutants have increased sensitivity to AMPs. Additionally, mutants

sequestered an increased amount of available peptide, membrane depolarisation was

recorded upon deletion of HAL5 and Imp2’ was up regulated on exposure to peptide.

The ldb7Δ mutant displayed a reduction in MIC when exposed to DsS3(1-16), mag 2 and 

rana and also showed no growth at concentrations that were only partially inhibitory to

the wt strain. The deletion strain displayed an increase in peptide sequestration and

showed greater loss of cell viability when exposed to increasing concentrations of

DsS3(1-16) in a cell labelling assay. This data demonstrates the increase in susceptibility

of S. cerevisiae cells that lack the LDB7 gene. Ldb7 is involved in chromatin remodelling

and its localisation has been shown around the nucleus in the GFP tagging study. The

gene encodes Rsc14 that forms the RSC chromatin remodelling complex. Rsc14 is also

required for the association of other RSC components. This complex has been linked to

cell wall integrity as mutations in subunits confer cell wall defects such as reduced

oligosaccharide branching and mannosylphosphate attachment (Wilson et al, 2006). If

cell wall integrity is reduced this could perpetuate peptide binding to the membrane and

increase disruption leading to enhanced killing. As reduced mannosylphosphate
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attachment is a phenotype of several mutations to ldb genes, a decrease in the

phosphate component of the cell wall would be expected. However, a study of Alcian

blue binding found only a marginal decrease in binding affinity with ldb7Δ when 

compared to the wt strain suggesting phosphate levels were conserved (Corbacho et al,

2004).

The RSC has also been implicated in double-strand break repair via homologous

recombination. Mutations to the RSC rendered cells hypersensitive to the DNA

damaging agents bleomycin, hydroxyurea, methyl methanesulfonate and ultraviolet

radiation (Chai et al, 2005). Mag 2 and DsS3(1-16) bind to DNA and may induce strand

breaks in vitro (Mortonb et al, 2007). DsS3(1-16) can also induce programmed cell death

by indirectly damaging DNA and interfering with DNA replication (Mortona et al, 2007).

As double-strand break repair is compromised in the ldb7Δ mutant, the DNA damage

induced by DsS3(1-16) and mag 2 may lead to a decrease in viability through

programmed cell death.

The imp2’Δ mutant also displayed an increase in peptide sensitivity with a decrease in

MIC against DsS3(1-16), mag 2 and rana, an increase in peptide sequestration and a

decrease in cell viability. The role of IMP2’ is poorly understood; however, it encodes a

transcription factor and has been implicated in DNA-damage protection as IMP2’

mutants display increased levels of genetic recombination (Masson et al, 1996). It has

been proposed that Imp2’ activates the expression of several proteins involved in the

protection of DNA against oxidative damage (Masson et al, 1996). Similar to ldb7Δ, the 
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increased sensitivity observed in this mutant may be due to an increase in DNA damage

from peptide interference. Similarly, IMP2’ protects cells from the glycopeptide

bleomycin and imp2’Δ mutants are hypersensitive to the drug (Masson et al, 1996).

Bleomycin is a peptide used in cancer therapy that induces DNA strand breaks (Povirk et

al, 1977). This resistance is conferred by IMP2’ through DNA damage repair or

detoxification of the drug (Alberti et al, 2003). The GFP-tagged Imp2’ also displayed an

increase in expression levels upon DsS3(1-16) exposure. If the peptide causes DNA

damage, this may promote Imp2’ transcription, in turn activating the proteins involved

in DNA protection. The expression of Imp2’ was observed throughout the cell with

increased expression in several localised patches on exposure to DsS3(1-16).

As with the previous deletion strains, hal5Δ displayed increased sensitivity to DsS3(1-16),

mag 2 and rana. HAL5 encodes a protein kinase that acts to stabilise the potassium

transporters Trk1 and Trk2 that are found in the plasma membrane. Hal5Δ displayed a 

reduction in growth when compared to the wt strain (Figure 6.3) that is probably due to

K+ levels in the media, limiting growth in this mutant (Ramos et al, 1994). Membrane

depolarisation was also recorded after exposure to DsS3(1-16) (Table 6.2, Figure 6.9). On

deletion of HAL5, there is mislocalisation and destabilisation of the Trk1 potassium

transporter which would result in decreased K+ uptake (Pérez-Valle et al, 2007). This may

increase the probability of membrane depolarisation: there would be reduced

intracellular K+ due to the lack of Trk1-Trk2 functionality, as a result there would not be

sufficient K+ efflux required for inhibition of membrane depolarisation. This would cause

an increased occurrence of depolarisation with the concomitant reduction in diS-C3(3)

fluorescence observed in the cytometer work. Pore-forming peptides, including the
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dermaseptins, have been shown to cause membrane depolarisation followed by cell

death (Papo et al, 2003; Duclohier, 2006). This mode of action would cause leakage of K+

through the membrane as a result of increased membrane porosity. As there is

insufficient K+ sequestering by Trk1-Trk2 this increases the probability of depolarisation

and cell death facilitated by ion leakage.

In this chapter it has been demonstrated that deletion of LDB7, IMP2’ and HAL5 confers

sensitivity to the antimicrobial peptides DsS3(1-16), mag 2 and rana. This increase in

susceptibility is likely to be due to the protection against DNA damage conferred by

IMP2’ and LDB7 which is diminished upon deletion. Loss of HAL5 may increase the

sensitivity resulting from the reduction in intracellular K+, increasing the probability of

membrane depolarisation. This subsequently may lead to cell death, facilitated by loss of

ions through peptide pore formation.
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7. Discussion

7.1 Final discussion

Antimicrobial peptides have the potential to function as a new class of antifungal drugs

to combat increasingly resistant pathogenic fungi. Infections by C. albicans account for

1.1 – 2.4 per 100,000 cases with a mortality rate of 30 % while infections from C.

glabrata have increased within the last few years with mortality rates of up to 100 % for

bone marrow transplant patients (Gudlaugsson et al, 2003; Wisplinghoff et al 2004).

Therefore, it is important to investigate antifungal peptides and their actions against

infectious fungi to understand in greater detail their individual modes of action, to

identify genes that confer changes to fungal susceptibility and to evaluate these AMPs

for their potential use in future therapeutic applications.

The effect of the Candida cell wall in mediating AMP action was examined on mutants

devoid of specific cell wall components. It was discovered that mutants lacking or

deficient in the phosphomannan fraction of the cell wall were less susceptible to the

action of several cationic AMPs. Additional data in which exogenous phosphate was

present confirmed these findings and it is proposed that in order for AMPs to exert their

full antifungal action they must first bind to the negatively charged phosphate

component of the cell wall. This then facilitates binding to the plasma membrane;

increasing antimicrobial efficacy. Other studies have also reported AMP binding to

phosphomannan (Ibeas et al, 2000; Monk et al, 2005). The use of Flu-DsS3(1-16)

confirmed this, with increased cellular sequestration of peptide by the parent strain

compared to the phosphomannan deficient mutants. Analysis with Flu-DsS3(1-16)
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highlighted the differential localisation patterns of DsS3(1-16); it was observed on the

periphery of cells, localised to the vacuole or found diffusely through the cytoplasm. As

DsS3(1-16) is proposed to cause lysis via a ‘carpet-like’ mechanism (Netea et al, 2006) it

is proposed that at low concentrations, peptide binds to the cell wall or membrane and

is internalised and transported to the vacuole via endocytosis. At greater concentrations

the peptide binds, causing pore formation and internalisation of peptide with

interference to cellular processes such as DNA replication (Mortona et al, 2007).

Drug combinations examining the antifungal activity of AMPs with echinocandins was

subsequently monitored. The efficacy of AMPs when combined with caspofungin or

anidulafungin was seen to increase in a synergistic manner against clinical isolates of C.

albicans and C. glabrata as well as S. cerevisiae. All peptides (ex. 6752) produced FICs in

RPMI media and several in MEB that were in the synergy range. Experiments using Flu-

DsS3(1-16) revealed that the presence of caspofungin or anidulafungin increased the

proportion of cells displaying peptide internalisation. The use of PI in these experiments

also demonstrated that when peptide was localised to the vacuole cells remained viable,

while peptide localisation to the cytoplasm was cytotoxic.

Subsequent murine studies monitored the effectiveness of rana with caspofungin using

fungal kidney burden and weight in a mouse model of systemic Candidiasis.

Unfortunately there was no increase in inhibition on combination with several displaying

rana toxicity. Rana generated the greatest levels of haemolysis and also displayed high

levels of cytotoxicity against Vero cells relative to the other AMPs tested. Moreover,



183

DsS3(1-16) showed low level haemolytic and cytotoxic activity so could function as a

viable alternative. Importantly, with all AMPs there was no increase in toxicity on

combination with caspofungin.

Topical applications may also be considered as an alternative route for clinical

application. In chapter 4, synergy was observed on a solid porous medium with various

combinations. Recent advances in topical applications for AMPs include pexiganan:

against diabetic foot ulcer infection it had similar eradication rates to oral antibiotic

treatment but without the emergence of resistance (Lipsky et al, 2008). Topical

treatment against Pseudomonas aeruginosa with D2A2L in rat models was also more

effective than standard therapy (Chalekson et al, 2003). Recent AMP in vivo trials have

also been encouraging: indolicodin was effective in preventing the lethality of

polymicrobial peritonitis in two rat models and when combined with antibiotics the

effectiveness was increased further (Ghiselli et al, 2008). The peptide IB-367 was

assessed against catheter infections of S. aureus and E. faecalis in a rat model and when

used in combination with an antibiotic its activity was observed to ‘strongly increase’

when combating infection (Ghiselli et al, 2007). The peptide heliomicin is also under

development for systemic infections (Andres et al, 2007). These studies highlight the

viability of AMPs for the treatment of infectious diseases in various topical applications

or when used in combination with current clinically available drugs. Due to technical

difficulties and the high production costs associated with peptide antibiotic treatment

there has been limited interest from the pharmaceutical industry in the development of

new peptide derived drugs. The capacity to manufacture AMPs in a cost effective

manner is required. One of the challenges in developing these peptides for therapeutic
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use will be to overcome their short half life due to proteolytic degradation and

interaction with other molecules. This study has demonstrated the potential for AMP

integration with conventional treatments that could provide benefits such as: increased

antimicrobial action, lower doses, reduced toxicity and decreased resistance events.

It was previously reported that changes to gene expression may influence S. cerevisiae

susceptibility toward several AMPs. More specifically, deletion of HAL5, LDB7 and IMP2’

was found to confer sensitivity to DsS3(1-16) and mag2. In chapter 6 it was

demonstrated that these mutants were more sensitive to rana. Moreover, deletion

strains were shown to sequester more DsS3(1-16) and have reduced viability. Increased

expression of Imp2’ was also observed with concentrated patches visible upon peptide

exposure. No such change was observed with Hal5 or Ldb7. However, HAL5 mutants did

display changes in membrane potential. The increase in depolarisation may be due to

insufficient K+ efflux required to inhibit depolarisation leading to ion leakage and cell

death. Ldb7Δ sensitivity may result from increased DNA damage, as double-strand break 

repair is compromised in the mutant (Chai et al, 2005). DNA damage may also account

for the increased susceptibility of imp2’Δ as expression has been implicated in the 

activation of proteins involved in DNA protection (Masson et al, 1996). These data

further highlights the inhibitory action of AMPs not just in membrane disruption but also

the transcriptional response of the cell to the inhibitory action of cellular functions. The

main findings of this thesis are summarised in the following diagram (Figure 7.1).



Figure 7.1 Summary of proposed AMP mechanisms of action and fungal susceptibility.
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Figure 7.1 Summary of proposed AMP mechanisms of action and fungal susceptibility. The AMPs used in this study
Cationic peptides bind to the

phospholipid head groups of the plasma membrane until a critical concentration is attained, resulting in lipid
This binding is facilitated by

negatively charged phosphate expressed on the cell wall. Additionally, peptide action can be enhanced upon inhibition
the cell wall thus increasing peptide binding to the

16) has been shown to then localise to the vacuole (non-cytotoxic) or cytoplasm
Increased peptide concentration in the vacuole may lead to leakage

It is also proposed that yeast genes such as Hal5 confer decreased susceptibility by inhibiting
peptide mediated depolarisation while Ldb7 and Imp2’ decrease susceptibility via maintenance of DNA integrity
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7.2 Future work

To further evaluate the internalisation events of DsS3(1-16), time-lapse confocal

microscopy could be used where Flu-DsS3(1-16) localisation is monitored directly after

addition. This would allow visualisation of peptide from the membrane to the vacuole or

cytoplasm and the time periods over which these events occur. A group of cells would

be selected and images acquired every few seconds for a defined period of time, as

many peptides bind to the membrane several seconds after addition (Hancock et al,

1999). The mode of action of histatin-5 has been elucidated using similar methodology

(Mochon et al, 2008). Purification of the cell wall would allow the quantification of

peptide bound to the wall and plasma membrane and the contribution of the various

cell wall components in determining cell susceptibility to AMP. In order to further

quantify cells, cytometric analysis could be employed, increasing the sample population

and generating additional data such as cell size while still retaining the ability to separate

cells with vacuolar or whole cell localisations. Fluorescent markers could also be

attached to other peptides in this study to investigate their mode of action and compare

localisation patterns and sequestration levels. Preliminary microscope experiments were

undertaken with fluorescein tagged rana, however, the majority of the peptide

monomers clumped together. This may have occurred during initial solubilisation to

stock concentrations or when added to growth media.

The results obtained with in vitro work were not observed with the in vivo trial thus

additional tests may have been beneficial in predicting the need for in vivo studies. C.

albicans and C. glabrata can both undergo phenotypic switching within the host. This
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hyphal transformation contributes to pathogenicity, allowing colonies to rapidly adapt in

response to antifungal treatment or the host immune response (Lachke et al, 2000).

Therefore, to better mimic in vivo conditions a series of experiments to monitor and

compare the susceptibility of various morphogenic states to AMP would be beneficial

before subsequent studies. Candidiasis is frequently associated with invasive medical

devices that often promote the formation of biofilms. Conventionally available

antifungal drugs show reduced efficacy against biofilms and infections are often

persistent (Chandra et al, 2001). The effect of biofilms formation on AMP susceptibility is

likely to contribute to the success of in vivo testing and should also be investigated. The

cytotoxicity data indicates that selection of an AMP with reduced toxicity may produce

favourable results from in vivo work, such as DsS3(1-16), which displayed strong synergy

in vitro with low level cytotoxicity and haemolysis. Additional studies are required to

determine if echinocandin and AMP combinations will be viable clinical alternatives for

the treatment of invasive fungal infections. Several studies have already reported little

or no cytotoxicity in vivo with mag 2 and members of the dermaseptin family

(Helmerhorstb et al, 1999; Navon-Venezia et al, 2002; Leite et al, 2008). Studies with

additional peptide/echinocandin combinations are ongoing with the aim of finding more

potent combinations.

To further study the effects of AMP action on cellular responses preliminary data was

gathered using iTRAQ (data not shown). This is a method employed to monitor changes

in protein expression which allows the comparison of different conditions (Aggarwal et

al, 2006). Future work would aim to monitor expression levels in cells exposed to sub-

lethal concentrations of AMP. Changes in protein expression could provide clues to the
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inhibitory action of the peptide on yeast, highlighting additional cellular responses and

pathways that are affected by peptide action. Furthermore, one of the mutant strains

displaying increased sensitivity could be compared to investigate differential expression

thus providing additional evidence as to why these strains display increased sensitivity.

The work presented in this thesis has furthered our understanding of the interactions

that underlie the mode of action of AMPs and the potential for synergistic interactions

of peptides with clinically used antifungals. These interactions highlight the potential of

AMP usage in the pursuit of alternative treatments that will help to combat microbial

resistance. Increasing our understanding of AMPs and their mode or action will also

facilitate the development of new peptide derivatives with increased antimicrobial

action which display reduced toxicity for host cells.
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Appendix I: Plasmid maps

pGEM-T Easy Vector (Promega)

pRS313 Shuttle Vector (Sikorski, 1989)
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pRS423 Shuttle Vector (Sikorski, 1989)

pKT209 plasmid (Sheff et al, 2004)
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Appendix II: Growth of glycosylation mutants with AMP and in the

presence or absence of exogenous phosphate

Figure 1. Representative checkerboard assays used to determine MICs with C. albicans glycosylation mutants in the
presence of DsS3(1-16), mag 2 and rana. Experiments were carried out in triplicate and representative images for
each are shown. Lines separate wells where growth was present from wells where growth was absent.
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Figure 2. Representative checkerboard assays used to determine MICs with C. albicans glycosylation mutants in the
presence or absence of exogenous phosphate and AMP. Experiments were carried out in triplicate and
representative images for each are shown. Lines separate wells where growth was present from wells where
growth was absent.



Appendix III: MICs of all strains exposed to each AMP in MEB or RPMI

Figure 1. Representative checkerboard assays used to determine MICs
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Figure 3. Representative checkerboard assays used to determine MICs for C. glabrata, C. albicans hospital isolate
and SC5314 with AMP in RPMI. Experiments were carried out in duplicate and representative images for each are
shown. Lines separate wells where growth was present from wells where growth was absent.
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Appendix IV: Visual growth assays used for the determination of FICs

Figure 1. Representative checkerboard assays used to determine FICs with C. albicans hospital isolate with AMP and
Anidulafungin. Each experiment was carried out in triplicate and representative images for each are shown. Lines
separate wells where growth was present from wells where growth was absent.



Figure 2. Representative checkerboard assays used to determine FICs
Each experiment was carried out in triplicate and representative images for each are shown. Lines
where growth was present from wells where growth was absent.

. Representative checkerboard assays used to determine FICs for C. glabrata with AMP and A
Each experiment was carried out in triplicate and representative images for each are shown. Lines
where growth was present from wells where growth was absent.
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with AMP and Anidulafungin.
Each experiment was carried out in triplicate and representative images for each are shown. Lines separate wells
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Figure 4. Representative checkerboard assays used to determine FICs for C. albicans hospital isolate with AMP and
Caspofungin. Each experiment was carried out in triplicate and representative images for each are shown. Lines
separate wells where growth was present from wells where growth was absent.
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Figure 5. Representative checkerboard assays used to determine FICs for SC5314 and C. glabrata with AMP and
Caspofungin. Each experiment was carried out in triplicate and representative images for each are shown. Lines
separate wells where growth was present from wells where growth was present where growth was absent.
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Figure 6. Representative checkerboard assays used to determine FICs for C. albicans hospital isolate with AMP and
Micafungin. Each experiment was carried out in triplicate and representative images for each are shown. Lines
separate wells where growth was present from wells where growth was absent.
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Figure 7. Representative checkerboard assays used to determine FICs for SC5314 with AMP and Micafungin. Each
experiment was carried out in triplicate and representative images for each are shown. Lines separate wells where
growth was present from wells where growth was absent.
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Figure 8. Representative checkerboard assays used to determine FICs for C. glabrata with AMP and Micafungin.
Each experiment was carried out in triplicate and representative images for each are shown. Lines separate wells
where growth was present from wells where growth was absent.



Figure 9. Representative checkerboard assays used to determine
Each experiment was carried out in triplicate and representative
where growth was present from wells where growth was present from wells where growth was
growth was absent.

. Representative checkerboard assays used to determine FICs for C. neoformans
Each experiment was carried out in triplicate and representative images for each are shown. Lines separate wells
where growth was present from wells where growth was present from wells where growth was
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Appendix V: Disc diffusion assays

Figure 1. Disc diffusion assays monitoring inhibition of C. albicans hospital isolate and C. glabrata with AMP and
caspofungin. Discs were impregnated with increasing concentrations of peptide in the presence or absence of
caspofungin. Plates were spread with mid-exponential phase culture. Each assay was carried out in duplicate.
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Figure 2. Disc diffusion assays monitoring inhibition of C. albicans hospital isolate with AMP and
caspofungin/anidulafungin. Discs were impregnated with increasing concentrations of peptide in the presence or
absence of caspofungin or anidulafungin. Plates were spread with mid-exponential phase culture. Each assay was
carried out in duplicate.
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Appendix VI: MIC determination of S. cerevisiae deletion mutants

Figure 1. Representative checkerboard assays used to determine MICs for wt S. cerevisiae, ldb7Δ, hal5Δ and imp2’Δ 
with rana, DsS3(1-16) and mag 2. Experiments were carried out in duplicate and representative images for each are
shown. Lines separate wells where growth was present from wells where growth was absent.



225

Appendix VII: Sensitivity of IZH2 transformations to DsS3(1-16)

Figure 1. Growth of various concentrations of S. cerevisiae wt, izh2Δ, izh2Δ(pRS313) and izh2Δ(pRS423) on YNB 
agarose with or without 100 µg/ml DsS3(1-16). Experiments were carried out in triplicate and representative
images for each are shown.
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