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Abstract (< 250 words) 

     

Dysregulation in neurotransmitter signalling has been implicated in the aetiology of 

ADHD.  Polymorphisms of the gene encoding dopamine beta hydroxylase (DBH), a key 

player in catecholamine signalling, have been shown to be associated with increased risk 

for ADHD. Previous genetic studies of ADHD have reported associations with a range of 

DBH gene variants (rs2519152, rs1611115, rs1108580 and rs6271) however small sample 

sizes have led to inconsistency. Here we conducted TDT analysis in a large ADHD sample 

of 794 nuclear families to re-examine the relationship between DBH and ADHD.  

Although we did not replicate associations of rs2519152 and rs1611115 with ADHD, we 

identified a significant association with rs129882 (pcorrected = 0.02). Further, gene reporter 

assays of DBH rs129882 showed a significant impact of the ADHD-associated C allele on 

luciferase expression in a human neuroblastoma cell line, SH-SY5Y. These data 

demonstrate for the first time that a DBH gene variant which confers risk to ADHD is also 

associated with reduced in vitro gene expression. 

  



Introduction 

 

Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

childhood psychiatric conditions with an estimated worldwide-pooled prevalence rate of 

5.3-7.1% (Polanczyk et al., 2007). Affected individuals have significant impairments in 

attention or hyperactivity/ impulsivity or, more commonly, both. The morbidity associated 

with ADHD is high, with negative consequences for school and work achievement, family 

interactions and interpersonal and social functioning (Hoza, 2007; Lee et al., 2008; 

Merikangas et al., 2010).  Convergent evidence from pharmacology, animal models, 

neuropsychology and brain imaging, suggests that dysregulated catecholamine signalling is 

a key pathophysiological substrate for ADHD (Arnsten, 2011; Pliszka, 2005).  Here we 

show that a SNP within the 3' untranslated region (3'-UTR) of the gene encoding dopamine 

beta hydroxylase (DBH), a key regulator of catecholamine signalling in the brain, is 

associated with ADHD and influences gene expression levels in a human neuroblastoma 

cell line.  

 

Dopamine beta hydroxylase (DβH) is a major enzyme involved in the regulation of the 

catecholamines, dopamine and noradrenaline.  DβH is synthesized and packaged into 

vesicles of central noradrenergic and adrenergic neurons, peripheral noradrenergic neurons 

and adrenomedullary neuroscretory cells, where it catalyses the conversion of dopamine to 

noradrenaline (Weinshilboum, 1978).  Its localisation within synaptic vesicles means that 

DβH is released into the extracellular space along with noradrenaline and any unconverted 

dopamine for example, during transmitter release.  As a result DβH can be measured in 

cerebrospinal fluid, plasma or serum where it exists as a stable and highly heritable trait 

(Cubells & Zabetian, 2004). Not surprisingly, plasma DβH levels have been assayed in a 

range of heritable psychiatric conditions with putative catecholamine disturbance including 

schizophrenia, psychotic depression, substance abuse and ADHD (Cubells et al., 2002, 

2011; Smith et al., 2003; Stallings et al., 2003).  Although several early studies reported 

lower plasma DβH levels in ADHD (Bowden et al 1988; Rogeness et al, 1982), results 

were influenced by the presence of comorbid conduct disorder, making the specific 

relationship between plasma DβH  and ADHD unclear.  Nevertheless, a role for DβH in 

ADHD remains highly plausible given that frequently prescribed medications for ADHD 

(e.g. methylphenidate) potentiate catecholamine signalling (Berridge & Arnsten, 2013; 

Bymaster et al., 2002; Volkow et al., 2001).  



The DBH gene locus is located in chromosome 9q34 and is 22,985 bases in length. The 

most frequently reported genetic association between ADHD and DBH maps to a single 

nucleotide polymorphism (SNP) at intron 5 (rs2519152) which is commonly referred to as 

the ‘Taq1poly’, owing to the use of the restriction endonuclease TaqI for genotyping (Daly 

et al., 1999).  Although many subsequent studies have confirmed this association (Bhaduri 

et al., 2005; Carpentier et al., 2013; Roman et al., 2002) meta-analysis involving 6 studies 

failed to replicate it (Gizer et al, 2009) and rs2519152 failed to show an association with 

plasma DβH activity (Mustapic et al., 2014; Zabetian et al., 2001; Zabetian et al., 2003). In 

contrast to rs6271, a non-synonymous SNP located in exon 11 of the gene, appears to 

contribute to plasma DβH level, yet does not appear to associate with ADHD (Tang et al., 

2006).  Another frequently studied SNP in DBH, rs1611115 (-1021C/T polymorphism), is 

associated with plasma DβH activity (p = 7.2 × 10-51) at genome-wide significance level 

(Mustapic et al., 2014), and has been reported to associate with ADHD in Caucasian adults 

(Hess et al., 2009), Chinese nuclear families (Zhang et al., 2005) and Korean ADHD 

children (Kwon & Lim, 2013).  Nevertheless, the association with rs1611115 and ADHD 

was not supported in other studies (Bhaduri & Mukhopadhyay, 2006; Brookes et al., 2006).  

Thus although inconsistency in the literature exists, the potential biological relevance of 

DβH to the pathophysiology of ADHD and preliminary evidence of genetic association, 

suggests that further investigation of this locus in ADHD is warranted. 

 

To clarify the DBH association with ADHD and to assess the potential gene regulatory 

effect of the associated markers, we initially performed fine linkage disequilibrium 

analysis in a large sample of 794 ADHD nuclear families. We then conducted gene 

reporter assays in a human neuroblastoma cell line to examine the impact of any ADHD-

associated gene variant/s on luciferase expression. We decided a priori to perform gene 

reporter assays on rs1611115 irrespective of its association with ADHD because of its 

critical influence on DβH enzymatic activity and because there is an absence of previous 

gene expression work in neural cell lines. Evidence for an association between ADHD and 

the previously reported DBH SNPs (rs2519152 and rs1611115) was not observed, however 

a significant association was observed with rs129882. Further, gene reporter assays of 

DBH rs129882 (and rs1611115) showed a significant impact of allelic variation on the 

expression level of the luciferase gene. Specifically, the C allele of the ADHD-associated 

rs129882 SNP produced a 2-fold decrease in luciferase activity while the C allele of 

rs1611115 yielded a 1.5 fold increase. 



Materials and methods 

ADHD sample 

Seven hundred and ninety four ADHD nuclear families were ascertained from child 

psychiatric clinics and schools through Ireland, the United Kingdom (UK) and Australia.  

Of  these families,  201 Irish and 69 Australian families have been included in a previous 

study by Hawi et al., 2003 and 57 families from the UK were included in Brookes et al 

(2006)). All families were ethnically Caucasian of European descent (Altshuler et al., 2005) 

and the ADHD probands were predominantly males (88%) with a mean age of 10.53 years. 

Clinical assessments were performed by experienced child psychiatrists/psychologists 

using both gold-standard questionnaires [the Conners’ Parent ADHD Rating Scale-Revised: 

Long Version (CPRS-R:L); all sites] and semi-structured interviews [the Child and 

Adolescent Psychiatric Assessment (CAPA)(UK and Ireland) or the Anxiety Disorders 

Interview Schedule for Children (A-DISC) (Australia)]. Exclusion criteria included known 

neurological conditions, including pervasive developmental disorders and epilepsy 

(Silverman & Albano, 1996)(Silverman & Albano, 1996).  

 

SNP selection and genotyping 

Eleven DBH SNPs were included in the analysis with an average coverage of 2.09 

Kbp/SNP. Tagging SNPs were selected using HapMap data. The SNPs that have been 

reported to be functional or associate with ADHD in past studies (rs1611115, rs1108580 

and rs6271, rs2519152) (Cubells et al., 2011; Mustapic et al., 2014; Tang et al., 2006; 

Zabetian et al., 2001; 2003) were included as tags. The remaining tagging SNPs were 

selected to capture other variants within DBH (of minor allele frequency greater than 5%) 

with linkage disequilibrium (LD) of r2 ≥ 0.8. 

 

Genotyping of 5 SNPs (rs2797849, rs1548364, rs2797853, rs6479643, rs77905, 

rs10761412) was commercially performed at the Australian Genomic Research Facility 

(AGRF). Sequenom technology was implemented to conduct SNPs genotyping via an 

initial locus-specific PCR reaction, followed by single base extension of an oligonucleotide 

that anneals immediately upstream of the polymorphic site of interest. Four other SNPs 

(rs1611115, rs1108580, rs6271, rs129882) were genotyped using a standard TaqMan® 

assay (Life Technologies) as recommended by the manufacturers. Finally, rs2519152 was 

genotyped using restriction fragment length polymorphism as described in (Daly et al., 

1999). 



Gene reporter assay 

Cloning and construct preparation 

To investigate the regulatory potential of rs1611115 and any identified ADHD-associated 

variants, DNA fragments containing the homozygotes (of the ‘associated’ and ‘non-

associated’ alleles) were cloned into a luciferase gene reporter system. To mimic their 

positions within the DBH locus, these variants were cloned either upstream of the SV40 

promoter or downstream to the Firefly luciferase gene, as appropriate. The resultant 

construct was then co-transfected with the Renilla luciferase control vector into SH-SY5Y, 

a human neuroblastoma cell line that is known to express DBH (Thibault et al., 2000). Co-

transfection of Firefly and Renilla luciferase reporter vectors allows simultaneous detection 

and normalization of luminescence signals in the SH-SY5Y cell line. 

 

Cell culture, transfection and luciferase reporter assays 

The prepared constructs were transfected into the SH-SY5Y cell line (from Dr Kip Gabriel; 

Monash University, Australia) and maintained in Dulbecco's modified Eagle medium, 

GlutaMAX (Gibco, Life Technologies) supplemented with 100 µg/ml each of penicillin 

and streptomycin (Gibco, Life Technologies) and 10% heat-inactivated fetal bovine serum 

(Gibco, Life Technologies) at 37°C in 5% CO2. SH-SY5Y cells were plated at 2 X 104/cm2 

on transparent black bottomed 24-well plates one day prior to transfection.  Cell lines were 

co-transfected with 100 ng each of Firefly luciferase reporter vectors and 30 ng of Renilla 

luciferase reporter vector, pGL4.74 (Promega) using lipofectamine 2000 reagent (Life 

Technologies) according to the manufacturer’s protocol.  Control transfections were 

performed using Firefly luciferase reporter vector with no insert.  Forty-eight hours post-

transfection, the cells were harvested, and the Firefly and Renilla luciferase activities were 

measured using the Dual-Glo® Luciferase Assay System (Promega) by VICTOR™ X 

Light Luminescence Plate Reader (Perkin-Elmer). For each construct, four independent 

transfections and triplicate luciferase assays were performed. Relative activity was 

normalized by the Renilla luminescence (as a ratio of firefly to Renilla), which accounted 

for variation in transfection efficiency and cell density.    

 

Statistical Analysis 

In order to test for association between the DBH SNPs and ADHD while avoiding 

population stratification issues associated with case control designs, we employed the 

transmission disequilibrium test (TDT) which uses untransmitted parental alleles as 



internal controls. TDT analysis was carried out using the program UNPHASED which 

implements maximum-likelihood inference on genotype and haplotype effects. 

UNPHASED also allows for missing data arising from uncertain phase or missing 

genotypes (Dudbridge, 2008).  Statistical comparisons of relative activity (Firefly/Renilla) 

from luciferase reporter assays were conducted in SPSS (IBM SPSS Statistics for 

Windows (Version 22.0) released 2013). For each DBH SNP, we conducted a 4 

(independent experiment) x 3 (allelic group) analysis of variance (ANOVA) with 

bonferroni correction of post hoc tests.  

 

Results 

A total of 794 nuclear ADHD families were used to examine the role of DBH in ADHD. 

The observed and expected heterozygosity for all examined SNPs, Hardy-Weinberg 

equilibrium and minor allele frequencies are presented in Table 1. The observed genotype 

frequencies for the examined SNPs did not significantly differ from those expected 

according to Hardy-Weinberg equilibrium. The genotyping success rate ranged between 

92-99% except for rs2519152 where the rate was 86%.   

 

The genetic association results across 11 SNPs are presented in Table 2. A significant 

association of ADHD and rs129882 was observed (χ2 = 9.71, p = 0.0018, OR = 1.37). This 

association remained significant after bonferroni correction for multiple testing. Although 

there was a slight increase in the frequency of C and G allele transmission of rs2519152 

and rs6479643 respectively, neither was significant.  Notably, there was no evidence for an 

ADHD association signal with any of the functional SNPs that have been linked to plasma 

DβH activity (rs1611115, rs1108580 and rs6271).  Haplotype analysis using sliding 

windows of 2, 3, 4 and 5 markers was also performed. However, no significant association 

stronger than the individual SNP association (rs129882) was observed. 

 

Luciferase reporter assay of DBH rs129882 and rs1611115 

We next sought to examine the impact of our ADHD associated DBH gene variant, 

rs129882 on luciferase expression as a proxy for DBH messenger RNA expression. DNA 

samples from individuals homozygous for either the C or T allele of rs129882 were 

selected from CEU HapMap individuals. The genomic region containing the C and T allele 

was PCR-amplified using Hot Fire DNA polymerase (Integrated Sciences) to create 

compatible ends for vector-insert ligation.  The forward primer was synthesized with a 



BamHI restriction site (5ʹ GCGCGGATCCGGAACAGCCCTGCAT 3ʹ) and the reverse 

primer with a SalI restriction site (5ʹ GATCGTCGACACTGAGTCAGCCGGG 3ʹ). The 

PCR products were cloned downstream to the Firefly luciferase gene of the pGL3-Control 

vector (Promega), thus approximating the 3ʹ location of this variant within DBH.  

Sequence orientation of the inserts was confirmed by Sanger sequencing at Micromon 

sequencing facility, Monash University. 

 

Figure 1A displays gene expression (relative activity or luminescence ratio of firefly to 

Renilla) for each of the CC and TT homozygotes of rs129882 as well as the negative 

control vector.  CC homozygosity was associated with a two-fold decrease of gene 

expression (p< 0.001) relative to TT homozygosity and the control vector.  Gene 

expression in the TT homozygotes was also reduced relative to the control vector (p< 

0.001), suggesting that it also alters luciferase expression but to a lesser extent than CC 

homozygosity.  These data demonstrate for the first time that a DBH allele (C allele) which 

confers risk to ADHD is associated with reduced in vitro gene expression.   

 

Although  the current study failed to find support for a relationship between rs1611115 and 

ADHD, we note that rs161115 plays a critical role in driving DβH enzymatic activity 

(Mustapic et al., 2014; Zabetian et al., 2001; Zabetian et al., 2003) and to our knowledge 

no previous study has examined the impact of the C/T alleles of rs1611115 on gene 

expression in a human neuroblastoma cell line. We therefore also conducted a luciferase 

reporter assay on this polymorphism.  DNA samples from individuals homozygous for 

either the C or T allele of rs1611115 were selected from CEU HapMap individuals.  

Genomic regions containing homozygous C and T alleles were PCR-amplified with the 

forward primer containing a KpnI restriction site (5ʹ 

GATCGGTACCCAGCTGCCCTCAGTC 3ʹ) and the reverse primer with a XhoI 

restriction site (5ʹ GCGCCTCGAGAGGGTGAGTGACAGG 3ʹ). PCR products were 

cloned upstream to the SV40 promoter of Firefly luciferase reporter vector, pGL3-Control 

(Promega), thereby approximating the genomic location of rs1611115 within DBH.  

Sequence orientation of the inserts was confirmed by Sanger sequencing at Micromon 

sequencing facility, Monash University. 

 

As shown in figure 1B an influence of allelic variation (C/T) in rs1611115 on luciferase 

expression was observed.  There was a 1.5-fold increase in relative luciferase activities 



associated with the CC homozygous condition relative to the control condition (p < 0.01). 

When compared to the vector control, a slight increase of luminescence for the TT 

homozygote suggested it has a minimal effect on luciferase expression.  This data therefore 

provide further evidence that the DBH promoter variant rs1611115 is functional and 

supports results from genotype controlled studies of plasma DβH levels, where individuals 

homozygous for the C allele had higher mean levels of DβH activity relative to 

heterozygotes or those homozygous for the T allele (Tang et al., 2006). 

 

 

Discussion 

In the present investigation, TDT analysis of 11 DBH SNPs was conducted in a combined 

sample of 794 ADHD families. Although evidence for an association between ADHD and 

three SNPs previously reported to associate with ADHD (rs2519152, rs1611115 and 

rs1108580) was not observed, a significant association was observed with rs129882 

(pcorrected = 0.02) (Table 2). Further, gene reporter assays of DBH rs129882 showed a 

significant impact of allelic variation on the expression level of the luciferase gene. 

Specifically, the C allele of rs129882 SNP produced a 2-fold decrease in luciferase activity 

relative to the control vector.  We hypothesise that rs129882 may be associated with 

reduced DBH gene expression and that this may represent a novel risk mechanism for 

ADHD.   

Previous genetic studies of ADHD that have tested association with DBH gene variants 

have generally reported evidence of association with rs2519152 (historically known as the 

TaqI polymorphism).  It has been assumed that the inconsistent results for this SNP are 

attributable, at least in part, to the relatively small sample sizes of the individual studies. 

However, despite the large combined sample of the current investigation, only a slight 

(non-significant) increase in the transmission of the C allele of rs2519152 to ADHD cases 

was observed. Nor was there a significant association signal for rs1108580 in the current 

study, despite previous evidence of association for this SNP in a case-control design 

(Bhowmik et al., 2013).   A slight non-significant increase in the transmission of the C 

allele of rs1611115 to ADHD cases was also observed (Table 2).  In contrast to the 

findings for rs2519152, the result for rs1611115 is largely consistent with the literature as 

the majority of past studies have not found an association with ADHD (Bhaduri & 

Mukhopadhyay, 2006; Brookes et al., 2006). Nevertheless rs1611115 has been shown to be 



a major contributor to plasma DβH activity (Hess et al., 2009; Mustapic et al., 2014; 

Zabetian et al., 2001; Zabetian et al., 2003) and our findings from gene reporter assays of 

rs1611115 confirm a regulatory effect of the C/T polymorphism on luciferase expression 

within a human neuroblastoma cell line.  Thus it appears that although rs1611115 is 

strongly associated with plasma DβH levels and may influence DBH gene expression, 

allelic variation in this SNP does not confer risk to ADHD.   

The present study observed a strong association signal mapped to rs129882 at the 3ʹ UTR 

of DBH.  It is important to note that this SNP is in linkage disequilibrium (Dʹ=0.63, r2=0.1) 

with rs2797853 which has been reported to associate with ADHD symptoms in a 

quantitative trait loci genome wide association study (Lasky-Su et al., 2008). Interestingly, 

rs2797853 in turn is in fairly strong LD (Dʹ=1, r2=0.49) with rs2519154 which was 

reported to associate with ADHD in Han Chinese sample (Guan et al., 2009). It is also 

notable that a haplotype constructed from rs1611115, rs1108580, rs5320 and rs129882 (C-

A-G-C) was reported to associate with Parkinson disease (p = 0.000005, OR = 1.76) in a 

UK sample (Punia et al., 2010) and only rs129882 was associated with disease severity.   

It is notable that although a number of DBH gene variants have been reliably associated (at 

GWAS significance levels) with plasma DβH activity, this is not the case for rs129882 

(Mustapic et al., 2014).  However, the correlation between DβH activity measured in the 

peripheral nervous system (PNS) and that measured in the central nervous system (CNS) is 

not known.  Thus the possibility remains that a SNP such as rs129882 may not influence 

DβH activity in the PNS but could do so in the CNS.  Indirect support for this possibility 

comes from DBH knockout studies in mice (Thomas et al., 1998).   Mice lacking the DBH 

gene show a wide range of dopamine (and noradrenaline) distribution in the CNS and the 

PNS (Thomas et al., 1998).  A greater than 1200-fold difference in dopamine level was 

detected in the striatum (600 ng dopamine; CNS) of these mice relative to the liver and 

muscle (0.5 ng dopamine; PNS), suggesting that dopamine levels in the CNS and PNS are 

uncorrelated in the  DBH knockout mice.   

So how might a SNP residing in the 3ʹ UTR influence the functioning of DBH and hence 

confer risk to ADHD? SNPs in the 5ʹ flanking region of genes are known to interact with 

transcription factors to initiate transcription (Buckland, 2006).  However, binding of 

transcription factors has also been reported at the 3ʹ UTR of genes. For example, the 

transcription factor SP1 was reported to regulate SLC7A1 expression by differential 



binding to a DNA motif at the gene’s 3ʹ UTR (Yang & Kaye, 2009). The rs129882 SNP is 

mapped to the 3ʹ UTR region of the DBH gene and 3,960 bp upstream of the DBH 

antisense RNA 1 (DBH-AS1). Experimental data from the Encyclopedia of DNA Elements 

(ENCODE), shows that this region is enriched with greater than 20 bound transcription 

factors (e.g HNF4A, SP1 and POLR2A), histone modification and DNase hypersensitivity 

sites. Such enrichment of transcriptional regulators suggests that the 3ʹ UTR of DBH could 

play an important role in the recruitment of transcription factors to activate transcription of 

DBH-AS1 and consequently interfere with expression. Antisense transcripts have been 

demonstrated to repress or inactivate transcription of the sense strand by transcriptional 

interference through chromatin modification (to either disrupt structural conformation of 

chromatin or affect recruitment of non-histone proteins to DNA) (Pelechano & Steinmetz, 

2013). For instance, co-transcriptional interference of antisense transcription has been 

demonstrated in the zinc-finger E-box-binding homeobox 2 gene that represses mRNA 

splicing by masking specific splice sites via antisense expression (Beltran et al., 2008).  In 

this context, the 2-fold reduction in luciferase activity produced by the C allele of rs129882 

highlights the potential functional importance of this substitution for gene expression. We 

speculate that the C to T allelic substitution of rs129882 activates the transcription of 

DBH-AS1 which subsequently reduces/represses the expression level of DBH. 

An alternative explanation for the altered expression of the C allele of rs129882 in the 

neuroblastoma cell SH-SY5Y involves microRNA regulation. DNA variations at 3ʹ UTRs 

have been documented to impact microRNA targeting and microRNAs could consequently 

direct translational repression of target genes (Bartel, 2004; Lai, 2002).  Gong et al (2012) 

observed that 43.4% of the SNPs mapped to the 3ʹ UTR’s of protein-coding genes either 

generate or abolish microRNA targets. Further 9.2% of all 3ʹ UTR SNPs were predicted to 

disrupt and create microRNA sites at the same time (Gong et al 2012). For example, 

SNAP-25 (known ADHD candidate gene) expression was reported to be regulated by miR-

153. Expression control of SNAP-25 via miR-153 resulted in significant change in motor 

neuron development, neurosecretion, neuron patterning and movement in zebrafish (Wei et 

al 2013).  Interestingly, the DBH rs129882 SNP maps within seed regions of  miRNAs 

including hsa-miR-1268, hsa-miR-1268b, hsa-miR-4468 and hsa-miR-585 (by Target Scan 

6.2, Lewis, Burge, & Bartel, 2005).  Further, hsa-miR-1268b is predominantly expressed in 

the brain tissue (intragenic microRNA database) and in the neuroblastoma SH-SY5Y cell 

line (Hinske et al., 2014; Surgucheva et al., 2013). Thus the putative DBH-3ʹ UTR binding 



of hsa-miR-1268b and its expression in SH-SY5Y cells suggests that the C/T substitution 

of rs129882 could impact hsa-miR-1268b binding and affect the expression of DBH. It is 

important to note that the molecular mechanism of microRNA regulation of gene 

expression is subtle and further work is required to clarify the mechanism by which the 

C/T substitution could influence DBH expression. 

 

In summary, here we report a novel association between a SNP (rs129882) residing in the 

3ʹ UTR of DBH and ADHD.  Although past studies suggest that this SNP does not 

correlate with plasma DβH activity, our gene reporter assays in a neuronal cell line showed 

a significant influence of the C allele on luciferase expression, suggesting that this SNP 

may influence DBH gene expression.  Reduced DBH gene expression would be consistent 

with decreased conversion of dopamine to noradrenaline and thus with a relative hypo-

noradrenergia in ADHD.  Future studies should now examine whether antisense RNA or 

miRNA regulation via rs129882 could influence DBH expression and be a plausible risk 

mechanism for ADHD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Observed and expected heterozygosity, genotyping success rate and minor 

allele frequency of the examined DBH markers  

 
SNP Position ObsHet PredHet HWEp Geno MAF 

rs1611115 135490336 0.36 0.34 0.18 92 0.22 

rs2797849 135491762 0.44 0.44 0.71 98 0.33 

rs1108580 135494935 0.49 0.50 0.56 93 0.48 

rs1548364 135497563 0.49 0.50 0.47 98 0.48 

rs2519152 135499455 0.50 0.50 0.85 86 0.48 

rs2797853 135502336 0.43 0.44 0.38 99 0.33 

rs6479643 135504489 0.49 0.47 0.31 99 0.38 

rs77905 135507918 0.52 0.50 0.23 99 0.50 

rs10761412 135509411 0.45 0.47 0.10 98 0.37 

rs6271 135512095 0.12 0.13 0.58 94 0.07 

rs129882 135513490 0.32 0.33 0.54 95 0.20 

 

ObsHET = Observed heterozygosity, PredHET= Predicted heterozygosity, 

 HWEp= Hardy Weinberg p value, Geno = Genotyping success rate,  

MAF=Minor allele frequency 

 

 

 

Table 2:  TDT of DBH SNPS in 794 ADHD nuclear families 

 

SNPs Allele T UT Tf UTf TDT p-value OR 

rs1611115 C 1137 1123 0.78 0.77 0.31 0.58 1.05 

rs2797849 G 1000 997 0.67 0.67 0.01 0.92 1.01 

rs1108580 A 692 709 0.47 0.48 0.34 0.56 0.95 

rs1548364 C 795 767 0.53 0.52 0.90 0.34 1.01 

rs2519152 C 663 625 0.50 0.47 1.78 0.18 1.12 

rs2797853 A 509 507 0.34 0.34 0.005 0.94 1.01 

rs6479643 G 946 912 0.63 0.61 1.37 0.24 1.10 

rs77905 T 758 753 0.51 0.50 0.03 0.87 1.01 

rs10761412 C 579 557 0.39 0.37 0.60 0.44 1.07 

rs6271 C 1375 1376 0.93 0.93 0.001 0.97 0.99 

rs129882 C 1199 1127 0.82 0.77 9.71 0.0018* 1.37 

 

T= Transmitted, UT= Untransmitted, Tf =Transmitted frequency,  

Uf = Untransmitted frequency, OR=Odds ratio, * significant at corrected levels. 

 

 

 

 

 

 

 



 

 

                 A. rs129882    B. rs1611115 

              

Figure 1. Relative luciferase activities associated with rs129882 and rs1611115of DBH in 

the human neuroblastoma SH-SY5Y cell line.  (A) The homozygous C allele of rs129882 

displayed lower relative luciferase activity than the homozygous T allele in SH-SY5Y cells. 

(B) The homozygous C allele of rs1611115 demonstrated higher relative luciferase activity 

than the homozygous T allele in SH-SY5Y cells.  To correct for variation of transfection 

efficiency and cell density, relative activities were calculated by the ratio of firefly 

luminescence to Renilla luminescence.  Data represents mean and standard error of the 

mean.  Four independent transfections and triplicate luciferase assays were performed for 

each construct.  **P < 0.01, ***P < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Diagram:   Linkage disequilibrium (Dʹ) relations among 11 DBH markers  
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