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Abstract

Dual Random Utility Maximisation (dRUM) is Random Utility Maximisation when

utility depends on only two states. dRUM has many relevant behavioural interpre-

tations and practical applications. We show that it is (generically) the only stochastic

choice rule that satisfies Regularity and two new simple properties: Constant Expan-

sion (if the choice probability of an alternative is the same across two menus, then it

is the same in the combined menu), and Negative Expansion (if the choice probability

of an alternative is less than one and differs across two menus, then it vanishes in the

combined menu). By extending the theory to menu-dependent state probabilities we

are able to accommodate prominent violations of Regularity such as the attraction,

similarity and compromise effects.
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1 Introduction

In Random Utility Maximisation (RUM) choices are determined by the maximisation of

a utility that depends on random states. The state probabilities are independent of the

menu faced by the decision maker. In this paper we develop the theory of RUM for the

case in which the states are exactly two (dual RUM or dRUM in short) and the number of

alternatives is finite. We characterise the behaviour of a dual random utility maximiser

with a set of simple conditions. We also extend the theory to state probabilities that de-

pend on the menu, a feature that -we argue- is compelling in many scenarios.

Dual RUM, while appearing peculiar, has in fact many interesting applications, both

when stochastic choices are observed for an individual agent and when they describe

instead random draws from a population. Here are a few examples:

• Hidden conditions of choice. The states correspond to on-off conditions that are rele-

vant for the decision maker and are hidden to the observer, such as time pressure.1

For instance, a store manager may wonder whether the variability in buying pat-

terns fits a ‘dual’ form behaviour due to the presence or absence of time pressure at

the time of purchase. Scanner data on the repeated purchases of each consumer are

likely to be available to the manager, as well as which products were available at the

time of each purchase, so that a stochastic choice function can be constructed. It is,

however, unlikely that the manager can learn whether or not the consumer was in a

hurry at the time of purchase. Our results allow a direct test of the dual behaviour

hypothesis.

• Dual-self processes. An individual may be either in a ‘cool’ state, in which a long-run

utility is maximised, or in a ‘hot’ state, in which a myopic self, subject to short-run

impulses (such as temptation), takes control. Indeed, the menu-independent ver-

sion of dRUM appears in the contracting model by Eliaz and Spiegler [11], and the

menu-dependent version describes the implicit second-stage choices of the dual-self

1The effect of time pressure on decision making has recently attracted attention. See e.g. Reutskaya et

al. [32] for a recent study of this effect on search behaviour in a shoppping environment.
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model characterised by Chatterjee and Krishna [5] using preferences over menus.

Correspondingly, our results can be seen as a direct characterisation of this model

in terms of choice from menus.2

• Hidden population heterogeneity. dRUM may represent the variability of choice due

to a binary form of hidden population heterogeneity. The states correspond to two

types of individuals in the population. Interesting examples of this kind of binary

heterogeneity are when the population is split, in unknown proportions, into high

and low cognitive ability, strategic and non-strategic, ‘fast and slow’ or ‘instinctive

and contemplative’ types (e.g. Caplin and Martin [4]; Gill and Prowse [17]; Proto,

Rustichini and Sofianos [31]; Rubinstein [33],[34]). Such binary classifications are

natural and widespread.3

• Household decisions. An important application to a multi-person situation concerns

decision units composed of two agents, i.e. a household, for which the observer

is uncertain about the exact identity of the decision maker. Household purchases

can be observed through standard consumption data, but typically it is not known

which of the two partners made the actual purchase decision on any given occasion.

Dual RUM constitutes the basis for a ‘random dictatorship’ model of household

decisions that could complement the ‘collective’ model (Chiappori [7]; Cherchye,

De Rock and Vermeulen [6]).4

• Normativity vs selfishness. Many situations of choice present a conflict between a

‘normative’ mode and a ‘selfish’ mode of decision. This conflict is both introspec-

tively clear and consistent with experimental observations, for example in dictator

2Eliaz and Spiegler [11] do not focus on characterisation but rather explore the rich implications of this

probabilistic notion of naivete in a contract-theoretic framework, where a principal chooses the optimal

menu of contracs to offer to partially naive agents.
3Caplin and Martin [4] are distinctive in that they consider agents who can choose whether to make

automatic (fast) or considered (slow) choices, depending on an attentional cost.
4de Clippel and Eliaz [8] propose a dual-self model that can be thought of as a model of intra-household

bargaining. Interestingly, this model exhibits the attraction and compromise effects that we study later in

the paper.
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games (Frolich, Oppenheimer and Moore [16]). This dichotomy can pertain both to

a typology of individuals and to a single conflicted individual.

The models we study, in which only two alternatives receive positive probability, are

of course a theoretical idealisation. In practice, an empirical distribution roughly con-

forming to the theory will be strongly bimodal, expressing broadly polarised preferences

in society or within an individual. Evidence of bimodal distributions in individual and

collective choice is found in disparate contexts.5

We now discuss the key analytical facts in the ‘base case’ of the theory. Suppose that

choices are compatible with dRUM, but let us exclude for simplicity the special case in

which the two states have exactly the same probabilities, which presents some peculiar-

ities. Suppose you observe that a is chosen with probability α both when the menu is A

and when the menu is B. If 0 < α < 1 then, while you do not know in which state the

choices were made, you do know that a has the highest utility in the same state, say s, in

A and B, and not in the other state s′. So, when the menu is A ∪ B, a continues to have

the highest utility in state s, while in s′ some alternative in A or B has a higher utility than

a. Therefore a must be chosen with the same probability α also from A ∪ B. A similar

logic applies when α = 0 or α = 1. This Constant Expansion property is a first necessary

property of dRUM.

Suppose instead that a is chosen with different probabilities from A and from B, and

that these probabilities are less than one. Then it must be the case that a has the highest

utility in different states in A and B (this would not be the case if a was chosen with

probability one from A or B, for then a would have the highest utility in both states in at

least one of the two menus). As a consequence, in each state there is some alternative that

has a higher utility than a in A ∪ B, and therefore a must be chosen with probability zero

5E.g. Frolich, Oppenheimer and Moore [16] and Dufwenberg and Muren [9] (choices in a dictator games

concentrated on giving nothing or 50/50), Sura, Shmuelib, Bosec and Dubeyc [35] (bimodal distributions

in ratings, such as Amazon), Plerou, Gopikrishnan, and Stanley [30] (phase transition to bimodal demand

“bulls and bears”- in financial markets), Engelmann and Normann [13] (bimodality on maximum and min-

imum effort levels in minimum effort games), McClelland, Schulze and Coursey [26] (bimodal beliefs for

unlikely events and willingness to insure).
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from A ∪ B. This Negative Expansion property is a second necessary property of dRUM.

Theorem 1 says that, in the presence of the standard axiom of Regularity (adding new

alternatives to a menu cannot increase the choice probability of an existing alternative),

Constant and Negative Expansion are in fact all the behavioural implications of dRUM:

the three axioms completely characterise dRUM when state probabilities are asymmetric.

Observe that these axioms give us significantly different information from the represen-

tation: for example, they do not include any reference to the ‘dual’ aspect of the choice

process.

The case that also allows for symmetric state probabilities is more complex and re-

quires a separate treatment. The Constant Expansion axiom no longer holds, since now it

could happen that a is chosen in different states from A and from B and so it is not chosen

from the union. Dropping this axiom, a Contraction Consistency property, which is implied

by the other axioms in the generic case, must be assumed explicitly. It says that the impact

of an alternative a on another alternative b (removing a affects the choice probability of

b) is preserved when moving from larger to smaller menus. Theorem 2 shows that Regu-

larity, Negative Expansion and Contraction Consistency completely characterise general

dRUMs.

The identification properties of the model are very different in the two cases. In the

asymmetric case preferences are uniquely identified. Otherwise, uniqueness holds only

up to a certain class of ordinal transformation of the rankings.

The symmetric state case is nongeneric, but its interest is not only technical since it

serves as a tool to analyse the extension of the theory that we now describe.

While dRUM is a restriction of the classical RUM, in the final part of the paper we

explore a type of random utility maximisation that explains behaviours outside the RUM

family, by allowing the state probabilities to depend on the menu. As noted, this is an

extremely natural feature in many contexts. This model is also interesting because it can

- unlike dRUM - represent as (extended) random utility maximisation some prominent

violations of Regularity, such as the attraction, similarity and compromise effects. At first

sight, allowing total freedom in the way probabilities can depend on menus seems to spell

a total lack of structure, but we show in Theorem 3 that in fact the menu-dependent prob-
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ability model, too, is neatly disciplined by consistency properties, which mirror those

characterising the fixed-probability model. The feature of these properties is that they

are ‘modal’, in the sense that they make assertions on the relationship between the cer-

tainty, impossibility and possibility, rather than the numerical probability, of selection across

menus.

The behaviour corresponding to a general RUM is not very well-understood: RUM is

equivalent to the satisfaction of a fairly complex set of conditions that illuminate the rep-

resentation rather than providing a behavioural interpretation (Block and Marschak [3];

Falmagne [14]; Barbera and Pattanaik [2]).6 For this reason other scholars have focussed

on interesting special cases where additional structure is added, leading to transparent

behavioural characterisations. Beside the classical Luce [23] model and its modern vari-

ations (e.g. Gul, Natenzon and Pesendorfer [19]; Echenique and Saito [10]), among the

recent contributions we recall in particular Gul and Pesendorfer [18], who assume al-

ternatives to be lotteries and preferences to be von Neumann Morgenstern; Apesteguia,

Ballester and Lu [1], who examine, in an abstract context, a family of utility functions that

satisfies a single-crossing condition; and Lu and Saito [22], who characterise RUM in a in-

tertemporal choice context. The two state case of RUM of this paper is another restriction

that is useful from this perspective.

2 Preliminaries

Let X be a finite set of n ≥ 2 alternatives. The nonempty subsets of X are called menus.

Let D be the set of all nonempty menus.

A stochastic choice rule is a map p : X ×D → [0, 1] such that: ∑a∈A p (a, A) = 1 for all

6To elaborate, the Block-Marschak-Falmagne (BMF) conditions require ∑B:A⊆B⊆X (−1)|B\A| p (a, B) ≥ 0

for all menus A and alternative a ∈ A, where p (a, B) is the probability of choosing a from menu B. These

conditions can be easily interpreted only in terms of the representation itself, i.e. as indicating certain

features of the probabilities of the rankings. As noted by Fiorini [15], they come from a re-statement of the

RUM model as p (a, A) = ∑B:A⊆B⊆X q (a, B), where q is the probability that a is ranked top in B and not in

any of the supersets of B. Solving this equation for q in terms of p via Moebius inversion yields the terms

of the BMF conditions, which then simply assert the non-negativity of the ranking probabilities q.
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A ∈ D; p (a, A) = 0 for all a /∈ A; and p (a, A) ∈ [0, 1] for all a ∈ A, for all A ∈ D.

The value p (a, A) may be interpreted either as the probability with which an individual

agent (on whose behaviour we focus) chooses a from the menu A, or as the fraction of a

population choosing a from A.

In Random Utility Maximisation (RUM) a stochastic choice rule is built by assuming

that there is probabilistic state space and a state dependent utility which is maximised

in the realised state. Provided that the event that two alternatives have the same realised

utility has probability zero, RUM can be conveniently described in terms of random rank-

ings (see e.g. Block and Marschak [3]), which we henceforth do. A ranking of X is a bijec-

tion r : {1, ..., n} → X. Let R be the set of all rankings. We interpret the image of r ∈ R
as describing alternatives in decreasing order of preference: r (1) is the most preferred

alternative, r (2) the second most preferred, and so on.

LetR (a, A) denote the set of rankings for which a is the top alternative in A, that is,

R (a, A) =
{

r ∈ R : r−1 (b) < r−1 (a)⇒ b /∈ A
}

.

Let µ be a probability distribution onR. A RUM is a stochastic choice rule p such that

p (a, A) = ∑
r∈R(a,A)

µ (r)

A dual RUM (dRUM) is a RUM that uses only two rankings, that is one for which the

following condition holds: µ (r) µ (r′) > 0, r 6= r′ ⇒ µ (r′′) = 0 for all rankings r′′ 6= r, r′.

Letting µ (r1) = α, a dRUM p is thus identified by a triple (r1, r2, α) of two rankings and

a number α ∈ [0, 1]. We say that (r1, r2, α) generates p.

To ease notation, from now on given rankings ri, i = 1, 2, we shall write a �i b instead

of r−1
i (a) < r−1

i (b).

A dRUM is a RUM and thus satisfies, for all menus A, B:

Regularity: If A ⊂ B then p (a, A) ≥ p (a, B).

The two key additional properties are the following, for all menus A, B:

Constant Expansion: If p (a, A) = p (a, B) = α then p (a, A ∪ B) = α.
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Negative Expansion: If p (a, A) < p (a, B) < 1 then p (a, A ∪ B) = 0.

Constant Expansion extends to stochastic choice the classical expansion property of

rational deterministic choice: if an alternative is chosen (resp., rejected) from two menus,

then it is chosen (resp., rejected) from the union of the menus. In the stochastic setting

the axiom remains a menu-independence condition. For example, in the population in-

terpretation, the same frequencies of choice for a in two menus reveal that a got support

from the same group in both menus, and not from the other group; or from both groups

in both menus; or from neither group in both menus. If the reasons for support are menu-

independent they persist when the menus are merged, and the conclusion in the axiom

must follow.

Negative Expansion is instead peculiar to stochastic choice since the antecedent of the

axiom is impossible in deterministic choice. It is a ‘dual’ form of menu-independence

condition. For example, different frequencies of choice for a in two menus reveal (given

that they are less than unity) that in one menu a was not supported by one group, and

in the other menu a was not supported by the other group. Therefore, if the reasons for

support are menu-independent, no group supports a when the menus are merged.

3 Asymmetric dRUMs

The case in which all non-degenerate choice probabilities are exactly equal to 1
2 requires

a separate method of proof and a different axiomatisation from all other cases α ∈ [0, 1].

Thus we begin our analysis by excluding for the moment this special case. The character-

isation of the general case will be based on the results in this section.

A stochastic choice rule is symmetric if p (a, A) ∈ (0, 1) for some A and a ∈ A and

p (a, A) = 1
2 for all A and a ∈ A for which this is the case. A stochastic choice rule is

asymmetric if it is not symmetric.

Remark 1 Asymmetric dRUMs, but not symmetric ones, satisfy Weak Stochastic Transi-
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tivity (WST), defined as follows:7

p (a, {a, b}) ≥ 1
2

, p (b, {b, c}) ≥ 1
2
⇒ p (a, {a, c}) ≥ 1

2

On the other hand, consider the symmetric dRUM generated by c �1 a �1 b, b �2

c �2 a and α = 1
2 . Then p (a, {a, b}) = 1

2 = p (b, {b, c}) but p (a, {a, c}) = 0, violating

WST. Asymmetric dRUMs however do satisfy the following slightly weaker version of

WST: p (a, {a, b}) ≥ 1
2 , p (b, {b, c}) ≥ 1

2 , p (a, {a, b}) p (b, {b, c}) > 1
4 ⇒ p (a, {a, c}) ≥ 1

2 .

General RUMs can violate both properties.

Our main result in this section is the following characterisation:

Theorem 1 An asymmetric stochastic choice rule p is a dRUM if and only if it satisfies Regular-

ity, Constant Expansion and Negative Expansion.

In order to prove the theorem we establish two preliminary results. The first lemma

shows that in any menu there are at most two alternatives receiving positive choice prob-

ability:

Lemma 1 Let p be a stochastic choice rule that satisfies Regularity, Constant Expansion and

Negative Expansion. Then for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A there exists

b ∈ A for which p (b, A) = 1− p (a, A).

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such

that n > 2 and p (bi, A) > 0 for all i. Since n > 2, we have p (bi, A) + p
(
bj, A

)
< 1 for

all distinct i, j, and therefore p
(
bi,
{

bi, bj
})
> p (bi, A) for some i, j. Fixing such a pair

(i, j), if it were p
(
bi,
{

bi, bj
})
= p (bi, {bi, bk}) for all k 6= i, j, then by Constant Expan-

sion p
(
bi,
{

bi, bj
})
= p (bi, {b1, ..., bn}) = p (bi, A) (the last equality holding by Regular-

ity), a contradiction. Therefore p
(
bi,
{

bi, bj
})
6= p (bi, {bi, bk}) for some k 6= i, j. Clearly

p
(
bi,
{

bi, bj
})
< 1 and p (bi, {bi, bk}) < 1 (otherwise by Regularity we have the contradic-

tion p (bi, A) = 1). But then by Negative Expansion p
(
bi,
{

bi, bj, bk
})
= 0, contradicting

Regularity and p (bi, A) > 0. �
7To see this, let w.l.o.g. α > 1

2 and suppose p (a, {a, b}) ≥ 1
2 and p (b, {b, c}) ≥ 1

2 . Therefore a �1 b and

b �1 c, so that a �1 c and then p (a, {a, c}) > 1
2 .
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The next lemma shows that the two alternatives receiving positive probability do not

change across menus.

Lemma 2 Let p be a stochastic choice rule that satisfies Regularity, Constant Expansion and

Negative Expansion. Then there exists α ∈ [0, 1] such that, for any menu A and all a ∈ A,

p (a, A) ∈ {0, α, 1− α, 1}.

Proof: If for all A we have p (a, A) = 1 for some a there is nothing to prove. Then

take A for which p (a, A) = α ∈ (0, 1) for some a. By Lemma 1 there exists exactly one

alternative b ∈ A for which p (b, A) = 1− α. Note that by Regularity p (a, {a, c}) ≥ α for

all c ∈ A\ {a} and p (b, {b, c}) ≥ 1− α for all c ∈ A\ {b}.
Now suppose by contradiction that there exists a menu B and a c ∈ B for which

p (c, B) = β /∈ {0, α, 1− α, 1}. By Lemma 1 there exists exactly one alternative d ∈ B for

which p (d, B) = 1− β.

Consider the menu A∪B. By Regularity p (e, A ∪ B) = 0 for all e ∈ (A ∪ B) \ {a, b, c, d}.
Moreover, by Lemma 1 p (e, A ∪ B) = 0 for some e ∈ {a, b, c, d}, and w.l.o.g., let p (a, A ∪ B) =

0.

If p (b, A ∪ B) > 0 then by Regularity and Negative Expansion p (b, A ∪ B) = 1− α (if

it were p (b, A ∪ B) < 1− α, then p (b, A ∪ B) 6= p (b, A)with p (b, A ∪ B) , p (b, A) < 1, so

that Negative Expansion would imply the contradiction p (b, A ∪ B) = 0). It follows from

Lemma 1 that either p (c, A ∪ B) = α or p (d, A ∪ B) = α. In the former case, since α > 0

a reasoning analogous to the one followed so far implies that p (c, A ∪ B) = p (c, B) = β,

contradicting α 6= β; and in the latter case we obtain the contradiction p (d, A ∪ B) =

p (d, B) = 1− β.

The proof is concluded by arriving at analogous contradictions starting from p (c, A ∪ B) >

0 or p (d, A ∪ B) > 0. �

Proof of Theorem 1: Necessity, described informally in the introduction, is easily checked.

For sufficiency, we proceed by induction on the cardinality of X. A preliminary observa-

tion is that if p satisfies the axioms on X, then its restriction to X\ {a} also satisfies the

axioms on X\ {a}.8

8If A ⊂ B ⊆ X\ {a} then by Regularity (defined on the entire X) p (b, A) ≥ p (b, B). If A, B ⊆ X\ {a}
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Moving to the inductive argument, if |X| = 2 the result is easily shown. For |X| =
n > 2, we consider two cases.

CASE A: p (a, X) = 1 for some a ∈ X.

Denote p′ the restriction of p to X\ {a}. By the preliminary observation and the in-

ductive hypothesis there exist two rankings r′1 and r′2 on X\ {a} and α ∈ [0, 1] such

that (r′1, r′2, α) generates p′ on X\ {a}. Extend r′1 and r′2 to r1 and r2 on X by letting

r1 (1) = r2 (1) = a and letting ri agree with r′i, i = 1, 2, for all the other alternatives,

that is c �i d ⇔ c �′i d for all c, d 6= a (where for all x, y we write x �′i y to denote(
r′i
)−1

(x) <
(
r′i
)−1

(y)). Let p̃ be the dRUM generated by (r1, r2, α). Take any menu A

such that a ∈ A. Then p̃ (a, A) = 1. Since by Regularity p (a, A) = 1, we have p = p̃ as

desired.

CASE B: p (a, X) = α 6= 1
2 and p (b, X) = 1− α for distinct a, b ∈ X and α ∈ (0, 1).

Note that by Lemma 1 and 2 this is the only remaining possibility (in particular, if it

were p (a, X) = 1
2 then p (c, A) ∈

{
0, 1

2 , 1
}

for all menus A and c ∈ A, in violation of

p being asymmetric). Assume w.l.o.g. that α > 1
2 . As in Case A, by the inductive step

there are two rankings r′1 and r′2 on X\ {a} and β ∈ [0, 1] such that (r′1, r′2, β) generates

the restriction p′ of p to X\ {a}. If for all A ⊆ X\ {a} there is some cA ∈ A such that

p (cA, A) = 1, then the two rankings must agree on X\ {a}. In this case, for any γ ∈ [0, 1],

(r′1, r′2, γ) also generates p′ on X\ {a}, and in particular we are free to choose γ = α.

If instead there exists A ⊆ X\ {a} for which p (c, A) 6= 1 for all c ∈ A, we know from

Lemmas 1 and 2 that then there exist exactly two alternatives c, d ∈ A such that p (d, A) =

α and p (c, A) = 1− α. Therefore in this case it must be β = α (otherwise (r′1, r′2, β) would

not generate the choice probabilities p (d, A) = α and p (c, A) = 1− α). Note that we

must have r′2 (1) = b since by Regularity and Lemma 2 either p (b, X\ {a}) = 1 (in which

case also r′1 (1) = b) or p (b, X\ {a}) = 1− α.

Now extend r′1 to r1 on X by setting r1 (1) = a and letting the rest of r1 agree with r′1

and p (b, A) = p (b, B) = α then A ∪ B ⊆ X\ {a} and by Constant Expansion (on X) p (b, A ∪ B) = α.

If A, B ⊆ X\ {a}, p (b, A) 6= p (b, B) and p (b, A) , p (b, B) < 1 then A ∪ B ⊆ X\ {a} and by Negative

Expansion (on X) p (b, A ∪ B) = 0.
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on X\ {a}; and extend r′2 to r2 on X by setting

a � 2c for all c such that p (a, {a, c}) = 1

c � 2a for all c such that p (a, {a, c}) = α.

and letting the rest of r2 agree with r′2 on X\ {a}. Note that by Regularity and Lemma 2

the two possibilities in the display are exhaustive (recall the assumption α > 1
2 ).

We need to check that this extension is consistent, that is, that r2 does not rank a above

some c but below some d that is itself below c. Suppose to the contrary that there existed c

and d for which c �2 d but a �2 c and d �2 a. These three inequalities imply, respectively,

that p (c, {c, d}) ≥ 1 − α (since r′1 and r′2 generate p′ on X\ {a}), p (a, {a, c}) = 1 and

p (a, {a, d}) = α (by the construction of r2).

If c �′1 d then p (d, {c, d}) = 0, hence p (d, {a, c, d}) = 0 by Regularity. Since p (c, {a, c}) =
0 it is also p (c, {a, c, d}) = 0 by Regularity, and thus p (a, {a, c, d}) = 1 contradicting Reg-

ularity and p (a, {a, d}) = α < 1.

If instead c �′1 d then p (d, {c, d}) = α. Since p (d, {a, d}) = 1− α, by Negative Ex-

pansion p (d, {a, c, d}) = 0 and we can argue as above. This shows that the extension r2 is

consistent.

Let p̃ the dRUM generated by (r1, r2, α). We now show that p = p̃.

Take any menu A for which a ∈ A. By Regularity (recalling the assumption α > 1
2 )

either (1) p (a, A) = 1 or (2) p (a, A) = α and p (c, A) = 1− α for some c ∈ A\ {a}. In

case (1), p (a, {a, d}) = 1 for all d ∈ A\ {a} by Regularity. Thus a �1 d and a �2 d for all

d ∈ A\ {a}, and therefore p̃ (a, A) = 1 = p (a, A) as desired.

Consider then case (2). Since p (c, A) = 1− α we have p (c, {a, c}) ≥ 1− α by Regu-

larity. Then by Regularity again we have p (a, {a, c}) = α and therefore c �2 a, so that

p̃ (a, A) = α as desired. It remains to be checked that p̃ (c, A) = 1− α. This means show-

ing that c �2 d also for all d ∈ A\ {a, c}, which is equivalent to showing that c �′2 d for

all d ∈ A\ {a}. If p (c, A\ {a}) = 1, this is certainly the case since (r′1, r′2, α) generates

the restriction of p to A\ {a}. If instead p (c, A\ {a}) = 1− α (the only other possibility

by Regularity and Lemmas 1 and 2), noting that α 6= 1− α, again this must be the case

given that (r′1, r′2, α) generates the restriction of p to A\ {a} (observe in passing that this

conclusion might not hold in the case α = 1
2 ), and this concludes that proof.
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This result is of interest first because, like all ‘revealed preference’ style axiomatisa-

tions, it provides us with a way to test the theory directly through the observation of choice

data, without the need for any parametric specification or for non-behaviour data.9 An

empirical test using our axioms would of course need to treat statistically the assertions

that probabilities of choice are equal or different. Exactly the same need arises in any

other characterisation of stochastic choice models: for example, in the case of the classical

and popular Luce/logit model [23], which is characterised by a single axiom asserting the

equality between two probability ratios.10

Aside from testing purposes, the characterisation is also useful because it gives a com-

plete yet succinct picture of the theory in terms of assertions on behaviour only (as op-

posed to the cognitive process that underlies behaviour), in particular about the ‘compar-

ative statics’ of merging and expansion of menus. For example, if market research shows

that an existing model a would turn out to have the same share against a new model b

alone that it has against an existing model c, then a is neither harmed nor damaged by

the introduction of b. On the other hand, if a had different shares against b and c, then it

would be significantly harmed by the introduction of b.

We derived from more fundamental properties the fact that in an asymmetric dRUM

alternatives can be chosen from any menu with only two fixed non-degenerate choice

probabilities α 6= 1
2 and 1− α. One may wonder whether a characterisation can be ob-

tained by simply postulating directly that there exists α ∈ (0, 1), α 6= 1
2 , such that for all

A ⊆ X and a ∈ A, p (a, A) ∈ {0, α, 1− α, 1}. This “range” property would certainly not be

very satisfactory as an axiom at the theoretical level, since it would be very close to the rep-

resentation, with the same binary flavour. Nevertheless, it could serve as a practical test

of the theory since its validity should be easily detectable from the data. As it turns out,

the range property and Regularity are anyway not sufficient to ensure that the data are

9Needless to say, this latter type of data may be useful when available . But they may also be hard to

come by in some situations (consider the examples in the Introduction: e.g. household budget surveys are

the typical data used in the empirical analysis of family consumption). In addition, the information they

provide on the theory may not always be clear-cut.
10See McCausland and Marley [27] and McCausland, Davis-Stober, Marley, Park and Brown [28] for a

thorough approach to the Bayesian testing of stochastic choice conditions.
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generated by a dRUM: they must still be disciplined by further across-menu consistency

properties. Table 1 presents a stochastic choice rule p that satisfies the range property and

Regularity (and even Constant Expansion) but is not a dRUM.

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}
a 0 2

3
1
3 0 − 2

3
2
3

1
3 − − −

b 0 0 0 − 0 1
2 − − 2

3
1
3 −

c 1
3

1
3 − 1

3
1
3 − 1

3 − 1
3 − 1

3

d 2
3 − 2

3
2
3

2
3 − − 2

3 − 2
3

2
3

Table 1 A Stochastic Choice Rule that fails Negative Expansion

That p is not a dRUM follows from Theorem 1 and the fact that p fails Negative Ex-

pansion (e.g. p (a, {a, b}) = 2
3 6=

1
3 = p (a, {a, d}) while p (a, {a, b, d}) > 0).

4 General dRUMs

The asymmetric case we have dealt with so far is generic. It would perhaps not merit

devoting much attention to extending the characterisation to the special symmetric case,

were it not for the fact that precisely this case is the key tool to treat the menu-dependence

of the state probabilities, which is definitely of conceptual and practical interest.

The easy inductive method we used in the proof of Theorem 1 breaks down for general

dRUMs. We have to engage more directly with reconstructing the rankings from choice

probabilities. The difficulty here is that, while it is clear that an alternative a being ranked

above another alternative b in some ranking is revealed by the fact that removing a from a

menu increases the choice probability of b, it is not immediately evident in which ranking

a is above b (whereas in the asymmetric case the two rankings are distinguished by the

distinct probabilities α and 1− α).

If the probabilities of the rankings that generate a dRUM are allowed to take on the

value 1
2 , then Constant Expansion is no longer a necessary property. In fact, if p (a, A) =

p (a, B) = 1
2 it could happen that a is top in A according to ranking r1 (but not according

to r2) and top in B according to r2 (but not according to r1). Then in A ∪ B there will be
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alternatives that are above a in both rankings, so that p (a, A ∪ B) = 0.

Towards a characterisation, we note that the axioms in the statement of Theorem 1

imply a strong contraction consistency property that is at the heart of general dRUM.

The property uses the concept of impact (Manzini and Mariotti [25]): b impacts a in A

whenever p (a, A) > p (a, A ∪ {b}). If b impacts a in A and a ∈ B ⊆ A then b impacts a in

B. Formally:

Contraction Consistency: For all a ∈ B ⊆ A and b ∈ X: If p (a, A) > p (a, A ∪ {b}) then

p (a, B) > p (a, B ∪ {b}).

Contraction Consistency simply says that impact is inherited from menus to sub-

menus. It is evidently a stochastic generalisation of a property that holds for deterministic

choice functions that maximise a partial ordering: in that case, if b impacts a (i.e. turns a

from chosen to unchosen) in a menu A then (1) b is higher than a in the ordering and (2)

a is a maximal alternative in A (otherwise it would not be chosen from A and it could not

be impacted by b). It thus follows that a continues to be chosen in a subset B of A, and

that b continues to impact a in B. In Appendix D we show that Contraction Consistency

is implied by the other properties in the statement of Theorem 1.

We are now ready for the main result of this section.

Theorem 2 A stochastic choice rule is a dRUM if and only if it satisfies Regularity, Negative

Expansion and Contraction Consistency.

The proof is long and thus confined to an Appendix.

We note a subtle relation between the symmetric case of the theory and the determinis-

tic “top-and-the-top” (TAT) model studied in Eliaz, Richter and Rubinstein [12]. A TAT is

a choice procedure in which the agent uses two ordering and deterministically picks all

the alternatives in a menu that are top in at least one of the two orderings. While we are

dealing with a stochastic procedure, when the orderings have the same probabilities the

resulting probabilities of choice are uninformative in distinguishing the orderings: the

only information they give concerns their support (whereas in the asymmetric case the

orderings can be told apart as the α-ordering and the (1− α)-ordering). So, in this special

case the stochastic choice function contains in fact the same information on the rankings
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as a TAT. Note, however, the important point that of course our axioms do not only char-

acterise the special case. The generic case they characterise is the asymmetric one, which

has no correspondence with the deterministic procedure.11

5 Menu-dependent state probability and violations of Reg-

ularity

So far we have assumed that the probabilities with which the two rankings are applied are

fixed across menus. This is quite natural, for example, in the population interpretation.

Yet, in other scenarios the dependence of the ranking probabilities on the menu seems a

compelling feature. We highlight some leading such cases.

• In the dual-self interpretation, if the duality of the self is due to temptation, then

the presence of tempting alternatives may increase the probability that the short-

term self is in control, and possibly the more so the more numerous the tempting

alternatives are.

• In the household interpretation, husband and wife may have different ‘spheres of

control’, so that menus containing certain items are more likely to be under the

control of one of the two partners.

• If choices are subject to unobserved time pressure, the effect of time pressure is

likely to be different in large and small menus. Since the latter are arguably easier to

analyse, time pressure may be activated with a lower probability in simple menus.

• The logic of Luce and Raiffa’s [24] well-known ‘frog legs example’ is that the pres-

ence of a specific item a∗ (frog legs in the example) in a menu triggers the maximisa-

tion of a different preference order because a∗ conveys information on the nature of

11The key property used by Eliaz, Richter and Rubinstein [12] to characterise TAT says that if an x is

chosen from two menus A and B and also from A ∩ B, and if the choice from A ∩ B consists of exactly two

elements, then x is chosen from A ∪ B. In addition their axiomatisation also includes a direct assumption

on the number of chosen alternatives.
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the available alternatives, so that the choice is ‘dual’: in all menus containing a∗ one

preference order is maximised while in all those not containing a∗ a different order

is maximised. Making the probabilities in a dRUM menu-dependent further gener-

alises this idea to a probabilistic context, to allow for example p (steak, {steak, chicken})
< p (steak, {steak, chicken, frog legs}), while at the same time avoiding the extreme

assumption that steak is chosen for sure when frog legs are also available.

• The ‘similarity’ and the ‘attraction’ effects (discussed below) are very prominent

in the psychology and behavioural economics literature. According to these effects,

the choice probabilities of two alternatives that are chosen approximately with equal

frequency in a binary context can be shifted in favour of one or the other through

the addition of an appropriate ‘decoy’ alternative. This decoy is in a relation of

similarity or dominance (in a space of characteristics) with either one of the ‘target’

alternatives. Such effects can be described as dual RUM by making the probabilities

of the two rankings dependent on the presence and nature of the decoy. Analogous

considerations apply for the ‘compromise effect’, according to which the probability

of choosing an alternative increases when it is located at an intermediate position in

the space of characteristics compared to other more extreme alternatives.

A Menu-dependent dRUM (mdRUM) is a stochastic choice rule p for which the fol-

lowing is true: there exists a triple (r1, r2, α̃) where r1 and r2 are rankings on X and

α̃ : 2X\∅ → (0, 1) is a function that for each menu A assigns a probability α̃ (A) to r1

(and 1− α̃ (A) to r2), such that, for all A, p (a, A) = p′ (a, A) where p′ is the dRUM gen-

erated by (r1, r2, α̃ (A)).

Compared to a dRUM, an mdRUM loses all the properties that pertain to the specific

magnitudes of choice probabilities, which depend on the menu in an unrestricted way.

For example, an mdRUM fails Regularity. But it is precisely this feature that gives the

model its descriptive power, while maintaining consistency properties that concern the

possibility, the impossibility and the certainty of the event in which an alternative is chosen:

in this sense such properties are about the ‘mode’ of choice.12

12‘Mode’ and ‘modal’ are meant here and elsewhere in the logical and not statistical meaning.
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Let’s say that b modally impacts a in A if

p (a, A) > 0 and p (a, A ∪ {b}) = 0

or p (a, A) = 1 and p (a, A ∪ {b}) ∈ (0, 1)

That is, b modally impacts a if adding b transforms the choice of a from possible (including

certain) to impossible or from certain to merely possible.

The following properties are clearly necessary for an mdRUM:

Modal Regularity: Let a ∈ B ⊂ A. (i) If p (a, A) > 0 then p (a, B) > 0. (ii) If p (a, A) = 1

then p (a, B) = 1.

Modal Impact Consistency: Let b /∈ A. If b does not modally impact a in A for all a ∈ A

then p (b, A ∪ {b}) = 0.

Modal Contraction Consistency: Suppose that b modally impacts a in A. Then b modally

impacts a in any B ⊂ A.

Modal Regularity says that, after alternatives are removed from a menu, any alter-

native that was possibly chosen and is still feasible remains possibly chosen (including

certainly chosen), and any alternative that was certainly chosen and is still feasible re-

mains certainly chosen. Thus, Modal Regularity only excludes certain types of ‘extreme’

menu dependence, whereby the composition of the menu does not only affect the numer-

ical values of the probabilities of choice, but the very possibility of choice.

The analog of Modal Impact Consistency holds in the menu-independent model, and

indeed in any RUM: if b is chosen with positive probability in a menu, then it impacts

some alternative in any sub-menu. Observe that (unlike for Regularity) the modal version

is stronger, as it states is conclusion from a weaker premise.

Modal Contraction Consistency is a straightforward modal analog of the correspond-

ing axiom seen previously.

To prove quickly that the properties are sufficient as well as necessary we exploit a

relationship that exists between mdRUMs and dRUMs. One can associate with each p

another stochastic choice rule p̂ that is a symmetric dRUM if and only if p is an mdRUM.
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This trick allows us to rely on the previous results, as we then just need to ‘translate’ the

properties that make p̂ an mdRUM into properties of p, which is an easier task.

As in the previous results, we avoid any assumption explicitly relating to the cardi-

nality of the support of p. So we first prove a lemma analogous to Lemma 1. Say that a

stochastic choice rule p is binary whenever it assigns positive probability to at most two

elements in any menu (i.e. for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A then there

exists b ∈ A for which p (b, A) = 1− p (a, A)).

Lemma 3 Let p be a stochastic choice rule that satisfies Modal Regularity and Modal Impact

Consistency. Then p is binary.

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such that

n > 2, p (bi, A) > 0 for all i = 1, ...n and ∑n
i=1 p (bi) = 1. By Modal Regularity both

p (bi, {b1, ..., bn−1}) > 0 for all i = 1, ..., n− 1 and p (bi, {b1, ..., bn}) > 0 for all i = 1, ..., n.

Then bn does not modally impact any alternative in {b1, ..., bn−1}, contradicting Modal

Impact Consistency. �

Theorem 3 A stochastic choice rule is an mdRUM if and only if it satisfies Modal Regularity,

Modal Impact Consistency and Modal Contraction Consistency.

Proof. Necessity is obvious. For sufficiency, given a stochastic choice rule p, let us say

that p̂ is the conjugate of p if for all menus A and a ∈ A:

p̂ (a, A) = 1⇔ p (a, A) = 1

p̂ (a, A) =
1
2
⇔ 1 > p (a, A) > 0

p̂ (a, A) = 0⇔ p (a, A) = 0

If p satisfies Modal Regularity and Modal Impact Consistency, by Lemma 3 it is binary

and so the conjugate of a p always exists and is defined uniquely, but it is not necessarily a

dRUM. When it is a dRUM, it is a symmetric dRUM. We now investigate when this is the

case. Suppose that p is an mdRUM generated by (r1, r2, α̃). Then, in view of the relation-

ship p (a, A) = p′ (a, A) where p′ is the dRUM generated by (r1, r2, α̃ (A)), its conjugate

p̂ is a dRUM generated by
(

r1, r2, 1
2

)
, and therefore by Theorem 2 p̂ satisfies Regularity,
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Negative Expansion and Contraction Consistency. Conversely, if the conjugate p̂ of a p

satisfies these axioms then p̂ is a dRUM generated by some
(

r1, r2, 1
2

)
and therefore p is an

mdRUM generated by (r1, r2, α̃)where α̃ is defined so that for any A such that p (a, A) > 0

and p (b, A) > 0 for distinct a and b, α̃ (A) = p (a, A) and 1− α̃ (A) = p (b, B) (or vice-

versa). This reasoning shows that p is an mdRUM if and only if it is binary and its conju-

gate satisfies Regularity, Negative Expansion and Contraction Consistency. Therefore we

just need to verify that p̂ satisfies these axioms if p satisfies the axioms in the statement.

Step 1. p̂ satisfies Regularity.

Let A ⊂ B. If p̂ (a, B) = 0 then Regularity cannot be violated. If 0 < p̂ (a, B) < 1 then

it must be p̂ (a, B) = 1
2 , which implies p (a, B) > 0 and hence by Modal Regularity part

(i) p (a, A) > 0. Then p̂ (a, A) ∈
{

1
2 , 1
}

, satisfying Regularity. Finally if p̂ (a, B) = 1 then

p (a, B) = 1, so that by part (ii) of Modal Regularity p (a, A) = 1, and then p̂ (a, A) = 1 as

desired.

Step 2. p̂ satisfies Negative Expansion.

If p̂ (a, A) < p̂ (a, B) < 1 it must be p̂ (a, A) = 0 and p̂ (a, B) = 1
2 , and therefore

p (a, A) = 0. If p (a, A ∪ B) > 0 then Modal Regularity part (i) is violated. Therefore

p (a, A ∪ B) = 0 and thus p̂ (a, A ∪ B) = 0 as desired.

Step 3. p̂ satisfies Contraction Consistency.

Suppose that b impacts a in A, that is p̂ (a, A) > p̂ (a, A ∪ {b}). This means that either

p̂ (a, A) ∈
{

1
2 , 1
}

and p̂ (a, A ∪ {b}) = 0, or p̂ (a, A) = 1 and p̂ (a, A ∪ {b}) = 1
2 . There-

fore either p (a, A) ∈ (0, 1] and p (a, A ∪ {b}) = 0, or p (a, A) = 1 and p (a, A ∪ {b}) ∈
(0, 1). Let B ⊂ A. Then by Modal Contraction Consistency either p (a, B) > 0 and

p (a, B ∪ {b}) = 0, or p (a, B) = 1 and p (a, B ∪ {b}) ∈ (0, 1). This means that either

p̂ (a, B) ∈
{

1
2 , 1
}

and p̂ (a, B ∪ {b}) = 0, or p̂ (a, B) = 1 and p̂ (a, B ∪ {b}) = 1
2 , so that in

either case b impacts a in B.

As discussed, we consider it as an important feature of a stochastic theory of choice

that it offers a pathway to representing anomalies related to violations of Regularity. In

particular, marketers use a number of strategies to manipulate the attractiveness or oth-

erwise of alternatives. The attraction effect (also known as the ‘asymmetric dominance’

effect, see Huber, Payne and Puto [20], Huber and Puto [21]) refers to the fact that the
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choice frequency of a target alternative t increases when a new decoy alternative d is in-

troduced in a menu, with the property that the d is markedly worse than the target t,

while incomparable to a third (‘other’) alternative, o. This ranking is generally induced

by presenting alternatives as described in two desirable attributes/dimensions: while the

ranking between t and o in one dimension is reversed in the other, d is Pareto dominated

by t but Pareto incomparable to o. The compromise effect instead refers to the introduction

of a different type of decoy, which has the highest degree of one attribute and the lowest

of another in such a way that t is now ‘middle ranking’.

However, subsequent research has identified various other strategies to increase t’s

choice probability: the decoy may be Pareto dominated by both t and o, or may Pareto

dominate the target but be unavailable for choice (i.e. ‘phantom’ decoy), and so on. The

compromise and attraction effects are just components of a family.

All these effects are easy to accommodate in our setup, by supposing that there are two

rankings�i such that t �1 o �1 d and o �2 t �2 d, and that the introduction of d increases

the probability of ranking �1. The advantage of this way of modelling the phenomenon

is that the mechanism holds regardless of the type of decoy that is introduced, whether it

is a phantom alternative, or one that induces compromise, or a symmetrically dominated

alternative, and so on. What conforms to the intentions of the manipulator and accords

with the structure of our model is that the target alternative is made more appealing not

by improvements to it, but simply by framing. For example, in the compromise effect it is

hard to tell whether what is behaviourally a compromise-seeking attitude really reflects a

compromise seeking psychology. Indeed, Mochon and Frederick [29] find experimentally

that an order effect could be a more plausible explanation for the ‘compromise effect’: the

alternative presented as second seems more salient in the choice between three items,

regardless of its attributes. Menu-dependence of random orderings is a catch-all concept

that gathers the factors, psychological or of other nature, that affect choice.

We conclude this section by noting yet another dimension, beside violations of Regu-

larity, in which mdRUMs are behaviourally rich:

Remark 2 mdRUM is consistent with violations of Weak Stochastic Transitivity. For ex-

ample consider p given by p (a, {a, b}) = p (a, {a, b, c}) = p (b, {b, c}) = 2
3 , p (a, {a, c}) =
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1
3 = p (b, {a, b, c}). Then p violates Weak Stochastic Transitivity but it is an mdRUM gen-

erated by the rankings a �1 c �1 b and b �2 c �2 a with α̃ ({a, b}) = α̃ ({a, b, c}) = 2
3 and

α̃ ({b, c}) = α̃ ({a, c}) = 1
3 .

6 Identification

Identification is straightforward and unique in the generic asymmetric case. If p is a

dRUM generated by some (r1, r2, α), it is easily checked that r1 and r2 must satisfy:

a � 1b⇔ p (a, {a, b}) ∈ {α, 1}

a � 2b⇔ p (a, {a, b}) ∈ {1− α, 1}

Thus if α 6= 1− α, the rankings can be uniquely (up to a relabelling of the rankings) in-

ferred from any dRUM (this definition can be used to provide an alternative, constructive

proof of Theorem 1). The uniqueness feature is lost when we drop the requirement of

asymmetry. For example consider the dRUM p generated by
(

r1, r2, 1
2

)
as follows

a �1 b �1 c �1 d

b �2 a �2 d �2 c

The same p could be alternatively generated by the two different rankings

a �1 b �1 d �1 c

b �2 a �2 c �2 d

On the other hand, if these rankings had probabilities α and 1− α with α 6= 1
2 , one could

tell the two possibilities apart by observing whether p (d, {d, c}) = α or p (d, {d, c}) =
1− α.

More in general, the source of non-uniqueness when rankings have symmetric proba-

bilities is the following. Suppose that, given the rankings r1and r2, the set of alternatives

can be partitioned as X = A1 ∪ ... ∪ An such that if a ∈ Ak, b ∈ Al and k < l, then a �i b

for i = 1, 2. Now construct two new rankings r′1 and r′2 in the following manner. Fix Ak,

and for all a, b ∈ Ak set a �i b if and only if a �j b, i 6= j, while for all other cases r′1
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and r′2 coincide with r1 and r2 (i.e. r′1 and r′2 swap the subrankings within Ak). Then it

is clear that the probabilities generated by
(

r′1, r′2,
1
2

)
are the same as those generated by(

r1, r2,
1
2

)
. Apart from these “swaps”, the identification is unique.

7 Concluding remarks

We have argued that dual random utility maximisation constitutes a parsimonious frame-

work to represent the variability of choice in many contexts of interest, both in the fixed

state probability version and in the new menu-dependent state probability version intro-

duced in this paper.

The properties at the core of our analysis are simple and informative about how choices

react to the merging, expansion and contraction of menus. As such, they provide the the-

oretical basis for comparative statics analysis and for inferring behaviour in larger menus

from behaviour in smaller ones, or vice-versa.

The menu-dependent version of the model significantly extends the range of phenom-

ena that the model can encompass, because it does not need to satisfy the full Regularity

property but only a ‘modal’ version of it. As a consequence, for example the attraction

and the compromise effects and Luce and Raiffa’s ‘frog legs’ types of anomalies can be

described as menu-dependent dual random utility maximisation, even if though they are

incompatible with any standard RUM.

The following two issues, one theoretical and the other empirical, seem interesting to

us for future research:

• Can we obtain appealing behavioural characterisations of random utility maximi-

sation with at most k states, with 2 < k ≤ n!?

• As noted in the introduction, bimodal choice distributions (of which the theory in

this paper is a theoretical idealisation) are relatively common empirically. What

type of econometric adaptation is best suited to treat this type of distributions when

generated by the model?13

13For example, one could postulate a random, rather than deterministic, utility ui + ε conditional on each
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Appendices

A Independence of the axioms - Theorem 1

The stochastic choice rules in cases A.1 and A.3 are not dRUMs since they take on more

than two interior values. The dRUM in A.2 is not asymmetric.

A.1: Regularity and Constant Expansion, but not Negative Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

3
1
2

1
3 −

b 0 1
2 − 1

3

c 2
3 − 2

3
2
3

Table 2

A.2: Regularity and Negative Expansion, but not Constant Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

2
1
2

1
2 −

b 1
2

1
2 − 1

2

c 0 − 1
2

1
2

Table 3

A.3: Constant Expansion and Negative Expansion, but not Regularity

{a, b, c} {a, b} {a, c} {b, c}
a 0 0 1

2 −
b 1 1 − 2

3

c 0 − 1
2

1
3

Table 4
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B Independence of the axioms - Theorem 2

The stochastic choice rules in cases B.2 and B.3 are not dRUMs since they take on more

than two interior values.

B.1: Regularity and Negative Expansion, but not Contraction Consistency

See example in Table ??.

B.2: Regularity and Contraction Consistency, but not Negative Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

3 0 1
2 −

b 1
3

1
3 − 2

3

c 1
3 − 1

2
1
3

Table 5

B.3: Negative Expansion and Contraction Consistency, but not Regularity

{a, b, c} {a, b} {a, c} {b, c}
a 1 0 1

2 −
b 0 1

3 − 2
3

c 0 − 1
2

1
3

Table 6

C Independence of the axioms - Theorem 3

C.1: Modal Regularity (i) and (ii), Modal Contraction Consistency but not Modal Im-

pact Consistency

The stochastic choice rule in Table 7 cannot be a mdRUM since in {a, b, c} three alterna-

tives are chosen with positive probability, which cannot be all at the top of two rankings.
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{a, b, c} {a, b} {a, c} {b, c}
a 1

3
1
2

1
2 −

b 1
3

1
2 − 1

2

c 1
3 − 1

2
1
2

Table 7

C.2: Modal Regularity (i), Modal Impact Consistency, Modal Contraction Consistency

but not Modal Regularity (ii)

The stochastic choice rule in Table 8 cannot be a mdRUM since on the one hand

p (a, {a, b, c}) = 1 implies that a is the highest alternative in both rankings, while p (b, {a, b}) >
0 would require b to be above a in at least one ranking.

{a, b, c} {a, b} {a, c} {b, c}
a 1 1

2 1 −
b 0 1

2 − 1
2

c 0 − 0 1
2

Table 8

C.3: Modal Regularity (ii), Modal Impact Consistency, Modal Contraction Consistency

but not Modal Regularity (i)

{a, b, c} {a, b} {a, c} {b, c}
a 1

2 0 1 −
b 1

2 1 − 1
2

c 0 − 0 1
2

Table 9

The stochastic choice rule in Table 9 cannot be a mdRUM since p (b, {a, b}) = 1 re-

quires b to be above a in both rankings, while p (a, {a, b, c}) > 0 would require a to be

above b in at least one ranking.
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C.4: Modal Regularity (i) and (ii), Modal Impact Consistency, but not Modal Contrac-

tion Consistency

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}
a 0 1

2
1
2 0 − 1

2
1
2

1
2 − − −

b 0 0 0 − 0 1
2 − − 1

2
1
2 −

c 1
2

1
2 − 1

2
1
2 − 1

2 − 1
2 − 1

2

d 1
2 − 1

2
1
2

1
2 − − 1

2 − 1
2

1
2

Suppose that the example in Table ?? is an mdRUM. Then p (a, {a, b, c, d}) = 0 and

p (a, {a, b, c}) = 1
2 imply that d is an immediate predecessor of a in one of the two rankings

on {a, b, c, d}. This must remain the case when the rankings are restricted to {a, b, d}, yet

p (a, {a, b, d}) = 1
2 = p (a, {a, b}) imply that d is not an immediate predecessor of a in

{a, b, d} in either ranking.

D An Implication

Proposition 1 Let p be a stochastic choice rule that satisfies Constant Expansion, Regularity and

Negative Expansion. Then it satisfies Contraction Consistency.

Proof. Let p satisfy the axioms (so that in view of Theorem 1 p is an asymmetric dRUM),

let a ∈ B ⊆ A and b ∈ X, and suppose by contradiction that p (a, A) > p (a, A ∪ {b})
but p (a, B) ≤ p (a, B ∪ {b}). Since by Regularity p (a, B) ≥ p (a, B ∪ {b}), it can only be

p (a, B) = p (a, B ∪ {b}). Also, by Regularity it must be p (a, B) ≥ p (a, A). However

it cannot be p (a, B) = p (a, A), for in that case p (a, B ∪ {b}) = p (a, A) and Constant

Expansion would imply the contradiction

p (a, A ∪ {b}) = p (a, (B ∪ {b}) ∪ A) = p (a, A) > p (a, A ∪ {b})

Then it must be p (a, B) > p (a, A), so that the only possible configuration of choice prob-

abilities is

p (a, B) = p (a, B ∪ {b}) > p (a, A) > p (a, A ∪ {b})

Let α > 1− α with α ∈ (0, 1). In the above expression, it cannot be that p (a, B ∪ {b}) = α

and p (a, A) = 1− α, since then Negative Expansion and p (a, B) 6= p (a, A) would imply
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the contradiction p (a, A ∪ B) = p (a, A) = 0 > p (a, A ∪ {b}). Similarly, it cannot be

p (a, A) = α > p (a, A ∪ {b}) = 1− α, for again Negative Expansion would imply the

contradiction

p (a, A ∪ {b}) = p (a, A ∪ (A ∪ {b})) = 0 6= 1− α = p (a, A ∪ {b})

The only remaining possibility is p (a, B ∪ {b}) = p (a, B) = 1, p (a, A) ∈ {α, 1− α} and

p (a, A ∪ {b}) = 0. By Regularity, p (a, B ∪ {b}) = 1 implies p (a, {a, b}) = 1. Moreover

if p (a, A) > p (a, A ∪ {b}) it must be p (b, A ∪ {b}) > 0 (if not, then there exist x, y ∈ A

such that p (x, A ∪ {b}) , p (y, A ∪ {b}) > 0 and p (x, A ∪ {b})+ p (y, A ∪ {b}) = 1, where

possibly x = y while a 6= x, y since p (a, A ∪ {b}) = 0. But then by Regularity p (x, A) ≥
p (x, A ∪ {b}) and p (y, A) ≥ p (y, A ∪ {b}), implying the contradiction p (a, A) = 0).

But if p (b, A ∪ {b}) > 0 the contradiction p (b, {a, b}) > 0 follows. We conclude that

Contraction Consistency holds. �

E Proof of Theorem 2

Necessity is straightforward, so we only show sufficiency.

Preliminaries and outline Let p satisfy Regularity, Negative Expansion and Contraction

Consistency. The proof consists of several blocks. First (block 0), we show that the axioms

imply the following weakening of Constant Expansion:

Weak Constant Expansion: If p (a, A) = p (a, B) = α and p (a, A ∪ B) > 0 then p (a, A ∪ B) =

α.

Unlike Constant Expansion, the weaker version is necessary for a general dRUM. Ob-

serve that Lemma 1 and Lemma 2 continue to hold when Constant Expansion is replaced

by Weak Constant Expansion.14 In the proof of Theorem 1 we did not use Constant Ex-

pansion explicitly (only through the lemmas). So in view of Theorem 1 we shall only

need to consider the case p (a, A) ∈
{

0, 1
2 , 1
}

for all A and a ∈ A, with p (a, A) ∈ (0, 1)

14To check, note that Constant Expansion is invoked only in the proof of Lemma 1, and only once, in a

step where the additional clause of Weak Constant Expansion is satisfied by hypothesis.
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for some A and a ∈ A, and at most two alternatives chosen with positive probability in

any menu A. We define an algorithm to construct two rankings r1 and r2 explicitly for

this case (block 1). Next, we show that the algorithm is well defined (block 2), and finally

we show that r1 and r2 so constructed retrieve p (block 3).

0. If p satisfies Regularity and Negative Expansion then it satisfies Weak Constant Ex-

pansion.

Proof. By contradiction, suppose that p (a, A ∪ B) = β > 0 and p (a, A) = p (a, B) = α 6=
β. Negative Expansion (applied to A and A ∪ B) is contradicted unless β = 1. Assuming

this is the case, by Regularity p (a, A) ≥ p (a, A ∪ B) = 1 and p (a, B) ≥ p (a, A ∪ B) = 1,

so that α = β, a contradiction.

1. The algorithm to construct the two rankings when p (a, A) ∈
{

0, 1
2 , 1
}

.

Let a, b ∈ X be such that p (a, X) , p (b, X) > 0. Enumerate the elements of the rankings r1

and r2 to be constructed by r1 (i) = xi and r2 (i) = yi for i = 1, ...n. Set x1 = a and y1 = b

(were possibly x1 = a = b = y1).

The rest of the rankings r1 and r2 for i ≥ 2 are defined recursively. Let

L1
i = X \

i−1⋃
j=1

xj

Next, define the set Si of alternatives that are impacted by xi−1 in L1
i :

Si =
{

s ∈ L1
i : p

(
s, L1

i

)
> p

(
s, L1

i ∪ {xi−1}
)}

where observe that by lemmas 1 and 2 we have 0 < |Si| ≤ 2.

If Si = {c} for some c ∈ X, then let xi = c.

If |Si| = 2, then let Si = {c, d} with c 6= d and consider two cases:

(1.i) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

(resp., p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

) for all j = 1, ...i− 1 and

p
(
d, L1

i
)
= p

(
d, L1

i ∪
{

xj
})

(resp., p
(
c, L1

i
)
= p

(
c, L1

i ∪
{

xj
})

) for some j ∈ {1, ..., i− 2}
(that is, one alternative is impacted by all predecessors xj in L1

i while the other alternative

is not).

In this case let xi = c (resp., xi = d).
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(1.ii) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

and p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

for all j = 1, ...i− 1 (both

alternatives are impacted by all predecessors xj in L1
i ).

In this case, let xi = c.

Proceed in an analogous way for the construction of r2, starting from y2, that is for all

i = 2, ...n define recursively

L2
i = X \

i−1⋃
j=1

yj

Ti =
{

t ∈ L2
i : p

(
t, L2

i

)
> p

(
t, L2

i ∪ {yi−1}
)}

and as before 0 < |Si| ≤ 2.

If |Ti| = {e}for some e ∈ X, then let yi = e, while if |Ti| = 2 , then letting Ti = {e, f }:

(2.i) p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

) for all j = 1, ...i −
1, and p

(
f , L2

i
)
= p

(
f , L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
= p

(
e, L2

i ∪
{

yi−g
})

) for some j ∈
{1, ..., i− 2}.

In this case let yi = e (resp., f ).

(2.ii) p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

and p
(

f , L2
i
)
> p

(
f , L2

i ∪
{

yj
})

for all j = 1, ...i− 1.

In this case let yi = f (resp., yi = e) whenever e �1 f (resp., f �1 e) (i.e. we require

consistency with the construction of the first order).

2. Showing that the algorithm is well-defined

We show that cases (1.i) and (1.ii) are exhaustive, which means showing that if |Si| = 2

at least one alternative in Si is impacted by all its predecessors in r1. We proceed by

induction on the index i. If i = 2 there is nothing to prove. Now consider the step i =

k+ 1. If |Sk+1| = 1 again there is nothing to prove, so let |Sk+1| = 2, with Sk+1 = {c, d}.
By construction p

(
c, L1

k+1

)
> p

(
c, L1

k+1 ∪ {xk}
)

and p
(
d, L1

k+1

)
> p

(
d, L1

k+1 ∪ {xk}
)
, so

that by Lemma 1 and Lemma 2 it must be

p
(

c, L1
k+1

)
=

1
2
= p

(
d, L1

k+1

)
(1)

By contradiction, suppose that there exist u, v∈{x1, ...xk−1} for which u does not im-

pact c in L1
k+1 and v does not impact d in L1

k+1, i.e.

p
(

c, L1
k+1 ∪ {u}

)
= p

(
c, L1

k+1

)
=

1
2

(2)
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and

p
(

d, L1
k+1 ∪ {v}

)
= p

(
d, L1

k+1

)
=

1
2

(3)

(note that by construction we have u, v 6= xk). We can rule out the case u = v. For suppose

u = v = xj for some j < k. Then, recalling (1),

p
(

d, L1
k+1 ∪

{
xj
})
= p

(
d, L1

k+1

)
=

1
2
= p

(
c, L1

k+1

)
= p

(
c, L1

k+1 ∪
{

xj
})

and thus p
(
xj, L1

k+1 ∪
{

xj
})
= 0, which contradicts Regularity and p

(
xj, L1

j

)
> 0 with

L1
k+1 ∪

{
xj
}
⊂ L1

j .

Since by construction and Regularity p
(
v, L1

k+1 ∪ {v}
)
> 0, Lemma 1, Lemma 2 and

(3) imply

p
(

c, L1
k+1 ∪ {v}

)
= 0 (4)

Similarly, p
(
v, L1

k+1 ∪ {v}
)
> 0 (by construction and Regularity), Lemma 1, Lemma 2 and

(2) imply

p
(

d, L1
k+1 ∪ {u}

)
= 0 (5)

(i.e. u impacts d in L1
k+1 ∪ {u} and v impacts c in L1

k+1). Now consider the menu L1
k+1 ∪

{u, v}. By (4), (5) and Regularity it must be:

p
(

c, L1
k+1 ∪ {u, v}

)
= 0 = p

(
d, L1

k+1 ∪ {u, v}
)

(6)

It cannot be that p
(
u, L1

k+1 ∪ {u, v}
)
= 1, for otherwise Regularity would imply p

(
u, L1

k+1 ∪ {u}
)
=

1, contradicting p
(
c, L1

k+1 ∪ {u}
)
= p

(
c, L1

k+1

)
= 1

2 . Similarly, it cannot be that p
(
v, {u, v} ∪ L1

k+1

)
=

1. Finally, if either p
(
v,∪L1

k+1 ∪ {u, v}
)
= 0 or p

(
u, L1

k+1 ∪ {u, v}
)
= 0, then in view of

(6) it would have to be p
(
w, L1

k+1 ∪ {u, v}
)
> 0 for some w ∈ L1

k+1. But this is impossible

since c 6= w 6= d by (6), and then by Regularity the contradiction p
(
w, L1

k+1

)
> 0 would

follow. Therefore it must be

p
(

u, L1
k+1 ∪ {u, v}

)
=

1
2
= p

(
v, L1

k+1 ∪ {u, v}
)

It follows that both

p
(

u, L1
k+1 ∪ {u}

)
= p

(
u, L1

k+1 ∪ {u, v}
)

(7)

and

p
(

v, L1
k+1 ∪ {v}

)
= p

(
v, L1

k+1 ∪ {u, v}
)

(8)
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i.e. neither does u impact v in L1
k+1 ∪ {v}, nor does v impact u in L1

k+1 ∪ {u}. Suppose

w.l.o.g. that v is a predecessor of u, and let u = xj. By the inductive hypothesis v impacts

u in L1
j , so that by Contraction Consistency it also impacts u in L1

k+1 ∪ {u} ⊂ L1
j , i.e.

p
(

u, L1
k+1 ∪ {u}

)
> p

(
u, L1

k+1 ∪ {u, v}
)

a contradiction with (7). A symmetric argument applies if u is a predecessor of v using

(8).

A straightforward adaptation of the argument above shows that cases (2.i) and (2.ii)

are exhaustive.

3. Showing that the algorithm retrieves the observed choice.

Let p 1
2

be the dRUM generated by
(

r1, r2, 1
2

)
. For any alternative x denote Li

x its (weak)

lower contour set in ranking ri, that is

Li
x = {x} ∪ {s ∈ X : x �i s}

and note that by construction p
(
x, Li

x
)
> 0. We examine the possible cases of failures of

the algorithm in succession.

3.1: p (a, A) = 0 and p 1
2
(a, A) > 0.

Then a �i a′ for some i, for all a′ ∈ A \ {a}, hence A ⊆ Li
a, and thus by Regularity and

p
(
a, Li

a
)
> 0 we have p (a, A) > 0, a contradiction.

3.2: p (a, A) = 1 and p 1
2
(a, A) < 1.

Then there exists b ∈ A such that b �i a′ for some i, for all a′ ∈ A \ {b}, hence A ⊆ Li
b,

and thus by Regularity and p
(
b, Li

a
)
> 0 we have p (b, A) > 0, a contradiction.

3.3: p (a, A) = 1
2 and p 1

2
(a, A) = 1.

Let I
(

p 1
2

)
be the set of all pairs (a, A) satisfying the conditions of this case. Fix an

(a, A) ∈ I
(

p 1
2

)
that is maximal in I

(
p 1

2

)
in the sense that (b, B) ∈ I

(
p 1

2

)
⇒ a �i b for

some i.

Because p 1
2
(a, A) = 1 we have A ⊆ L1

a ∩ L2
a. If p

(
a, L1

a ∩ L2
a
)
= 1 we have an immedi-

ate contradiction, since by Regularity p (a, A) = 1. So it must be p
(
a, L1

a ∩ L2
a
)
= 1

2 . We

show that this also leads to a contradiction.
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Suppose first that L1
a \ L2

a 6= ∅, and take z ∈ L1
a \ L2

a such that a �1 z and z �2 a.

By construction this implies p
(
a, L2

a
)
> p

(
a, L2

a ∪ {z}
)
, so that by Contraction Consis-

tency p
(
a, L1

a ∩ L2
a
)
> p

(
a,
(

L1
a ∩ L2

a
)
∪ {z}

)
. Since by Regularity p

(
a,
(

L1
a ∩ L2

a
)
∪ {z}

)
≥

p
(
a, L2

a
)
= 1

2 (where recall z ∈ L1
a, so that L1

a ∪ {z} = L1
a), we have p

(
a, L1

a ∩ L2
a
)
= 1, a

contradiction. A symmetric argument applies if L2
a \ L1

a 6= ∅.

Finally, consider the case L1
a = L2

a = La for some La ⊂ X. Then X \ L1
a = X \ L2

a.

Define Ua = X \ La (where observe that u ∈ Ua ⇒ u �i a, i = 1, 2). Since we assumed

that p
(
a, L1

a ∩ L2
a
)
= 1

2 , there exists a w ∈
(

L1
a ∩ L2

a
)

for which p
(
w, L1

a ∩ L2
a
)
= 1

2 .

Let x1, ..., xn be the predecessors of a in the ranking r1 and let y1, ..., yn be the pre-

decessors of a in the ranking r2 (where obviously {x1, ..., xn} = Ua = {y1, ..., yn}). So

a = xn+1 = yn+1 (note that since L1
a = L2

a, a must have the same position in both rank-

ings).

By the construction of the algorithm xn and yn impact a in La, that is p (a, La) >

p (a, La ∪ {xn}) and p (a, La) > p (a, La ∪ {yn}).
We claim that there exists a z ∈ Ua that does not impact w in La, that is p (w, La) =

p (w, La ∪ {z}). To see this, if p (w, La) = p (w, La ∪ {xn}) (resp. p (w, La) = p (w, La ∪ {yn}))
simply set z = xn (resp. z = yn). If instead p (w, La) > p (w, La ∪ {xn}) and p (w, La) >

p (w, La ∪ {yn}) then, since a = xn+1 = yn+1, p (w, La) = p (w, La ∪ {z}) for some z ∈ Ua

by the construction of the algorithm (otherwise, given that xn and yn impact w in La, it

should be w = xn+1 or w = yn+1). Fix such a z.

Regularity and the construction imply that p (z, La ∪ {z}) = 1
2 . But since z ∈ Ua we

have z �i a′, i = 1, 2, for all a′ ∈ La, so that p 1
2
(z, La ∪ {z}) = 1 and therefore z ∈ I

(
p 1

2

)
.

And since in particular z �i a, i = 1, 2, the initial hypothesis that (a, A) is maximal in

I
(

p 1
2

)
is contradicted.

3.4: p (a, A) = 1
2 and p 1

2
(a, A) = 0.

By construction there exist alternatives b and c (where possibly b = c) such that b �1 a′

for all a′ ∈ A \ {b} and c �2 a′ for all a′ ∈ A \ {c}, so that A ⊆ L1
b and A ⊆ L2

c . If b 6= c,

then by Regularity the contradiction p (b, A) = 1
2 = p (c, A) follows. Thus let b = c, so

that b �i a′ for all a′ ∈ A \ {b} for i = 1, 2, and by construction p
(
b, L1

b ∩ L2
b
)
> 0. If

p
(
b, L1

b ∩ L2
b
)
= 1 then by Regularity we have a contradiction, since A ⊆ L1

b ∩ L2
b, so that
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p
(
b, L1

b ∩ L2
b
)
= p (b, A) = 1

2 , and otherwise we are back in case 3.3.

Note in passing that it would not be possible to simply weaken Constant Expansion to

Weak Constant Expansion (defined in block 0 in the proof above) in Theorem 1 to obtain

a characterisation of general dRUMs. The example in Table ?? shows that these axioms

are not tight enough for the purpose.
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