Supporting Information

On the role played by the chalcogen donor atoms in diimine-dichalcogenolate $\mathrm{Pt}^{1 \mathrm{~L}}$ SONLO chromophores: is it worth replacing sulfur with selenium?

Anna Pintus, M. Carla Aragoni, Francesco Isaia, Vito Lippolis, Dominique Lorcy,
Alexandra M. Z. Slawin, J. DerekWoollins, and Massimiliano Arca*

Experimental part

Chemicals: 2,2'-Bipyridine, 1,10-phenanthroline, $\mathrm{K}_{2} \mathrm{PtCl}_{4}$, ethyl alcohol, and thf were obtained from commercial sources and purified when necessary by using standard techniques.

Synthesis of Complexes: Platinum dichlorodiimine complexes $\left[\mathrm{Pt}(\mathrm{bipy}) \mathrm{Cl}_{2}\right],\left[\mathrm{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right],{ }^{1,2}$ and N-methyl-4,5-bis(2'-cyanoethylseleno)-1,3-thiazol-2-thione ${ }^{3}$ were synthesized according to published procedures. The complexes [Pt(bipy)(Me-dmet)] (4) and [Pt(phen)(Me-dmet)] (5) were synthesized and characterized as described in a previous work. ${ }^{4}$
[Pt(bipy)(Me-dset)] (1). A dry ethyl alcohol solution of sodium ethoxyde ($15 \mathrm{~mL} ; 3.6 \mathrm{mmol}$) was added dropwise to a solution of N-substituted-4,5-bis(2'-cyanoethylseleno)-1,3-thiazol-2-thione in the same solvent ($15 \mathrm{~mL} ; 0.18 \mathrm{~g}, 0.45 \mathrm{mmol}$) under a N_{2} atmosphere. A suspension of $\left[\mathrm{Pt}(\operatorname{bipy}) \mathrm{Cl}_{2}\right]$ $(0.19 \mathrm{~g}, 0.45 \mathrm{mmol})$ in 20 mL of dry thf was then added dropwise, and the reaction mixture was left under magnetic stirring for one week, after which the solvent was removed under reduced pressure. The crude product obtained was then suspended in 600 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 100 mL of n hexane were added dropwise to the filtered solution, resulting in the precipitation of a dark solid, which was collected by filtration. X-ray quality crystals were obtained by slow infusion of petroleum ether into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex. Yield: $0.02 \mathrm{~g}(9 \%) ; \mathrm{m} . \mathrm{p} .>240^{\circ} \mathrm{C}$; FT-IR: $\tilde{v}=411(\mathrm{w}), 481(\mathrm{w}), 517(\mathrm{~s}), 638(\mathrm{w}), 712(\mathrm{~s}), 747$ (vs), 761 (m), 789 (w), 906 (w), 925 (w), 990 (m), 1068 (m), 1124 (vs), 1158 (w), 1246 (w), 1316 (m), 1336 (m), 1384 (w), 1432 (w), 1446 (s), 1471 (s), 1498 (m), 1604 (m), $3068 \mathrm{~cm}^{-1}$ (vw); UV-Vis-NIR (dmso): $\lambda(\varepsilon)=257$ (17000), 277 (16000), 302 (16000), 331 (6000), 371 (11000), $569 \mathrm{~nm}\left(3500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$); fluorescence (dmso; $\lambda_{\text {exc }}$ $=341 \mathrm{~nm} ;$ slit $=5 \mathrm{x} 5): \lambda_{e m}=374,394 \mathrm{~nm}, \Phi=8.21 \cdot 10^{-3} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{dmso}-d_{6}\right): \delta=9.00(\mathrm{~d}, 1 \mathrm{H})$, $8.90(\mathrm{~d}, 1 \mathrm{H}), 8.79(\mathrm{~d}, 2 \mathrm{H}), 8.54(\mathrm{t}, 2 \mathrm{H}), 8.00(\mathrm{t}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{Se}_{2} \mathrm{Pt}$: C 26.34, H 1.74, N 6.58, S 10.05; found: C 25.76, H 1.63, N 6.02, S 9.04; CV (dmso): $E_{1 / 2} v s \mathrm{Fc}^{+} / \mathrm{Fc}\left(\right.$ scan rate $\left.=50 \mathrm{mV} \mathrm{s}^{-1}\right)=-2.245,-1.607,0.044 \mathrm{~V}$.
[$\mathbf{P t}(\mathbf{p h e n})(\mathbf{M e}-\mathrm{dset})]$ (2). The complex was synthesized as described for [Pt(bipy)(Me-dset)] (1) starting from [Pt(phen) $\left.\mathrm{Cl}_{2}\right](0.14 \mathrm{~g}, 0.31 \mathrm{mmol})$. Yield: $0.11 \mathrm{~g}(55 \%) ;$ m.p. $>240^{\circ} \mathrm{C}$; FT-IR: $\tilde{v}=$

502 (w), 517 (s), 650 (w), 705 (vs), 724 (m), 754 (w), 787 (w), 831 (s), 916 (m), 990 (s), 1063 (m), 1126 (s), 1151 (w), 1217 (w), 1294 (w), 1340 (m), 1430 (m), 1502 (m), $1578 \mathrm{~cm}^{-1}$ (w); UV-VisNIR (dmso): $\lambda(\varepsilon)=271(41000), 374(16000), 570 \mathrm{~nm}\left(5000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; Fluorescence (dmso; $\lambda_{e c x}$ $=279 \mathrm{~nm}$; slit $=5 \mathrm{x} 5): \lambda_{e m}=373,392 \mathrm{~nm}, \Phi=1.18 \cdot 10^{-2} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{dmso}-d_{6}\right): 9.36(\mathrm{~d}, 1 \mathrm{H}), 9.26(\mathrm{~d}$, $1 \mathrm{H}), 9.16(\mathrm{~d}, 2 \mathrm{H}), 8.40(\mathrm{~d}, 2 \mathrm{H}), 8.22(\mathrm{t}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{Se}_{2}$ Pt: C 29.01, H 1.67, N 6.34, S 9.68; found: C 30.93, H 2.38, N 7.21, S 8.40; CV $($ dmso $): E_{1 / 2} v s \mathrm{Fc}^{+} / \mathrm{Fc}\left(\right.$ scan rate $\left.=100 \mathrm{mV} \mathrm{s}^{-1}\right)=-1.620,-0.027 \mathrm{~V}$.

Characterization: Elemental analyses were performed with an EA1108 CHNS-O Fisons Instrument $\left(T=1000^{\circ} \mathrm{C}\right)$. FT-IR spectra were recorded with a Thermo-Nicolet 5700 spectrometer at room temperature: KBr pellets with a KBr beam-splitter and KBr windows (4000-400 cm^{-1}, resolution $4 \mathrm{~cm}^{-1}$) were used. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian INOVA 400 MHz spectrometer at 298 K and referenced to $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$. Absorption spectra were recorded at 298 K in a quartz cell of 10.00 mm optical path with a Thermo Evolution 300 (190-1100 nm) spectrophotometer. Uncorrected emission spectra were collected at 298 K with a Varian Cary Eclipse spectrophotometer equipped with a xenon lamp. Quantum yields were determined relative to anthracene in ethyl alcohol $\left(C=1-5 \cdot 10^{-6} \mathrm{M} ; \lambda_{\text {exc }}=334-359 \mathrm{~nm}\right)$, by calculating the integrated emission intensity of both the sample and the reference through a decomposition of the spectra in their constituent Gaussian curves. Spectral decomposition was carried out by means of the software Fytik. ${ }^{5}$ Cyclic voltammetry measurements (scan rate $10-1000 \mathrm{mV} \mathrm{s}^{-1}$) were performed in anhydrous dmso in a Metrohm voltammetric cell, with a combined working and counter platinum electrode and a standard $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode with a Metrohm Autolab PGSTAT 10 potentiostat (supporting electrolyte $\left(\mathrm{TBA}^{+}\right)\left(\mathrm{PF}_{6}^{-}\right) 0.10 \mathrm{M}$): reported data are referred to the $\mathrm{Fc}^{+} / \mathrm{Fc}$ reversible couple.

X-ray crystallography: Single crystal X-ray diffraction data for complex $\mathbf{1}$ were collected with the St. Andrews Robotic diffractometer at 125(2) K.

Insert Ref A. L Fuller, L. A. S. Scott-Hayward, Y. Li, M. Bühl , A. M. Z. Slawin and J. D. Woollins, J. Am. Chem. Soc., 2010, 132, 5799-5802. DOI: 10.1021/ja100247y

The structures were solved by direct methods with SHELXS-97 ${ }^{6}$ and refined on F^{2} by using SHELXL2013. ${ }^{7}$ I doin't know how to use Endnote.,..the correct Ref for SHELX is now Sheldrick, G . M. (2008). Acta Cryst. A64, 112-122.

DFT Calculations: Theoretical calculations were performed at DFT level ${ }^{8}$ with the Gaussian 09 suite of programs (Rev. A.02) ${ }^{9}$ on a E4 workstation equipped with four quadcore AMD Opteron processors and 16 Gb of RAM and running the 64 bit version of the Ubuntu 12.04 Linux operating system. The PBE0 (PBE1PBE) hybrid functional was adopted, ${ }^{10}$ and Schäfer, Horn, and Ahlrichs double- ζ plus polarization all-electron basis sets ${ }^{11}$ were used for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$ and Se , whereas CRENBL BS^{12} with relativistic effective core potentials (RECPs) ${ }^{13,14}$ was chosen for the heavier Pt species. Preliminary calculations were performed on complex 1 by employing the CRENBL-ECP BSs also on the Se atoms, in order to account for the relativistic effects for this atomic species, but no significant improvement was observed to be conferred to the agreement between experimental and calculated data upon employing ECPs, ${ }^{15}$ and thus the Ahlrichs BS was eventually employed on all atomic species but the metal. The geometry of the complexes was optimized starting from structural data when available, and tight SCF convergence criterion (SCF=tight keyword) and fine numerical integration grids [Integral(FineGrid) keyword] were used. The nature of the minima of each optimised structure was verified by harmonic frequency calculations (freq=raman keyword). NBO charges distributions ${ }^{16}$ and Wiberg ${ }^{17}$ bond indices were calculated at the optimized geometries. Electronic transition energies and oscillator strength values were calculated at TD-DFT level (100 states). The electronic spectra were simulated by a convolution of Gaussian functions centered at the calculated excitation energies. In order to determine the influence of the solvent on the properties of the
complexes, solvation calculations were also carried out in dmso, implicitly taken into account by means of the polarizable continuum model (PCM) in its integral equation formalism variant (IEF-PCM). ${ }^{18}$ The total static second-order (quadratic) hyperpolarizability (the first hyperpolarizability) ${ }^{19} \beta_{\text {tot }}$ was calculated as described previously. ${ }^{4,20}$ The programs Gaussview $5.0,{ }^{21}$ and Molden 5.0^{22} were used to investigate the charge distributions and molecular orbital shapes. The software GaussSum 2.1^{23} was used to calculate the molecular orbital contributions (MOC) from groups of atoms, along with the contribution of singly excited configurations to each electronic transition, and to generate all the necessary data to simulate absorption spectra.

Scheme S1. General pathway for the synthesis of $\left[\operatorname{Pt}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)(\right.$ Me-dset $\left.)\right]$ complexes $\mathbf{1}$ and $\mathbf{2}$.

Table S1. Crystal data and details of the structure determination for compound $\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table S2. Bond distances (\AA) for compound $\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Pt1	-Se21	2.3929(12)	C5	-C6	1.382(15)
Pt1	-Se22	2.3803(13)	C6	-C8	1.484(16)
Pt1	-N1	2.078 (9)	C8	-C9	1.391 (16)
Pt1	-N7	2.060 (9)	C9	-C10	$1.407(15)$
Se21	-C23	1.883(11)	C10	-C11	1.393 (16)
Se22	-C27	1.881 (11)	C11	-C12	1.370 (15)
Cl31	-C30	1.94 (3)	C23	-C27	1.331 (15)
Cl31	-C30_a	1.58 (3)	C2	- H 2	0.9500
S24	-C25	1.744 (11)	C3	-H3	0.9500
S24	-C23	1.740 (10)	C4	-H4	0.9500
S27	-C25	1.662(12)	C5	-H5	0.9500
N1	-C6	1.381(14)	C9	-H9	0.9500
N1	-C2	1.323(14)	C10	-H10	0.9500
N7	-C8	1.357(14)	C11	-H11	0.9500
N7	-C12	1.315(14)	C12	-H12	0.9500
N26	-C27	1.417(14)	C28	-H28C	0.9800
N26	-C25	1.369(14)	C28	-H28A	0.9800
N26	-C28	1.447(14)	C28	-H28B	0.9800
C2	-C3	1.378(16)	C30	-H30A	0.9900
C3	-C4	1.363 (16)	C30	-H30B	0.9900
C4	-C5	1.379(16)			

[^0]Table S3. Angles $\left({ }^{\circ}\right)$ for compound $1 \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Se21	-Pt1	-Se22	91.26(4)	N7	-C8	-C6	116.1(10)
Se21	-Pt1	-N1	174.6(3)	C8	-C9	-C10	119.0 (10)
Se21	-Pt1	-N7	95.0 (2)	C9	-C10	-C11	117.9(10)
Se22	-Pt1	-N1	93.3(3)	C10	-C11	-C12	118.7(10)
Se22	-Pt1	-N7	173.8(2)	N7	-C12	-C11	124.4(10)
N1	-Pt1	-N7	80.5 (4)	Se21	-C23	-C27	123.0(8)
Pt1	-Se21	-C23	100.2(3)	S24	-C23	-C27	110.1(8)
Pt1	-Se22	-C27	100.1(3)	Se21	-C23	-S24	126.9(6)
C30	-Cl31	-C30_a	68.2(14)	S24	-C25	-N26	108.4 (8)
C23	-S24	-C25	93.0 (5)	S27	-C25	-N26	127.7(8)
Pt1	-N1	-C2	127.0(8)	S24	-C25	-S27	123.9(7)
C2	-N1	-c6	119.7 (9)	Se22	-C27	-C23	124.1(8)
Pt1	-N1	-C6	113.2(7)	N26	-C27	-C23	114.2 (9)
Pt1	-N7	-C8	114.4(7)	Se22	-C27	-N26	121.6(7)
Pt1	-N7	-C12	127.1(7)	C3	-C2	-H2	119.00
C8	-N7	-C12	118.4(10)	N1	-C2	-H2	119.00
C25	-N26	-C27	114.3(8)	C2	-C3	-H3	121.00
C25	-N26	-C28	122.2(9)	C4	-C3	-H3	121.00
C27	-N26	-C28	123.5(9)	C5	-C4	-H4	120.00
N1	-C2	-C3	122.2(11)	C3	-C4	-H4	120.00
C2	-C3	-C4	118.7(11)	C4	-C5	-H5	120.00
C3	-C4	-C5	120.5(10)	C6	-C5	-H5	120.00
C4	-C5	-C6	119.0(11)	C10	-C9	-H9	120.00
N1	-c6	-C8	115.4(9)	C8	-C9	-H9	121.00
C5	-C6	-C8	124.8(10)	C9	-C10	-H10	121.00
N1	-c6	-C5	119.8(10)	C11	-C10	-H10	121.00
N7	-C8	-C9	121.6(10)	C12	-C11	-H11	121.00
C6	-C8	-C9	122.4(10)	C10	-C11	-H11	121.00
N7	-C12	-H12	118.00	H28A	-C28	-H28B	109.00
C11	-C12	-H12	118.00	Cl31	-C30	-Cl31_a	111.8(16)
N26	-C28	-H28B	109.00	C131	-C30	-H30A	109.00
N26	-C28	-H28C	109.00	Cl31	-C30	-H30B	109.00
N26	-C28	-H28A	109.00	H30A	-C30	-H30B	108.00
H28A	-C28	-H28C	109.00	Cl31_a	-C30	-H30A	109.00
H28B	-C28	-H28C	109.00	Cl31_a	-C30	-H30B	109.00

See Table 55 for translation of symmetry code to equivalent positions.

Table S4. Torsion angles $\left({ }^{\circ}\right)$ for compound $\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Se22	-Pt1	-Se21	-C23	9.8 (3)
N7	-Pt1	-Se21	-C23	-169.6(4)
Se21	-Pt1	-Se22	-C27	-9.6(3)
N1	-Pt1	-Se22	-C27	173.2(4)
Se22	-Pt1	-N1	-C2	-1.6(9)
Se22	-Pt1	-N1	-C6	175.0(7)
N7	-Pt1	-N1	- C 2	177.5(10)
N7	-Pt1	-N1	-C6	-5.9(7)
Se21	-Pt1	-N7	-C8	-172.4(7)
Se21	-Pt1	-N7	-C12	5.2 (9)
N1	-Pt1	-N7	-C8	4.7 (7)
N1	-Pt1	-N7	-C12	-177.7(9)
Pt1	-Se21	-C23	-S24	172.0(6)
Pt1	-Se21	-C23	-C27	-8.4(9)
Pt1	-Se22	-C27	-N26	-175.1(8)
Pt1	-Se22	-C27	-C23	$7.9(10)$
C30_a	-Cl31	-C30	-Cl31_a	0.0 (15)
C30	-Cl31	-C30_a	-Cl31_a	0.0 (13)
C25	-S24	-C23	-Se21	178.0(7)
C23	-S24	-C25	-N26	0.0 (8)
C25	-S24	-C23	-C27	-1.7(9)
C23	-S24	-C25	-S27	179.1(8)
Pt1	-N1	-C6	-C5	-173.3(8)
Pt1	-N1	-C6	-C8	6.2 (11)
C2	-N1	-C6	-C5	3.6 (15)
C2	-N1	-C6	-C8	-176.9(10)
Pt1	-N1	- C 2	-C3	173.3(8)
C6	-N1	-C2	-C3	-3.1(17)
Pt1	-N7	-C8	-C6	-2.8(11)
C12	-N7	-C8	-C9	0.7 (15)
Pt1	-N7	-C12	-C11	-177.4(8)
C8	-N7	-C12	-C11	0.1 (16)
Pt1	-N7	-C8	-C9	178.6(8)
C12	-N7	-C8	-C6	179.4(9)
C27	-N26	-C25	-S24	$1.6(11)$
C28	-N26	-C25	-S27	1.6(16)
C27	-N26	-C25	-S27	-177.5(9)
C28	-N26	-C25	-S24	-179.4(9)
C28	-N26	-C27	-Se22	0.7 (14)
C28	-N26	-C27	-C23	177.9(10)
C25	-N26	-C27	-Se22	179.7(8)
C25	-N26	-C27	-C23	-3.0(13)
N1	-C2	-C3	-C4	1.9(18)
C2	-C3	-C4	-C5	-1.2(17)
C3	-C4	-C5	-C6	$1.7(17)$
C4	-C5	-C6	-C8	177.7(10)
C4	-C5	-C6	-N1	-2.8(16)
N1	-C6	-C8	-C9	176.3(10)
C5	-C6	-C8	-N7	177.2(10)
N1	-C6	-C8	-N7	-2.3(14)
C5	-C6	-C8	-C9	-4.2(17)
C6	-C8	-C9	-C10	179.9(10)
N7	-C8	-C9	-C10	-1.6(16)
C8	-C9	-C10	-C11	$1.6(16)$
C9	-C10	-C11	-C12	-0.9(16)
C10	-C11	-C12	-N7	0.0 (17)
Se21	-C23	-C27	-Se22	0.4 (14)
S24	-C23	-C27	-N26	2.9(12)
Se21	-C23	-C27	-N26	-176.8(7)
S24	-C23	-C27	-Se22	-179.9(6)

See Table S5 for translation of symmetry code to equivalent positions.

Table S5. Translation of symmetry code to equivalent positions for compound $\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table S6. Half-wave potentials (V vs $\mathrm{Fc}^{+} / \mathrm{Fc}$) and electrochemical data recorded by CV on dmso solutions of complexes $\mathbf{1}$ and $\mathbf{2}$ (scan rate $50 \mathrm{mV} \mathrm{s}^{-1}$).

		$\mathbf{1}$	$\mathbf{2}$
	$E_{I / 2}$	0.044	-0.027
$E_{I / 2}{ }^{I}$	$\left\|E_{p c}-E_{p a}\right\|$	0.054	0.052
	$i_{p c} / i_{p a}$	0.5	0.9
	$E_{1 / 2}$	-1.607	-1.620
	$\left\|E_{p c}-E_{p a}\right\|$	0.049	0.056
$E_{I / 2}{ }^{I I}$	$i_{p c} / i_{p a}$	1.2	1.1
	$E_{I / 2}$	-2.245	$/$
	$\left\|E_{p c}-E_{p a}\right\|$	0.048	$/$
$E_{I / 2}{ }^{\text {III }}$	$i_{p c} / i_{p a}$	0.8	$/$

Table S7. Selected optimized bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{1}$ and $\mathbf{2}$ in the gas phase and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model, in parenthesis). ${ }^{\text {a }}$

	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{Pt}(13)-\mathrm{Se}(22)$	2.387	2.385
	(2.401)	(2.398)
$\mathrm{Pt}(13)-\mathrm{Se}(23)$	2.385	2.382
	(2.401)	(2.398)
$\mathrm{Pt}(13)-\mathrm{N}(1)$	2.059	2.066
	(2.068)	(2.075)
$\mathrm{Pt}(13)-\mathrm{N}(7)$	2.058	2.064
	(2.067)	(2.072)
$\mathrm{Se}(22)-\mathrm{C}(27)$	1.880	1.881
	(1.87)	(1.888)
$\mathrm{Se}(21)-\mathrm{C}(23)$	1.871	1.872
	(1.879)	(1.880)
$\mathrm{C}(27)-\mathrm{C}(23)$	1.359	1.359
	(1.358)	(1.358)
$\mathrm{Se}(22)-\mathrm{Pt}(13)-\mathrm{Se}(21)$	90.71	91.12
	(90.97)	(91.38)
$\mathrm{N}(1)-\mathrm{Pt}(13)-\mathrm{N}(7)$	79.20	79.97
	(79.21)	(79.99)
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{Se}(21)-\mathrm{C}(23)$	0.00	0.00
	(0.00)	(0.00)

${ }^{\text {a }}$ Atom labeling scheme as in Figure 1.

Table S8. Calculated eigenvalues $E(\mathrm{eV})$ and composition (\%) of frontier KS-MOs in terms of the central Pt atom and the $\mathrm{N}^{\wedge} \mathrm{N}$ and Me-dset ${ }^{2-}$ ligands, and HOMO-LUMO energy gaps (eV) for complexes $\mathbf{1}$ and $\mathbf{2}$ in the gas phase and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model).

		АЕномо-димо		E	$\mathrm{N}^{\wedge} \mathrm{N}$	Me-dset ${ }^{2-}$	Pt
Gas	1	1.55	HOMO	-4.57	10	88	3
			LUMO	-3.02	85	9	6
	2	2.31	HOMO	-4.53	9	88	3
			LUMO	-2.97	86	9	6
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1	1.56	HOMO	-5.00	4	91	5
			LUMO	-2.69	93	3	4
	2	2.34	HOMO	-4.99	4	91	5
			LUMO	-2.65	93	3	4

Table S9. NPA charges Q (e) calculated on $\mathrm{Pt}, \mathrm{Se}(21), \mathrm{Se}(22), \mathrm{N}(1), \mathrm{N}(7)$, the $\mathrm{Me}^{-d s e t}{ }^{2-}$ ligand and the diimmine $\mathrm{N}^{\wedge} \mathrm{N}$ for $\mathbf{1}$ and $\mathbf{2}$ in the gas phase and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model). ${ }^{\mathbf{a}}$

		1	2
Gas	$Q($ Pt13)	0.051	0.049
	$Q(\mathrm{~N} 1)$	-0.452	-0.448
	$Q(\mathrm{~N} 7)$	-0.454	-0.451
	$Q(\mathrm{Se} 22)$	0.074	0.074
	$Q(\mathrm{Se} 21)$	0.133	0.132
	$Q\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)$	0.305	0.314
	Q (Me-dset)	-0.357	-0.363
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$Q(\operatorname{Pt13)}$	0.061	0.059
	$Q(\mathrm{~N} 1)$	-0.451	-0.447
	$Q(\mathrm{~N} 7$)	-0.450	-0.448
	$Q(\mathrm{Se} 22)$	0.057	0.022
	$Q(\mathrm{Se} 21)$	0.019	0.060
	$Q\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)$	0.506	0.505
	Q (Me-dset)	-0.567	-0.564

[^1]Table S10. Main electronic transitions ($f>0.010$) calculated for 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model) at the TD-DFT level. For each transition, the excitation energy $E(\mathrm{eV})$, the absorption wavelength $\lambda(\mathrm{nm})$, the oscillator strength f, and the molecular orbital composition of the excitestate functions, along with the fragments where the involved KS-MOs are mainly localized, are reported.

Exc. state	E	λ	f	Composition ${ }^{\text {a }}$	\%	Assignment
S1	1.751	708.0	0.135	$117 \rightarrow 118$	99	Me-dset ${ }^{2-}(91 \%) \rightarrow \operatorname{bipy}(93 \%)$
S5	2.849	435.2	0.012	$117 \rightarrow 120$	97	Me-dset ${ }^{2-}(91 \%) \rightarrow \operatorname{bipy}(98 \%)$
S8	3.149	393.7	0.037	$114 \rightarrow 118$	96	Me-dset ${ }^{2-}(82 \%) \rightarrow \operatorname{bipy}(93 \%)$
S11	3.691	335.9	0.227	$117 \rightarrow 122$	83	Me-dset ${ }^{2-}(91 \%) \rightarrow$ Me-dset ${ }^{2-}(99 \%)$
S12	3.790	327.1	0.067	$113 \rightarrow 121$	62	$\operatorname{Pt}(93 \%) \rightarrow{\mathrm{Me}-\mathrm{dset}^{2-}(42 \%)+\mathrm{Pt}(39 \%)}_{\text {(}}$
				$116 \rightarrow 120$	30	Me-dset ${ }^{2-}(75 \%) \rightarrow \operatorname{bipy}(98 \%)$
S13	3.800	326.3	0.012	$116 \rightarrow 120$	61	Me-dset ${ }^{2-}(75 \%) \rightarrow \operatorname{bipy}(98 \%)$
				$113 \rightarrow 121$	22	$\operatorname{Pt}(93 \%) \rightarrow{\mathrm{Me}-\mathrm{dset}^{2-}(42 \%)+\operatorname{Pt}(39 \%)}_{\text {(}}$
S17	4.146	299.0	0.017	$114 \rightarrow 119$	95	$\mathrm{Me}-\mathrm{dset}^{2-}(82 \%) \rightarrow \operatorname{bipy}(98 \%)$
S19	4.258	291.1	0.043	$114 \rightarrow 120$	52	Me-dset ${ }^{2-}$ (82\%) \rightarrow bipy (98\%)
				$112 \rightarrow 118$	39	$\operatorname{bipy}(85 \%) \rightarrow \operatorname{bipy}(93 \%)$
S23	4.357	284.5	0.062	$109 \rightarrow 118$	32	$\operatorname{Pt}(42 \%)+\mathrm{Me}-\mathrm{dset}^{2-}(31 \%) \rightarrow \operatorname{bipy}(93 \%)$
				$114 \rightarrow 120$	22	Me-dset ${ }^{2-}(82 \%) \rightarrow \operatorname{bipy}(98 \%)$
				$115 \rightarrow 121$	18	Me-dset ${ }^{2-}(99 \%) \rightarrow$ Me-dset ${ }^{2-}(42 \%)+\mathrm{Pt}(39 \%)$
S24	4.363	284.1	0.066	$115 \rightarrow 121$	69	Me-dset ${ }^{2-}(99 \%) \rightarrow$ Me-dset ${ }^{2-}(42 \%)+\mathrm{Pt}(39 \%)$
S27	4.434	279.6	0.069	$110 \rightarrow 118$	80	$\operatorname{Pt}(53 \%)+\mathrm{Me}-\mathrm{dset}^{2-}(34 \%) \rightarrow \operatorname{bipy}(93 \%)$
S29	4.478	276.9	0.373	$109 \rightarrow 118$	44	$\operatorname{Pt}(42 \%)+\mathrm{Me}^{\text {-dset }}{ }^{2-}(31 \%) \rightarrow \operatorname{bipy}(93 \%)$
				$112 \rightarrow 118$	31	$\operatorname{bipy}(85 \%) \rightarrow \operatorname{bipy}(93 \%)$
S30	4.596	269.8	0.016	$115 \rightarrow 122$	92	$\mathrm{Me}-\mathrm{dset}^{2-}(99 \%) \rightarrow \mathrm{Me}-\mathrm{dset}^{2-}(99 \%)$

[^2]Table S11. Static first hyperpolarizabilities $\beta_{\text {tot }}$ (a.u. and esu) and static dipole moments μ (D) calculated for $\mathbf{1}$ and $\mathbf{2}$ in the gas phase and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model).

		$\mathbf{1}$	$\mathbf{2}$
Gas	$\beta_{\mathrm{tot}} \cdot 10^{4}(\mathrm{a} . \mathrm{u})$.	4.26	4.81
	$\|\mu\|(\mathrm{D})$	368	416
	$\beta_{\mathrm{tot}} \cdot 10^{-30}(\mathrm{esu})$	7.45	7.95
	$\beta_{\mathrm{tot}} \cdot 10^{-30}(\mathrm{esu})$	3.97	4.06
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	343	351	
	$\|\mu\|(\mathrm{D})$	11.08	11.66

Figure S1. Drawing of a portion of the crystal packing of $\mathbf{1} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Hydrogen atoms were omitted for clarity.

Figure S2. Cyclic voltammogram recorded at a platinum electrode on an anhydrous dmso solution of $\mathbf{1}$ [298 K; scan rate $50 \mathrm{mV} \mathrm{s}^{-1}$; supporting electrolyte $\left(\mathrm{TBA}^{+}\right)\left(\mathrm{PF}_{6}{ }^{-}\right) 0.1 \mathrm{M}$].

Figure S3. Correlation between the absorption maxima $\lambda_{\max }$ of the solvatochromic absorption in different solvents for complex 1 and the empirical scale formulated by Eisenberg for $\left[\operatorname{Pt}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)\left(\mathrm{S}^{\wedge} \mathrm{S}\right)\right]$ complexes $\left(R^{2}=0.93\right.$; Table 1; ref. 24).

Figure S4. Frontier molecular orbital (KS-MOs 110-125; HOMO $=117$, LUMO $=118$) composition calculated for $\mathbf{1}$ in the gas phase [fragments: platinum atom (green); Me-dset ${ }^{2-}$ ligand (red); 2,2'-bipyridine (blue)].

Figure S5. TD-DFT simulated UV-Vis absorption spectrum (200-800 nm) of complex $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IEF-PCM SCRF model; Table S7).

References for Supporting Information

1 G. T. Morgan, F. H. Burstall, J. Chem. Soc., 1934, 965-971.
2 J. V. Rund, Inorg. Chem., 1974, 13, 738-740.
3 S. Eid, M. Formigué, T. Roisnel, D. Lorcy, Inorg. Chem., 2007, 46, 10647-10654.
4 A. Pintus, M. C. Aragoni, N. Bellec, F. A. Devillanova, D. Lorcy, F. Isaia, V. Lippolis, R. A. M. Randall, T. Roisnel, A. M. Z. Slawin, J. D. Woollins, M. Arca, Eur. J. Inorg. Chem., 2012, 3577-3594.
5 http://www.unipress.waw.pl/fityk/.
6 G. M. Sheldricks, SHELXL-97, University of Göttingen, Germany, 1997.
7 G. M. Sheldricks, SHELXS-97, University of Göttingen, Germany, 1997.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

8 W. Koch, M. C. Holthausen, "A Chemist's Guide to Density Functional Theory", 2nd ed., Wiley-VCH, Weinheim, Germany, 2002.

9 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
10 C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
11 A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.
12 W. C. Ermler, R. B. Ross, P. A. Christiansen, Int. J. Quant. Chem., 1991, 40, 829-846.
13 T. H. Dunning Jr., P. J. Hay in "Methods of Electronic Structure, Theory", Vol. 2, H. F. Schaefer III ed., Plenum Press, 1977.

14 J. V. Ortiz, P. J. Hay, R. L. Martin, J. Am. Chem. Soc., 1992, 114, 2736-2737.
15 Average calculated Pt-Se bond length $=2.386$ and $2.403 \AA$ for the calculations performed with Ahlrichs pVDZ and CRENBL+ECP, respectively.
16 A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735-746.
${ }^{17}$ K. Wiberg, Tetrahedron, 1968, 24, 1083-1096.
18 J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
19 M. P. Cifuentes, M. G. Humphrey, J. Organomet. Chem., 2004, 3968-3981.
20 P. J. Mendes, A. J. P. Carvalho, J. P. P. Ramalho, J. Mol. Struct.: THEOCHEM, 2009, 900, 110-117.
21 Æ. Frisch, H. P. Hratchian, R. D. Dennington II, T. A. Keith, J. Millam, A. B. Nielsen, A. J. Holder, J. Hiscocks. Gaussian, Inc. GaussView Version 5.0, 2009.

22 G. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Des., 2000, 14, 123-134.

23 N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem., 2008, 29, 839-845.
24 S. D. Cummings, R. Eisenberg, J. Am. Chem. Soc., 1996, 118, 1949-1960.

[^0]: See Table $S 5$ for translation of symmetry code to equivalent positions.

[^1]: ${ }^{\text {a }}$ Atom labelling scheme as in Figure 1.

[^2]: ${ }^{\text {a }}$ The MOs are labeled according to Figure 3.

