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Abstract

The main priority when designing cancer immuno-therapies has been to
seek viable biological mechanisms that lead to permanent cancer eradica-
tion or cancer control. Understanding the delicate balance between the role
of effector and memory cells on eliminating cancer cells remains an elusive
problem in immunology. Here we make an initial investigation into this
problem with the help of a mathematical model for oncolytic virotherapy;
although the model can in fact be made general enough to be applied also to
other immunological problems. Our results show that long-term cancer con-
trol is associated with a large number of persistent effector cells (irrespective
of the initial peak in effector cell numbers). However, this large number of
persistent effector cells is sustained by a relatively large number of memory
cells. Moreover, we show that cancer control from a dormant state cannot
be predicted by the size of the memory population.

Keywords: cancer modelling, effector and memory cells, tumour control,
cancer dormancy

1. Introduction1

It is well known that after successful reaction to a pathogen, long-lasting2

immunity can be stimulated [28]. Harnessing this natural defence system,3
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through the use of vaccines, has long been important in the fight against4

infections and diseases [3, 13]. More recently immune mechanisms have been5

employed to combat cancer through various immunotherapies such as viro-6

therapies, adoptive transfer of immune cells, cytokine therapies or antibody7

therapies. The low success rates of these immunotherapies is mainly caused8

by the fact that the immune-cancer interactions are still not fully understood.9

10

One of the emerging cancer therapies is oncolytic virotherapy, which in-11

volves both the direct action of tumour cell destruction by a virus (that12

usually carries tumour-associated antigens (TAAs)) and the indirect action13

of anti-tumour immunity (as the immune cells learn, through interaction14

with the virus, to recognise the TAAs)[24, 36, 39]. The interactions between15

the immune cells and the viruses lead to short term (or therapeutic) and16

long term (or prophylactic) immunity, which can be naively characterised17

by effector and memory immune cells, respectively [3]. In the short term18

effector cells act to eliminate a pathogen, while in the long-term memory19

cells act to prevent its reoccurrence. Memory cells are antigen-specific; they20

are stored after a pathogen has been eliminated [12, 25, 49] and are capable21

of generating new effector cells [40]. Successful cancer treatment protocols22

seek persistent protection against the tumour whether through permanent23

elimination or control.24

25

An important research question in immunology, still unanswered at this26

moment, refers to whether it is effector or memory cells which play the most27

important role in successful treatment protocols. It has been posited that28

multiple treatment protocols are likely to provide better success in immune29

therapies. In particular, for cancer therapies, multiple and subsequent treat-30

ments provide the possibility of activating the memory cells, which can then31

be used to generate a stronger more targeted response against the tumour32

[26, 43, 45, 53]. On the other hand, there is increasing evidence that long-33

term cancer control is accompanied by high numbers of effector cells [4, 7, 35].34

Understanding the delicate balance between the anti-tumour role of effector35

and memory cells will improve the existent anti-cancer treatments.36

37

Mathematical models (see, for example, [9, 15, 17, 23, 27, 33, 34, 38,38

44, 50, 51] and the references therein) have shown that possible outcomes for39

anti-tumour therapies are: tumour elimination, tumour dormancy, tumour40

escape or tumour control. A distinction between dormancy and control can41
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be made: tumour control occurs when the tumour is held permanently at42

a constant but relatively low size, while tumour dormancy is described as43

a prolonged period in which the tumour remains small and as such is both44

asymptomatic and undetectable but will at some stage grow again[37]. Al-45

though the nature of the biological mechanisms leading to tumour dormancy46

is not fully known [1, 42], one possible means is through tumour-immune47

interactions, so called immune-mediated dormancy [16, 41, 46]. It is thought48

that a constant interplay between the tumour and immune cells can lead to49

this temporary equilibrium, but eventually one population will overpower the50

other and either the tumour will “escape” and grow rapidly or it will be elim-51

inated [41, 47]. Clearly, from a clinical outlook tumour escape is a negative52

outcome and cancer elimination is the goal of any treatment protocol. How-53

ever, as we will discuss here (and as suggested before [20]), tumour control54

may be the only possible approach when tumour elimination is impossible.55

Tumour dormancy, although of short term therapeutic benefit, presents a56

clinical challenge in the long-term as predictions regarding its end stage (es-57

cape or elimination) may be unlikely.58

59

In this paper, we will introduce and investigate a mathematical model60

for oncolytic virotherapy, which allows us to study the balance between the61

memory and effector immune responses that can control tumour growth or62

lead to tumour dormancy. Although there are many mathematical mod-63

els for cancer virotherapies (see, for example, [5, 8, 18, 27, 44, 48, 52] and64

the references therein), the model investigated in this study is based on a65

more complex ODE model described in [15], which incorporated effector and66

memory immune responses and replicated a treatment protocol derived in67

[11]. In that protocol, two viruses that carried the same tumour-associated68

antigen (human dopachrome tautomerase, or hDCT) were administered 1469

days apart. The first virus, Adenovirus (Ad), acted as a vaccine virus by70

provoking an immune response against the tumour antigens. As this im-71

mune response receded, memory cells were created. The second virus, Vesi-72

cular Stomatitis Virus (VSV), was an oncolytic virus. This virus not only73

destroyed the cancer cells directly, but provoked a much stronger immune74

response to the tumour antigens due to the memory cells created in the first75

phase. The protocol, tested on mice, did not eradicate tumours in the major-76

ity of cases but did lead to improved survival times (compared with survival77

times for mice treated with just one virus). The mathematical model intro-78

duced in this study focuses on the second part of this treatment protocol,79
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i.e., on the oncolytic virus (injected after the formation of memory cells).80

Using this model, we will investigate how differences in the magnitude of the81

initial memory cell population lead to control, dormancy or escape of tumour82

cells. We will also determine the role of parameters governing the behaviour83

of effector cells on the outcome of the treatment.84

85

The paper is structured as follows. In Section 2 we describe the math-86

ematical model. In Section 3 we begin our investigation of the long-term87

dynamics of this model by focusing on the steady states and their stability.88

To get a better understanding of the balance between effector and memory89

immune responses, in Section 4 we discuss the steady-state behaviour of a90

simplified virus-free model. In fact, this simplified model is general enough91

to be applied to any immunotherapy and so may permit us to make stronger92

conclusions about the relative importance of different immune cell types in93

targeting cancer. In Section 5 we investigate numerically the long-term dy-94

namics of both the full model and the simplified model paying particular95

attention to the effects of varying the initial memory cell population size.96

Finally, in Section 6 we return to the simplified model and investigate the97

parameters that govern the effector cells. We conclude in Section 7 with a98

summary and discussion of the results.99

2. Model Description100

To model the tumour-immune-virus interactions, we focus on the fol-101

lowing populations: the uninfected (xu) and infected (xi) tumour cells, the102

memory (xm) and effector (xe) immune cells, and the virus particles (xv).We103

assume that the virus particles are VSV particles, and that the ef-104

fector/memory cells are CD8+ T cells. The equations below, which are105

adapted from [15], take into account the fact that effector cell proliferation106

is stimulated by both the presence of the free virus particles (as considered107

in [15]) and the uninfected tumour cells (an aspect not considered in [15]).108

Since the data in [11] ignored the spatial aspect of solid tumours,109

we decided to use an ODE model, with saturated interaction terms110

accounting for some of the tumour spatial structure.111

4



dxu
dt

= rxu

(
1− xu + xi

k

)
− dv

xu
hu + xu

xv − duxu
xe

he + xe
, (1a)

dxi
dt

= dv
xu

hu + xu
xv − δxi − duxi

xe
he + xe

, (1b)

dxm
dt

= pm
xv

hv + xv
xm

(
1− xm

M

)
, (1c)

dxe
dt

= pe
xv + xu

hv + xv + xu
xm − dexe − dtxuxe, (1d)

dxv
dt

= δbxi − ωxv. (1e)

These equations incorporate the following biological assumptions:112

• The uninfected tumour cells grow logistically at a rate r, up to their113

carrying capacity k. The carrying capacity is chosen specific-114

ally to correspond to the humane endpoint for experimental115

protocols with mice [11, 32] (see also Table A.2). In addi-116

tion, the large carrying capacity allows us to investigate the117

role of oncolytic therapy on large tumours [21]. Overall, this118

logistic term approximates the slow-down in tumour growth dynamics,119

following the lack of nutrients, as observed experimentally [30]. The120

uninfected tumour cells are infected by the virus particles at a rate dv,121

and are killed by the effector cells at a rate du. The saturated form122

of the tumour-virus interaction term accounts in part for the123

spatial structure of the tumour, which leads to reduced inter-124

actions between the tumour cells and viruses (studies showing125

that viruses usually infect only a small number of tumour cells126

[10]). Finally, the saturated form of the tumour-immune in-127

teraction term accounts for the reduced number of activated128

immune cells that reach and interact with the tumour cells129

[19].130

• The infected tumour cells die at a rate δ (when they burst to let the131

replicated virus particles out). Also, they are killed by the effector cells132

at a rate du.133

• The memory cells proliferate, at a rate pm, in the presence of virus134

particles (virus antigens). These cells have a carrying capacity M ,135
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which models the competition for space between memory cells or com-136

petition for antigens [2]. We assume here that the memory cells persist137

for a very long time (compared to the effector and tumour cells), and138

thus we ignore their natural death rate. Parameter hv denotes the139

half-concentration of viral antigens that trigger the memory response.140

The saturated form of the virus-induced memory response ac-141

counts for the limited proliferation of memory cells in response142

to virus particles.143

• The effector cells are the result of de-differentiation of memory cells144

in the presence of antigens (both virus antigens and tumour antigens).145

The de-differentiation rate is pe. These effector cells have a natural146

death rate of de, and can be inactivated by the tumour cells at a rate147

dt. For simplicity, we decided to use the same half-concentration hv148

for the antigens (both viral and tumour antigens). However, as we will149

discuss in Section 6, the magnitude of this parameter does not have a150

great influence on the dynamics.151

• The virus particles are produced by the infected tumour cells at a rate152

δb, where δ is the death rate of infected cells and b is the burst size (i.e.,153

the number of particles inside an infected cell). Finally, these particles154

are eliminated by the body at a rate ω.155

For a more detailed description of the model, see [15]. Note that156

the 2-compartment model in [15] accounted for the delay in the157

effector immune response following virus stimulation. To gain a158

better understanding of the key parameters in tumour-immune-159

virus dynamics, in this paper we decided to ignore such a delay.160

We emphasise that many of the biological processes considered161

in this mathematical model could have been formulated differently162

(see the models in [5, 8, 14, 15, 18, 27, 44, 48, 52]). For example, the163

proliferation of memory cells following virus stimulation was im-164

plemented differently in a previous study [15], which considered a165

different pathway for memory differentiation - one of the multiple166

pathways suggested in the literature [22]. Equally, the tumour-167

immune and tumour-virus interactions could have been modelled168

using bi-linear terms, rather than the saturated forms we give, and169

the tumour growth could have been modelled using a Gompertzian170

or exponential form [6, 27, 31]. However, it is not the goal of this171
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paper to investigate the impact of the different possible descrip-172

tions of interaction terms on the outcomes of the model. Rather, it173

is to choose an example of interaction terms and use them to take174

a first look at the potential importance of effector versus memory175

cells during viral therapies.176

3. Steady States and Stability177

We start the investigation of model (1) by studying first its long-term178

dynamics. To this end, we identify all possible steady states and determine179

their stability. The parameter values investigated in this article (also involved180

in the stability of these steady states) are summarised in Appendix A. Note181

that these values apply to tumour-immune interactions observed in mice.182

Tumour-Free Steady States (TF). The tumour-free steady states are given183

by (0, 0, x∗m, 0, 0). These steady states are always unstable saddles, due to184

one positive eigenvalue λ1 = r > 0. As such, this model predicts that the185

treatment protocol cannot lead to permanent tumour elimination. Thus, in186

the following, we will be concerned with investigating stable tumour-present187

steady states for which the tumour size is considered to be under control,188

i.e. below a certain threshold. For the purpose of this study, we will assume189

that the value of this threshold is 106 cells (which is the initial value for the190

number of cancer cells xu(0)).191

Tumour-Present, Virus-Present, Immune-Free Steady State (IF) . The single192

immune-free steady state is given by (x∗u, x
∗
i , 0, 0, x

∗
v) where193

x∗u =
ωhu

bdv − ω
, x∗i =

k − x∗u
1 +

δk

rx∗u

and x∗v =
δb

ω

 k − x∗u
1 +

δk

rx∗u

 . (2)

This steady state is identical to the immune-free steady state for the model194

introduced in [15]. It can be easily shown (omitted here) that this state is195

always unstable and as such we do not consider it further.196

Tumour-Present, Virus-Free Steady States (VF) . For model (1), there are197

multiple virus-free steady states (in fact, infinitely many). We can gain in-198

sight into these steady states by plotting the surfaces described by the right-199

handside of Equations (1a) and (1d) for xm, xe and xu (since xv = xi = 0, it200
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means that the remaining equations are satisfied trivially). In Figure 1 we201

show the intersections of these two surfaces, corresponding to the virus-free202

steady states of the system. Two sets of steady states satisfy these intersec-203

tion curves: the tumour-free (TF) steady states (i.e., xu = xe = 0, xm ∈ R,204

which have already been discussed above) and the tumour-present steady205

states (VF), which we focus on next. We observe that for the tumour-present206

states, the size of the tumour ranges from low (non-zero) values, which cor-207

respond to tumour being controlled by the immune system, to very large208

values (the carrying capacity size, k). To achieve a low steady state tumour-209

size there must be sufficiently high accompanying memory and effector cell210

populations.211

TF Steady States

VF Steady States

u
x*

e
x*mx*

Figure 1: A plot showing the possible virus-free steady states of system (1). The tumour-
free (TF) states are given by the green thick line, the tumour-present virus-free (VF) states
are given by the blue curve.

212

Further insight can be gleaned by considering analytic solutions to Equa-213

tions (1a) and (1d). In the following we denote the steady states of xu, xm214

and xe by x∗u, x∗m and x∗e, respectively. From Equation (1d), we can obtain215

an expression for x∗e in terms of x∗u and x∗m, which is given as216

x∗e =

pex
∗
m

x∗u
hv + x∗u

de + dtx∗u
. (3)

8



Substituting this expression into Equation (1a) and considering only the217

tumour-present solutions yields the cubic equation218

A(x∗u)3 + (B + Cx∗m)(x∗u)2 + (D + Ex∗m)x∗u − F = 0, (4)

where219

A = rdthe, B = rhe (de + dthv − dtk) , C = rpe,

D = rhe (dehv − dthvk − dek) , E = kpe(du − r) and F = rkhedehv. (5)

Only real positive solutions of the cubic provide biologically relevant steady220

states. For any given x∗m we may have between one and three steady states x∗u.221

222

To investigate the stability of these tumour-present virus-free steady state223

(x∗u, 0, x
∗
m, x

∗
e, 0), we observe that the five eigenvalues of the Jacobian calcu-224

lated at the steady states are: λ = 0 and the two solutions of the quadratics225

λ2 +G1,2λ+H1,2 = 0, (6)

where

G1 = ω + δ + du
x∗e

he + x∗e
, (7a)

H1 = ω

(
δ + du

x∗e
he + x∗e

)
− δbdv

x∗u
hu + x∗u

, (7b)

and

G2 =
2rx∗u
k

+ du
x∗e

he + x∗e
− r + de + dtx

∗
u, (8a)

H2 =(de+ dtx
∗
u)

(
2rx∗u
k

+ du
x∗e

he + x∗e
− r
)

+
duhex

∗
u

(he + x∗e)
2

(
pehv

(hv + x∗u)2
x∗m − dtx∗e

)
. (8b)

Positive eigenvalues exist, and stability fails if either H1 < 0 or H2 < 0226

(or both). In Figure 2 we plot the states x∗u against the states x∗m given227

by the cubic (4), for the parameter values investigated in this article (see228

Table A.2). Here, we show also the threshold stability curves, H1 = 0 and229

H2 = 0. We note that only one branch of stable steady state solutions exists.230

Such states are characterised by a low (controlled) tumour size accompanied231

by a persistent memory cell population.232
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Stable S.S.

Unstable S.S.

H  = 0

H  = 01

m

*
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u
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Figure 2: Plots of the steady state tumour sizes x∗
u against the the steady state memory

size x∗
m. To show clearly what happens for small as well as large tumour sizes, we use

a log scale for x∗
u. Stable steady states are indicated by blue circles and unstable states

by black squares. We also plot the curves H1 = 0 and H2 = 0 in red (solid and dashed
respectively), to indicate the boundaries which mark a change in stability.

Tumour-Present, Virus-Present, Immune-Present Steady State (TVI). If all233

populations exist, the right-hand side of Equation (1c) implies xm = M . In234

Figure 3 we plot the intersection curves of the surfaces given by the right-235

hand side of Equations (1a), (1b) and (1d), in terms of the steady state236

populations, x∗u, x∗v and x∗e (using xm = M and replacing xi with ωx∗v/δb,237

determined from the right-hand side of Equation (1e)). We observe that there238

are only two distinct biologically relevant intersections of all three surfaces239

corresponding to steady states of model (1). Neither of these states, namely240

the TF steady state (xu = xv = 0) and a VF steady state (xu ≈ 221,241

xm = M = 104, xe ≈ 864), has all five populations present. Thus, at least242

for the parameter values investigated in this article (see Appendix A), a TVI243

state does not exist and as such we should concern ourselves with stabilising,244

at a low tumour size, the virus-free (VF) steady states discussed previously.245

Biologically, our concern with this VF state makes sense, as we would hope246

to find a treatment protocol in which, after reducing the tumour size, the247

virus would be cleared.248
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given by Eqs. (1a) and (1b)

Steady States

x*u

x* x*v e

VF
TF

Intersections of the surfaces
given by Eqs. (1a) and (1d)

Intersections of the surfaces 

Figure 3: A plot showing the intersections of surfaces described by equations (1a), (1b)
and (1d). Circled are the possible steady states for model (1), when xm = M .

4. A simplified virus-free system249

Next, we consider a completely virus-free system. We will return to this
model in the next sections, when we will investigate the role of the memory
versus effector immune responses in tumour control. In the absence of the
virus, system (1) reduces to

dxu
dt

= rxu

(
1− xu

k

)
− duxu

xe
he + xe

, (9a)

dxm
dt

= 0, (9b)

dxe
dt

= pe
xu

hv + xu
xm − dexe − dtxuxe. (9c)

The steady states (x∗u, x
∗
m, x

∗
e) of this system still satisfy equations (3) and250

(4). We note from equation (9b) that the memory cell population does not251

change and as such will remain at its initial size. Thus, we may consider252

x∗m = xm(0). Therefore, the solutions for x∗u obtained by solving (4) depend253

directly on the initial memory cell population size.254

255

The eigenvalues of system (9) are governed by256

λ(λ2 +G2λ+H2) = 0, (10)

where G2 and H2 are given as before. Thus, stability of the virus-free system257

is governed solely by the sign of H2. In Figure 4 we plot the steady state258
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tumour sizes, x∗u, against the steady state memory size, x∗m (as in Figure 2,259

but now with only the H2 = 0 stability boundary). We observe that for260

a range of x∗m values (x∗m ≈ 230 − 460) the system is bistable. However,261

investigation of the long-term behaviour of system (9) shows that the system262

always chooses one stable steady state (filled blue circles in Figure 4(a)).263

We observe that the transition from the upper stable branch to the lower264

stable branch occurs as the maximum tumour size crosses the unstable branch265

(described by black squares). Hence, the unstable branch of steady states266

x∗u acts as a separatrix: if the solution for xu reaches any point above this267

branch the dynamics will approach the upper stable steady state; on the268

other hand, if the solution remains below this branch, the dynamics will269

approach the lower stable steady state. To indicate this, we also include the270

maximum tumour sizes attained for each xm(0) = x∗m in Figure 4 (see red271

crosses).272

2

Chosen Stable S.S.

Not Chosen Stable S.S.

Unstable S.S.

Max. Tumour Size

H  = 0

*

*

u
[L

o
g
 S

ca
le

]
x

mx

Figure 4: Plot of the steady state tumour sizes x∗
u against the the steady state memory

sizes x∗
m = xm(0). To show more clearly what happens for small and large tumour sizes,

we use a log scale for x∗
u. Stable steady states are indicated by blue circles and unstable

by black squares. The dynamics of the system evolves towards the filled blue circles.
We also include the curve H2 = 0 (red dashed curve) to indicate the boundary which
marks a change in stability and the maximum tumour size (red crosses) attained for each
xm(0) = x∗

m.

273
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5. Tumour growth dynamics274

In this section, we investigate the time-evolution of systems (9) and (1)275

towards the VF steady states described previously.276

Figure 5: Explicit time plots for (a) the uninfected tumour size, (b) the effector population
for different values of the initial memory cell-population for virus-free initial conditions. In
each case xu(0) = 106 and xv(0) = xi(0) = xe(0) = 0. All parameters are as in Table A.2.

277

We start by discussing first the dynamics of the virus-free system (9). In278

Figure 5 we plot: (a) the explicit time behaviour of the tumour population,279

and (b) the explicit time behaviour of the effector population, for different280

values of the initial memory cell population xm(0). (The initial conditions281

for the other variables are xu(0) = 106, xe(0) = xv(0) = xi(0) = 0.) This plot282

corresponds directly with the behaviour predicted by Figure 4: increasing the283

initial memory cell population leads to a lower steady state for the tumour284

size and a higher steady state for the effector population size. A substantial285

jump in tumour/effector size occurs between xm(0) = 348 and xm(0) = 349.286

When xm(0) = 348 we observe a period of cancer dormancy (corresponding287

to a sustained “high” effector population size), between t = 10 and t = 60288

days. However, the tumour begins to grow again and achieves a high steady-289

state size. When xm(0) = 349 the system appears similarly dormant, but290

then tends to a much lower steady-state tumour size (low enough to be con-291

sidered under control). When the steady state for the tumour population is292

on the lower branch of the stable solutions shown in Figure 4, the effector293

population always tends towards the steady state x∗e ≈ 864 cells.294

295

Note that the behaviour shown in Figure 5 is for initial conditions with296

13



zero effector cells (xe(0) = 0). If we add an initial effector cell population to297

the system, it has the effect of slightly reducing the value of xm(0) for which298

we achieve the jump to the lower steady-state branch for the tumour cells.299

For example, if xe(0) = 100 we require xm(0) ≥ 323 to achieve the lower300

value of x∗u.301

Figure 6: Explicit time plots for (a) the uninfected tumour size, (b) the effector population
for different values of the initial memory cell-population for virus-present initial conditions.
In each case xu(0) = 106, xv(0) = 1 and xi(0) = xe(0) = 0. All parameters are as in
Table A.2.

302

We next consider the behaviour of the full system (1) (which is not virus-303

free, but evolves towards a virus-free steady state over time), as we vary the304

initial memory cell population. In Figure 6 we plot (a) the explicit time be-305

haviour of the tumour population, and (b) the explicit time behaviour of the306

effector population, for different values of the initial memory cell population307

xm(0). In Figure 6(a) we observe that introducing a single virus particle308

reduces the tumour size to a low and controlled steady state, for all values309

of xm(0). Figure 2 predicted that only low tumour sizes for VF states were310

stable. Note that for low xm(0) values, the tumour first grows towards a311

very large “fatal” size, before decaying to a low steady-state value. Thus, as312

we vary xm(0), it becomes important to consider not only the steady state313

tumour size but also the maximum tumour size. Figure 6(b) shows that in314

each case the effector population tends to x∗e ≈ 864.315

316

Unexpected dynamics can be seen in the inset to Figure 6(a): increasing317

xm(0) leads to an increase in the steady-state x∗u. To get a better understand-318

ing of why this happens, in Figure 7 we plot both the maximum tumour319
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size and the steady-state tumour size against the initial memory popula-320

tion size xm(0), for xv(0) = {1, 102, 104, 106}. As observed in Figure 7(a),321

when we introduce one virus particle, a low initial memory population gives322

rise to a low steady-state tumour size. However, this behaviour is also ac-323

companied by a higher peak in the tumour size. As we increase xm(0),324

the maximum tumour size decreases while the steady-state value for the tu-325

mour increases. This increasing/decreasing behaviour becomes particularly326

strong for xm(0) ∈ (340, 350). Note that for xm(0) > 430, the maximum327

tumour sizes and the steady-state tumour sizes are below the thresholds of328

107 and 106 cells, respectively. These thresholds are sufficiently low to en-329

sure the survival of the mice. In Figure 7(b) (where xv(0) = 102), the sharp330

changes in both the maximum tumour size and the steady-state size are no331

longer observed. Instead both profiles are continuous and the steady-state332

size achieves a much lower peak. As we increase the initial virus population333

further (see Figure 7(c)), the maximum tumour size reduces more rapidly,334

while the steady-state tumour size remains almost constant at x∗u ≈ 221335

cells, far below the threshold of 106 cells. We do note, however, that even336

when xv(0) = 106 and there is a high initial memory population size (see337

Figure 7(d)), the peak of the tumour size is above 106 cells (although the338

attained size is short-lived and not typically fatal).339

6. Memory versus immune responses on tumour growth340

To compare the importance of the memory versus immune responses in tu-341

mour elimination, we focus on the simplified virus-free system. In Figure 8,342

we graph the steady states x∗u against the steady states x∗m (equivalent to343

the initial memory population in this case) along with the stability bound-344

ary H2 = 0, while changing different parameters that control the effector345

immune response. In Figure 8(a) we change the rate pe that controls the de-346

differentiation of memory cells into effector cells. Increasing this rate reduces347

the required initial memory size to achieve a lower steady-state tumour size.348

Decreasing the the natural effector decay rate de (see Figure 8(b)) also leads349

to a reduction in the initial memory size required to achieve a lower steady-350

state tumour size. Similar results are obtained when decreasing the effector351

half-saturation constant he (see Figure 8(c)). In Figure 8(d) we include a352

plot which shows the effect of changing hv. We see here that there are almost353

no differences in the long-term behaviour of system (1) when 1 < hv < 104.354

However, for hv = 106 there are small differences in the size of x∗u approached355
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Figure 7: Plots of the maximum tumour size (black dashed-dot curve) and the steady-state
tumour size (red dashed curve), for different values of the initial virus population. The
parameter values are as in Table A.2.

by system (1), for initial memory population sizes x∗m ∈ (200, 450).356

357

We observed above (see Figures 5 for the virus-free system and Figure358

6 for the virus-present system) that a low steady-state tumour size was ac-359

companied by an effector steady-state size of x∗e ≈ 864 cells. To achieve this360

steady-state effector population size we must either have a high enough ini-361

tial memory population or, as shown in Figure 8, be able to control immune-362

related parameters i.e., provoke a higher de-differentiation of memory cells363

to effector cells, reduce the effector cell natural decay and enhance effector-364

tumour interactions. However, it might not be possible to control these365

parameters experimentally. And even if we can alter them favourably, a366

higher initial memory population size continues to be important. As such,367

we conclude that focus should remain on stimulating a high initial memory368

population.369
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Figure 8: Plots showing the steady state behaviour (solid curves) of the virus-free system
along with stability boundaries H2 = 0 (dashed curves) for different parameters. In panel
(a) we change pe, in panel (b) we change de, in panel (c) we change he and in panel (d)
we change hv, while keeping all other parameters fixed as in Table A.2.

7. Discussion370

In this article, we introduced a simple, nonlinear mathematical model371

that described the interactions among immune cells, cancer cells and viruses.372

Although the original purpose of the model was to investigate the dynam-373

ics of oncolytic therapy, much of what we have shown applies to a model374

of a virus-free system. As such, the model could be used to give insight375

into immune-cancer interactions after the stimulation of anti-cancer immune376

memory cells. We focussed our attention on the importance of memory377

and effector cell population sizes on stabilising the tumour-present virus-free378

steady states.379

380

We found that for our model (system (1)) the dynamic behaviour al-381

ways evolved towards a tumour-present virus-free steady state, whether un-382

der virus-free or virus-present initial conditions. When the system was fully383
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virus-free, we found that only by increasing the initial memory cell popula-384

tion could we achieve reduced tumour growth and low steady-state tumour385

size. For the virus-present system, it was important to have a high initial386

memory cell population in order to reduce the initial growth (and maximum387

size) of the tumour (although there was a slight trade-off as the steady-state388

size increased as we increased xm(0)). Having a high initial memory cell389

population became less important as we increased the initial virus popula-390

tion, xv(0). Indeed when xv(0) = 106 there was very little difference in the391

maximum tumour size and no difference in the steady-state tumour size,392

for all values of xm(0). A parameter investigation showed that provoking a393

high initial memory population would always lead to a positive outcome, and394

that biologically this is likely to be more attainable than stimulating changes395

to the immune-related parameters. Importantly, we have found that low396

steady-state tumour sizes were always accompanied by a high steady state397

effector population (always around x∗e ≈ 864 cells). As such, this adds to the398

evidence that suggests that cancer control is the result of a persisting popu-399

lation of effector cells, regardless of the initial number immune cells [4, 35, 7].400

401

Our investigations also indicated that specific conditions could lead to402

immune-mediated cancer dormancy. It is now evident from the literature403

that cancers may remain dormant for prolonged periods of time, after which404

tumours will either escape (and grow excessively) or be eliminated. Here,405

we showed that very slight changes to the system set-up (in our case slight406

changes to the initial memory cell population) could lead to a change between407

these two contrasting outcomes. Furthermore, with a wide range of paramet-408

ers it is unlikely that we could predict whether the patient would go on to409

experience cancer growth or cancer reduction and control after dormancy.410

Unfortunately due to the very nature of cancer dormancy (i.e., cancer is at411

a very small size), it is often elusive to the methods of detection currently412

available to clinicians. Our findings remind us that it remains of great im-413

portance to search for ways to detect and monitor cancer dormancy.414

415

Having discussed our results, we wish to stress that they are sub-416

ject to the limitations of our model. As mentioned, when discussing417

the model set up, there are alternative ways of incorporating the418

biological mechanisms known to occur, and equally we have only419

attempted to describe certain biological pathways which are still420

not fully understood. Different formulations of the model could421
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well provide further insight into the role of effector and memory422

cells; in fact the subject may benefit from a detailed investigation423

of general interaction terms. However, our investigation into this424

important immunological problem aims to be a starting point for425

further discussion on this topic.426
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Appendix A. Appendices430

Variables Meaning Initial Value

xu uninfected cancer cells 106

xi infected cancer cells 0
xm memory cells 1− 104

xe effector cells 0
xv virus particles 0− 106

Table A.1: Initial values of the variables for the model given by Equations (1a)-(1e).
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