
SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS
FROM 3D MHD SIMULATIONS

J. Terradas
1,2
, R. Soler

1,2
, M. Luna

3,4
, R. Oliver

1,2
, J. L. Ballester

1,2
, and A. N. Wright

5

1 Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; jaume.terradas@uib.es
2 Institute of Applied Computing & Community Code (IAC), UIB, Spain
3 Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife, Spain

4 Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife, Spain
5 School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK

Received 2015 December 2; accepted 2016 February 22; published 2016 March 30

ABSTRACT

The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated
numerically. Using the model of Titov & Démoulin under the regime of weak twist, the cold and dense prominence
counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary
situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations.
These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to
the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical
oscillations does not depend strongly on the twist of the flux rope. Nonlinearity isresponsible for triggering the
Kelvin–Helmholtz instability associated withthe vertical oscillations and that eventually produces horizontal
structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a
perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis
prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring
along this axis.
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1. INTRODUCTION

Active region prominences are often associated with
magnetic structures that seem to have a flux rope geometry,
i.e., a coherent structure in which magnetic field lines wind
around a central axis. Several attempts have been madeto
provide the theoretical background, based on the equations
ofmagnetohydrostatics that describethis kind of magnetic
configuration(e.g., Kuperus & Raadu 1974; Priest et al. 1989;
Low & Zhang 2004; Blokland & Keppens 2011; Hillier & van
Ballegooijen 2013). In most cases the heavy prominence is
absent from the magnetic configuration (see the review of
Mackay et al. 2010), and/or the magnetic field lines do not
connect to the photosphere since the models are mostly 2D.
These models are quite limited and restrain a proper under-
standing of the dynamics of suspended prominences. Only
recently, it has been possible to create a self-consistent plasma-
carrying flux rope (Xia et al. 2014b) and to produce an in situ
condensation to a prominence due to thermal instability (Xia
et al. 2014a).

Nowadays it is clear that solar prominences are very
dynamic, and several observed phenomena have been identified
as the result of the development of different plasma
instabilities, such as the magnetic Rayleigh–Taylor (MRT)
instabilitiesor the Kelvin–Helmholtz instabilities (KHIs)(e.g.,
Ryutova et al. 2010). Other dynamic events affecting the whole
prominence body are the ubiquitous large-amplitude oscilla-
tions associated withwinking filaments (see the review of
Tripathi et al. 2009) or the longitudinal oscillations (Li &
Zhang 2012; Luna et al. 2014). It is evident that an accurate
theoretical description of these oscillations, usually done in
terms of magnetohydrodynamic (MHD) waves, demands

realistic prominence models, and the incorporation of the
three-dimensional (3D) geometry is essential.
Solar prominences are in general quite inhomogeneous, and

this property has important consequences regarding oscilla-
tions, which are susceptible to experiencingresonant damping.
Here we understand by resonant absorption or resonant
damping the process in which the energy of the global
oscillation is transferred to nonhomogeneous layers. Since in
our problem the oscillations are not externally driven and
monochromatic, the energy is not transferred to a single
position (the resonant position) in the layer. Instead, the energy
accumulates around the resonant position, i.e., where there is a
perfect match between the real part of the frequency of the
global mode, often called a quasi-mode, and the frequency of
the local Alfvén modes. Importantly, there is also energy
transferred to frequencies around the resonant Alfvén fre-
quency. For this reason, we think that the term resonant
absorption in the case of the initial value problem is indeed not
very accurate since strictly speaking the energy is not
transferred to a single resonant position. A more general name
for this mechanism of attenuation is continuum damping (e.g.,
Sedláček 1995). Another way to refer to this process is mode
conversion or mode coupling to natural Alfvén oscillations
(e.g., Rae 1982; Lee & Roberts 1986; Pascoe et al. 2010; Hood
et al. 2013; Ruderman & Terradas 2013). The term
phasemixing has alsobeenused in the literature (e.g.,
Grossmann & Tataronis 1973; Tataronis & Grossmann
1973), while in magnetospheric plasmas the term field line
resonance (FLR) is usually preferred.
An attractive alternative to the classical interpretation of the

quasi-mode is based on the proper superposition of Alfvén
continuum modes (Cally 1991; Mann et al. 1995). Recently,
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Soler & Terradas (2015) have investigated the generation of
small scales in nonuniform solar magnetic flux tubes. Using a
modal expansion, the initial global MHD transverse displace-
ment has been expressed as a superposition of Alfvén
continuum modes that are phase-mixed as time evolves. The
comparison with the results of the quasi-mode indicatesthat
the modal analysis is more intelligible from the physical point
of view since it describes both the damping of global transverse
motions and the building up of small scales due to
phasemixing. It is not surprising that the term phasemixing
has also been used in the past to refer to the conversion of
energy from large to small scales (see Tataronis &
Grossmann 1973).

In prominences the strongest density inhomogeneity is
usually associated with the layers that connect the prominence
core with the corona through the prominence–corona transition
region (PCTR). Therefore, the inhomogeneous PCTR is crucial
for the existence of Alfvén continuum modes that are
eventually responsible for the damping. Recently, the idea
behind resonant damping has been applied to prominences/
threads (Arregui et al. 2008, 2011; Soler et al. 2009, 2010a;
Arregui & Ballester 2011; Antolin et al. 2015; Okamoto
et al. 2015). The continuum damping is not newand has been
investigated in the past under different frameworks:laboratory
plasmas (Tataronis & Grossmann 1973; Chen & Hase-
gawa 1974; Poedts et al. 1992), coronal loop oscillations
(e.g., Ionson 1978; Hollweg 1987; Hollweg & Yang 1988;
Sakurai et al. 1991; Goossens et al. 1992, 2002; Ruderman &
Roberts 2002), and magnetospheric plasmas (Southwood 1974;
Mann et al. 1995; Wright & Rickard 1995). In the previous
studies both the driven and the initial value problems have been
addressed, and the term resonant absorption has been used in
most of the cases except for magnetospheric plasmas. For
historical reasons we tend to keep using the name resonant
absorption.

With the goal of improving the existing magnetohydrostatic
prominence models, Terradas et al. (2015) have studied the
morphology of a prominence suspended in a 3D arcade
configuration. In that work, the authors have found that the
prominence is especially prone to developing MRT instabilities
(see also Hillier et al. 2012a, 2012b). In the present study we
extend the work of these authors to a twisted flux rope, more
representative of active region prominencesthan quiescent
prominences. In particular, we choose the magnetic configura-
tion constructed by Titov & Démoulin (1999). This 3D
magnetic model can represent a wide variety of flux ropes,
depending on the parameters, and has the advantage that it is
easily implemented using analytic expressions for the 3D
magnetic field. The aim of this paper is to understand the main
morphological features of a prominence embedded in a flux
rope for different values of the magnetic twist. The models
studied here are global (the fine structures of the prominence,
i.e., threads, are not resolved) and could be used, in future
studies, to analyze large-amplitude oscillations associated
withwinking filaments or with longitudinal oscillations.

This study is challenging from several points of view. First,
the process of resonant absorption, associated withthe
oscillations, has the particularity that decreasing spatial scales
are continuously built with time through phasemixing (e.g.,
Heyvaerts & Priest 1983). This inevitably leads to a situation in
which the grid resolution is unable to capture the small spatial
scales, and this produces an artificial (numerical) dissipation of

energy in the system. We have conceived specific numerical
experiments to understand the effect of numerical dissipation
on the results. The process of wave leakage, i.e., the emission
of fast magnetoacoustic waves from the prominence, can also
operate in our model and produce a physical energy loss from
the system. We have also devised particular simulations, based
on the application of special boundary conditions, to
investigate this problem. Second, and closely related to the
first point, is the presence of instabilities. In particular, for the
configuration studied here KHIs due to the strong shear
velocities at the prominence edges play a relevant role in the
morphology of the structure. Eddies are generated at the PCTR
and energy cascades to small spatial scales until numerical
dissipation becomes important. Another complication in this
study is that the numerical techniques applied to capture the
vigorous motions associated with the KHI may impede a
proper analysis of possible stationary states of the system. This
issue is properly treated in this work by the use of specific
numerical techniques. Thus, the problem investigated here
involves several ideal mechanisms that are not independent one
from another and generate a rich dynamism in the system, but
at the same time we intend to find out potential stationary
regimes.

2. INITIAL SETUP

In our model the background configuration is a vertically
stratified atmosphere due to constant gravity. Background
density and gas pressure are exponentially decreasing with
height, and from the ideal gas law temperature is uniform
(isothermal background) and chosen to be 1MK, which is
representative of coronal conditions. This atmosphere is
permeated by a magnetic field following the Titov & Démoulin
(1999) model, which is a 3D toroidal force-free model that
contains a poloidal component of the magnetic field. In the
construction of the model it is assumed that the small radius of
the flux rope is much smaller than the large radius of the toroid.
This model has been used in the past mainly to study eruptions
and coronal mass ejections (CMEs; see Török & Kliem 2003;
Török et al. 2004). Here we concentrate on a stable
configuration with respect to the kink instability that appears
when the twist is above a given threshold. The amount of twist
is controlled by the parameter Nt. Values of 8.5 (strong), 4.3
(moderate), and 2.2 (weak twist) are considered in this work. It
is worth mentioning that for the strongest twist, the ratio
between the toroidal and azimuthal magnetic field component
is around 2 at the edge of the flux rope, but the field lines do not
have more than three turns, in agreement with observations of
stable flux ropes. Examples of the three magnetic configura-
tions are found in Figure 1. Note that for Nt=4.3 and 2.2 the
configurations resemble arcades whose magnetic shear
increases with height. In the three models the small radius of
the toroidal flux rope is a=10Mm, while the big radius is
R=140Mm. The height of the center of the flux rope
is 20Mm.
The prominence is represented by a 3D density enhancement

with respect to the background densityand is located inside the
flux rope. A simple Gaussian profile in each direction is used.
The characteristic dimensions of the prominence arewidth of
5Mm, height of 10Mm, and a length of 20Mm. The center of
the prominence is initially situated at 15Mm from the base of
the corona. This density enhancement is also represented in
Figure 1 in a 3D view pointing along the longitudinal axis of
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the prominence, i.e., along the y-direction. Different values for
the density enhancement, and therefore total masses of the
prominence, have been considered, allowing us to study
situations of extremely light prominences to cases with total

masses similar to the ones inferred from observations. In
particular, the maximum density enhancement used in this
work is 30 times the coronal density. Although this value is a
bit low in comparison with the densities estimated from
observations, it gives a total mass of 1.8×1010 kg, which is
typical of light prominences. Larger density enhancements, and
therefore total masses, can lead to a situation in which the
magnetic structure is unable to sustain the prominence (see
Terradas et al. 2015). Increasing the magnetic field provides
additional magnetic support to the prominence since the
magnetic force scales as B2. For example, if we double the
magnetic field, the Lorentz force is four times larger, and
therefore a prominence four times more massive could be
sustained by this new field. The intensity of the magnetic field
determines, together with the density, the value of the Alfvén
speed. In the solar corona we take as a reference value
1.8×103 km s−1 (this is consistent with the estimations of
Verwichte et al. [2013], based on seismological, magnetic
extrapolation and spectral methods), meaning that the magnetic
field is constrained by this velocity. In our simulations the
maximum value of Bz at the base of the corona is 5 G, and it
fulfills the restriction given by the typical coronal Alfvén
speed. With this magnetic field and the corresponding gas
pressure of a plasma at 1 MK, the plasma-β is in the range
0.02–0.09. We are clearly in a low-β regime, and this guides
the dynamic processes that take place in the configuration.
Stronger magnetic fields, which are feasible because we are
considering an active region prominence, would augment too
much the value of the Alfvén speed and decrease the already
low value of the plasma-β.
Regarding the geometry of the magnetic field, it is worth

mentioning that the magnetic support of the prominence when
the longitudinal axis is essentially along the magnetic field,
such as in a flux rope with low twist like the one in the bottom
panel of Figure 1, is less efficient than a situation in which the
magnetic field is perpendicular to this axis. This would
correspond, in our configuration, to a prominence with the
longitudinal axis pointing in the x-direction. The reason is that
in this case the prominence is permeated by more magnetic
field, meaning that the total magnetic force is stronger. This
simple geometrical feature of our model has important
consequences with respect to the total amount of mass that
can be sustained by our configuration and, as we show later,
regarding the MRT instability. In situations with stronger
magnetic twist, as in the top panel of Figure 1, the magnetic
support increases owingto the presence of local magnetic dips,
but since we do not consider more than three turns of field
lines, this additional support is not significantly enhanced in
our configuration.

3. METHOD AND BOUNDARY CONDITIONS

The background and the magnetic field are initially in
equilibrium. Given an initial localized density distribution
representing the prominence, which is not in equilibrium with
the environment, the system is allowed to evolve with time. To
investigate the dynamics of our configuration, the ideal 3D
MHD equations are numerically solved. The equations are the
following:

v
t

0,· ( )r
r

¶
¶

+  =

Figure 1. Magnetic field configuration and initial density enhancement (in red
colors) for Nt=8.5 (top panel), Nt=4.3 (middle panel), and Nt=2.2
(bottom panel). The same magnetic field lines rooted at the base of the corona
have been selected in the three plots.
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where I is the unit tensor, g is the gravitational acceleration,
and the rest of the symbols have their usual meaning.
Temperature does not appear explicitly in the previous
equations, but it is easily calculated using the ideal gas law
and the values of pressure and density. The nonlinear MHD
equations are solved in a Cartesian coordinate system. The
gravity force points in the negative z-direction, and the
longitudinal axis of the prominence is along the y-direction
(see Figure 1). Our model does not include a density transition
between the corona and the photosphere, and the plane at z=0
represents the base of the corona. The dimensions of the domain
are −50Mm<x<50Mm, −100Mm<y<100Mm, and
0<z<60Mm. Different numerical resolutions have been
considered, and the best resolution achieved with the present
computational resources is 300 km.

The previous equations are solved using the code
MoLMHD, which has been updated to be efficient in achieving
stationary solutions but at the same time isrobust in the
treatment of weak shocks. With this goal in mind, the order of
the spatial derivatives has been raised to six, and the scheme
has been combined with a fifth-order WENO method. The rest
of the details about the code can be found in Terradas et al.
(2015) and references therein.

Line-tying boundary conditions are applied at the base of the
corona, meaning that the three components of the velocity, v,
are set to zero, the magnetic component perpendicular to the
boundary is kept constant, Bz in our case, and the rest of the
variables have their spatial derivatives equal to zero. For the
rest of the boundaries in the computational box, i.e., lateral and
top planes, two types of conditions are investigated:perfectly
reflecting boundaries, i.e., line-tying (this condition is referred
toas closed boundary conditions), and nonreflecting bound-
aries. This last condition is implemented through the method of
the perfectly matched layer (PML). The method is based on the
work of Berenger (1994) andHu (2001) (see also Parchevsky
& Kosovichev 2007), and it is efficient in absorbing outgoing
waves. Hereafter, these boundary conditions are referred to as
open boundary conditions.

4. TEST CASE

We start with the configuration explained in Section 2,but
we do not introduce at this stage a prominence inside the flux
rope. This allows us to verify that we have correctly
implemented the force-free Titov and Demoulin model since
the structure should be close to a static equilibrium. The flux
rope with the strongest twist (Nt=8.5), and therefore the
strongest current, is chosen. Closed boundaries, i.e., line-tying
conditions at all the sides of the computational box, are
imposed.

In the top panel ofFigure 2some magnetic field lines are
represented, together with the toroidal component of the
magnetic field (By) at the central plane of the configuration.
The results of the evolution, not shown here, indicate that the

system is in essentially the same state as in the beginning of the
simulation, meaning that the magnetic field model is indeed
force-free. We find rather small flows, of the order of 2 km s−1,
associated withthe relaxation process of the magnetic
configuration, whichare eventually attenuated. The flux rope
cross section keeps the initial circular shape, indicating that
the thin-tube approximation used to construct the toroidal
model works well (a/R=0.071 in our model). Evidences of
kink or helical instabilities, whicheventually would destroy
the equilibrium, are not present in the simulation. This is the

Figure 2. Snapshot of the flux rope configuration for Nt=8.5 (strong twist).
The By component of the magnetic field is plotted at the central plane together
with some specific magnetic field lines. The toppanel corresponds to the test
case without the prominence enhancement, while in the bottompanel the dense
prominence inside the flux rope is present (but not visible in this plot).
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expected behavior since we have intentionally imposed a
small number of turns of the magnetic field lines around the
flux rope axis.

The presence of the flux rope in the global arcade
configuration produces an increase in the local Alfvén speed
(v BA 0m r= ). It is known that to have an efficient
waveguide that is able to trap energy, a minimum in the
Alfvén speed is required. This means that without a dense
prominence inside the flux rope, which will produce an
important decrease of the Alfvén speed, the toroidal magnetic
structure with just the background density is unable to act as a
wave guide, at least for fast MHD transverse waves.

5. FLUX ROPE WITH AN EMBEDDED PROMINENCE

5.1. Global Features

The situation is different when a heavy prominence is
incorporated into the flux rope. The bottom panel ofFigure
2shows the results after 1hr of evolution, and several
differences with respect to the simulation described in Section 4
are evident (compare with the top panel ofFigure 2). The cross
section of the flux rope is no longer purely circular and shows
an oval shape. The prominence is located initially at
z0=15Mm, and because of the gravity force, the magnetic
structure and the prominence are pushed downward. The
results of this simulation show that the upper part of the flux
rope is essentially unaltered while the lower part, where the
prominence was introduced, suffers the strongest change in the
toroidal magnetic field. A close inspection of bottom panel
ofFigure 2 reveals that By underneath the prominence shows a
significant decrease. Note also that from this figure the
magnetic field lines inside the flux rope are slightly different
with respect to thetop panel of Figure 2 because of the
presence of the prominence.

A density isocontour and some magnetic field lines are
represented in Figure 3 at three different times. The shape
of the prominence changes from the initial Gaussian profile
to a structure thatis more irregular and elongated. In this
simulation the prominence is suspended above the base
of the corona mainly owing to the magnetic restoring
forces associated with the dips introduced by twist that
counteract gravity. The mass tends to be aligned with the
flux rope axis.

In our model the temperature at the core of the prominence is
typically around 2.6×104 K and connects smoothly with the
much hotter coronal environment, at 1×106 K. This low
temperature at the prominence core is essentially determined by
the initial density enhancement. We have found that gas
pressure is basically constant across the prominence, meaning
that an increase in density leads to a decrease in temperature
according to the ideal gas law. The connection of the core of
the prominence with the external corona is through the PCTR.
The size of this transition layer is mostly determined by the
initial shape of the density enhancement, which is Gaussian in
our case.

We have repeated the simulation for the configurations with
intermediate and weak twist, and the results for the three
twisted configurations at the same instant (63.6 minutes) are
shown in Figure 4. For the three configurations we obtain
suspended prominences, and this is not surprising for the cases
with strong and moderate twist since the magnetic structure has
dips. Nevertheless, even in the situation with weak twist we

obtain a suspended prominence although there are no magnetic
dips. The mass does not fall along the curved magnetic field
lines because an overpressure is established between the
prominence and the base of the corona. This overpressure
inevitably produces an increase in temperature in the coronal
medium, which is at most 10% of the coronal temperature
(1MK), but radiative losses and conduction, not present in our
model, would try to reduce this temperature increase. This
particular support of the prominence is the direct consequence
of the use of line-tying conditions at the bottom boundary
because pressure perturbations are not allowed to leave the
system. In the low-β regime gas pressure changes are strongly
localized along the magnetic field lines, and the prominence
behaves like a piston that moves downwarduntil it reaches an
equilibrium state.
For the spatial resolution used in the previous simulations

(600 km), the configurations for moderate and weak twist
shown in Figure 4 are able to get to a situation thatis close to
a quasi-stationary state. For these two cases the newly
achieved configuration could be used as a background
equilibrium in studies of, for example, transverse or long-
itudinal oscillations.

Figure 3. Snapshots of the flux rope configuration plus the prominence at three
different times. For this case Nt=8.5, and the spatial resolution is 600 km.

(An animation of this figure is available.)
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5.2. Time Evolution of Center of Mass

A detailed analysis of the changes in the prominence reveals
that it is in fact quite dynamic, involving rather complicated
motions before the quasi-stationary situation is reached. In
order to quantify the 3D movement of the prominence, its
center of mass (CM) has been calculated. The computation of
this magnitude has been done using the 3D information of the
density in a box that includes the prominence body only,
avoiding a significant contribution from the background

stratified atmosphere present in the whole computational
domain. The calculations have been performed using the
visualization tool VisIt (Childs et al. 2012, p. 357)
Owing to the symmetry of the system, the x- and y-

coordinates of the CM are equal to zero, while the z-coordinate
changes with time. The evolution of this component is
represented in Figure 5and provides a proxy for the global
vertical motion of the prominence. In this plot(see solid line),
we can distinguish several oscillations. Initially,the promi-
nence descends, but around t=6 minutes it starts to displace in
the opposite direction, indicating an upward motion. Later, the
direction of the motion is reversed several times. This
oscillatory pattern lasts for about two periods, i.e., 35 minutes.
The characteristic period is, for this simulation, around
12 minutes. The periodicity of the CM reflects a global vertical
oscillation of the prominence.
Figure 6 shows the position of the CM as a function of time

for the different values of twist but for a longer run (about 2hr).
The structure tends to settle down at essentially the same height,
around 13.5Mm for weak and moderate twists. For the case with
strong twist the prominence still experiences significant changes
after 1hr of evolution. Surprisingly, the periodicities during the
initial relaxation process, from t=0 to t=40minutes, are very
similar for the three configurations, meaning that twist does not
significantly affect the period of oscillation of the global standing
transverse mode. This is in agreement with the eigenmode
results of standing transverse kink oscillations in straight
cylindrical tubes with weak magnetic twist (see Ruderman 2007;
Terradas & Goossens 2012; Ruderman & Terradas 2015).
Furthermore, the behavior found for Nt=2.2 and 4.3 after
60minutes of evolution reveals that these configurations are
close to a quasi-stationary state.
Interestingly, for the three values of magnetic twist the

attenuation of the CM height with time (in the range
t=0–40 minutes) is quite strong. The attenuation or damping
is a topic that has been discussed extensively, for example, in
the context of coronal loop oscillations. In particular, the
attenuation in ideal MHD can be associated withthe process of

Figure 4. Snapshots of the flux rope configuration plus the prominence at the
same instant for the cases Nt=8.5 (top panel), 4.3 (middle panel), and 2.2
(bottom panel). The KHI is absent here because the spatial resolution is not
high enough (600 km).

Figure 5. Position of the CM for three different grid resolutions, 1200 km
(dashed line), 600 km (dotted line),and 300 km (solid line). For this
case Nt=8.5.
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resonant absorption and/or wave leakage. Nevertheless,
dissipation due to the numerical scheme used in the codes
can alsobea source of dissipation that is very often
disregarded. In order to quantify the potential effect in our
simulations and in particular on the attenuation of the position
of the CM, we have performed a convergence testand have
calculated the CM height for three different grid resolutions.
According to Figure 5, convergence of the results is achieved
for resolutions between 600 km (dotted line) and 300 km (solid
line), since the two corresponding curves are not significantly
different. The attenuation is not highly affected by the
resolution as long as we use a grid separation smaller than
600 km. A resolution of 1200 km leads to shorter periods and
faster attenuation of the global displacement and is not suitable
to perform quantitative studies. We can, therefore, claim that
the attenuation of the CM position is real (physical) and not
dominated by numerical dissipation. This does not mean that at
a certain time in the evolution numerical dissipation can be
relevant. This issue is discussed in the following sections.

6. ENERGY CONSIDERATIONS AND DAMPING

6.1. Closed Boundaries

To clarify the origin of the attenuation of the CM position,
the energy of the system is investigated. Closed boundary
conditions (see Section 3) are first considered (the simulations
described so far made use of these conditions). This means that
energy is unable to escape from thecomputational box, and
ideally the total energy of the full system should be conserved
since the governing equations do not include explicitly
dissipative mechanisms. However, numerical dissipation can
produce an energy loss. In Figure 7 the different contributions
to the total energy are represented as a function of time for the
most simple configuration (Nt=2.2). These energies are
integrated over the whole 3D domain and have been normal-
ized to the total energy at t=0. From the plot we find that
since the plasma-β is low, the magnetic energy (EB) has the
largest contribution, more than 90% of the total energy. The

internal energy (Ep) represents about 8%, while the gravita-
tional (Eg) 2%. The kinetic energy (EK) is rather small in
comparison with the total energy budget (Etot=EB+Ep+
Eg+EK) of the system. Nevertheless, this kinetic energy
accounts for all the motions in the prominence.
From Figure 7 it seems that the total energy is constant with

time because of the scale used in the vertical axis of the plot. A
more elaborated analysis reveals that indeed part of the total
energy is lost. In Figure 8 we have now represented the energy
differences with respect to the initial state normalized to the
total energy at t=0, allowing a better interpretation of the
results. The magnetic and internal energies for large times
increase with respect to the initial value,while the gravitational
energy decreases. This agrees with the global motions
described before;the prominence position decreases with time,
while it oscillates and settles at a lower height, compressing the

Figure 6. Position of the CM for three different values of the twist, Nt=8.5
(dotted line), 4.3 (dashed line), and 2.2 (solidline). In these simulations the
resolution is 600 km.

Figure 7. Total energies as a function of time. Note the logarithmic scale in the
vertical axis. In this simulation the resolution is 600 km and Nt=2.2.

Figure 8. Percentage of differences of energies with respect to their values at
t=0 as a function of time. Based on the results of Figure 7.
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magnetic field and increasing the gas pressure. The kinetic
energy initially increases (when the prominence starts to move
downward), but soon it decreases until it reaches very low
values. More importantly, from the curve of the total energy
differences we realize that after around t=10 minutesthere is
a sudden decrease followed by a quite stationary situation. This
is a consequence of the development of small scales below the
spatial grid resolution and the effect of numerical dissipation.
This is corroborated by performing the same plot for different
grid resolutions(see Figure 9). The better the resolution, the
later the decrease in energy,since smaller scales are resolved.
The curves in Figure 9 do not converge to the same value. This
is because when the spatial resolution is increased, the overall
numerical dissipation is smaller, meaning that globally less
energy is dissipated. Ideally, one would expect the change in
energy to go to zero as the grid resolution is increased.

It is necessary to remark that this energy loss does not
significantly affect the damping time since we have already
demonstrated that increasing the resolution gives essentially the
same attenuation (see Figure 5). This means that the attenuation
in our system is not related to the numerical energy loss
andhas a physical origin. Note also how the oscillations are
very clear in Figure 8 and for the kinetic energy have a period
that is half of that of the vertical oscillation since EK varies
quadratically with the velocity.

With the aim of understanding the physical origin of the
attenuation of the CM position with time, we have performed a
simulation for a prominence with a very low density contrast.
In this specific simulation we chose a value of 5 for the density
enhancement, which is certainly unrealistic, but it will shed
light on the damping mechanism. The reason for decreasing the
density contrast is that this allows us to study a prominence
with a very small mass. Such a light prominence will not
experience large motions in the vertical direction in comparison
with the previous simulations, and hence nonlinear effects,
discussed in the following section, are expected to be very
weak. The results of the simulation are shown in Figure 10. The
basic period of oscillation, around 8 minutes, is shorter than in
Figure 6 (because the prominence is lighter), and the

attenuation is weaker (now we can count more than nine
periods). There is also evidence in Figure 10 of a longer period,
which is around 43 minutes. The physical meaning of this
periodicity is related toa second motion of the structure of
different origin from the vertical oscillation. It corresponds to a
global motion but along the magnetic field, and owingto the
symmetry in the system, this oscillation is antisymmetric with
respect to the center of the prominence, meaning that it
produces contractions and dilatations of the whole prominence.
In terms of MHD waves it corresponds to a slow antisymmetric
mode, and this explains the long periodicity since slow modes
are essentially driven by pressure forces, which in our case are
rather weak (low-β regime). This mode of oscillation is also
responsible for the long periodicities found in Figure 6 for
times longer than 40 minutes, referred tobefore as the quasi-
stationary situation. In fact, this periodicity is present from
t=0 and is superimposed onthe shorter periodicity associated
with the global vertical oscillation.
We return to the issue of the damping of the vertical

oscillation. A comprehensive analysis of the results for the light
prominence indicates that the reason for the attenuation is due
to the conversion of energy of the transverse vertical motion
into localized motions at the lateral edge of the prominence.
This is equivalent to the continuum damping mechanism that
has been investigated in simpler configurations (such as plasma
slabs or magnetic cylinders). In our simulations, although the
geometry is complicated, one can identify the locations where
there is an increase in kinetic energy due to this process. In
Figure 11 density isocontours, representative of the shape of
the prominence, are plotted together with a specific isocontour
of kinetic energy. It is in a thin region near the edges of the
prominence, essentially at the PCTR, where the energy is
transferred and concentrated. The power spectrum of the
vertical velocity component calculated at different locations
provides additional information relevant to the resonant
absorption process. Two points localized at the central plane
(x=0), one close to the center of the prominence (point 1) and
the other at the PCTR (point 2), have been selected. The
corresponding power spectra are plotted in Figure 12. At point

Figure 9. Change in total energy for different grid resolutions. In this
simulation Nt=2.2.

Figure 10. Position of the CM for the case with a low prominence–corona
density contrast. For this case Nt=2.2, and the resolution is 600 km.
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1 the signal has a dominant periodicity of 8 minutes. For point
2, two peaks are clearly discernible, one located around
8 minutes and the other around 5.25 minutes. Since the two
points share a common period,we associate this periodicity
with the global mode. This period agrees with the one found in
Figure 10 and corresponds to the global vertical oscillation of
the prominence. For point 2, the secondary peak corresponds to
a particular Alfvén mode that belongs to the Alfvén continuum.
If we chose another point in the PCTR, the frequency spectrum
shows power at a different Alfvén frequency. Terradas et al.
(2008b) already found this behavior in a rather complicated
multistranded loop geometry. In their Figure 3 the signal at a
given point shows the collective or global frequency and also
the local Alfvén frequency. The amplitude of the global mode
decreases with time,while the amplitude of the local Alfvén
modes increases with time, owing to the energy transference.
The excitation of local Alfvén modes is also clear in driven

problems. For example, Wright (1992), using a simple model,
demonstrated how, under different driving conditions, resonant
and nonresonant Alfvén modes can be excited in the system
(see also De Groof et al. 2002; De Groof & Goossens 2002). In
fact, some of the results of our simulations can be understood
assuming that the global mode acts as a driver at a given
frequency of finite duration. Wright (1992) showed that for a
magnetic field line where the continuum frequency is different
fromthe driving frequency the field line responds at two
frequencies: the natural Alfvén frequency and the driven
frequency. This is exactly what Figure 12 shows for point 2. In
contrast, for a magnetic field line close to the center of the
prominence, like for point 1, the frequency of the driver is
essentially the same as the natural Alfvén frequency, and that is
why the power spectrum shows a single peak.
To summarize, in the time-dependent problem studied in our

simulations, the initial global oscillation of the whole
prominence is transferred to the Alfvén continuum modes of
the PCTR, providing compelling evidence of the presence of

Figure 11. Detail of the prominence (red-orange colors) with some magnetic
field lines and the locations where the kinetic energy increases (yellow colors)
as a result of continuum damping. For this case Nt=2.2.

(An animation of this figure is available.)

Figure 12. Power spectrum of the vertical velocity component at two different
positions. The solid line corresponds to the point close to the center of the
prominence,while the dashed line is in the PCTR. The two power spectra show
a common peak (plotted with a vertical dotted line), associated with the global
motion of the prominence (quasi-mode).
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continuum damping. This energy transference is most efficient
where the frequency of the global mode matches the local
Alfvén frequency, but there is also energy transference to
neighboring field lines that have their own Alfvén frequency.
The amplitude of the Alfvén continuum modes grows with time
until all the energy of the global mode has been transferred.
Subsequently, the continuum modes oscillate with their natural
frequencies. Since the frequency of the Alfvén modes changes
with position, this enhances the phase-mixing process. Small
spatial scales are generated and eventually smoothed by the
numerical dissipation of the scheme.

6.2. Open Boundaries

Now open boundary conditions are considered, allowing the
role of energy leakage and its contribution to the observed
attenuation of the position of the CM to be investigated. The
results indicate that for the present configuration the energy
loss due to wave leakage through the boundaries is rather small
since the position of the CM is essentially the same as in the
situation for closed boundaries. Thus, wave leakage is not the
main cause of damping of the vertical oscillations. The
dominant physical process is transfer of energy to Alfvén
oscillations of neighboring field lines.

There is additional indirect evidence about the absence of
significant leakage in our system. From the calculation of the
power spectrum at different points, described before, and the
inferred period of the global oscillation, wave leakage of this
mode is not possible from the theoretical point of view. The
cause is that the Alfvénic modes in the coronal environment
outside the prominence have frequencies that are above the
frequency of the global mode. This is incompatible with the
properties of leaky modes, whichare fast magnetoacoustic
modes with frequencies above the local Alfvén frequencyand
therefore have a propagating nature. This propagating feature is
precisely the oneresponsible for the attenuation of the mode
since the energy of the global mode is emitted away. These
types of modes are not possible in our configuration.

7. KELVIN–HELMHOLTZ INSTABILITY

The results of the previous section indicate that resonant
absorption is responsible for the attenuation of the position of
the CM. This is true at least for the case of the light
prominence. The results for the typical prominence considered
in our simulations (see Figure 6) also suggest a strong damping.
However, in this last case the physics involved in the
attenuation is more intricate, especially owing to nonlinear
phenomena. The reason is that since now the prominence is
more massive, the vertical motions and therefore the shear
motions at the PCTRhave larger amplitudes and ultimately
produce a KHI type. This instability operates in the absence of
inhomogeneous layers, i.e., for a discontinuous change in the
velocity, but also under the process of resonant absorption and
the associated phasemixing. A clear indication of the phase-
mixing process before the onset of the instability is shown in
the top panel of Figure 13, where the y-component of the
vorticity is plotted in the plane y=0. The essentially vertical
bands are due to the generation of small lengthscales, and their
number increases with time as the process of phasemixing
develops. In fact, these vorticity layers seem to propagate
across the prominence structure, but this is just an apparent
propagation due to the existence of a continuum of Alfvén

waves (see,e.g., Kaneko et al. 2015). At some instant they
become unstable to the KHI, and this happens on a timescale
that is less than the period of the global vertical oscillation of
the structure. This stage of the nonlinear evolution is identified
in the bottom panel of Figure 13. Note that the most likely
place for the KHI to occur is where the velocity shear is largest
and the magnetic field is perpendicular to the velocity (e.g.,
Rankin et al. 1993). For the fundamental standing transverse
mode this is precisely the antinode of the velocity, located at
half the flux rope length, i.e., in the plane plotted in Figure 13.
This nonlinear problem, i.e., the development of the KHI in a

phase-mixed layer, has been addressed analytically by
Heyvaerts & Priest (1983) and Browning & Priest (1984)
(see also Allan & Wright 2010). More recently, Terradas et al.
(2008a) and Antolin et al. (2015) have studied the KHI
numerically using straight cylinders with nonhomogeneous
layers in the radial direction, while Soler et al. (2010b) have
performed an analytic study assuming a jump in the velocity
shear. The flux rope configuration studied in the present work,
although more complex than the simple straight tube, is not an
exception. The development of the instability is quite evident in
the simulations with the highest resolution, like the one shown
in Figure 13. For the intermediate spatial resolution (600 km) it

Figure 13. Detail of the y-component of the vorticity (∇×v) in the plane
y=0. For this case Nt=2.2 and the spatial resolution is 300 km.
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is not so obvious. Further evidence for the instability is found
in Figure 14 for the case Nt=2.2, where the density
distributions at two perpendicular planes that intersect at the
center of the prominence are plotted together with some
selected magnetic field lines. The initially compact shape of
prominence progresses, and ripples at the sides of the
prominence start to appear (see top paneland the associated
vorticity plot, bottom panel of Figure 13). These are precisely
the locations where the velocity shear is strong. Later, small
scales are still developing, and some structuring is devised
along the field lines (see bottom panel of Figure 14).

It is interesting to use the ideas developed in Browning &
Priest (1984) and Allan & Wright (2010) in the context of our
simulations. Allan & Wright (2010) suggested a method to
estimate the time at which the growth of the KHI in the phase-
mixing layer becomes significant. Based on the results of
Browning & Priest (1984), Allan & Wright (2010) defined the
normalized maximum growth rate (see their Equations(3)
and(6)) as

V

L

1.7

4
,KH

0

A phw
G »

where V0 is the wave amplitude, ωA the frequency at the
resonance, and Lph the phase-mixing length. These three
magnitudes can be estimated from the simulations. The
amplitude depends on time since energy is pumped into the
layer, and Lph is also timedependent since the phase-mixing
process continuously generates smaller lengthscales with time
(we have used the distance between two maxima as an
estimation for Lph). This means that ΓKH is also a function of
time. Allan & Wright (2010) defined the normalized growth
rate of the instability in such a way that the growth of the KHI
during a quarter cycle of a large velocity shear will be
significant if ΓKH is comparable to or greater than unity. The
results of the calculation of ΓKH based on our simulations at the
early stages of the time evolution are shown in Figure 15. This
magnitude is much less than 1 at the very beginning of the
simulation, but it shows a rapid increase with time. The trend of
the curve indicates that values of the order of 1are possible
after 15 minutes of evolution. This agrees with the timing of the
onset of the instability inferred from the simulation, which
isaround t=17 minutes (see dashed vertical line in Figure 15).
The match with the analytic prediction is good, and our
simulations suggest that ΓKH≈0.5 is sufficient for the KHI to
take over.
Another question that arises here is whether the attenuation,

discussed in the previous section for a light prominence, is
produced by resonant absorption at the inhomogeneous layers,
or if it is instead more related to the nonlinear effects that
generate the vortical structures at the sides of the prominence
due to the KHI. In other words, the KHI by itself may provide a
mechanism to attenuate the prominence even in the absence of
resonant absorption since this instability precisely takes energy
from the bulk flow (the transverse vertical oscillation in our
case) that eventually cascades to smaller scales. Depending on
the amplitude of the oscillation (the KHI is a nonlinear
problem, while resonant damping works linearly), the KHI
could transfer the energy more efficiently than resonant

Figure 14. Detail of the density evolution at two perpendicular planes. For this
case Nt=2.2 and the spatial resolution is 300 km.

Figure 15. Normalized maximum KH growth rate, ΓKH, as a function of time
for the simulation shown in Figure 14. The dashed line corresponds to the time
estimation of the onset of the KHI from the simulations.
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absorption. This is an attractive problem that requires a careful
analysis, preferably using a simpler model like the straight
cylindrical tube, and is left for future studies. In this respect,
Ruderman et al. (2010) have proposed that the nonlinear
coupling between kink and fluting modes may accelerate the
damping of the oscillations since fluting modes have a faster
attenuation rate.

Finally, it is interesting to investigate the effect of twist on
the development of the KHI for the highest spatial resolution.
In Figures 16 and 17, the density distributions for the
configurations with moderate and strong twist are plotted. We
see that the ripples associated with the instability develop in a
different way;for moderate twist they are clearly visible at
intermediate times (top panel of Figure 16). These vortical
structures are not so evident in Figure 17, representing the
situation with the strongest twist, but a detailed inspection of
the motions shows that the instability is still present. It is
known that magnetic twist must have a stabilizing effect (see
Soler et al. 2010b), but in the present configuration, even for
the situation named here as strong twist, it is still too weak to
inhibit completely the development of the instability. A
distinctive feature of the flux rope with weak twist, showing
quite a compact shape, in comparison with the situations of

moderate and strong twist, is that in these last two cases
elongated structures along the flux rope axis are generated (see
bottom panels ofFigures 16and 17). These structures are lying
mainly horizontally with respect to z=0. This behavior is due
to the fact that twist introduces local dips and mass tends to
accumulate around these dips. However, at the center of the
flux rope, even in the case with the strongest twist, the
magnetic field lines are essentially horizontal, and therefore the
dense material does not reorganize much along these lines,
producing the horizontal structuring.

8. CONCLUSIONS AND DISCUSSION

The time evolution of a cold prominence initially embedded
in a magnetic flux rope has revealed interesting characteristics
of the structure. We have concentrated on sustained promi-
nences, i.e., detached from the photosphere. The different
numerical simulations have shown how the magnetic field
evolves in response to the dense prominence that is pulled
downwardby gravity. The various twisted flux ropes con-
sidered in this work, together with the embedded prominences,
show a different evolution. We have shown that in some cases
they are clearly evolving toward a stationary state. These quasi-
stationary 3D solutions can be used in the future for other

Figure 16. Same as in Figure 14 but for Nt=4.3. Figure 17. Same as in Figure 14 but for Nt=8.5.

12

The Astrophysical Journal, 820:125 (14pp), 2016 April 1 Terradas et al.



purposes such as the analysis of winking filaments produced by
external perturbations like Moreton waves, EIT waves, or
nearby flares and CMEs.

During the relaxation to the quasi-stationary equilibrium, the
system goes through several periodic vertical oscillations. In
the linear regime, i.e., when the amplitude of oscillation is
small in comparison with the local Alfvén speed, the process of
continuum damping transfers the excess of energy in the
system to the PCTR. It is in this highly inhomogeneous layer
where the process of phasemixing takes place. This energy
redistribution explains the attenuation of the position of the CM
of the prominence body. Thus, at least in the linear regime the
resonant absorption process is crucial in the relaxation of the
structure. The energy in the PCTR is eventually dissipated by
the numerical scheme used to perform the simulation, and this
dissipation can be hardly avoided owingto the continuous
generation of small spatial scales with time by the phase-
mixing mechanism. Fortunately, although the numerical
dissipation produces an energy loss, this does not necessarily
mean that the attenuation of the CM is dominated by this
artificial dissipation. In fact, it is known that a small dissipation
does not change the damping time (Poedts & Kerner 1991) of
the quasi-mode (i.e., the resonantly damped global mode);it
affects the dissipation in the layer but not the global attenuation
(see Terradas et al. 2006a, for the linear time evolution with
dissipation). The different convergence tests performed in the
present study point in this direction. Wave leakage is not
relevant in our model and does not contribute to the attenuation
of the position of the CM.

The problem studied here demonstrates the necessity of a
proper calculation of the Alfvén and the slow continuum in
general 3D geometries like the ones considered in the present
work. The efforts done so far in the calculation of the
eigenproblem for magnetic field resonances in the context of
magnetospheric plasmas (see Singer et al. 1981; Rankin
et al. 2006; Kabin et al. 2007; Degeling et al. 2010) may shed
some light about the application of the known techniques for
closed geomagnetic field lines to the problem of coronal loops
and solar prominences.

The vertical oscillations found in the simulations are closely
related to the eigenmodes (quasi-modes) of the configuration,
and thereforethe same periodicities should be found by
perturbing (in the vertical direction) the stationary equilibrium.
Owingto the symmetry in the system, only the vertically
polarized mode has been excited in our numerical experiments,
but according to previous works, in similar toroidal configura-
tions without magnetic twist (Terradas et al. 2006b; van
Doorsselaere et al. 2009) there should be also a horizontally
polarized mode with essentially the same period as the vertical
mode (this is true in the thin-tube approximation only).
Interestingly, the period of the standing vertical oscillation
does not change much with magnetic twist, at least for the three
configurations studied here. This can have implications from
the seismological point of view. The slow antisymmetric mode
has been also detected in the simulations, but future studies are
required to understand the existence of other modes that, owing
to the symmetry of the system, have not been excited in our
numerical experiments.

Nonlinearity complicates the physics and thus the inter-
pretation of the outcome of the simulations. We have
demonstrated that for the highest spatial resolution (300 km)
the three twisted flux ropes analyzed in this work develop KHI

at the PCTR. For all the cases, the attenuation of the CM of the
prominence is rather strong, and the shear instability may
contribute to this attenuation (in the linear regime it is only due
to resonant absorption). A meticulous investigation of the effect
of the KHI on the damping is required.
For the values of twist considered here, constrained by

observations (the maximum number of turns of the magnetic
field is at most two or three for stable configurations), the
poloidal component of the magnetic field, which provides an
additional stabilizing magnetic force, is unable to completely
suppress the shear instability at the PCTR. The evolution of the
hosted prominence inside the flux rope suggests the formation
of elongated structures lying essentially horizontal and
generated by the KHI. These results are in contrast to the
situation found in the dipped magnetic arcade studied by
Terradas et al. (2015),with the long axis of the prominence
situated essentially perpendicular to the magnetic field. In that
configuration it was found that the MRT instabilityis very
efficient (see also Hillier et al. 2012a, 2012b). Fingers and
plumes evolve at the bottom of the interface between the
prominence and corona, producing essentially vertical struc-
tures. Ideally, the different morphological observed properties
of prominences regarding the presence of either horizontal or
vertical structuring could be used to provide hints about the
geometry of the corresponding underlying magnetic structure.
Horizontal structures are more consistent with magnetic flux
ropes, while vertical structuring along the longitudinal axis of
the prominenceis associated with arcade configurations
according to our study.
There are two basic reasons for the absence of the MRT

instability in our flux rope configuration. The first reason, and
the most important, is the orientation of the prominence with
respect to the magnetic field. In the arcade model the
prominence is permeated by a perpendicular magnetic field
(when magnetic shear is small), while in our flux rope model
there is always an important magnetic component along the
prominence body. This means that for perturbations along the
longitudinal axis, the flux rope prominence is intrinsically
much more stable with respect to the MRT instability since
magnetic forces produce a stabilizing effect that is missing in
the unsheared arcade configuration. Second, for perturbations
perpendicular to the longitudinal axis of the prominence, the
localized twist provides a magnetic component that tends again
to stabilize the structure. This is similar to the effect of shear in
the arcade configuration, but with the difference that the
stabilizing component changes much more rapidly with
position in the flux rope model. This strong variation results
in a much more stable configuration (see, e.g., Ruderman
et al. 2014).
Finally, it seems clear that line-tying conditions at the base

of the corona are too restrictive. These conditions are crucial to
obtain suspended prominencesand make the effect of gas
pressure along the magnetic field lines play a very important
role in the support, especially for the cases of low magnetic
twist without magnetic dips. However, from observations it is
quite obvious that there is a continuous interchange of material
with the chromosphere, which is completely missing in our
simulations owing tothe line-tying conditions. In addition,
observations also show that blobs of material falling in the
direction of the chromosphere do not seem to stop at a given
height as one would expect with these boundary conditions in
ideal MHD. The incorporation of more realistic conditions in
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our models including the chromosphere and the pertinent
nonideal effects, such as radiative losses and conduction, is of
capital relevance.
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