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ABSTRACT: A comprehensive investigation of reactions of alkali-metal derivatives of the 

ditelluro dianion [TePV(NtBu)(-NtBu)]2
2− (L2−, E = Te) with p-block element halides produced 

a series of novel heterocycles incorporating PV
2N2 rings, tellurium and group 13-16 elements. 

The dianion engages in Te,Te′-chelation to the metal center in Ph2Ge and R2Sn (R = tBu, nBu, 

Ph) derivatives; similar behavior was noted for group 14 derivatives of L2− (E = S, Se). In the 

case of group 13 trihalides MCl3 (M = Ga, In), neutral spirocyclic complexes 

(L)M[NtBu(Te)PV(-NtBu)2P
IIIN(H)tBu)] (M = Ga, In) comprised of a Te,Te′-chelated ligand 

L2− and a N,Te-bonded ligand resulting from loss of Te and monoprotonation were obtained. In 

reactions with RPCl2 (R = tBu, Ad, iPr2N) a significant difference was observed between Se- and 

S-containing systems. In the former case, Se,Se′-chelated derivatives were formed in high yields, 

whereas the N,S-chelated isomers predominated for sulfur. All complexes were characterized by 

multinuclear (1H, 31P, 77Se, 119Sn and 125Te) NMR spectroscopy; this technique was especially 
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useful in the analysis of the mixture of (L)(Se) and (L)(SeSe) obtained from the reaction of 

Se2Cl2 with L2− (E = Te). Single crystal X-ray structures were obtained for the spirocyclic In 

complex (9), (L)GePh2 (E = Te, 10), (L)SntBu2 (E = Te, 12a; E = Se, 12aSe, E = S, 12aS) and 

(L)(μ-SeSe) (E = Te, 16). 

INTRODUCTION  

Cyclodiphosphazanes, e.g. [ClPIII(μ-NR)]2, are saturated four-membered, PIII
2N2 rings that 

continue to attract interest from the inorganic chemistry community.1, 2 In recent studies they 

have been used creatively as building blocks in the synthesis of macrocycles with amido (NH) or 

chalcogenido (O, S, Se) linkers,3 as well as those that incorporate coinage metals coordinated to 

the phosphorus(III) centers.4 A fascinating recent example is afforded by the Cu4X4 clusters 

linked by P2N2 rings that resemble a sodalite framework.5 In some cases these macrocycles are 

able to encapsulate halide6 or perchlorate anions.7 

The PIII/PIII systems with terminal alkylamido groups, e.g. [tBuN(H)PIII(μ-NtBu)]2, are 

readily oxidized by sulfur or selenium.8 Subsequent double deprotonation of the resulting 

PV/PVdichalcogenides [tBuN(H)(E){PV(μ-NtBu)}]2 produces ambidentate dianions of the type 

L2− (E = S, Se), which coordinate to alkali metals in either a “top and bottom” fashion (N,N′ and 

E,E′) for the sodium and potassium derivatives 1 and 2 or in a side-on mode (bis-N,E) for the 

lithium analogs;9, 10 dimethylaluminum derivatives also adopt bis-N,E chelation.11 

Monodeprotonation of [tBuN(H)(E){PV(μ-NtBu)}]2 (E = S, Se) generates the corresponding 

monoanions, which attach to Li+ in a mono-N,E bonding arrangement.10 Recently, we have 

shown that the two-electron oxidation of the dianions L2− (E = S, Se) produces 15-membered 

macrocycles in which a planar P6E6 platform is stabilized by perpendicular PV
2N2 rings.12 In the 
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case of E = Se this oxidation also gives rise to the bridging tetraselenide [tBuN{PV(μ-NtBu)}]2(μ-

SeSeSeSe) (3), which is more conveniently prepared by metathesis of 2 with Se2Cl2.
12  

 

The synthesis of the ditelluro dianion L2− (E = Te) requires a different approach because 

elemental tellurium does not oxidize both PIII centers in [tBuN(H)PIII(μ-NtBu)]2. However, if the 

double deprotonation of this neutral precursor is carried out first,13 the PIII centers in the resulting 

dianion become more nucleophilic and telluration proceeds smoothly to give L2− (E = Te) as 

either dilithium or disodium derivatives, 4 and 5, respectively.14,15 As in the case of the dithio 

analog L2− (E = S), the smaller Li+ ions in 4 adopt a different coordination mode (Te,Te′ and 

N,Te)12 compared to that found for Na+ in 5 (Te,Te′ and N,N′).15 

In contrast to the formation of trimeric macrocycles from the oxidation of alkali-metal 

derivatives 1 and 2 (vide supra),12 the treatment of 4 with I2 produced the cyclic tritelluride 

[tBuN{PV(μ-NtBu)}]2(μ-TeTeTe) (6), which is obtained in higher yield by metathesis of 5 with 

TeCl2·TMTU (TMTU = tetramethylthiourea).15 Furthermore, metathesis of 4 with RPCl2 (R = 

tBu, Ad) generates the PV
2N2-supported heterocycles 7a,b, which were among the first examples 

of structurally characterized phosphorus(III)-tellurium ring systems.16  
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These preliminary results suggest that the PV
2N2 scaffold plays an influential role in the 

stabilization of heterocycles that incorporate tellurium and another p-block element. In order to 

determine the scope and limitations of the ditelluro dianion L2− (E = Te) as a reagent for the 

synthesis of such heterocycles, we have carried out a comprehensive investigation of the 

reactions of 4 and 5 with a variety of group 13, 14, 15 and 16 halides, specifically MCl3 (M = 

Ga, In), R2MCl2 (M = Ge, R = Ph; M = Sn, R = tBu), RMCl2 (M = As, R = Et; M = Sb, R = Ph) 

and Se2Cl2. For comparison, we conducted the reactions of the dithio and diseleno reagents 1 and 

2, respectively, with group 14 dihalides and RPCl2 (R = tBu, Ad, iPr2N). The products of these 

metatheses were characterized by CHN analyses, high-resolution mass spectra and, in solution, 

by multinuclear NMR spectroscopy (1H, 31P, 77Se, 119Sn and 125Te). Solid-state structures of the 

spirocyclic In complex (9), (L)GePh2 (E = Te, 10), (L)SntBu2 (E = Te, 12a; E = Se, 12aSe, E = 

S, 12aS) and (L)(μ-SeSe) (E = Te, 16) were determined by single crystal X-ray crystallography. 

RESULTS AND DISCUSSION 

Synthesis, NMR Spectra and Crystal Structure of Group 13 Complexes. The reactions of 4 

and 5 with group 13-16 halides were performed in toluene at −78 °C, followed by warming to 

room temperature. The crude products were generally recrystallized from n-hexane at −40 °C 

and X-ray structural determinations were carried out when suitable crystals were obtained. In 
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other cases the identity of the products was based on high-resolution mass spectra and 

multinuclear NMR spectra.  The outcome of these reactions is summarized in Scheme 1.  

Scheme 1 

 

The reaction of GaCl3 and InCl3 with 4 yielded complexes 8 and 9 (Scheme 1) in low isolated 

yields (8 and 12%, respectively), presumably owing to partial decomposition of the ligand (loss 

of Te).17 The indium derivative 9 is considerably less prone to decomposition than the gallium 

analog 8 and, consequently, it was characterized by CHN analysis, mass spectrometry and a 

single crystal X-ray structure. The 31P NMR spectra of 8 and 9 exhibit similar patterns comprised 

of three resonances in the regions 77-78, −41 to −45, and −133 to −135 ppm with approximate 
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relative intensities of 1:1:2. On the basis of the high-field chemical shift and lack of 125Te 

satellites, the resonance at 77-78 ppm is attributed to a PIII center that is no longer attached to 

tellurium. By contrast, the resonance at 41-45 ppm displays satellites consistent with one-bond 

31P-125Te coupling (1235-1250 Hz), showing that this P center is still bonded to tellurium.   In the 

case of 9 the resonances at 78.1 and −41.2 ppm both exhibit a well-resolved doublet with 2J(P,P) 

= 3.4 Hz, consistent with mutual coupling of inequivalent P environments in the same cyclo-

PV
2N2 ligand. On the basis of its relative intensity, the third resonance at −133 and −135 ppm in 

8 and 9, respectively, which also displays satellites (1J(P,Te) = 1115 and 1130 Hz), is attributed 

to the symmetrical dianionic ligand L2− (E = Te). This conclusion is supported by the 31P NMR 

chemical shifts of ca. −136 to −141 ppm observed for the group 14 derivatives 10 and 12a-c 

(vide infra). In summary, the 31P NMR spectra for 8 and 9, together with the CHN data and the 

observation of the molecular ion at m/z = 1192.1 in the mass spectrum of 9, indicate that the M3+ 

center in these neutral complexes is symmetrically chelated to a dianionic ligand L2− (E = Te) 

and also bonded to a monoanion in which the P2N2 platform is comprised of a PIII center and a 

PV=Te functionality. 

Yellow platelets of the indium compound 9 were obtained by recrystallization from n-hexane 

and the structure was determined by X-ray crystallography (Figure 1), which confirmed the 

conclusions based on the 31P NMR spectra.  The spirocyclic structure of 9 is comprised of the 

dianionic ditelluro ligand L2− (E = Te) coordinated to indium in a Te,Te′-mode and the Te,N-

chelated monotelluro monoanion [(tBuN(Te)PV(-NtBu)2P
IIIN(H)tBu)]−, which presumably 

results from the loss of tellurium from L2− (E = Te) and monoprotonation.17 
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Figure 1. Crystal structure of 9. Hydrogen atoms omitted for clarity. Selected bond lengths (Å) 

and angles (°): Te1–In1 2.7270(16), Te1–P1 2.485(4), Te2–In1 2.7210(16), Te2–P2 2.499(3), 

Te3–In1 2.7959(6), Te3–P3 2.4526(10), In1–N5 2.174(3), P1–N1 1.559(12), P1–N3 1.699(13), 

P1–N4 1.662(12), P3–N5 1.610(4), P3–N7 1.644(11), P3–N8 1.686(11); In1–Te1–P1 93.37(8), 

In1–Te2–P2 93.05(8), In1–Te3–P3 71.40(3), Te1–In1–Te2 115.87(3), Te1–In1–Te3 114.25(6), 

Te1–In1–N5 113.4(4), Te2–In1–Te3 114.25(6), Te2–In1–N5 114.8(4), Te3–In1–N5 79.00(9). 

The mean P–Te distance of 2.492(4) Å for the ligand L2− in 9 is comparable to that in the 

group 15 derivative [cf. 2.510(3) Å in 7b (R = Ad)],16 while the third P–Te bond length of 

2.453(1) Å is significantly shorter. The P–Te–In–Te–P scaffold was previously reported in the 

six-membered ring {In(-Te)[N(iPr2PTe)2]}3.
18 The In–Teexo distance of 2.809(1) Å in the latter 

complex18 is elongated when compared to the In‒Te distances from the dianionic ligand L2− in 9 

(2.721(2)-2.727(2) Å), but comparable to the value of 2.796(1) Å observed for the Te3–In1 

distance involving the monoanionic ligand. 

 

Synthesis, NMR Spectra and Crystal Structures of Group 14 Complexes. diseleno ligands 

The reaction of 4 with Ph2GeCl2 produces the diphenylgermanium derivative 10 in 39 % isolated 

yield (Scheme 1); no decomposition was observed in the solid state after 3 days of exposure to 
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moist air. By contrast, the formation of the selenium analog 10Se (Scheme 2) was accompanied 

by the diprotonated derivative H2A (E = Se) (11Se), which precluded the isolation of pure 10Se 

due to their similar solubilities.19  

 

The CHN analysis and the observation of the molecular ion in the high-resolution mass 

spectrum are consistent with the formation of the expected metathesis product 10; furthermore, 

the singlet at −136.4 ppm (1J(P,Te) = 1103 Hz) strongly suggests symmetrical coordination of 

the ligand L2− (E = Te) to the group 14 center. Yellow platelets of 10 were isolated from a 

saturated n-hexane solution stored at −40 °C, and an X-ray structural determination confirmed 

the Te,Te′- coordination of the ligand to the Ph2Ge unit (Figure 2).  

 

Figure 2. Molecular structure and side view of 10. Hydrogen atoms omitted for clarity. Selected 

bond lengths (Å) and angles (°): Te1–Ge1 2.577(3), Te2–Ge1 2.565(3), Te1–P1 2.508(6), Te2–
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P2 2.508(6), P1–N1 1.525(17), P1–N3 1.715(18), P1–N4 1.686(17), P2–N3 1.733(17), P2–N2 

1.521(16), P2–N4 1.693(18); Ge1–Te1–P1 97.73(14), Ge1–Te2–P2 98.56(14), Te1–Ge1–Te2 

115.44(10), Te1–P1–N1 114.0(7), Te1–P1–N3 107.1(7), Te1–P1–N4 109.3(6), Te2–P2–N3 

108.5(7), Te2–P2–N2 115.6(7), Te2–P2–N4 107.2(6), N1–P1–N3 120.3(10), N1–P1–N4 

117.9(10), N3–P1–N4 84.5(9). 

The P–Te–E–Te–P (E = Ge) framework has not been previously reported, although a few 

examples of structurally characterized compounds incorporating Te–Ge–Te units were described. 

The mean Te–Ge bond distance in 10 is 2.571(3) Å, cf. 2.585(1)-2.600(1) Å in [(2,4,6-

iPr3C6H2)2GeTe2]2 and 2.580(1) Å in [(2,4,6-iPr3C6H2)4Ge4Te6].
20 The Ge atom is located 0.60 Å 

out of the mean Te1–P1–N1‒N2‒P2–Te2 plane in 10 and the PV
2N2 ring is exactly perpendicular 

to this plane (Figure 2). The angle at the bridging Ge atom (<Te–Ge–Te) is 115.44(10)°, cf. < 

Te–Te–Te = 104.50 (1)° in the cyclic tritelluride 614 and  <Te–P–Te = 108.81(16)° in 7b.16 

The mass spectrum of the selenium analog 10Se shows a molecular ion at m/z = 733.1 [M++H] 

with a characteristic isotopic pattern. The 31P NMR spectrum consists of a singlet at −80.4 ppm 

accompanied by a set of satellites revealing 1J(P,Se) = 470 Hz and 2J(P,P) = 60 Hz. Consistently, 

the 77Se NMR spectrum is comprised of a doublet of doublets centered at 137.6 ppm with 

1J(P,Se) = 470 Hz and 3J(P,Se) = 15.6 Hz. Thus, the NMR data indicate symmetrical 

coordination of L2− (E = Se) to the GePh2 unit. Although yellow crystals of 10Se were isolated, 

they were not of sufficient quality for the crystal structure to be determined. 

Metathetical reactions of 4 with R2SnCl2 (R = tBu, nBu, Ph) were carried out in order to 

evaluate the influence of the R group on the stability of the products. The air-sensitivity of the 

R2Sn complexes 12a-c varies dramatically; the tBu2Sn derivative 12a does not deteriorate upon 

exposure to air in the solid state for three days, whereas the nBu2Sn (12b) and Ph2Sn (12c) 
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analogs decompose instantly with the formation of elemental tellurium (especially in solution), 

which precluded characterization by elemental analysis and mass spectrometry.  

The Te,Te′-chelated structure of 12a was established by an X-ray crystal structure (vide 

infra) and that arrangement is maintained in solution according to the NMR data (Table 1). 

Accordingly, the 31P NMR spectrum exhibits a singlet accompanied by a doublet of tellurium 

satellites resulting from the magnetic inequivalence of the phosphorus centers [1J(P,Te) and 

2J(P,P)]. Furthermore, tin satellites corresponding to 2J(P,Sn) = 52 Hz are observed. 

Consistently, the 119Sn NMR spectrum exhibits a triplet attributed to coupling to two equivalent 

phosphorus centers with satellites showing 1J(Sn,Te) ≈ 3390 Hz. The 125Te NMR spectrum 

consists of a doublet of doublets attributed to the 1J(Te,P) and 3J(Te,P) couplings. In addition, 

satellites confirming the 1J(Te,Sn) value from the 119Sn NMR spectra are apparent. Comparison 

of the NMR data for 12b and 12c with those of 12a strongly suggest a similar framework, i.e. 

Te,Te′ chelation, for this series of R2Sn ( R = nBu, Ph, tBu) derivatives (Table 1). 

Table 1.  Comparison of NMR Parameters for 12a-c, 12aSe and 12aS.a 

Compound 12a 12b 12c 12aSe 12aS 

E   Te Te Te Se S 

R  tBu nBu Ph tBu 
tBu 

δ(31P)  −141.6 −140.4 −141.1 −77.0  −48.7  

1J(31P,E)c  1183 1102 1140 500  

2J(31P,119Sn)  52 60 51 42 35 

δ(119Sn)  34.2 (t) −156.1 (t) −84.7 (t) 69.8 (t) 66.4 (t)  

1J(119Sn,E)c  3385 b 3389 691 - 

δ(125Te)  −47.7 (dd) 23.4 (dd) 6.7 (dd) - - 

δ(77Se)  - - - 77.3 (dd) - 

3J(31P,E)c  25 26 26 12 - 
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a δ in ppm and  J in Hz; t =triplet, dd = doublet of doublets 
b Poor signal-to-noise ratios in the 119Sn and 125Te NMR spectra 
c E = 77Se or 125Te 

 

In order to assess the influence of the chalcogen on the stability of R2Sn derivatives of the 

dianions L2− (A = Te, Se, S), the reactions of 1 and 2 with tBu2SnCl2 were also conducted. 

Although the 31P NMR spectra indicated high yields of 12aS and 12aSe in solution (ca. 80%), 

and analytically pure crystals were obtained, the isolation of large amounts of these products was 

thwarted by the co-formation of 11Se and 11S.19 The 31P NMR spectrum of 12aSe exhibits a 

singlet at −77.0 ppm with two sets of satellites, 1J(P,Se) = 500 Hz and 2J(P,Sn) = 42 Hz. Similar 

to the observations for the tellurium analog 12a, the 119Sn NMR spectrum of 12aSe shows a 

triplet at 69.8 ppm (1J(Sn,Se) = 691 Hz) and the 77Se NMR spectrum exhibits a doublet of 

doublets at 77.3 ppm, which arises from the 1J(P,Se) and 3J(P,Se) couplings (Table 1). For 

comparison, the 31P NMR spectrum of the tin(IV) complex [Sn{(Se)C(PPh2Se)2}2] shows a 

singlet at 61.6 ppm with 1J(P,Se) = 536 Hz21  and the tin(II) complex [Sn{NSePiPr2)2-Se,Se′}2] 

exhibits a singlet at 58.8 ppm with 1J(P,Se) = 550 Hz and a 2J(P,Sn) = 55 Hz.22 The 31P NMR 

spectrum of 12aS consists of a single resonance at −48.7 ppm accompanied by 119Sn satellites 

(2J(P,Sn) = 35 Hz) and the 119Sn NMR spectrum reveals a triplet at 66.4 ppm confirming the 

2J(P,Sn) values observed in the 31P NMR spectrum (Table 1). 
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Scheme 2 

 

 

Yellow (12a) and colorless crystals (12aSe, 12aS) suitable for X-ray analysis were isolated 

after recrystallization from n-hexane at −40 °C. The molecular structures are illustrated in Figure  

2 and structural parameters are compared in Table 2. 

 

Figure 2. Molecular Structures of 12a, 12aSe and 12aS. 
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Table 2. Comparison of Structural Data for 12a, 12aSe and 12aS.a 

Compound 12a 12aSe 12aS 

d(P–E)  2.504(2) 2.277(3),2.286(3) 2.110(4),2.121(4) 

d(E–Sn)  2.7603(7) 2.5687(13),2.5750(14) 2.444(4),2.450(4) 

d(P–Nexo)  1.508(7) 1.521(10),1.507(9) 1.484(10),1.499(10) 

d(P–Nendo)  1.696(7),1.693(7) 1.715(9),1.693(9), 

1.689(9),1.698(9) 

1.704(10),1.696(9), 

1.702(9),1.702(10) 

d(P···Sn)  4.056 3.808 3.603 

 P–E–Sn  100.74(6) 102.73(8),103.00(8) 104.34(17),104.31(17) 

 E–Sn–E  110.84(3) 110.35(4) 109.94(9) 

 E–P–P  113.87(7) 112.45(13) 110.98(15) 

 P–Nendo–P  96.2(4) 95.8(5),95.4(5) 95.4(4),95.1(4) 

 E–P–Nexo  115.4(3) 114.3(4),116.1(4) 115.5(4),116.9(5) 

 E–P–Nendo  107.3(3) 107.2(3),107.4(3), 

106.4(3),106.7(3) 

105.7(3),107.4(3), 

105.1(3),107.1(3) 
a   Bond lengths in Å; bond angles in deg. 

The structural determinations confirm the E,E′ coordination of the ligands L2− (E = S, Se, Te) 

to the group 14 center in all three derivatives. Interestingly, a N,N′-chelated isomer of 12aS has 

been characterized previously for Me2SnL (E = S).23 In that case, however, the isomer formed 

was pre-determined by the synthetic approach, which involved oxidation of the two PIII centers 

in the N,N′-chelated complex [(tBuNPIII(-NtBu)2P
IIINtBu)(SnMe2)] with sulfur.23  

In contrast to the observations for the Ph2Ge derivative 10, the ‒P–Te–Sn–Te‒P– framework is 

perfectly planar in 12a, 12aSe and 12aS; the P2N2 ring is perpendicular to that plane. The Sn–Te 

bond distance of 2.7603(7) Å) in 12a is comparable to the typical range (2.73-2.76 Å) reported 

for five-membered rings of the type (R2Sn)3Te2 (R = tBu,24a Fc24b). Although this bond is 

expectedly 0.19 and 0.32 Å longer than the corresponding distance in 12aSe and 12aS, the 

E‒Sn‒E bond angle varies by < 1.0° in all three derivatives. Concomitantly, the P–E–Sn bond 



 14 

angle increases in the series Te < Se < S from 100.7(1)° to 104.3(2)° consistent with higher p-

character in the chalcogen bonds for tellurium. The P‒Te distance in 12a is similar to that in 10. 

The structural motif P–Se–Sn–Se–P has been described in the octahedral SnIV compound 

[Sn{(Se)C(PPh2Se)2}2]
21 and in the SnII complex [Sn{NSePiPr2)2-Se,Se′}2].

22 The P–Se distances 

of 2.277(3) and 2.286(3) Å in 12aSe are in the typical single-bond range for P-Se rings.25,26 The 

P–S–Sn–S–P scaffold is well-known, e.g. in diorganotin dithiophosphates Me2Sn(S2PR2)2 (R = 

Et,27 Ph,28 Me29). The P–S bond distances in 12aS are slightly longer (by ca. 0.10 Å) than the 

mean value in diorganotin dithiophosphates, whereas the Sn–S bond lengths are marginally 

shorter (by 0.02-0.03 Å). 

Synthesis and NMR Spectra of Organophosphorus Derivatives. In view of our recent 

synthesis of thermally stable organophosphorus(III)-tellurium heterocycles 7a and 7b via 

metathesis,16 we have now investigated the reactions of 1 and 2 with RPCl2 (R = tBu, Ad, iPr2N) 

in order to determine the influence of the chalcogen on the nature of the products. As indicated in 

Scheme 2, the Se,Se′-coordinated derivatives 13aSe and 13bSe are formed for the selenium 

system in yields of ca. 40% and 79% yields, respectively, on the basis of integrated 31P NMR 

spectra. In both cases colorless crystals were isolated and the CHN analysis of 13aSe was 

consistent with the molecular formula LPtBu (E = Se); the symmetrical Se,Se′-coordination to 

the tBuP group was confirmed by a well-modeled disordered crystal structure (see ESI).  

The NMR spectra of 13aSe and 13bSe exhibit similar patterns to those of the tellurium 

analogs 7a and 7b.16 The 31P and 77Se NMR spectra for the adamantyl derivative 13bSe, as a 

representative example, are discussed here (Figure 3). The 31P NMR resonance at 132.0 ppm 

accompanied by 77Se satellites (1J(P,Se) = 232 Hz) is assigned to the PIII center in the bridging 

SePSe unit. The second resonance at −76.8 ppm shows a doublet of satellites with 1J(P,Se) = 
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449 Hz and 2J(P,P) = 58 Hz, as expected for the chemically equivalent, but magnetically 

inequivalent, phosphorus atoms of the PV
2N2 ring. The large difference in 1J(P,Se) values reflects 

the different formal oxidation states of the PIII and PV environments. The 77Se NMR spectrum of 

13bSe consists of a doublet of doublets of doublets centered at 226.5 ppm, which result from the 

two afore-mentioned 1J(P,Se) couplings and a 3J(Se,P) coupling of 15.6 Hz (Figure 3). 

 

Figure 3.  (A) 31P NMR and (B) 77Se NMR spectra of 13bSe. 

In distinct contrast to the selenium and tellurium systems, the S,S′-chelated complexes 13a-cS 

were formed in very low (< 5 %) yields, according to 31P NMR spectra. Instead, the major 

products from the metathesis of 1 with RPCl2 were the N,S-chelated complexes 14a-cS (Scheme 

2). The characterization of these products was based on the observation of the parent ion in the 

EI mass spectra and a detailed analysis of the 31P NMR spectra. As a typical example, Figure 4A 

depicts the 31P NMR spectrum of the reaction of 4 with iPr2NPCl2 which produces 14cS as the 

major product, 13cS as a very minor product, and 11S. The 31P NMR spectrum of the S,S′-

chelated isomer 13cS exhibits a mutually coupled 1:2:1 triplet and a doublet, attributed to the PIII 

(139.4 ppm) and PV (−57.7 ppm) centers, respectively, with a small 2J(P,P) coupling of 4.3 Hz 

that was not resolved in the case of the Se analogs 13aSe and 13bSe. 
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Figure 4. 31P NMR spectrum of the reaction of 1 with iPr2NPCl2: (A) Complete spectrum; (B) 

Expanded spectrum for the N,S-chelated complex 14cS. 

The expanded 31P NMR spectrum of 14cS (Figure 4B) reveals three distinct phosphorus 

environments resulting from the N,S-chelation of the ligand L2− (E = S) to the RPIII center to give 

a zwitterion (Scheme 2). On the basis of the chemical shifts and coupling patterns, the three 

resonances can be assigned as follows: (a) a doublet at 100.4 ppm (2J(P,P) = 44 Hz) for the 

terminal PV center, (b) a doublet of doublets at 16.8 ppm (2J(PV,PV) = 45 Hz, 2J(PV,PIII) = 26 Hz) 

for the spirocyclic PV environment, and (c) a doublet at 15.2 ppm (2J(PIII,PV) = 26 Hz) for the 

terminal PIII atom. The anomalous chemical shift for the spirocyclic PV center is tentatively 

attributed to the formal positive charge on this atom in the zwitterionic structure of 14cS. The 

NMR spectroscopic parameters for the adamantyl (14bS) and tert-butyl (14aS) derivatives, 

which show similar patterns, are summarized in Table 3. 
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  The observation of different coordination modes of the ligands L2− towards an RP2+ unit 

was unexpected; the only previous example of N,S-chelation of the dianion L2− (E = S) was 

found in the THF-solvated dilithium derivative.10 The preferential formation of N,E-chelated 

organophosphorus(III) complexes for sulfur, but E,E′-bonded isomers for selenium and 

tellurium, may result from a combination of (a) the different bite angles of the two possible 

modes of chelation and (b) the higher stability of the zwitterionic structure 14S (Scheme 2) for 

sulfur. 

Table 3. 31P NMR Chemical Shifts and 2J(P,P) for 14a-c.a 

Compound 14aS 14bS 14cS 

δ(31P) (PV=S)  116.9 (d) 111.4 (d) 100.4 (d) 

δ(31P) (spirocyclic PV)  17.2 (dd) 17.3 (dd) 16.8 (dd) 

δ(31P) (PIII)             14.4 (d) 14.6 (d) 15.2 (d) 

2J(PV,PIII)  27 27 26 

2J(PV,PV) 42 43 44 

a   δ in ppm and J in Hz; d = doublet; dd = doublet of doublets. 

Synthesis, NMR Spectra and Crystal Structures of Group 16 Complexes. Our previous 

syntheses of the cyclic tetraselenide 312 and the cyclic tritelluride 615 via metathesis, led us to 

consider whether this approach could be used a source of mixed chalcogenido systems. 

Accordingly, the ditelluro reagent 4 was treated with Se2Cl2 in toluene at −78 °C. This reaction 

gave a complicated mixture of products, as revealed by 31P NMR spectroscopy. The main 

components were cyclic derivatives 15 and 16 with Se2+ or (Se-Se)2+ units bridging the ligand 

L2− (E = Te), respectively (Scheme 3); the former was the major product. In addition to the 

characterization of these mixed chalcogenides by multinuclear (31P, 77Se, 125Te) NMR spectra, 

the X-ray structure of a single crystal of 16 was determined. 
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Scheme 3 

 

The molecular structure of 16 is illustrated in Figure 5 together with selected structural 

parameters. The tetrachalcogenide 16 is the first example of a structurally characterized P–Te–

Se–Se–Te–P arrangement. The Te–Se–Se–Te unit was described previously by Sladky et al. in 

the acyclic tetrachalcogenide TsiTeSeSeTeTsi (Tsi = C(SiMe3)3), but the solid-state structure 

was not determined;30 it is also present in the cationic mixed-chalcogen clusters [Te2Se8]
2+ and 

[Te2Se6]
2+.31 The Te-Se distances of  2.492(2) and 2.536(2) Å and the Se–Se bond of 2.391(2) Å 

in 16 are comparable to the values reported for heterocycles in which a trichalcogenido unit 

bridges a benzene ring, d(Se‒Te) = 2.523(1)-2.531(1) Å and d(Se–Se) = 2.350 (1) Å.32 The P‒Te 

bond lengths in 16 are similar to those in 3 and 6. 

 

 

Figure 5. Molecular structure of 16. Hydrogen atoms omitted for clarity. Selected bond lengths 

(Å) and angles (°): Te1–Se1 2.4919(18), Te1–P1 2.483(3), Te2–Se2 2.5356(17), Te2–P2 
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2.501(3), Se1–Se2 2.391(2), P1–N1 1.502(10), P1–N3 1.688(9), P1–N4 1.701(9); Se1–Te1–P1 

104.20(8), Se2–Te2–P2 101.64(8), Te1–Se1–Se2 102.88(7), Te2–Se2–Se1 101.47(7), Te1–P1–

N1 113.3(4), Te1–P1–N3 108.1(3), Te1–P1–N4 107.7(3), N1–P1–N3 122.5(5), N1–P1–N4 

117.7(5), N3–P1–N4 83.5(5). 

Figure 5 compares the ring conformations of the two trichalcogenides 615 and 15 and the two 

tetrachalcogenides 312 and 16, all of which are supported by cyclo-PV
2N2 scaffolds. The extent of 

puckering is clearly very similar for the two trichalcogenides and the two tetrachalcogenides. 

 

 

         15   6    3   16 

Figure 5. Conformations of cyclo-PV
2N2-supported polychalcogenides; Te atoms are shown in 

green and Se atoms are in orange. 

As indicated in Table 4, the previously reported NMR data for the tetraselenide 312 and 

tritelluride 615 provide an informative comparison for the assignment of the signals in the 

multinuclear NMR spectra of 15 and 16. The resonance at −121.0 ppm in the 31P NMR spectrum 

of the TeSeTe-bridged derivative 15 appears as a singlet accompanied by both 125Te and 77Se 

satellites, 1J(P,Te) = 1025 Hz and 2J(P,Se) = 29 Hz, cf. -134.5 ppm and 1J(P,Te) = 1029 Hz for 

6.15  The 77Se NMR spectrum of 15 reveals a 1:2:1 triplet at 240.9 ppm (2J(P,Se) = 29 Hz) and 

the 125Te NMR spectrum shows a resonance at 870.3 ppm appearing as a doublet of doublets 

(1J(P,Te) = 1025 Hz and 3J(Te,P) = 34 Hz).  



 20 

The chemical shift of −68.6 ppm observed in the 31P NMR spectrum of the TeSeSeTe- 

bridged derivative 16 is close to the value of −50.8 ppm reported for the tetraselenide 3,12 cf. 

−121.0 ppm for 15. Thus, it appears that ring conformation has a stronger influence than a 

change of chalcogens (Se vs. Te) on the chemical shift in these examples. The 1J(P,Te) value of 

1287 Hz for 16 is substantially larger than the value of 1029 Hz found for the tritelluride 6,15 

which is consistent with the shorter P‒Te distance in 16 (Table 4).33 The 77Se NMR spectrum 

exhibits a triplet at 465.6 ppm (2J(P,Se) = 14 Hz), which can be compared with the triplet 

observed for the central Se atoms in the tetraselenide 3 at 673.0 ppm (2J(P,Se) = 10 Hz).12 The 

125Te NMR spectrum of 16 confirms the P–Te coupling observed in the 31P NMR spectrum by 

showing a doublet of doublets at 711.6 ppm (1J(P,Te) = 1289 Hz and  3J(P,Te) = 42 Hz). 

 

 

 

 

 

Table 4.  Structural and NMR Parameters for cyclo-PV
2N2-Supported Polychalcogenides.a,b 

 

 

Te1Se3Te2 

15 

Te1Te3Te2 

6 

Se1Se3Se4Se2 

3 

Te1Se3Se4Te2c 

16 

d(P1–E1)  - 2.5317(10) 2.280(3) 2.483(3)  

d(P2–E2)  - 2.5405(10) 2.275(3) 2.501(3)  

d(E1–E3)  - 2.7155(4) 2.3371(19) 2.4919(18)  

 (31P)  −121.0 −134.5 −50.8 −68.6 

1J(P,E)  1025 1029 524 1287 
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2J(P,E)  29 34 10 14 

 (77Se)  240.9 (t) - 673.0 (t) 

336.7 (dd) 

465.6 (t) 

 (125Te)  870.3 (dd) 442.8 (dd) 

361.9 (t) 

- 711.6 (dd) 

a   Bond lengths in Å;  
b   δ in ppm; J values in Hz; t = triplet, dd = doublet of doublets 
c   The atomic numbering scheme is different from that in Figure 5 in order to compare analogous bond lengths in the tri- and 

tetra-chalcogenide systems 

 

The homoleptic tellurium(II) complex [Te{tBu(H)N(Se)PV(-NtBu)2P
V(Se)tBuN-N,Se}2] 

(17) was identified as a minor product from the reaction of 4 with Se2Cl2;
34,35 a small amount of 

the cyclic tritelluride 6 was also detected in the 31P NMR spectrum. 

 

 

CONCLUSIONS 

The thermal and air stability of main group derivatives of the ditelluro dianion L2− (E = Te) is 

markedly dependent on both the p-block element in the bridging position and the nature of the 

organyl groups in that linker. Thus, the Ph2Ge and tBu2Sn derivatives can be handled in air for 

several days, whereas other R2Sn (R = nBu, Ph) complexes decompose instantly with the 

formation of elemental tellurium.36 The lability of the P‒Te bond in the ligand L2− was also 

evident in the reactions with MCl3 (M = Ga, In) to give spirocyclic complexes in which one of 

the ligands incorporates a PIII center,  
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The Ph2Ge derivative of the diseleno dianion L2− (E = Se) is considerably more 

hydrolytically sensitive than the tellurium analog, however the complete series (L)SntBu2 (E = S, 

Se, Te) could be isolated enabling a structural comparison to be made. Organophosphorus(III) 

complexes of L2− (E = S, Se) evinced a significant structural difference. As in the previous work 

with L2− (E = Te),16 E,E′-chelated complexes were the major products for selenium, but the N,S-

chelated isomers predominated for the sulfur systems. The formation of Se,Se′-chelated 

complexes with p-block elements contrasts with our recent studies of coinage metal complexes 

in which attempted metathetical reactions of L2− (E = Se) with silver(I) or gold(I) halides 

produces macrocycles that incorporate the monoprotonated ligand HL−.39 

 The comprehensive survey of the reactions of the cyclo-PV
2N2-supported dianion L2− (E 

= Te) with p-block element halides in this and previous work15, 16 provides a benchmark for 

future studies of transition-metal, lanthanide and actinide complexes of this tellurium-centered 

ligand, which have not yet been investigated. By contrast, d- and f-block metal complexes of the 

closely related PNP-bridged ditelluro monoanion [TePVR2NPVR2Te]- (R = iPr) have received 

extensive attention,40-44 especially with regard to the nature of f-element-tellurium bonds44 and 

their use as single-source precursors of semi-conducting metal tellurides in the form of thin films 

or quantum dots.45  

 

EXPERIMENTAL SECTION 

Reagents and General Procedures. 

All synthetic manipulations were performed under an atmosphere of dry argon using standard 

Schlenk-line techniques and/or a Saffron glovebox operating with argon unless otherwise stated. 

All glass apparatus was stored in a drying oven (120 °C) and flame dried in vacuo (10−3 mbar) 
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before use. Dry solvents were collected from an MBraun solvent purification system under a 

nitrogen atmosphere and stored in Schlenk flasks over 4 Å molecular sieves or were dried and 

purified using common procedures.46 All chemicals were purchased from Sigma Aldrich, ABCR, 

Acros Organics and Strem Chemicals Inc. and used without further purification unless otherwise 

stated. The products were stored in a glove box under argon atmosphere or argon fluted Schlenk- 

or J. Young tubes or flasks. The cooling bath temperature of −78 °C was attained by using an 

acetone/dry ice bath. 

 

Spectroscopic Methods. 

NMR spectra were recorded using a JEOL DELTA EX 270 a Bruker Avance 360 spectrometer, 

a BRUKER Avance II 400 spectrometer, a BRUKER Avance 500 or a BRUKER Avance III 500 

spectrometer. 1H, 13C, 31P{1H}, 77Se{1H}, 119Sn{1H} NMR and 125Te{1H} NMR spectra were 

measured in deuterated solvents or using the reaction mixture and capillaries filled with C6D6 at 

25 °C. TMS was used as an internal standard for 1H and 13C NMR. 85 % H3PO4 was employed 

as an external standard for 31P{1H} NMR spectra, Ph2Te2 or Me2Te for 125Te{1H} NMR spectra, 

Me2Se for 77Se{1H} NMR spectra as well as Me4Sn for 119Sn{1H} NMR spectra. All 77Se{1H}, 

119Sn{1H} NMR, 125Te{1H} and 31P{1H} NMR spectra are reported as 77Se, 125Te, 119Sn and 31P 

NMR spectra. Chemical shifts () are given in parts per million (ppm) relative to the solvent 

peaks.47 Coupling constants (J) are given in Hertz (Hz).  

Mass spectra were obtained on a Finnigan MAT 95 XP, an Agilent 5975C Inert XL GC/MSD or 

a Thermofisher LTQ Orbitrap XL at the EPSRC UK National MS Facility, Swansea. Elemental 

analysis was performed at the Elemental Analysis Service of the London Metropolitan 

University (by Mr. S. Boyer).  
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X-ray Crystallography.  

Crystallographic data were collected by using a Rigaku SCXmini (Mercury2 CCD) or the St 

Andrews robotic diffractometer48 at −148(1) °C or a Rigaku Mo MM007 (dual port) high 

brilliance generator with Saturn 70 and Mercury CCD detectors, rotating anode/confocal optics 

and two XStream LT accessories at −180(1) °C. All data were collected with Mo-Kα radiation 

(λ = 0.71073 Å) and corrected for Lorentz and polarisation effects. The data for all of the 

compounds were collected and processed using CrystalClear (Rigaku).48 

The crystal structures were solved using direct methods49 or heavy-atom Patterson methods50 

and expanded using Fourier techniques.51 The non-hydrogen atoms were refined anisotropically, 

hydrogen atoms were refined using the riding model. All calculations were performed using 

CrystalStructure52 crystallographic software package and SHELXL-97.53 10, 12aS and 16  

despite several crystals being examined gave only average quality results and hence only the 

main features of the structures are discussed above. 

 

Crystallographic data for 9, 10, 12a, 12aSe, 12aS and 16 are summarized in Table 5.  

 

 

 

Table 5. Crystallographic Data for 9, 10 and 16. 

Compound 9 10 16 

Empirical formula C32H73InN8P4Te3 C28H46GeN4P2Te2 C16H36N4P2Se2Te2 

Formula weight 1191.50 828.44 759.55 

Temperature (°C)  93 125 93 

Crystal color, habit yellow platelet yellow platelet red prism 

Crystal dimensions (mm3) 0.10 x 0.10x0.01 0.17x0.07x0.02 0.10x0.10x0.10 

Crystal system monoclinic triclinic monoclinic 

a (Å) 10.439(2) 9.3375(18) 15.707(5) 

b (Å) 13.630(2) 11.603(2) 14.808(4) 

c (Å) 17.005(3) 15.879(3) 11.549(3) 

α (°) 90.0000 87.895(6) 90.0000 

β (°) 99.789(4) 80.914(6) 94.354(7) 
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γ (°) 90.0000 89.309(6) 90.0000 

Volume (Å3)  2384.5(7) 1697.6(6) 2678.4(13) 

Space group P 21 P -1 P 21/c  

Z value 2 2 4 

Dcalc (g/cm3) 1.659 1.621 1.883 

F000 1172.00 816.00 1448.00 

 (Mo-Kα) (cm−1) 2.459 2.703 5.025 

No. of reflections measured 32486 13435 15644 

Rint 0.0463 0.1364 0.0512 

Min. and max. transmissions 0.683, 0.954 0.480, 0.947 0.414, 0.605 

Reflection/parameter ratio 8507 (433) 5948 (334) 4845 (235) 

Residuals: R1 (I > 2.00(I)) 0.0204 0.1284 0.0780 

Residuals: wR2 (all reflections) 0.0505 0.3008 0.2127 

Maximum peak in final diff. map (e−/Å3) 0.49 2.430 4.980 

Minimum peak in final diff. map(e−/Å3) −0.38 −1.910 −2.570 

 

Table 6. Crystallographic Data for 12a, 12aSe, and 12aS. 

Compound 12a 12aSe 12aS 

Empirical formula C24H54N4P2SnTe2 C24H54N4P2SnSe2 C24H54N4P2SnS2 

Formula weight 834.56 737.28 643.48 

Temperature (°C)  125 93 125 

Crystal color, habit yellow platelet colorless prism colorless platelet 

Crystal dimensions (mm3) 0.24x0.18x0.03 0.10x0.03x0.03 0.15x0.09x0.03 

Crystal system orthorhombic monoclinic monoclinic 

a (Å) 20.1157(12) 19.345(4) 11.243(3) 

b (Å) 30.241(2) 15.089(3) 30.770(7) 

c (Å) 11.5584(7) 11.430(3) 11.193(3) 

α (°) 90.0000 90.0000 90.0000 

β (°) 90.0000 90.608(4) 119.829(17) 

γ (°) 90.0000 90.0000 90.0000 

Volume (Å3)  7031.2(8) 3336.2(13) 3359.2(14) 

Space group Fdd2 Cc P21/c 1 

Z value 8 4 4 

Dcalc (g/cm3) 1.577 1.468 1.272 

F000 3280.00 1496.00 1352.00 

 (Mo-Kα) (cm−1) 2.462 3.062 0.998 

No. of reflections measured 14705 21515 25146 

Rint 0.0712 0.1101 0.1092 

Min. and max. transmissions 0.665, 0.929 0.515, 0.912 0.641, 0.971 

Reflection/parameter ratio 3097 (150) 5669 (316) 5901 (298) 

Residuals: R1 (I > 2.00(I)) 0.0373 0.0516 0.0840 

Residuals: wR2 (all reflections) 0.0748 0.1233 0.2759 

Maximum peak in final diff. map (e−/Å3) 0.540 2.87 1.890 

Minimum peak in final diff. map(e−/Å3) −0.380 −2.00 −1.210 

 

General Procedure for Metathetical Reactions. The reagent 1,15 2,15 416 or 517 (0.60 mmol) 

was suspended in toluene (10 mL) and cooled to −78 °C. A solution of the p-block element 

halide RnMCl2 (n = 1, 2) or MCl3 (0.59 mmol) in toluene (10 mL) at −78 °C was added dropwise 

to the suspension of 1, 2, 4 or 5 over 15 min by cannula. The reaction mixture was stirred at at 

−78 °C for 2 h and then warmed to room temperature. After stirring for an additional 1 h, the 
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precipitate (LiCl or NaCl) was removed by filtration and the solvent was removed under 

vacuum. The obtained solid was dissolved in n-hexane and maintained at −40 °C overnight. The 

crystals were removed by filtration and dried under vacuum. The resulting filtrate was 

concentrated and cooled to −40 °C to produce another batch of crystals. 

Synthesis of 8. Reagents: 4 (500 mg, 0.59 mmol) and GaCl3 (53 mg, 0.30 mmol, 0.5 eq.) in 

toluene (20 mL). Red crystals of 8 were isolated from n-hexane (yield 8 %). 31P NMR (202.46 

MHz, [D8]toluene):  = 76.6 (s), −44.7 (s, 1J(P,Te) = 1233 Hz), −133.3 (s, 1J(P,Te) = 1130 Hz, 

3J(P,Te) = 184 Hz). Decomposition in toluene or THF precluded the acquisition of a 125Te NMR 

spectrum.  

Synthesis of 9: Reagents: InCl3 (66 mg, 0.30 mmol, 0.5 eq.) (179 mg, 0.59 mmol) and 4 

(500 mg, 0.59 mmol) in toluene (20 mL0 Recrystallization from n-hexane afforded yellow 

crystals suitable for X-ray crystallography (yield 12 %). 31P NMR (109.37 MHz, [D8]toluene):  

= 78.1 (d, 2J(P,P) = 3.4 Hz), −41.2 (d, 1J(P,Te) = 1251 Hz, 2J(P,P) = 3.4 Hz), −135.1 (s, 1J(P,Te) 

= 1113 Hz, 2J(P,P) = 10.2 Hz). Decomposition during the measurement precluded reliable 

characterization by 125Te NMR. MS (EI+), m/z), 1192.1 (M+), 1177.1 (M+−CH3). Elemental 

analysis calcd (%) for C32H73N8P4InTe3: C 32.26, H 6.18, N 9.40; found: C 32.32, H 6.20, N 

9.59. 

Synthesis of 10. Reagents: 4 (500 mg, 0.59 mmol) and Ph2GeCl2 (176 mg, 0.59 mmol) in 

toluene (20 mL). Yield of red crystals = 39 %. 1H NMR (400.13 MHz, [D8]toluene):  = 7.78-

7.75 (m, 4H, Ph), 7.12-7.05 (m, 6H, Ph), 1.57 (s, 18H, tBu), 1.39 (s, 18H, tBu). 31P NMR 

(161.98 MHz, [D8]toluene):  = −136.4 (s, 1J(P,Te) = 1103 Hz, 2J(P,P) = 20 Hz). 125Te NMR 

(85.24 MHz, [D8]toluene):  = 162.4 (1J(P,Te) = 1105 Hz, 3J(P,Te) = 26 Hz). HRMS (EI): m/z 
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Found: 834.0528 (M+), Calcd. for C28H46N4
74Ge1P2

130Te2  834.0528. Elemental analysis calcd 

(%) for C28H46GeN4P2Te3: C 40.59, H 5.80, N 6.76; found: C 40.65, H 5.65, N 6.84. 

Synthesis of 10Se. Reagents: 2 (500 mg, 0.60 mmol, 1 eq) and Ph2GeCl2 (178 mg, 0.60 mmol)  

in toluene (25 mL) Yellow prismatic crystals were obtained from n-hexane solution at −78 °C.37 

31P NMR (109.37 MHz, [D8]THF):  = −80.4 (1J(P,Se) = 470.3 Hz, 2J(P,P) = 60.2 Hz). 

77Se NMR (51.52 MHz, [D8]THF):  = 137.6 (dd, 1J(Se,P) = 470.1 Hz, 3J(Se,P) = 15.6 Hz). MS 

(EI+): m/z 733.1 (M++H), calcd: 733.1. 

Synthesis of 12a. Reagents: tBu2SnCl2 (179 mg, 0.59 mmol) and 4 (500 mg, 0.59 mmol) in 

toluene (25 mL). Yellow crystals of 12a isolated in 34 % yield. 1H NMR (270.17 MHz, 

[D8]toluene):  = 1.71 (s, 18H, tBu) 1.46 (s, 18H, tBu), 1.38 (s, 18H, tBu). 31P NMR 

(109.37 MHz, [D8]toluene):  = −141.6 (s, 1J(P,Te) = 1183 Hz, 2J(P,Sn) = 52 Hz, 2J(P,P) = 

6.1 Hz). 119Sn NMR (100.75 MHz, [D8]toluene):  = 34.2 (2J(P,Sn) = 52 Hz, 1J(Sn,Te) = 

3385 Hz). 125Te NMR (85.24 MHz, [D8]toluene):  = −47.7 (1J(P,Te) = 1181 Hz, 3J(P,Te) = 

25 Hz). MS(EI), m/z: 836.2 (M+), calcd: 836.1; 821.1 [M+−CH3], calcd: 821.1. HRMS (EI), m/z: 

783.0260 [M+−tBu], calcd for C20H45N4P2Sn1Te2: 783.0260). Elemental analysis calcd (%) for 

C24H54N4P2SnTe2: C 34.54, H 6.52, N 6.71; found: C 34.45, H 6.57, N 6.62. 

Synthesis of 12b: Reagents: nBu2SnCl2 (179 mg, 0.59 mmol) and 1 (500 mg, 0.59 mmol) in 

toluene (25 mL). Yellow crystals were isolated, but characterization was limited to NMR spectra 

owing to their extremely air-sensitive nature. 1H NMR (270.17 MHz, [D8]toluene):  = 1.71 (s, 

18H, tBu), 1.66-1.47 (m, 4H+4H, nBu), 1.44 (s, 18H, tBu), 1.32 (s, 4H, 2J(HH) = 7.6 Hz, nBu), 

0.90 (t, 6H, 2J(HH) = 7.6 Hz, nBu). 31P NMR (202.46 MHz, [D8]toluene):   = −141.1 (s, 

1J(P,Te) = 1140 Hz, 2J(P,Sn) = 51 Hz). 119Sn NMR (100.75 MHz, [D8]toluene):  = −84.7 
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(2J(P,Sn) = 52 Hz, 1J(Sn,Te) = 3288 Hz). 125Te NMR (85.24 MHz, [D8]toluene):  = 6.7 (dd, 

1J(P,Te) = 1137 Hz, 3J(P,Te) = 26 Hz). 

Synthesis of 12c: Reagents: Ph2SnCl2 (203 mg, 0.59 mmol) and 4 (500 mg, 0.59 mmol) in 

toluene (25 mL). Yellow crystals were isolated, but characterization was limited to NMR spectra 

owing to their extremely air-sensitive nature. 31P NMR (161.98 MHz, [D8]toluene):  = −140.4 

(s, 1J(P,Te) = 1102 Hz, 2J(P,Sn) = 60 Hz, 2J(P,P) = 6.5 Hz). 119Sn NMR (100.75 MHz, 

[D8]toluene):   = −156.1 (2J(P,Sn) = 62 Hz). 125Te NMR (85.24 MHz, [D8]toluene):   = 23.4 

(1J(P,Te) = 1102 Hz, 3J(P,Te) = 26 Hz). 

Synthesis of 12aSe: Reagents: 2 (500 mg, 0.60 mmol) and tBu2SnCl2 (182 mg, 0.60 mmol) in 

toluene (15 mL). Yield of 12aSe = 78 % according to the 31P NMR spectrum; yellow crystals 

were isolated.37 31P NMR (109.37 MHz, [D8]THF):   = −77.0 (s, 1J(P,Se) = 500.0 Hz, 2J(P,Sn) 

= 42.3 Hz). 119Sn NMR (100.75 MHz, [D8]THF):  = 69.8 (2J(P,Sn) = 43.1 Hz, 1J(Sn,Se) = 

690.5 Hz). 77Se NMR (51.52 MHz, [D8]THF):  = 77.3 (1J(P,Se) = 498.2 Hz, 3J(P,Se) = 

12.0 Hz). EIMS, m/z: 723.1 (M+−CH3), calcd 723.1. Elemental analysis calcd (%) for 

C24H54N4P2SnSe2: C 39.10, H 7.38, N 7.60; found: C 39.06, H 7.40, N 7.56. 

Synthesis of 12aS: Reagents: 1 (500 mg, 0.68 mmol, 1 eq) and tBu2SnCl2 (207 mg, 

0.68 mmol, 1 eq) in toluene (25 mL). Yield of 12aS = 80 % according to the 31P NMR spectrum; 

colorless crystals were isolated.38 31P NMR (109.37 MHz, [D8]toluene):  = −48.7 (s, 2J(P,Sn) = 

35.2 Hz). 119Sn NMR (100.75 MHz, [D8]THF):  = 66.4 (2J(P,Sn) = 33.9 Hz). EIMS, m/z: 629.2 

(M+−CH3), calcd 629.2. Elemental analysis calcd (%) for C24H54N4P2SnS2: C 44.80, H 8.46, N 

8.71: found: C 44.73, H 8.49, N 8.80. 

Synthesis of 13aSe. Reagents tBuPCl2 (95 mg, 0.60 mmol) and 2 (500 mg, 0.59 mmol) in 

toluene (25 mL). Estimated yields from the 31P NMR spectrum were 13aSe (40 %) and 11Se 



 29 

(20 %), which co-crystallized as colorless crystals.37 NMR data for 13aSe: 31P NMR 

(109.37 MHz, [D8]THF):  = 139.5 (1J(P,Se) = 234.1 Hz), −78.0 (1J(P,Se) = 447.3 Hz, 2J(P,P) = 

58.0 Hz). 77Se NMR (51.52 MHz, [D8]THF):  = 256.0 (1J(Se,PV) = 450.8 Hz, 1J(Se,PIII) = 

234.4 Hz, 3J(Se,P) = 19.6 Hz). EIMS, m/z: 580.1 (M+−CH3+H), calcd 580.1. A few crystals of 

pure 13aSe were isolated. Elemental analysis calcd (%) for C20H45N4P3Se2: C 40.55, H 7.66, N 

9.46; found: C 40.71, H 7.77, N 9.37. 

Synthesis of 13bSe. Reagents: AdPCl2 (214 mg, 0.60 mmol) and 2 (500 mg, 0.59 mmol) in 

toluene (25 mL).  Yield of 13bSe estimated from integration of the 31P NMR spectrum ca. 79 % 

13bSe formed colorless co-crystals with the by-product 11Se.37 NMR data for 13bSe: 31P NMR 

(109.37 MHz, [D8]THF):   = 132.0 (1J(P,Se) = 231.8 Hz), −76.8 (1J(P,Se) = 449.5 Hz, 2J(P,P) = 

58.0 Hz). 77Se NMR (51.52 MHz, [D8]THF):  = 226.5 (ddd, 1J(Se,PV) = 449.0 Hz, 1J(Se,PIII) = 

232.1 Hz, 3J(Se,P) = 15.6 Hz).  

Synthesis of 13aS and 14aS. Reagents: 1 (500 mg, 0.68 mmol) and tBuPCl2 (107 mg, 

0.68 mmol) in toluene (25 mL). Estimated yield of 13aS and 14aS were ca. 5% and 67%, 

respectively, from the integrated 31P NMR spectrum.38 NMR and MS data for 13aS: 31P NMR 

(109.37 MHz, C6D6-capillary):  = 126.5 (s), −56.9 (s). EIMS, m/z: 498.2 (M+), calcd 498.2; 

483.1 (M+−CH3), calcd. 438.2. NMR and MS data for 14aS: 31P NMR (109.37 MHz, C6D6-

capillary):  = 116.9 (d, 2J(P,P) = 42.3 Hz), 17.2 (dd, 2J(P,P) = 42.5 Hz, 2J(P,P) = 27.1 Hz), 14.4 

(d, 2J(P,P) = 27.0 Hz). EIMS, m/z: 498.2 (M+), calcd 498.2; 483.1 (M+−CH3), calcd 483.2.  

Synthesis of 13bS and 14bS: Reagents: 1 (500 mg, 0.68 mmol) and AdPCl2 (159 mg, 

0.68 mmol, 1 eq.) in toluene (25 mL).  Estimated yield of 13bS and 14bS were ca. 3% and 71%, 

respectively, from the integrated 31P NMR spectrum.38 NMR and MS data for 13bS: 31P NMR 

(109.37 MHz, C6D6-capillary):  = 120.1 (s), −56.2 (s). EIMS, m/z: 576.3 (M+), calcd 576.3; 
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561.3 (M+−CH3), calcd 561.3. NMR and MS data for 14bS: 31P NMR (109.37 MHz, C6D6-

capillary):  = 111.4 (d, 2J(P,P) = 43.4 Hz), 17.3 (dd, 2J(P,P) = 43.4 Hz, 2J(P,P) = 26.9 Hz), 14.6 

(d, 2J(P,P) = 26.8 Hz). EIMS, m/z: 576.3 (M+), calcd 576.3; 561.3 (M+−CH3), calcd 561.3. 

Synthesis of 13cS and 14cS: Reagents: 1 (500 mg, 0.68 mmol) and (iPr)2NPCl2 (159 mg, 

0.68 mmol) in toluene (25 mL). Estimated yield of 13cS and 14cS were ca. 2% and 93%, 

respectively, from the integrated 31P NMR spectrum.38 NMR and MS data for 13cS: 31P NMR 

(109.37 MHz, C6D6-capillary):  = 139.4 (t, 2J(P,P) = 4.3 Hz), −57.7 (d, 2J(P,P) = 4.3 Hz). 

EIMS, m/z: 541.3 (M+), calcd 541.3 (M+); 526.2 (M+−CH3), calcd 526.2. NMR and MS data for 

14cS: 31P NMR (109.37 MHz, [D8]THF):  = 100.4 (d, 2J(P,P) = 44.4 Hz), 16.8 (dd, 2J(P,P) = 

44.6 Hz, 2J(P,P) = 25.9 Hz), 15.2 (d, 2J(P,P) = 26.2 Hz). EIMS, m/z: 541.3 (M+), calcd 541.3 

[M+−H]); 526.2 (M+−CH3), calcd 526.2. 

Synthesis of 15 and 16: Reagents: Se2Cl2 (135 mg, 0.59 mmol) and 1 (500 mg, 0.59 mmol) in 

toluene (25 mL). NMR data for the major product 15: 31P NMR (109.37 MHz, [D8]toluene):  = 

−121.0 (1J(P,125Te) = 1025 Hz; 2J(P,77Se) = 29 Hz; 2J(P,P) = 23 Hz). 77Se NMR (51.52 MHz, 

[D8]toluene):  = 240.9 (t, 2J(P,77Se) = 30 Hz) ppm. 125Te NMR (85.24 MHz, [D8]toluene):  

[ppm] = 870.3 (dd, 1J(P,125Te) = 1025 Hz; 3J(P,125Te) = 34 Hz). NMR data for 16: 31P NMR 

(109.37 MHz, [D8]toluene):  = −68.6 (1J(P,125Te) = 1287 Hz; 2J(P,P) = 47 Hz; 1J(P,77Se) = 

14 Hz) ppm). 77Se NMR (51.52 MHz, [D8]toluene):  = 465.6 (pseudo-t, 2J(P,77Se = 14 Hz). 

125Te NMR (85.24 MHz, [D8]toluene):  = 711.6 (dd, 1J(P,125Te) = 1289 Hz; 3J(P,125Te) = 

42 Hz). A few red crystals of 16 were isolated; elemental analysis calcd (%) for 

C16H36N4P2Te2Se2: C 25.30, H 4.78, N 7.38; found: C 25.32, H 4.92, N 7.47.  

The cyclic tritelluride 6 was identified as a by-product in the 31P and 125Te NMR spectra.15 

31P NMR (109.37 MHz, [D8]toluene):  = −134.6 (1J(P,125Te) = 1028 Hz; 2J(P,P) = 31 Hz). 
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125Te NMR (126.43 MHz, [D8]toluene):  = 442.8 (dd, 1J(P,Te) = 1031 Hz, 3J(P,Te) = 41 Hz), 

361.9 (t, 1J(125Te,123Te) = 1254 Hz, 2J(P,Te) = 35 Hz).  
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Reactions of the ditelluro dianion [TePV(NtBu)(-NtBu)]2
2− and various 

main group halides produced heterocycles in which the ligand is Te,Te′-

chelated to heavier p-block elements. For comparison, selenium and sulfur 

analogs were synthesized from [EPV(NtBu)(-NtBu)]2
2− (E = S, Se) and 

group 14 dihalides or RPCl2; in the organophosphorus(III) derivatives the 

dianionic ligand forms E,E′-chelated complexes for selenium and 

tellurium, but the N,E-bonded isomer predominates for sulfur. 

 


