
CAUSAL PATTERN INFERENCE FROM NEURAL SPIKE TRAIN
DATA

Christoph Echtermeyer

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2009

Full metadata for this item is available in the St Andrews
Digital Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/843

This item is protected by original copyright

This item is licensed under a
Creative Commons License

https://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/843

University
of

St Andrews

School of Biology

PhD Thesis

Causal Pattern Inference from

Neural Spike Train Data

by

Christoph Echtermeyer

14th July 2009

Abstract

Electrophysiological recordings are a valuable tool for Neuroscience in order to
monitor the activity of multiple or even single neurons. Significant insights into
the nervous system have been gained by analyses of resulting data; in particular,
many findings were gained from spike trains whose correlations can give valuable
indications about neural interplay. But detecting, specifying, and representing
neural interactions is mathematically challenging. Further, recent advances of
recording techniques led to an increase in volume of collected data, which often
poses additional computational problems. These developments call for new,
improved methods in order to extract crucial information.

The matter of this thesis is twofold: It presents a novel method for the anal-
ysis of neural spike train data, as well as a generic framework in order to assess
the new and related techniques. The new computational method, the Snap Shot
Score, can be used to inspect spike trains with respect to temporal dependencies,
which are visualised as an information flow network. These networks can spec-
ify the relationships in the data, indicate changes in dependencies, and point to
causal interactions. The Snap Shot Score is demonstrated to reveal plausible
networks both in a variety of simulations and for real data, which indicate its
value for understanding neural dynamics.

Additional to the Snap Shot Score, a neural simulation framework is sug-
gested, which facilitates the assessment of neural network inference techniques
in a highly automated fashion. Due to a new formal concept to rate learned
networks, the framework can be used to test techniques under partial observ-
ability conditions. In the presence of hidden units quantification of results has
been a tedious task that had to be done by hand, but which can now be auto-
mated. Thereby high throughput assessments become possible, which facilitate
a comprehensive simulation-based characterisation of new methods.

Declarations

I, Christoph Echtermeyer, hereby certify that this thesis, which is approximately
72,500 words in length, has been written by me, that it is the record of work
carried out by me and that it has not been submitted in any previous application
for a higher degree.

I was admitted as a research student in September 2006 and as a candidate
for the degree of PhD in September 2007; the higher study for which this is a
record was carried out in the University of St Andrews between 2006 and 2009.

date ———————– signature of candidate —————————————

I hereby certify that the candidate has fulfilled the conditions of the Resolution
and Regulations appropriate for the degree of PhD in the University of St An-
drews and that the candidate is qualified to submit this thesis in application for
that degree.

date ———————– signature of supervisor —————————————

In submitting this thesis to the University of St Andrews we understand that we
are giving permission for it to be made available for use in accordance with the
regulations of the University Library for the time being in force, subject to any
copyright vested in the work not being affected thereby. We also understand
that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that
my thesis will be electronically accessible for personal or research use unless
exempt by award of an embargo as requested below, and that the library has
the right to migrate my thesis into new electronic forms as required to ensure
continued access to the thesis. We have obtained any third-party copyright
permissions that may be required in order to allow such access and migration,
or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding
the electronic publication of this thesis: Access to Printed copy and electronic
publication of thesis through the University of St Andrews.

date ———————– signature of candidate —————————————

signature of supervisor —————————————

Contents

Table of Symbols IV

Preface 1

1 An Introduction to Probabilistic Graphical Models 4
1.1 A Primer on Probabilities . 5
1.2 Probabilistic Models . 8

1.2.1 Bayesian Networks . 10
1.3 Stochastic Processes . 14

1.3.1 Dynamic Bayesian Networks 16
1.4 Learning Models From Data . 17

1.4.1 Bayes’ Theorem . 18
1.4.2 Limits of Inference . 20

2 Existing Analysis Methods 25
2.1 Classification of Existing Methods 25
2.2 The BD-Score Family . 28

2.2.1 Notation and Preparation 28
2.2.2 Sufficient Statistics of the BD Score 29
2.2.3 Integration of Prior Information 30
2.2.4 BD Score Variants . 32
2.2.5 A Brief Characterisation of the BD Score 33
2.2.6 Using BD Scores to Learn Dynamic Bayesian Networks . 35

3 The Snap Shot Score 38
3.1 Introduction of the Snap Shot Score 38

3.1.1 Interpretation of the Snap Shot Score 40
3.1.2 Learning Networks Using the Snap Shot Score 43

3.2 Simple Examples . 46

4 Characterising the Snap Shot Score 53
4.1 A Conditional Score Limit on Complex Configurations 53
4.2 A Close View on the Join Operation 58
4.3 Questions, Presumptions, and (Counter) Examples 60
4.4 Sufficient Statistics of the Snap Shot Score 63
4.5 General Form of the Snap Shot Score 64

4.5.1 Alternative Definitions of the Activity Level 65
4.5.2 Alternative Definitions of Joined Activity 68

I

5 On the Relationship of the Snap Shot Score and the BD Scores 71
5.1 A Brief View on the BD Scores and the Snap Shot Score 71

5.1.1 Bayes’ Theorem and the Snap Shot Score 73
5.2 Translation of Data to Networks — a Question of Semantics . . . 74

5.2.1 Data Interpretation by BD Scores 75
5.2.2 Data Interpretation by the Snap Shot Score 76

5.3 Side-Effects of High Precision . 77
5.4 Using BD Scores on Spike Train Data 79

5.4.1 Continuousation of Spike Trains 80

6 Assessing the Snap Shot Score 85
6.1 A Performance Assessment-Framework

for Neural Network Inference Techniques 86
6.2 On the Degree of Learning-Difficulty 88

6.2.1 Complexity of the Simulation 89
6.2.2 Data Informativeness . 90

6.3 Assessing Learned Networks . 92
6.3.1 Comparing Networks . 92
6.3.2 Reasonable Network Links to Infer 95

6.4 Assessment-Framework Implementation 99
6.5 An Alternative Assessment Method 101

7 Application of the Assessment Framework 105
7.1 Set-up and Parameters . 105
7.2 Simulation Results . 108
7.3 A Critical Result Review . 116

7.3.1 Network Structure and Observability 116
7.3.2 Data Length . 118
7.3.3 Spontaneous Activity . 119
7.3.4 Neural Simulation . 122
7.3.5 Selection of Networks to Score 126
7.3.6 Score Parameters . 127
7.3.7 Performance Measurement 129
7.3.8 Comparisons to Other Methods 132

7.4 Conclusions From Simulation Work 136

8 Real Data Applications 138
8.1 Retinal Data . 138

8.1.1 Retinal Waves . 140
8.1.2 The Snap Shot Score Applied to Retinal Wave Data . . . 140

8.2 Hippocampal Data . 144
8.2.1 Characterising Hippocampal Place Cell Data 145
8.2.2 The Snap Shot Score Applied to Place Cell Data 147

9 Conclusions 152
9.1 Contributions of This Work . 152
9.2 Directions for Future Research 153

II

Appendices 156

A Modelling and Comparing Neural Dynamics 157
A.1 Models of Neural Dynamics . 157

A.1.1 The Leaky Integrate and Fire Neuron Model 158
A.1.2 The Hodgkin-Huxley Model 159

A.2 Spike Train Metrics . 161

B Graphs and Their Number 164
B.1 Graphs . 164
B.2 Classes of Graphs and Their Number 166

B.2.1 The Snap Shot Score’s Graph-Classes 166
B.2.2 Graph-Classes of Dynamic Bayesian Networks 168
B.2.3 Graph-Class of Bayesian Networks 170

B.3 Compact Representation of Graphical Models 174
B.3.1 Model Averaging . 174
B.3.2 The Consensus Network 176

C Proof of the Limit on Factors of the K2 Score 178

D Search Heuristics and Sampling Methods 180
D.1 Optimisation Methods for Network Inference 182

E Efficient Network Learning 186
E.1 General Optimisation Potential 186

E.1.1 Score Decomposability . 187
E.1.2 Distributed Network Inference 189

E.2 Score Specific Optimisation Potential 194
E.2.1 Suggestions for BD Scores 194
E.2.2 Tuning Up the Snap Shot Score 199

Bibliography 204

III

Table of Symbols

P (A) (marginal) probability of proposition A

P (A | B) conditional probability of proposition A given B(
n
k

)
binomial coefficient n!

k!(n−k)!

{. . .} set
∅ empty set

#{. . .} number of elements in set
N, N0 set of natural numbers {1, 2, 3, . . .} and N ∪ {0}, respectively

Z set of integer numbers { ±n | n ∈ N0}
R set of real numbers

[a, b] closed interval I = {x ∈ R | a ≤ x ≤ b} if a ≤ b , I := ∅ otherwise
[a, b]Z set of integers within interval [a, b] ∩ Z

∀ universal quantifier, “for all”
∃ and @ existential quantifier, “there exists” and “there does not exist”, respectively

arg maxx f(x) argument x for which function f is maximal

bxc floor function bxc := max{z ∈ Z | z ≤ x} for x ∈ R
dxe ceiling function dxe := min{z ∈ Z | z ≥ x} for x ∈ R

a div b integer division
⌊

a
b

⌋
a mod b modulo operation / remainder a− b

⌊
a
b

⌋
e Euler’s number 2.71828182846 . . .

Γ(x) gamma function Γ(x) =
∫∞
0

tx−1e−t dt for x ∈ R
n! factorial function n! = n · (n− 1) · . . . · 2 · 1 for n ∈ N0, where 0! := 1

d derivative operator
loga(·) logarithm with base a

ln(·) natural logarithm ln(·) = loge(·)

=̂, ≈̂ corresponds to, approximately corresponds to
!=,

!
> indicating equation’s key condition, i.e. = or > , respectively

IV

Preface

Many years of research have been spent in order to understand the principles
underlying the central nervous system, and ongoing discoveries indicate that
further investigations are required for a comprehensive understanding of higher
vertebrate brains. Already, the central nervous system has been shown to ex-
hibit functional organisation in a modular fashion, and interconnecting neural
pathways have been identified. With the ability to communicate, different brain
regions that are specialised to perform particular computations can cooperate in
order to process complex information jointly. Neural action potentials have been
identified as a crucial carrier of information being transferred between individual
neurons and brain regions; careful observation of these dynamics in vitro and
in vivo allows monitoring computations actually being made. Analysing corre-
sponding data can therefore give valuable insights into how the brain works.

Studying the dynamics of a system requires time-series data, a series of
observations, whose changes reflect (time-lagged) interaction between different
components. In neural systems, the activity of multiple neurons can be recorded
with electrophysiological techniques, some of which allow to observe individual
action potentials; these can be represented by binary time-series: spike trains.
The analysis of such data has led to significant insights, and advancing recording
techniques yield more comprehensive and precise observations, such that new,
powerful tools are needed in order to analyse the increasingly complex data
successfully. During my PhD studies, I thus focused on the construction and
evaluation of an efficient analysis technique to detect neural interactions.

Thesis Contents and Conventions

A brief introduction to probabilistic modelling and inference of these models
from data prepares the main part. Techniques that can be used to learn neu-
ral information flow networks are presented, before a new method, the Snap
Shot Score, is introduced. Differences between the new and the existing scores
are highlighted, but before that, the new method is illustrated in many exam-

1

Probabilistic
Graphical Models

Chapter 1

The BD Scores

Chapter 2

The New
Snap Shot Score

Chapter 3

Characteristics of the
Snap Shot Score

Chapter 4

Comparison of
Network Scores

Chapter 5

Graphs: Counting &
Representation

Appendix B

A Technical Proof

Appendix C

Efficient Network
Learning

Appendix E

Neural Simulation
Assessment
Framework

Chapter 6

Simulation
Experiments

Chapter 7

Analysis of Real
Single- & Multi-Unit

Data

Chapter 8

Conclusions

Chapter 9

Neural Dynamics:
Modelling &
Comparison

Appendix A

Optimisation
Methods

Appendix D

Figure 1: Thesis structure: network of information flow between chapters. The
first five chapters introduce the theoretical background, existing techniques are
discussed, and they are related to a new method to infer neural information
flow networks: the Snap Shot Score. Thereafter, from chapter 6 onwards, the
focus is on assessing the novel score practically, and result both for simulated
and real data are presented.

ples, which are complemented by a mathematical investigation of its properties.
Testing the novel score on both simulated and real data shows its suitability for
information flow network inference from spike train data.

Appendices give necessary background information on practical methods for
learning networks and the mathematical concept of graphs. Additionally, guides
to efficient software implementation are given for both existing and the novel
technique, together with details on neuron modelling. References in the main
text point to corresponding sections where appropriate.

Parts of this work have been published [Echtermeyer et al., 2009]; these
include the Snap Shot Score itself and simple examples (Chapter 3), as well as
its assessment in neural simulations (Chapter 7 in parts). Remaining sections
(especially Chapters 4 and 8) contain results that have not been reported yet.

The reader is invited to take a sneak preview on the conclusion chapter 9
now, in order to learn more about the main points of this work whose structure
is depicted in figure 1. Additionally, two things should be clarified in order to
avoid confusion:

1. The term information flow network is used in different parts of this thesis
and refers to a structure that is recovered from neural data. The name
is not meant to be understood in an information theoretic sense; it is
simply a descriptive term used in Neuroscience that refers to co-ordinated
activity, propagating between different entities.

2. Probabilistic interactions are central to this work and the term correlation
is used to identify such sporadic effects. Correlation is often associated

2

with linear effects, but in this thesis it is used in the general context. In
case needed, linear-correlation will explicitely be referred to as such.

Finally, the title of this thesis deserves some explanation: As already men-
tioned, this work is about methods for the inference of information flow networks
from spike train data. How such networks relate to causal patterns needs to be
explained in two steps. First, the new Snap Shot Score interprets data in terms
of a causal model (Chapter 3); learned networks therefore posses a causal seman-
tics (Chapter 5). But secondly, the information conveyed by spike train data is
often insufficient in order to resolve equivalence of multiple causal explanations
(Section 1.4.2); parts of recovered networks may therefore be ambiguous. To-
gether, inferred networks can therefore not be interpreted on the whole, but as
an aggregate of causal patterns.

Acknowledgements

First and foremost I would like to thank V. Anne Smith. With her supervision
throughout my PhD studies, I have enjoyed the large freedom to explore; the
assurance that I could rely on inspiring input whenever I got stuck; and valuable
feedback on several ideas and documents, whose understandability might have
been problematic in more than one occasion.

Many thanks go to Tom V. Smulders, who has always been available to
discuss theoretical ideas from a biological perspective. He also provided elec-
trophysiological recordings, which were a valuable part for validating the new
method on real data.

Further recordings have been kindly provided by Evelyne Sernagor. For
these data, as well as for the time she spent in order to select, prepare, and
explain them, I am very grateful.

For funding of my PhD studies I would like to thank the Engineering and
Physical Sciences Research Council (EPSRC).1 Additional financial support for
the attendance of various meetings in relation to my work was kindly granted
by the EU Special Support Action in Neuroinformatics, UK Neuroinformatics
Network, Newton Institute Junior Member Grant, William Ramsay Henderson
Trust travelling scholarship, EPSRC, Young Physiologists Symposium travel
grant programme, and the International Brain Research Organisation (IBRO).

Finally, to all those who inspired me; those who challenged me; those who
supported me — Thank you!

1My work was supported by the CARMEN e-science project (www.carmen.org.uk) funded
by the EPSRC (EP/E002331/1).

3

Chapter 1

An Introduction to

Probabilistic

Graphical Models

A good theoretical model of a complex system should be like a

good caricature: it should emphasise those features which are

most important and should downplay the inessential details.

Now the only snag with this advice is that one does not really

know which are the inessential details until one has understood

the phenomena under study.

Fisher [1983]

Biological studies of organisms aim at understanding them by examination.
Revealing the structure, function, and causal connections between identified
elements is often done by a series of inspections concerning both static and dy-
namic properties of a life form. Initially, distinct components of the organism
can often be recognised by static observations. For example, an animal’s post-
mortem examination reveals facts about its anatomy. Once distinct elements
are identified, e.g. separate organs, investigations about their functional prop-
erties follow. Static observations, however, may not be sufficient in order to
infer the role a particular elements plays. It might, for instance, be hard to
imagine that the heart acts as a pump without having ever seen it contracting.
Thus, additional information is required, which can be gathered by monitoring
the element’s in vivo dynamics. The third step, once essential components and
their functions are known, is to investigate these parts’ interplay, i.e. how their
particular functions are combined.

4

This general scheme in particular applies to studies of the nervous system:
Neurons have been identified to constitute the basic building blocks. Their
function, the integration of synaptic inputs, has been closely examined on a
single cell basis. And after that, studies on the dynamics of neural networks
have begun in order to understand how complex computations are performed
by combining multiple neural entities. The methods discussed in this thesis are
used to detect and describe interactions between multiple neurons; they do thus
aim to contribute insights to the phenomena that arise in brain networks. This
chapter gives an introduction to the model-paradigm — probabilistic graphical
models — that will be used to describe neural interactions.

Generally, successful modelling of a system means to result in a compact
description, which allows one to replicate and predict phenomena of its original.
The leaky integrate and fire (LIF) neuron or the Hodgkin-Huxley (HH) model
(Section A.1) are examples, which both, to some extend, match the dynamics of
real neurons. Which one of these two models should be preferred over the other
depends on the level of detail and precision it is desired to provide. Generally,
modelling is characterised by a trade-off between capability and simplicity: The
right kind of model must be flexible enough in order to capture features of the
system that are regarded relevant. Both the LIF- and HH-model can be suitable
model types at the level of spike train data, but LIF-neurons are generally not
capable of generating reasonable sub-threshold dynamics; these are the domain
of the more powerful HH-model. However, models that are very good in captur-
ing and replicating effects of the target system can also be too complex to allow
insights into its machinery. A simpler, less precise, but expressive model could
in fact benefit findings about mechanisms at work. Indeed, the simple LIF-
model is very helpful in establishing understanding of the principle of synaptic
integration, whereas the HH-model might hinder a clear view through too much
detail. Like the many ways to model neurons, there exist numerous alternatives
in order to describe their functional interaction. Detecting and representing
neural interplay is the subject of this work; therefore, a suitable model type
had to be chosen. I decided for a general model type which is combined with
concepts that ensure it to be expressive. The balanced trade-off between flex-
ibility and clarity is implemented by probabilistic models, which are discussed
in this chapter. Techniques that render them practical tools follow thereafter
(Chapters 2 and 3).

1.1 A Primer on Probabilities

Studies of reasoning with uncertain information have led to the field of proba-
bility theory. With the corresponding mathematical methodology, doubts can

5

be formally expressed and analysed with respect to their consequences. Im-
portantly, the theory provides a mechanism for inference from undetermined
data by appropriately weighting and integrating different possible initial condi-
tions. This simultaneous consideration of alternatives renders probability theory
a powerful extension of two-valued logic [Jaynes and Bretthorst, 2003]: A log-
ical statement can only be either true or false, but probability theory allows
expressing uncertainty about the validity of a statement; any degree of belief
in it can be specified. Such might be necessary in scientific reasoning, where
incomplete information makes it impossible to decide on the definite validity
of a particular statement, for example. Whereas logical reasoning can only be
applied if all variables are categorised into one of the extreme cases, probability
theory provides the machinery to draw conclusions from indefinite information.

The degree of belief in the validity of a proposition A is called its probability.
A probability is a real number between zero and one, which is denoted by P (A).
The value one corresponds to the fact that the statement is thought to be true
whereas zero means that it is false. Probabilities in between express doubts. At
a value of 0.5, for instance, the proposition could either be true or false without
indicating any tendency towards one of the possibilities. As an example consider
the statement A=“It will rain soon”. Whether this prediction is correct might be
completely unknown; however, as additional information becomes available the
probability can change. For instance, based on experience, being told that heavy
clouds are in the sky, the event of rain becomes more likely than it was before.
The probability of the statement A is now conditioned on a given fact B, which
is denoted as P (A | B) and is called the conditional probability of A given B.

Classic definitions of probability often use long run observations of a random
experiment whose possible outcomes are called events. The probability of an
event is defined as its relative frequency, which is determined by infinitely re-
peating the experiment (in mind) [Feller, 1950]. One typical example is to toss a
coin and count the occurrences of head and tail for a large number of repetitions.
If the coin is unbiased either side of it would show up about equally often, such
that P (head) ≈ 0.5 ≈ P (tail). This concept, known as the frequentist approach,
is an easy to understand school of thought; however, it fails to assign a probabil-
ity to events that cannot be repeated [Heckerman, 1997]. In fact, a probability
can never be assigned before an experiment is performed (Fig. 1.1).1 The way
probabilities are introduced here — according to the Bayesian approach —
overcomes these problems as it permits making an educated guess about what
the chances of different outcomes are if the random experiment was performed.

1A discussion of problems arising by defining probabilities as frequencies and a comparison
to the Bayesian probability theory can for instance be found in Cox [1946], Loredo [1990],
Jaynes and Bretthorst [2003].

6

Figure 1.1: Adopted from Heckerman [1997]: Perfectly symmetric wheel of
Fortune except for shading of its two halves. In order to assign a probability to
the event that the pointer stops in the shaded half, the experiment would have to
be performed and repeated a large number of times, if the frequentist approach
is used. In contrast, the Bayesian approach allows deduction of a probability
from the knowledge about the set-up before ever spinning the wheel.

In order to be consistent, background knowledge that has lead to such a spec-
ulative probability must be indicated. This is done correctly by denoting it as
a conditional probability P (A | X) of the proposition A given the background
knowledge X. Any prior information that enters a calculation is made explicit
this way.

The assignment of probabilities is often more complicated than in the ide-
alised situation depicted in figure 1.1, where physical properties that are rel-
evant to the assignment are all given. A lack of such precise knowledge is
typical for realistic situations where instead only collected data might be avail-
able. These data can then be analysed with classical statistical (frequentist)
methods whose results represent background knowledge in the Bayesian sense;
background knowledge that can be used to assign probabilities. In order to
indicate the importance of this subtle step consider the wheel of Fortune again:
Observing the wheel to stop 512 out of 1,000 times in the shaded area, i.e. with
a relative frequency of 0.512, can be seen as an indication for equal halves of
the wheel. Based on the relative frequency, our bias towards both parts of the
wheel being equal, and our knowledge about random fluctuations of relative
frequencies around their limiting value, we can decide to assign an equal prob-
ability to the appearance of each half. The possibility to assign a probability
different to the relative frequency introduces subjectivity to the calculus: If the
same relative frequency had been determined from a total of 106 spins of the
wheel, the probability assignment would clearly be different. Because of this,
the Bayesian school of thought is often criticised as not being objective; in re-
turn, an objective frequentist estimate could be off the correct value (assuming
that the wheel is indeed symmetric), because background knowledge is ignored.

7

Ending the example here should already have given an impression about the
dispute between the two approaches. This work does not contain further com-
parisons between the two concepts, and it is left to the reader to decide how
results of statistical methods are used to assign probabilities. Henceforth such
assignments from data are called probability estimates, in order to identify both
ways to use statistical methods: either as direct assignment principle or as a
technique to derive background knowledge that is used for an assignment.

The next section starts with a brief introduction to probabilistic models, which
can often be extended to graphical models, like Bayesian networks. Later on,
models that can describe temporal relationships and graphical correspondents
of these are discussed. However, dependencies without a temporal component
are considered first.

1.2 Probabilistic Models

Before the interactions within a complex system can be modelled, its compo-
nents first need to be identified. In probabilistic models each of these elements’
state is represented by a random variable [Feller, 1950, pp.212]. For the remain-
der of this work n denotes the number of components that are to be included in
the model and X1, . . . , Xn denote their state variables. A probabilistic model
is simply a joint probability distribution over all of these variables. Such distri-
bution cannot only code for pairwise linear correlation but, more generally, full
multivariate relations. The following example illustrates such model.

Example 1 (Probabilistic Model) Consider the two random variables

X1 = the sun is shining ,

X2 = it is raining ,
(1.1)

each of which can either be true or false. Assume we are in a sunny region
where we find the following marginal probabilities

P (X1 true) = 0.75 , P (X1 false) = 0.25 , and

P (X2 true) = 0.1 , P (X2 false) = 0.9 .
(1.2)

The marginal distributions P (X1) and P (X2) give a description of how likely
either weather phenomenon is regardless of the other; they do not tell anything
about chances of observing joint conditions like

P (X1 true, X2 true) , or P (X1 false, X2 true) , (1.3)

8

for example. A probabilistic model links variables such that joint conditions can
be evaluated. For instance, assuming that variables X1 and X2 were stochasti-
cally independent, i.e.

P (X1, X2)
assumption

= P (X1) · P (X2) , (1.4)

would fully specify our probabilistic weather model. With equation (1.4) the joint
probability distribution can be evaluated for all combinations of states. However,
the unrealistic assumption that sunshine and rainfall are independent of each
other might have to be revised: Rain is commonly accompanied by visible clouds,
which mask the sun such that it can become invisible. During rainfall, sunshine
is thus less likely, which can be expressed in a conditional probability P (X1|X2).
For instance, the following probability might be assumed

P (X1 true |X2 true) = 0.05 =⇒ P (X1 false |X2 true) = 0.95 . (1.5)

With the marginal probabilities P (X1) and P (X2) already defined the remain-
ing conditional probabilities P (X1|X2 false) can be calculated from the iden-
tity [Feller, 1950, p.116]

P (X1)
!= P (X1|X2 true)P (X2 true) + P (X1|X2 false)P (X2 false) , (1.6)

with which we find

P (X1 true |X2 false) = 0.827̄ =⇒ P (X1 false |X2 false) = 0.172̄ . (1.7)

With these probabilities defined, the weather model can be expressed using the
chain rule [Kjaerulff and Madsen, 2008, p.58], which allows to re-write a joint
distribution as a product of (conditional) factor distributions. For the two vari-
ables X1 and X2 this reads as

P (X1, X2)
chain rule= P (X1|X2) · P (X2) , (1.8)

by which we have defined a more advanced model than that in equation (1.4).
The improved model (1.8) not only matches the assumed marginal probabilities
about sunshine and rainfall, but it also incorporates the assumed dependency
between the two. The effects of the refinement can be seen when evaluating both

9

models:

model (1.4)

P (X1, X2) X2 true X2 false P (X1)

X1 true 0.025 0.225 0.25

X1 false 0.075 0.675 0.75

P (X2) 0.1 0.9

model (1.8)

P (X1, X2) X2 true X2 false P (X1)

X1 true 0.005 0.745 0.75

X1 false 0.095 0.155 0.25

P (X2) 0.1 0.9

Both models have the same marginal distributions, but differ in their joint prob-
abilities.

The example gave a demonstration of how existing knowledge can be turned
into probabilistic models. As has been shown, these models can give a charac-
terisation of the studied system by capturing interrelations between modelled
elements. Models with few variables only (like in the example) can be simple
enough to overview and analyse interactions between them, but more complex
situations with numerous correlating variables call for clarifying visualisation
aids. Illustrating dependencies within a probabilistic model as a network can
often provide a good overview; depicted connections help to identify relevant
features of the system under study. Models that are associated with particular
visualisations are called graphical models [Airoldi, 2007, Pearl, 2000, Lauritzen,
1996]. Probabilistic graphical models are fundamental to this thesis and one
such model type, Bayesian networks,2 is discussed in the next section.

1.2.1 Bayesian Networks

Already back in 1921 (and probably even earlier) the advantages of visualising
probabilistic dependencies were recognised [Wright, 1921]. Since then, work on
graphical models has been continued and resulted in powerful modelling tools
of probabilistic and causal relationships (e.g. [Pearl, 1988, 2000]). Out of the
developed machinery, here, only a small part is utilised in order to express
dependencies as graphs (Section B.1), which can be visualised as networks.

2The term Bayesian network has been introduced by Pearl [1985]. Three aspects should
be emphasised by that name [Pearl, 2000, p.14]: (1) the subjective nature of the input
information; (2) the reliance on Bayes’ conditioning as the basis for updating information;
and (3) the distinction between causal and evidential modes of reasoning, a distinction that
underscores Thomas Bayes’ paper of 1763 [Bayes, 1763]. Despite its name, the use of Bayesian
methods for these models is neither implied nor a requisite [Murphy, 2001].

10

The connection between a probabilistic model and its illustration as a net-
work is motivated by an example first. Therefore, techniques will be used that
have not been introduced yet; their presentation follows the example, and ref-
erences to corresponding equations can be skipped when reading it for the first
time.

Example 2 (Bayesian Network) A hypothetical probabilistic model of dis-
eases (cold, flu) and associated symptoms (fever, sore throat, changed blood
count) is considered. Each of these 5 variables can either be true or false. The
model is expressed by the joint distribution over all states

P (cold,flu, fever, sore throat, blood count) , (1.9)

which can be factorised according to equation (1.10) by using the chain rule
(Fig. 1.2a). The Bayesian network corresponding to that factorisation (Fig. 1.2b,
left) has several links, which indicate the stochastic dependencies in the model.
As no information about realistic dependencies between variables has entered the
model yet, we find their relations purely dependent on the order of variables when
applying the chain rule. In order to improve the model we use the knowledge
that diseases cause certain symptoms; we assume that symptoms do not cause
other symptoms. For instance, we could assume the causal relations depicted
in Fig. 1.2b on the right hand side. This network expresses our assumptions
that symptoms are due to certain diseases but not other symptoms; thus, condi-
tioned on their parents, symptoms are stochastically independent of each other.
The parents of each network node thus correspond to its minimal dependence
set pa(Xi), i.e. all other variables are irrelevant and can be omitted [equa-
tion (1.12)], which yields the simplified factorisation of the model (Fig. 1.2c).

The mathematical justification for the example is given in the following steps,
which describe how a network structure can be constructed for any particular
probabilistic model. As before (Section 1.2), the model is expressed by a joint
probability distribution P (X1, . . . , Xn). First, the joint distribution is written
as a product of conditional distributions by applying the chain rule of probabil-
ity [Kjaerulff and Madsen, 2008, p.58]:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | X1, . . . , Xi−1) . (1.10)

In the next step, the conditional distributions P (Xi | X1, . . . , Xi−1) are simpli-
fied by omitting irrelevant conditioning variables. Therefore, variables that are

11

P (fever|cold,flu, sore throat,blood count)
·P (sore throat|cold,flu,blood count)

·P (blood count|cold,flu)
·P (cold|flu)

·P (flu)

P (cold,flu, fever, sore throat,blood count) =
a

P (cold,flu, fever, sore throat,blood count) = P (fever|cold,flu)
·P (sore throat|cold,flu)

·P (blood count|flu)

·P (flu)
·P (cold)

c

cold flu

fever sore throat changed
blood count

b
cold flu

fever sore throat changed
blood count

Figure 1.2: Adopted from Jensen [2001] and extended: Hypothetical probabilis-
tic model of diseases (cold, flu) and associated symptoms (fever, sore throat,
changed blood count) and related graphical representations. a Joint distribu-
tion and one possible factorisation according to chain rule [equation (1.10)].
b Graphical models corresponding to factorisations shown in (a) (left) and (c)
(right). c Joint distribution and factorisation according to Bayesian network
shown in (b, right). Compared to the factorisation in (a), the number of factor
distributions is the same (one for each variable), but distributions in (c) are
conditional on fewer variables.

12

known to be relevant are used to define the minimal dependence set

pa(Xi) ⊆ {X1, . . . , Xi−1} (1.11)

for each variable Xi such that

P (Xi | X1, . . . , Xi−1) = P (Xi | pa(Xi)) . (1.12)

This means: The minimal dependence sets pa(Xi) are chosen such that no
information is gained if more variables are included in the set. Equation (1.10)
can therefore be simplified to

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | pa(Xi)) . (1.13)

This equivalent formulation of the model can be easily be converted to an il-
lustrative network. In order to describe the procedure, variables in pa(Xi) are
called Xi’s parents of the child Xi. This terminology has been chosen to re-
flect relations between variables, when representing the factorisation (1.13) as
an acyclic directed graph [Heckerman, 1997]: Each variable Xi is assigned a
corresponding node, and for each parent of Xi a link pointing from the parent’s
node to the child’s node is added. This converts a factorisation to a graph,
which is commonly called a Bayesian network. Vice versa, a graph can also
imply a certain factorisation, as has already been shown in example 2.

Bayesian networks can give a concise picture of modelled dependencies and,
as indicated in the preceding example, their graphical component provides a
simple mechanism to translate prior knowledge into the model. The key of the
concept is to reduce the minimal dependence sets as far as possible. Thinning
out dependency relations not only benefits by producing a clearer representa-
tion of the model, but it also reduces the amount of data that is required in
order to parameterise the model [Pe’er, 2005]. This is because the dimension
of conditional factor distributions is minimised, i.e. they are defined over fewer
variables. They thus cover a smaller state space, which requires fewer probabil-
ities to be defined. Finally, this reduces the amount of data that is needed in
order to estimate the probabilities. The following example illustrates how this
translates into practice.

Example 3 (Reduced Model Dimension) In order to analyse how model
complexity is affected by omitting irrelevant dependencies between variables, re-
call the model introduced in example 2. The joint distribution (1.9) of 5 binary
variables is defined over a sample space of 25 = 32 possible states. Because
probabilities over all states sum to unity, the joint distribution is fully defined by

13

31 probabilities (as the missing probability can be computed from those). Like-
wise, the factorisation shown in Fig. 1.2a requires 31 probabilities to be esti-
mated. This is because each factor distribution that is conditional on k variables
requires 2k probabilities to be defined; hence,

n−1∑
k=0

2k = 2n − 1 (1.14)

probabilities need to be defined for n binary variables. (Here n = 5, where
equation (1.14) evaluates to 25 − 1 = 32 − 1 = 31.) By assuming the sparser
Bayesian network (Fig. 1.2b, right) the model is made more specific and its
associated factorisation (Fig. 1.2c) requires fewer probabilities to be estimated.
This is because its factor distributions are of lower dimension and we find that
only 12 (= 2 · 22 +21 +2 · 20) probabilities are necessary in order to fully specify
the model. Both versions of the model describe the same situation, but differ in
complexity: By simplifying the dependency relations the number of probabilities
to define reduces by ≈ 61%.

Explicitly specifying stochastic dependencies can decrease the complexity of a
model, which reduces the required amount of data in order to parameterise it.
The need for data becomes predominant if the number of modelled variables
is increased. In such situations, sparse dependency relations can facilitate the
construction of models from limited data.

Biological studies often concern the dynamics of an organism; examples are be-
havioural studies, attempts to reveal gene regulatory networks, or neural path-
ways. For such investigations, data is commonly collected as a time-series of
observations, which capture the state of multiple entities of interest. Interac-
tions between these entities that manifest by correlation of data channels can
be identified by subsequent analysis. How correlation in time-series data can be
detected will be discussed later (Chapters 2 and 3). Here the focus is on how
the ideas of probabilistic models, and Bayesian networks in particular, can be
extended to the temporal domain in order to describe time-lagged relationships.

1.3 Stochastic Processes

Similar to the probabilistic models discussed earlier, stochastic processes aim
to describe the dependencies between random variables. Differently to the be-
fore mentioned probability distributions, stochastic processes consider time as
an inherent factor of relations between variables. In order to be able to ex-
press time-lagged effects a time index is added to each variable, which indicates

14

a

X(2)
t

X(1)
t

X(3)
t

X(4)
t

b

X(1)
t−1 X(1)

t

X(2)
t

X(3)
t

X(4)
tX(4)

t−1

X(3)
t−1

X(2)
t−1

c

X(1)
t

X(2)
t

X(3)
t

X(4)
tX(4)

t−1

X(3)
t−1

X(2)
t−1

X(1)
t−1X(1)

t−2

X(2)
t−2

X(3)
t−2

X(4)
t−2

Figure 1.3: Graphical models of different orders. a Bayesian network. Inter-
actions between variables occur instantaneously. b Dynamic Bayesian Network
of 1st order. Variables X(2), X(3), and X(4) are dependent on states of the
directly preceding time-slice. c Dynamic Bayesian Network of 2nd order. Vari-
ables are either dependent on states of one of the preceding time-slices (X(1),
X(2), and X(3)) or both (X(4)).

relative time differences: X
(i)
t represents the random variable i at time t. By

convention, time t denotes the present; any times greater and smaller than t

correspond to the future and past, respectively.
The previously discussed models do not consider time as a factor; interac-

tions between variables are implicitly assumed to be instantaneous. This can
be explicitely expressed by variables with time indices (Fig. 1.3a):

P
(
X

(i)
t

∣∣∣ X
(1)
t , . . . , X

(i−1)
t , X

(i+1)
t , . . . , X

(n)
t

)
. (1.15)

In contrast, processes suppose that the present can only be influenced by the
past. The probability distribution of a variable is thus conditioned on past
states of variables:

P

(
X

(i)
t

∣∣∣ (X(1)
t̄ , . . . , X

(n)
t̄

)
t̄<t

)
. (1.16)

In order to be practically applicable, processes are commonly constrained with
respect to two aspects: The past time-span that actually influences the present is
limited, and secondly, time is often assumed to be discrete. In its most simplest
form a process is a so called 1st order Markov model, which states that each
variable X

(i)
t solely depends on states of variables in the most recent past t− 1

(Fig. 1.3b), i.e.
P
(
X

(i)
t

∣∣∣ X
(1)
t−1, . . . , X

(n)
t−1

)
. (1.17)

15

The 1st order model is a powerful prototype, which can easily be extended to
any order. In an mth order model a variable not only depends on the most
recent past, but on a history of m time-steps (Fig. 1.3c):

P

(
X

(i)
t

∣∣∣ (X(1)
t̄ , . . . , X

(n)
t̄

)
t̄∈{t−1,...,t−m}

)
. (1.18)

In the remainder of this work these models, 1st and mth order Markov models,
will be considered. These can be visualised as networks similarly to Bayesian
networks; however, before turning towards their display as graphs an important
aspect of these models should not be overlooked: The stochastic relations be-
tween variables are assumed to be stationary, i.e. they do not change over time.
Models considered here thus do not serve to investigate dependency changes over
time, but to encode stable probabilistic relations between random variables, i.e.
their lagged influence on each other. Assuming stationarity of the modelled
system might seem unacceptable for biological applications at first sight, as or-
ganisms change over time; consequently, relations associated with the organism
will change, too. However, if the period of data collection is relatively short com-
pared to the scale on which interactions within the organism change, relations
in the measured data can indeed appear stable. In cases where no alternations
occur while collecting the data it is reasonable to assume stationarity and no
inaccuracies are noticeable.

1.3.1 Dynamic Bayesian Networks

Bayesian networks are restricted to modelling instantaneous or static relation-
ships between variables. In contrast, Markov models can describe lagged or dy-
namic dependencies. Their graphical representations (Fig. 1.3bc) are therefore
referred to as dynamic Bayesian networks. In order to describe such model with
a graph, the procedure presented for static Bayesian networks (Section 1.2.1)
can be adapted to dynamic ones: A minimal dependence set

pa(X(i)) ⊆
{

X
(1)
t−1, . . . , X

(n)
t−1, X

(1)
t−2, . . . , X

(n)
t−2, . . . X

(1)
t−m, . . . , X

(n)
t−m

}
(1.19)

is defined for each variable X(i), such that

P

(
X

(i)
t

∣∣∣ (X(1)
t̄ , . . . , X

(n)
t̄

)
t̄∈{t−1,...,t−m}

)
= P

(
X

(i)
t

∣∣∣ pa(X(i))
)

. (1.20)

16

Conditioned on its parents pa(X(i)) a variable X(i) is thus independent of all
others in the past. The full mth order model can therefore be written as

P

(
X

(1)
t , . . . , X

(n)
t

∣∣∣ (X(1)
t̄ , . . . , X

(n)
t̄

)
t̄∈{t−1,...,t−m}

)
=

n∏
i=1

P
(
X

(i)
t

∣∣∣ pa(X(i))
)

. (1.21)

In order to display the model as a network each variable is represented by
m+1 nodes; once for each time-layer t, t−1, . . . , t−m. Nodes corresponding to
variables in the minimal dependence set pa(X(i)) are made parents of the child
node belonging to X

(i)
t in the current time-layer t.

So far, modelling examples consisted of made up phenomena and an imaginary
system which generates them. This allowed derivation of the stochastic depen-
dencies needed to build a corresponding model. In most practical situations,
however, the system under study is not completely known and neither are its
causal relationships. The system thus cannot be modelled due to a lack of
knowledge about its stochastic dependencies, for example. However, to some
extent, missing information can be extracted from collected data. How this
can be conceptually done is discussed in the next section, which motivates data
driven modelling.

1.4 Learning Models From Data

Graphical models of complex systems can benefit their understanding through
the compact representation of dependency structures. Such knowledge is par-
ticularly interesting when relatively little is known about the studied system.
But how can a graphical model be constructed initially, when causal interac-
tions within the system are not known? This section will address this question
on a conceptual level and thereby prepare the introduction of two practical
approaches, which are discussed later (Chapters 2 and 3). A review of the
considerable literature on learning graphical models from data can be found in
Buntine [1996], for example.

Research questions can be addressed in various manners and conceptually
one can often distinguish a hypothesis driven approach from a data oriented
concept. In the first mentioned case a formulated hypothesis is tried to be cor-
roborated or falsified. The required data is collected especially for this purpose
and statistical methods are commonly used to decide on the hypothesis’ validity.
Differently, data driven research is signified by a rather unspecific data collection

17

phase followed by an analysis step. Typically, the collected data are not used
in order to decide whether a particular hypothesis is true or not, but to find
hypothesises that can plausibly explain the data. The necessary methodology
in order to evaluate and compare hypotheses is provided by Bayesian inference
whose key component — Bayes’ theorem — is presented next.

1.4.1 Bayes’ Theorem

Bayesian inference is concerned with evaluating hypotheses; more precisely, it
aims to derive the probability that a particular hypothesis is true. The following
ideas assume that the hypothesis to assess is formulated with respect to some
data, which is informative (to some degree) about whether the hypothesis is true
or not. However, the validity of the hypothesis is seldomly dependent on the data
alone, but it also depends on prior information. Both the evidence in the data
and background information can be taken into account by Bayesian inference,
similar to human reasoning [Kording, 2007]. A simple example shows why this
is useful: A hypothesis that is absurd — based on prior knowledge — but
cannot be falsified by the data alone can be rejected a priori when incorporating
prior information in the analysis. To formalise the combination of background
information and data in order to evaluate a hypothesis the following notation
is used:

X = prior information,

H = hypothesis to be assessed, and

D = data.

The probability that a hypothesis H is true, based on the information D and X,
is inferred with Bayes’ theorem [Feller, 1950, Jaynes and Bretthorst, 2003]:

P (H | D,X)︸ ︷︷ ︸
posterior

= P (H | X)︸ ︷︷ ︸
prior

likelihood︷ ︸︸ ︷
P (D | H,X)
P (D | X)︸ ︷︷ ︸

evidence

. (1.22)

All terms in this equation play a distinctive role and have thus been named
[MacKay, 2003, p.29]; the posterior is the actual probability of interest. It is a
combination of three factors: prior belief in the hypothesis; the likelihood that
the data could have emerged if the hypothesis was true; and the evidence, which
is a reflection of the number of explanations for the data. These three factors
are discussed separately in the following paragraphs.

The prior is the probability that the hypothesis is true without considering
the data — it is purely based on the background information. Based on that

18

knowledge some hypotheses are more likely than others. In fact, any thinkable
hypothesis must be (implicitly) assigned a probability of being the explanation
for the data. Prior assumptions that are used are made explicit by denoting the
prior as a conditional probability, which allows for informed, critical review of
the results.3

Next consider the likelihood of the hypothesis. (Note that the likelihood is
a probability of the data, but not of the hypothesis.) It is the probability that,
given that the hypothesis is true, the data could have been observed; again,
taking into account the background information. The likelihood thus reflects
how well the hypothesis explains the data. (Higher values are better.)

The final term, the evidence, is the marginal probability of the data. This
term’s role can be understood in relation to the likelihood, which it normalises.
This relativisation renders the dimensionless likelihood expressive, because the
goodness of the hypothesis’ explanation is compared to all alternatives.4 The
ratio of the two terms can only be high if two conditions are met: the likelihood
must be high and only few good alternative explanations exist. The resulting
effect is, that the more hypotheses suit the data well, the more important prior
probabilities become for their rating.

Combining those three terms according to Bayes’ theorem [equation (1.22)]
yields the posterior of the hypothesis. This probability might not be very ex-
pressive on its own, because a small value does not necessary indicate a bad
hypothesis; it can also be an indication for many alternative hypotheses. The
total number of considered hypotheses must thus be taken into account for in-
terpretation. It is often easier to use the posterior for comparing, i.e. ranking,
hypotheses. In such situations, where hypotheses should only be related to each
other, the computations can be simplified by omitting the evidence term, which
is the same for all hypotheses. The order of hypotheses with respect to each
other is thus the same whether the evidence is considered or not, as their rank
solely depends on the prior and the likelihood. This is of practical importance,
because it is often intractable to specify the evidence due to insufficient prior
knowledge.

In this thesis, hypotheses correspond to functional connectivity networks.
Each of these networks (together with its underlying model) is a separate hy-
pothesis, which seeks to explain correlation in the data. Different hypotheses are
compared against each other in order to determine the best information flow

3The selection of background knowledge used and the assignment of priors itself has been
criticised to be subjective in long ongoing debates, which cannot be replicated here. However,
objective statistical tests have underlying assumptions, too. These are priors in the Bayesian
sense and must be equally questioned before applying the test (see e.g. [Loredo, 1990]).

4Re-writing the evidence as an integral over all hypotheses illustrates its relationship to

the likelihood; their ratio reads as:
P (D | H,X)R
P (D,h | X)dh

.

19

network. Two techniques to implement Bayes’ theorem are discussed in this
thesis. Their concepts will be explained in the Bayesian context in chapter 5
after they have been introduced (Chapters 2 and 3).

The foregoing section explained how information from different sources needs
to be combined for inference. Next it is addressed how precise inferences from
data can be. Insights gained in this section are not only important in practice,
but also when assessing analysis techniques (Chapter 6).

1.4.2 Limits of Inference

Understanding a system under study is limited by the amount of information
about it; any incomplete knowledge causes uncertainty with respect to missing
aspects. These doubts can render multiple models explaining the system equally
probable, and deciding which of them is more correct would require more infor-
mation. If enough relevant facts were known, a definite decision on the correct
model would be possible; however, generally such equivalence must be accepted
due to a lack of data. Depending on how much information is available, ambi-
guity varies. This section points out three relevant kinds of equivalence, which
occur at three different levels of information.

Causal, Observational, and Score Equivalence

In the most informed case it is possible to systematically manipulate the system
under study such that all potential combinations of its states can be evoked.
Any possible hypothesis on causal interaction can thus be tested; however, for
reasonably complex systems it is often infeasible to explore the space of all its
states. This can have several reasons, for example: the sheer number of possible
states takes too long to explore; some states are impractical to be enforced;
or evoking certain states alters causal relations through a learning processes.
Certain hypotheses thus cannot be tested, such that causal interactions some-
times cannot be inferred completely. In such case, multiple equally plausible
models might explain the system under study. This ambiguity is called causal
equivalence [Verma and Pearl, 1990]:

Two causal models are causally equivalent if there is no experiment
that could distinguish one from the other.

Often such causal equivalence arises if the system is not fully observable (Fig. 1.4).
The number of equivalent models generally increases with lower observability
and with tighter restrictions on interaction with the system. In the most ex-
treme case, the system under study cannot be manipulated at all such that

20

a

b

c

2∆t

∆t

∆t

∆t

∆t

∆t

∆t

Figure 1.4: Networks visualising information flow between nodes from left to
right with different time-lags. Filled nodes are observable while the white node
cannot be observed. Three different networks are shown: a hub node with con-
nections of different time-lags, b homogenous time-lags involving non-observed
nodes, c chain structure among observed units. An experiment involving inter-
vention can distinguish between alternatives (a) and (c) or between (b) and (c),
but not between (a) and (b), which are causally equivalent. The figure fur-
ther shows that correlation does not imply causation; mere correlation between
observed nodes cannot distinguish between any of the three alternatives.

21

1 _ _
1_ _
1_ _
1_ _

time-bin

A
B
C
D

D

C

A

B

D

C

A

B

D

C

A

B

a b

c d

Figure 1.5: Example showing three observationally equivalent models. Graph
superimposed on depicted dominoes indicates the chain reaction: Pushing
domino A to cause it fall towards B and C will make them fall and trigger
tilting of D. Domino D is arranged differently in the photos: a D behind B,
b D behind C, and c D behind both B and C. d Event sequence for dominoes
shown in a, b, and c (falling of a domino corresponds to signal 1). Although the
causal chain between set-ups differs, they all produce the same data (d) and are
thus observationally equivalent. The three set-ups are not causally equivalent,
because an additional experiment — for example, pushing domino B instead
of A — can reveal the true arrangement.

data collection limited to pure observation. This non-interfering situation will
be considered throughout this work.

Without any intervention with the studied system, but by using purely ob-
servational data only, generally less information is available to infer causal re-
lations. This increases uncertainty about the true mechanisms at work and
manifests by a larger number of equivalent models. Equivalence resulting from
passive data collection is defined as:

Two causal models are observationally equivalent if the given data
cannot distinguish one from the other.

Generally, the more models will be observationally equivalent the less informa-
tion is available. For an example of observational equivalence consider Fig. 1.5.

22

Finally, the third kind of equivalence to consider can appear on top of either
of the two previous ones. It is not directly related to the information that is given
about the studied system, but about how well two models can be distinguished
from each other. Assume that each model is assigned a score value dependent on
the data. (The score of a model could reflect how well it explains the data, for
example.) This score value fully characterises the model and no other criterion
exists, which can be used to distinguish it from another. Now, two models with
the same score value are considered equivalent:

Two models are score equivalent if they have the same score value
for the given data.

Depending on how discriminative score values are, information can be lost when
reducing models to numbers, since any two models that are assigned the same
score value become equivalent. To illustrate this loss of information consider
two models A and B, which, on average, explain the data equally well. The
difference between the two models is that A explains the first half of the data
better than the second, and vice versa for model B. These two models are thus
not observationally equivalent, but using their average performance as their
score does not capture any difference between the two models. They are thus
score equivalent.

Model equivalence can arise from an inability to manipulate the studied system
(causal equivalence) or about doubts how to interpret the data (observational
equivalence). Additionally, a lack of discrimination between models can render
multiple models indistinguishable (score equivalence). When inferring models
from data all three types of equivalence can cause ambiguity. The existence
of multiple solutions rivalling for explanation poses the question of how to use
them. They can, for instance, be processed with model averaging techniques
(Section B.3): These methods can reveal a consensus between solutions, which
might indicate that a disclosed similarity is indeed a feature of the studied
system. However, if instead the number of solutions shall be reduced, a sensible
criterion for selection is needed.

Occam’s Razor

The principle of Occam’s Razor goes back to William of Ockham (1285-1349)
and is nowadays also known as law of economy, or law of parsimony [McHenry,
1993].5 One translation of Ockham’s doctrine is [Dowe et al., 2007]:

“Plurality should not be posited without necessity.”
5The principle is referred to as both Ockham’s and Occam’s Razor; since the latter variant

is more common, it is used in this thesis.

23

and many re-formulations of the same principle exist. For example by Chatton
and Einstein [Groarke, 1992, p.196]:

“Use as much explanation as necessary.”

and

“Our theories should be as simple as possible, but no simpler.”,

respectively. The concept of choosing the simpler of two equally good mod-
els [MacKay, 2003, pp.343] is commonly applied to (causal) probabilistic mod-
els [Pearl, 2000, pp.45]. Techniques presented in this thesis also follow the
intuitive guideline simpler is better although this does obviously not guarantee
to select the right, but only the simpler, model.

With the end of this section, preparations are complete to introduce two prac-
tical approaches to inference of stochastic relations. These follow in the next
two chapters.

24

Chapter 2

Existing Analysis Methods

Different correlation analysis techniques for neural spike train data exist [Brown
et al., 2004], which can be used to infer stochastic relations in order to construct
graphical models (Chapter 1). Here, some of these methods are conceptionally
related to the new method (the Snap Shot Score), which will be introduced in
the next chapter. In this chapter, one of the existing techniques for learning
(dynamic) Bayesian networks, called the BD score, will be discussed in detail
in order to compare it to the novel method later (Chapter 5).

2.1 Classification of Existing Methods

Neural signal propagation can be modelled with graphical models in order to
visualise the spreading of activity as information flow networks. These networks
are generally constructed by analysing data with respect to neural correlations,
which can indicate flow of signals. Diverse methods can be used for the de-
tection of functional dependencies. Table 2.1 shows a selection of techniques
that have been classified according to their characteristics, in order to indicate
their differences. For example, one aspect approaches differ on is how they
use the data: as spike times or transformations to the frequency domain, like
firing rates, for example. Spike time methods utilise the full precision of the
data while frequency methods smooth out minor variations, which could be at-
tributed to noise. Another distinction concerns the experimental set-up during
data collection: Some methods average over multiple trials and require several
repeated recordings under same conditions. Others can be applied to single trial
recordings, which is required in situations where conditions cannot be exactly
replicated, as in freely moving animals, for example. Additionally, techniques
differ in whether or not they require recordings from individual neurons. Meth-
ods fitting neuron models to the data require such single-unit data, i.e. all

25

spikes on one channel originate from exactly one neuron. Other approaches
can handle non-spike sorted multi-unit data, which combines spikes of multiple
neurons per channel. The final selected feature for categorisation contrasts the
before-mentioned ones, as it does not concern the data to analyse, but the type
of correlation the technique can identify. Some methods are restricted to the
analysis between pairs of channels and might thus fail to pick up correlation
that is conditional on more than one channel. Such more complex patterns can
be detected by analysis techniques that account for multivariate correlation.

The method I created, the Snap Shot Score (Chapter 3), in particular differs
to others listed in Table 2.1 with respect to one aspect: It cannot be classified
as being based either on spike times or on frequencies. The Snap Shot Score
aims to combine the advantages of both domains by using a mixture of these
concepts, as will be seen later. Like other techniques, it can reveal multivariate
correlation and it is applicable to both single and multi-unit spike train data
without requiring multiple trial recordings. Details on this method are given in
the next chapter.

Further discussion cannot cover all mentioned techniques in detail due to
their wide conceptional range. The focus is therefore on methods that are
explicitely designed to learn graphical models. Within this group of techniques
approaches differ in how the quality of a particular network is determined, which
could be done by a Bayesian concept or information theoretic ideas, for example.
Some methods provide a scoring function, which can be used in order to rate
networks. Examples of such scoring functions are the Bayesian Dirichlet (BD)
score [Heckerman et al., 1995] or the minimal description length (MDL) [Wallace
and Boulton, 1968, Lam and Bacchus, 1994], which is equivalent [Friedman,
1997] to the Bayesian information criterion (BIC) [Schwarz, 1978]. The BD score
has several variants [Buntine, 1991, Heckerman et al., 1995], which are known as
the K2 score, the Bayesian Dirichlet equivalence (BDe) score, and BDe uniform
(BDeu) score. (For references to further methodologies please consult Buntine
[1996].) The BD scores have been used to analyse different biological data
[Murphy and Mian, 1999, Friedman et al., 2000, Perrin et al., 2003, Kim et al.,
2004, Zou and Conzen, 2005, Smith et al., 2006, Junning Li and McKeown,
2006, Li et al., 2007, Rajapakse and Zhou, 2007, Rajapakse et al., 2008, Burge
et al., 2009] and have therefore been chosen to be discussed in detail in this
thesis. This group of scores is identified as the family of BD scores, which will
be compared to the new method, the Snap Shot Score, later (Chapter 5).

26

Table 2.1: Classification overview of techniques that can be used for inference
of neural information flow networks from electrophysiological data. Legend:
� required/intended use, � possible use, NA not applicable.

method (based on) spike time multiple single- multi- correlation

/frequency trials unit unit type

Joint Peristimuls time � � � pairwise

Time Histogram

(JPSTH)a

Cross-Correlationb frequencyk � � � pairwise

Information Theoryc frequencyk � � � multivariate

Single Neuron Modeld time � � NA multivariate

Gravitye time � � � multivariate

Dynamic Bayesian frequency � NA � multivariate

Network (DBN)f (Hz) variate

Partial Directed frequency � � � multivariate

Coherence (PDC)g (Hz)

Generalised Linear time � � � multivariate

Model (GLM)h

Granger Causalityi frequency � � � multivariate

(Hz)

Direct Transfer frequency � � � multivariate

Function (DFT)j (Hz)

Snap Shot Score both � � � multivariate

(SSS)

a [Gerstein and Perkel, 1969, Aertsen et al., 1989]
b [Perkel et al., 1967]
c [Rieke et al., 1999, Borst and Theunissen, 1999, Dayan and Abbott, 2005]
d [Nykamp, 2005, Makarov et al., 2005]
e [Gerstein et al., 1985, Gerstein and Aertsen, 1985, Lindsey and Gerstein, 2006]
f [Smith et al., 2006]
g [Sameshima and Baccalá, 1999, Baccalá and Sameshima, 2001, Astolfi et al.,

2006, Takahashi et al., 2007]
h [Chornoboy et al., 1988, Okatan et al., 2005, Truccolo et al., 2005, Pillow et al.,

2008]
i [Granger, 1969, Cadotte et al., 2008]
j [Kaminski and Blinowska, 1991, Eichler, 2006]
k Frequency meant in terms of a frequentist’s probability estimate (p.6). Large

amounts of data are generally required for these estimates, although not nec-
essarily multiple identical trials.

27

2.2 The BD-Score Family

Scoring functions of the BD-score family have been successfully applied to learn
dynamic Bayesian networks from different kinds of biological data: For example,
gene expression profiles [Murphy and Mian, 1999, Friedman et al., 2000, Perrin
et al., 2003, Kim et al., 2004, Zou and Conzen, 2005], fMR images [Junning Li
and McKeown, 2006, Li et al., 2007, Rajapakse and Zhou, 2007, Rajapakse et al.,
2008, Burge et al., 2009], and also neural electrophysiological multi-unit data
[Smith et al., 2006]. The BD score is derived by a fully Bayesian approach, and
it exists in different variants [Heckerman et al., 1995]: Depending on properties
the score is desired to have and the prior probabilities of networks, the K2,
BDe, or BDeu score can originate from the same equation. These variants will
be discussed later to show how they especially differ with respect to the explicit
incorporation of prior information into the assessment of networks.

The following section introduces the notation and variables that are necessary
in order to specify the BD score, which is given thereafter.

2.2.1 Notation and Preparation

The BD score is proportional to the posterior probability of a Bayesian network
with respect to some data.1 Succeeding preparations therefore assume that a
directed acyclic graph (DAG, Section B.1) G is given as well as a data set D.
The number of vertices in G and the dimension of the data must be equal, such
that each data-channel can be identified with one vertex. The data are assumed
to be a set of m vectors dt:

D = {d1, . . . , dm} . (2.1)

Let n denote the number of variables that were observed. Each data vector dt

then consists of n discrete2 coordinate entries, each corresponding to one vari-
able, i.e.

dt =
(
d
(1)
t , . . . , d

(n)
t

)
, where d

(i)
t ∈ Z observation of variable i . (2.2)

1The BD score is actually a joint probability P (G, D) of a graph G and some data D
[Cooper and Herskovits, 1992, Chickering et al., 1995]. The score is generally expressed as
a product of the graph’s marginal probability P (G) and the conditional probability P (D|G)
of the data given the graph, i.e. P (G, D) = P (G) · P (D|G). In this thesis the concern is to
assess different graphs for some fixed data, such that the probability of interest is that of the
graph given the data; but for fixed data D P (G|D) is proportional to the joint probability,

since P (G|D) = P (G)
P (D|G)

P (D)
∝ P (G)P (D|G) = P (G, D).

2For practical application continuous measurements may have to be discretised. Associated
problems are not discussed here, but the data are assumed to be in an appropriate form with
few discrete values for each variable.

28

In the following, different variables are defined to determine statistics of the
data, which will be used by the scoring function. The first quantity is ri, which
denotes the number of different states variable i takes over the whole data-set,
i.e.

ri = #

(⋃
t=1,...,m

{
d
(i)
t

})
. (2.3)

For simplicity, each of the ri states is identified with an arbitrary but fixed
number between 1 and ri.

Next, the count of different potential states is determined for multiple vari-
ables together. The given graph G determines which variables are to be com-
bined; namely, the parents of any node i. Using the described relation between
a graph and the factorisation of a probability distribution (Section 1.2.1), the
parent set pai is determined from G. Let pi denote the number of node i’s
parents, which itself are denoted by p

(i)
1 , . . . , p

(i)
pi ; the corresponding parent set

is then
pai =

{
p
(i)
1 , . . . , p(i)

pi

}
⊆ {1, . . . , n} . (2.4)

The next entity to determine is the number of different joint states the
variables in the parent set pai can take. In other words, if all variables that are
not in the parent set are omitted from each data vector, i.e. the reduced vector

d
(pai)
t =

(
d

“
p
(i)
1

”
t , . . . , d

(p(i)
pi

)
t

)
(2.5)

is considered, how many different sub-vectors could be observed? Counting
such potential joint parent states, or joint states for short, is straightforward
with equation (2.3); the number of different joint states qi is

qi =
∏

p∈pai

rp (2.6)

and qi = 1 if pai = ∅. Finally, in order to define the statistics for the BD score,
each joint parent state is identified with an arbitrary but fixed number between 1
and qi. The preparations are now complete.

2.2.2 Sufficient Statistics of the BD Score

Using the agreed notation we turn towards the actual score calculation. Assume
that suitable data have been prepared and that we are given a network to score.
The data is analysed according to the procedures outlined before and each
node’s states are assigned numbers (1, . . . , ri); likewise for all joint parent states

29

(1, . . . , qi). The sufficient statistics3 for the BD score are counts of combined
child-parent states, i.e. how often node i was observed in a particular state k

while its parents were in joint state j. These numbers are represented by Nijk,
which can be formalised as

Nijk = #
{

t ∈ {1, . . . , T}
∣∣ dt ∈ D : d

(pai)
t =̂ j, d

(i)
t =̂ k

}
. (2.7)

Using this count one can easily calculate the number of times node i’s parents
were in state j — regardless of the state of the child:

Nij = #
{

t ∈ {1, . . . , T}
∣∣ dt ∈ D : d

(pai)
t =̂ j

}
=

ri∑
k=1

Nijk . (2.8)

These numbers are then used in order to determine the score value according
to the formula given in

Definition 1 (BD score) For the data D, the BD-score of a graph G is

BD(G|D) = P (G)
n∏

i=1

qi∏
j=1

Γ(N
′

ij)
Γ(N ′

ij + Nij)

ri∏
k=1

Γ(N
′

ijk + Nijk)
Γ(N ′

ijk)

where N
′

ij =
ri∑

k=1

N
′

ijk .

(2.9)

Formula (2.9) contains yet undiscussed entities: the prior P (G) and the pseudo
counts N

′

ijk. These terms incorporate prior knowledge into the score calculation.
How prior information translates to the missing terms N

′

ijk is discussed next.

2.2.3 Integration of Prior Information

Often, previous investigations of the studied system have revealed insights,
which should not be ignored when analysing data with the BD score. Instead,
the score should have a tendency to assign higher scores to networks that match
the prior information. This bias towards consistent network structures should
be overcome if the data give strong indications towards other networks that did
not seem to be likely beforehand. As a Bayesian approach, the BD score facili-
tates the combination of evidence in the data and prior information. Therefore
the latter has to be expressed in two parts: the prior on network structures and
the prior on the data any graph is associated with.

3The sufficient statistics of a model are the minimal set of parameters that fully specify
it. From the model’s point of view, any additional statistics are irrelevant. The sufficient
statistics thus determine which information is extracted from the data to be used; any data-
features that are not conveyed by these statistics remain unknown to the model. See Jaynes
and Bretthorst [2003, Chapter 8] for a detailed discussion and examples.

30

The term P (G) is the prior on network structures G; it expresses the belief
that the network G is plausible in the context of the data. Previous work, for
instance, might indicate interaction between two variables, such that networks
which contain corresponding links are assumed to be more likely than those that
lack dependencies between them. Further interpretation and the role of the prior
has been subject in section 1.4.1; the following discussion is thus turned towards
the likelihood.

The likelihood P (D | G) of a network G is the probability that the data D

are observed, given that the network is correct (Section 1.4.1). The user of
the BD score does not employ that probability to the scoring function directly;
instead, a likelihood function is parameterised by the terms N

′

ijk (so called
hyper-parameters). (For details on assumptions shaping the likelihood function
the reader is referred to the literature [Heckerman et al., 1995, Heckerman,
1997, Pe’er, 2005].) The pseudo counts N

′

ijk correspond to the data a particular
network is expected to generate and how a network translates to its expected
counts is considered next. For any network G, the user needs to specify the
probability of any parent-child state combination that can occur in this network.
For each node i this yields a probability distribution

Pi(parents pai in state j, child i in state k)

= Pi

(
d
(pai)
t =̂ j, d

(i)
t =̂ k

)
, (2.10)

which is specific to the network G. Additionally, the user must specify a weight,
which expresses the confidence in the prior information Pi (i = 1, . . . , n) relative
to the data to analyse: the equivalent sample size N

′
. The number N

′
expresses

the reliability of prior information in terms of data-points and thereby allows to
adjust between relying more on prior information or on the data. Setting the
equivalent sample size to the number of data points m corresponds to balance
between the two sources of information. A relatively large equivalent sample size
indicates very reliable prior information, for which the influence of the data on
the network’s score is marginal. In contrast, with no prior information available
at all, i.e. the equivalent sample size is zero, scoring solely depends on the
data. Together with each node’s probability distribution Pi [equation (2.10)],
the equivalent sample size determines the missing pseudo counts N

′

ijk:

N
′

ijk = N
′
· Pi

(
d
(pai)
t =̂ j, d

(i)
t =̂ k

)
. (2.11)

These terms can be understood as the expected number of joined state obser-
vations for a particular graph G weighted by the confidence about the expected
data. Given the pseudo counts N

′

ijk, the likelihood function is fully specified

31

and can be used to evaluate the network.

All entities in the BD score formula (2.9) are now known, such that networks
can be scored. In order to apply the score in practical dimensions, however,
the assignment of priors must often be generalised due to the large number of
networks (Section B.2). In situations where too many networks exist in order
to specify priors by hand, fundamental assumptions can be made in order to
automatically derive the pseudo counts for each network. Different approaches
to these prior assignments resulted in variations of the BD score, which are
presented next.

2.2.4 BD Score Variants

The first special case of the BD score to consider is the so called K2 score.4 It
arises from the BD score when an uninformative prior on state combinations
is used [Heckerman et al., 1995]. This means that the prior probabilities in
equation (2.10) and the equivalent sample size N

′
are defined such that the

expected counts for state combinations fulfil

N
′

ijk = 1, and hence, N
′

ij = ri . (2.12)

For a given network any child-parent state combination is thus equally likely;
but networks whose nodes have fewer parents are implicitly assigned a higher
likelihood. The counts N

′

ijk and N
′

ij are integer values, which can be used
in order to simplify the formula of the BD score (2.9) by substituting the Γ-
functions with factorials via the relation [Bronstein et al., 1999, p.456]

Γ(x + 1) = x!, for x ∈ N . (2.13)

The resulting variation of the BD score is called the K2 score, which has been
proposed by Cooper and Herskovits [1992] before the more general BD score
was known.

Definition 2 (K2 score) For the data D, the K2-score of a graph G is

K2(G|D) = P (G)
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (2.14)

4The BD score and its variants are measures of how well a network structure fits the data.
Therefore, these scores are sometimes referred to as scoring metrics or Bayesian scoring
metrics (e.g. [Heckerman et al., 1995]). Metrics are commonly defined on a set X for which
the distance between any two points in X can be measured (e.g. [Heuser, 2000, pp.81]). The
BD score cannot measure the distance between two networks, for example, and it is thus not
a metric. Throughout this thesis, functions to assess network structures are therefore called
scores, which is in accordance with other publications (e.g. [Pe’er, 2003]).

32

With the K2 score prior information can only be incorporated via the prior on
network structures P (G). Since no further parameters exist, the K2 score is easy
to use and, as will be seen later, its simplicity facilitates a straightforward inter-
pretation of the BD score family. However, the simplifications of the score come
at a cost: it lacks a property called likelihood equivalence.5 Another variant of
the score possesses this property: the BDe score (e for equivalence) [Heckerman
et al., 1995]. However, this score is not considered further, but a sub-case of it,
the BDeu score (u for uniform distribution) is presented. This form of the score
arises by using another uninformative prior, by which the expected counts are
set to

N
′

ijk =
N

′

riqi
, and hence, N

′

ij =
N

′

qi
. (2.15)

For any network every child-parent state combination is assumed to be equally
likely, but different to the K2 score, the pseudo counts N

′

ijk are normalised such
that every network has the same likelihood. Also, this assignment of pseudo
counts does not imply a preference of sparser networks by the likelihood func-
tion; however, by specifying the prior on network structures P (G), the user can
still direct the score.

The previous sections were concerned with the use of the BD score. Next, a short
analysis of the score shows its working principles from a practical perspective.

2.2.5 A Brief Characterisation of the BD Score

The BD score is a fully Bayesian approach, which calculates the likelihood of
a graph for given data. Its mathematical derivation fills several pages, which
can be found in the literature [Heckerman et al., 1995] and will therefore not be
replicated here. Instead of replicating all steps that lead to the scoring function
in definition 1, the formula will be explored in a reverse engineering manner in
order to get insights into its machinery.

The assignment of priors has already been discussed (Section 2.2.3), such
that the following analysis concentrates on how the statistics Nijk affect the
score value. For this purpose it is most convenient to survey the K2 score (Def-
inition 2), which has the simplest formula. Insights into the K2 score’s working
principle generalise to the other members of the BD score family because their
difference is in prior assignments only; otherwise they are the same. From equa-
tion (2.14) the factors that determine the score contribution of a single node i

5Heckerman et al. [1995] introduced the postulation that any two network structures with
identical assertions of conditional independence should have equal likelihoods. This property
has been termed likelihood equivalence.

33

can be identified as

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! ≤ 1 . (2.16)

Knowing that the K2 score is a product over probabilities of each node’s parent
configuration it is evident that the inequality (2.16) is true; however, it is also
possible to show this directly (Appendix C). Understanding why the inequality
holds without using knowledge about its probabilistic origin helps to derive
the conditions which must be met in order to yield a particularly high or low
score value. In the next two paragraphs these conditions will be identified,
making use of the fact that the faculty is the most quickly increasing function
in equation (2.16).

First, equation (2.16) is analysed to see what facilitates a high score value
for any node i. The role of three terms involved can be quickly revealed: The
first term (ri − 1)! is solely determined by the number of different states the
child node i takes in the observed data. This number is thus the same constant
for any network. In contrast, the terms Nijk! and (Nij + ri − 1)! depend on
the structure of the network, since the counts Nijk and Nij can be different for
two differing networks. This is because the network structure determines whose
variables’ states are considered jointly [equations (2.5) and (2.7)]. The counts
can therefore vary if different channels of the data or even a different number of
channels are used to determine them. For a high score the product

∏ri

k=1 Nijk!
needs to be maximised. The highest value possible would indeed be taken if all
factors were equal to 1 except one; i.e. if all except one of the counts Nijk were
equal to 0. With respect to the data this means that whenever node i’s parents
were observed in state j the child node was always in state k, i.e. the state of
the parents has always evoked a particular state of the child. The product of
factors Nijk! is thus maximal if the child state is a deterministic function of the
joint parents state.6

On the other hand, a low score value would arise if the ratio between the
product

∏ri

k=1 Nijk! and the denominator (Nij + ri − 1)! is small. This requires
the value of the product to be minimal, which is achieved when all counts Nijk

are about equal, since the factorial is increasing faster than the product of
the resulting factors. Thus, if the child states are not affected by the parent
state, i.e. their conditional distribution is a uniform distribution, the product is
minimised. This is because the denominator is only affected by the structure of
the network, but not the child’s conditional distribution, as this does not affect

6If the state of a child node is a deterministic function of its joint parents’ states, the
probability distribution of the child conditioned on its parents corresponds to a Dirac-δ-
function [Bronstein et al., 1999, p.712].

34

the counts Nij . Thus, if there is no relation between the state of the parents
and the child, i.e. the child is independent, the score value is lowest.

From the formula of the score it can also be seen that the number of links in
the network influence the score value; namely, networks with many links are less
likely to have a high score. This is because the conditions for a high score value
(as discussed above) must be met for every joint state j of the parents. The
more parents a node has, the more joint states exist for which the conditions
must be fulfilled. If any of the joint states yields a low score value this affects
the overall score via the product over joint states j. In general, if only few joint
states exist, it will be more likely that each of them contributes a high factor to
the score than if there are many. Since the number of parents determines the
number of joint states, sparser networks, which only have few parents per node,
are more likely to be high scoring.

To summarise, the K2 score generally favours sparse graph structures with
parent child relations for which the joint state of the parents is a reliable pre-
dictor of the child state. Correspondingly, complex graph structures with many
links and the ones for which the child states are found to be independent of joint
parent states have low score values. As already mentioned, these characteristics
are shared by the other BD scores as well.

The BD score family has been introduced and characterised, but nothing has
been said about how these scores can be used to learn other than static Bayesian
networks. In the next section it will be discussed how the BD scores can be ap-
plied in order to analyse the dynamics of the data.

2.2.6 Using BD Scores to Learn DBNs

Static Bayesian networks can represent stochastic relationships between vari-
ables (Section 1.2.1). The intention behind the BD scores is to learn such
models, but they can also infer dynamic Bayesian networks. However, for learn-
ing DBNs, the BD score cannot be applied directly to the data, but it must be
transferred in order to present time-lagged interactions as instantaneous ones.
Details are discussed in this section.

As has been outlined earlier, the BD score favours network structures for
which the parents of a node are good predictors of the child variable’s state.
In order to assess to which degree this is the case for a particular network,
the counts of state combinations Nijk are used to calculate a score value (see
previous sections). All information the score uses about the data is encoded in
these counts; they are the sufficient statistics of the score, which means that
any information that is not conveyed by these counts is hidden to the score.

35

X(i)
t−2

X(i)
t−1

X(i)
t d(i)

3 , d(i)
4 , d(i)

5 , . . .d(i)
1 , d(i)

2 , . . . , d(i)
T−1, d

(i)
T

d(i)
2 , d(i)

3 , d(i)
4 , d(i)

5 , . . .d(i)
1 , . . . , d(i)

T−2, d
(i)
T−1 , d(i)

T

d(i)
1 , d(i)

2 , d(i)
3 , d(i)

4 , d(i)
5 , , d(i)

T−3, d
(i)
T−2 , d(i)

T−1, d
(i)
T

Figure 2.1: Shifted data duplication to facilitate learning of a mth order DBN
with the BD score. The original data of unit i are assumed to be ordered in
time to represent a time-series

(
d
(i)
t

)
t=1,...,T

. Each variable i is represented

m + 1 times: X
(i)
t−k, once for each time-layer k = 0, . . . ,m. The data for each

variable X
(i)
t−k are given by the shifted time-series

(
d
(i)
t−k

)
t=m+1,...,T

shown in

black for a 2nd order model.

Looking at how these counts are defined [equation (2.7)] shows why they do
not convey any information about time-lagged effects between variables: These
are the number of observations of a particular child state and a joined state
of its parents; a combination of states, which occurred simultaneously. No
information about temporal relationships is extracted from the data, such that
the BD score cannot be directly be applied in order to learn DBNs. However,
a little trick makes it possible to incorporate temporal information into the
sufficient statistics of the score without changing them. DBNs can thereby be
learned with the BD score and the procedure in order to facilitate this, as well
as its drawbacks, is discussed next.

In a DBN each variable is represented multiple times; once for each time-layer
of the model (Fig. 1.3bc). The state of all variables at a particular point in time
can be derived from time-series data by time-shifted data-duplication (Fig. 2.1):
Implicitly, the data are duplicated and shifted in time such that successive data
points of one variable become aligned for its different temporal representations.
This imaginary transformation facilitates the application of the BD score on
these new data, which are informative about temporal relations: Time-lagged
effects are represented within a single time-layer. These data are used to score a
DBN by determining the corresponding statistics Nijk. The statistics are (still)
the number of times a joint parent state was observed together with a particular
child state; but, as states at different times are now represented as simultaneous
events, the counts can reflect variable state-combinations across different time-
layers. By duplicating and shifting the data, the BD score can thus be used to
learn DBNs.7

7For practical implementation the data are not actually duplicated and shifted, but it is
more efficient to reference to the original time-series with an appropriate time-offset.

36

The time-shifted data-duplication procedure maps variables from different
time-layers into a common layer. Any acyclic network connecting the corre-
sponding nodes can be scored with the BD score; however, not every of these
may be plausible. Graphs connecting nodes across time-layers with links direct-
ing backwards in time contradict common understanding of causality, which
implies that effects cannot precede their causes. Hence, networks suggesting a
variable in the present to be influencing variables in the past are absurd in this
sense. Such implausible networks should thus not be considered to be scored.
The computational costs saved by not evaluating incongruous networks is heav-
ily needed for the large number of remaining candidates (Section B.2).

The total number of potential networks indeed becomes a serious issue for
high dimensional data and/or higher order DBNs. This is because the number
of networks grows super-exponentially in the number of variables to consider
[equation (B.6)]. For DBNs the total number of variables is the number of
channels in the data times the number of time layers to model. Thus, modelling
data with a 3rd-order model instead of a 2nd order one, for example, can already
lead to a significant increase in the number of networks to score [equation (B.7)].
For practical dimensions, generally far too many networks exist in order to score
all of them; heuristics or sampling methods are thus needed to select a fraction
of the networks to score (Appendix D). Computational constraints can therefore
hinder the inference of stochastic relations from high dimensional data in the
form of higher order DBNs. Indeed, it has been shown that learning the struc-
ture of a BN is NP-complete when the BDe score is used [Chickering, 1996].
This means that no algorithm is known to solve this problem in polynomial-
time [Cormen et al., 2001, Chapter 34]. Learning DBNs can be expected to be
similarly complex, since, by the procedure outlined above, these networks are
presented as BNs to the score.

Computational demands limit the applicability of the BD scores to high dimen-
sional data in practice. Therefore a new score has been developed, which is
introduced in the next chapter. It has been designed with problems of high
dimensionality in mind and it reduces computational costs by considering a less
precise model than a DBN. The new score is not as flexible as the BD scores,
because it is specifically adapted to spike train data; but its sufficient statis-
tics efficiently capture multiple time-lags, by which it becomes applicable to
practically sized data-sets.

37

Chapter 3

The Snap Shot Score

This chapter will present the Snap Shot Score (SSS), which is a novel technique
that has been designed to learn information flow networks from spike train
data. The score is introduced and briefly interpreted in the following section.
Thereafter, examples follow, which demonstrate some of its characteristics.

3.1 Introduction of the Snap Shot Score

The Snap Shot Score, which is introduced later in this section, can be used for
correlation analyses of spike train data. Detecting and quantifying stochastic
relations in neural data has been performed with a variety of different techniques
(Table 2.1, p. 27). Even graphical models, namely DBNs, were inferred from
multi-unit data using the BDe score [Smith et al., 2006]. However, up to date
no publication seems to report the application of the BD scores for the analysis
of real spike train data;1 presumably, because these data are not suitable for a
direct application of the scoring functions (Chapter 5). Although the BD scores
have proven their applicability for different data types, it seems that the special
characteristics of spike trains hinder their broad application in this domain. In
order to infer information flow networks from this special kind of binary data,
the Snap Shot Score (SSS) has thus been developed.

Similar to other scoring functions the SSS can account for dependencies over
multiple time-lags. This is achieved by converting each spike train with a low-
pass filter to an activity level series: All spike times are preserved in the activity
level series and additionally — in inter spike intervals — it is enriched by infor-
mation about past neural activity. The actual score values are then calculated

1So far the only publication of which I am aware applying DBNs to (simulated) spike train
data is Eldawlatly et al. [2008], who used a coarse representation of 3 msec time-bins for
the data. The large time-bins are likely to have prevented the problems associated with the
imbalance in numbers of spiking to non-spiking bins (Section 5.2.1).

38

using both the spike trains and activity level series, by taking snapshots of the
activity level at all spike times. Multivariate correlation, i.e. situations in which
an effect has multiple causes, is accounted for by joining several activity level
series before calculating the score. The mathematical details of the SSS are
given next.

Consider spike trains of n channels being given by the n-dimensional time
series s = (sk,t)

k=1,...,n
t=1,...,T with sk,t = 1 if a spike was detected at time t on

channel k and sk,t = 0 otherwise. Corresponding activity level series a =
(ak,t)

k=1,...,n
t=1,...,T are defined by

ak,t = max
j=0,...,t−1

sk,t−j − j · d (3.1)

for some decay constant d ∈ [0, 1]. In most of the examples shown the decay
constant is considered to be d = 3−1, such that the activity level of channel k

at time t is determined by sk,t, sk,t−1, and sk,t−2, only.2 The further a spike
occurred in the past the less influence it has on the activity level, because the
weight of a spike 1 − j · d decreases as j increases. Spikes in the more recent
past (i.e. a smaller j) or the present (j = 0) have highest weights. Due to the
maximum taken in equation (3.1), the spike with the highest weight supersedes
any others (that occurred earlier). Spikes whose activity is fully decayed do
not contribute to the activity level at all. In detail, after d1/de time-bins the
weight becomes negative, such that any subsequent spike or even current silence
(value 0) is selected by the maximum instead.

The joined activity level series a(k1,...,km) of channels k1, . . . , km is defined
as the maximum over channels for each time t:

a(k1,...,km),t = max
j=1,...,m

akj ,t . (3.2)

For m = 1, the joined activity level series (join) is identical to the activity level
series of the single channel. Joins and activity level series of single channels are
both identified with the term activity level series. After these preparations the
scoring function can be introduced in the following

Definition 3 (Snap Shot Score) For a given pair (a, s) of activity level se-
ries a = (at)t=1,...,T and a spike train s = (st)t=1,...,T the Snap Shot Score is

2Other choices for the decay constant are possible: the smaller d is chosen, the larger the
range of time-lags considered for correlation detection. Extreme values where d = 0 (activity
level constantly 1 once a spike occurred on the channel) or d ≈ 0 (activity decaying extremely
slow) are unlikely to deliver sensible results. The decay constant has been chosen d = 1/3 to
keep examples expressive and clear. For real data the decay constant can be derived from the
anticipated maximal correlation lag (in time-bins) or by a using a parameter series, as shown
in chapter 7, later.

39

defined as

SSS (a, s;∆t) =
∑T−∆t

t=1 at · st+∆t∑T−∆t
t=1 at

(3.3)

if
∑T−∆t

t=1 at 6= 0, and 0 otherwise. The parameter ∆t ∈ N is called the shift
constant; it defines the minimal time-lag with which causal effects occur.

In this thesis simple examples use shift constant ∆t = 1, i.e. at least one time
step lies in between a cause and its effect. Larger time-lags are considered in
more complex situations, which come along with practical guidance for choosing
the shift constant (Chapter 7).

The SSS quantifies the excitatory effect of an activity level series on a spike
train (Fig. 3.1): The score value is determined by spikes occurring within the
lag-window W ⊂ N defined by the

minimal response lag ∆t , (3.4)

which is equal to the shift constant, and the

maximal response lag dd−1e+ ∆t− 1 . (3.5)

Spikes that occur during nil activity (i.e. at = 0) are not assigned any weight
(since at · st+∆t = 0) and thus do not contribute to the score value. (How this
can be interpreted biologically is discussed in section 5.2.2, later.)

Formal definitions associated with the SSS are thereby complete. It remains to
be explained how the score can be practically used to learn information flow
networks; this will be described in section 3.1.2. But before that, the following
section gives some background information on the SSS in order to understand its
relation to stochastic processes (Section 1.3) and neuron models (Section A.1).

3.1.1 Interpretation of the Snap Shot Score

The SSS can be easily interpreted by dividing both the numerator and de-
nominator in equation (3.3) by T −∆t to render both terms time-averages or
frequencies. Understanding these frequencies as probability estimates, the left
hand side is a conditional probability [Feller, 1950], such that the scoring func-
tion informally reads as:

P

 spikes will follow,

given that activity is high

 =
P (spikes following high activity)

P (high activity)
. (3.6)

40

time

ac
tiv

ity
 /

ch
an

ne
l 1

0

1

0

b decay d = 1/3

1

0

time

jo
in

ed
ac

tiv
ity

c
a(1,2),t = max(a1,t, a2,t)

time

sn
ap

sh
ot

s

1

0

d shift constant ∆t = 1

time

sp
ike

s
/ c

ha
nn

el
a

1 2

3

1

2

3

1

2

1 2

Figure 3.1: Graphical interpretation of the Snap Shot Score. Spike trains and ac-
tivity level series on the left; corresponding network nodes on the right. a Spike
trains for three channels. The channel on the bottom is excited by the upper
two channels. b Activity level series of upper two channels for given activity
level decay (decay constant d = 1/3). c Joined activity level series (join) of
upper two channels. d Snapshots of joined activity level series taken at spike
times of bottom channel corrected by shift constant (∆t = 1). Normalising the
snapshot-values (2

3 + 1
3 + 1 + 1

3 + 1 + 2
3 = 4) by the accumulated joined activity

(1 + 1 + 1 + 2
3 + 1

3 + 1 + 1 + 1 + 2
3 + 1

3 + 1 + 1 + 1 + 2
3 + 1

3 = 12) yields the SSS
value

(
4
12 = 1

3

)
of the parent-configuration of node 3 shown right next to it.

41

The model underlying the SSS assumes that the spike trains are generated by
a stochastic process Xt =

(
X

(1)
t , . . . , X

(n)
t

)
where each neuron’s future activity

depends on past neural activity, i.e.

P
(
X

(i)
t+1

∣∣Xt,Xt−1, . . . ,X0

)
. (3.7)

As discussed below, the SSS can be used to learn a network, which gives more
specific information about the process Xt: First, dependencies over time are
limited by the score’s lag-window W and secondly, parent child relations in
the learned network describe which subset of neurons pa(X(i)) was found to be
relevant for each neuron X(i); namely its parents. Equation (3.7) thus simplifies
to

P
(
X

(i)
t+1

∣∣pa(X(i))t̄∈{(t+1)−l | l∈W}

)
(3.8)

and describes the process Xt more concretely. Equation (3.8) does not im-
ply one particular neuron model (Section A.1) in order to interpret learned
networks. Instead, any model for which this process is a reasonable charac-
terisation can be chosen. This could for instance be a leaky integrate and fire
neuron where the leakage current is chosen such that temporal summation of
synaptic inputs only occurs over a time-window corresponding to the score’s lag-
window W . Stochastic dependencies in the resulting spiking process Xt would
then match equation (3.8). Changing assumptions about the neuron model
leads to a distinct understanding of the network. The large number of possible
models prevents discussing all of them; an easily interpretable template model
is thus presented in which the learned links between observed units stand for
chains of hidden units. The aim of this model is to give an illustrative example
of how to interpret recovered links in neural terms; it is not suggested to reflect
realistic connectivity. The model is formed by the following assumptions:

• All neurons act as unreliable relay units, i.e. spikes received through
synaptic transmission are forwarded to connected neurons with a certain
probability.

• All postsynaptic potentials are excitatory and synaptic transmission takes
one time-bin per synapse.

• Each recovered link between observable neurons represents a connection
between these neurons via a number of synapses (connection length). This
number of synapses ranges from ∆t (minimal response lag) to dd−1e+∆t−
1 (maximal response lag). The connections are formed by chains of hidden
units; one less than synapses in the chain. For shift ∆t = 1 and decay
constant d = 3−1 (as chosen before) there are 1 to 3 synapses between

42

connected units, i.e. observable neurons either connect directly to each
other or by up to 2 hidden units in between.

This descriptive model gives a simple interpretation for links, which allows expla-
nation of the SSS’s tradeoff between model complexity and explanatory power.
In detail, the following examples 5 and 6 will show that making a node’s parent
configuration more complex lowers the score value, unless compensated by ex-
planatory benefit. In terms of the model, complexity means two things: (1) the
number of neurons upon which a neuron’s firing is dependent and (2) the num-
ber of hidden units in a chain that correspond to each particular link. As will
be demonstrated, the score generally favours configurations with fewer parents,
but also, units are favoured, which respond with minimal rather than maxi-
mal response-lag. Thus, the SSS aims at explaining the dependence among
(observed) units by linking them using few and short connections.

3.1.2 Learning Networks Using the Snap Shot Score

Potential information flow networks are assessed by identifying each data chan-
nel with one network node. Every node is then assigned a score value depending
on the nodes linked to it. A child-node is scored by applying the SSS to the
join of all parent-channels and the child’s spike train.3 If a node does not have
any parents, its score value requires the join a(1,...,n) of all channels. With the
child’s spike train s, the score of the parent-less node is SSS

(
a(1,...,n), s;∆t

)
if

this value is non-zero, and 1 otherwise. Finally, the score of the full network is
the product of all its nodes’ scores.

Learning an information flow network from data generally involves scoring
many potential structures. Ideally, the highest scoring one would be found. Be-
cause of the score’s decomposability (Section E.1.1), the best scoring network
can be assembled from each node’s best scoring parent configuration. Thus,
full network scores need not to be calculated for learning, but it is sufficient to
determine each node’s optimal parent configuration. In order to identify these
with certainty, all 2n possible joins for each node would have to be evaluated
(Fig 3.2).4 However, for practical dimensions (like a 60 electrode array, for ex-
ample) there are far too many joins for an exhaustive evaluation (Section B.2.1).
To circumvent this problem, the set of information flow networks to score can be
limited to those with sparse connectivity or by limiting the number of parents
per node. The number of potential child-parent relations might also be reduced
by excluding connections ruled out by factual knowledge (like large physical

3Recall that a link’s source node is called a parent of the destination node (child) (Sec-
tion B.1). A loop-link renders a node parent and child at the same time. Such configurations
will be referred to as self-exciting.

4For notes on efficient software implementation please consult appendix E.

43

distance between electrodes, for example). Additionally or alternatively, search
heuristics and Monte Carlo methods can be used to select promising configura-
tions to assess. For a discussion of suitable techniques see appendix D.

Incorporating Prior Knowledge

Network inference can be assisted by prior knowledge about the studied sys-
tem. Here available information will be used in order to derive a separate
link-acceptance-threshold (LAT) for each network node. During network learn-
ing any parent configuration with a score value lower than the child node’s LAT
will be rejected. This selection removes irrelevant links and can lead to sparser,
more relevant networks.

The LAT is chosen to reflect the best explanation for the data at a particular
level of complexity. The actual level of complexity is determined by the prior
information at hand: Knowledge about the studied system constrains the space
of potential parent configurations for each node. For example, self-excitation
might be excluded or observed units are known to only have few interaction
partners. The space of potential configurations can thus be restricted to a
particular level of complexity, i.e. number of parents. Configurations at the
highest permitted level of complexity determine the LAT, which is the highest
score value of these configurations. This highest scoring configuration (LAT-
configuration) reflects the best explanation for the data at a level of complexity,
which could not be limited further by using prior knowledge. In other words, the
LAT-configuration represents all background information formulated in terms
of the SSS. Better explanations than the LAT-configuration might exist; these
are simpler configurations with scores equal or above the LAT. Calculating the
SSS for several parent configurations might reveal such superior explanations.
Ultimately, we seek to find the simplest among the best scoring configurations
consistent with prior knowledge. Thus, any configuration with a score value
below LAT should be omitted from result lists, as it gives a worse explanation for
the data than prior knowledge, i.e. the LAT-configuration. For a demonstration
of how to determine the LAT consider the following

Example 4 (LAT) The spike trains shown in Fig. 3.1a are analysed using the
SSS (d = 3−3, ∆t = 1). Assume that no prior information is available, which
facilitates any restriction of potential parent configurations. We thus consider
all possible configurations including self-excitation of units (Fig. 3.2). In order
to determine the LAT for node 1 its most complex parent configurations must
be found and scored. Here, only one configuration of highest complexity exists;
namely that where nodes 2, 3, and node 1 itself are parents of node 1 (Fig. 3.2
top right). This configuration’s SSS value is 0.26, which is thus node 1’s LAT-

44

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

0.26 0.52 0.00 0.26 0.25 0.42 0.13 0.26

0.19 0.00 0.07 0.04 0.33 0.25 0.21 0.19

0.28 0.50 0.22 0.33 0.28 0.35 0.25 0.28

all configurations excluding self-excitation all configurations including self-excitation

1 32

1 32

︸ ︷︷ ︸

︸ ︷︷ ︸

best scoring network (self-excitation excluded)

best scoring network
(self-excitation permitted)

Figure 3.2: Exhaustive evaluation of all possible parent configuration of 3 nodes
(top) for spike trains shown in Fig. 3.1a. Each row shows the configurations
for one child node with the rounded SSS value above each (d = 3−3, ∆t = 1).
All configurations excluding self-excitation are located on the left half; consid-
ering self-excitation doubles the number of configurations (left and right part
together). Best scoring parent configurations (high-lightened in gray) combined
to full networks (bottom). Depending on whether or not self-excitation is con-
sidered, top-scoring networks differ.

threshold. Similarly, for nodes 2 and 3 we find thresholds 0.19 and 0.28 respec-
tively. The best scoring parent configurations of each node exceed each node’s
LAT; they are thus all included in the combined network (Fig. 3.2 bottom).
(Otherwise, i.e. if the LAT was not out-valued by the best scoring configuration,
corresponding links would be omitted.)

The preceding sections showed how to interpret and how to use the SSS. It
has already been noted that the score favours sparse networks, but no prac-
tical demonstration of this and other features has been given yet. The next
section uses simple examples to illustrate the score’s characteristics, which are
investigated formally later (Chapter 4).

45

3.2 Simple Examples

To illustrate the functionality of the SSS two examples are discussed next. In
the first one, basic features of the score are worked out to illustrate its working
principles. Thereafter, all possible parent configurations of one node are eval-
uated for different sample data sets and the score’s quantification of these is
discussed.

Example 5 (Basic Snap Shot Score features) In order to illustrate first
basic features of the score, consider an unnatural data-set with 6 channels (Fig.
3.3a) for which activity level series were calculated (Fig. 3.3f) to score selected
information flow networks (Fig. 3.3b-e). The links of these networks were cho-
sen to illustrate central features of the SSS:

• The score value is zero if cause and effect do not appear within the lag-
window of minimal and maximal response lag: [∆t, dd−1e + ∆t − 1]Z =
[1, 3]Z (Fig. 3.3b). This is especially true when effects precede causes
(Fig. 3.3c). Note that in figure 3.3bcd, node B’s contradictory parent con-
figurations render the full networks inconsistent, which is reflected by their
zero score values.

• The score value is maximal if putative cause and effect occur exactly at
the minimal time-lag, and it is lower if effects occur later (Fig. 3.3b). The
SSS thus favours units as causal ones to which the response-lag is minimal
(Nodes D, E, F in Fig. 3.3b vs. 3.3c).

• Increasing complexity of a parent configuration by adding more parents
may get penalised by the SSS: If higher complexity is not balanced out by
a significant explanation benefit, the score value decreases (Nodes D, E, F
in Fig. 3.3c vs. 3.3d).

• Different parent configurations can have the same score value if spike trains
are identical for different units (Fig. 3.3e). In this situation, different con-
figurations are equivalent explanations for the data and their score value
is thus the same. The ability to present alternatives as such is generally
desirable; however, since the score cannot distinguish between identical
single units and their join, more complex structures can have the same
score value as simpler ones without giving a better explanation. Accord-
ing to Occam’s razor (Section 1.4.2), the simpler structure should then be
favoured over the configuration with more parents; but this can be easily
realised by adding such preference to the network learning procedure. Also,
as discussed in the following example in more detail, for realistic data, it
is extremely unlikely that two units have precisely identical spike trains; it

46

Fig. 3.3 legend: Simplistic spike trains and SSS values of selected networks
(left), activity level series used for scoring and detailed calculation example
(right). a Spike trains of 6 units (A-F). b-e Snap Shot Score values shown
for selected parent-child configurations (near child nodes) and for full net-
works (

∏
= . . . next to network). b Unit A is single parent of all other nodes.

Scores of nodes B and F are zero, as these units do not respond within
the defined time-lag-window: Unit B undershooting minimal response-lag
(∆t = 1); unit F overshooting maximal response-lag (dd−1e + ∆t − 1 = 3
time-steps). Decreasing non-zero scores of nodes C through E reflect the
Snap Shot Score’s preference of short time-lags. c Unit C is single parent of
all other nodes. Scores of nodes A and B are zero, as their response under-
shoots the minimal response-lag: Links C → A and C → B are directing
backwards in time. Scores of nodes D, E, and F are larger for parent node
C than for parent node A (b), as their response-lag to unit C is smaller
than to A. d Units A and C are joined parents of nodes B, D, E, and F .
All non-zero scores are smaller than those where unit C is the only parent
(c); the explanatory benefit of two parents (A and C) does not balance out
raised complexity of the network. e Nodes A or B are parents of node C
either exclusively or jointly; a chain is formed of C to D to E to F . For the
data in (a), these three resulting networks are the best scoring ones. Their
structure differs with respect to the parent configuration of node C, but
links between nodes C to F are unambiguous. f Activity level series of all
units (top) and joins a(A,B) of A and B, and a(A,C) of A and C, respectively
(bottom). Join a(A,B) is used in (e) and equals individual activity level se-
ries of A and B. Join a(A,C) was used to calculate scores in (d). g Detailed
score calculation for node F with parents A and C as shown in (d).

is thus extremely unlikely that several networks are assigned the same high
score value anyway.

While the preceding example showed how the SSS works for selected child-parent
configurations, the following one illustrates how it operates on the full space of
parent configurations of one particular node. Only few channels are included
in the example in order to be able to display results appropriately; systems of
higher dimensions will be discussed in chapter 7, later.

Example 6 (Exhaustive evaluation of parent configurations) To demon-
strate the Snap Shot Score’s selectivity, different activity patterns (4 channels)
were chosen to evaluate the score of node 1 for all its possible parent configu-
rations (Fig. 3.4). Scores of individual configurations are compared against the
mean score of all configurations for illustrative purposes, only.5 Despite the low
dimensionality several characteristics of the SSS can be seen in the depicted sit-

5Generally the mean score is unknown because an exhaustive evaluation is computationally
impossible in practical dimensions.

47

1

1

11

A B C D E F

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

time
0
1
2
3
4

a

m
a

x
(A

,B
)

F

E

D

C

1

0

a
c
ti
v
it
y
 /

 c
h

a
n

n
e

l

1

0

1

0

1

0

1

0

1

0

B

A

5 6 7 8

m
a

x
(A

,C
)

0 1 2 3 4

1

0

1

0

time-bin

jo
in

e
d

 a
c
ti
v
it
y

f

F

5 6 7 8

m
a
x
(A
,C
)

0 1 2 3 4

1

0

time-bin

s
n
a
p
s
h
o
ts

g

SSS(F)=
∑

snapshots∑
parent activity

1
3

1 + 1 + 2
3 + 1

3

1
9

= =

0

d

1/9

2/9 2/6

A B

F C

DE

∏=0

3/6

e

3/6

3/6
3/6

A B

F C

DE

∏=1/16

0

1/6

0

b A B

F C

DE

3/6

2/6

∏=0

3/62/6

1/6

0

0c A B

F C

DE

∏=0

1/6

1/6

Figure 3.3: Legend in separate box on page 47.

48

7

1

2

3

4

1 2 3 4 5 6

1

0

time-bin

a
c
ti
v
it
y
 /

 c
h

a
n

n
e

l

1

0

1

0

1

0

a

7

1

2

3

4

1 2 3 4 5 6

1

0

time-bin

a
c
ti
v
it
y
 /

 c
h

a
n

n
e

l

1

0

1

0

1

0

b

7

1

2

3

4

1 2 3 4 5 6

1

0

time-bin

a
c
ti
v
it
y
 /

 c
h

a
n

n
e

l

1

0

1

0

1

0

c

0.
00

0.
21

0.
37

0.
50

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD

parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

0.
00

0.
14

0.
28

0.
42

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD
parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

0.
00

0.
12

0.
22

0.
32

0.
50

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD

parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

Figure 3.4: Spike train patterns and activity level series (left) and corresponding
Snap Shot Score values of channel 1 for all its possible parent configurations
(right). Spikes are indicated by grey bars with superimposed lines indicating
the resulting activity levels. The adjacent bar plot shows the score values of
all possible parent configurations for node 1 (parent nodes given above each
bar). Mean score value and mean plus/minus one standard deviation (root
mean square) shown by dashed lines for illustrative purposes. Bars indicating
the score values are coloured light grey if below the link-acceptance threshold
(score of most complex configuration 16) and dark grey otherwise. a Channel 4
silent; joining it has no effect on SSS value. b Channels 2 and 3 identical; joining
more than one of them has no effect on SSS values. c Close spikes on channel 1;
self-exciting configuration (number 2) with positive SSS value.

49

uations. For example, joining silent channels has no effect on the score value:
configurations in Fig. 3.4a have the same score value whether they contain the
silent channel 4 as a parent or not. Also, joining completely identical channels
is effectless compared to using only one of them (Fig. 3.4b, channels 2 and 3).
Both of these effects are due to the max-operation in equation (3.2). More pre-
cisely, the score stays unaltered if the activity level series of the channel to join
does not raise the activity level any further (Fig. 3.4c, join of channels 1 and 2
equals channel 1). This occurs in only three special cases: (1) joins of identical
spike trains, (2) joins where all spikes on one channel occur simultaneously with
a spike on any other channel in the join, and (3) joins including silent chan-
nels. This is not optimal, as according to Occam’s razor (Section 1.4.2), one
would rather penalise the effectless complication of a structure. However, this
behaviour is a consequence of the simplicity of the score. For real data, it seems
unlikely that identical spike trains, or spike trains that echo precisely a subset of
another, are observed on different channels; thus, the special cases (1) and (2)
are expected to have little effect in practical application. The third special case
can be completely excluded by preprocessing: Inactive channels can be removed
from the data (as would be likely practice in any case). Thus, in practice the
SSS values are likely to be different for every parent configuration (Fig. 3.4a,
configurations 1-8). The different score values can be used to order parent con-
figurations hierarchically for subsequent inspection and result selection.

In Fig. 3.4a-c the SSS assigns distinct top-scores to its most favoured config-
urations. To grasp the score’s characteristics for more variable data, the spike
patterns in Fig. 3.4 were concatenated in three different ways to yield the spike
trains shown in Fig. 3.5. Interpreting the resulting spike trains with respect to
the question ”Which channels are exciting channel 1?” can be harder or eas-
ier than before; the SSS values reflect this: In Fig. 3.5a channel 1 seems to be
clearly excited by channel 2, as all parent configurations except one including
this channel have score values above the mean. However, except from the clear
peak for configuration number 3 the score is high and undecided about some oth-
ers, especially configurations 7 and 11, and configurations 4 and 5. The spike
train does not contain enough information to clearly prefer one of these parent
configurations over the other; we find high scores close to the mean plus one
standard deviation (SD) for all four configurations. A similar situation occurs
in Fig. 3.5b: One configuration is clearly favoured, too, but high scores (about
one SD above the mean) are reached by only two other configurations. The
spike train in Fig. 3.5b is thus more meaningful to the SSS than the preceding
one (Fig. 3.5a).

Score value peaks become flat when the data contains unclear information:
In Fig. 3.5c spikes on channels 2, 3 and 4 all occur as favoured (with time-

50

146 7 8 9 10111213

1

2

3

4

1 2 3 4 5

1

0

time-bin

a
c
ti
v
it
y
 /
 c

h
a
n
n
e
l

1

0

1

0

1

0

146 7 8 9 10111213

1

2

3

4

1 2 3 4 5

1

0

time-bin

a
c
ti
v
it
y
 /
 c

h
a
n
n
e
l

1

0

1

0

1

0

146 7 8 9 10111213

1

2

3

4

1 2 3 4 5

1

0

time-bin

a
c
ti
v
it
y
 /
 c

h
a
n
n
e
l

1

0

1

0

1

0

a

b

c

0.
00

0.
12

0.
24

0.
36

0.
50

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD

parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

0.
00

0.
13

0.
23

0.
34

0.
50

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD

parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

0.
00

0.
16

0.
33

0.
50

1.
00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parent configuration ID

SS
S

va
lu

e

m
ea

n
m

ea
n

+
SD

m
ea

n
−

SD

parents of node 1:

.

.

.

.

1
.
.
.

.
2
.
.

1
2
.
.

.

.
3
.

1
.
3
.

.
2
3
.

1
2
3
.

.

.

.
4

1
.
.
4

.
2
.
4

1
2
.
4

.

.
3
4

1
.
3
4

.
2
3
4

1
2
3
4

Figure 3.5: Exhaustive score evaluations of all parent configurations for chan-
nel 1 with same semantics as in Fig. 3.4. Spike train patterns are concatenations
of those in Fig. 3.4 (a Fig. 3.4ab, b Fig. 3.4ac, c Fig. 3.4bc). a Distinct peak
and four parent configurations with score value close to mean plus one SD.
b Distinct peak and two parent configurations with score value close to mean
plus one SD. c Score value of most configurations close to mean score and vague
peak only.

51

lag 1) once, but also with larger lags another time. The prominence of the top
configuration number 5 is less distinct than in other cases and the overall score
distribution close to the mean score. More informative data would be needed
for the formation of a distinct peak; indeed, if one of the two spike patterns
(Fig. 3.4bc) is concatenated twice, the score’s favour is more distinct and on
fewer configurations (not shown).6

In both Figures 3.4 and 3.5 even numbered configurations include node 1
as its own parent; for configuration number 2 node 1 is its only parent. This
exclusive self-exciting configuration can have non-zero score values when two
spikes on channel 1 occur close enough to each other, i.e. within the lag-window
(Figs. 3.4c, 3.5c); any two spikes that are too close or too far apart do not
contribute to the score value, as do single spikes (Fig. 3.4ab). If (exclusive)
self-exciting configurations seem implausible for the single-unit spike train data
they should not be considered.

The new SSS has been introduced and illustrated by examples in this chapter.
Later, in chapters 7 and 8, its practical applicability to spike train data will be
investigated. But before that, the score is investigated mathematically in order
to learn more about its characteristics (Chapter 4) and a discussion relates it
to the BD scores (Chapter 5).

6For independent random spike trains SSS values of all parent configurations lie within
mean ± SD and approach mean score (SD ↘ 0) for increasing length of spike trains (not
shown).

52

Chapter 4

Characterising the SSS

The SSS has been introduced and motivated by examples, which showed the
score’s preferences in simplified situations (Section 3.2). For instance, simpler
parent configurations were seen to be preferred over more complex ones if those
could not explain the data significantly better. The given examples demonstrate
characteristics of the SSS, but these illustrations do not justify conclusions about
the generality of properties shown. In this chapter, key features of the score are
proven to hold as general principles. Thorough investigation will give useful
insights for efficient software implementation (Appendix E) and interpreting
learned networks.

4.1 A Conditional Score Limit

on Complex Configurations

The main result of this section is a limit on the score value for configurations with
multiple parents. The mathematical formulation of this (Theorem 1) requires
new terms to be introduced first. Also, two propositions follow, which are used
to prove the theorem. We begin with the following definition, which formalises
(nearly) simultaneous activity on different channels.

Definition 4 (active-time) Let a = (ak,t)t=1,...,T be unit k’s activity level
series. The set of time-points

Tk = {t ∈ T | ak,t > 0} (4.1)

is called node k’s active-time. For two nodes i and j we further define:

nodes i and j have non-overlapping activity :⇔ Ti ∩ Tj = ∅ (4.2)

53

Accordingly, a set of nodes {k1, . . . , km} is said to have non-overlapping activity,
if all possible pairs of different nodes have non-overlapping activity, i.e.

∀ i, j ∈ {k1, . . . , km} : i 6= j ⇒ Ti ∩ Tj = ∅ . (4.3)

(Note the special case: This definition implies that a set containing only one
node is considered to have non-overlapping activity.) The extend to which
statements about the SSS can be made fundamentally depends on whether or
not activity of different channels overlaps, as we shall see throughout the section.
Next, two propositions are introduced, which will be helpful for proofs and
interpretation of the score thereafter.

Proposition 1 For two nodes i and j with activity level series ak = (ak,t)t=1,...,T

(k = i, j) that have non-overlapping activity we find

∀ t : max(ai,t, aj,t) = ai,t + aj,t . (4.4)

Accordingly, for a set M = {k1, . . . , km} of m nodes with non-overlapping ac-
tivity and activity level series ak = (ak,t)t=1,...,T (k = k1, . . . , km) we find

∀ t : max
k=k1,...,km

ak,t =
∑

k=k1,...,km

ak,t . (4.5)

Proposition 2 Let ai, bi ∈ R≥0 where bi 6= 0 (i = 1, 2). Then:

a1

b1
≥ a2

b2
⇔ a1b2 ≥ a2b1

⇔ a1b1 + a1b2 ≥ a1b1 + a2b1 ⇔
a1

b1
≥ a1 + a2

b1 + b2

(4.6)

and thus
max

{
a1

b1
,
a2

b2

}
≥ a1 + a2

b1 + b2
. (4.7)

This completes the preparations in order to formulate the following theorem 1,
which states an upper bound on the score value of configuration with multiple
parents: If all parent channels involved have non-overlapping activity, a config-
uration with only one of the parents is guaranteed to exist, which exhibits the
same or a better score value than the joined parents. Counter-examples show
that the constraint of non-overlapping activity is indeed a necessary condition
for this result (Fig. 4.1).

54

0

m
ax

(1
,2

)

2ac
tiv

ity
 /

ch
an

ne
l

1

jo
in

ed
 a

ct
ivi

ty

5 6 7 8

m
ax

(1
,2

)

1 2 3 4
time-bin

ch
ild

9 101112

1

0

1

0

1

0

1

C

1
5

= 0.2

2

C

1
6

= 0.16̄

1 2

C

5
21
≈ 0.238

score values

Figure 4.1: Example spike trains show that joined parents can yield a better
score value than single ones. Spike trains and activity level series on the left;
parent configurations with SSS values below on the right hand side (d = 3−1,
∆t = 1). Note that parent nodes 1 and 2 have overlapping activity (in time-
bins 8, 9, and 10) such that the conditions of theorem 1 are not met.

Theorem 1 (Conditional upper limit) Let a(k1,k2) = (a(k1,k2),t)t=1,...,T be
the join of two channels k1 and k2 and s = (st)t=1,...,T denote a spike train. If
k1 and k2 have non-overlapping activity, then

SSS
(
a(k1,k2), s;∆t

)
≤ max {SSS (ak1 , s;∆t) , SSS (ak2 , s;∆t)} . (4.8)

Accordingly, for a join a(k1,...,km) of m channels k1, . . . , km with non-overlapping
activity we find:

SSS
(
a(k1,...,km), s;∆t

)
≤ max

j=1,...,m
SSS

(
akj , s;∆t

)
. (4.9)

55

Proof: Equation (4.8) is a combination of the score’s definition [equation (3.3)]
and previous results:

SSS
(
a(k1,k2), s;∆t

) (3.3)
=

∑
t a(k1,k2),t · st+∆t∑

t a(k1,k2),t
(4.10)

Prop.1
=

∑
t ak1,t · st+∆t +

∑
t ak2,t · st+∆t∑

t ak1,t +
∑

t ak2,t
(4.11)

Prop.2

≤ max
{∑

t ak1,t · st+∆t∑
t ak1,t

,

∑
t ak2,t · st+∆t∑

t ak2,t

}
(4.12)

(3.3)
= max {SSS (ak1 , s;∆t) , SSS (ak2 , s;∆t)} . (4.13)

Now the more general equation (4.9) is proven by induction:

Induction hypothesis (?): Equation (4.9) holds for m channels k1, . . . , km

with non-overlapping activity.

Basic step: For m = 2 the induction hypothesis (?) corresponds to equa-
tion (4.8), which has already been proven above.

Inductive step: Let km+1 be another channel such that k1, . . . , km, km+1

have non-overlapping activity. Because k1, . . . , km+1 have non-overlapping
activity channel km+1 and the join a(k1,...,km) have non-overlapping activ-
ity; equation (4.8) can thus be applied to a(k1,...,km,km+1), which yields

SSS
(
a(k1,...,km+1), s;∆t

) (4.8)

≤ max
{

SSS
(
a(k1,...,km), s;∆t

)
,

SSS
(
akm+1 , s;∆t

)}
. (4.14)

In the next step, the induction hypothesis (?) is applied to replace the
term SSS

(
a(k1,...,km), s;∆t

)
. We find

SSS
(
a(k1,...,km+1), s;∆t

) (?)

≤ max
{

max
j=1,...,m

SSS
(
akj , s;∆t

)
,

SSS
(
akm+1 , s;∆t

)}
. (4.15)

Rewriting the the right hand side of equation (4.15) as follows,

max
{

max
j=1,...,m

SSS
(
akj

, s;∆t
)
,SSS

(
akm+1 , s;∆t

)}
= max

j=1,...,m,m+1
SSS

(
akj

, s;∆t
)

, (4.16)

shows that (4.9) is proven. �

56

As a direct consequence of theorem 1 we find the following

Corollary 1 Let k1, . . . , km be m channels with non-overlapping activity. Fur-
ther let ∅ 6= {j1, . . . , jr} ⊆ {k1, . . . , km} be an arbitrary sub-set of these channels.
We then find the score of the join a(j1,...,jr) limited:

SSS
(
a(j1,...,jr), s;∆t

)
≤ max

j=j1,...,jr

SSS (aj , s;∆t) ≤ max
k=k1,...,km

SSS (ak, s;∆t) .

(4.17)

The corollary extends the claim of the theorem; it not only gives a limit for the
join of all non-overlapping channels, but for the join of any sub-set of these, too.
The score value of any such join is limited by the score of at least one single
parent configuration. It is thus known that the simplest and best scoring parent
configuration for non-overlapping channels has exactly one parent. In situations
of non-overlapping activity the SSS thus shows a very strong tendency towards
sparse networks. There is also another important implication of the theorem,
which affects the expansion of an existing join.

Corollary 2 Let a(j1,...,jr) be a join of r channels. Further let k be a channel
whose activity does not overlap with a(j1,...,jr). We then find the score of the
join a(j1,...,jr,k) limited:

SSS
(
a(j1,...,jr,k), s;∆t

)
≤ max

{
SSS

(
a(j1,...,jr), s;∆t

)
,SSS (ak, s;∆t)

}
.

(4.18)

This seemingly technical result has significant practical importance. It can be
read as: Expanding a join by a channel whose activity does not overlap with
it cannot increase the score value beyond that of the better scoring of the two.
Or vice versa: If the members of a join can be split into two groups which
have non-overlapping activity, at least one of the groups’ join scores as least as
good as that of all channels together. This formulation especially sheds light
on each nodes’ optimal configuration: It cannot be split into groups with non-
overlapping activity, because a simpler configuration with equal or better score
would otherwise exist. In practice, corollary 2 can be utilised in order to avoid
the evaluation of too complex joins. Details on the implementation can be found
in section E.2.2.

The preceding considerations yield strong results in case activity between chan-
nels does not overlap. In practical situations, however, it is likely that at least
few channels show overlap in their activity. The following section therefore in-
vestigates the behaviour of the SSS under circumstances in which the conditions
of theorem 1 and its corollaries are not met.

57

4.2 A Close View on the Join Operation

The previous section investigated situations where joining multiple channels
does not lead to a higher score than that of individual channels. The sufficient
condition for the corresponding results is that channels have non-overlapping
activity. Next, in order to understand which conditions must be met such
that a join can have a higher score than its individual channels, the join op-
eration is investigated closely. Therefore, different re-formulations of the SSS
are discussed to highlight aspects that facilitate high score values of joins. For
this consider two nodes i and j, which are potential parents of a child node.
The score of configurations where nodes i and j are both exclusive parents of
the child will be compared to that of their joint parenthood. Therefore let
ak = (ak,t)t=1,...,T (k = i, j) denote the corresponding activity level series and
let s = (st)t=1,...,T be the child’s spike train.

First, the definition of the SSS is repeated by plugging in the join operation
[equation (3.2)] directly into the score’s formula [equation (3.3)]:

SSS
(
a(i,j), s;∆t

)
=
∑

t max{ai,t, aj,t} · st+∆t∑
t max{ai,t, aj,t}

. (4.19)

If the activity of channels i and j is non-overlapping proposition 1 can be applied
to replace the join operation max by the sum of its arguments, which yields:

SSS
(
a(i,j), s;∆t

) i,jnon-overlapping
=

∑
t ai,t · st+∆t +

∑
t aj,t · st+∆t∑

t ai,t +
∑

t aj,t

. (4.20)

Here, the score of the join a(i,j) is the sum of the snapshots of the individual
channels and accumulated activity, respectively. However, equation (4.20) does
not hold when channels have overlapping activity (Fig. 4.1) because the condi-
tion of proposition 1 is violated. In order to yield generally valid re-formulations
of equation (4.19), the join operation is replaced by different identities, which
hold whether channels have non-overlapping activity or not. The first identity
to consider is given in

Proposition 3 Let a, b ∈ R. Then

max{a, b} = a + b−min{a, b} (4.21)

holds.

Proposition 3 is used to reformulate equation (4.19) by applying it to the joined

58

activity max{ai,t, aj,t} at any time t. This yields:

SSS
(
a(i,j), s;∆t

)
=∑

t ai,t · st+∆t +
∑

t aj,t · st+∆t −
∑

t min{ai,t, aj,t} · st+∆t∑
t ai,t +

∑
t aj,t −

∑
t min{ai,t, aj,t}

. (4.22)

In this formula we find the left and the middle sums corresponding to the terms
that make up the score of configurations where node i and node j are exclusive
parents. The two sums on the right gather snapshots and activity of both
channels i and j while their activity overlaps. The score is calculated by adding
the snapshots and accumulated activity of both channels and correcting it by
the overlap of channels. Indeed, if no such overlap exists, i.e. in the case where
channels i and j have non-overlapping activity, the right sums both evaluate
as 0, such that equation (4.22) reduces to (4.20). Finding equation (4.20) to
be a special case of (4.22) verifies its more general validity; however, it does
not give any explicit insights into what maximises the score of a join. This is
because it is not sufficient to maximise the ratio of the left and middle sums
while minimising the right sums ratio; in order to optimise the score of the join
the overall ratio must of course be maximised. Due to the sheer number of
possible combinations of values for the six sums, it is not possible to derive a
simple, general condition, which is sufficient to guarantee a high score value of
a join. It is, however, possible to identify special cases of overlapping activity
in which joining channels can not have higher score values than their separate
channels. In order to spot these cases we use the following basic

Proposition 4 Let a, b ∈ R≥0. Then

max{a, b} = a + max{b− a, 0} (4.23)

holds.

Proposition 4 is applicable to activity level series as these, by definition, are
non-negative at all times. We thus find equation (4.19) equivalent to

SSS
(
a(i,j), s;∆t

)
=

∑
t ai,t · st+∆t +

∑
t max{aj,t − ai,t, 0} · st+∆t∑

t ai,t +
∑

t max{aj,t − ai,t, 0}
.

(4.24)
This formulation of the SSS can be interpreted when recognising that the sums
on the left resemble the score of channel i alone (without joining with j); the
right sums constitute the change to the score of channel i when joining i and j.
If the activity aj,t of channel j is lower or equal than that of channel i at all

59

times t, the right sums both evaluate as 0, such that the score of the join is equal
to that of solely using channel i. (This has already been observed in examples 5
and 6 in section 3.2.) However, if channel i does not out-value channel j at all
times the score of the join will be different; it can either be higher or lower than
that of i’s score. Whether the score actually increases or decreases by joining
channels i and j depends on the ratio of the right sums compared to the score
of node i as single parent: Proposition 2 shows that the score of the join a(i,j)

will only be higher, if the ratio of the right sums is higher than that of channel i

alone.

The preceding investigations in this chapter aimed at specifying the SSS’s gen-
eral characteristics. Under specific assumptions about the (non-)simultaneous
activity on different channels strong results could be obtained. Considerations
of more general cases gave at least an impression about mechanisms at work. In
order to be more specific, the next section addresses particular questions, which
might have arisen from previous results.

4.3 Questions, Presumptions,

and (Counter) Examples

The previous sections confirmed that the SSS has a strong favour of simple
configurations under a variety of conditions. The reader might already wonder
about whether this characteristic of the score can be generalised even further.
For example, given the score’s tendency towards configurations with fewer par-
ents, a legitimate question to ask is:

Q1 Do any examples exist where the best scoring parent configuration has
more than one parent?

Indeed, simple ad-hoc examples often give the impression that the SSS would
always favour one parent configurations, but persistently constructing more ex-
amples shows:

A1 Yes, indeed such situations exist. Figure 4.1 shows one example where
two joint parents have a higher score value than either of them alone.

Given an example of a case where a joint parent configuration is highest scoring,
it is reasonable to ask questions about sufficient conditions for the existence of
such cases. The previous sections already revealed that overlapping activity
of joined channels is a necessary condition; however, it is not sufficient.1 One

1As an example consider Fig. 3.1 on page 41 where all channels have overlapping activity.
The exhaustive evaluation of all configurations (Fig. 3.2 on page 45) shows that the best

60

might thus wonder instead, if it is possible to find a sufficient condition in order
to exclude the existence of higher scoring joins. For example, a fair speculation
would be:

Q2 Consider a node’s best scoring parent configuration pk with k parents and
let p̃k denote its score value (k = 1, . . . , n). If the best scoring single parent
configuration p1 has a higher score value than the best scoring two-parent
configuration p2 (i.e. p̃1 > p̃2), will p̃1 be greater than the score p̃k of any
configuration pk that is more complex, i.e.

p̃1 > p̃2 ⇒ ∀ k ∈ {3, . . . , n} : p̃1 > p̃k ? (4.25)

Such property would be very valuable since it could be used to shorten the net-
work learning process: Evaluating all one- and two-parent configurations and
finding p̃1 > p̃2 would render the evaluation of all other configurations (with
more parents) superfluous, since their score could not out-value p̃1. Unfortu-
nately, it turns out that equation (4.25) does not hold generally:

A2 No, there exist counter examples, which disprove equation (4.25). One
such example is shown in Fig 4.2 where we find p̃1 > p̃2 but p̃1 < p̃3.
However, scores of activity level series with non-overlapping activity will
always out-value the score of their join (Section 4.1).

This answer is clear about the generality of equation (4.25), but it does not
give any insights into how common its violation actually is. A direct follow-up
question might thus be:

Q3 Is the counter example used to disprove equation (4.25) a common, prac-
tical situation or rather an especially constructed set-up, which is very
unlikely to be relevant in applications?

This is a good question, but for which no definite answer can be given. The
reason for this is that the characteristics of the data need to be clearly speci-
fied, as the answer clearly depends on them. However, a brute-force approach,
considering all possible spike trains, yields the following quantitative answer:

A3 Considering all possible combinations of spikes that can occur on 4 sepa-
rate spike trains of length 7, we find that in about 0.056% of them equa-
tion (4.25) is violated.2 The low relative frequency of these cases might

scoring configuration for each node has one parent only. Overlapping activity is thus not a
sufficient condition in order to render a join higher scoring than individual channels.

2The total number of spike trains considered here is (27)4 = 268, 435, 456 out of which
150, 635 violate equation (4.25) for SSS parameters d = 3−1 and ∆t = 1. The enormous
growth of spike trains to consider prevents evaluations for longer data or more channels.

61

m
ax

(1
,3

)
m

ax
(2

,3
)

m
ax

(1
,2

,3
)

1

0

m
ax

(1
,2

)

3

ac
tiv

ity
 /

ch
an

ne
l

2

jo
in

ed
 a

ct
ivi

ty

5 6 7 8

m
ax

(1
,2

)

1 2 3 4
time-bin

ch
ild

9

1

0

1 C 1
4

= 0.25

1
3

= 0.3̄

1

0

1

0

1

0

1

0

1

0

1

0

2 C

3 C

1
C

2

1
C

3

2
C

3

1

C2

3

parent configurations score values

2
5

= 0.4

5
12

= 0.416̄

6
17
≈ 0.353

2
5

= 0.4

3
7
≈ 0.429

p̃1 = 0.416̄

p̃2 = 0.4

p̃3 ≈ 0.429

top scores p̃k

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

max

max

max

Figure 4.2: Example spike trains to show that single parents can yield a better
score value than two joined parents, but a worse score than three parents. Spike
trains and activity level series on the left; parent configurations and SSS values
the right hand side (d = 3−1, ∆t = 1). Best score of configurations with k par-
ents denoted as p̃k. All two parent configurations are out-valued by best single
parent configuration, which is outperformed by best three parent configuration
(i.e. p̃2 < p̃1 < p̃3).

62

indicate a rather rare phenomenom; however, if more channels are consid-
ered, violations become more likely.

Many more questions could be considered, but most of them can only be an-
swered with respect to a specific data-set. Thus, in order to gain further general
insights to the SSS, the next section is concerned with another aspect of the
score: its sufficient statistics. As these determine which information in the data
gets used by the score, they are central to its understanding.

4.4 Sufficient Statistics of the SSS

Likewise to the BD score, the sufficient statistics of the SSS are counts of state
combinations; but the statistics of both scores differ: For the BD score state
combinations are counted within a time-layer (Sections 2.2.2 and 2.2.6), whereas
those of the SSS are effectively determined across multiple time-layers. We shall
look at the SSS’s statistics in detail next and use them in order to re-formulate
the scoring function in terms of the counts later.

For a formal description of the SSS’s sufficient statistics consider n-channel
spike trains s = (sk,t)

k=1,...,n
t=1,...,T of length T and the corresponding activity level

series a = (ak,t)
k=1,...,n
t=1,...,T . From the calculation of the activity level series [equa-

tion (3.1)] follows that for a decay constant d there exist r := dd−1e+1 different
values of activity level. Let v1, . . . , vr denote these values. Note that joined
activity level series take the same values.3 As before, ∆t denotes the shift
constant. We then find:

The SSS’s statistics are the counts of how often parent nodes took
each value of activity level, once while a spike of the child followed,
and once while the child did not spike. More formal, let Mijk denote
the number of times where the we find the joined activity level a(pai),t

of node i’s parents pai to be vj , while later, at time t+∆t, the child i

is in state k, i.e.:

Mijk = #
{
t = 1, . . . , T −∆t

∣∣ a(pai),t = vj , si,t+∆t = k
}

. (4.26)

The state of the child can either be spiking (k = 1) or non-spiking
(k = 0), such that for each node i we get r · 2 counts: Mij1 and Mij0

(j = 1, . . . , r). In total, the sufficient statistics of the SSS consist of
n · r · 2 different counts.

3As before, it is assumed that the join operation max is used. Modifications of the score
might use another join operation (e.g. mean or product), which can render more than d + 1
different values of activity level possible. In such cases, r denotes the number of all possible
values v1, . . . , vr of activity level that could occur.

63

The SSS is defined as a ratio of sums over time (Def. 3.3), where the activity
level series and spike trains are used. It is also possible to express the score
in terms of its sufficient statistics: Given the statistics for node i, Mi∗∗, an
equivalent formulation of the score is:

SSS (Mi∗∗) =

∑r
j=1 Mij1∑r

j=1 Mij0 + Mij1
(4.27)

if
∑r

j=1 Mij0 + Mij1 6= 0, and 0 otherwise. In contrast to the original formula-
tion of the score [equation (3.3)], we find the sums being calculated over values
of activity level rather than time. Sums over time correspond to the practical
implementation of the score, whereas the representation using counts benefits
interpretation. The sufficient statistics can also be used for the following closed
expression for the score of a full network; given the sufficient statistics for all
nodes, M∗∗∗, we find:

SSS (M∗∗∗) =
n∏

i=1

∑r
j=1 Mij1

max
{∑r

j=1 Mij0 + Mij1, min{vk > 0 | k = 1, . . . , r}
} .

(4.28)
Note that the maximum and minimum in the denominator are of pure techni-
cal nature in order to prevent a division by zero; this eliminates the need for
discussing special cases where a ratio is not well defined.

This ends the theoretical investigation of the SSS as it has been introduced;
the next section considers generalisations of the score. The more abstract pre-
sentation of the SSS is intended to give an additional perspective aiding the
score’s interpretation. Building upon this, possible modifications of the SSS are
presented and briefly compared to each other.

4.5 General Form of the Snap Shot Score

Spike trains are time-series in which each data point corresponds to a time-
interval (e.g. 1 msec). The sums in the formula of the SSS are taken over these
time-bins by which time is treated as a discrete entity. Mathematically, time
can also be considered to be continuous, such that spike-times can be specified
more precisely than in a spike train. For the remainder of this section time will
be treated continously in order to formulate ideas conveniently. Technological
limitations do not allow real continuous measurements, such that spike trains
will always be defined over discrete time. However, all ideas expressed below
can be translated to this case.

64

In order to formulate the SSS in continuous time let s(t) denote the spike
function of a neuron. I.e. s(·) is a function that takes the value 1 if a spike
occurred at time t; and 0 otherwise. Accordingly, the activity level function a(t)
maps any point in time to the associated activity level. (Details on a(t) are
discussed later.) With these two functions (instead of time-series) the SSS can
be written as

SSS (a, s;∆t) =

∫ T−∆t

0
a(t) · s(t + ∆t) dt∫ T−∆t

0
a(t) dt

(4.29)

if
∫ T−∆t

0
a(t) dt 6= 0, and 0 otherwise. (It is assumed that s and a are well

defined over the time-period [0, T].) This reformulation of the SSS in continuous
time does not provide any insights itself since it is heavily based on the activity
level function a(·), which is the actual key to the SSS. The following sections
therefore discuss how activity levels can be calculated and joined in continuous
time.

4.5.1 Alternative Definitions of the Activity Level

The activity level can basically be understood as a low-pass filtered version of
the spike function; i.e. abrupt and short-lived spike-events are converted to
a less transient form. Such is generally done by any method for firing rate
estimation from spike trains (e.g. [Gabbianti and Koch, 1998, Nawrot et al.,
1999, Gerstner and Kistler, 2002, McNames, 2005]). Indeed, firing rates can
be used as activity levels. Out of these, a particular methodological type will
be discussed: filter methods [Kalman, 1960, Jazwinski, 1970, Tanizaki, 1996,
Roweis and Ghahramani, 1999]. Central to these methods is a so called kernel-
or window-function k(·), which is used to weight events in time differently,
depending on when they occur. With a kernel-function k : R→ R≥0 the activity
level a(t) at time t can be expressed by the following linear filter [Dayan and
Abbott, 2005, p.13]:

a(t) =
∫ +∞

−∞
s(t− τ)k(τ) dτ . (4.30)

If and to which extent a spike contributes to the activity level depends on the
kernel-function k: The weight of any spike depends on its occurrence relative
to the time t for which the activity level is calculated. In order to see this,
interpret the argument τ of the kernel as a time relative to time-point t where
τ = 0 stands for the present; positive and negative values of τ represent the
past and the future, respectively. The larger the absolute value of τ , the more
distant it is from the present. A spike that occurs at time t − τ is weighted
by the value of the kernel-function k(τ), which is generally different for spikes
occurring exactly at time t (τ = 0), in the past (τ > 0), or in the future (τ < 0).

65

All times to which a kernel k assigns non-zero values make up its support :4

supp(k) = {x ∈ R | k(x) > 0} . (4.31)

The support is helpful to characterise a kernel, which is said to be causal, if it
does not use information gained in the future [Dayan and Abbott, 2005, p.14].
For such causal kernel the activity-level is determined by past and present spikes
only; future spikes do not have any weight, i.e.

supp(k) ∩ R<0 = ∅ . (4.32)

In order to calculate activity levels a causal kernel should be preferred in order
to avoid any influence of spikes that did not occur so far. If this was the case,
a non-causal kernel would render the model underlying the SSS non-causal,
because neurons would know their future synaptic inputs; but this is biologically
unreasonable. The following example, in which two causal and one non-causal
kernel are presented, illustrates how the activity level differs depending on the
kernel.

Example 7 (Causal and non-causal kernels) Three different kernel func-
tions are defined below and visualised in figure 4.3a. The first one is the causal
kernel

ksteady decay(x) =

max
{
0, 2

d −
2x
d2

}
, x > 0,

0, otherwise,
(d > 0) (4.33)

with support supp(ksteady decay) = (0, d). This kernel can be understood as the
time-continuous version of the activity-level series defined by equation (3.1).
The second causal kernel to consider is the so called α-function [Dayan and
Abbott, 2005, p.14],

kalpha(x) = max
{
0, α2x exp(−αx)

}
(α > 0) , (4.34)

for which any point in the past has (tiny but) positive value, since supp(kalpha) =
R>0. Present and future points in time are nil-weighted. Finally, the Gaussian
kernel

kGaussian(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(µ ∈ R, σ2 > 0) (4.35)

4Note that this definition of the support does not satisfy a strict topological [Narasimhan
and Nievergelt, 2001, p.xiv] nor measure theoretic definition [Cohn, 1980, p.199]. However,
this imprecision does not have an effect in practice where equation (4.30) reduces to a discrete
sum (over time-bins).

66

180

0.2

6 1410−2 16

0.4

1.0

2 128

0.6

0.8

4

0.4

0.3

0.2

0.1

2−4 40 1086−2

kGaussian

ksteady decay

kalpha

kGaussian

ksteady decay

kalpha

relative time τ time t

k
(τ

)

ac
ti

vi
ty

le
ve

la
(t

)

a b

Figure 4.3: Different kernel functions (left) and resulting activity levels from
a spike train (right). a Three kernel functions (defined in example 7) plotted
over relative time τ (parameters d = 2; α = 0.75; and µ = 0, σ = 1). Positive
values on time axis correspond to the past (the longer ago the larger the value);
zero stands for the present; and negative values represent the future. The non-
causal Gaussian kernel kGaussian is positive for any argument, while causal
kernels ksteady decay and kalpha are zero for all future times. b Activity levels
resulting from application of kernel functions shown in (a) to spike train (with
three spikes at time 1, 5, and 6; marked by arrows). The activity level curves
differ in magnitude and time, which reflect each kernel’s specific integration of
spikes. Activity level calculated with non-causal Gaussian kernel peaks earlier
than that of the causal kernels, because these do not assign positive weight to
future spikes (a).

is non-causal. This is because any point in time is assigned positive value (al-
though infinitesimally small for very large or small x): supp(kGaussian) = R.
How these three kernel functions differ when applying them to calculate the ac-
tivity level according to expression (4.30) can be seen in figure 4.3b. The activity
level of both causal kernels lags that of the Gaussian one because they do not
consider future spikes.

Further kernel functions can be found in the literature (e.g. [Nawrot et al.,
1999, Gabbianti and Koch, 1998]) but are not discussed here. Instead, different
operations to join the activity level of multiple units are presented.

67

4.5.2 Alternative Definitions of Joined Activity

Once a suitable kernel to calculate the activity level has been chosen, configura-
tions comprising only a single parent can be scored according to equation (4.29);
however, in situations where a node has multiple parents their activity levels
must be joined beforehand. A small selection of functions that are suitable
for this purpose are suggested next. Therefore, let ai(t) (i = 1, . . . ,m) denote
m activity level functions that are to be joined. Their join a(1,...,m)(t) could for
instance be calculated using one of the following operations:

a(1,...,m)(t) =



min
i=1,...,m

ai(t) minimum

max
i=1,...,m

ai(t) maximum

1
m

m∑
i=1

ai(t) arithmetic mean

m∏
i=1

ai(t) multiplicative

(4.36)

Figure 4.4a-e shows an example, which illustrates how joins of two channels differ
when applying the four techniques above. Additionally, if activity levels are
normalised ai(t) ∈ [0, 1], they can also be joined using the following expressions:

a(1,...,m)(t) =


max

{
0, 1−m +

∑
i=1,...,m

a
(i)
t

}
piecewise linear

exp

[
−
{∑

i

(
− ln a

(i)
t

)λ
} 1

λ

]
climactic5 (λ ≥ 1)

(4.37)
To see how these more complex operations differ in effect to other proposed

ones consider figure 4.4fg. Further, any m-dimensional cumulative probability
distribution function can be used in order to join multiple activity levels to one.

The examples above illustrate that countless possibilities for joining activity
levels exist. In order to decide on one particular method, a biologically reason-
able one might be chosen: Taking the perspective of the child neuron for which
activity levels of parents are joined, the join reflects how synaptic inputs are
integrated by the child. Models of synaptic integration (e.g. [Koch et al., 2003,
Gerstner and Kistler, 2002, pp.51]) could be used to derive a corresponding
join-function, but it needs to be questioned if this effort could pay off: Given
the generally high density of neurons in neural tissue [Braitenberg and Schüz,

5Note that for λ = 1 the climactic term equals the multiplicative one. For λ → ∞ the
climactic term converges to that using the minimum.

68

0.6

1.0

0.8

0.0

0 15

0.4

10 20

0.2

5 200 155 10 10 2050 15

1050 2015 150 5 2010

150 5 2010 10 200 155

0.6

1.0

0.8

0.0

0 15

0.4

10 20

0.2

5

0.6

1.0

0.8

0.0

0 15

0.4

10 20

0.2

5

b c

d e

f g

a

a

a

time

ac
tiv

ity
 le

ve
l

minimum maximum

arithmetic mean multiplicative

piecewise linear climactic

Figure 4.4: Continuous valued activity levels (left) joined with different oper-
ations (middle, right). a Two activity level functions (solid and dashed line)
with partial overlap of activity. Identical plot shown in each row for compari-
son: Activity levels were joined using operations in equations (4.36) and (4.37).
b Minimum: Both joined channels must show activity in order for the join to
be non-zero. c Maximum: Activity on at least one of the joined channels is
sufficient to evoke activity in the join. d Arithmetic mean: The joined activ-
ity is the average of that on input channels. e Multiplicative: Similar to the
minimum operation (a), the join only shows activity if both joined channels are
active. f Piecewise linear: Activity on both channels must exceed an implicit
threshold before their join becomes active. g Climactic (λ = 2): Resulting join
shares characteristics of both the minimum function (b) and the multiplicative
joining of channels (e).

69

1998, chapter 4] and the comparatively coarse electrophysiological sampling of
units, it is unlikely that the majority of data-channels is indeed collected from
directly connected neurons. Therefore, the data might not match physiological
assumptions on cell level and a corresponding join-function would be inade-
quate. Simple, pragmatic ideas can thus provide equally good or even better
results, because they can be chosen for computational efficiency to benefit net-
work inference (see appendices D and E). Additionally, the joining method is a
good target in order implement and adjust Occam’s razor (Section 1.4.2). This
can be seen when comparing the effect different join operations (Fig. 4.4): Using
the maximum of activity levels results in a high activity whenever at least one
of the joined channels peaks (Fig. 4.4c). By this, sparse networks are strongly
favoured, since the ratio in equation (4.29) is less likely to be large. This is be-
cause the denominator is large if parent activity is high; the numerator can only
reach similar high values if all high parent activity is followed by child spikes.
Hence, the more often the parents’ activity is high, the more matching child
spikes are needed for a good score. Considering a join operation that is more
stringent about inputs leading to high joined activity shows a different picture.
The multiplicative combination of activity levels, for example, results in zero
activity even if only one of the inputs is zero (Fig. 4.4e). Compared to the maxi-
mum operation, fewer matching child spikes are needed for a high score, because
parent activity peaks less frequently. Even further, activity of the join becomes
less and less likely the more parents are joined; more complex configurations can
thus be favoured over simpler ones, but which is not desirable. In conclusion,
the impact of the join operation on sparseness of learned networks limits its
adjustment according to biologically reasonable paradigms and further studies
are needed to fully clarify these bounds; however, corresponding investigations
are not within the scope of this thesis.

With the end of this chapter, the characterisation of the SSS is closed. As in-
dicated in multiple foregoing sections, the understanding of the score is by no
means complete; however, at this point the reader should be provided with suf-
ficient information in order to address open questions of interest independently.
While this chapter discussed the SSS itself, the following one relates it to the
BD scores in order to work out differences and their implications for the analysis
of spike train data.

70

Chapter 5

On the Relationship of the

SSS to the BD Scores

In the foregoing chapters techniques for networks inference have been intro-
duced; in particular, two types of scores were presented: the BD scores (Sec-
tion 2.2) and the SSS (Section 3.1). In this chapter, a comparison of both
techniques shows how they differ in concept. Interpretation of the scores them-
selves, as well as the meaning of learned networks will be discussed. Also,
addressed are characteristics of spike train data and how these can complicate
network inference with the BD scores. Suitable approaches to these problems
are presented and related to the SSS.

5.1 A Brief View on the BD Scores and the SSS

The BD Scores are based on a set of mathematically convenient assumptions
from which the scores can be derived elegantly [Cooper and Herskovits, 1992,
Heckerman et al., 1995]. The fully Bayesian approach pays off by a wide applica-
bility of these scores, which have undergone thorough theoretical investigations
(e.g. [Cooper and Herskovits, 1992, Heckerman et al., 1995, Chickering, 1996,
Heckerman, 1997, Yu, 2005]). These studies proved important features, for in-
stance on learning complexity [Chickering, 1996] and consistency1 [Heckerman
et al., 1995], and have rendered the scores well studied tools for network infer-
ence. As outlined earlier, in section 2.2.6, BD scores can be used to infer DBNs,
which are associated with a stochastic process [equation (1.21)] that gives pre-
cise information about the time-lag at which parents influence the child. In

1Consistency is a theoretical property which, with respect to the BDe score, means: If the
dependencies in the data are generated by a BN and infinite data are available, the highest
scoring structure is the generating one [Yu, 2005, p.56].

71

...
...

...

X(1)
t

X(2)
t

X(3)
tX(3)

t−1

X(2)
t−1

X(1)
t−1X(1)

t−2

X(2)
t−2

X(3)
t−2

X(n)
tX(n)

t−1X(n)
t−2

...

X(1)

X(2)

X(3)

X(n)

collapse in time

a b

X(1)
t+1X(1)

t̄∈{(t+1)−l | l∈W}

X(2)
t+1X(2)

t̄∈{(t+1)−l | l∈W}

X(3)
t+1X(3)

t̄∈{(t+1)−l | l∈W}

...
...

c

equivalent

X(n)
t̄∈{(t+1)−l | l∈W} X(n)

t+1

Figure 5.1: Schematic illustration of DBNs and networks learnt using the SSS.
a Network illustrates a 2nd order DBN over n variables. b Network in (a)
collapsed in time. Information about the temporal offset of parents to the child
is lost in the collapsed network. Links between variables correspond to time-
lagged relations, but which are only known to be of lag 1, 2, or both. c Network
that visualises relations as revealed by the SSS. Each blank node represents
multiple instances in time of a single variable. This representation is equivalent
to the one shown in (b), as each network can be unambiguously transformed
into the other.

other words, the parent set pa(X(i)) of each node i [equation (1.19)] only con-
tains nodes with the correct time-offset to the child, but no others. Thus, in the
DBN, only nodes corresponding to the precise time-lag are linked (Fig. 5.1a).
As discussed next, this is different for the SSS.

In contrast to the BD scores, the SSS has been specifically designed for spike
train data, and it also differs with respect to other aspects. The SSS has not
been derived in a Bayesian manner, and it is constructed in order to detect
a particular type of coordinated activity in a computationally highly efficient
manner: excitatory relationships. This is achieved by its key component: the
calculation of the activity level series. Spike trains are transformed by an en-
richment of information about recent spiking activity. This more informative
time-series eliminates the need for numerous point-to-point comparisons, which
commonly accompany the detection of correlations over different time-lags, such
that efficiency is largely increased. However, this advantage comes with a loss
of precision: Although the SSS can reveal correlation over multiple time-lags
(corresponding to the lag-window) resulting networks give no information about
the precise lag of revealed relations. The SSS does not itemise the different lags
of each variable, but treats them as one combined entity (Fig. 5.1c). With
respect to the process [equation (3.8)] that corresponds to a learned network,

72

this means that parent-sets pa(X(i)) either comprise all preceding instances
X

(k)
t̄∈{(t+1)−l | l∈W} of a variable k or none of them. Different to DBNs, the

time-lags are not specified more precisely than that, such that networks learned
with the SSS can be understood as a DBN that has been collapsed in time
(Fig. 5.1b).2

Despite their differences, both the BD scores and the SSS face the same
fundamental obstacle: In general, spike train data is insufficient to reconstruct
structural connectivity between units. This is because the neurons’ activity is
sampled with relatively low spatial density. But even if data could be collected
from all neurons within a system or a part of it, their correlated activity (func-
tional connectivity) does not convey enough information for an unambiguous
decision on their causal interactions, due to observational equivalence (Sec-
tion 1.4.2). Learning networks with either type of score is therefore not an
attempt to suggest structural connectivity, but visualising functional relation-
ships is thought to aid data analysis. As discussed in detail later (Section 5.2),
interpretation of these networks differs for both scores; this is because their un-
derlying models differ. The consequence is that links revealed by the BD scores
represent probabilistic coupling between units, whereas those learned with the
SSS represent cause-effect relationships. More precisely, they can be understood
according to the integrate and fire paradigm (Section A.1.1) with links repre-
senting excitatory effects (effective connectivity) [Friston, 1994, Sporns et al.,
2004].

DBNs can generally code information more precisely than those networks learned
with the SSS; but in return the SSS is computationally very efficient, which
makes it applicable to high dimensional data-sets, as required for practical ap-
plication. For such analyses the SSS can be used in a Bayesian framework, as
briefly outlined in the next section.

5.1.1 Bayes’ Theorem and the SSS

The BD score of a network is proportional to the posterior probability of that
network for some given data. The combination of prior information and likeli-
hood (but not the evidence)3 according to Bayes’ theorem is comprised in the
formula of the score. In contrast, this is not the case for the SSS, which does
not constitute a posterior probability of the network.4 Instead, the score should

2The analogy between networks learned with the SSS and time-collapsed DBNs assumes
that suitable parameters have been chosen, such that the SSS’s lag-window matches the lags
considered in the DBN.

3See footnote 1 on page 28.
4It is possible that the SSS can be found to be a posterior probability for a particular set

of assumptions. (I.e. different neuron models, which are assigned certain priors, could result

73

be understood as a likelihood measure, i.e. the probability that the given data
could have been generated by the network to assess. This likelihood can then be
used to calculate a posterior probability according to Bayes’ theorem. There-
fore, as outlined in section 1.4.1, each network structure to assess has to be
assigned a prior probability, but which is not discussed here as it is specific to
the problem under study. However, note the special case where the SSS is used
for ranking networks without explicitely defining priors. Here, the preference of
a network is purely determined by its likelihood, which means that an implicit
uniform prior over all analysed networks is chosen. This is an appropriate choice
if no prior information is available.

The foregoing considerations pointed out fundamental differences between BD
scores and the SSS, especially concerning the temporal precision of revealed
networks whose links carry different time-lag information for both scores. Ad-
ditionally, network links differ in meaning, as the next section shows.

5.2 Translation of Data to Networks —

a Question of Semantics

Networks can be found in a variety of domains [Bornholdt and Schuster, 2003,
Sporns et al., 2004, Borgatti et al., 2009, Lazer et al., 2009, Hidalgo et al., 2009,
Bullmore and Sporns, 2009] and the same structure possibly has a different
meaning in each of these. This is because networks are used to encode different
kinds of information: Train- or tube-networks, for example, generally represent
the existence of direct physical connections between different stations. But con-
nections can also be more abstract and encode references only, like for networks
representing web-links from one web-site to another. Depending on the desired
semantics of a network, different information is needed for its construction. Vice
versa, the kind of information that is available determines which semantics a
derived network can possibly have. In this section it will be discussed how the
BD scores and the SSS use given data, i.e. which information is extracted for
inference. This will show that both scores interpret the data differently, such
that resulting networks do not share the same semantics.

in the score’s formula when applying Bayes’ theorem.) However, no attempt is made here in
order to present the SSS as the outcome of such Bayesian concept, which is subject to future
work.

74

5.2.1 Data Interpretation by BD Scores

As mentioned during the introduction of the BD scores (Section 2.2), these can
handle any discrete data (with a finite number of states). No particular data-
source was considered for their design and they are based on rather general
assumptions; one of them is that states of variables do not possess any semantics.
The ordering of the ri states variable i can take is thus not important and
any permutation of these results in the same score value. Therefore, the score
cannot distinguish two complementary spike trains: If in one spike train all
spiking time-bins are non-spiking ones in the other and vice versa, they can be
exchanged without affecting the score value. In other words, the score cannot
tell apart a spike train from a extremely active unit from one with very sparse
firing, for example. For practical application this ambiguity is unlikely to have
an effect when time-bins with high temporal resolution (1 msec) are chosen: If
few or even single units are represented per channel, spike-events will be rare
at common spike rates; channels that are active more than half of the time
will probably not exist. Hence, it is unlikely that the data contain two time-
series, which are complementary to each other. But the before mentioned rare
occurrence of spikes can cause a different kind of problem, which is considered
next.

The BD score assigns high score values to networks in which parents are
good predictors of the child; more precisely, if the joint parent state and that
of the child are reliably coupled. In a good network, particular firing patterns
of parent nodes regularly evoke a certain response of their child. While there
is nothing wrong with this criterion, practical network inference can be highly
problematic when firing rates are low. In these cases spike events are clearly
outnumbered by time-bins that code non-spiking. This enormous imbalance
impacts on the assignment of scores: Structures are favoured for which parent-
and child-states are well correlated; but when most time-bins code non-spiking,
a reliable coupling between the parents and their child means that specifically
their non-active states match well. Comparatively, occasional spikes are seen
as minor disagreements, which have far less weight on the score value than the
large number of matching non-spikes.5 While the highest score value is assigned
to the structure where both non-spiking and spiking activity of the parents and
the child match, it is extremely difficult to identify that structure. The reason

5This effect is due to the Γ-function’s increasing growth for larger numbers. This can
be easily seen by its relationship to the factorial [equation (2.13)] for which Stirling’s for-
mula [Feller, 1950, pp.52] holds for large arguments x:

x! ≈
√

2πxx+ 1
2 e−x . (5.1)

As growth of x! increases in x, parent-child-state combinations with high counts have higher
weight for the score value than those for which counts are small.

75

for this is the similarity of scores for structures for which non-spiking bins match
well. The score’s undifferentiated assignment is, however, correct, which can be
best understood in an extreme situation: Consider the mth order Markov model

P

(
X

(i)
t

∣∣∣ (X(1)
t̄ , . . . , X

(n)
t̄

)
t̄∈{t−1,...,t−m}

)
= P

(
X

(i)
t

∣∣∣ pa(X(i))
)

(5.2)

for which the most appropriate parent set pa(X(i)) is to be determined. If X(i)

is in fact a constant, any combination of parents predicts its state equally well!
Their scores should thus be similar or even equal. Neural data with rare spike
events resemble a similar situation: Variables appear to be nearly constant,
by which it becomes likely that several equally high scoring networks exist.
When using search heuristics to recover these networks, their undifferentiated
scores constitute different local maxima or even a plateau of solutions; this
can lead to unstable results, such that connectivity of inferred networks differs
substantially. This is problematic, since interpretation of highly diverse results
is generally complicated, as model averaging techniques (Section B.3.1) might
fail to identify any consensus between them. Analysing spike train data with
the BD scores can thus be problematic; however, methods that can help to
circumvent problems exist and will be discussed together with their drawbacks,
later.

5.2.2 Data Interpretation by the SSS

The SSS has been designed with the aim to reveal excitatory relationships be-
tween neural entities. The score is particularly laid out for one kind of data —
spike trains. With this specific adaptation it is possible to respect the semantics
of these data: Unlike the BD scores, absolute variable states matter to the SSS,
which treats spiking and non-spiking events very differently. Indeed, since the
SSS is designed to detect time-lagged correlation of spiking activity, it is not
concerned with periods without any activity; the score of parent configurations
is only determined by the behaviour of the child after its parents have been
active. Whether the child is silent or spiking at other times does not affect the
score value. Networks learned with the SSS therefore do not represent close cou-
pling of linked units, but rather uni-directional relations: A link indicates that
parent spikes reliably trigger spike responses of the child. Revealed connections
do not imply anything about the child’s activity at times its parents are silent
(unlike the BD scores).

The SSS’s emphasis on periods where putative causal units are active is mo-
tivated by the relatively low spatial density and coverage at which spike train
data can be collected nowadays. In detail, neurons for which spike trains are

76

recorded may show correlated activity with other recorded units; however, neu-
rons for which no data is collected can also trigger firing in observed units. With
such spike responses in mind, the SSS has been constructed: Child responses to
hidden units do not affect the score value; the score only reflects the degree to
which child spikes follow activity of observable parents. The SSS can thus be
used to find plausible causal relations between observed units; these explana-
tions of the data do not exclude the existence of external, hidden factors. The
BD scores differ with respect to this aspect: While the SSS ignores uncoordi-
nated spikes of the child, the BD scores weight activity of the child regardless
whether its parents are active or not. Any lack of synchronisation of joint par-
ent states and that of the child are interpreted as an indication for stochastic
independence. Due to uncoordinated spikes, the child’s activity might not be
fully explainable by observed units, such that links corresponding to such partial
correlation might not be learned with the BD scores.

Previous sections have explained how the BD scores and the SSS differ, as well
as how learned networks are to be understood. It has also been explained why
the application of BD scores to spike trains can be problematic, and ways to
address these problems will be outlined shortly. Before that, however, it should
be briefly considered whether or not it is generally useful to infer DBNs instead
of temporally less precise networks corresponding to the SSS. This question is
subject to the next section.

5.3 Side-Effects of High Precision

In comparison to networks that can be learned with the SSS, DBNs are generally
more precise about the lags at which units are correlated; however, the higher
precision comes at an over-proportionally high computational cost associated
with learning these networks. This is due to the greatly increased number of
potential models to evaluate (Section B.2). Additionally, in order to learn such
a more complex model, more information is needed. In the following, this fact
is illustrated for spike train data.

Neural responses to repeated stimulation can vary widely even if the stimulus
itself is un-varied [Buonomano and Maass, 2009]; the relative timing of spikes
between different neurons might jitter, for example (Fig. 5.2a). A DBN that
can represent the different time offsets due to jittering is shown in figure 5.2b:
Variables A and B are both represented for 4 different relative times in order
to capture dependencies within the jitter-range. Given that the order of the
DBN is high enough to accommodate jittering relations, learning correspond-
ing links with BD scores can be problematic, as the score treats all variables

77

At At−1 At−2 At−3

Bt−3Bt−2Bt−1Bt

a

b

lag = 1 lag = 2 lag = 3

A

B

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

1

0

lag = 1 lag = 2 lag = 3

︸ ︷︷ ︸

A

B

At

Bt

At̄∈{t−1,t−2,t−3}

Bt̄∈{t−1,t−2,t−3}

c

d

Figure 5.2: Correlated spiking of two units jittering in time and corresponding
models. a Spike trains of two units A and B. Firing of neuron A triggers re-
sponses of B with different time-lags (lag = 1, 2, 3). b Graphical 3rd order model
that can represent the jittering responses of unit B to unit A. c Application
of SSS to spike trains shown in (a): activity levels superimposed and snapshots
triggered by unit B highlighted (d = 3−1, ∆t = 1). Jittering responses of unit B
to unit A are interpreted jointly as indications for their relationship. d Graph-
ical model that visualises relation as revealed by the SSS. Different time-lags
between variables are represented collectively.

as separate entities and does not recognise multiple instances of the same vari-
able at different times. Correlated firing that jitters in time is thus recognised
as correlation between different variables that only appears sporadically. The
coupling between the triggering and responding variables may thus appear too
unreliable for a score value that is good enough to accept the corresponding link.
Ultimately, it would be desirable, if the jittering relation was reflected in the
model by linking all instances of variables that correspond to the jitter-range
(Fig. 5.2b). This, however, requires the parent nodes and the child to show even
stronger coupling: Joint-parent states and responses of the child would have to
be closely locked in oder to counteract the BD scores’ inherent tendency towards
sparse networks. If neural interactions in the data are weak, jittering can cause
them not to be inferred with these scores.

The same situation of jittering responses is now considered for the SSS,
which pools variables with different time-lags (Fig. 5.1c). As mentioned earlier
(Section 5.1), pooling causes a loss of information about exact time-lags, but
with the advantage that indications for correlation are gathered together from
all pooled units. Dependencies that are spread over different time-lags manifest
in subtle evidence for each; these signs are combined when considering different
time-lags jointly (Fig. 5.2c). Weak relations jittering in time can thereby become

78

evident, such that they can be detected and represented in learned networks
(Fig. 5.2d). In such cases, the SSS’s inability to determine precise time-lags can
pay off by increased sensitivity.

Applying the BD scores to spike train data can be problematic, as outlined
in the foregoing sections. But as DBNs can generally yield precise information
about the lags at which units are correlated, it is worthwhile to elaborate on how
the mentioned problems can be addressed. The following section therefore gives
an overview of techniques that can facilitate the application of the BD scores
to spike train data.

5.4 Using BD Scores on Spike Train Data

The first application of a BD score for network inference from electrophysio-
logical data has been reported by Smith et al. [2006]. This pioneering study
demonstrated successful recovery of information flow networks in the song-bird
brain from which multi-unit activity has been collected and analysed with the
BDe score. Learned networks matched anatomical knowledge very well and
thereby confirmed the success of the approach. This work has shown that the
BD scores are suitable in order to reveal neural interactions — at the same time
it inspires how these scores could be used to analyse spike train data: Smith
et al. collected multi-unit voltage traces, which were smoothed with a root
mean square (RMS) method. The resulting data were then discretised (in 3
categories) such that the BDe score could be applied. In essence, smoothing
and discretisation were key in pre-processing the data. The same processing
steps can also be transferred to spike train data: The binary time-series need to
be converted to continuous data, like smoothed voltage traces, and can then be
re-discretised to different binary states or possibly more than two levels of activ-
ity. These steps can cure the problematic characteristics of spike train data: the
enormous imbalance in the number of spiking- to non-spiking bins and temporal
jitter. Smoothing techniques flatten abrupt and transient peaks in activity, by
rounding of transitions between different levels of activity. This filtering can
cause a spread of activity over more time-bins; the number of time-bins with
activity can thereby become more balanced to those without any activity. Ad-
ditionally, since transitions occur more slowly, minor differences in timing only
cause minor changes in activity, such that temporal jitter is weakened in effect.
The final (re-)discretisation step allows for additional fine-tuning: The number
and boundaries of discretisation levels can be used to further even out the oc-
currence of different levels of activity, for example. Together, these preparatory
steps can potentially transform spike train data suitably for the BD score; how-

79

ever, disadvantages come along, which are explained together with appropriate
methods next.

5.4.1 Continuousation of Spike Trains

A natural conversion of spike trains to continuous valued data is the calculation
of firing rates. A few of these methods are presented here, which, in general,
consider all spike events over a certain time-interval. Weighting and relating the
spikes to the length of the interval then yields a firing rate estimate.6 The binary
time-series, whose points reflect instantaneous activity, is thereby converted to
a time-series in which points are estimated firing rates.

One of the simplest firing rate estimation techniques is know as the instan-
taneous firing rate [Dayan and Abbott, 2005, p.164]. For any inter-spike inter-
val (ISI) of two directly succeeding spikes the firing rate during that period is
defined as the inverse of its length |ISI|:

rate(ISI) =
1
|ISI|

Hz, (5.3)

under the assumption that |ISI| > 0. This coarse operation already smoothes
the spike train significantly, which itself can be understood as coding only two
firing rates: 0 Hz and (bin size)−1 Hz. Other simple techniques to estimate
firing rates exist; for instance, activity can be measured by splitting the spike
train into equally sized sections and counting the number of spikes in each of
them. The spike-counts can then be normalised by the width of the sections
in order to yield firing rates (Fig. 5.3). Another possibility is to use a single
window for which spikes within are counted. Sliding the window along the spike
train yields a series of counts, which generally vary smoothly (Fig. 5.4). This
sliding-window approach is the simplest of countless kernel methods than can
also be used for firing rate estimation (e.g. [Gabbianti and Koch, 1998, Nawrot
et al., 1999, Gerstner and Kistler, 2002, McNames, 2005]). Altogether, the
presented examples indicate that firing rates can be estimated in a variety of
ways. Adequate continuous valued data can thus be generated from spike trains.
In order to be able to apply the BD scores, the next step is to suitably discretise
the data. Again, different methods like interval- or quantile-discretisation can
be used, but which are not presented here. (See Cios et al. [2007, Chapter 8],

6Shorter time-intervals facilitate a precise reflection of on- and off-set of spiking activity in
the firing rate; however, firing rates may be over- and under-estimated, respectively. Longer
intervals, on the other hand, yield better estimates of firing rates, but fail to precisely capture
time-points at which changes in dynamics occur. Estimating firing rates is thus generally
signified by a trade-off between preserving timing and quantifying dynamics. The inabil-
ity to account for both the time and amplitude of dynamics simultaneously corresponds to
Heisenberg’s Uncertainty Principle [Heisenberg, 1927, 1983].

80

4 0 2 0 4 2

2 2 0 0 0 2 0 0 1 3 2 0

0 0

0

3 0 2 1 4 1

2 1 0 0 1 1 0 1 2 2 1 0

1 0

100 0 0 0 0

a

b

c

d

spike
count

time-bin

Figure 5.3: Variations in spike-count curves resulting from different section-
width and time-offset. Spike trains (vertical bars) identical for all four parts of
the figure in which spike-counts are determined for sections of different widths
(a,c vs. b,d) and time-offset (a,b vs. c,d). Numbers in rectangles correspond to
associated spike-counts, which are plotted as a spike-count curve below. a Small
section-width and b large section-width with boundaries conveniently aligned to
spikes, such that bursting and silent periods are suitably reflected in the activity
profiles. Onsets of bursts are represented distinctively. c Small section-width
and d large section-width aligned differently than in (a) and (b): Although
the same spike train is used, differently aligned boundaries render spike-count
curves less expressive. In comparison to curves in (a) and (b), contrast between
bursting and silent phases is reduced. Additionally, burst onsets are represented
delayed.

81

sliding
direction

a

b

0

0

0

1

2

2

2

1

0

0

0

0

0

1

1

1

0

0

0

1

1

2

1

2

2

1

0

0

0

0

0

2 0 2 1 5 02

3 0 2 1 4 11 0

1 1 1 3 3 03

0 2 0 4 2 04

spike
count

window position

sliding
direction

Figure 5.4: Firing rate estimation using a sliding window approach. Spike-
counts resulting from successive window positions shown in rectangles below
spike train (vertical bars). Resulting spike-count curves shown for two different
window widths: a Small window width: Activity level changes reflect temporal
on- and offsets of spiking well, but show low contrast concerning the actual mag-
nitude of activity. b Large window width: High contrast in activity level, but
exact on- and off-set of bursts cannot be recognised by a spike-count threshold.

82

for example.) It is instead noted, that generally both the continuousation and
discretisation step inevitably involve a loss of information. This is obvious for a
discretisation, where commonly whole ranges of values are reduced to relatively
few categories, such that quantitative information is reduced. But transforming
the spike train to a firing rate is also lossy, which is explained in the following.
As indicated earlier, the spike train itself represents one of two firing rates, which
instantaneously adopt to changes in dynamics. But this firing rate fails to inform
about recent spikes, which might have occurred in a burst, for example. Multiple
time-bins must be combined to a firing rate that codes this information. This
means averaging over time by which information about the time-point of changes
in dynamics degrades. (See also footnote 6.) Both steps (continuousation and
discretisation) can thus lead to a loss of information and must be performed
carefully: According to the data processing inequality [Borst and Theunissen,
1999, Quiroga and Panzeri, 2009], degraded information cannot be recovered
at later stages. It is thus important to preserve as much valuable information
about neural interplay as possible, in order to improve chances for successful
network recovery.

As explained above, smoothing data can render inference of higher order
models fruitless when required information is removed from the data. Since the
SSS is based on smoothed spike trains, in form of the activity-level series, it must
be questioned whether it is affected by a loss of information or not. Smooth-
ing concepts discussed earlier and the activity level calculation differ, since the
latter preserves all spike-events with full temporal precision. (Additionally to
the precise onset of neural activity, the activity level’s slow decay informs about
how recently a spike occurred.7) The score also uses untransformed spike trains
to trigger the snapshots of the activity level series. Here, again, the full tem-
poral precision of spike trains is utilised. In conclusion, the intent behind using
smoothing methods differs for both types of scores: For the BD scores these
techniques may be required in order to match characteristics of the data to the
score. In contrast, smoothing is a central part of the SSS for which a particular
lossless low-pass filter is used, such that relations over different temporal lags
can be efficiently determined.

Approaches for inference of information flow networks from spike train data
need to take into account its special characteristics. Data transformations may
be necessary in order to facilitate the application of existing methods like the
BD scores. Alternatively, the SSS can be used, which utilises the semantics of

7Note that the activity level calculation is not a firing rate estimate. If it would be inter-
preted as such, firing rates could be underestimated: If spikes occur closely to each other, such
that activity from a spike is not fully decayed at the time another spike follows, the excessing
activity is ignored, such that the leading spike is not fully weighted.

83

the spike train and weights them accordingly. By clarifying these points, this
chapter has (retroactively) motivated the need for a score that is specifically
adopted to spike trains. The following chapter 6 now shows how the perfor-
mance of these or any other network inference technique can be assessed with
neural simulations.

84

Chapter 6

Assessing the SSS

The SSS has been introduced (Chapter 3) and shown to assign plausible score
values to networks in toy examples 5 and 6 — examples of low dimensionality
and very short data-sets. Such simplistic demonstrations can give a glimpse of
the score’s characteristics, but they do not illustrate its performance in practi-
cal situations. This requires a more realistic set-up dealing with complex data;
i.e. data with dozens of channels, a longer length of the data in the order of
minutes, and relations between data channels appearing to be rather stochastic
than deterministic. Increasing the dimension, length, and randomness of exam-
ples prevents their discussion in the previous manner where relations between
spike trains could be detected by eye and directly confirmed the score’s rating
of networks to be reasonable. Even a moderate increase in the number of data
channels results in an over-proportional growth in the number of potential net-
works (Section B.2), such that these could neither be discussed separately nor
even displayed appropriately all together. Therefore, a more general concept is
needed, which facilitates the assessment of the SSS in realistic situations. In this
chapter a suitable framework is presented, which combines neural simulations,
network learning, and the evaluation of learned networks. New methods will
be proposed in order to quantify relevant factors for successful network infer-
ence and to classify learned networks’ links according to their plausibility, which
facilitates an equitable performance assessment under partial observability con-
ditions. The concepts to be presented are not specific to SSS, but they also suit
application with alternative approaches to network inference.

85

6.1 A Performance Assessment-Framework

for Neural Network Inference Techniques

Before utilising novel analysis methods, their capabilities and limitations must
be understood in order to be able to review their results critically. New tech-
niques should thus be examined by both mathematical analysis and, if possible,
in simulation environments.

Exact mathematical studies are limited by the assumptions that enter the
reasoning process. Using few or fairly weak assumptions may not be sufficient
in order to derive strong statements about the method. Contrariwise, making
several or strong presumptions can yield very explicit statements, but whose
validity is limited to a special case (formed by the assumptions). Using such
restricted result for the analysis of biological data requires extra care in order to
assure that the assumed conditions are actually met; but whether or not these
are fulfilled may be unknown due to insufficient knowledge about the studied
system. For practical purposes it is thus important to know how a technique’s
results are affected if its presumptions are not accurately met: “Do conclusions
derived from the presumptions seem to hold in a slightly varied situation, too?”,
if not, “How do they differ?”, and so forth. A countless number of possibilities to
violate assumptions exists out of which those that are practically relevant must
be identified. This is where a simulation environment becomes useful in order
to generate data under precisely controlled conditions: The technique to assess
is applied to the artificial data and its results are compared to the expected
outcome. Here the expected results can be derived because the circumstances
under which the data are generated are known. Often, the next step is to vary
the parameters of the simulation systematically to investigate changes in results
of the method. This can reveal critical factors and their relative importance.
Hence, by studying a new method using both a mathematical and a heuris-
tic simulation approach one can get a comprehensive picture of the method’s
qualities. Finally, this characterisation of the technique can justify belief in its
results for real data.

The SSS has been mathematically investigated in chapter 4 where several
features of the score have been proven in an exact manner. Here, the SSS is
tested in a simulation framework: Model neurons are connected according to a
known network, which is then simulated in order to generate artificial spike train
data; the SSS is applied to these data to learn a network, which is compared
against the simulated network. This concept is motivated by the expectation
that a good method will reveal the simulated network or at least a similar
structure. In practice this concept involves 4 major steps (Fig. 6.1):

86

network
assessment

network
learner

neural
simulator

golden
network

spike
trains

top scoring
networks

Figure 6.1: Generic assessment framework (work-flow from left to right). A
golden network defines synaptic connections in a neuron model, which is simu-
lated in order to generate spike train data. The artificial data are used by the
network learner, which returns its results for the final assessment of the learned
networks.

1. Select a golden network. The golden network represents the structural
architecture of a neural network that will be simulated in the next step.
Nodes in the golden network represent the neural entities (e.g. single
neurons or populations of neurons) and links between nodes define causal
interactions between them (e.g. excitation or inhibition). The network
can either be constructed by hand or generated randomly.

2. Simulate the network. The golden network defines interactions between
its nodes, which are associated with one neural model each. Which kind of
model is used depends on what the neural entities are and on the desired
level of model precision (Section A.1). The dynamics of the golden network
are generated by simulating the neuron models, which yields artificial spike
train data for each node.

3. Learn networks. The method, e.g. the SSS together with an appropriate
learning algorithm (Appendix D), is applied to the simulated spike trains.
The outcome of the network learning procedure is a set of networks, which
represent the relations that were found in the data.

4. Assess learned networks. In the final step learned networks are re-
lated to the golden network in order to assess their quality. As will be
discussed later, in general, a link-by-link comparison between the golden
and a learned network is not sensible for assessing network quality. In-
stead the golden network is analysed first in order to determine links that
are theoretically reasonable to be inferred from the data; learned net-
works are then assessed by their degree of plausibility. Different measures
of how reasonable a learned network is yields a multi-dimensional vector
expressing the learning performance of the method.

Before details on the actual implementation of the framework are given it is
worthwhile to reflect on two general issues: First, how complicated is the task
to be achieved? And secondly, how good are the results? The answers to these

87

trivially sounding questions are the cornerstones of the assessment framework.
Obviously, without a proper measure for the quality of learned networks they
cannot be assessed. But it is similarly important to regard the difficulty of
obtaining the results. Both aspects determine the performance of a method,
which is the quality of results given the severity of the challenge. In the following,
the question of how to assess learned networks is addressed in section 6.3. The
next section discusses the first question and a measure to rate the network
learning task is proposed.

6.2 On the Degree of Learning-Difficulty

The assessment framework can be used to test the performance of a technique
over a wide range of parameters, those of the neural simulation, for example.
Learned networks might turn out to be satisfactory for some parameter com-
binations but not for others. If the neural simulation was realistic and at the
same time parameters of a real system under study were known, one could test
whether the technique delivers good networks in practical application or not.
Unfortunately, both conditions will not be met most of the time: Computa-
tional constraints can impede neural network simulations on a realistic scale
(Section A.1), and very few biological systems are known well enough in order
to correctly parameterise detailed models of them. On the other hand, in much
simplified models parameters cannot be related to the studied system; this is
the case for the neuron models that will be used in this thesis. In order to relate
simulation results to the biological system, an abstract measure to characterise
the data is proposed, which assesses the difficulty of network inference. It is
thereby possible to roughly estimate the expected performance of the SSS on
real spike trains.

Inference from data is a common task whose difficulty can vary within a wide
range. How complicated it is to draw conclusions from data depends on many
factors, such as the particular conclusion and the amount of information about
it in the data. Specific to the problem of network inference from spike trains
this means: Learning a good network mainly depends on the complexity of the
underlying system, the informativeness of the spike train data, and the budget of
computing time. Hence, network inference from a simple two-neuron simulation
poses a much easier problem than a large scale network simulation with realistic
observability and noise levels. But what exactly determines the severity of the
network learning task? How can the identified relevant factors be quantified?
And to what extend does the performance of network inference depend on these?
Two factors concerning these questions play a major role within the scope of
the assessment framework: the complexity of the simulated system and data

88

quality with respect to information about network connectivity. Subsequent
sections discuss these two aspects and measures are proposed, such that the
dependency of learning performance on relevant factors can be quantified.

6.2.1 Complexity of the Simulation

The complexity of the simulated neural system depends on its components: the
number of neurons, their connectivity, and the dynamics of each individual neu-
ron. Neurons seem to exhibit a rather limited behavioural repertoire compared
to the complex behaviour of higher vertebrates. Some models simplify neural
dynamics even further down to a few key aspects. For example, leaky integrate
and fire models can replicate certain observations of spiking neurons; however,
they are unable to describe sub-threshold dynamics for which conductance based
models are needed (Section A.1). The latter kind may thus show more com-
plex behaviour, which is important when connecting several neurons to neural
networks: The more complex the building blocks of the network are the more
complex its overall dynamics can be. This means that increased model com-
plexity can make interactions between elements appear to be more probabilistic
than with simplistic neuron models. Because it is generally harder to detect
probabilistic relations than deterministic ones, this of course affects network
inference. The type of neuron model used to simulate neural networks can thus
have an impact on network learning performance.

The brain is a good example of how network size influences system complex-
ity: A single neuron seems to be capable of few computational operations only,
but combining many such relatively simple units can yield a highly complex sys-
tem with a huge variety of abilities. However, sheer network size (i.e. number
of neurons and links between them) does not explain this arising complexity,
but the actual connectivity patterns must also be taken into account. Such pat-
terns, also called motifs, have been shown to be able to influence the dynamics
of a neural system [Sporns et al., 2000, Sporns and Tononi, 2002, Galan, 2008,
Bullmore and Sporns, 2009]. Reliably quantifying motifs with existing mea-
sures (see e.g. Strogatz [2001], Albert and Barabasi [2002], Sporns [2003], Costa
et al. [2007]) commonly requires very large networks (> 1, 000 nodes). These
cannot be applied to the relatively small networks used in simulations within
this framework; networks are therefore characterised in an ad hoc manner. For
example, in a strict feed-forward network without any recurrent loops, activity
is limited to flow into a predefined direction. Comparatively, a network consist-
ing of interconnected clusters of nodes with recurrent connections within each
cluster can exhibit a larger variety of fundamental states (e.g. combinations of
neuron-groups that are active simultaneously) or different orders of sequential

89

cluster activation. The cluster-network can thus generate data with a larger
variety in dynamics than the feed-forward network and it would be expected
that network inference from these more complex data is a harder problem than
for the feed-forward dynamics. The topology of the golden network can thus
have an impact on the the performance of network learning.

6.2.2 Data Informativeness

Studying a system involves collection of corresponding data. Using these data
for inference about the system can vary in difficulty, which depends on how
much information the data conveys about the system: First of all, the data
must be relevant with respect to aspects of interest. And additionally, quality
and quantity of data affect how much information it can maximally convey.
For example, a noise free data set with high temporal resolution can be more
informative than one with high noise levels collected at a low sampling rate
[Nyquist, 1928, Shannon, 1949]. Likewise, large data sets are more likely to
contain several observations of a particular effect than just a few data-points in
which the effect might only be observed once. Observing the effect repeatedly
can strengthen belief in its existence by weakening the alternative of having
simply observed an artefact.

Factors like data-length or noise level are easily controlled in a simulation
environment; however, controlling the relevance of the data may not be straight-
forward. With respect to the assessment framework, it might seem unexpected
why a spike train generated by a simulated neural network should be controlled
and quantified with respect to its relevance; but recalling that causal interac-
tions shall be inferred from the data shows why this makes sense: Consider
that the neural simulation of the golden network was parameterised such that
post-synaptic potentials induced by connected neurons would never suffice in
order to evoke a spike in the receiving neuron. All model neurons were spon-
taneously active, but no other than these random spikes would be observed.
Hence, spike trains would convey information about rates of spontaneous ac-
tivity of the neurons, but this information is irrelevant with respect to causal
interactions between modelled units. The lack of information about network
connectivity in random spike trains makes them useless for network inference,
and expecting that sensible relations could be recovered by any method is un-
reasonable. On the other hand, if the data contains sufficient indications about
the interplay of units, these interactions should be expected to be revealed by
network inference. In order to ensure that generated spike trains are enriched
with relevant information about their underlying network, the simulation must
be parametrised such that post-synaptic potentials are sufficiently excitatory.

90

Excitations can then initiate spikes that convey information about network con-
nectivity through their temporal correlation.1

The difficulty of network inference varies depending on how distinct relations
between units are reflected in the data. For a fair assessment of an analysis
technique, the severity of the problems it is applied to needs to be taken into
account. Therefore, the spike train data are quantified with respect to their
relevant information concerning the neural connectivity.

Quantifying the Informative Value of Spike Trains

The neural simulation of the golden network yields spike trains, which shall be
characterised with respect to their informativeness about the networks connec-
tivity. Parameters of the neural simulation (spontaneous activity level, synaptic
efficiency) control the ratio of uncorrelated spontaneous spikes and those which
are evoked by post synaptic potentials. As explained earlier, this mixture of
uncorrelated and correlated spikes determines the amount of information con-
veyed about the network. In order to quantify the degree of informativeness,
each spike train is characterised by the proportion of spontaneous spikes and
evoked ones in

Definition 5 (Impetus) The impetus of a spike train is the relative increase
in the number of spikes evoked by post-synaptic potentials to the number of
spontaneous spikes:

impetus = 100 · #evoked spikes
#spontaneous spikes

% . (6.1)

If, for example, impetus=0% then no spikes are evoked at all and the spike
train only consists of spontaneous spikes, i.e. uncorrelated random spikes. For
impetus=100% the spike train is a mixture of two halves: spontaneous spikes
and evoked spikes. Thus, when the impetus is low the data is similar to the
uncorrelated spike trains, representing inherent spontaneous activity of model
neurons. A higher impetus indicates a more autonomous system with higher
self-dynamics. In such systems, the spike trains are more informative about
network connectivity, which is expected to improve network recovery.

Unfortunately, the impetus cannot be calculated for real data.2 If the im-
petus was known, the quality of networks learned from recorded data could be

1Inhibition can also result in informative correlations, by impeding spontaneous activity,
for example.

2Franziska Matthäus and William Heitler noted that certain experimental set-ups might
facilitate the determination of the impetus: If chemical synaptic transmission is pharma-
ceutically blocked, observed activity corresponds to intrinsic spiking (neglecting influences of
electrical synapses); comparing this base-line activity to recordings where synaptic transmis-
sion is unblocked can yield a reasonable estimate of the system’s impetus.

91

appraised by results of the simulation with a similar impetus. However, the
impetus may be basic enough in order to enable experimenters to roughly esti-
mate the impetus for their data. For example, recordings within a feed-forward
type structure are expected to exhibit a higher impetus than from an area with
many converging external inputs.

Measuring the impetus of a spike train gives an indication for the informative-
ness of the data about network connectivity, which correlates with the severity
of the network inference task. The initial position for learning networks can thus
be rated; how it can be related to the quality of learned networks is discussed
next.

6.3 Assessing Learned Networks

Previous sections discussed how the severity of the network learning problem
can be quantified. Still, before the assessment framework can be applied, a
decision needs to be made on how the quality of results shall be measured. Only
when measures for both problem complexity and result quality are available,
is a systematic investigation possible. This section addresses the question of a
reasonable result-quality-meter in two parts: First, measures for the comparison
of a learned network to a reference network are discussed. Thereafter, the focus
is on how such reference network should actually appear. However, until then
it is assumed that this decision has been already made and that a well defined
network is given, which serves as a reference for any learned network.

6.3.1 Comparing Networks

Given a learned network and a reference network the concern now is to assess
their similarity, which will be done by comparing the networks link by link. This
matching can be measured from two perspectives: What percentage of links in
the reference network can be found in the learned network, and, vice versa, to
what extend do links of the learned network represent ones of the reference net-
work? These percentages can easily be calculated from the adjacency matrices
belonging to the networks (Section B.1). In the following let A = (aij) denote
the adjacency matrix of the learned network and B = (Bij) that of the reference

92

network. By comparing the learned network to the reference network we find:

recovery rate =


P

i,j aijbijP
i,j bij

, if
∑

i,j bij > 0

0 , otherwise
, (6.2)

miss rate =


P

i,j bij−aijbijP
i,j bij

, if
∑

i,j bij > 0

0 , otherwise
, and (6.3)

recovery rate = 1−miss rate . (6.4)

By changing the perspective and comparing the reference network to the learned
one, expressions become slightly different:

precision =


P

i,j aijbijP
i,j aij

, if
∑

i,j aij > 0

0 , otherwise
, (6.5)

false positive rate =


P

i,j aij−aijbijP
i,j aij

, if
∑

i,j aij > 0

0 , otherwise
, and (6.6)

precision = 1− false positive rate . (6.7)

These basic entities can capture the quality of the learned network: Observing a
high recovery rate3 and a low rate of false positives at the same time represents
the optimal case. In contrast, the quality of the learnt network is worst, if
the rate of false positives is high while the percentage of recovered links is low.
In other cases, i.e. where both percentages are high or low simultaneously,
interpretation of results is not straightforward.

(ROC curve) The recovery rate and precision are somewhat dimensionless
when analysed separately; they must either be seen in relation to each other or
relativised by some other aspect. A common way to combine these rates for a
series of networks are so called receiver operating characteristic (ROC) curves
[Dayan and Abbott, 2005, Fawcett, 2006]. Therefore, networks are learned from
the same data, but with different parameters of the score, such that their in-
fluence on the performance can be investigated. ROC curves display the false
positives rates and precision of the different networks as points in a plane in
order to visualise their relationship (Fig. 6.2).

(P-value) Another way to understand precision is by relativising it with re-
spect to chance level. The so called P-value is the probability that a given

3Please note that the definition of the recovery rate corresponds to sensitivity [Fawcett,
2006]. In order to avoid misleading the reader, it is called differently, because, in contrast to
sensitivity, it is not expected to reach 100%, as will be explained later (on page 98).

93

0 1
0

1

false positive rate

re
co

ve
ry

ra
te

A

B

C

Figure 6.2: Schematic representation of three receiver operating characteris-
tic (ROC) curves (A,B,C). Points represent rate pairs (false positives, recovery
rate), which are connected by lines for illustrative purposes. Points on curve A
show high recovery rates in combination with low rates of false positives. Per-
formance shown by curve A is thus better than curves B and C, whose points
do not show such good combination of coordinates: At any fixed rate of false
positives, A has a higher recovery rate than B and C; and likewise, for any
fixed recovery rate, curves B and C show more false positives. Note that in this
representation curve C corresponds to chance level.

precision was reached by pure chance. The precision’s P-value can be easily cal-
culated when recognising the analogy to the following sampling problem: Given
an urn of white and red coloured balls, a certain number of them is drawn
randomly without replacement. The hypergeometric distribution [Feller, 1950,
pp.43] can then be used to calculate the probability that there are at least so
many red balls among the drawn ones. With respect to the networks, each of
the balls in the urn represents one network link that could have been possibly
learned. Balls corresponding to links in the reference network are red, all others
are white. Then as many balls are drawn from the urn as there are links in the
learned network and the probability of drawing at least as many red balls as
there were hits in the learned network is calculated. More mathematically we
find the chance level for at least h hits out of p plausible links out of N total
links with k links learned as

P =
min{p,k}∑

i=h

qi , where qi =

(
p
i

)(
N−p
k−i

)(
N
k

) . (6.8)

By considering that plausible links might be found by pure chance, the P-value
of a learned network reflects the benefit of using the inference technique instead

94

of guessing networks. Likewise, it is possible to calculate P-Values for other
rates (e.g. false positives), but most often the concern is on excluding the pos-
sibility that good performance (i.e. high precision) could have originated by
chance.

The analysis of the learned network so far has assumed the existence of a ref-
erence network. As will be explained next, this is unlikely to be the golden
network itself, but a structure that is constructed from it.

6.3.2 Reasonable Network Links to Infer

In the simulation step of the assessment framework (Fig. 6.1), network links
define causal relations — signal transmission via synaptic connections — which
can translate into correlation between spike trains. Learning a network from
the data corresponds to detecting and representing these correlations. Unfor-
tunately, similar correlation can be generated by different causal networks such
that all of these become observationally equivalent (Fig. 1.4 on page 21). Hence,
any of these potential networks should be considered correct although it might
differ from the actual golden network used. A simple comparison between the
golden network and the one that was inferred from correlations is thus often not
a reasonable measure for the quality of the learned network. Instead, learned
networks should be assessed by whether they give a plausible explanation for
the data or not.

There exists also another situation where the golden network is not a good
reference network for learned networks; that is when the studied system can
only be partially observed. For example, electrophysiological recordings are
limited with respect to spatial resolution at which data can be collected. This
factor involves two, often related, aspects: sampling density and coverage of the
studied system. Both data collection at low spatial density and observations
covering only parts of the system result in incomplete anatomical coverage;
collected data lacks information about unobserved elements either on a local or
a global scale. For the sake of realism this lack of information is mimicked in the
assessment framework: The network simulation imitates several neurons out of
which only a sub-set is chosen to be observable; i.e. spike trains of all other units
(and thus their existence) are hidden to the network learner. Learned networks
consist of observable nodes and links between them only. These networks cannot
be compared to the full golden network, because, in the golden network, signals
can travel through chains of hidden units, which connect observable neurons
with each other. Observable units can show correlation corresponding to such
hidden connections and the network learner might infer appropriate links from

95

the data. Such connections correctly represent detected correlation in the data;
however, they might not exist in the golden network. But by the given data
the network learner cannot know about the hidden pathway; hence, links, which
are plausible due to partial observability, must be acknowledged when assessing
learned networks. It is, once again, insufficient to compare the network learned
from partial data to the golden network. The next section shows how the before-
mentioned problems can be overcome by constructing a reference network from
the golden network to which learned ones should be compared.

Plausibility Concept

In order to address the discussed problems caused by observational equivalence
and partial observability the concept of (link) plausibility is introduced. Its
conceptional idea is to analyse the known causal network in order to infer po-
tential correlation between observable units; corresponding network links are
considered to be plausible. The ultimate goal is to classify each possible link
between observable nodes as either plausible or implausible; plausible links that
are learned from the data will be regarded a positive result. The plausibility
concept is not restricted to application to the SSS, but it can be used for the
assessment of any other network learning technique as well.

Before the concept is defined mathematically, a simple example is considered
for illustration. In the network shown in Fig. 6.3a the same connectivity pattern
between 4 nodes is repeated in three cliques, which differ with respect to their
observability. Depending on which nodes are observable and which ones are
not, different links between observable ones appear to be sensible (Fig. 6.3b).
For example, plausible links can be those which exist in the full network (e.g.
A1 → A2, A3 → A4, and B1 → B2) or certain links for which a directed path
from the link’s starting node to its end node exists (e.g. B1 → (B3) → B4).4

However, not every directed path might justify a plausible link between two
units because it incorporates other observable nodes (e.g. unit A3 on the path
A1 → A3 → A4). A better alternative to a link blocked in this way would be
two links, which connect units according to their causal order (e.g. A1 → A3,
and A3 → A4). Other implausible links are those which contradict the full
network by connecting nodes in the opposite direction of information flow (e.g.
A2→ A1, B4→ B1, and C4→ C2). It is also possible that the system’s partial
observability leads to plausible links for which no directed path between units
exists: A common trigger can cause co-ordinated firing between nodes, which
are connected via the triggering node only (e.g. C2 ← (C1) → (C3) → C4).
A link connecting the two co-ordinated nodes (i.e. C2 → C4) is thus plausible

4Start- and end-nodes underlined, nodes on path in full network (given for illustration)
italic, hidden nodes in brackets.

96

t=1 t=2t=0

C3 C4

C1

C2

signal progapagation

B2

B1

B3 B4

A3 A4

A1

A2

t=1 t=2t=0

C4

C2

signal progapagation

B2

B1

B4

A3 A4

A1

A2

a b

Figure 6.3: Network including observable and non-observable nodes (a) and
corresponding plausible links between observable nodes (b). a Example network
with three cliques (A,B,C) in which the same connectivity pattern is repeated.
Cliques differ with respect to their observability: observable units shaded in grey
and hidden units unshaded. b Observable nodes from network shown in (a) with
all plausible links.

if one node could fire within the plausible lag-window [lmin, lmax] of the other
node (in the right order). Plausibility of a link thus depends on the full network,
which nodes are observable, and parameters specifying the minimal and maximal
plausible lag (lmin, lmax). This is formalised in the following

Definition 6 (plausibility) Let a and b denote two observable nodes. Node a

is called a plausible parent of b, if there exists a node s (in the full network) for
which directed paths to both a and b exist such that:

1. their lengths5 l(s→ a) and l(s→ b) fulfil
lmin ≤ l(s→ b)− l(s→ a) ≤ lmax, and

2. if the path s → b includes a, none of the nodes visited after a fulfils the
first condition.

Node a is called an implausible parent of b otherwise. The link a → b is called
(im)plausible whenever a is a(n im)plausible parent of b.

The first condition in the definition assures that correlation between nodes a

and b can arise within the plausible lag-window. The second condition refines
5The length l(a → b) of directed path from node a to b is defined as number of links on

the path (Section B.1). The length of a path a → b directly corresponds to the time-lag a
signal needs to propagate from a to b. In the neural simulations shown later (Chapter 7), the
time-lag in time-bins (1 msec) is equal to the length of a path.

97

the set of plausible parents by rejecting those for which correlation can only
propagate through another plausible parent of b. In figure 6.3 for example,
plausible lags were chosen (lmin, lmax) = (1, 3), such that the link A1→ A3→
A4 fulfils the first but not the second condition. Different from that, both
conditions are met by the link B1 → (B3) → B4. The two criteria plausible
links have to fulfil render many links implausible; despite this selectivity, not
all links that are classified as plausible are expected to be recovered by network
inference. This is because, generally, some redundancy among them exists,
which cannot be further reduced due to equivalence.6 The set of plausible links
is therefore a superset of those that are expected to be revealed. This must be
kept in mind, when interpreting corresponding recovery rates (Section 6.3.1).

In order to determine the plausible links practically, the algorithmic im-
plementation (Algorithm 1) of the definition can be used to analyse the full
network. (In the example discussed so far (Fig. 6.3a), with plausible lags
(lmin, lmax)=(1,3), the algorithm yields the links shown in Fig. 6.3b.) The
classification of links between observable nodes as plausible or implausible facil-
itates the construction of a reference network, which contains all plausible links.
Learned networks can then be compared (see previous section) to this network
in order to determine their degree of plausibility. The only parameters that
must be specified for this approach are the plausible lags (lmin, lmax). These
are determined by the assumptions about how short or long connections via
hidden units can be, while resulting in significant correlation between observed
units than can be detected. The length of a connecting path is thereby assumed
to be proportional to the correlation’s time-lag. This is based on the idea that
each synapse on the path introduces a further delay of the signal to transmit.

The previous two sections addressed how the severity of the network learning
problem can be rated and how to determine the quality of learned networks.
The presented ideas take the informativeness of the data into account as well
as the effects of observational equivalence and partial observability; thereby,
learned networks can be evaluated fairly and their quality can be related to
the level of difficulty. Through the quantification of the initial situation and a
sensible analysis of the outcome it is possible to investigate the method’s true
performance for different degrees of severity. How this has been implemented
in order to assess the SSS is outlined in the next section.

6As an example consider figure 1.4 on page 21: Plausible links would comprise all that are
shown in Fig. 1.4a and c. Only one of the links connecting the right-most node is needed in
order to explain the data, rendering the other one redundant. However, both are plausible,
as any one of them is adequate.

98

Algorithm 1 Determination of all plausible links (Definition 6) for a partially
observable network. The algorithm begins with preliminary determination of
reachability sets for each node. These consist of all nodes to which a directed
path exist. The main loop iterates over all observable nodes and implements the
definition 6 for each of them in two steps: First, potential plausible parents are
determined; these are observable nodes, which fulfil condition 1 in the definition.
In the second step, condition 2 of the definition is checked and nodes violating
the condition are removed as potential plausible parents. The remaining nodes
fulfil both conditions of plausibility and are returned in the end.

Input: Full network, observable nodes
Parameters: minimal and maximal plausible lag (lmin, lmax)

for all nodes si do
determine the reachability set Ri of all nodes that can be reached from si

via directed paths; Ri = {si} if si isolated node without any links
end for
for all observable nodes o do

(First determine all nodes ppao that fulfil condition 1 of definition 6)
initialise its plausible parent set ppao := ∅
for all nodes si where o ∈ Ri do

for all nodes pa ∈ Ri do
if paths si → o, si → pa with lmin ≤ l(si → o) − l(si → pa) ≤ lmax

exist then
ppao := ppao ∪ {pa}

end if
end for

end for
(Remove all nodes from ppao that do not fulfil condition 2 of definition 6)
for all parents pa ∈ ppao of node o do

if ∀ paths pa→ o = (pa, x1, . . . , xk, o) : ppao ∩ {x1, . . . , xk} 6= ∅ then
ppao := ppao − {pa}

end if
end for

end for
return all plausible parent sets ppao

6.4 Assessment-Framework Implementation

The generic assessment framework (Fig. 6.1) has been implemented by taking
the foregoing sections’ considerations into account. How the presented ideas
have been combined is described here (Fig. 6.4) with details on the neural sim-
ulation, as well as the learning procedure of information flow networks.

Each node in the golden network is associated with one neuron whose dy-
namics are generated by an integrate and fire model (Section A.1.1). The time
resolution of the simulation and the data are 1 msec time-bins. Each neuron
shows spontaneous activity according to a homogeneous Poisson process [Feller,

99

pl
au

sib
ilit

y
an

al
ys

is

sh
ift

co

ns
ta

nt
ac

tiv
ity

de

ca
y

go
ld

en
ne

tw
or

k

le
ak

ag
e

fa
ct

or
sy

na
pt

ic
ef

fic
ie

nc
y

ra
te

le
ng

th
ob

se
rv

ab
le

no

de
s

pl
au

sib
le

la

gs

ne
tw

or
k

se
ar

ch

he
ur

ist
ic/

en
um

er
at

or
sc

or
e

va
lu

e
SS

S
so

rt
by

sc

or
e

to
p

ne
tw

or
ks

sp
ike

tra

in
sp

on
t.

ac
tiv

ity

ge
ne

ra
to

r
ob

se
rv

ab
le

sp

ike
 tr

ai
n

LI
F

sim
ul

at
or

ch
an

ne
l

filt
er

go
ld

sp

ike

tra
in

F
ig

ur
e

6.
4:

A
ss

es
sm

en
t

fr
am

ew
or

k
us

ed
fo

r
th

e
SS

S
(w

or
k-

flo
w

fr
om

le
ft

to
ri

gh
t)

.
P

ro
ce

ss
in

g
st

ag
es

re
pr

es
en

te
d

by
re

ct
an

gl
es

;
el

em
en

ts
w

it
h

ed
ge

s
ro

un
de

d
off

in
di

ca
te

ob
je

ct
s

an
d

pa
ra

m
et

er
s.

A
go

ld
en

ne
tw

or
k

de
fin

es
ex

ci
ta

to
ry

sy
na

pt
ic

co
nn

ec
ti

on
s

in
a

ne
ur

al
ne

tw
or

k,
w

hi
ch

is
si

m
ul

at
ed

by
im

po
si

ng
st

im
ul

at
io

n
on

m
od

el
ne

ur
on

s.
T

he
si

m
ul

at
io

n
ge

ne
ra

te
s

se
ve

ra
l

sp
ik

e
tr

ai
ns

ou
t

of
w

hi
ch

a
su

b-
se

t
of

ob
se

rv
ab

le
ch

an
ne

ls
is

se
le

ct
ed

.
T

he
se

da
ta

ar
e

us
ed

fo
r

ne
tw

or
k

in
fe

re
nc

e.
L
ea

rn
ed

ne
tw

or
ks

ar
e

fin
al

ly
as

se
ss

ed
ac

co
rd

in
g

to
th

ei
r

pl
au

si
bi

lit
y.

100

1950, pp.446]. The rate parameter of the process controls the level of spon-
taneous spiking activity (spontaneous activity), independently for each neuron.
Spikes propagate in form of excitatory post-synaptic potentials; signal trans-
mission occurs in the direction of network links with a delay of one time-bin
(1 msec) per synapse. Neurons integrate received post-synaptic potentials over
time and once a specified number (synaptic efficiency) of excitatory inputs is
gathered, the neuron fires a spike. The golden network is simulated until enough
data (data length) is generated.

Before the spike train data is passed on to the network learner it is filtered.
In accordance with practical situations the simulated system is not completely
observable, but only spike trains from a subset of units (observable nodes) can
be collected and used for learning. Only these observable spike trains are passed
to the network learner, which determines each node’s best scoring parent config-
uration. Actually, it returns a list of all scored configurations, such that config-
urations of different or similar score can be compared to each other. Composing
the parent configuration yields the recovered networks, which are analysed with
respect to their plausibility.

Learned network links are classified as either hit or miss depending on
whether they are plausible or not (Section 6.3.2). Statistics of the classifica-
tion results (e.g. precision or false positive rate, Section 6.3.1) are then deter-
mined and related to the impetus of the data used for learning the network
(Section 6.2.2).

The method under study can be tested in a variety of conditions by apply-
ing the framework for different parameter settings. Relating the quality of the
outcome of each setting to the learning complexity, the framework can yield a
comprehensive picture of the method’s overall performance. Corresponding sim-
ulation results are presented later (Chapter 7), after an alternative assessment
concept has been discussed.

6.5 An Alternative Assessment Method

A fundamental problem of network inference, which has been mentioned earlier,
is that different causal models can generate the same or similar correlated out-
put. In such cases it is impossible to reliably infer the causal network from mere
stochastic relations. Unfortunately, correlated activity is the only information
available to a network learner in order to infer an information flow network;
revealed structures may therefore not match the causal connections. Since such
discrepancy is not a failure of the inference method, it must be accounted for
when evaluating results. In the presented framework (Fig. 6.4) this is done based
on the concept of link plausibility, which allows sensibly tackling the problems of

101

qspike
train

spont.
activity

generator
leakage
factor

synaptic
efficiency

spike
train

spike
train

metric
distanceLIF

simulator

correlation
analysis

network
search

heuristic/
enumerator

score
valueSSS

shift
constant

activity
decay

rate length
gold
spike
train

LIF
simulator

golden
network

Figure 6.5: Alternative network inference assessment framework based on sim-
ulation of learned networks in order to compare their dynamics to those they
represent (work-flow from left to right). Processing stages represented by rect-
angles; elements with edges rounded off indicate objects and parameters. A
golden network defines excitatory synaptic connections in a neural network,
which is simulated by imposing stimulation on model neurons. Potential net-
works are simulated and scored in parallel in order to yield their dynamics as
a neural network and their score value. The dynamics of the potential network
and those of the golden network are compared using a spike train metric. If low
distances correlate with high network scores, i.e. networks that replicate the
dynamics of the data used for learning, the scoring function imposes a sensible
ranking on network structures.

network assessment caused by observational equivalence and partial observabil-
ity. These issues can also be addressed differently, and one alternative approach
is presented next.

Instead of inferring reasonable links from network connectivity, a more prag-
maticly seeming idea is to test whether a learned network generates appropriate
dynamics (Fig. 6.5): Does a simulation of the inferred network result in spike
trains that are similar to the data it was learned from? In detail, like the golden
network, the learned network can be simulated using neuron models in order to
generate spike train data. The spike trains of both networks can then be com-
pared to each other, by quantifying the matching of the dynamics with spike
train metrics (Section A.2). If the dynamics of the inferred network are similar
to those it was learned from, the structure correctly reflects functional relations
in the data and is thus a good network. Finally, the similarity of dynamics is
related to the score value of the learned network; high scores would optimally
correlate with low distances, i.e. similar dynamics. If this is the case, the score
rates networks suitably.

102

stimulation
spike train

leakage
factor

synaptic
efficiency

network
to

assess

LIF
simulatorq

spike
train

gold
spike
train

plausibility
analysis

golden
network

observable
nodes

plausible
lags

network
to

assess

correlation
analysis

metricdistance
assessed
network's

score

a b

Figure 6.6: Comparison of parameters and processing steps needed in order to
assess a network (work-flow from top to bottom). Processing stages represented
by rectangles; elements with edges rounded off indicate objects and parameters.
a Metric approach: The network to assess need to be simulated first in order
to calculate the distance between its spike train and that of the golden net-
work. The metric itself and the simulation must be parameterised. Note that
additional parameters are needed in order to determine the stimulation activity
(not shown). b Plausibility concept: Plausible lags must be specified in order to
analyse the golden network. The learned network is then compared against the
resulting reference network, which can be re-used for comparisons with further
learned networks.

Like the plausibility concept, the alternative spike train metric based ap-
proach can be used under conditions of partial observability. Therefore channels
of the golden network’s spike trains would have to be filtered according to their
observability (not shown in Fig. 6.5) before passing them on to the spike train
metric and the scoring function. Either of the two presented concepts could thus
be used to assess the SSS, but the plausibility concept is favoured because it
is simpler. In fact, the two approaches differ widely in complexity: The metric
based concept involves far more parameters and processing steps than that us-
ing link-plausibility (Fig. 6.6). Additionally, there is also a significant difference
in the computational costs of the two approaches. With the alternative metric
based approach every network is simulated and afterwards the distance between
spike trains is calculated. The computational costs for this are determined by
the size of the network and, even more critically, the length of the simulated
spike train. Increasing data length results in non-critical linear growth of costs
for the neural simulation, but computational demands for applying the spike
train metric rise over-proportionally. Practical application is thereby limited to

103

relative short data segments.7 In contrast, the plausibility analysis of a golden
network does not depend on the length of the data but only on network size.
The associated costs are comparatively low anyway and additionally, the golden
network needs to be evaluated only once and can then serve as a reference for all
networks that are learned from its dynamics. For these reasons the SSS has been
assessed using the plausibility concept. Corresponding results are presented in
the next chapter.

7Note that long data-sets should actually be favoured for assessments: Short data segments
might match well or bad due to random effects. In contrast, observing (dis)similar dynamics
over a long period yields higher confidence that artefacts are smoothed out; the measured
distance is then a reflection to what degree the learned network can replicate features of the
data is has been inferred from.

104

Chapter 7

Application of the

Assessment Framework

The previous chapter motivated and described an assessment framework for in-
formation flow network inference techniques. Results from applying the frame-
work to the SSS are presented in this chapter. Details on the chosen parameters
are given first in order to complete the description of the set-up. Next, the out-
comes of different parameter series are presented and thereafter, these will be
reviewed critically. Based on the outcome of the discussion, further evaluation
series are performed in order to address identified issues.

7.1 Set-up and Parameters

The first step in the work-flow of the assessment framework is to specify a net-
work, which defines the number of neural entities and their interaction (Fig. 6.4
on page 100). For the following simulation series, a feed-forward type structure
has been chosen whose nodes corresponds to one neuron each (Fig. 7.1a). For
the neural simulation, the dynamics of each neuron are generated according
to an integrate and fire model (Section A.1.1). As neurons according to this
model do not show intrinsic spiking, baseline activity in the network must be
induced by stimulation. This is done with Poisson processes, which are used to
generate spontaneous spikes for each unit independently. The level of baseline
activity is controlled by a constant parameter λ = 10−1, 15−1, 25−1, 30−1, 40−1,

or 50−1; the rate parameter λ is negatively correlated with the level of sponta-
neous spiking activity. Any spike propagates according to network connectiv-
ity to directly linked units, where it results in an excitatory potential. Such
transmission occurs with a delay of one time-bin (1 msec). Each neuron inte-

105

3 7

t=1 t=2 t=3 t=4 t=5 t=6 t=7t=0

13 18 23 28 33

2

6 12

17 22 26 31

5

11

2110 16 30

1

4

8 14 19

24 29

3227

25

9 15 20

38

36

35

34

37

signal progapagation

t=1 t=2 t=3 t=4 t=5 t=6 t=7t=0

3 13 23

6

11

21

8

29

3227

25

20

38

35

signal progapagation

a

b

Figure 7.1: a Simulated feed-forward network (38 nodes, 47 links) with observ-
able units (14 nodes ≈ 36.8%) shaded in grey and hidden units unshaded. b Ob-
servable nodes from network shown in (a) with all 34 plausible links (≈ 18.7%
out of 182 possible links) for plausible lags lmin = 1 and lmax = 3. Examples
of plausible links can be those which exist in the full network (e.g. 21 → 25,
23→ 27, and 27→ 32) or certain links for which a directed path from the link’s
starting node to its end node exists (e.g. 3 → (7) → 13, 13 → (17) → 21, and
23→ (28)→ (33)→ 38).a Links that contradict the full network by connecting
nodes in the opposite direction of information flow in the feed-forward network
(e.g. 13 → 3, 21 → 3, and 35 → 3) are implausible, for example. Also, a
common trigger can cause co-ordinated firing between nodes, which are con-
nected via the triggering node only (e.g. plausible link 6→ 11 due to common
trigger (2): 6 ← (2) → (5) → 11). (For full details on the plausibility concept
please see section 6.3.2.)

a Start- and end-nodes underlined, nodes on path in full network italic, hidden nodes in

brackets.

106

grates synaptic inputs over time that are received from its parents (temporal
summation). A parameter for synaptic efficiency determines whether 2, 3, 4,

or 5 excitatory inputs are necessary in order to evoke a spike in the receiving
neuron. The parameters controlling the spontaneous activity and synaptic ef-
ficiency are equal for all neurons. As discussed in detail later (Section 7.3.4),
neurons have been simulated without a leakage component, such that synaptic
inputs would be integrated over infinite time. However, this does not happen
in practice, because spontaneous spiking resets the membrane potential (just as
activity evoked by synaptic inputs does). Since each simulated neuron exhibits
spontaneous activity, its time-window for summing synaptic inputs is effectively
limited.

In accordance with practical situations it is assumed that the simulated
system is not completely observable, but that only spike trains from a subset
of units (observable nodes) can be collected and used for learning networks
(grey shaded nodes in Fig. 7.1a). In order to assess inferred networks, the
effects of partial observability are taken into account by applying the plausibility
concept (Section 6.3.2). The algorithmic implementation (Algorithm 1) of the
plausibility definition 6 was applied to the full network (Fig. 7.1a) with plausible
lags (lmin, lmax) = (1, 3) in order to determine all plausible links (Fig. 7.1b).
The minimal plausible lag lmin has been chosen according to the smallest lag
observable nodes can show non-spurious correlation and lmax such that a modest
percentage of links will be plausible.1

Two different series were run in which both the parameters of the neural
simulation and the score were altered systematically in order to assess their
influence on the quality of the recovered networks (Fig. 7.2). Each combination
of parameters is simulated 10 times for different data lengths (5, 10, and 30
seconds, 1, 5, and 10 minutes), whereby the full network, observable nodes, and
plausible links are left unaltered. Simulating the full network yields spike train
data from which observable channels are then used to determine each node’s best
scoring parent configuration with up to 3 parents. (Unless noted otherwise, the
parameters of the SSS were d = 3−1 and ∆t = 1. The LAT hat been determined
from configurations with 3 parents.) Composing parent configuration yields the
recovered network, which is analysed with respect to its plausibility: Links of
learned networks are classified as either hit or miss (depending on whether
they are plausible or not). The recovery rate and precision were determined
together with the corresponding P-value in order to account for the fact that
the probability of finding plausible links by chance depends on their percentage
(Section 6.3.1).

1For lmin = 1 there exist 12 (≈ 6.6% out of 182 possible links, lmax = 1), 27 (≈ 14.8%,
lmax = 2), 34 (≈ 18.7%, lmax = 3), 37 (≈ 20.0%, lmax = 4) plausible links.

107

∈
{
10−1, 15−1, 25−1, 30−1, 40−1, 50−1

}spontaneous
activity rate

= 10repetitions

= 1shift
constant

∈ {5−1, 4−1, 3−1, 2−1, 1}decay
constant

∈ {5, 10, 30 sec, 1, 5, 10 min}data
length

∈ {2, 3, 4, 5 excitations per spike}synaptic
efficiency

a b

Figure 7.2: Parameter overview for the assessment framework. Two series a
and b were run in which the marked parameters have been combined in all
possible ways. For each of the combinations the neural simulation and the
network learning step has been repeated 10 times in order to average out random
effects.

Note that parameters of the neural simulation (spontaneous activity level,
synaptic efficiency) do not have any physical correspondence in this sparsely
connected network; their influence on network inference is thus not shown indi-
vidually as their combined effect is fully reflected in the simulated spike train.
Instead, the simulation output, the spike train, is characterised by the amount
of information it contains about the structure of the network by calculating its
impetus (Section 6.2.2). Determining the impetus for every data set that is used
for network learning and relating it to the corresponding success rates, recovery
rate and precision, shows its relationship to the performance of the SSS. The
results of this investigation are presented in the next section.

7.2 Simulation Results

In the first series (Fig. 7.2a), where the parameters of the score are fixed
(d = 3−1,∆t = 1), an expected relation between quality and amount of data
(impetus, length of spike train) and the grade (recovery rate, precision) of net-
works learned from the data can be observed (Fig. 7.3): In order to learn
networks of a certain grade, a lower impetus can be compensated by longer
recordings; longer recordings at a fixed impetus generally improve the quality
of the learned networks; and for a particular data length, recovered networks
are generally better for higher impetuses, i.e. more informative data.

For any learned network the recovery rate does not exceed 35% (Fig. 7.3a),

108

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

a

b

c

impetus %

P-
va

lu
e

pr
ec

isi
on

re
co

ve
ry

 ra
te

5 secs
10 secs
30 secs

1 min
5 min

10 min

5 secs
10 secs
30 secs

1 min
5 min

10 min

5 secs

10 secs
30 secs

1 min

5 min

10 min

Figure 7.3: Legend in separate box on page 110.

109

Fig. 7.3 legend: Quality of recovered networks depending on impetus and
recording length (d = 3−1, ∆t = 1 fixed). Data points correspond to one
learned network each (learned from a separate simulation); trend lines fitted
to points of each data-length. a Recovery rate of all plausible links for dif-
ferent impetuses and different lengths of data. Higher impetuses and longer
data sets result in better recovery rates. Longer data sets can compensate
for lower impetuses. b Precision of recovered links for different impetuses
and different lengths of data. High impetuses and longer recordings improve
precision. Longer data sets can compensate for lower impetuses. c P-values
of precision shown in (b) on logarithmic scale. Networks with a higher pre-
cision are less likely to be revealed by chance. Lower P-values thus indicate
better performance.

but recall that not all of the links that are classified as plausible are expected
to be recovered (Section 6.3.2, page 98 especially). This is because, generally,
some redundancy among them exists; for example, in figure 7.1b links 20→ 29,
21 → 29 are both plausible, but given the joint excitation of nodes 20 and 21
by unit 16, they might be similar enough, such that one of them is sufficient
to explain spiking of unit 29. The set of plausible links is therefore a superset
of those that are expected to be revealed by network inference. Out of this
superset, the SSS predominantly recovers links that connect nodes and their
closest plausible parent, but not more distant ones. (This can be explicitly seen
in Fig. 7.6, which will be discussed later.) Additional plausible links that do
not sufficiently increase the explanatory quality of the network are omitted due
to the SSS’s preference for simpler networks.

In contrast, precision would optimally reach 100% such that all recovered
links are indeed plausible. Fig. 7.3b shows the relationship between impetus and
precision, which are positively correlated. The corresponding P-values show that
high precision is extremely unlike to be reached by chance (Fig. 7.3c). At lower
impetuses, the percentage of learned links that are implausible increases and
causes precision to drop down. This is to be expected, because the lower the
impetus, the more similar spike trains are to the spike patterns from the random
processes that induce the baseline activity into the neurons. These spikes do not
convey any connectivity information about the network, such that links learned
from these data are more likely to correspond to spurious correlation than to
functional connectivity between neurons.

In the second series (Fig. 7.2b), the framework is used to investigate the ro-
bustness of learning performance with respect to different parameter settings of
the SSS. At a fixed data length (30 seconds), different decay constants are used
to reveal networks. The corresponding results are depicted in Fig. 7.4. Exclud-

110

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

a

b

c

impetus %

P-
va

lu
e

pr
ec

isi
on

re
co

ve
ry

 ra
te

d=1/5
d=1/4

d=1/2
d=1/3

d=1

d=1/5
d=1/4

d=1/2
d=1/3

d=1

d=1/5
d=1/4

d=1/2
d=1/3

d=1

Figure 7.4: Legend in separate box on page 112.

111

Fig. 7.4 legend: Quality of recovered networks depending on impetus
and decay constant (recording length 30 seconds, ∆t = 1 fixed). Data
points correspond to one learned network each (learned from a separate
simulation); trend lines fitted to points of each choice of decay constant.
a Recovery rate of plausible links for different impetuses and choices of
decay constant d. Decay constants d ∈ {5−1, 4−1, 3−1, 2−1} result in similar
good recovery rate. Differently, setting the decay constant d = 1 results in
significantly worse recovery rates due to correlation over multiple time-lags,
which is not considered in this case. b Corresponding precision for impetuses
and decay constants shown in (a). As in (a) performance is similar for decay
constant d ∈ {5−1, 4−1, 3−1, 2−1}, but worse for d = 1 (for the same reason).
c P-values of precision shown in (b) on logarithmic scale.

ing the extreme case d = 1, all settings lead to similarly good performance over a
range of impetuses.2 Setting d = 1 results in a significantly worse performance,
as the resulting lag-window [1, 1]Z causes the SSS to score correlation of lag 1
only. Links with larger time-lags (e.g. 3 → (7) → 13, 13 → (18) → 32, and
23 → (28) → (33) → 38) can thus only be found through spurious correlation
of lag 1. This limitation accounts for the comparatively low performance of this
setting.

The previous two parameter series explored the performance of the SSS
over wide parameter ranges. The results show the performance of the score
for many data-sets. In realistic situations data collection is often limited, such
that only few recordings under similar conditions of the studied system can
be made. It is thus important to investigate how the SSS can be applied on
a small number of data sets. This is done next, where the practical limit of
data acquisition is mimicked by simulating 10 data sets of 30 seconds length
each; for all of them the same simulation parameters were used, such that all
spike trains exhibit about the same 30% impetus (Fig. 7.5).3 For each of the
10 data sets networks are learned (one per data-set for each decay constant
d ∈ {5−1, 4−1, 3−1, 2−1, 1}, ∆t = 1) and averaged for each decay constant.
Observations made earlier (Fig. 7.4) are found to be confirmed: On average,
networks learned with decay constant d = 1 contain fewer plausible links than

2Note that results from such parameter series of the score could be displayed as an ROC-
curve (Section 6.3.1), but there are two reasons for not using this kind of result display here:
(1) The curve would look misleadingly bad, because, unlike the for common use of this plot,
the recovery rate is not expected to reach 100%, such that points could fall below the diagonal,
which generally corresponds to chance level. (2) The high similarity in performance for all
but one of the parameters (Fig. 7.4) would result in basically two points in the ROC-plot,
which would be less informative than the chosen style to present results.

3The data sets sum up to a total recording time of 5 minutes. The impetus was found to be
between 29.7% and 30.0%. For an impetus of 30% the simulation output consists of 3 evoked
spikes per 10 uncorrelated stimulation spikes (on average), i.e. only 3 out of 10 spikes are
informative about network structure (Section 6.2.2).

112

spontaneous
activity rate

= 10repetitions

= 1shift
constant

∈
{
5−1, 4−1, 3−1, 2−1, 1

}decay
constant

= 30 secs
data

length

synaptic
efficiency

impetus ≈ 30%

such that

Figure 7.5: Parameter overview for the assessment framework. Series with
constant parameters of neural simulation and varying decay constant. The
neural simulation and the network learning step have been repeated 10 times in
order to mimic data sampling under similar conditions.

those learned with smaller decay constants (Fig. 7.6a vs. 7.6b-e). Independent
of the decay constant, implausible links show lower percentages of recovery
than plausible ones (Fig. 7.6a-e). Furthermore, most plausible links are re-
covered consistently while implausible ones vary for different decay constants
(Fig. 7.6a-e). In order to account for links learned from spurious correlations,
all learned networks were averaged (d ∈ {5−1, 4−1, 3−1, 2−1, 1}); this reduces
the frequency of implausible links significantly while preserving plausible ones
with high percentages (Fig. 7.6f).

Finally, a parameter series varying the shift constant ∆t would be desirable.
For reasons given later (in the following review section 7.3), such series needs
additional care when run with the chosen network (Fig. 7.1a). Corresponding
results are thus shown after related issues have been discussed.

The results presented in the foregoing section are promising and show that
the SSS can successfully reveal functional connectivity from simulated spike
train data. The parameter series give insights that are valuable for the SSS’s
application to real data; however, before drawing conclusions, the complexity
of the used framework necessitates thorough questioning of its outcome. This
includes a detailed review of the set-up used to generate spike train data, features
of the simulated network, as well as the network learning procedure and the
evaluation of its results. The following section addresses these issues and tries
to identify potential weaknesses that could affect the analysis of real data.

113

3

6

11

 80%

8

3813 23 30%

20

21 25100%

 30%

27

100%

 30%

29

 30%

32100%

35

 70%

 30%

 30%

 30% 40%

d=1

3 13 80%

6

11

 60%

8

 30%
20

 30%

21

 30%

 30%

 70%

23 70% 38

 30%

29100%

25100%

27

100%

35100%

32100%

 30%

d=1/2

3 13100% 38

6

11

 60%

8

20

 30%

21

 40%

 60%

23 80%

29100%

 30%

25100%

27

100%

35100%

 40%

32100%

 30%

d=1/3

a

b

c

Figure 7.6: (part 1) Average of networks learned for data of fixed length
(30 seconds) and similar impetuses (≈ 30%) using different decay constants
(d ∈ {5−1, 4−1, 3−1, 2−1, 1}). Links that can be found in at least 30% of
learned networks (for each choice of d) shown with percental frequencies next
to link. Plausible links are marked bold (Fig. 7.1b). a (d = 1) Except for
one link (13 → (18) → 23), only plausible links with lag 1 are recovered. The
decay constant is not small enough to capture dependence over larger time-
lags. b (d = 2−1) Good recovery of plausible links with lags 1 and 2. Link
13 → (18) → 23 recovered with higher percentage than in (a). c (d = 3−1)
Similar recovery of plausible links as in (b), but different implausible links (re-
covered in ≥ 30% of networks) due to wider lag-window.

114

3 13100%

6

8

11

 40%

38

 30%

21

 50%

 50%

23 90%

20 29100%

 50%

25100%

27

100%

35100%

 30%

32100%

 30%

 30%

d=1/4

3 13 90%

6

11

 80%

8

21

 40%

 60%

23100%

20 29100%

 40%

25100%

27

100%

35100%

38

 30%

32100%
 30%

d=1/5

3 13 76%

6

11

 64%

8

21

 32%

 48%

23 74%

20 29 80%

 30%

25100%

27

100%

35 80%

32100%

38

d=1,1/2,1/3,1/4,1/5

d

e

f

Figure 7.6: (part 2) d (d = 4−1) Similar recovery of plausible links as in (b)
and (c), but more implausible links (recovered in ≥ 30% of networks) than
in (b) and (c). e (d = 5−1) Plausible links recovered as in (b-d), plus link
25→ 38, but different implausible links (≥ 30%) than in (a-d). The differences
among implausible links in (a-e) indicate that they are learned from spurious
correlation over different time-lags. f (d ∈ {5−1, 4−1, 3−1, 2−1, 1}) Average over
all networks (a-e) shows good recovery of plausible links. Several implausible
links learned from spurious relationships average out (frequency below 30%).

115

7.3 A Critical Result Review

The SSS is a new analysis tool for neural spike train data, which needs to be
thoroughly tested before applying it to real data. This chapter complements
the theoretical examination of the score (Chapter 4) by applying the assess-
ment framework presented earlier (Chapter 6). Unfortunately, it is not possible
to simulate a fully realistic environment, such that testing the score is limited
to few relatively simplistic scenarios. Results gained under these idealised cir-
cumstances may not generalise to real data and that is why it is important
to understand what exactly the unrealistic components of the framework are.
Identified issues must be investigated with respect to their influence on results,
which might require further simulation experiments — slightly differing from
the ones before. Careful dissection can then indicate how to interpret results
gained with the SSS on real data.

In order to understand the presented results and their practical relevance, all
relevant steps in the assessment procedure and associated parameter choices are
analysed. This is done by discussing the components of the assessment frame-
work in separate sections, which are ordered according to its work-flow (Fig. 6.4,
p. 100). Each of the sections starts with a brief reminder on the actual imple-
mentation of particular points to discuss. It is then explained why and to what
extent elements of the framework can cause potential problems and whether
they can be addressed or not. Further simulation results will be shown where
appropriate.

7.3.1 Network Structure and Observability

Starting point of the assessment framework is the network structure that defines
the number of neurons and their interactions. Alongside with the network some
of its nodes are chosen to be observable, i.e. data can only be collected from
these units. When these decisions are made, the size, topology, and observability
of the artificial neural circuit are defined. The neural simulation is influenced
by each of these three factors, which are therefore discussed in the following.

(Overall complexity) Compared to the enormous number of neurons in the
brain (e.g. 1011 in humans [Kandel et al., 2000, p.19]) and their manifold of den-
dritic wirings, it is obvious that the simulated network’s complexity is probably
the most unrealistic component in the set-up. It only consists of a small num-
ber of neurons, which are sparsely interconnected compared to 10, 000–150, 000
synaptic contacts a real neuron makes [Kandel et al., 2000, p.25]. Further, al-
though only less than half of the simulated neurons have been chosen to be
observable, this level of observability is chosen too high, compared to techno-

116

logical limits on data-collection, which do not facilitate such high coverage in
monitoring. The constructed network and data-sampling capabilities thus do
not correspond to a realistic neural circuit in three points: size, connectivity,
and observability of the simulated system. The reason for using a compara-
tively small network with sparse connectivity is that even rebuilding only small
parts of the nervous system in a nearly realistic manner is accompanied by two
problematic demands: A severe amount of data to build and parameterise such
model, and extremely powerful computational resources are needed for its sim-
ulation (e.g. [Markram, 2006, Bhalla, 2008]). Existing complex simulators are
not freely accessible (yet) and setting such up is clearly beyond the scope of this
PhD project. Investigations of the SSS therefore have to be done with highly
simplified neural networks. Whether resulting observations also hold in more
complex situations will therefore remain subject to speculations.

(Impact of Topology on Dynamics) Studies have shown that depending
on how neurons are interconnected with each other different pattern of activity
can emerge [Sporns et al., 2000, Sporns and Tononi, 2002, Galan, 2008, Bull-
more and Sporns, 2009]. The modelled neural circuitry used here is not complex
enough to observe complex patterns, but network topology has still an effect on
the activity of modelled neurons and especially on the impetus of their data.
Before this is explained in detail, the practical implication of the relationship
between network structure and impetus is mentioned: The SSS’s performance
is positively correlated with the impetus and the length data; analysis of real
recordings might thus depend on the origin of the data. Data from structures
with feed-forward connections (like the visual system [Ganis and Kosslyn, 2007])
might show a lower impetus than those from circuits with significant recur-
rent connections (e.g. hippocampus [Siegel and Sapru, 2007, pp.447]); different
amounts of data may thus be required for successful network recovery. But how
can network structure influence the impetus in the data? This is explained next
for the simulated network, where links represent excitatory synaptic connec-
tions.

The impetus of a node is affected by two factors: the number of converging
connections in that node and its relative position in the network. The first point
is obvious by noticing that the number of parents of a node correlates with the
number of excitatory inputs this node can receive simultaneously. More spikes
can thus be evoked in nodes with many parents, and it can therefore have a
higher impetus than a node with fewer incoming connections. For one part the
impetus of a node is thus influenced by local network properties like its parents,
but the position of that node within the network (a rather global property)
can also affect its impetus. This can be seen by considering the feed-forward

117

network used in the simulations (Fig. 7.1), where activity propagating through
the network has a tendency to increase. In more detail, neurons on the input-
side of the network (Fig. 7.1a, left) do not receive any or just few incoming
connections. They do thus not receive significant excitatory inputs, but only
the spontaneous baseline stimulation. Differently, nodes in the centre of the
network (Fig. 7.1a, middle) exhibit more incoming connections through which
excitatory potentials are received from neurons nearer to the input side. These
centre-neurons are thus more likely to show spiking activity because, additional
to stimulation spikes, they also spike due to excitations from neurons further
upstream in the network. The activity and impetus of the centre neurons is
therefore higher than that of neurons at the input side of the network. Moving
further downstream towards the output side of the network (Fig. 7.1a, right),
neurons receive excitatory inputs at even higher rates than the centre neurons
before them. In this set-up, nodes on the output side of the network are thus
likely to exhibit the highest activity and impetus, simply because activity slowly
accumulates over neuron-layers. Whether the inclining impetus throughout the
structure actually had an effect in the simulated network cannot be reliably
assessed: Since most observable nodes are located in the output half of the net-
work, only few plausible links exist within the other half. Although some of
these are reliably inferred (Fig. 7.6), their small number prevents a significant
comparison in order to show whether these are less likely to be revealed than
those towards the output side of the network. Investigating this aspect would
require varying observability of the network to ensure equal distribution of plau-
sible links; however, this is subject to future work. Here, observable nodes are
left unchanged in order to facilitate comparisons between different simulations
shown (later).

7.3.2 Data Length

The complexity of the network structure is fundamental to the neural dynamics
that are generated from it. The parameter that controls the length of that
simulated data is another important factor, which determines the severity of the
learning problem. In the presented series, the amount of data available for the
analysis with the SSS has been varied in the range of seconds to minutes. Data
lengths in the simulations thus correspond to realistic data gathering lengths
with electrophysiological recordings, which can be made on the order of seconds
to hours (or even longer with chronic implants), depending on the experimental
set-up.

118

(Limit Behaviour) From a theoretical standpoint it is interesting to see how
unrealistically long data-lengths affect the performance of the method. This
investigation can show whether, in practice, additional effort involved in longer
recordings would pay off in terms of improved results from network inference.
A few experiments have thus been performed, where extremely long simulations
of 30 and 60 minutes data lengths were analysed using the SSS. The results
show further increase in performance for these data-sets. To investigate the
relationship between the volume of data and the quality of recovered networks
both entities have been plotted against each other (Fig. 7.7). The length of
the data correlates with the quality of networks in a (sub-)logarithmic manner,
such that any further quality improvement requires a rapidly growing amount
of data. The analysis of extremely long practical recordings could benefit the
same way, but since increasing the quality of learned networks becomes less and
less economic, a sensible trade-off between effort to collect the data and the
potential benefit must be found.

7.3.3 Spontaneous Activity

The integrate and fire neurons in the neural simulation do not posses any in-
trinsic spontaneous activity. They do not generate any spikes unless stimulated
externally. Therefore, a spontaneous activity generator produces spike trains,
which are composed of uncorrelated spikes. These random spike trains are used
to induce spiking activity into the simulation: Each neuron receives one of those
spike trains and exhibits spiking activity on every fed-in spike. (These spikes
propagate according to network connectivity and can evoke further spikes in re-
ceiving neurons.) The stimulation activity is thus mirrored in the output spike
train of the simulation.

(Memoryless Random Process) The spontaneous spikes are generated by
a homogeneous Poisson process, i.e. the rate parameter of the process stays
unchanged throughout the simulation. There are thus no parameterised varia-
tions in activity; however, variations naturally arise in Poisson processes whose
exponentially distributed inter-spike interval lengths are independent of each
other [Feller, 1950, pp.446]. This renders the process memoryless, such that
spikes can occur arbitrarily close to each other; even in directly succeeding time
bins. The rate of spiking activity is thus unlimited. The Poisson process is
thereby a potential violator of a realistic constraint, since real neurons posses
an upper limit on spiking rate, induced by their refractory period [Kandel et al.,
2000, p.157]. However, it turns out that for the chosen rates of spontaneous ac-
tivity the process is extremely unlikely to generate bursting behaviour: The

119

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 10 100 1000 10000

 20

 21

 22

 23

 24

 25

 26

 27

 28

 1 10 100 1000 10000

 40

 45

 50

 55

 60

 65

 70

 1 10 100 1000 10000

data length (seconds)

P-
va

lu
e

pr
ec

isi
on

re
co

ve
ry

 ra
te

a

b

c

Figure 7.7: Relationship between data-length and quality of recovered networks.
The curves fitted to the data in figure 7.3 were evaluated at an impetus of 30% for
different data lengths, which are shown on a logarithmic scale on the horizontal
axis. Logarithmic functions fitted for illustrative purposes. a Recovery rate
dependent on data-length in double-logarithmic manner, such that any further
improvement requires rapidly growing amounts of data. b Precision of recovered
networks shows logarithmic increase, i.e. it improves faster than the recovery
rate. c P-values of the precision show double-logarithmic dependence on data-
length.

120

probability that k spikes occur within a time-interval of length t is [Feller, 1950,
p.447]

pk,t(λ) =
(λt)k

k!
e−λt . (7.1)

For the rate parameters used in the simulations (λ = 10−1, 15−1, 25−1, 30−1,

40−1, 50−1) the probability of two spikes within a time interval of length 2 is low
even for the highest rate parameter (p2,2 ≈ 0.016, 0.008, 0.003, 0.002, 0.001, 0.001).
Observing larger numbers of succeeding spikes is less likely, e.g. p3,3 ∈ [0.000033,

0.003334], such that long, unrealistically high frequency bursts of spikes are very
unlikely to occur. Additionally, the calculations ignores that spikes are binned
with 1 msec resolution; two spikes that occur within one time-bin appear as
only one event in the spike train. Thus, in order to observe a burst of k spikes
in the data all spikes need to occur within k different succeeding time-bins. The
corresponding probability for k succeeding spikes in the spike train is thus

p̄k(λ) = [1− p0,1(λ)]k =
[
1− e−λ

]k
. (7.2)

The probability of a burst in the data is thus even less than the probabilities
calculated above: We find p̄2 ∈ [0.00039, 0.00906] and p̄3 ∈ [0.000007, 0.000862].
In conclusion, unrealistic bursting effects due to the lack of memory of the
Poisson process can be excluded having caused significant artefacts, because of
their expectedly low rate of occurrence. (An actual test of the data will be
presented in another context in the next section 7.3.4.)

(Homogenous Activity Rates) Another aspect concerning the spontaneous
activity is that the spikes of each neuron are generated independently, but at
the same rate for all channels. Such homogeneous baseline-activity can be con-
sidered unrealistic, as neurons have been observed to exhibit a whole range of
spontaneous activity even within a single section of the brain (e.g. [Yamaoka and
Hagino, 1974, Abeles, 1982, Legendy and Salcman, 1985, Tsodyks et al., 1999]).
Such diversity can be easily replicated by using different rate parameters for
each neuron. But together with the remaining parameters of interest (Fig. 7.2)
the number of combinations to explore is extremely large, which causes enor-
mous computational demands when evaluating all of them. It is questionable
whether such effort would be worthwhile, due to the influence of network con-
nectivity on the activity of individual units (as discussed earlier). Using more
than one rate parameter and investigating the resulting effects requires a net-
work topology with minimal influence on activity rates. Such network would be
limited in diversity of connectivity patterns, since only very regular structures
could guarantee that any observed effects are indeed caused by the different

121

rates of activity. In essence, a homogenous baseline activity becomes diversified
by network topology and tight control of this diversification would be needed
in order to investigate influences of individual neurons. Within the scope of the
assessment framework, it therefore seems reasonable to use a single parameter
to control the spontaneous activity of all neurons.

7.3.4 Neural Simulation

The basis of the neural simulation is a leaky integrate and fire model (Sec-
tion A.1.1). In the simulations leakage was set to zero, which is a crude ap-
proximation compared to real physiology where leaky membrane currents are
commonly observed [Kandel et al., 2000, Chapter 8]. Similarly, synapses have
been been modelled to be excitatory exclusively, which does not match realis-
tic diversity: Synapses can also be inhibitory, or non-chemical, like electrical
synapses, which can tightly couple two cells [Kandel et al., 2000, Chapter 10].

(Lack of Leakage Current) The membrane of a neuron is not a perfect iso-
lator such that ionic currents occur whenever the membrane potential deviates
from its resting potential [Kandel et al., 2000, Chapter 8]. The neuron model
can account for such leakage currents either by a constant leakage or, more
sophisticated, a dynamic, voltage dependent function. However, this has not
been done, because this extension of the model is associated with at least one
additional parameter. This extra variable causes two problems: One of them
is that it increases the number of parameter combinations to explore; unless
another parameter is left un-varied throughout the series, the computation time
for its evaluation increases significantly. The second problem is more subtle:
Varying leakage can affect the spike output of the modelled cell, which in turn
can impact on the impetus of the data. The impetus must not be too low since
sensible inference of functional connections becomes impossible otherwise (Sec-
tion 6.2.2). Thus, very careful adjustments of the neural simulation are needed
in order to guarantee a reasonable impetus in the spike trains. In the simula-
tions shown this has been ensured by tuning the parameters for spontaneous
activity and synaptic efficiency with respect to each other. Including a leakage
component in the model would require calibrating the corresponding parame-
ter(s) in combination with the before-mentioned ones. Naturally, an increase in
number of parameters that are dependent on each other makes their adjustment
more complicated and should thus be avoided if unnecessary. In order to ensure
that omitting a leakage component in the model has no unforeseen effects, pilot-
ing runs were performed in which model neurons were leaky (constant leakage
current). Networks learned from the resulting spike trains were not substan-

122

tially changed (not shown). Within the explored range of parameters leakage
currents thus did not seem to have an impact on network learning performance;
the impetus of the data presented itself as the crucial factor, no matter which
parameter settings of the simulation lead to the corresponding data. Based on
these experiments and in order to reduce computation time, the parameter se-
ries have been chosen to contain key parameters only and a leakage component
has been omitted.

(Lack of Refractory Period) The neural simulation suffers from another
unrealistic inaccuracy, which is the neurons’ lack of a refractory period [Kandel
et al., 2000, p.157]. Modelled neurons can spike at any time and do not pos-
sess the typically observed time-window following an action potential in which
synaptic inputs cannot evoke any further spike. Whether this simplification
results in a noticeable effect or not depends on the rate at which excitatory
synaptic inputs occur. If this rate is sufficiently low, excitatory inputs do not
accumulate fast enough to evoke directly succeeding spikes. In such case, there
is no difference between a model including a refractory period and one with-
out this property. Differently, if the dynamics in the neural network are very
high, lacking a refractory period can lead to unrealistically high firing rates of
individual neurons due to their persistent activity induced by excitatory inputs.
In the parameter series overall activity has been fairly low, such that such an
overflow of activity it quite unlikely to appear. The model’s lack of refractory
period should thus not have caused any significant artefacts. But before rushing
through this issue too quickly, there is another reason why the data should be
inspected with respect to spikes occurring extremely close to each other: The
spontaneous activity of each neuron occurs on top of its synaptically evoked
spikes. Spiking can thus be caused by two independent mechanisms each of
which has a fairly low probability of generating artefacts; however, their com-
bined effect might be significant. But an inspection of the data shows that
dynamics of the network are within reasonable bounds (Fig. 7.8): Plotting the
inter-spike interval (ISI) distributions shows that activity for low impetuses basi-
cally corresponds to the spontaneous spiking activity; for these data close spikes
are unlikely, as theoretically determined (Section 7.3.3). For higher impetuses,
however, the influence of evokes spikes becomes predominant and higher firing
rates are observed. For some neurons, the increased activity is also accompanied
with a changed ISI distribution. These change from exponential type to Pois-
sonian, such that it becomes more likely that spikes occur close to each other;
however, these characteristics match observations from experimental data, for
example in the visual cortex [Bair et al., 1994]. In conclusion, despite lacking a
refractory period the simulation seems to generate reasonable spike trains.

123

λ
=

50
−

1
λ

=
40
−

1
λ

=
30
−

1
λ

=
25
−

1
λ

=
15
−

1
λ

=
10
−

1
5 excitations 4 excitations 3 excitations 2 excitations

synaptic efficiency
sp

on
ta

n
eo

u
s

sp
ik

in
g

ac
ti

vi
ty

7.4% 14.1% 31.3% 96.6%

7.2% 13.8% 30.9% 95.1%

7.1% 13.6% 30.4% 93.0%

7.0% 13.4% 29.8% 91.0%

6.6% 12.7% 28.1% 84.6%

6.1% 11.8% 26.1% 77.7%

0.0 0

10.2

0 100inter-spike interval length

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty
 d

en
si

ty

impetus

hi
gh

lo
w

highlow

32.5 Hz 31.8 Hz 32.0 Hz 40.6 Hz

34.3 Hz 34.1 Hz 36.0 Hz 48.0 Hz

39.6 Hz 40.5 Hz 44.8 Hz 62.2 Hz

45.2 Hz 47.1 Hz 52.7 Hz 73.8 Hz

73.0 Hz 77.2 Hz 87.4 Hz 122.6 Hz

111.1 Hz 117.1 Hz 132.7 Hz 185.2 Hz

avg. firing rate

Figure 7.8: Inter-spike interval (ISI) distribution plots of observable nodes
(Fig. 7.1). Sub-plots correspond to different parameters of the neural simu-
lation (data length 10 min, parameters above and left of each column and row,
scales on bottom left). Each sub-plot shows one data-set with functions of two
types for all observable nodes overlayed: (Type I, blue) Probability density
functions (range of left vertical axis [0, 0.2]) over different inter-spike interval
lengths (range of horizontal axis 0–100 msec). These functions approach zero
for increasing ISI-length. (Type II, red) Corresponding cumulative probability
distribution (range of right vertical axis [0, 1]). These functions approach value
one for increasing ISI-length. The impetus of the corresponding data is given
in the centre of the plot together with the average firing rate. For low impetus
ranges probability density functions resemble that of an exponential distribu-
tions, which correspond to the ISIs that originate from the baseline stimulation
using Poisson processes. As the impetus increases, they become more similar
to Poisson-type distributions, which correctly reflects the higher percentage of
spikes evoked by excitatory potentials (see text).

124

(Synaptic Matters) In the current simulation set-up, a single parameter
controls the synaptic efficiency of all connections; it determines the size of the
excitatory post-synaptic potential. The synaptic efficiency was chosen to be
equal for all synapses, which does not match physiological data: Post-synaptic
potentials can differ, even within a single cell, depending on the location of the
synapse [Kandel et al., 2000, pp.224]. Where the synaptic input occurs can
also affect the time-lag of synaptic transmission [Kandel et al., 2000, pp.143];
this has been uniformly modelled as a lag of 1 time-bin. Similar to previously
discussed options, it is not difficult to extend the neural model such that effi-
ciency and time-lag can be controlled separately for every synaptic connection;
however, such diversification complicates the investigation of the score: Con-
sidering different synaptic strengths, for example, makes it difficult to confirm
that plausible links over shorter time-lags are recovered with higher preference
than over long ones (Fig. 7.6). Such conclusion would have to take into account
the synaptic strengths of the neural path underlying the links, in order to facili-
tate a comparison between recovery rates; otherwise it cannot be excluded that
certain links are simply recovered more often, because corresponding synaptic
efficiencies are higher. Investigations at later stages could address the effects of
different synaptic properties on network inference; however, this is not within
the scope of pioneering studies presented here.

Potential aspects to model further include different types of synapses. In the
presented set-up all modelled synaptic connections are excitatory. This does not
match practical data, which suggests that neurons generally receive both excita-
tory and inhibitory inputs [Kandel et al., 2000, Chapter 12]; however, inhibitory
ones have not been considered in the model. The same applies to uni- or bidirec-
tional electrical synapses, which can lead to (nearly) instantaneous interactions
between neurons [Kandel et al., 2000, p.175]. Modelling inhibitory synapses
simply requires to reverse the effect of the post-synaptic potentials, by which a
mixture of excitatory and inhibitory interactions can be easily achieved. Elec-
trical synapses could be implemented through (quasi-)instantaneous coupling
between two neurons’ membrane potential. Including these different types of
synapses in the model can increase the complexity of the dynamics whose ef-
fects on network recovery are worthwhile to be studied. Again, this has not been
done, not only to reduce the parameter-space, but also to avoid problems asso-
ciated with the careful adjustments of synaptic efficiencies with respect to each
other. Such reciprocal balancing is needed in order to guarantee a sufficiently
high impetus of the data, because otherwise, networks cannot be revealed suc-
cessfully due to a lack of information (Section 6.2.2). Even if excitatory synapses
are considered only, network dynamics are very sensitive to parameter changes

125

and it can be tricky to find settings that result in a satisfactory impetus.4 The
parameter adjustment problem becomes more complicated when inhibition is
included in the model. This is because two counteracting forces must be tuned
such that the dynamics of the network are reasonable; i.e., they must neither
be extinguished after periods of low spontaneous activity nor show continuous
bursting, for example. Future simulations, however, could investigate the effect
of inhibitory connections on network inference.

7.3.5 Selection of Networks to Score

For a thorough investigation of the SSS it would be helpful to test its assess-
ment of any possible network for a given data-set. Unfortunately, often too
many networks exist (Section B.2), such that the analysis must be limited to
a manageable sub-set. For the shown results this sub-set has been chosen to
span all networks where none of the nodes has more than 3 parents. Therefore,
for each node, all parent configurations with up to 3 parents were evaluated
exhaustively, such that it is for sure that the best network within that sub-
space has been found. Despite the SSS’s tendency towards sparse networks, a
better scoring one with nodes having more parents might exist; in other words,
it is possible that the best scoring configurations have been excluded from the
analysis a priori, by limiting the number of parents. However, leaving the con-
figuration space unrestricted and using search heuristics or MCMC sampling
methods (Appendix D) in order to select promising networks to score does not
circumvent this problem. These optimisation techniques cannot score all con-
figurations either, but they use actual score values to determine deterministic
paths or random walks in the configuration space. In sufficient computation
time and if the assumptions of the method match the characteristics of the
score, these methods can thereby find local and global maxima even without
having to score all configurations. However, many of these approaches involve
at least one random component by which results cannot be guaranteed to be
replicated. This side effect depreciates the value of these methods for the assess-
ment framework: Although optimisation methods might reveal higher scoring
configurations from all configurations than an exhaustive evaluation of a limited
sub-space, results must be replicable in order to compare results. But random
effects can lead to inference of different networks from the same data. Such vari-
ation is entirely due to the search method, but not the SSS. Since the purpose
of the framework is to assess the SSS and not the search method, side effects

4Changing parameters that control the rate of spontaneous activity or synaptic efficiency
can have a non-linear effect on the impetus. As an example consider figures 7.3 and 7.4:
Parameters of the neural simulation were changed in equidistant steps, but the impetus of the
data exhibits irregular jumps.

126

that might blur results must be minimised. The computationally expensive
solution to evaluate sparse network exhaustively ensures that performance of
the SSS is not influenced by un-foreseeable random effects. Uncertainty about
the existence of higher scoring networks is thereby limited to that arising from
incomplete evaluation, which must be accepted for any selection procedure of
networks. Future work could compare different optimisation methods, which
will be needed in higher dimensions where an exhaustive search (even for lim-
ited number of parents) is infeasible. However, such investigations are beyond
the scope of this work, which aims at suggesting a practical and reproducible
assessment-procedure in the first place.

7.3.6 Score Parameters

Learning networks using the SSS requires two parameters to be set: the decay
constant d and the shift constant ∆t. In the presented series, the shift constant
remained fixed while the decay constant has been altered in order to assess its
importance for successful network recovery. The inferred networks were found
to be stable across different decays of the activity level (Fig. 7.6b-e), which
has been varied within bounds that are reasonable for the size of the simulated
network.

Additional to the decay constant, different choices for the shift constant
should also be tested. However, due to the small size of the simulated network,
here, the shift constant can only be varied within a very small range. Otherwise
it is foreseeable that performance would drop, because no plausible links exist
that span over more than three time-lags. (A larger network would thus have to
be chosen in order to run extensive series varying the shift constant; however,
results could not be directly compared to those gained from the network used
before.) Thus, instead of testing numerous different shift constants, only one
additional setting has been evaluated: The same parameter series as before was
run (Fig. 7.2) except that the shift constant was chosen ∆t = 2. As to be
expected, the resulting recovery rates and precision are generally lower than
with the optimal setting of the shift constant, which is especially true when
the impetus is low (Fig. 7.3 vs. 7.9). This is to be explained by the score’s
lag-window [2, 4]Z when using this shift constant (∆t = 2): Correlation with
lag one is not accounted for in this setting, such that corresponding plausible
links cannot be learned; but these are 12 out of 34 plausible links (Fig. 7.1b).
However, remaining links to recover are found at high impetuses, such that both
settings of the shift constant result in similar performance. The SSS thus shows
a certain tolerance for a sub-optimal setting of this parameter.

The second simulation series (Fig 7.2b), in which the data-length was fixed

127

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

secs10

mins5

secs30

secs5

mins10

min1

a

b

c

impetus %

P-
va

lu
e

pr
ec

isi
on

re
co

ve
ry

 ra
te

5 secs

10 secs

30 secs

1 min

5 min

10 min

5 secs
10 secs
30 secs

1 min
5 min

10 min

5 secs
10 secs
30 secs

1 min
5 min

10 min

Figure 7.9: Legend in separate box on page 129.

128

Fig. 7.9 legend: Quality of recovered networks depending on impetus
and recording length (d = 3−1, ∆t = 2 fixed). Data points correspond to
one learned network each (learned from a separate simulation); trend lines
fitted to points of each data-length. a Recovery rate of all plausible links for
different impetuses and different lengths of data. b Precision of recovered
links for different impetuses and different lengths of data. c P-values of
precision shown in (b) on logarithmic scale. At low impetuses performance
is found to be worse than with shift parameter t = 1 (Fig. 7.3). Both settings
of the shift constant result in similar performance when the impetus is high.

Fig. 7.10 legend: Quality of recovered networks depending on impetus
and decay constant (recording length 30 seconds, ∆t = 2 fixed). Data
points correspond to one learned network each (learned from a separate
simulation); trend lines fitted to points of each choice of decay constant.
a Recovery rate of plausible links for different impetuses and choices of decay
constant d. All decay constants d ∈ {5−1, 4−1, 3−1, 2−1} result in similar
good recovery rate. Minimally worse recovery rate for decay constant d = 1,
due to correlation with time-lags other than 2, which are not considered in
this case. b Corresponding precision for impetuses and decay constants
shown in (a). As in (a) performance is similar for decay constant d ∈
{5−1, 4−1, 3−1, 2−1}, but worse for d = 1 (for the same reason). c P-values
of precision shown in (b) on logarithmic scale. Precision reached with d = 1
is least likely.

and the decay constant was varied, has also been repeated (with shift constant
∆t = 2) and similar effects as before can be observed (Fig. 7.4 vs. 7.10). The
performance reached by using different activity decays is less separated than
with shift constant t = 1 (Fig. 7.4). This is probably due to the fact that no
plausible links spanning over more than three time-layers exist, such that any
decay constant smaller than 2−1 widens the score’s lag-window without benefit.
This hypothesis would be supported by the worsening of P-values, as the decay
becomes smaller.

For an extended analysis of the shift parameter a larger network would have
to be simulated, as only when provided long enough paths, larger shift constants
can be reliably tested. This, however, is subject to future work.

7.3.7 Performance Measurement

In the final step of the assessment framework learned networks are evaluated.
Performance is determined by a comparison of inferred networks to a reference
network using different fundamental measures (Section 6.3.1). It is presumed

129

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

d=1/5
d=1/4
d=1/3
d=1/2
d=1

a

b

c

impetus %

P-
va

lu
e

pr
ec

isi
on

re
co

ve
ry

 ra
te

d=1/5
d=1/4
d=1/3
d=1/2
d=1

d=1/5
d=1/4

d=1/3
d=1/2
d=1

d=1/5

d=1/4
d=1/3
d=1/2

d=1

Figure 7.10: Legend in separate box on page 129.

130

that learned networks that are good share elements of the reference network,
which is derived using the plausibility concept.

The basic measures of how well networks match, recovery rate and precision,
provide a good overview of the overall agreement between networks. They fail
to inform about which parts of the network match. Fortunately, the simulated
network is small enough to identify such particular sites by eye. Even larger
numbers of networks can be inspected with this manual approach by averaging
them (e.g. Fig. 7.6). Comparing (average) networks to the reference network,
measuring the two success rates, and calculating the precision’s P-value can
thus give a good overall picture of quantity and quality for inferred networks —
relative to the reference network.

Classifying links according to their plausibility is central to the assessment
of results: The reference network, to which all learned networks are compared,
is composed of all plausible links. The plausibility of each link is derived from
the known, simulated network, based on whether two model neurons can show
correlation within specified time-lags based on their connectivity. Network infer-
ence techniques have previously been tested by simple link-by-link comparisons
with the simulated network; given that the simulated system was fully observ-
able [Chornoboy et al., 1988, Baccalá and Sameshima, 2001, Nykamp, 2005,
Makarov et al., 2005, Okatan et al., 2005, Lindsey and Gerstein, 2006, Astolfi
et al., 2006, Eichler, 2006] or under partial observability, but restricted to the
evaluation of few hand-chosen paths in the network, which were expected to
be learned [Cadotte et al., 2008]. These procedures may not be appropriate
under partial observability conditions, or they might not be suitable for auto-
mated analysis of many result networks, which is needed for extensive series, as
presented here. Differently, the algorithmic implementation of the plausibility
concept facilitates automatic analysis of many networks.5 Further, in contrast
to manual approaches, which depend on individual preferences, the proposed
concept is more objective since it provides a reproducible classification of links.

Lacking alternatives to the plausibility concept in the literature, a second,
different approach has been presented in chapter 6. This second framework
compares networks indirectly by the neural dynamics they produce; these are
compared with spike train metrics (Section 6.5). The similarity of the spike
trains produced by the original and the learned network is reflected in the dis-
tance, which thereby provides a measure of how well the two networks match
functionally. Using the distance as a measure of performance could complement
those that were used in connection with the plausibility concept, such that it

5The plausibility concept is indeed suitable for high throughput evaluation: For example,
for result figures 7.3 and 7.4 a total of 2,640 networks has been assessed. In these cases the
simulated network has been the same, but with the plausibility approach, a different network
could have been used in each simulation without rising computational costs noticeably.

131

would be best to apply both frameworks simultaneously in order to get a more
comprehensive picture. However, this has been hindered by computational rea-
sons. Only one approach could be used and preference has been given to the
plausibility approach, because it requires far less parameters to be specified
(Section 6.5, Fig. 6.6).

(Choice of Plausible Time-lags) The two parameters of the plausibility
concept (minimal and maximal plausible lag) define the plausible lag-window.
This window determines which links can become classified plausible and it can be
argued that choosing it to be equal to the SSS’s lag-window [1, 3]Z is not optimal:
This matching is expected to yield the best inference results because links in
learned networks only connect nodes with appropriate time-lags — those within
the SSS lag-window. As the lag-windows are identical all links that are plausible
could be learned, but not those spanning over time-lags outside the plausible
lag-window. By this restriction, network inference can be seen as being guided
towards correct solutions. However, it has been shown that the performance
of the SSS does not depend on this matching by parameter series in which the
decay constant d (and thus the lag-window) has been varied (Fig. 7.2b). (The
lag windows also do not match in the series run with shift constant ∆t = 2, for
which results are shown in Figs. 7.9 and 7.10.) The results of the series do not
indicate any benefit from matching of the two lag-windows (Fig. 7.4); indeed,
decay constants d = 4−1 and 5−1 perform slightly better (on average), although
corresponding lag-windows do not match the plausible one.

7.3.8 Comparisons to Other Methods

Using the simulation framework, the SSS has been assessed under a variety
of conditions. These investigations showed that the SSS can reveal plausible
networks if the impetus of the data is sufficiently large. This is an important
observation, but which is somewhat dimensionless, since the impetus has not
been used before in order to specify the dependence of other techniques on it.
It would thus be desirable to see how other network inference methods (e.g.
those in Table 2.1) perform under similar conditions. This would allow for a
direct comparison to the new SSS; however, within the scope of this work not
all techniques can be tested, but one has been chosen: cross-correlation [Perkel
et al., 1967], which results in comparable computational costs. Details on how
this technique has been applied are given next.

Cross-correlation is calculated between two time-series; in order to account
for different time-lags, the correlation between any two channels A and B has
been evaluated for time-shifted data: shifting B’s data forward (relative to A)

132

Table 7.1: Quality comparison of networks inferred with the SSS and cross-
correlation for different ranges of impetus. The data of the first simulation
series (Fig. 7.2a) were analysed with both techniques. Resulting networks were
categorised according to the impetus of the data (low, medium, high) before
evaluating them; for each category values (recovery rate, precision, P-value)
were averaged over all data-lengths and rounded.

recovery-

impetus i rate precision P-valuea

SSS cor SSS cor SSS cor

low (5% ≤ i ≤ 20%) 16% 12% 37% 44% 0.14 0.26

medium (25% ≤ i ≤ 35%) 23% 13% 53% 53% 0.02 0.16

high (75% ≤ i ≤ 100%) 31% 16% 74% 58% 10−4 0.09

a Note that a comparison regarding precision does not render the comparison of P-

values superfluous: Precision corresponds to percentage of recovered links that are

plausible, but the P-value also takes into account the total number of recovered links.

Learning all possible links can yield a moderate precision, if many plausible links

exist, but the corresponding P-value one will then indicate the irrelevance of this

achievement.

by 1, 2, or 3 time-bins. The maximal correlation between channels was then
assigned to the corresponding link A → B. Links with maximum correlation
equal or above a threshold α are learned ; all remaining ones are not. In practice,
the threshold α would have to be chosen by the user, which is not possible for the
large number of simulations performed here. Instead, for each analysed data-set,
the threshold has been chosen to yield optimal performance: According to the
Neyman-Pearson Lemma (Neyman and Pearson [1933] or [Dayan and Abbott,
2005, pp.119]), no better choice for α exists than the one which yields the highest
likelihood-ratio (i.e. recovery rate / [100 - precision]). The threshold α is set
according to this optimal trade-off and thus yields the best performance that
can be reached with this technique.

The cross-correlation has been calculated for the same data the SSS has been
applied to in the first series (Fig. 7.2a). Like for the SSS, learned networks were
assessed regarding their plausibility. In order to compare both approaches, the
average performance of each has been determined for three ranges of impetus
(Table 7.1), which show that results of the SSS are generally better. Only in
two cases, for low and medium impetus, the precision of the cross-correlation
reaches or exceeds that of the SSS.

For practical application it is of interest how the performance of either tech-
nique depends on the amount of data that are available for analysis. To show
this, the results have been clustered according to the length of the spike trains,
but also regarding the impetus of the data (Fig. 7.11). Both more data and

133

a

0

5

10

15

20

25

30

35

5sec 10sec 30sec 1min 5min 10min

SSS - low

SSS - medium

SSS - high

cor - low

cor - medium

cor - high

re
co

ve
ry

 ra
te

b

0

10

20

30

40

50

60

70

80

90

100

5sec 10sec 30sec 1min 5min 10min

SSS - low

SSS - medium

SSS - high

cor - low

cor - medium
cor - high

pr
ec

isi
on

c

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
5sec 10sec 30sec 1min 5min 10min

SSS - low

SSS - medium

SSS - high

cor - low

cor - medium

cor - highP-
va

lu
e

data length

Figure 7.11: Legend in separate box on page 135.

134

Fig. 7.11 legend: Quality comparison of networks inferred with the SSS
and cross-correlation for data of the first simulation series (Fig. 7.2a). Re-
sulting networks were categorised according to the length and impetus of the
data before evaluating them; for each category values (recovery rate, preci-
sion, P-value) were averaged. (Impetus ranges low, medium, and high de-
fined according to table 7.1.) The curves illustrate the performance of both
methods for different data-lengths and impetus: a recovery rates, b preci-
sion, and c P-values of precision shown in (b) on logarithmic scale. (See
text for interpretation.)

higher impetus generally benefit either technique; however, there are two ex-
ceptions concerning the recovery rate of the cross-correlation method: For both
low and medium impetuses an increase of data length does not improve but
decrease recovery rates. For medium impetus data this seems to be a transient
drop, since rates increase as data length reaches the order of several minutes,
but no such recovery is observed at low impetus. This might be an effect of
spurious correlations, which average out as amount of data exceeds a critical
length. The significant improvement in recovery rate at high impetus (between
1 and 5 minutes) supports this hypothesis, which, in order to be tested, would
require much longer data-sets; however, these experiments have not been per-
formed. In contrast to cross-correlation, the SSS shows a steady improvement in
performance over the explored parameter range and it seems to be less affected
by spurious correlation in short data-sets.

In conclusion, the SSS yields comparatively good results, especially since
cross-correlation was applied with optimal threshold α: Knowledge used in or-
der to determine this threshold is generally not available in practical applica-
tion; performance of the cross-correlation method is thus likely to be worse than
shown here. However, the SSS can successfully compete against this technique
under best case performance. The reason for this is the score’s interpretation of
the data (Section 5.2.2), which focuses on excitatory relationships, as simulated
here. This practically demonstrates the advantage of data-specific adaptation
for network inference, as discussed earlier (Chapter 5).

This ends the neural simulation series and their discussion. Corresponding re-
sults are now briefly summarised and analysed with respect to their implication
on real data analysis.

135

7.4 Conclusions From Simulation Work

In the preceeding sections the SSS has been assessed with numerous simulations
using a wide range of parameters, which resulted in various grades of difficulty
to infer networks. The score has been found to successfully reveal good networks
irrespective of (non-extreme) choices for the decay constant, although, even at
the highest impetus considered (100%), only half of the spikes are informative
about network structure. Further, the SSS has been found to deliver superior
results to that from a cross-correlation analysis over multiple time-lags for which
parameters were chosen optimally.

The different findings give valuable indications for practical application where
doubts about parameter settings exists. In such situations the simulation results
suggest a potential approach for analysis: A fixed shift-constant ∆t needs to be
chosen and should then be used together with a series of decay constants d.
Therefore, the investigator’s expectation about the minimal time-lag at which
relationships may occur is needed: Electrode placement (close to each other /
in different brain regions) during data recording may suggest smaller or larger
time-lags; expressing the expected time-lag as number of corresponding time-
bins in the spike train yields the optimal shift constant. Once ∆t is chosen,
networks need to be learned for gradually decreasing decay constants, until a
further decrease does not lead to substantial differences in learned networks.
This result stabilisation indicates that the decay constant is sufficiently small,
such that the resulting lag-window is wide enough to capture all relevant depen-
dencies. Practically, the average of learned networks can indicate which links are
consistently found (Fig. 7.6f). The largest decay constant for which (most of)
these links are learned is optimal, as the lag-window is just as wide as it needs to
be. (A decay of d = 1/2 would thus be a reasonable choice for Fig. 7.6.) As dis-
cussed earlier (Sections 3.1.1 and 5.1), the shift- and decay-constant determine
the interpretation of learned networks.

Practical analysis might also benefit from the insights concerning the impor-
tance of data-length for network inference (Section 7.3.2). Due to the (at most)
logarithmic improvement of recovered networks when increasing the amount of
data, it seems reasonable to partition recordings into adequate lengths before
learning networks from them. Instead of using all the data at once, networks
learned from different sections can then be averaged (Section B.3.1) in order to
remove false positive links (as seen in Fig. 7.6). But partitioning a long data set
and processing it piecewise can also be beneficial in order to detect changes in
dynamics: As will be demonstrated in the next chapter, different dynamics can
manifest in substantially different networks. Thus, comparing networks learned
from different data sections can help to detect such changes.

136

The presented work on simulated data has confirmed the SSS’s ability to reveal
neural interactions from simulated spike trains. Together with the theoretical
exploration of the SSS (Chapter 4), the investigations have given broad insights
to the score’s working principle and guidance to practical application. How-
ever, it remains to be shown that the SSS delivers adequate results for real data
in which, for example, neural interactions might be significantly weaker than
simulated here; but this is the subject of the next chapter.

137

Chapter 8

Real Data Applications

Throughout the preceding chapters a new analysis technique, the Snap Shot
Score, has been introduced (Chapter 3) and investigated both theoretically
(Chapter 4) and in simulations (Chapter 7). These studies have led to a compre-
hensive understanding of the score, which is preliminary to its practical applica-
tion. In this chapter, the SSS is applied to two types of real data, which originate
from the retina and the hippocampus, respectively. The data are not analysed
in order to reveal novel biological insights, but to validate that the score leads
to sensible results when used on real data. Separate sections for each data type
begin with a brief introduction in which the origin and known characteristics
of the data are reviewed. Thereafter, results gained from applying the SSS are
presented and confirmed to agree with expected outcomes.

8.1 Retinal Data

The first type of real data to which the SSS is applied has been collected from
the retina. The retina is located at the back of the eye and it is probably the
most accessible part of the brain (Fig. 8.1).1 Vision starts at the retina, as light
enters the eye through the transparent cornea and hits the retina, which acts
as a photon-receptor. Counter intuitively, light has to pass through all layers of
the retina before it reaches the deepest layer consisting of photo-receptors (rods
and cones), which convert photons into electrical signals [Kandel et al., 2000,
pp.507].2 These are then transmitted via bipolar cells to the top most level of

1The retina is considered to be part of the brain, because, during embryonic development, it
emerges from the neural tube [Dowling, 1987, p.8]: the same type of cells principal components
of the nervous system originate from, like the (rest of the) brain and the spinal cord [Oyster,
1999, pp.62].

2It has been discovered recently that other cells, namely ganglion cells, are also photon
sensitive (see [Hankins et al., 2008] for a review). However, their sensitivity is much less
prominent than that of photo-receptors (by a factor of about 104) [Do et al., 2009].

138

Retina

Light

Cornea

Eyeball

Lens

G
an

gl
io

n
ce

lls
A

m
ac

ri
ne

ce
lls

B
ip

ol
ar

ce
lls

H
or

iz
on

ta
l

ce
lls

R
od

s
an

d
C

on
es

Optic
nerve

Fovea

to optic disc

Optic
disc

Figure 8.1: Adopted from Hubel [1995]: Schematic illustration of retina location
within eyeball (left) and close-up view on layers of retina (right). Prominent cell
types and their connectivity in different depth of the retina define several distinct
layers of it. Photo-receptors (rods and cones) are depolarised when hit by
entering light [Kandel et al., 2000, pp.510]. Signals of many receptors converge
while being forwarded to ganglion cells, which generate action potentials that
leave the retina via the optic nerve. (For none of the other retinal cell types,
except for amacrine cells, has spiking been reported. Generally, except for
ganglion cells, transient signalling is common.) [Dowling, 1987, pp.82].

139

ganglion cells whose projections leave the retina through the optic disc, forming
the optic nerve. Visual information is thereby forwarded to the thalamus (lat-
eral geniculate nucleus, LGN) and further to the visual cortex where different
features are extracted for further processing [Kandel et al., 2000, pp.523]. How-
ever, before all that, i.e. in the retina itself, incoming light actuates a cascade of
reactions and corresponding local computations: Signals from photo-receptors
are processed, such that firing of ganglion cells shows distinctive selectivity for
particular visual features in their receptive field [Kandel et al., 2000, pp.507].
Further, the visual information transmitted by the ganglion cells has undergone
contrast exaggeration before leaving the retina [Oyster, 1999, Ch.14, p.635].
The local computations performed in the retina distinguish it from a group of
simple receptors (like for touch, temperature, or pain) that simply translate
stimuli information into the electrical domain without modifying it afterwards
[Kandel et al., 2000, pp.430].

Intensive studies of the retina make it a well known neural structure whose
function is understood in large parts. One particular aspect that is still un-
der investigation is the role the retina plays in development of the visual sys-
tem, where the retina shows specific activity patterns. Such activity has been
recorded from blind adolescent mice and is used here in order to verify the SSS’s
ability to analyse real data. Details on characteristics of these data follow next.

8.1.1 Retinal Waves

Several studies have reported a distinct kind of spontaneous spiking activity
in the retina that occurs during development: So called retinal waves occur in
many species before birth [Wong, 1999]. This form of activity can exhibit high
spatial coherence while travelling across the retina (Fig. 8.2) [Maffei and Galli-
Resta, 1990, Wong et al., 1995]. As the animal matures, the activity patterns
change from distinctive waves to chaotic [Demas et al., 2003] and they com-
pletely disappear shortly after birth [Sernagor et al., 2006, pp.265]. Until then,
the activity can be observed by mounting the retina onto a multi-electrode array
(MEA) [Meister et al., 1991, Wong et al., 1993], for example, and differences
both over time and across different species can be identified [Wong, 1999]. In
the following, these distinct wave-like activity patterns are used for an ad hoc
validation of the SSS’s ability to handle multi-unit data.

8.1.2 The SSS Applied to Retinal Wave Data

Evelyne Sernagor kindly provided multi-unit spike train data, which have been
collected from a neonatal retina of a Crx-knockout mouse [Furukawa et al., 1997,
Adams et al., 2008]. Spikes were extracted from the raw data with a voltage-

140

electrode
column

el
ec
tro
de

ro
w

I3I2I1 I4
time

Figure 8.2: Adopted from Demas et al. [2003]: Schematic visualisation of neu-
ral activity recorded from a multi-electrode array during four succeeding, non-
overlapping time-intervals (I1, I2, I3, I4) of equal length. Radius of circles pro-
portional to average firing rates of cells recorded with electrodes (white dots).
Line indicating wavefront in order to emphasise wavelike propagation of neural
activity.

threshold and binned with 1 msec resolution.3 No further modifications were
applied to the data before using them for network inference with the SSS.

In order to validate that the SSS reveals adequate networks, 3 succeeding
(5 second long) sections were extracted from the recording. For each of these,
networks have been learned by evaluating all parent configurations with up to 3
parents.4 Superimposing the resulting networks suitably onto the MEA shows
that revealed links predominantly connect nodes that correspond to highly ac-
tive electrodes (Fig. 8.3). As time progresses, the retinal wave travels across
the array; according to this, nodes in learned networks are linked differently,
such that their connectivity matches the centre of neural activity very well for
all three data-sections. Although none of the less active channels is completely
silent, no spurious links to or between them occur. These observations have
been found nearly identical for all choices for the shift constant (∆t = 1, . . . , 5),
such that results are only shown for the setting ∆t = 5. Unfortunately, factual
information about the retina is insufficient in order to predict the functional
connectivity that would be expected to be revealed from the data. Therefore, it
is not possible to evaluate the plausibility of learned networks in a quantitative
manner like in simulations (Chapter 7). For this real data-set the only certain
clues are that dynamics are local and that they obviously change over time;
learned networks should therefore also be local and changing over time. This

3Evelyne Sernagor and Chris Adams used a high density MEA for recording from a Crx-
knockout mouse [Adams et al., 2008]. The data were collected on postnatal day 7 (P7) and
Evelyne Sernagor applied a voltage threshold in order to extract the spikes from the raw data.
Note that photo-receptors in these knockout mice lack the outer segment, which contain the
photo-pigment; animals are therefore blind, so that abnormal effects can be observed in the
data.

4The SSS’s parameters were chosen as follows: decay constant d = 3−1 and shift con-
stant ∆t = 1, . . . , 5. The LAT has been determined from configurations with 3 parents.

141

time
electrode column

el
ec

tro
de

 ro
w

high low

neural
activity

Figure 8.3: Retinal data provided by Evelyne Sernagor: Three heat-maps of a
retinal activity wave travelling from left to right. Each heat-map shows activity
during a 5 second period that has been extracted from a recording made with
a MEA from a gene-modified mouse (see text for details). Squares correspond
to one electrode each and are arranged according to their position on the MEA.
Dependency structures revealed with the SSS are superimposed as networks such
that nodes match the corresponding activity-field of the electrode. (Squares
without nodes correspond to dead electrodes for which no data is available.)
Good agreement of network links with centre of neural activity is observed
throughout the time course.

is indeed what the results show: For each data-section, the interconnectivity of
learned networks closely matches the high spatial coherence of the dynamics;
and hence, as neural activity progresses, this change is reflected in the structural
differences.

The results so far show that differences in the data are plausibly reflected
in inferred networks. Likewise, one would expect that networks learned from
similar data are structurally related. That this is indeed the case can be shown
by extracting overlapping sections from the data: Some of the data are thereby
shared between different sections, such that networks inferred from them are
expected to be more alike than those learnt from sections without any overlap.
In order to test this for the retinal wave data, it was sectioned in six 10 second
long pieces with an overlap of 5 seconds for directly succeeding ones. Networks
were learned for all data-sections5 and compared to each other in a pairwise
manner. Similarity has thereby been assessed by edit distance, i.e. the number
of changes that have to be made to a network in order to transform it into
another. Given the adjacency matrices of both networks (Section B.1), the

5All parent configurations with up to 5 parents were evaluated exhaustively for all nodes.
The SSS’s parameters were chosen as follows: decay constant d = 3−1 and shift constant ∆t =
5. The LAT has been determined from configurations with 5 parents. Learned networks were
composed of all links in the 10 best scoring parent configurations of each node.

142

234 343 308 208 83 0

287 338 255 125 0 83

318 239 130 0 125 208

218 109 0 130 255 308

109 0 109 239 338 343

0 109 218 318 287 234
40

–5
0

se
c

45–55 sec

35–45 sec

30–40 sec

25–35 sec

20–30 sec

20
–3

0
se

c

25
–3

5
se

c

30
–4

0
se

c

35
–4

5
se

c

40–50 sec

45
–5

5
se

c

ed
it

di
st

an
ce

0

50

100

150

200

250

300

350

Figure 8.4: Edit distance of networks learned from retinal wave data split in
six overlapping sections (10 seconds long, 5 seconds overlap). Data-sections
given next to rows and columns, edit distance for each pair within correspond-
ing rectangle. Distances between networks learned from overlapping sections
(mean ≈ 111) are lower than to those inferred from data without any overlap
(mean ≈ 275). Similar data thus results in alike networks.

edit distance thus corresponds to the number of differing entries between the
two and thereby reflects their similarity: Unlike structures have have a high
distance, while identical networks have distance zero. Applying this measure to
all pairs of networks that were learned from the data sections shows the expected
outcome (Fig. 8.4): Networks show similarity to those that were inferred from
an overlapping section, but not others. This shows that the SSS performs a
consistent assignment of networks, since gradual changes in the data lead to
corresponding alterations in structure, but no abrupt variations.

In conclusion, the initial application of the SSS to real data yields results,
which are in good agreement with expected outcomes. On the one hand, this
is reassuring for the good results from earlier theoretical and simulation-based
investigations, and also, it is a positive indication for the score’ practical suit-
ability.

The initial test of the SSS on real data has been successful: Recovered networks
suitably reflect the wave-like dynamics in the data, which consisted of multi-unit
spike trains. Next, the SSS is applied to single-unit data from a different brain

143

rostral

caudal

subiculum

ventral

hippocampus

dorsal

hippocampus

cerebellum

olfactory bulb

spinal

cord

brain

stem

cerebral

cortex

entorhinal

cortex

a b

DG
CA3

CA1

medial

lateral

c
a
u
d
a
l

ro
s
ta
l

Figure 8.5: Adopted from Paxinos [1995]: Schematic illustration of rat brain
and hippocampal formations within (a), as well as distinctive cell organisation
within the hippocampus (b). a Whole rat brain schematics with highlighted
hippocampal formations. b Horizontal mid-hippocampus section showing fields
CA1 and CA3 (CA = cornu ammonis), and dentate gyrus (DG). Together with
the field CA2 (not shown) these are the principal components of the mammalian
hippocampus, where pyramidal cells are the primary neuron-type. Pyramidal
cells in the regions CA3 and CA2 are clearly larger than those in CA1 [Paxinos,
1995] and axons of cells in both CA3 and CA1 branch extensively within all the
hippocampus. Relatively cell-sparse layers lie above and below a single, densely-
packed layer of neuronal somata (labelled lines) in both the hippocampus and
dentate gyrus [Cooper and Lowenstein, 2002].

region: the hippocampus. In detail, hippocampal place cell data will be used in
order to demonstrate that the score consistently captures functional connections
between single neurons as well. This is shown in the next section.

8.2 Hippocampal Data

Phylogenetically, the hippocampus6 is one of the oldest parts of the brain. To-
gether with adjacent brain regions, it forms the hippocampal formation. In
mammals, this comprises the tube-like hippocampus, the dentate gyrus, the
subiculum and the entorhinal cortex (Fig. 8.5) [Cooper and Lowenstein, 2002].
The traditional concept of the hippocampus’ functional organisation in mam-
mals is the tri-synaptic circuit, which assumes the formation to be a closed
feed-forward loop of excitatory synapses. Current knowledge indicates that this
strictly serial design has to be extended by integration of diverse inputs from
other brain regions [Cooper and Lowenstein, 2002]. But despite open questions
concerning its functional organisation, it is widely accepted that the hippocam-
pus plays an important part in memory; especially its spatial aspects, as used
for navigation [Hanser, 2005].

6Greek origin hippokampus, meaning sea horse, referring to the shape of this brain region
[Cooper and Lowenstein, 2002].

144

di
am

et
er

1.
4

m
et

er

Figure 8.6: Hippocampal place cell data provided by Tom V. Smulders: Three
top views on cylindrical arena, each showing place fields of one place cell (record-
ings from rat). For each cell the animals location is marked with a dot whenever
the cell spiked (no filtering or normalisation by time spent in each particular
location has been applied). The three cells show selective firing: In their place
field(s) firing rates are high and lead to a dense accumulation of dots. Sponta-
neous activity can be observed outside the place fields as well, but spikes occur
far less frequent than within.

8.2.1 Characterising Hippocampal Place Cell Data

During investigations of the hippocampus of a freely moving rat, O’Keefe and
Dostrovsky [1971] have discovered cells that showed spiking activity only when
the rat was in a certain location of the maze. These cells have therefore been
termed place cells (Fig. 8.6). Since then, many researches have gathered in-
formation about these cells: During the first exposure to a new environment
place cells establish their preferred spiking location, named place fields, within
a few minutes; these usually remain stable during multiple exposures to the
same environment. Also, once the place fields are stable, an extension of the
maze does not affect the place fields in the original part of the maze signifi-
cantly [Wilson and McNaughton, 1993]. When the rat is exposed to a different
environment, even if it is equally shaped, previously active cells may become
silent, or have different firing preferences [Leutgeb et al., 2004]. Even though
place fields usually remain stable during repeated visits to the same environ-
ment, their shape can change or the preferred firing location can re-map, even
if the environment remains physically un-varied. This can, for instance, be trig-
gered by fear, and it has been suggested that re-mapping is a mechanism for
providing multiple representations of a single environment, dependent on its
current state [Moita et al., 2003]. Other findings concerning place cells are that
a local field-potential oscillation in the hippocampus, called the theta rhythm,7

is a prerequisite for place cell activity [Foster et al., 1989]. This oscillation’s

7Frequencies in the band of approximately 4-12 Hz are termed theta frequencies [Buzsaki,
2002, Vertes, 2005].

145

frequency is unaffected by the animal’s running speed [Czurko et al., 1999]; in
contrast, the firing frequency of a place cell depends positively on the speed at
which the rat traverses the dedicated place field [Zhang et al., 1998]. Place fields
that are established while visual cues are provided even stay stable when these
landmarks are removed [Muller et al., 1994]. Even more, they are unaffected by
complete darkness, and thus, they do not solely depend on visual information
[Quirk et al., 1990]. Some place cells have been reported to show directionality,
i.e. the traversing of the place field alone is not sufficient to cause the place cell
spiking, but also the direction of passing through it has an effect. This has, for
instance, been observed on linear tracks and on arms of an 8-arm-maze8. Direc-
tionality is explained to be induced by the shape of the maze, which retards the
rat from moving and looking in certain directions. This is in accordance with
experiments in a circular arena, showing directionality only for place fields near
the wall, but not centred ones; directionality is thus thought to be an intrinsic
property of edge fields. Observations of cells that are omnidirectional in a cir-
cular arena, but directional in the 8-arm-maze, further support the conclusion
that directionality is not a cell specific feature [Muller et al., 1994].

The precise role and function of place cells is still under investigation. How-
ever, early results already suggested that the hippocampus provides a cognitive
map, which serves spatial orientation purposes [O’Keefe and Nadel, 1979]. This
hypothesis had to be broadened due to findings in recent years. For example,
experiments showed that place cells are not solely dependent on location, but
also on different types of memory episodes9 [Wood et al., 2000]. Also, it is still
unclear if place cells code for the present position of the rat, the recently past
position (retrospective coding), or a future position (prospective coding).10 The
interesting properties of place cells raise the question of how their distinct char-
acteristics emerge and the recent discovery of so called grid cells [Hafting et al.,
2005, Heyman, 2006] provides some possible explanations: Like place cells, the
firing of grid cells is associated with particular spatial fields, but differently, grid
cells have several firing fields, which are arranged in a highly regular grid-like
fashion. Due to their similarity, grid cells have been investigated in experiments
analogous to place cells [Fyhn et al., 2007, Giocomo et al., 2007, Barry et al.,
2007, Hafting et al., 2008] and since the entorhinal cortex, in which grid cells
were found, is anatomically adjacent and functionally interconnected with the
hippocampus [Brun et al., 2002], models have been suggested in order to explain

8An 8-arm-maze is a regular starlike arrangement of straight branchings from a connecting
centre [Olton and Samuelson, 1976].

9Wood et al. [2000] observed that the place cell activity in the central stem of a connected
T-maze was dependent on the previous turning direction at the T junction.

10Modelling results presented by Barbieri et al. [2005] suggest that retrospective coding is
performed; however, the determined time-lag has to be verified and possible influence factors
on this, such as running speed or distance of visual cues are not yet accounted for.

146

the emergence of place-cells from grid-cells [Franzius et al., 2007, Molter and
Yamaguchi, 2008, de Almeida et al., 2009]. Finally, it should be noted that,
although most experimental work is done in mice and rats, place cells have also
been identified in the human hippocampus. But due to a very small exper-
imental basis, not much can be said about them; anyway, the few performed
investigations showed that human place cells basically match the properties that
have been identified in animals [Ekstrom et al., 2003].

8.2.2 The SSS Applied to Place Cell Data

Tom V. Smulders kindly provided hippocampal place cell data. The 40 minute
long data-set consists of 25 single-unit spike trains, which were recorded with
a MEA from hippocampus in a freely moving rat. When collecting the data,
video-tracking (with a temporal resolution of 50 Hz) has been used in order to
determine the animal’s position, which can therefore be linked to the neural
dynamics. Before using the data, the spike trains have been examined in order
to select 10 channels for which cells had designated place-fields. These data
were used at full resolution (1 msec bin-size) in the experiment described next.

Place cells exhibit broadly varying dynamics, which are associated with their
place fields (Fig. 8.6). As the animal traverses the arena different locations are
visited, which evoke responses of corresponding place cells. This relationship be-
tween spatial position and neural activity can be used for a validation of the SSS
on real single-unit data: Depending on the rat’s location, different dynamics are
observed, which are expected to impact on inferred networks. In order to test
this hypothesis, the data are partitioned according to the rat’s position. There-
fore, twelve different sections are defined near the wall of the arena (Fig. 8.7);
every pair of directly adjacent sections (e.g. 1&2, 2&3, 12&1) is then used to
partition the data: As long as the animal is in any one of the paired-sections, the
data of all channels is extracted. These data snippets are then concatenated to
one spike train data-set, for any section-pair.11 By construction, every of the re-
sulting twelve data-sets exhibits some overlap with two others. Networks learned
from these data are therefore expected to exhibit a certain degree of similarity;
for all others, in contrast, their structure should be different. Indeed, analysing
the data-sets with the SSS,12 shows that resulting networks are more alike when
corresponding to overlapping sector pairs (Fig. 8.8). This is basically true for

11In order to avoid for correlation artefacts when concatenating data snippets, these have
been separated by 20 time-bins of non-spiking activity on each channel.

12For learning networks, the parameters of the SSS were chosen as follows: decay constant
d = 0.15 and shift constant ∆t = 5. All parent configurations with up to 7 parents were
evaluated exhaustively. The LAT has been determined from configurations with 7 parents.
Learned networks were composed of all links in the 10 best scoring parent configurations of
each node.

147

0 1

1

0

x

y

arena

di
am

et
er

1.
4

m
et

er

12 1

2

5

3

67

8

49

10

11

Figure 8.7: Top view on cylindrical arena separated into twelve equally sized
sections (highlighted gray, labelled 1–12). The sections are defined by directly
adjacent sectors (∠30◦) of the arena that lie outside the white circle (with centre
x = 0.47, y = 0.5, radius r = 0.42). In order to account for tracking artefacts,
data points corresponding to positions outside the arena have been omitted.
The sections are defined such that the position of the animal is in one of them
most of the time; as will be shown later (Fig. 8.9), only few trajectories cover
the arena central (white circle).

148

3 & 4
2 & 3

4 & 5
5 & 6
6 & 7
7 & 8
8 & 9
9 & 10

10 & 11
11 & 12
12 & 1

1 & 2

3
&

4

2
&

3

4
&

5
5

&
6

6
&

7

7
&

8

8
&

9
9

&
10

10
&

11
11

&
12

12
&

1

1
&

2

0

10

15

20

25

30

35

40

5
ed

it
di

st
an

ce

8 15 18 15 26 25 22 25 28 34 11 0

13 18 17 16 23 24 21 28 33 39 0 11

34 33 30 29 26 27 24 21 10 0 39 34

28 27 24 23 20 21 18 15 0 10 33 28

27 22 19 18 15 16 13 0 15 21 28 25

20 13 6 9 12 13 0 13 18 24 21 22

27 22 17 18 1 0 13 16 21 27 24 25

26 21 16 17 0 1 12 15 20 26 23 26

11 8 5 0 17 18 9 18 23 29 16 15

14 7 0 5 16 17 6 19 24 30 17 18

9 0 7 8 21 22 13 22 27 33 18 15

0 9 14 11 26 27 20 27 28 34 13 8

︸︷︷︸

︸
︷︷

︸

arena-
sections

Figure 8.8: Edit distance of networks learned from hippocampal place cell data
split in twelve overlapping data-sections. Arena-sections (Fig. 8.7) that define
the data given next to rows and columns, edit distance (Section 8.1.2) for each
pair within corresponding rectangle. All except one pair of networks (corre-
sponding to data from sectors 10&11 and 11&12) that are expected to be similar
(white font) show relatively low distances. Minor deviations can be explained
by the various factors that might have influenced the dynamics of the place cells
(Section 8.2.1).

149

0 1

1

0

x

y

arena

di
am

et
er

1.
4

m
et

er

12 1

2

5

3

67

8

49

10

11

Figure 8.9: Top view on cylindrical arena with tracked locations of the rat
during the whole recording (40 min). Locations corresponding to twelve sections
(Fig. 8.7) indicated in different colours. As the dense accumulation of dots along
the boundary of the arena shows, the animal generally avoids the open space in
the middle. Short excursions away from the wall may be explained by chasing
for food pellets, which have been regularly dropped (every 20 seconds) in a
random location of the arena. However, behaviour is different for the inner
sector corresponding to section 12 (and partly overlapping to sector 11): Here,
numerous locations have been tracked further away from the arena-bound. The
reasons for the animal’s affinity to that particular location are unknown, as well
as its behaviour in the place (e.g. chasing, eating, or grooming).

all but one data-pair: Unlike for data from other overlapping sections, networks
corresponding to sections 10&11 and 11&12 show strong dissimilarities, which
need to be explained. The animal’s behaviour might provide a clue why net-
works differ strongly at these locations (Fig. 8.9): For most sectors the rat was
predominantly located near the arena-wall; for sector 12 (and partly sector 11),
however, the animal was observed more towards the middle. The place cell dy-
namics of these sections will therefore be influenced by movements towards and
away from the centre of the arena. This contrasts remaining sections, where
the animal’s trajectories mainly followed the boundary of the arena. Further,
direct inspection of the spike trains can explain the irregularities in the upper
left quadrant: Analysing all twelve data-sets shows that each of them contains
277–823 spikes with firing rates (averaged over time spent in section, as well as
all units) varying between 10–34Hz. Data from sections 11&12 only contains
277 spikes and it shows the lowest average firing rate; for sections 10&11 spike
rates are minimally higher (≈ 12Hz), but contain nearly three times as many

150

spikes (787 in total). The differences in spike-counts suggest that the network
for sections 10&11 has been more influenced by the dynamics in section 10 (678
spikes) than by those in section 11 (109 spikes). Similarly, about 70% more
spikes can be observed in section 12 (168 spikes) than in section 11; the inferred
network for sections 11&12 might therefore represent dynamics in section 12
more than those in section 11. Together, although the two networks were in-
ferred from data with overlap in section 11, they both might (over-)represent
the dynamics from non-overlapping sections 10 and 12, for which similarity is
not expected.

In conclusion, the observations from hippocampal data generally confirm two
expectations: (1) Different dynamics result in unlike structures, and (2) simi-
lar dynamics also lead to comparable networks. The SSS thus assigns steady
scores, such that the dissimilarity of results across data-sets is known to reflect
differences in functional connectivity; these were secured in the construction of
the data and learned networks reflect them correctly. Like for the retinal data
(Section 8.1), the results from single-unit data give positive indications for the
SSS’s applicability to real data.

With the closing of this chapter, the investigation of the SSS comes to an end.
The new score has been examined theoretically (Chapter 4) before assessing it
in several simulations (Chapter 7). Finally, in this chapter, the SSS has been
successfully tested on real data of two different kinds. In the next chapter, the
results of these comprehensive studies are summarised and reviewed.

151

Chapter 9

Conclusions

This thesis contributes to the field of biological data analysis techniques using
graphical models (Chapter 1). Existing methods were discussed (Chapter 2)
and a new concept has been introduced: the Snap Shot Score (Chapter 3).
The characteristics of the novel score were both illustrated in examples and
investigated theoretically (Chapter 4). Thereafter, the SSS was related to the
BD scores in order to further improve understanding of its potential strengths
(Chapter 5). Considerations about how these can be validated and quantified
resulted in a neural simulation framework (Chapter 6) with which the SSS was
assessed (Chapter 7). Following the good performance for simulated data, the
score was applied to real single- and multi-unit spike trains for which results are
similarly encouraging (Chapter 8). Finally, in this chapter, key points of these
comprehensive studies are summarised briefly.

9.1 Contributions of This Work

In this thesis two novel ideas have been presented: The SSS itself and the plau-
sibility concept, which was applied for the assessment of the score. Throughout
this work, the SSS has been investigated and simulations showed its good per-
formance in a broad range of situations. Piloting applications of the score to
real data were also positive, such that, despite its simple concept, the SSS seems
suitable for the analysis of neural spike train data.

The new SSS has been compared to the BD scores with which neural relation-
ships were successfully revealed earlier. In contrast to the SSS, the BD scores
can be used to infer higher order DBNs, which can represent different time-lags
precisely; spike train data, however, can be problematic for these scores and
careful transformations might be needed in order to make the scores applica-
ble to them. Additionally, inference of higher order models is computationally

152

far more challenging than that of 1st order models, whose demands correspond
to that of the SSS; but the SSS can reveal excitatory relations over multiple
time-lags. Altogether, the SSS does not substitute, but complements existing
methods: It is a computationally highly efficient analysis technique to reveal
information flow networks, which, by their causal excitatory semantics, charac-
terise the data from a new perspective.

Besides the SSS, a new approach to assess neural network inference tech-
niques under conditions of partial observability has been introduced — the
plausibility concept. This novel idea makes a small but crucial contribution
to the assessment framework, as it allows accounting for observational equiv-
alence. Despite its simplicity, I am not aware of similar concepts being used
for the systematic evaluation of methods for network learning; these have so
far either been investigated under full observability (ignoring potential obser-
vational equivalence) or under partial observability by checking the quality of
revealed networks manually. With the plausibility approach, techniques can
now be assessed both more accurately and automatically; it allows for compre-
hensive neural simulation series, which can yield valuable insights that could
hardly be gained before.

It is inherent to research that any resolved issue entails at least a dozen new
questions; each of them requiring substantial work in order to find an answer.
Results shown in this thesis are not any different. The following section therefore
points to some open questions and interesting ideas for future research.

9.2 Directions for Future Research

As part of the characterisation of the SSS, it has been outlined how the score can
be altered and generalised (Section 4.5). Suitable modifications might render
the score applicable to other neural time-series data besides spike trains: e.g.
from calcium imaging [Stosiek et al., 2003], fMRI [Jezzard et al., 2001, Matthews
and Jezzard, 2004], or EEG [Nunez and Srinivasan, 2007]. Also, regardless of
the data-source, the snapshot-concept might prove helpful for synchrony detec-
tion (by choosing an extremely small shift constant or even setting it to zero).
Anyway, using the SSS for data analysis — whether as defined in this work or
a modification of it — can only be beneficial if the semantics of learned net-
works are clear. The understanding of networks conveyed in this thesis might
be greatly improved by explaining the SSS in a fully Bayesian approach. The
simplistic neuron model suggested in section 3.1.1 could be a starting point for
such work.

Future simulation-based work to assess network inference techniques will

153

involve large networks, many different topologies, and parameter series; corre-
sponding results will need to be automatically evaluated with a minimum of
human interaction. Therefore, the new approach to assess learned networks
by their plausibility is a potential solution. This concept could, for instance,
be refined by not only classifying links as plausible or not, but by gradually
weighting them. For example, a link spanning over several time-lags could be a
regarded as less plausible than a path composed of short links that explain the
same dependency. Sophistications like this would make it possible to exactly
specify the desired outcome of an analysis; whether results of the technique un-
der question match the wanted ones can then be automatically determined.

Finally, the SSS should be applied in order to address biological questions.
Learning networks in practice often involves heavy computations, but the waiting-
time for these to finish may be highly appreciated in order to realise what learned
networks mean in the specific context of the data. Once it has been understood
how to query the results, the SSS serves as a powerful tool that can help to gain
novel insights.

154

Appendices

155

156

Appendix A

Modelling and Comparing

Neural Dynamics

Models of neural systems are simplified descriptions, which picture nature as
idealised prototypes. With secondary aspects omitted, key features of the sys-
tem they describe can be studied effectively. Often models can be used as
generators of artifical data, such that extensive data sampling becomes possible
in silico. This potential is utilised in the assessment framework for the SSS
(Chapter 6) where spike train data is generated with neuron models, which are
presented next. Additionally, the comparison of neural dynamics by using spike
train metrics will be discussed later (Section A.2). Such metric is key to the
alternative assessment framework presented in section 6.5.

A.1 Models of Neural Dynamics

Neurons have a diverse and complex morphology, which attributes to their wide
range of dynamics [Yuste and Tank, 1996, Magee, 2000]. Due to this enormous
diversity neuron models are characterised by balance of detail and abstraction,
depending on which features are regarded essential. This can, for instance, be
seen by the different spatial scales at which neural circuits are modelled: Starting
from population models, which are used to describe the dynamics of a neural
assembly without considering individual neurons, down to multi-compartment
models of single cells. (See Herz et al. [2006] for a review.) While population
models can replicate the dynamics of several brain regions they give no insights
into the role each individual neuron plays. Vice versa, models which give a
reasonable close-up description of a single cell are generally to complex to build
large neural networks. It is thus not surprising that until now very few attempts

157

membrane
potential

LIF
neuron

post-synaptic potentials
(excitatory)

spike threshold

spike output

time

incoming
synaptic connections

axon

a b

resting potential

Figure A.1: Schematic representation of a point neuron model and its dynamics
according to the LIF-model. a The model neuron receives synaptic inputs from
connected neurons and outputs to one or more units. A point neuron model
does not include a functional description of dendrites or axons but the cell body
only. b LIF neuron receiving excitatory post-synaptic potentials, which rise
its membrane potential. Once the neuron’s spike threshold is reached it fires
a spike and resets the membrane potential to resting state. At any time when
the membrane potential is different from the resting potential, a leakage current
causes a gradual convergence towards it. This leakage determines the time-span
over which temporal summation of synaptic inputs occurs.

have been made in order to model large neural ensembles at close to reality, sub-
cell level [Markram, 2006]. Regarding the needs of this thesis, single cell models,
which can be used to generate adequate neural dynamics for small networks,
are sufficient. Two important model types, which are suitable for this task,
are presented next: the leaky integrate and fire model and the Hodgkin-Huxley
model.

A.1.1 The Leaky Integrate and Fire Neuron Model

Probably the most prominent representative for single cell models is the leaky
integrate and fire (LIF) model (e.g. [Stein, 1965] or [Dayan and Abbott, 2005,
pp.162]). A LIF neuron is basically an accumulator of synaptic inputs, which
shift its membrane potential, and whenever the potential reaches a threshold a
spike is emitted. Additionally, the neuron is leaking in the sense that it tends
to slowly approach its resting potential (Fig. A.1, Algorithm 2).

The LIF neuron model is often attributed to Lapicque’s work back in 1907
[Lapicque, 1907] (e.g. [Abbott, 1999, Herz et al., 2006, Richardson, 2007]), but
see Brunel and van Rossum [2007] for a recent clarification. Although the model
is a rather phenomenological description, which has been overcome by insights
from work done by Hodgkin and Huxley [1952], LIF models are still popu-
lar today as ongoing work on variants of the model show: for example, the
quadratic (QIF) [Ermentrout and Kopell, 1986], exponential (EIF) [Fourcaud-
Trocme et al., 2003], or non-linear integrate and fire models [Richardson, 2007].

158

Algorithm 2 Simulation of a leaky integrate and fire (LIF) neuron model. The
membrane potential of each neuron is updated successively based on incoming
potentials and its leakage. For simplicity the leakage function leakage(potential)
can be chosen as a constant.

loop
for all neurons do

determine new membrane potential:

potential(t + 1) := potential(t) +
∑

synaptic inputs

− leakage (potential (t))

if (potential(t + 1) ≥ spike threshold) then
emit spike and
set potential(t + 1) := resting potential

end if
end for

end loop

The striking simplicity of the LIF model leads to low computational costs of
neural simulations using these models [Herz et al., 2006], which makes them
suitable even for large network simulations [Vogels et al., 2005]. Unfortunately,
they may fail to explain certain phenomena, which can only be described by
more detailed models [Traub et al., 2005]. But large scale network simulations
at a high level of detail require enormous computational resources [Markram,
2006], which may not be accessible. Additionally, apart from computational
aspects, determining adequate parameter settings for complex models can pose
a major problem.

As already mentioned above, Hodgkin and Huxley [1952] presented ground-
breaking work in which they suggest a neuron model that is far more precise
than the LIF model. Although their model has not been used for simulations
presented in this thesis, the model is briefly introduced next; afterwards, it will
be explained why preference has been given to the simpler LIF model.

A.1.2 The Hodgkin-Huxley Model

In 1952, Hodgkin and Huxley presented their work on the squid giant axon
[Hodgkin and Huxley, 1952], which included a model that gave a detailed expla-
nation of the mechanisms involved in generation of an action potential. Partly
for this important element of their work, in 1963, they have been awarded the
Nobel Prize “for their discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central portions of the nerve cell

159

membrane”.1

The model proposed by Hodgkin and Huxley (nowadays known as HH-
model) describes the dynamics of the membrane potential in a squid’s giant
axon. Changes in voltage across the membrane are due to in- and out-flux of
different ions (Sodium, Potassium, Chloride, etc.). The HH-model not only ac-
counts for the actual membrane conductance for the major ions involved, but it
even includes the corresponding causes: the probabilistic opening and closing of
gates of particular ion channels, which are described jointly for a large number
of channels. These details can be found in the literature ([Hodgkin and Huxley,
1952] or [Dayan and Abbott, 2005, pp.173], for example), but in its essence the
HH-model reads as:

dV

dt
= − 1

C

gNa(V, t) · (V − ENa)︸ ︷︷ ︸
Sodium current

+ gK(V, t) · (V − EK)︸ ︷︷ ︸
Potassium current

+ gl · (V − El)︸ ︷︷ ︸
leakage current

 .

(A.1)
Changes in membrane potential V are dependent on the capacitance of the
membrane C, as well as a current composed of three components: Sodium,
Potassium, and a leakage current. These currents are determined by two parts,
which are the conductances gNa, gK, and gl for the particular ions and their
corresponding driving force, i.e. the difference between the current membrane
potential V and the equilibrium potentials ENa, EK, and El. Note that the leak-
age conductance gl is a constant while the other two, gNa and gK, are functions
of both voltage and time. In the original publication [Hodgkin and Huxley, 1952]
the conductance functions are characterised by additional differential equations,
which describe the large scale effects of the probabilistically opening and closing
gates of involved ion channels.

Compared to the phenomenological description a LIF model gives about a
spike generating neuron, the HH-model is obviously much more sophisticated.
By accounting for many details it can for instance explain the refractory period,
which needs to be explicitely added to a LIF model, if desired. However, the
HH-model shows that the LIF model is not fundamentally wrong in the first
place. And of course the level of detail in the HH-model comes with a com-
putational cost when simulating it. This is due to the numerical integration
of the differential equations, which must be updated in two domains: voltage
and time. Simulations with the HH-model are therefore generally restricted to
relatively small neural ensembles. The output of such simulation are voltage
traces of each neuron’s membrane potential.

The techniques discussed in this thesis cannot be directly applied to volt-
1Quotation from the official web site of the Nobel Foundation:

http://nobelprize.org/nobel prizes/medicine/laureates/1963/index.html

160

age traces, but to discrete data only, like spike trains. In order to apply these
methods, the voltage trace data has to be converted into spike trains by dis-
cretising time and choosing a voltage-threshold, such that each neuron’s activity
can be classified as spiking or non-spiking depending on whether the threshold
is exceeded or not. Obviously, all sub-spike-threshold dynamics are lost by this
conversion; the main benefit of the HH-model — its adequate description of
exactly these non-spiking dynamics — would be lost. Using the model any-
way would result in high computational costs, which is problematic for the
large numbers of simulations that had to be performed for the presented work
(Chapter 7). Except for prototyping, the HH-model has thus not been utilised.
Instead, a LIF model has been chosen as a manageable and satisfying compro-
mise of complexity and computational costs. Data generated with this model is
sufficient for the assessments framework, which requires reasonable spike trains
of multiple correlated units.

In section 6.5 an alternative assessment framework for neural network inference
techniques is presented. One of its components uses spike train metrics and the
following section is a brief primer on this concept.

A.2 Spike Train Metrics

Two spike trains can differ in a variety of ways, for example by their maximum,
average, and minimum spike rates or by their spike patterns, such as bursting or
regular spiking. But even two similar spike trains, both showing regular spiking
at the same rate, will most likely differ in the exact number and timing of spikes.
Identifying such subtle differences between two spike trains is easily done by a
cheap comparison between the two; however, the resulting list of differences is
likely to be long and more confusing than helpful. In contrast, if the difference
between the spike trains was summarised by a number that actually reflects their
(dis)similarity it would be much easier process and understand large volumes
of data. Such measure of alikeness is provided by spike train metrics [Victor,
2005].

Spike train metrics measure the distance between two spike trains by trans-
forming one into the other (Fig. A.2). Therefore, individual spikes can be in-
serted or deleted, as well as shifted in time. Each of these operations has a
particular cost; commonly the costs are 1 for the insertion and deletion of a
spike. The costs for shifting a spike are proportional (by a constant factor q)
to the time difference of the shift. Generally a large number of possible combi-
nations to transform one spike train into the other exist; the cheapest of these
conversions defines the actual distance as its total cost. Very different spike

161

A

B

A

B

a

b
time

shift by ∆t1

shift by ∆t2

shift by ∆t3

shift by ∆t4

insert

insert

delete

costs

1

1

1

q∆t1

q∆t2

q∆t3

q∆t4

Figure A.2: Adopted from Victor [2005] and extended: Working principle of
a spike train metric illustrated schematically. a Two different spike trains A
and B. b Transformation of spike train A to spike train B with 7 elementary
steps. The total cost of the transformation is the sum of the conversion steps
involved. The distance between A and B is the cost of the cheapest possible
transformation.

trains thus have large distances whereas identical spike trains have distance
zero.

The basic idea of spike train metrics sounds relatively simple, but it can
actually be quite complicated to calculate them. This is due to the large num-
ber of possibilities to combine operations that convert one spike train into the
other. Evaluating all transformation in order to find the cheapest one can
be intractable for computational reasons, especially for long spike trains with
many spikes. Sequence alignments in genetics face a similar problem: In order
to derive evolutionary distances DNA sequences are analysed with respect to
their similarity [Eddy, 2004]. These sequences are defined over an alphabet of
4 letters, which correspond to the different nucleotides.2 A successful mecha-
nism for their distance evaluation could thus be adopted to spike trains, which
only consist of 2 letters corresponding to spiking- and non-spiking events. In-
deed, an efficient algorithmic implementation has been proposed [Sellers, 1974]
and adopted to evaluate spike train metrics [Victor and Purpura, 1996]: Let
Sa = (a1, . . . , an) and Sb = (b1, . . . , bm) denote the spike times of two spike
trains with n and m spikes respectively. Their spike time distance Gn,m is then

2The four nucleotides adenine, guanine, cytosine and thymine are commonly abbreviated
with letters A, G, C, and T respectively [Mount, 2004].

162

given by the by the recursion

Gi,j = min


Gi−1,j + 1︸ ︷︷ ︸
costs if spike

ai deleted

, Gi,j−1 + 1︸ ︷︷ ︸
costs if spike in-

serted to match bj

, Gi−1,j−1 + q|ai − bj |︸ ︷︷ ︸
costs if spikes ai and

bj shifted to match


,

where Gi,j = 0 if min{i, j} ≤ 0 .

(A.2)

This equation shows the role of the cost parameter q for shifting spikes in time:
It balances the sensitivity between spike-count and relative timing; shifting a
spike by 1/q is as costly as inserting or deleting one spike [Victor, 2005].

So far discussed were spike time metrics, which use the absolute time-points
of each spike train; another type of metric, so called spike interval metrics,
considers the times in between spikes [Victor and Purpura, 1996, 1997]. In
detail, given the spike time-series Sa = (a1, . . . , an) and Sb = (b1, . . . , bm) of
two spike trains, interval metrics do insert, remove, or shift spikes; however,
this is not done in order to match time-points of both series. Instead such
metric considers series that are derived from the spike times: their inter-spike
intervals (ISI), i.e.

ISIa = (a2 − a1, a3 − a2, . . . , an − an−1), and

ISIb = (b2 − b1, b3 − b2, . . . , bm − bm−1) .
(A.3)

Spikes are added, deleted, or moved at a particular cost in order to change the
corresponding inter-spike intervals, which are ultimately matched to each other.
The algorithmic implementation of the distance calculation is analogous to that
of spike-time metrics [Victor, 2005].

Each of the two types of metrics has advantages in particular situations.
For example, spike time metrics can be used in order to analyse data collected
during repeated stimulus presentations. Aligning spike trains with the stimu-
lus facilitates to measure absolute time response variability between different
instances of the stimulus. In situations where spike trains cannot be precisely
aligned, these metrics could result in high distances due to relative shifts of
spike trains. Under these circumstances spike interval metrics can be used in
order to compensate for the misalignments.

163

Appendix B

Graphs and Their Number

Networks play a central role in this thesis; therefore, this chapter gives a brief in-
troduction to the mathematical concept of graphs, which can be used to formally
represent networks. For practical application of network inference techniques,
it is important to know the number of potential networks in order to decide on
appropriate methods for learning them. Therefore, classes of graphs that are
related to techniques discussed in this thesis will be analysed with respect to
their size and characteristics of their elements.

B.1 Graphs

Networks can be found in a variety of domains and are increasingly becoming
subject to investigations [Albert and Barabasi, 2002, Bornholdt and Schuster,
2003, Sporns et al., 2004, Borgatti et al., 2009, Lazer et al., 2009, Hidalgo et al.,
2009, Bullmore and Sporns, 2009]. Mathematical graph theory provides some
of the essential framework in order to formalise and perform these studies: An
abstract, non-visual notion of networks, which will be introduced here. As graph
theory is a field on its own [Bollobs, 1998, Diestel, 2006], the following definitions
and comments are restricted to network types discussed in this thesis; they thus
do not cover undirected graphs or multi-graphs (where multiple links between
any two nodes can exist) in particular. The focus is instead on simple directed
graphs according to the following

Definition 7 (Graph) A graph is a pair of two sets G = (V,E). The ele-
ments of V = {v1, . . . , vn} are called vertices and those of E = {e1, . . . , em} are
called edges. Each edge is a tuple of two vertices ei = (va, vb) and represents a
connection from vertex va to vb; sometimes denoted as va → vb.

164

Common terminology calls the starting node of a link a parent of the destination
node (child). The family of a node comprises the node itself together with its
parents.

Similar to particular node-sub-groups, connections between different nodes
or those linking a node with itself have specific names: A link connecting a node
with itself is called a loop. Multiple links can be combined in order to form a path,
which is a series of (directed) links in which the origin of all links equals their
predecessors’ destination. (Single links are considered paths themselves.) The
length of a path is defined as the number of chained links. Just as a loop links
a node to itself it is also possible that a path starts and ends at the same node.
Such paths and loops are both called cycles. Bayesian networks (Section 1.2.1)
are associated with graphs in which no cycle exists. These graphs are therefore
called directed acyclic graphs (DAGs).

The abstract description of a graph as two sets, vertices and edges (Def. 7),
can be easily represented as a network and vice versa: Each vertex is represented
by a node and directed links connect nodes according to edges in the graph.
Another way to represent graphs uses a matrix and is given in the following

Definition 8 Let G = (V,E) be a graph with n vertices V = {v1, . . . , vn}. The
adjacency matrix A = (aij)i,j∈{1,...,n} of the graph is defined by

aij =

1, ∃ e = (vi, vj) ∈ E, i.e. a link vi → vj exists,

0, otherwise .
(B.1)

In order to simplify notation, nodes vi are often identified by their index num-
ber i. The adjacency matrix can then be read as: The parents of node j are those
rows i where aij = 1. Note that the adjacency matrix fully specifies the size
and connectivity of a graph. And vice versa, every matrix with entries ∈ {0, 1}
defines a graph. There is thus a one-to-one relationship between graphs and
matrices whose usefulness will become evident in the following section. An-
other aspect of adjacency matrices will be utilised for argumentation as well:
Re-ordering nodes vi with respect to their index i shuffles rows and columns
in the adjacency matrix. This does not affect the structure of the graph, but
only the position at which a link is indicated in the matrix. By sorting nodes
appropriately the adjacency matrix can often be formatted such that essential
features of the graph become clearly visible.

The basic formalism in order to describe graphs will be used to characterise and
count structures that belong to a particular class. Classes of graphs that will be
discussed are associated with the different kinds of graphical models presented
in this thesis. Such knowledge is needed for practical runtime estimates. It

165

further helps to identify model-specific optimisation potential of methods used
for learning networks.

B.2 Classes of Graphs and Their Number

The graphical models discussed in this thesis differ with respect to their particu-
lar approach to modelling stochastic dependencies. For example, static BNs en-
code the factorisation of a probability distribution that describes instantaneous
interactions between variables; dynamic BNs represent time-lagged correlation.
Conclusively, even if the same variables are represented in either model, the BN
and the DBN differ substantially: First, the number of network nodes differs
as each variable is represented by one node in the BN, but multiple times in
the DBN — once per time-layer (e.g. Fig. 1.3bc on page 15). Further, in a
BN nodes can be connected in any way, as long as the resulting graph remains
acyclic; in DBNs only links from nodes in previous time-layer to the ones in the
current time-layer are allowed. Each model type imposes different restrictions
on the graph’s structure. Hence, each model can be associated with a distinct
class of graphs, i.e. the set of all structures that are consistent with the model’s
restrictions. Apart from theoretical curiosity, these classes are important in
practical applications. The high dimensionality of realistic data causes high
computational demands of network inference, which should not be increased
unnecessarily by evaluations of inconsistent network structures, for example. In
order to ensure that only sound structures are considered the characteristics of
potential graphs must be known. It is also helpful to know their number, which
can be used for run-time estimates of the analysis. These issues are therefore
addressed in the following sections in which classes related to different model
types are discussed separately.

B.2.1 The Snap Shot Score’s Graph-Classes

The SSS value of a parent configuration reflects the degree to which high activity
of parent nodes is followed by spikes of the child; child spikes that occur within
the lag-window of the score (Section 3.1.1). Correlated activity between the
parents and the child is thus required to be time-lagged, such that past activity
of the parents can be interpreted as determining the present activity of the child
[within the limits imposed by observational equivalence (Section 1.4.2)]. The
time-lag of the child’s response to the parent(s) in not precisely known, but
it can only be specified to be within the score’s lag-window, which generally

166

comprises multiple time-lags (Section 5.1).1 Parents of a node are represented
as entities from within a common past — ranging back according to the lag-
window. Graphs associated with the SSS thus represent each node twice: once
in the past and once in the present. For each of n nodes in the present there are
n potential parents from the past, which can be combined to 2n different parent
configuration. The parent configurations of different nodes can be combined
in any way, such that there are 2n·n possible graphs. Inspecting the adjacency
matrices associated with the graphs shows why these numbers are correct:

The set of vertices V comprises 2 · n elements since any of the n

variables is represented twice: in the past and in the present. Any
link between these nodes which is directed forward in time is valid;
such would correspond to an entry 1 in the adjacency matrix, which
has 2 · n rows and columns. Out of its 4 · n2 elements only n2 cor-
respond to appropriate links; links within either time-layer or those
directed backwards in time cannot take the value 1. The vertices of
the graph can thus be re-ordered such that its adjacency matrix A

has the following form:

A =

 0 0

A∗ 0

 ∈M [2n · ×2n, {0, 1}] ,

where A∗ ∈M [n× n, {0, 1}] .

(B.2)

Hence, since any combination of parents is valid for each node and
because each node’s configuration can be combined with that of all
other nodes, the n2 entries in the matrix A∗ can take any com-
bination of values {0, 1}. Simple combinatorics then shows that
[#{0, 1}]n

2

different combinations exist, each of which corresponds
to a different graph. The number of parent configurations of any
node is the number of combinations that can be found in its partic-
ular column in the adjacency matrix. There are n elements in the
column vector which can be non-zero in any combination; hence,
[#{0, 1}]n vectors corresponding to valid parent configurations ex-
ist.

The size of the graph-class can be used to visualise its enormous growth, which
we find to be [Bronstein et al., 1999, pp.373]:

d

dn
2n2

= ln(2) · 2n · 2n2
. (B.3)

1Alternatively, parents can be understood to be in the present time-layer from which they
determine the child’s future. In this equivalent view the precise timing of the parents is known
whereas the child’s response can vary within the SSS’s lag-window.

167

Table B.1: Graph-class sizes summary for the SSS. (Number of variables n,
NA not applicable.)

number of parent number of

class description configurations graphs

all possible 2n 2n2

excluding self-excitation 2n−1 2n(n−1)

≤ k links NA
∑

i=0,...,k

(
n2

i

)
≤ k links, no self-excitation NA

∑
i=0,...,k

(
n2−n

i

)
≤ pmax parents per node

∑
i=0,...,pmax

(
n
i

) [∑
i=0,...,pmax

(
n
i

)]n
≤ pmax parents per node,

∑
i=0,...,pmax

(
n−1

i

) [∑
i=0,...,pmax

(
n−1

i

)]n−1

no self-excitation

The immense size and rapid growth of the graph-class calls for sensible restric-
tions in practical application. Such might be the exclusion of self-exciting con-
figurations (where a node is its own parent). This imposes a restriction on the
adjacency matrix A∗ (whose diagonal elements must be zero in this case) and
leads to a reduction in potential parent configurations and networks. Analogous
to the combinatorial reasoning outlined in detail earlier the resulting numbers
were derived; these are summarised in Table B.1.

Further restrictions on graph structure could be a limit on the maximal
number total links or parents per node, for example. Such limitations might be
reasonable when relations in the studied system are known to be sparse. How-
ever, they might also be purely enforced by computational constraints affecting
high-dimensional data-analysis; limiting the number of links can then be used
in order to reduce the number of potential networks (Table B.1).

As the next section will show, graph-class sizes of the SSS are equal to that of
1st order DBNs. But, for higher orders the class of DBNs is much larger.

B.2.2 Graph-Classes of Dynamic Bayesian Networks

Links in DBNs describe time-lagged influences of variables on each other. Thereby
the consensus is that causes must precede effects; links are directed forward in
time such that they end in the time-layer of the presence (Fig. 1.3bc on page 15).
Variables can be cause and effect at the same time; effects can even be their

168

own cause. There are no restrictions on which links can occur jointly in the net-
work. The special structure of these graphs can be recognised if the vertices are
ordered such that nodes in the present time-layer have lowest indices; followed
by nodes in the previous past layer, and so forth:

Consider a mth-order DBN with n variables. The corresponding
graph has n · (1 + m) vertices V =

{
v1, . . . , vn·(1+m)

}
, which can be

ordered such that

vertex vi is in time-layer t−
⌊

i− 1
n

⌋
. (B.4)

In other words, the first n vertices v1, . . . , vn correspond to the
present time-layer t; the next n vertices vn+1, . . . , v2n are in layer
t − 1; and so forth. Using this ordering, the structure of the adja-
cency matrix A can be deduced from the characteristics of the graph:
All links start in past time-layers and terminate in the present time-
layer t only. Since no other links are possible, all elements in A

corresponding to links starting in layer t or ending in a layer differ-
ent than t must be zero. These are the first n rows and all except the
first n columns; the adjacency matrix A therefore has the following
form:

A =

 0 0

A∗ 0

 ∈M [n · (1 + m)× n · (1 + m), {0, 1}] ,

where A∗ ∈M [n ·m× n, {0, 1}] .

(B.5)

The adjacency matrix A of a DBN is fully determined by the rectan-
gular sub-matrix A∗. All elements of A∗ can take two values {0, 1}
independent of each other such that the number of different DBNs
corresponds to the number of possible matrices A∗.

This analysis yields a total of 2m·n2
different graph structures (i.e. 2m·n parent

configuration per node). In comparison, there are at least as many DBNs as
graphs in the SSS’s class. The same is true for the growth of this class with
respect to the number of nodes n; this is given by [Bronstein et al., 1999, pp.373]:

d

dn
2m·n2

= ln(2) · 2nm · 2n2
(B.6)

and equals that of the SSS [equation (B.3)] for order m = 1. For higher orders,
however, the number of DBNs grows much faster, such that DBNs clearly out-
number graphs of the SSS. This is due to the fact that DBNs, in contrast to
the SSS, can capture the exact time-lag of a parent to its child (Section 5.1).

169

Table B.2: Graph-class sizes associated with DBNs. (Number of variables n,
model order m, NA not applicable.)

number of parent

class description configurations number of graphs

all DBNs 2m·n 2m·n2

≤ k links NA
∑min(k,mn2)

i=0

(
mn2

i

)
≤ pmax parents per node

∑min(pmax,mn)
i=0

(
mn
i

) {∑min(pmax,mn)
i=0

(
mn
i

)}n

As the equation above already shows, this precision comes at the cost of many
potential networks. Investigating the dependence of the number of DBNs with
respect to the order m,

d

dm
2m·n2

= ln(2) · n2 · 2m·n2
, (B.7)

we find even larger growth although the number of variables n stays unchanged.
The comparison to the class of the SSS shows that, even for moderate numbers
of nodes and small orders, the number of DBNs can be extremely large. In prac-
tical application it is therefore common to restrict the graphs by the number of
total links or by a maximum number of parents per node. The sizes of these
classes are summarised in table B.2.

Graph classes for the SSS and DBNs could be easily characterised by analy-
ses of their adjacency matrices. These could then be used with combinatorial
arguments in order to determine the size of the class. The next section illus-
trates that such simple solution is not always possible: Counting static BNs is
significantly more complicated.

B.2.3 Graph-Class of Bayesian Networks

Non-dynamic or static BNs have been introduced as a simple illustration of
probabilistic graphical models (Section 1.2.1). BNs do further get used by the
BD scores: When learning DBNs with these scores they are implicitly converted
to BNs (Section 2.2.6). Here their associated graph-class is discussed not only
for completeness reasons, but also because BNs give a good example of how a
relatively simple restrictions on the structure of a graph can render counting its
elements highly complicated.

As a BN represents a factorisation of a probability distribution its graph

170

structure will always be acyclic;2 i.e. it is a directed acyclic graph (DAG)
(Section B.1). In order to determine whether a given graph is acyclic or not
it is not sufficient to determine properties of each node’s parents separately.
Instead, the full network, i.e. its entire adjacency matrix, must be analysed at
once to ensure acyclicity. This is because a cycle can be up to n− 1 links long,
when each node is visited once. Inspecting parent configurations can only reveal
loops, but no cycles involving 2 or more links. In order to identify the latter
all possible paths in the graph must be analysed for which the full adjacency
matrix needs to be considered. As a consequence of this, the class of DAGs
contrasts those of the SSS and DBNs for which the number of each nodes’ parent
configurations was sufficient to derive the number of graphs; DAGs cannot be
counted in a simple way. However, in 1973, Robinson [1973] and Stanley [2006]
independently derived the corresponding formula: The number of DAGs an with
n vertices is given by the recursion

a0 = 1, an =
n∑

k=1

(−1)k−1

(
n

k

)
2k(n−k)an−k for n ∈ N . (B.8)

This formula does not convey an intuitive understanding of the actual number
of DAGs. However, theoretical investigations about its asymptotic behaviour
are easier to comprehend [Bender et al., 1986, Bender and Robinson, 1988]:

an ∼ n!
2(n

2)

Mpn
for p ≈ 1.488 . . . , M ≈ 0.474 (B.9)

The value of the fraction increases rapidly, as can be seen by re-writing the
numerator to 22−1(n2−n): This super-exponential growth exceeds the exponen-
tial growth of the denominator. In total the number of DAGs is thus quickly
growing with respect to the number of nodes. The complications involved in
counting DAGs give an idea of the complexity to number graphs that arise
from constraints additional to acyclicity, e.g. a maximum on the number of
links or parents per node. Corresponding results can probably be found in the
mathematical literature, but no attempt is made here in order to summarise
them.

Additional to the size of the DAG-class, it would be interesting to under-
stand the structure of its elements. As already mentioned, a simple and specific
characterisation is not possible; however, the adjacency matrix of any DAG
has interesting features, which at least facilitate a glimpse on the structure of
this class. This is outlined in the following sections in which two approaches

2This follows directly from the factorisation via the chain rule in equation (1.10) (page 11)
by which dependencies are never dispersed in a cyclic fashion.

171

to identify an acyclic graph are presented. The considerations have practical
importance because — as motivated in the introduction to section B.2 — net-
works whose structure is inconsistent with the model should not be scored. For
BNs this means that graphs need to be acyclic, which can be ensured with the
following two concepts.

Acyclicity-Check Using Node-re-ordering

In general it is not possible to determine whether a graph is cyclic or not by
checking whether its adjacency matrix has a particular form. In contrary, it is
possible to tell that certain adjacency matrices correspond to acyclic graphs.
These matrices are strict triangular, i.e. all non-zero elements can be found on
one side of the diagonal. For example, an strict upper triangular matrix has the
following form

A =


0 ∗ ∗

0
. . . ∗

0 0 0

 (B.10)

where each ∗ indicates an arbitrary value. Any adjacency matrix of this form
can be verified to describe an acyclic graph by applying its definition. But
DAGs can have non-triangular adjacency matrices as well; however, re-ordering
nodes can always yield a triangular matrix. In contrary, for cyclic graphs no
arrangement of nodes exists, which yields a triangular matrix.

It is questionable whether this concept of node re-ordering can yield an
efficient implementation of an acyclicity test; however, note that the form of the
adjacency matrix (B.10) implies that there must be at least one node without
any links starting from it: A’s last row has zero entries only. Likewise, A’s first
column implies that there must be at least one node without any parents. These
are two necessary conditions for acyclicity, which can serve as a computationally
cheap preliminary cyclicity check.

Another, more practicable approach to test the acyclicity of a graph is presented
next. Instead of re-ordering nodes this approach uses matrix multiplication
and can be easily be implemented. The outlined procedure is known as the
Floyd-Warshall algorithm ([Floyd, 1962, Warshall, 1962] or [Cormen et al., 2001,
pp.629]).

Acyclicity-Check Using Matrix-Multiplication

This section discusses the theoretical foundation of the Floyd-Warshall algo-
rithm [Warshall, 1962]. Its implementation according to a dynamic program-

172

ming approach can be found in the literature (e.g. [Floyd, 1962] or [Cormen
et al., 2001, pp.629]). Warshall’s essential idea lies in the understanding of the
adjacency matrix: It describes direct connections between nodes, i.e. paths of
length 1. He then showed that, if a boolean product3 of matrices is used, the
powers of the adjacency matrix Ar express the existence or non-existence of a
path of length r between any two nodes. Floyd utilised this result to formulate
an algorithm, which determines the shortest path between any two nodes [Floyd,
1962]. Here, the interest is only on whether a path from a node to itself exists
at all, which would mean that the graph was cyclic. (Otherwise, if no cycle
exists for any node, the graph is acyclic.) A DAG thus fulfils the necessary and
sufficient condition:

∀ r ∈ {1, . . . , n− 1} : diag(Ar)
Ar=

“
a
(r)
i,j

”
=

(
a
(r)
1,1, . . . , a

(r)
n,n

)
!= (0, . . . , 0) , (B.11)

which simply states that for none of the nodes a cycle of any length r exists.4

This completes the discussion of different graph-classes, and a problem that is
shared between all graphical models is considered next: The joint representation
of multiple networks as one. This is an important practical aspect of network
inference, which can result in a whole set of networks rather than a single struc-
ture that is superior to all others. Different kinds of equivalence have been
discussed (Section 1.4.2), which can cause ambiguities and hence multiple solu-
tions. But such can also arise volitionally when sampling methods are used for
network learning (Appendix D). Regardless of the reason for multiple solutions,
situations in which too many results exist in order to inspect them separately
require adequate techniques to understand them. This is why the following
section introduces suitable methods to compact results. Such post-processing
methods might reveal commonalities between recovered networks, for example,
and format shared features such that they can be perceived.

3In ordinary matrix multiplication, elements are multiplied and added. The boolean prod-
uct of two binary matrices A = (ai,j) and B = (bi,j) uses a logical-and ∧ and logical-or ∨
instead, i.e. (AB)i,j =

Wn
k=1 ai,k ∧ bk,j . The resulting matrix is hence a binary matrix as

well.
4Note that paths of length n or greater must be cycles; in such cyclic path, at least one

node is visited (at least) twice. The full cycle must thus contain a sub-cycle of length smaller
than n, which causes a violation of condition (B.11).

173

B.3 Compact Representation

of Graphical Models

This section is concerned with techniques that merge multiple networks to one.
It is assumed that a list of networks is given, all of which are defined over the
same set of nodes; this list is denoted by L = (G1, . . . , Gm). Two different
approaches to join the given networks will be introduced: averaging and com-
parison. Averaging is based on probability theory while comparison is a purely
graphical technique. Both methods are complementary and can help to gain
an overview about shared characteristics and the level of diversity of processed
networks.

B.3.1 Model Averaging

Two model averaging methods are discussed in this section: a bootstrap ap-
proach [Pe’er, 2005, Friedman et al., 1999a] and Bayesian model averaging [Fried-
man and Koller, 2003]. These concepts are not restricted to network averaging,
but they can be used in order to determine the probability of any associated
feature. In the simplest case the feature would be the existence of a specific
link; determining the probability of all potential links yields the average net-
work. But features can be more complex, like the existence of a cycle. In the
following the feature of interest will be denoted by f , which is associated with
an indicator function f(·). When this function is applied to a graph G it either
takes value 1 or 0, depending on whether the feature f is present in the graph
or not:

f(G) =

1, G has feature f ,

0, G does not have feature f .
(B.12)

The following two approaches can help to deduce the probability of the fea-
ture P (f |L) for the given list of networks L.

Bootstrap Averaging

Confronted with a list of networks L and the question whether a particular
feature f is common to them or not, the straightforward approach to prepare
an answer to that question would be to determine the relative frequency of the
feature. This is simply because the rate of the feature’s occurrence reflects our
confidence in its commonness. I.e. the higher the value

confidence(f |L) =
1
m

m∑
i=1

f(Gi) ∈ [0, 1] (B.13)

174

the higher the probability P (f |L) that is assigned to the feature. The reason to
distinguish between the confidence and the actual probability assigned to f is
that, when the list of networks is finite, the bootstrap approach (B.13) can yield
a biased reflection of the feature’s actual commonness. An aware applicant of
that method might thus decide to base the probability assignment not only on
the confidence, but also on other background knowledge in order to correct for a
(potential) sampling bias (Section 1.1). However, simulation experiments have
shown that features with high confidence values are rarely false positives [Jones
and Hobert, 2001, Pe’er, 2005, 2003]. The good performance of this simple
approach can be explained by its relatedness to Bayesian model averaging, which
is discussed next.

Bayesian Model Averaging

The discussed bootstrap approach determines the confidence in a feature f from
the given list of networks L, only. Bayesian model averaging takes additional
information into account in order to assess the commonness of the feature: the
probability of each network. This leads to a weighted relative frequency in which
un-probable networks contribute less to the belief in the feature than highly
probable ones. Assuming that some data D are available in order to assign
conditional probabilities P (G|D) to each network G, the belief in a feature f

can be formally expressed as

belief(f |L,D) = c ·
m∑

i=1

P (Gi|D)f(Gi) (B.14)

with normalising constant c = [
∑m

i=1 P (Gi|D)]−1. Like the confidence, the
belief in f reaches its maximum value 1 only if the feature is present in all
graphs Gi of the list L; if some graphs lack the feature, the confidence and
the belief will generally differ. The possibility of a sampling bias due to the
finiteness of L makes it again necessary to distinguish between the belief in the
feature and its actually assigned probability P (f |L,D). However, if the list of
networks consists of all possible networks L we find

belief(f |L, D) =
∑
G∈L

P (G|D)f(G) =̂ P (f |D) , (B.15)

i.e. the features probability for the given data. The same result can be gained
with the bootstrap approach, if networks in L are drawn from the target dis-
tribution P (G|D) using MCMC methods (Appendix D), for example. As the
number of samples in L grows to infinity, i.e. m→∞, the bootstrap approach
converges to Bayesian model averaging [Andrieu et al., 2003, Neal, 1993, Hoeting

175

et al., 1999].
In practical applications, however, the number of networks to average is often

limited by computational constraints. But although not all possible networks L
can be considered, the belief in a feature can be a good indicator of P (f |D).
This is especially the case when L corresponds to Occam’s window [Hoeting
et al., 1999, Madigan and Raftery, 1994], i.e. it contains the most probable
networks. In this situation the following approximation holds:

belief(f |L,D) = c ·
∑

G:P (G|D) high

P (G|D)f(G) ≈̂ P (f |D) . (B.16)

In case of uncertainty about whether L corresponds to Occam’s window or not
the normalising constant c can be changed in order to derive a lower bound
for P (f |D). Setting c = [#L]−1, where #L denotes the number of averaged
networks, renders the belief a conservative indicator of the feature’s commonal-
ity.

The two averaging approaches discussed above can bring out shared features of
different networks by smoothing out minor variations. When subtle differences
between networks are actually important, the following graphical technique can
be used in order to identify and visualise them.

B.3.2 The Consensus Network

Model averaging techniques discussed earlier can be used to reduce the list of
networks L to a single average network. These methods merge links of all net-
works in L (weighted appropriately); especially those which connect two nodes a

and b in either direction, i.e. a → b or b → a. In causal networks, where links
describe cause-effect relationships, such discrepancy should not go unnoticed, as
causal relations are generally assumed to be unidirectional. Therefore, the list L

can be combined to a new network in which contrariwise directed relations are
highlighted by undirected links: the consensus network. This network has both
directed and undirected links: Directed links indicate a consensus over link di-
rection in all networks, whereas undirected ones reflect a contradiction between
at least two networks in the list. The following rules describe the construction
of the consensus network Gc:

R1 Any link that is present in any member Gi of the list L is added to Gc,
unless it is already present.

R2 After all links have been added according to R1, contradicting links in Gc

are replaced with undirected ones: Any pair of nodes that is connected by

176

D

C

A

B

D

C

A

B

D

C

A

B

D

C

A

B

a

b
︸ ︷︷ ︸

Figure B.1: Illustration of consensus network (b) constructed from three net-
works (a). a Three different networks constituting the list of networks L. b Con-
sensus network Gc of networks in L. Links A → B and A → C are directed,
since none of the networks in L contains an oppositely directed link B → A
or C → A. In contrast, networks in L connect nodes B and D as well as C
and D in different directions; the corresponding links in Gc are thus undirected.
Nodes A and B as well as B and D are linked in all of L’s networks; links
between them in Gc are therefore solid lines. Dashed lines between nodes A
and C as well as C and D indicate that at least one network in L does not link
them in any direction. None of the networks in L connects nodes A and D and
so they are not linked in Gc either.

two (oppositely directed) links is instead undirectedly linked.

The resulting graph Gc immediately reveals which links are consistent with
members of the list and which ones are opposing each other. The consensus
graph Gc may however contain links, which are only present in few or even a
single network in L. In order to indicate such potentially rare connections the
links of Gc can be formatted according to the following rule:

R3 A link in Gc connecting two nodes is drawn as a full line, if these nodes
are linked (in any direction) in all members Gi of the list L; and dashed
otherwise.

With this refinement Gc not only visualises consensus and disagreement, but also
communicates whether these are absolute or sporadic (Fig. B.1). Other format
parameters like thickness or colour of links can be used to convey additional
information if needed, but are not discussed here.

177

Appendix C

Proof of the Limit on

Factors of the K2 Score

Here a proof is given for equation (2.16) from chapter 2 [page 34]. The equation
claims that with the sufficient statistics of the K2 score we find

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! ≤ 1 . (C.1)

It will be shown that in fact every factor of the outer product (over variable j)
fulfils the inequality. Since the product of semi-positive numbers that are less
or equal to 1 cannot yield a number greater than one, this also proves the in-
equality (C.1). For clarity, unnecessary indices are omitted in the following.

Claim:

(r − 1)!
(S + r − 1)!

r∏
k=1

Sk! ≤ 1 ,

where 1 ≤ r, ∀ k : 0 ≤ Sk, and S =
r∑

k=1

Sk .

(C.2)

Proof: The claim is proven by re-writing the expression, cancelling duplicate
terms, and comparing the resulting fractions. Consider the special case r = 1
first, where both sides of the inequality (C.2) are equal to one. (This is because
0! = 1 and S = S1 per definition.) For all other cases, where r > 1, both sides
will not be equal, as is shown next. Expanding the denominator we find the left

178

hand side of equation (C.2) equivalent to

(r − 1)!
[(S + r − 1)!/(r − 1)!] · (r − 1)!

r∏
k=1

Sk! ⇐⇒ S1! · S2! · . . . · Sr!
(S + r − 1)!/(r − 1)!

(C.3)

In order to simplify the denominator it is written as a product of S terms di:

(S + r − 1)!
(r − 1)!

=
(S + r − 1) · (S + r − 2) · . . . ·

=r︷ ︸︸ ︷
(S + r − S) · . . . · 1

(r − 1) · . . . · 1
= (S + r − 1)︸ ︷︷ ︸

=:dS

· (S + r − 2)︸ ︷︷ ︸
=:dS−1

· . . . · (S + r − S)︸ ︷︷ ︸
=:d1

.

(C.4)

The terms di will be compared to those in the numerator of equation (C.3)
where each of the factorials yields Sk factors

Sk · (Sk − 1) · . . . · 2 · 1︸ ︷︷ ︸
Sk factors

. (C.5)

Each these factors in the nominator is out-valued by a factor di in the denomi-
nator; starting with the factors of the first factorial (k = 1) yields

1 < d1 = r

2 < d2 = r + 1
...

S1 − 1 < dS1−1 = r + (S1 − 2)

S1 < dS1 = r + (S1 − 1) .

(C.6)

It is easy to see that all the remaining factors will be out-valued as well. For
the kth factorial we find:

1 < d1+
Pk−1

j=1 Sj
= r +

∑k−1
j=1 Sj

2 < d2+
Pk−1

j=1 Sj
= r + 1 +

∑k−1
j=1 Sj

...

Sk − 1 < d(Sk−1)+
Pk−1

j=1 Sj
= r + (Sk − 2) +

∑k−1
j=1 Sj

Sk < dSk+
Pk−1

j=1 Sj
= r + (Sk − 1) +

∑k−1
j=1 Sj .

(C.7)

Finally, to verify that the number of factors matches recall that
∑r

k=1 Sk = S.
(For k = n the last term in equation (C.7) is thus r + S − 1.) All factors in
the numerator of equation (C.3) are out-valued by a factor in the denominator;
their ratio is therefore smaller than 1. The proof is thus complete. �

179

Appendix D

Search Heuristics and

Sampling Methods

Analysing data and representing essential results as a graphical model is one
way of network inference. Another, rather data driven approach is to use scor-
ing functions (Chapters 2 and 3) to assess large numbers of networks in order
to find the best structure. This concept basically turns network inference into
an optimisation problem, which becomes challenging in practical dimensions
where extremely large numbers of potential networks exist (Section B.2): These
cannot all be scored within reasonable time. Indeed, the problem of inferring
BNs has been shown to be NP-hard in general [Chickering et al., 2004], and it
is even NP-complete when the BDe score is used [Chickering, 1996]. Thus, no
methodological nor technical advances (in foreseeable future) can overcome the
incomplete model space investigation. Hence, within reasonable time, gener-
ally, only a small fraction of networks can be scored, which leaves doubts about
having found the best scoring among all networks. Computation time should
therefore be spent wisely by selecting promising networks to assess. Optimisa-
tion techniques address this point and this chapter is about how these methods
can be used to assist inference of networks from data. The presented methods
are generic and not bound to a particular network scoring function, in fact,
these techniques are not even specific to network inference, but they rather con-
stitute universal optimisation principles. How these principles can be applied
to network learning is discussed next.

Fundamental Ideas and Terminology

Different techniques can be used in order to optimise the structure of a network
with respect to a scoring function; for example, search heuristics or sampling

180

C

BA

C

BA

C

BA

C

BA

current
position neighbourhood

selected
move

C

BA

C

BA BA

C

C

BA

updated
position

iteration i iteration i + 1

Figure D.1: Schematic illustration of a local optimisation method. A solution is
slightly varied in order to yield neighbouring, i.e. similar results. One of these
is selected and thereafter, the procedure may be repeated.

methods. These differ with respect to their particular strategy to improve solu-
tions, but shared principles can also be found. Common concepts are discussed
next for both, search heuristics or sampling methods, which are jointly identi-
fied as optimisation techniques. Accordingly, the search- and sampling-space is
abstracted as solution space.

Many optimisation methods vary a potential solution slightly to yield an-
other, similar solution. If the modification improves the result, the better solu-
tion might replace the original one in the next optimisation step, which repeats
the variation-selection procedure (Fig. D.1). The exact rules on when to move
from one solution to another depend on the optimisation method and will be
presented later. Procedures to find similar solutions, i.e. networks with akin
structures, can be identical for different techniques. In order to slightly vary a
given network a single link could, for example, be added to the network; or an
existing one could be deleted or reversed [Friedman et al., 1998, Rajapakse and
Zhou, 2007, Husmeier, 2003, Friedman, 1997, Bernard and Hartemink, 2005,
Friedman and Goldszmidt, 1996, Friedman et al., 1999b, Tucker et al., 2003].
Such modification is commonly called a local step. The set of all altered net-
works that can be reached from the current network by one local step are called
the neighbourhood of this network.1 Optimisation methods often refer to the

1Note that the operation applied to a network in a local step can have an impact on com-
putation time: Adding or deleting one link changes the parent configuration of one network
node only; when a decomposable score (Section E.1.1) is used, all nodes’ scores stay unaltered
except the one whose parents are changed. Evaluating this node’s score and combining it
with cached scores of all unaltered nodes efficiently yields the score of the full network. Alter-
natively, a local step might reverse an existing link and thereby cause higher computational

181

Algorithm 3 (Greedy / Hill climbing algorithm) Initially, a starting position
(i.e. solution) is chosen. The Greedy algorithm evaluates the neighbourhood
of the current position, which gets updated to the highest scoring neighbour.
If local steps cannot increase the score any further a local maximum has been
found and the search is over. Commonly, many Greedy runs are performed
starting from different random positions.

choose (random) starting position y
repeat

set x := y
determine valid positions close to x,
i.e. its neighbourhood: nbhd(x) = {n1, . . . , nm}
set potentially new position y := arg maxz∈{x}∪nbhd(x) score(z)

until x = y
return x

neighbourhood of a solution rather than the actual local steps needed in order
to generate it. This abstract description facilitates a very general formulation
of the algorithm, which is used for presenting methods in the following.

D.1 Optimisation Methods

for Network Inference

Any generic search method that operates on a discrete solution space is suit-
able for network learning. For example, Greedy search [Cormen et al., 2001,
pp.370]; evolutionary algorithms [Bäck, 1996, Ashlock, 2004] like genetic algo-
rithms [Whitley, 1994]; or particle swarm optimisation [Kennedy and Eberhart,
1995, Eberhart et al., 2001]. Additionally, suitable techniques can also be found
in the large class of sampling methods: Metropolis-Hastings [Metropolis et al.,
1953, Hastings, 1970], simulated annealing [Kirkpatrick et al., 1983, Cerny,
1985], and Gibbs sampling [Casella and George, 1992, Robert and Casella, 2004],
for example. Due to the large variety of methods only few important concepts
can be presented here; for further details and additional methods please consult
the corresponding literature.

Search heuristics can be categorised into deterministic and probabilistic ones.
A prominent deterministic method is Greedy search, which repeatedly performs
local steps in the direction of highest score improvement (Algorithm 3). Such
simple deterministic strategy, however, can easily get trapped in local extrema
(Fig. D.2); this can be prevented by adding a stochastic component to the algo-

costs, because parent configurations of two nodes change, which need to be re-scored. Local
steps associated with high costs can be advantageous if they generate diverse neighbourhoods,
which might improve optimisation results. Such can happen if more different regions of the
solution space can potentially be visited.

182

ma

mb

A B

solutions

sc
or
e

Figure D.2: Schematic illustration of solution space and associated score values.
Two local maxima ma and mb exists, where mb is also the global maximum.
Greedy search, started at point A, would climb up to the local maximum ma,
but could not reach the better solution mb. The search process is said to be
trapped in a local extremum. Conversely, if a Greedy search is started at point B
it will reach the optimum solution mb. Note that, as the structure of the search
space becomes rougher, many more local extrema exist, such that search runs
may end quickly in one of them when using deterministic methods.

rithm. A modification of Greedy search, the stochastic hill climber algorithm,
not only considers the steepest local step but also others, as long as they increase
the score (Algorithm 4). Considering more possibilities for altering a solution
can reduce the risk of getting trapped in local extrema. Additionally, a larger
and more diverse neighbourhood can yield a better potential coverage of the
solution space, which can improve solutions.

Not all optimisation techniques iterate over local steps; instead of considering
only small changes to the current solution other methods use larger iteration-

Algorithm 4 (Stochastic hill climbing algorithm) Initially, a starting position
(i.e. solution) is chosen. The algorithm evaluates the neighbourhood of the
current position and randomly chooses a new position from those neighbouring
solutions that exhibit a higher score value than the current solution. If no better
solution exists in the neighbourhood a local maximum has been found and the
search is over. Optimally, many runs of the algorithm should be performed
starting from different random positions.

choose (random) starting position x
loop

determine valid positions close to x,
i.e. its neighbourhood: nbhd(x) = {n1, . . . , nm}
if ∃ z ∈ nbhd(x) : score(z) > score(x) then

update position; set x := z
else

return x
end if

end loop

183

Algorithm 5 (Genetic algorithm) A set of random solutions is used as the first
generation population, which enters the algorithmic imitation of evolution: A
population of individuals reproduces to generate new, varied individuals; only
the fittest (i.e. best scoring) individuals enter the next iteration of propagation.
Overall fitness of the population can increase by repeating the reproduction and
selection process multiple times. The result of the process is given by the final
population of solutions.

set p0 = random population
for t = 0 to end-time do

for all individuals I in pt do
assess fitness of I

end for
pt+1 := slight mutations and re-combinations of fittest individuals from pt

end for
return pend-time

steps, which can result in substantially different neighbours. These techniques
are called global optimisation methods and include genetic algorithms (Algo-
rithm 5), for example. Genetic algorithms are a mixture of selection and re-
combination, where selected solutions are recombined to new ones; these can be
considerably different from the primary solutions and a large number of local
steps would be needed in order to transform one of them to the recombined
one. Due to the increased step size of global optimisation methods, inspected
solutions can show a large variety. A diversified coverage of the solutions space
can be beneficial to find solutions in situations where multiple different optima
exist.

Besides search heuristics it is possible to use sampling methods for network
inference as well. Generally, these techniques are used to sample from complex
probability distributions in order to approximate them. They can, however, be
used for optimisation purposes as well: Sampling methods generate samples,
which are distributed according to a target distribution; in particular, samples
corresponding to areas with relatively high probability-mass will occur more
frequently than others. Setting the target distribution according to a network
scoring function allows for sampling networks; networks with a higher score are
thereby more likely to be sampled than low scoring ones. By collecting large
numbers of samples, good scoring networks can be found. Methods that have
been used to sample networks belong to the class of Markov-Chain Monte Carle
(MCMC) methods; in particular, the Metropolis-Hastings algorithm [Rajapakse
and Zhou, 2007] and Gibbs sampling [Casella and George, 1992, Robert and
Casella, 2004] have been used for network inference.

Sampling methods are thought to approximate the target distribution and
they therefore generate both high and low probability samples. When using such

184

method for network optimisation purposes this means that bad scoring networks
will be among samples, although the primary interest lies on high scoring ones.
Modified MCMC methods exist, which act as optimisation methods rather than
sampling methods. Samples generated by these re-casted methods overrepresent
high probability to low probability regions and are thus likely to have more high
scoring networks among their samples than ordinary samplers. Simulated An-
nealing is a prominent biased sampling method, which can be used for network
inference (Algorithm 6).

Algorithm 6 (Simulated annealing) One aspect of statistical mechanics is to
investigate the behaviour of systems consisting of large numbers of atoms in
the limit of low temperature where aggregate state changes (e.g. solidification)
occur [Feynman et al., 1963]. In these situations the system’s randomly changing
configuration tends towards a state of low energy; this stochastic convergence is
mimicked by simulated annealing [Kirkpatrick et al., 1983]. Initially, a starting
state is chosen randomly whose energy will be minimised. Subsequent steps
to one of its neighbouring states are chosen randomly; a neighbouring state is
either accepted or rejected depending on four factors: the energy of the current
and the potential state, a control variable called temperature, and a random
number. The probability distribution combining these factors is specific to the
application; however, it should depend on the temperature to facilitate the
state to change nearly randomly while the temperature is high. Regions of low
energy can initially be found this way. As the temperature gradually drops the
probability of accepting moves to higher energy states should decrease. Thereby,
the state is likely to get locked in an region of low energy.

set S = random state
initialise sample set M = ∅
for T = Tmax down to 1 do

determine valid positions close to S,
i.e. its neighbourhood: nbhd(S) = {N1, . . . , Nm}
randomly select a neighbouring state B ∈ nbhd(S)
if P (energy (S) , energy (B) , T/Tmax) ≤ random[0,1] then

accept new state: S := B
and add to sample set: M := M ∪B

end if
if energy(S) < sufficiently low energy then

break
end if

end for
return M

185

Appendix E

Efficient Network Learning

Network inference from high dimensional data sets generally is computationally
very intensive. In dimensions where a full pairwise correlation analysis is still
feasible, the significantly larger number of multivariate relations may prevent
their exhaustive evaluation (Section B.2). They can thus only be selectively
assessed, using techniques discussed in appendix D, for example. The success
of these methods largely depends on how many structures can be considered
in the given time. It is therefore important that scores used to evaluate net-
works (Chapters 2 and 3) are implemented efficiently, in order to maximise the
number of inspected structures. Practical approaches to this important aspect
are discussed in this appendix. Universal implementation concepts are given
first, before score-specific comments explain how BD scores and the SSS can be
efficiently computed.

E.1 General Optimisation Potential

Any approach to network inference will most likely benefit from reduction in
dimensionality. Similarly, an increase in computing power is desirable regardless
of the method, since improved execution speed allows to inspect more networks
in the same time period. This section will discuss how so called decomposable
network scores facilitate both: reducing the complexity of the inference prob-
lem and harnessing more compute resources in order to accelerate evaluation.
The latter, parallelised or distributed network learning, can also be applied to
non-decomposable scores; however, the BD scores as well as the SSS are decom-
posable as the next section explains.

186

E.1.1 Score Decomposability

A mathematical function is said to be decomposable, if it can be written as a
combination of independent terms. How these terms are actually combined and
what determines their independence is specific to the context of the function.
Network scoring functions are said to be decomposable, if the score of the full
network can be expressed as a combination of partial scores associated with
its nodes [Pe’er, 2005]. More precisely: Each node together with its parents
constitutes a separate family. Composing all families yields the full network. If
the score of the full networks is indeed a combination of family-scores, the score is
considered to be decomposable. Any additional, node-independent expressions
are irrelevant in this context and do not affect decomposability.

One example of a decomposable score is the SSS (Chapter 3): On page 43,
the score of a full network is explicitely defined as the product of all node
scores, i.e. a product of family-scores. But as indicated earlier, BD scores also
decompose, as can be seen from the score’s equation:

BD(G|D) = P (G)︸ ︷︷ ︸
=prior on network

n∏
i=1

qi∏
j=1

Γ(N
′

ij)
Γ(N ′

ij + Nij)

ri∏
k=1

Γ(N
′

ijk + Nijk)
Γ(N ′

ijk)︸ ︷︷ ︸
=family-score of node i

. (E.1)

The outer most product, taken over all variables, combines the family-scores
of individual nodes. Note that the prior probability P (G) is not node specific
but affects all nodes likewise. It thus does not affect the decomposability of
the score. Scores other than the ones discussed in this thesis are decomposable
as well; for example the minimal description length (MDL) [Lam and Bacchus,
1994] and the Bayesian information criterion (BIC) [Schwarz, 1978].

Exploiting Decomposability Through Caching and Parallelisation

Network inference is often done with optimisation techniques that involve lo-
cal steps (Appendix D): Such methods repeatedly change a network slightly, for
example by adding a link, removing a link, or reversing a link. These local oper-
ations change the parent configuration of few nodes only: one family is changed
by the addition or removal of a link, and two nodes’ parents change through a
link-reversion. At the same time, configurations of all remaining nodes are left
unchanged. When applying a decomposable score with such methods, the fact
that generally only a minority of family-scores changes has been widely recog-
nised and exploited for optimisation [Friedman et al., 1998, Friedman, 1997,
Friedman and Goldszmidt, 1996, Boyen et al., 1999, Friedman et al., 2000, Do-
jer et al., 2006]: After each local step the score of the resulting network has

187

to be calculated. Most family-scores are identical to their previous value be-
fore the network was changed; caching them thus eliminates the need for a
re-calculation. Only families that have been affected by the change must be
scored. This inconspicuous practice can lead to significant efficiency improve-
ments, because caching involves only negligible organisational costs compared
to the computationally more demanding (re-)scoring of a family. This positive
effect must not be disregarded since it applies to every single of the numerous
local step during the inference procedure.

The fact that family-scores are independent of each other also allows to
compute them separately — not necessarily in a serial fashion. Processors in
modern computers often have multiple cores, which can perform computations
truly in parallel. An efficient implementation of a score might use such resource
by calculating family-scores simultaneously on different cores. Depending on the
platform used, separate threads or independent child-processes may be suitable
programming techniques; however, details are not discussed here, as they will
be familiar to the experienced programmer.

Exploiting Decomposability in Conjunction Structural Independence

The optimisation proposals made so far can be applied to learn both static BNs
and stochastic processes. This is not the case for the next suggestion, which
cannot be applied if resulting networks are required to be acyclic or have to
fulfil any other global property. However, for processes like DBNs or the ones
corresponding to the SSS it is in general possible to use the fact that families in
the network are structurally independent. To illustrate this feature consider BNs
as a counter example: These models are associated with directed acyclic graphs
(DAGs) (Section B.1), i.e. they must not contain any cycle. In order to guaran-
tee that a graph is cycle-free it is not sufficient to analyse separate families only,
but the whole graph must be considered. This is because the different families
are structurally dependent on each other: Changing one family can lead to an
invalid cycle, which renders the whole network invalid. This situation can only
be cured by changing other families in return. Families in DBNs, on the other
hand, do not depend on each other, but yield a valid graph as long as all the
parent configurations are proper. Such structural independence is important
because, together with a decomposable score, it implies that the highest scoring
network is composed of all highest scoring family-scores. This means that each
node’s optimal family can be determined independently [Murphy and Mian,
1999]. An efficient inference algorithm for structurally independent networks
will utilise this fact. Optimising each node’s parent configuration separately to
find the best scoring network is of significant advantage compared to an opti-

188

misation operating on the space of full networks. This is because learning a
network family-wise drastically reduces the dimension of the learning problem
(Section B.2), such that optimisation methods are more likely to succeed: For
heuristics the search space is significantly smaller, such that a higher percentage
of structures can be inspected for good solutions. MCMC methods are bene-
fited likewise, because the dimension of the target distribution is reduced. This
can speed up convergence in the burn-in phase and result in better samples
thereafter.

Utilising decomposability in conjunction with structural independence is an
often overlooked optimisation target. The reason for this is likely to be found
in the domain of non-dynamic BNs — the original domain of network scores —
whose acyclicity constraint hinders the application of the outlined procedure. It
should, however, be noted that node-wise optimisation has been used for BNs as
a pre-processing step by the sparse candidate algorithm [Friedman et al., 1999b]:
Only links that show good performance in the node-wise search are considered
as candidate-links in DAGs during the succeeding search over full networks.

The next section is concerned with how network inference can be performed in
a distributed fashion across different computers. As will be explained, the effi-
ciency of such task devision largely depends on how efficiently duties and results
are communicated. A suitable concept for this, based on unique identification
numbers for parent configurations and graphs, will be presented.

E.1.2 Distributed Network Inference

The analysis of large, high dimensional data-sets can cause enormous compu-
tational demands, such that corresponding calculations can take unacceptably
long when utilising a single computer. Dividing the workload up onto multiple
machines, however, might shorten the effective waiting time for results consid-
erably. Such distributed computing is mainly a challenge to computer skills;
but these rather technical problems about managing multiple machines are not
considered here. Instead, theoretical aids will be provided in order to support
practical approaches to distributed network inference.

In order to explain the context of the rest of this section consider the follow-
ing situation (Fig. E.1a): We are interested in the scores of particular graphs,
which have therefore been compiled in a list. (The list might for example con-
tain all graphs with less than 5 links.) All listed graphs are to be assessed in
order to yield another list, which contains their score values. How this result
list can be used is discussed in section B.3; here the focus is on how this simple
work-flow can be split up and distributed among different machines (Fig. E.1b).

189

. . .

L = (G1, . . . , Gm) L = L1 ∪̇ L2 ∪̇ . . . ∪̇ Lk

L1 L2 Lk

RkR2R1

R = f(R1, R2, . . . , Rk)R

a b

. . .

. . .

Figure E.1: Work-flow-scheme for network inference on single/multiple com-
puter(s). a List of interest L is composed of all graphs Gi that are to be
analysed (e.g. scored). The list is processed by a single machine, which gen-
erates an appropriate list of results R. b Analysis of list of interest L split up
amongst k machines. Therefore L is partitioned into sub-lists Li, which get
transferred to the different compute nodes. These process the list analogous to
the work-flow shown in (a). In the final step, the results Ri of each sub-list are
collected and suitably joined via an operation f in order to yield the list of all
results R.

190

The obvious approach is to divide the list of interest into sub-lists; these are
then distributed among available resources. On each machine the sub-list is pro-
cessed analogous to case discussed first (Fig. E.1a). Finally, the separate results
are collected and suitably joined, such that the same result-list is achieved as
if the analysis had been performed on a single computer, but faster. The pur-
pose of this explanation is to highlight the need for additional organisational
effort, which is associated with such task division: duties and results have to be
suitably distributed and joined, respectively. Improper task-division would miss
distributing all graphs of interest, such that these remain unevaluated. It would
also be non-optimal if graphs are evaluated redundantly on multiple compute
nodes due to overlapping sub-lists. Corresponding demands apply to the output
side of the work-flow — the result list: Solutions should neither be missed nor
represented superfluously. Two conditions must be met in order to fulfil these
requirements: (1) unambiguous communication of objects of interest; and (2)
definite assignment of corresponding results. Different approaches meeting these
demands exist but differ widely in their efficiency. However, effective commu-
nication concepts are vital in order to ensure that time gained by distributed
computing is not consumed by transmitting tasks and results. Therefore, two
different approaches are discussed in the following.

In order to compose, split, and communicate a list of graphs of interest,
the structures themselves must be suitably represented. Such could be done by
each graphs’ adjacency matrix (Section B.1), which fully specifies the size and
connectivity of a graph. Defining the list of interest as a list of matrices corre-
sponding the graphs is straightforward and can be used for communication in
a distributed computing scheme (Fig. E.1b). However, representing graphs this
way renders the list L relatively voluminous, which makes its communication
costly. It would thus be favourable if the adjacency matrix could be bijectively
mapped to a more compact representation, e.g. a unique decimal number by
which graphs were unambiguously identified. Indeed, such one-to-one relation-
ship can be easily established by interpreting the adjacency matrix as a binary
number. This is done by composing the elements of the matrix in a arbitrary
but fixed order, which yields a binary string. Treating the string as a number
with base 2 facilitates its conversion to a number of any other base [Bronstein
et al., 1999, pp.931]. For convenience, base 10 might be chosen in order to yield
a familiar decimal number for each graph. To reconstruct a graph from a given
number this needs to be re-converted to base 2 before interpreting the digits
of this number as entries of the adjacency matrix. Similar to a full graph, this
base-conversion concept can also be applied to parts of a graphs, such as a par-
ticular parent configuration (Fig. E.2). Whether applying this simple mapping
to full networks or parent configurations, it results in a compact representation,

191

1 2

4 5

3 A =





0 1 1 1 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 0 1 0 0





1 2

4 5

3 pa(3) =





1
0
0
0
1





︸ ︷︷ ︸
p = [pk]k=1,...,5 = 100012

a

b

c
decimal(p) =

∑5
k=1 pk · 2k−1

= 1 · 20 + 0 · 21 + 0 · 22 + 0 · 23 + 1 · 24 = 1710

binary(1710) =
[(

1710 mod 2k
)

div 2k−1
]
k=5,...,1

= [1, 0, 0, 0, 1] = 100012

Figure E.2: Identifying graph structures with decimal numbers. a Graph with
five nodes and its adjacency matrix. b Family of node 3 and its corresponding
parent vector, which can be interpreted as a binary number p. c Conversion of
node 3’s parent vector to a decimal number and back.

192

which can be used to efficiently communicate individual structures of interest.

(Technical Note) For practical application of the base-conversion concept
two aspects should be noted: First, for an unambiguous re-conversion of an
identification number to base 2, the number of vertices in the graph must be
given. This is to ensure that the binary number will be of appropriate length,
when one or more 0’s prefix the first digit 1. Second, this representation of ad-
jacency matrices can only be more efficient that the matrices themselves, when
the latter are not stored as bit-pattern. In detail: Most computers store infor-
mation in binary formats, which allow to represent an adjacency matrix on the
level of individual bits, each of which can code for the existence or abundance
of a link. In total n2 bits would be needed to store the full matrix; however,
commonly the smallest memory-block that can be allocated is (at least) a byte,
which consists of 8 bits. Unless the number of required bits n2 happens to be
a multiple of 8, a minimal overhead of unused bits is involved; but despite this,
the bit-pattern representation of matrices would be the most efficient coding
for storage. For practical application, however, bit-patterns are not very con-
venient to use, because processing them generally requires a decomposition and
up-conversion to larger data-types. Because of this, less efficient representa-
tions are often preferred; for example, saving the adjacency matrix as a text file
where each of its entries is represented by a character 0 or 1. In such cases the
presented number-conversion concept can save significant storage-space: Data-
types used to represent characters generally have enough bits to represent at
least 256 different characters (8 bits) out of which only two are used for binary
adjacency matrices. Converting the matrix to a decimal number and storing it
as text makes use of 10 different digits (from 0 to 9) by which the total num-
ber of required characters is reduced. It would be most efficient if the whole
scope of characters would be used for each digit; i.e. if the matrix would be
converted to a base 256 number. In practice this number is likely to be even
larger, since modern character data-types commonly use more than 8 bits per
digit. However, these considerations are specific to computing platforms and
need therefore be left to the programmer who is knowledgeable about internals
of the used system.

General concepts in order to improve the efficiency of network inference have
been considered so far. Different scores offer additional, but specific enhance-
ment possibilities, which are discussed in the remainder of this section for both
the BD scores and the SSS.

193

E.2 Score Specific Optimisation Potential

Scoring functions play a central role in network inference with respect to two
aspects: (1) They rate networks, and therefore determine the outcome, i.e. the
quality of the analysis. Whether a score’s assessment is appropriate or not is
discussed throughout the main part of the thesis. The following sections thus
focus on point (2): Because large numbers of networks are assessed, scoring
functions are a major factor affecting the required computing time. This makes
scores central with respect to the efficiency of the analysis, which can be en-
hanced by exploiting particular properties of each score. The following sections
discuss BD scores and the SSS separately in order to account for their different
points of action for efficiency improvements.

E.2.1 Suggestions for BD Scores

All of the BD scores involve multiple nested products [equations (2.9) and (2.14)]:
The most outer one is taken over all nodes; within that, a product is taken over
each node’s joint parent states with another product over the child’s states
nested within. On a computer multiplications are generally computationally
expensive and consume significantly more time than additions. This common
characteristic of processors can be taken into account by calculating logarithmic
scores: A logarithm is applied to the scoring function, by which, according to
the associated rules, products become sums.1 The BD score then reads as

log BD(G|D) = log P (G) +
n∑

i=1

qi∑
j=1

log

(
Γ(N

′

ij)
Γ(N ′

ij + Nij)

)

+
ri∑

k=1

log

(
Γ(N

′

ijk + Nijk)
Γ(N ′

ijk)

)
. (E.3)

In this equation the computationally most costly operation is presumably the
Γ-function, which generally cannot be further resolved. However, in cases where
its argument is an integer value, it can be substituted with a factorial [equa-
tion (2.13)]. For one of the BD score’s variants all pseudo counts N

′

ijk are
integer’s by definition: the K2 score. Its formula [equation (2.14)] can therefore

1The exponential function (with corresponding base a) ax makes this operation fully re-
versible in case the absolute score value is required. In order to compare and rank networks
log-scores can be directly compared to each other. This is because the logarithm is a mono-
tonically increasing function, since [Bronstein et al., 1999, p.374]

d loga(x)

dx
=

1

x ln(a)

!
> 0 (0 < a 6= 1, 0 < x) , (E.2)

by which the numerical ordering of arguments is preserved.

194

be resolved to

log K2(G|D) = log P (G) +
n∑

i=1

qi∑
j=1

∑N
′
ij−1

l=1 log(l)∑N
′
ij+Nij−1

l=1 log(l)

+
ri∑

k=1

∑N
′
ijk+Nijk−1

l=1 log(l)∑N
′
ijk−1

l=1 log(l)
. (E.4)

Calculating the score according to this equation can be considerably faster.
However, a minor trick might be considered additionally: caching calculated
logarithms. More precisely, the sums of log-values

∑N
l=1 log(l) calculated for

different upper bounds N are worthwhile to be stored in order to reduce the
number of costly log-function calls. Indeed, the maximal upper bound N that
can appear for any network can be determined from the data; all sums up to
that bound can then be calculated off-line, i.e. prior to the network assessments,
in order to produce a look-up table that is used for the numerous calculations
thereafter.

The considerations above can help to compute the score value efficiently from
the sufficient statistics Nijk. Determining the latter, however, is generally a
costly procedure, which can easily take multiple times longer than the score
calculation itself. An efficient implementation of the BD score thus cannot
ignore time-saving strategies to determine the required counts from the data.
Such are discussed in the following.

Extracting Sufficient Statistics for the BD Scores From Data

Determining the statistics Nijk means inspection of the data in order to count
the occurrence of state combination: How often were the parents of node i in
joined state j while the child was in state k? The simplest approach to this
tedious counting task is to define a multi-dimensional array such that the state
of each variable can be used to index one of the dimensions. Thereby, each joint
parent-child-state corresponds to a distinct element in the array. Initialising the
array with zeros and counting up an element each time its associated pattern is
found in the data yields the required statistics. This approach is straightforward
to implement and, in principle, computationally efficient; however, it can be very
memory intensive. In situations where many parents exist and/or variables can
take many different values the array demands significant amounts of memory.2

2The amount of memory that must be allocated for the array can be calculated as follows:
Assume the number of possible variable states ri is equal to r for all nodes i; let pmax denote
the maximum number of parents per node; and let b denote the number of bytes required for
each counter-element in the array. A total of b · rpmax+1 bytes is then required for the array.

195

data field(s)

reference
field

data field(s)

reference
field

data field(s)

reference
field. . . NULL

start
of list

records

Figure E.3: Schematic illustration of a linked-list data structure. The basic
entity of a list are records, each of which contains reference- and data-fields. The
beginning of a list is given by a pointer to its first record. Records themselves
are connected chain-like through a reference to the successive record in each of
them. The void reference NULL marks the end of the list.

This can negatively impact on computational performance, as caching mech-
anisms in the processor are likely to fail if huge objects are manipulated in a
non-serial fashion [Fog, 2008].

One possibility that can reduce memory usage are so called sparse arrays.
(Details can be found in the literature, for example [Goldwasser et al., 2002,
pp.33], [Smith, 2004, p.71], or [Das, 2006, pp.12].) To the user these data-
structures are identical to a normal array; internally, only values that are dif-
ferent from zero are actually stored, i.e. consume memory. Unsurprisingly,
sparse arrays come with a management overhead both computationally and
concerning memory. They are thus more costly than normal arrays, when many
entries are non-zero, but in other cases they are very efficient. For the BD score
this advantage will be especially noticeable when high dimensional data with
many variable states are analysed: Unless data-length is exceptionally long, the
number of data-points will be far lower than the number of all possible joint
parent-child-states. Thus, even if every data-point exhibits a different parent-
child-state, their number will not be sufficient in order to render a significant
number array entries non-zero. Sparse arrays should therefore be considered
even if they are not natively supported by the programming language used. In
this case, as outlined next, linked lists can be used to mimic these arrays.

(Determining Sufficient Statistics Efficiently by Ranking Joint Parent-

Child-States and Usage of Linked Lists) Lists are data structures that
consist of separate records, which are unidirectionally linked in a serial fashion
(Fig. E.3) [Cormen et al., 2001, pp.204]. Each record has a reference field, in
order to point to another record, and also data fields, which contain the ac-
tual information to be stored. In contrast to an array, which generally has a
fixed size, lists can be dynamically expanded by appending or inserting records

196

(thought changes to the corresponding reference fields). Like sparse arrays, they
consume little memory if few records are stored only.

In order to use lists for the determination of counts Nijk, the data-fields
of each record need to facilitate two things: (1) to identify a particular joint
parent-child-state; and (2) to count its occurrence. With appropriate records
defined, the data can be traversed while updating the list: For every new vector
of data, i.e. a joint parent-child-state that did not occur so far, a record is added
to the list. For any vector that has been observed already, the counter in the
corresponding record is increased. The efficiency of such list implementation
heavily depends on how quickly data-vectors can be compared: In order to test
whether a parent-child-state is already in the list, every data-vector needs to be
checked against the corresponding field in a record until it matches up or the
end of the list is reached. Numerous comparisons between the data-vector and
record fields are thus required and happen to be the main time consumers. This
is mainly because the comparison of two vectors requires multiple element-wise
comparisons. Thus, if the number of values to compare could be reduced, the
counting-process would speed up. In the following, a computationally cheap
mapping of joint parent-child-state vectors to unique one-dimensional ID num-
bers is proposed. To test whether two IDs match only one comparison is needed;
costs associated with the generation of the IDs can thus pay off by comparison
operations saved.

Similarly to the conversion of graphs to decimal numbers presented earlier
(Section E.1.2, Fig. E.2), joint parent-child-state combinations can be mapped.
The only difference is that data-vectors to convert are not binary numbers, but
they can have a different base for each digit, such that the formalism is more
intricate. In section 2.2.1 the vector of joint parent states has been introduced,
which is a sub-vector of the data for all nodes that only contains entries be-
longing to the parents. This notation is expanded here in order to not only
accommodate the states of the parents but also the child’s state as the first
element in the joint parent-child-state vector d

(i,pai)
t . If node i has pi := #pai

parents pai =
{

pa
(i)
1 , . . . , pa

(i)
pi

}
the vector reads as

d
(i,pai)
t =

 d
(i)
t︸︷︷︸

child-state

, d

“
p
(i)
1

”
t , . . . , d

(p(i)
pi

)
t︸ ︷︷ ︸

parents′states

 . (E.5)

In order to simplify formulae below the data are assumed to be transformed, such
that the values taken by each component i are numbered from zero onwards, i.e.
d
(i)
t ∈ {0, . . . , ri − 1}. The number of different joint parent-child-state vectors

can be calculated from the number ri of different states variable i can take: The

197

vector d
(i,pai)
t can take ri ·

∏
l∈pai

rl different combinations of values. All these
different combinations can be mapped to a unique integer ID via

ID
(
d
(i,pai)
t

)
= d

(i)
t +

pi∑
l=1

[
d
(pa(i)

pl
)

t · ri ·
l−1∏
z=1

r
pa

(i)
z

]
, where

0∏
z=1

= 1 . (E.6)

Each joint vector is thereby systematically assigned a number between 0 and
ri ·
∏

l∈pai
rl − 1. This can be best seen by ordering vectors by their ID, which

yields the following scheme:

ID d
(i)
t d

“
pa

(i)
1

”
t d

“
pa

(i)
2

”
t . . . d

(pa(i)
pi

)
t

0 0 0 0 . . . 0

1 1 0 0 . . . 0
...

...
...

...
...

...

ri − 1 ri − 1 0 0 . . . 0

ri 0 1 0 . . . 0

ri + 1 1 1 0 . . . 0
...

...
...

...
...

...

ri ·
∏

l∈pai
rl − 1 ri − 1 r

pa
(i)
1
− 1 r

pa
(i)
2
− 1 . . . r

pa
(i)
pi

− 1

The expressions simplify, if all variables i can potentially take the same number
of different values, i.e. ∀ i : ri = c. In this situation equation (E.6) reduces to

ID
(
d
(i,pai)
t

)
= d

(i)
t +

pi∑
l=1

d
(pa(i)

pl
)

t · cl . (E.7)

This formula interprets the joint vector d
(i,pai)
t as a backwards written number

(in the number system with base c), which is converted to the decimal number
system [Bronstein et al., 1999, pp.931]. Vice versa, in order to reconstruct the
joint parent-child-state vector from a given ID use the following inverse mapping:

d
(i)
t = ID mod ri

d

“
pa

(i)
1

”
t = (ID div ri) mod r

pa
(i)
1

...

d
(pa(i)

pi
)

t =

(
ID div ri ·

pi−1∏
z=1

r
pa

(i)
z

)
mod r

pa
(i)
pi

.

(E.8)

The inverse mapping is needed after the list has been constructed according to

198

the data, in order to extract the sufficient statistics. In more detail, the way
linked-lists and the ID can be used together involves two steps: Given a node i

and its parents for which the sufficient statistics are to be determined. . .

1. Create a linked-list (using IDs) to count the occurrence of different parent-
child-states in the data.

2. After all data-points have been processed, the counts Nijk for a specific
parent-state j and child-state k can be retrieved from the list: The com-
bination of states j and k a particular ID represents is given by

j = ID div ri and k = ID mod ri , (E.9)

such that the counter in the corresponding record can be associated.

Describing this procedure involves an extensive formalism, but which can be ef-
ficiently implemented and thereby accelerate network inference with BD scores.

In the final section the focus is on the SSS and its optimisation potential. As
outlined earlier (Section E.1.1), an efficient implementation of network infer-
ence will exploit the decomposability of this score, but further improvements
are possible, as outlined next.

E.2.2 Tuning Up the Snap Shot Score

Like the BD scores, the SSS offers ways to save computation time. The most
obvious point of action of this score is to calculate the activity level series of
each node off-line, i.e. prior to a network search, such that they can be quickly
retrieved afterwards. This is possible since spike trains and decay constant are
already known before starting the inference procedure and because these only
two determinants of the activity level remain fixed; activity level series therefore
remain the same throughout the search, too. For each individual network to
score the activity level series are required, which makes it beneficial to avoid
their redundant calculation.

Computations can further be accelerated in the situation where none of the
channels shows any spiking over a certain period. Without any spikes, activ-
ity levels decay to zero and do not affect score values: The score is the same
whether zero activity levels are summed or not, such that silent periods can be
omitted.3 Saved summations speed up the score calculation accordingly. Fur-
ther, two more advanced options to optimise the score exist, which are discussed

3When omitting sections of the data that show no activity, care has to be taken in order to
ensure that concatenation of the remaining parts does not cause artefacts, i.e. spikes triggering
a snapshot of a positive activity level, which should be zero. Joined partitions must therefore
be separated by a zero activity section, according to the shift constant.

199

now. One of them utilises a characterisation result from chapter 4 in order to
conclude whether a network search can be aborted or if a continuation to score
more complex parent configurations can be beneficial. But first, a strategical
improvement of the order at which parent configurations are scored is presented.

Re-using Joined Activity-Level Series

It has already been mentioned that activity level series of individual nodes can
be calculated and cached prior to the network search. This not possible for
joined activity level series because these depend on the parent configuration to
score, which changes throughout the search. For configurations with multiple
parents, channels thus have to be joined on demand, such that the child-node
can be scored. The process of joining activity level series and calculating the
score has been investigated in profiling implementations. These revealed that
the two steps involved in assessing a configuration differ widely concerning their
computational costs: Joining activity level series is much more expensive than
taking and summing snapshots; the time spent scoring a configuration (100%
time) splits up very unequally between joining (≈90% time) and actual score
calculation (≈10% time).4 In order to ensure good performance of the network
inference algorithm, special care should therefore be taken when implementing
the function to join channels.

Additionally to improvements of the join operation itself, it is also possible
to reduce the total number of joins to be calculated. As outlined earlier (Sec-
tion E.1.1), each node’s parent configuration can be optimised independently:
Separately for each node i, different parent configurations are scored in order to
identify its best scoring parents (Fig. E.4a). This decomposed learning strategy
easily facilitates to harness multiple compute nodes, each of which optimises
configurations for another node. However, the scoring of configurations can be
made more efficient by avoiding the redundant evaluation of joins: A join does
not depend on the child, but on the parents only — for any set of parent nodes
it is thus the same for any child node. This can be used in an alternative scoring
strategy in which a join is re-used several times once it is computed (Fig. E.4b):
A set of parents is chosen and their join is calculated; after that, different child
nodes are scored using that join. With this concept, the computationally expen-
sive join only needs to be evaluated only once and time for otherwise redundant
calculations is saved; computation time by which the search can either be short-
ened or improved by evaluating more configurations in the same time.

4The SSS was separately implemented in C [Kernighan and Ritchie, 1988] and Python [van
Rossum and et al.]. Both implementations were optimised before making measurements. The
programming language did not have any significant effect on temporal proportions between
joining channels and calculating the score.

200

a(pa1,pa2,...,pam)2. calculate join

score node i

1. choose parents

3. then. . .

pa1, pa2, . . . , pam

pa1 pampa2 . . .

1 i n.

repeat procedure

For node i . . .

pa1 pampa2 . . .

1 2 3 n. . .

pa1 pampa2 . . .

1 2 3 n. . .

pa1 pampa2 . . .

1 2 3 n. . .

...

a(pa1,pa2,...,pam)

score node 1

score node 2

score node n

1. Choose parents

repeat procedure

a b

2. calculate join

3. then. . .

pa1, pa2, . . . , pam

Figure E.4: Comparison of two different learning strategies: node-wise and join-
wise. a Node-wise learning of parent configurations: The parent configurations
are selected and scored for each node i separately. If the same parent config-
uration is scored for different nodes, the joined activity level of the parents is
evaluated redundantly. b Join-wise learning of parent configuration: A parent
configuration is chosen, which is then scored for every node i. This re-use of
joins is proper, because these do not depend on the child node, but on the
parents only. Compared to the node-wise procedure shown in (a), computation
time can thus be saved, because the join has to be calculated only once for all
nodes.

201

Strategies proposed so far covered how distributed compute resources can be
used for network inference, how simple features of the SSS can improve the effi-
ciency of the score, and how joins can be re-used in order to save computation
time. All these efforts aim at evaluating networks as quickly as possible, which
is important because the best scoring structure cannot be derived from the
data directly, but all potential networks must be probed instead. Fortunately,
a theoretical result gained in section 4.1 facilitates conclusions about scores of
large groups of networks: Under particular circumstances, simpler configura-
tions than those in the groups are known to be superior, such that the latter
need not to be considered for scoring at all. The details on this concept and its
implementation are subject to the next section.

Reduced Search Depth

The SSS has been investigated and characterised in chapter 4. One of the
results was that expanding a join by a non-overlapping channel cannot increase
the score value beyond that of the better scoring of the two (Corollary 2).
In the best case, the expanded, more complex join scores just as well as one
of the simpler configurations; then, according to Occam’s razor, the simpler
configuration should be preferred (Section 1.4.2). As a consequence, if it is
known that a configuration cannot be improved further by making it more
complex, there is no need to score configurations that are worse. The exclusion
of subordinate configurations can reduce the number of configurations to score
dramatically, which benefits the performance of network inference. However,
the conditions of corollary 2 must be met in order to use it: It must be ensured
that two activity level series are non-overlapping before excluding their join from
being scored. In the following it is therefore discussed how overlapping activity
can be efficiently determined.

Key to fast activity overlap-checking are two facts: (1) Activity overlap
between any two channels can be detected prior to the search; and (2) A join
and a single channel have overlapping activity, if at least one of the joined
channels has overlapping activity with the single one. In order to show how the
conditions of corollary 2 can be checked quickly, a (symmetric) activity overlap
matrix O = (oij)i,j∈{1,...,n} is defined as follows:

oij =

0, channels i and j have non-overlapping activity,

1, otherwise.
(E.10)

This matrix needs to be calculated and stored prior to the network search.
During the search it is used in order to determine any overlap between the

202

activity of a single channel ak and a join of multiple channels a(j1,...,jr). This
can be done with the overlap function o(· , ·), which is defined as

o
(
ak, a(j1,...,jr)

)
= max

i=1,...,r
ok,ji . (E.11)

If any of the channels ji in the join has overlapping activity with channel k,
the join itself has overlapping activity with channel k. In this case the value
o
(
ak, a(j1,...,jr)

)
will be equal to one; and zero otherwise.5 According to corol-

lary 2, only if activity overlaps it is worthwhile to score the complex join
a(k,j1,...,jr) of all channels. Otherwise this configuration cannot improve the
score value but becomes more complex only and should thus not be considered.

Determining the overlap of activity according to the approach described
above is a very efficient and computationally considerably cheaper than com-
paring activity level series directly with each other. This is especially the case
when the activity level series do not overlap, since both activity level series must
be compared at all times (at which any of them is not zero). Since data-sets
analysed with the SSS will generally contain many data-points, a direct com-
parison requires numerous time-consuming comparisons in order to guarantee
that activity between two series does not overlap. In contrast, using the overlap
matrix requires at most n comparisons, irrespective of the length of the data
and will thus be significantly cheaper.

5It is assumed that channel k is not among the already joined channels j1, . . . , jr. Joining
a channel twice does not have any effect (see examples 5 and 6 in section 3.2); the learning
procedure should prevent such unnecessary computational effort.

203

Bibliography

L. F. Abbott. Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain research bulletin, 50(5-6):303–4, 1999.

M. Abeles. Local cortical circuits: an electrophysiological study. Springer-Verlag,
Berlin, Heidelberg, New York, 1982.

C. Adams, J. Simonotto, S. J. Eglen, and E. Sernagor. Multielectrode array
recordings of neural activity patterns in the developing retina of the cone
rod homeobox knockout (Crx-/-) mouse. In 6th International Meeting on
Substrate-Integrated Microelectrodes, pages 195–196, Reutlingen, Germany,
2008.

A. M. H. J. Aertsen, G. L. Gerstein, M. K. Habib, and G. Palm. Dynamics of
neuronal firing correlation - modulation of effective connectivity. Journal of
Neurophysiology, 61(5):900–917, 1989.

E. M. Airoldi. Getting started in probabilistic graphical models. PLoS Compu-
tational Biology, 3(12):e252, 2007.

R. Albert and A. L. Barabasi. Statistical mechanics of complex networks. Re-
views of Modern Physics, 74(1):47–97, 2002.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to
MCMC for machine learning. Machine Learning, 50(1-2):5–43, 2003.

D. Ashlock. Evolutionary Computation for Modeling and Optimization.
Springer, 2004.

L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, L. A. Baccalá, F. D. Fal-
lani, S. Salinari, M. Ursino, M. Zavaglia, and F. Babiloni. Assessing cortical
functional connectivity by partial directed coherence: Simulations and appli-
cation to real data. IEEE Transactions on Biomedical Engineering, 53(9):
1802–1812, 2006.

L. A. Baccalá and K. Sameshima. Partial directed coherence: a new concept in
neural structure determination. Biological Cybernetics, 84(6):463–74, 2001.

T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press,
USA, 1996.

204

W. Bair, C. Koch, W. Newsome, and K. Britten. Power spectrum analysis of
bursting cells in area MT in the behaving monkey. Journal of Neuroscience,
14(5 Pt 1):2870–92, 1994.

R. Barbieri, M. A. Wilson, L. M. Frank, and E. N. Brown. An analysis of
hippocampal spatio-temporal representations using a Bayesian algorithm for
neural spike train decoding. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 13(2):131–6, 2005.

C. Barry, R. Hayman, N. Burgess, and K. J. Jeffery. Experience-dependent
rescaling of entorhinal grids. Nature Neuroscience, 10(6):682–684, 2007.

T. Bayes. An essay toward solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society of London, 53:370–418, 1763.

E. A. Bender and R. W. Robinson. The asymptotic number of acyclic digraphs
II. Journal of Combinatorial Theory, (Series B 44):363–369, 1988.

E. A. Bender, L. B. Richmond, R. W. Robinson, and N. C. Wormald. The
asymptotic number of acyclic digraphs. Combinatorica, 6(1):15–22, 1986.

A. Bernard and A. J. Hartemink. Informative structure priors: joint learning of
dynamic regulatory networks from multiple types of data. Pacific Symposium
on Biocomputing, pages 459–70, 2005.

U. S. Bhalla. How to record a million synaptic weights in a hippocampal slice.
PLoS Computational Biology, 4(6):e1000098, 2008.

B. Bollobs. Modern Graph Theory. Graduate Texts in Mathematics. Springer,
1998.

S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network analysis in
the social sciences. Science, 323(5916):892–895, 2009.

S. Bornholdt and H. G. Schuster. Handbook of graphs and networks: from the
Genome to the Internet. John Wiley and Sons, 2003.

A. Borst and F. E. Theunissen. Information theory and neural coding. Nature
Neuroscience, 2(11):947–57, 1999.

X. Boyen, N. Friedman, and D. Koller. Discovering the hidden structure of
complex dynamic systems. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pages 91–100, Stockholm, Sweden, 1999.
Morgan Kaufmann.

V. Braitenberg and A. Schüz. Cortex: Statistics and Geometry of Neuronal
Connectivity. Springer, 2nd edition, 1998.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch
der Mathematik. Harri Deutsch, 4th edition, 1999.

E. N. Brown, R. E. Kass, and P. P. Mitra. Multiple neural spike train data
analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5):
456–461, 2004.

205

V. H. Brun, M. K. Otnass, S. Molden, H. A. Steffenach, M. P. Witter, M. B.
Moser, and E. I. Moser. Place cells and place recognition maintained by direct
entorhinal-hippocampal circuitry. Science, 296(5576):2243–6, 2002.

N. Brunel and M. C. W. van Rossum. Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological Cybernetics, 97(5-6):337–339, 2007.

E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature Reviews Neuroscience, 10(3):
186–198, 2009.

W. Buntine. Theory refinement on bayesian networks. Proceedings of Uncer-
tainty in Artificial Intelligence, pages 52–60, 1991.

W. L. Buntine. A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195–210,
1996.

D. V. Buonomano and W. Maass. State-dependent computations: spatiotem-
poral processing in cortical networks. Nature Reviews Neuroscience, 10(2):
113–25, 2009.

J. Burge, T. Lane, H. Link, S. Qiu, and V. P. Clark. Discrete dynamic Bayesian
network analysis of fMRI data. Human Brain Mapping, 30(1):122–37, 2009.

G. Buzsaki. Theta oscillations in the hippocampus. Neuron, 33(3):325–40, 2002.

A. J. Cadotte, T. B. DeMarse, P. He, and M. Ding. Causal measures of structure
and plasticity in simulated and living neural networks. PLoS ONE, 3(10):
e3355, 2008.

G. Casella and E. I. George. Explaining the Gibbs sampler. The American
Statistician, 46(3):167–174, 1992.

V. Cerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions, 45(1):41–51, 1985.

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and
H.-J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics
V, pages 121–130. Springer Verlag, 1996.

D. M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks:
Search methods and experimental results. Preliminary Papers of the Fifth
International Workshop on Artificial Intelligence and Statistics, pages 112–
128, 1995.

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine Learning Research, 5:
1287–1330, 2004.

E. S. Chornoboy, L. P. Schramm, and A. F. Karr. Maximum-likelihood iden-
tification of neural point process systems. Biological Cybernetics, 59(4-5):
265–275, 1988.

206

K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan. Data Mining: A
Knowledge Discovery Approach. Springer, 2007.

D. L. Cohn. Measure theory. Birkhäuser, 1980.

E. C. Cooper and D. H. Lowenstein. Hippocampus, 2002.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, 9(4):309–347, 1992.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

L. D. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characterization
of complex networks: A survey of measurements. Advances in Physics, 56(1):
167–242, 2007.

R. T. Cox. Probability, frequency and reasonable expectation. American Journal
of Physics, 14(1):1–13, 1946.

A. Czurko, H. Hirase, J. Csicsvari, and G. Buzsaki. Sustained activation of
hippocampal pyramidal cells by ’space clamping’ in a running wheel. The
European Journal of Neuroscience, 11(1):344–52, 1999.

V. V. Das. Principles of Data Structures Using C and C++. New Age Interna-
tional, 1st edition, 2006.

P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and math-
ematical modeling of neural systems. The MIT Press, 1st paperback edition,
2005.

L. de Almeida, M. Idiart, and J. E. Lisman. The input-output transformation
of the hippocampal granule cells: from grid cells to place fields. Journal of
Neuroscience, 29(23):7504–12, 2009.

J. Demas, S. J. Eglen, and R. O. Wong. Developmental loss of synchronous
spontaneous activity in the mouse retina is independent of visual experience.
Journal of Neuroscience, 23(7):2851–60, 2003.

R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 3rd edi-
tion, 2006.

M. T. Do, S. H. Kang, T. Xue, H. Zhong, H. W. Liao, D. E. Bergles, and
K. W. Yau. Photon capture and signalling by melanopsin retinal ganglion
cells. Nature, 457(7227):281–7, 2009.

N. Dojer, A. Gambin, A. Mizera, B. Wilczynski, and J. Tiuryn. Applying
dynamic Bayesian networks to perturbed gene expression data. BMC Bioin-
formatics, 7:249, 2006.

D. L. Dowe, S. Gardner, and G. Oppy. Bayes not bust! Why simplicity is no
problem for Bayesians. The British Journal for the Philosophy of Science, 58:
709–754, 2007.

J. E. Dowling. The retina: an approachable part of the brain. Harvard University
Press, 1987.

207

R. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence. Artificial Intelligence.
Morgan Kaufmann, 2001.

C. Echtermeyer, T. V. Smulders, and A. V. Smith. Causal pattern recovery from
neural spike train data using the Snap Shot Score. Journal of Computational
Neuroscience, to appear, DOI: 10.1007/s10827-009-0174-2, 2009.

S. R. Eddy. What is dynamic programming? Nature Biotechnology, 22(7):
909–10, 2004.

M. Eichler. On the evaluation of information flow in multivariate systems by
the directed transfer function. Biological Cybernetics, 94(6):469–82, 2006.

A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham, E. L.
Newman, and I. Fried. Cellular networks underlying human spatial naviga-
tion. Nature, 425(6954):184–8, 2003.

S. Eldawlatly, Y. Zhou, R. Jin, and K. Oweiss. Reconstructing functional neu-
ronal circuits using dynamic Bayesian networks. In 30th Annual International
IEEE Engineering in Medicine and Biology Society (EMBS) Conference, vol-
ume 2008, pages 5531–4, Vancouver, British Columbia, Canada, 2008.

G. B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system
coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46
(2):233–253, 1986.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27
(8):861–874, 2006.

W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
John Wiley and Sons, 3rd edition, 1950.

R. P. Feynman, R. B. Leighton, and M. Sands. The principles of statistical
mechanics. In Lectures on Physics: Mainly Mechanics, Radiation and Heat,
volume 1. Addison Wesley, 1963.

M. E. Fisher. Critical phenomena. In F. J. W. Hahne, editor, Critical phenom-
ena, volume Lecture notes in Physics, pages 1–139. Springer, Berlin, 1983.

R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):
345, 1962.

A. Fog. Optimizing software in C++: An optimization guide for Windows,
Linux and Mac platforms, 14/01/2008, 2008.

T. C. Foster, C. A. Castro, and B. L. McNaughton. Spatial selectivity of rat
hippocampal neurons: dependence on preparedness for movement. Science,
244(4912):1580–2, 1989.

N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk, and N. Brunel. How spike
generation mechanisms determine the neuronal response to fluctuating inputs.
Journal of Neuroscience, 23(37):11628–11640, 2003.

M. Franzius, R. Vollgraf, and L. Wiskott. From grids to places. Journal of
Computational Neuroscience, 22(3):297–9, 2007.

208

N. Friedman. Learning belief networks in the presence of missing values and hid-
den variables. In 14th International Conference on Machine Learning (ICML
1997), pages 125–133, Nashville, Tennessee, USA, 1997. Morgan Kaufmann.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local struc-
ture. In Annual Conference on Uncertainty in Artificial Intelligence, pages
252–262, 1996.

N. Friedman and D. Koller. Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50
(1-2):95–125, 2003.

N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic
probabilistic networks. Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence, pages 139–147, 1998.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian
networks: A bootstrap approach. In Fifteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 206–215, San Francisco, 1999a. Morgan
Kaufman.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure
from massive datasets: The ”sparse candidate” algorithm. Proceedings of
Uncertainty in Artificial Intelligence, pages 206–215, 1999b.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to
analyze expression data. Journal of Computational Biology, 7(3-4):601–620,
2000.

K. J. Friston. Functional and effective connectivity in neuroimaging: A synthe-
sis. Human Brain Mapping, 2:56–78, 1994.

T. Furukawa, E. M. Morrow, and C. L. Cepko. Crx, a novel otx-like homeobox
gene, shows photoreceptor-specific expression and regulates photoreceptor dif-
ferentiation. Cell, 91(4):531–541, 1997.

M. Fyhn, T. Hafting, A. Treves, M. B. Moser, and E. I. Moser. Hippocampal
remapping and grid realignment in entorhinal cortex. Nature, 446(7132):190–
194, 2007.

F. Gabbianti and C. Koch. Principles of spike train analysis. In C. Koch and
I. Segev, editors, Methods in Neuronal Modeling: From Ions to Networks,
page 671. MIT Press, 1998.

R. F. Galan. On how network architecture determines the dominant patterns
of spontaneous neural activity. PLoS ONE, 3(5):e2148, 2008.

G. Ganis and S. Kosslyn. Multiple mechanisms of top-down processing in vision.
In S. Funahashi, editor, Representation and Brain, pages 21–46. Springer,
2007.

G. L. Gerstein and A. M. Aertsen. Representation of cooperative firing activity
among simultaneously recorded neurons. Journal of Neurophysiology, 54(6):
1513–28, 1985.

209

G. L. Gerstein and D. H. Perkel. Simultaneously recorded trains of action
potentials: analysis and functional interpretation. Science, 164(881):828–30,
1969.

G. L. Gerstein, D. H. Perkel, and J. E. Dayhoff. Cooperative firing activity in
simultaneously recorded populations of neurons: detection and measurement.
Journal of Neuroscience, 5(4):881–9, 1985.

W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, Cambridge, 1st edition, 2002.

L. M. Giocomo, E. A. Zilli, E. Fransen, and M. E. Hasselmo. Temporal frequency
of subthreshold oscillations scales with entorhinal grid cell field spacing. Sci-
ence, 315(5819):1719–1722, 2007.

M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch. Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-
tion Challenges, volume 59 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 2002.

C. W. J. Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37(3):424–438, 1969.

L. Groarke. Following in the footsteps of Aristotle: the Chicago school, the
glue-stick and the razor. Journal of Speculative Philosophy, 6(3):190–205,
1992.

T. Hafting, M. Fyhn, S. Molden, M. B. Moser, and E. I. Moser. Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052):801–806, 2005.

T. Hafting, M. Fyhn, T. Bonnevie, M. B. Moser, and E. I. Moser. Hippocampus-
independent phase precession in entorhinal grid cells. Nature, 2008.

M. W. Hankins, S. N. Peirson, and R. G. Foster. Melanopsin: an exciting
photopigment. Trends in Neurosciences, 31(1):27–36, 2008.

H. Hanser. Lexikon der Neurowissenschaft, volume 1-4. Spektrum Akademischer
Verlag, 2005.

W. K. Hastings. Monte-Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

D. Heckerman. Bayesian networks for data mining. Data Mining and Knowledge
Discovery, 1(1):79–119, 1997.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks -
the combination of knowledge and statistical-data. Machine Learning, 20(3):
197–243, 1995.

W. Heisenberg. Über den anschulichen Inhalt der quantentheoretischen Kine-
matik und Mechanik. Zeitschrift für Physik, 43:172–198, 1927.

W. Heisenberg. The physical content of quantum kinematics and mechanics. In
J. A. Wheeler and W. H. Zurek, editors, Quantum Theory and Measurement,
pages 62–68. Princeton University Press, Princeton, 1983.

210

A. V. M. Herz, T. Gollisch, C. K. Machens, and D. Jaeger. Modeling single-
neuron dynamics and computations: A balance of detail and abstraction.
Science, 314(5796):80–85, 2006.

H. Heuser. Lehrbuch der Analysis, volume 1 of Mathematische Leitfäden.
B.G.Teubner, Stuttgart/Leipzig/Wiesbaden, 13th edition, 2000.

K. Heyman. The map in the brain: grid cells may help us navigate. Science,
312(5774):680–1, 2006.

C. A. Hidalgo, N. Blumm, A. L. Barabasi, and N. A. Christakis. A dynamic
network approach for the study of human phenotypes. PLoS Computational
Biology, 5(4):e1000353, 2009.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology, 117(4):500–44, 1952.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model
averaging: A tutorial. Statistical Science, 14(4):382–401, 1999.

D. H. Hubel. Eye, brain, and vision. Scientific American Library, 1995.

D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interac-
tions from microarray experiments with dynamic Bayesian networks. Bioin-
formatics, 19(17):2271–82, 2003.

E. Jaynes and G. Bretthorst. Probability Theory: The Logic of Science. Cam-
bridge University Press, 1st edition, 2003.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
1970.

F. V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

P. Jezzard, P. M. Matthews, and S. M. Smith. Functional MRI: An Introduction
to Methods. Oxford University Press, Oxford, 1st edition, 2001.

G. L. Jones and J. P. Hobert. Honest exploration of intractable probability
distributions via Markov chain Monte Carlo. Statistical Science, 16(4):312–
334, 2001.

Z. W. Junning Li and M. McKeown. Dynamic Bayesian networks (DBNs)
demonstrate impaired brain connectivity during performance of simultane-
ous movements in Parkinson’s disease. In 3rd IEEE International Symposium
on Biomedical Imaging: Nano to Macro, pages 964–967, 2006.

R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 84(Series D):35–45, 1960.

M. J. Kaminski and K. J. Blinowska. A new method of the description of the
information flow in the brain structures. Biological Cybernetics, 65(3):203–10,
1991.

E. R. Kandel, J. H. Schwartz, and T. M. Jessel. Principles of Neural Science.
McGraw-Hill, 4th edition, 2000.

211

J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Inter-
national Conference on Neural Networks, volume 4, pages 1942–1948, Perth,
WA, Australia, 1995.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall, 2nd edition, 1988.

S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian network and nonparamet-
ric regression for nonlinear modeling of gene networks from time series gene
expression data. Biosystems, 75(1-3):57–65, 2004.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

U. B. Kjaerulff and A. L. Madsen. Bayesian networks and influence diagrams.
Information Science and Statistics. Springer, 2008.

C. Koch, C.-H. Mo, and W. Softky. Single-cell models. In M. A. Arbib, editor,
The Handbook of Brain Theory and Neural Networks, page 1344. Bradford
book, 2nd edition, 2003.

K. Kording. Decision theory: What ”should” the nervous system do? Science,
318(5850):606–610, 2007.

W. Lam and F. Bacchus. Learning Bayesian belief networks: an approach based
on the MDL principle. Computational Intelligence, 10(3):269–293, 1994.

L. Lapicque. Recherches quantitatives sur l`excitation electrique des nerfs
traitee comme une polarization. Journal de Physiologie et Pathologie Général,
(9):620–635, 1907.

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.

D. Lazer, A. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D. Brewer, N. Chris-
takis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy,
D. Roy, and M. Van Alstyne. Computational social science. Science, 323
(5915):721–723, 2009.

C. R. Legendy and M. Salcman. Bursts and recurrences of bursts in the spike
trains of spontaneously active striate cortex neurons. Journal of Neurophysi-
ology, 53(4):926–39, 1985.

S. Leutgeb, J. K. Leutgeb, A. Treves, M. B. Moser, and E. I. Moser. Distinct
ensemble codes in hippocampal areas CA3 and CA1. Science, 305(5688):
1295–8, 2004.

J. Li, Z. J. Wang, and M. J. McKeown. A framework for group analysis of fMRI
data using dynamic Bayesian networks. In Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pages 5992–5, 2007.

B. G. Lindsey and G. L. Gerstein. Two enhancements of the gravity algorithm
for multiple spike train analysis. Journal of Neuroscience Methods, 150(1):
116–127, 2006.

212

T. J. Loredo. From Laplace to supernova Sn 1987a - Bayesian-inference in
Astrophysics. Maximum Entropy and Bayesian Methods, 39:81–142, 1990.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 1st edition, 2003.

D. Madigan and A. E. Raftery. Model selection and accounting for model uncer-
tainty in graphical models using Occam’s window. Journal of the American
Statistical Association, 89(428):1535–1546, 1994.

L. Maffei and L. Galli-Resta. Correlation in the discharges of neighboring rat
retinal ganglion cells during prenatal life. Proceedings of the National Academy
of Sciences of the United States of America, 87(7):2861–4, 1990.

J. C. Magee. Dendritic integration of excitatory synaptic input. Nature Reviews
Neuroscience, 1(3):181–90, 2000.

V. A. Makarov, F. Panetsos, and O. de Feo. A method for determining neural
connectivity and inferring the underlying network dynamics using extracellu-
lar spike recordings. Journal of Neuroscience Methods, 144(2):265–79, 2005.

H. Markram. The Blue Brain Project. Nature Reviews Neuroscience, 7(2):
153–60, 2006.

P. M. Matthews and P. Jezzard. Functional magnetic resonance imaging. Jour-
nal of Neurology Neurosurgery and Psychiatry, 75(1):6–12, 2004.

R. McHenry. The new encyclopaedia britannica, 1993.

J. McNames. Optimal rate filters for biomedical point processes. In IEEE
Engineering in Medicine and Biology Society, volume 1, pages 145–8, 2005.

M. Meister, R. O. Wong, D. A. Baylor, and C. J. Shatz. Synchronous bursts
of action potentials in ganglion cells of the developing mammalian retina.
Science, 252(5008):939–43, 1991.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation
of state calculation by fast computing machines. Journal of Chemical Physics,
21:1087–1092, 1953.

M. A. Moita, S. Rosis, Y. Zhou, J. E. LeDoux, and H. T. Blair. Hippocam-
pal place cells acquire location-specific responses to the conditioned stimulus
during auditory fear conditioning. Neuron, 37(3):485–97, 2003.

C. Molter and Y. Yamaguchi. Impact of temporal coding of presynaptic en-
torhinal cortex grid cells on the formation of hippocampal place fields. Neural
Netw, 21(2-3):303–10, 2008.

D. W. Mount. Bioinformatics: Sequence and Genome Analysis. CSHL Press,
Cold Spring Harbor, New York, 2nd edition, 2004.

R. U. Muller, E. Bostock, J. S. Taube, and J. L. Kubie. On the directional
firing properties of hippocampal place cells. Journal of Neuroscience, 14(12):
7235–51, 1994.

213

K. Murphy and S. Mian. Modelling gene expression data using dynamic
Bayesian networks. Technical report, MIT Artificial Intelligence Laboratory,
1999.

K. P. Murphy. An introduction to graphical models. Technical report, Intel
Research, 2001.

R. Narasimhan and Y. Nievergelt. Functions of complex variables. Birkhäuser,
2001.

M. Nawrot, A. Aertsen, and S. Rotter. Single-trial estimation of neuronal firing
rates: From single-neuron spike trains to population activity. Journal of
Neuroscience Methods, 94(1):81–92, 1999.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Technical report, University of Toronto, 25. September 1993, 1993.

J. Neyman and E. S. Pearson. On the problem of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society of
London, Series A, 231:289–337, 1933.

P. L. Nunez and R. Srinivasan. Electroencephalogram. Scholarpedia, 2(2):1348,
2007.

D. Q. Nykamp. Revealing pairwise coupling in linear-nonlinear networks. SIAM
Journal on Applied Mathematics, 65(6):2005–2032, 2005.

H. Nyquist. Certain topics in telegraph transmission theory. Proceedings of the
IEEE, 90(2):280–305, 1928.

M. Okatan, M. A. Wilson, and E. N. Brown. Analyzing functional connectivity
using a network likelihood model of ensemble neural spiking activity. Neural
Computation, 17(9):1927–1961, 2005.

J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain research, 34(1):
171–5, 1971.

J. O’Keefe and L. Nadel. The Hippocampus as a Cognitive Map. Oxford Uni-
versity Press, 1979.

D. S. Olton and R. J. Samuelson. Remembrance of places passed - spatial mem-
ory in rats. Journal of Experimental Psychology-Animal Behavior Processes,
2(2):97–116, 1976.

C. W. Oyster. The Human Eye: Structure and Function. Sinauer Associates,
Sunderland, Massachusetts, 1999.

G. Paxinos. The rat nervous system. Academic Press, 1995.

J. Pearl. Bayesian networks: a model of self-activated memory for evidential
reasoning. In 7th Annual Conference of the Cognitive Science Society, pages
329–334, Irvine, California, 1985.

J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible
inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1988.

214

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, Cambridge, UK, 2000.

D. Pe’er. From Gene Expression to Molecular Pathways. PhD thesis, 2003.

D. Pe’er. Bayesian network analysis of signaling networks: a primer. Science’s
STKE, 2005(281):pl4, 2005.

D. H. Perkel, G. L. Gerstein, and G. P. Moore. Neuronal spike trains and
stochastic point processes. II. Simultaneous spike trains. Biophysical Journal,
7(4):419–40, 1967.

B. E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche Buc.
Gene networks inference using dynamic Bayesian networks. Bioinformatics,
19 Suppl 2:ii138–48, 2003.

J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky,
and E. P. Simoncelli. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature, 454(7207):995–U37, 2008.

G. J. Quirk, R. U. Muller, and J. L. Kubie. The firing of hippocampal place cells
in the dark depends on the rat’s recent experience. Journal of Neuroscience,
10(6):2008–17, 1990.

R. Q. Quiroga and S. Panzeri. Extracting information from neuronal popula-
tions: information theory and decoding approaches. Nature Reviews Neuro-
science, 10(3):173–185, 2009.

J. C. Rajapakse and J. Zhou. Learning effective brain connectivity with dynamic
Bayesian networks. Neuroimage, 37(3):749–60, 2007.

J. C. Rajapakse, Y. Wang, X. Zheng, and J. Zhou. Probabilistic framework
for brain connectivity from functional MR images. IEEE Transactions on
Medical Imaging, 27(6):825–33, 2008.

M. J. E. Richardson. Firing-rate response of linear and nonlinear integrate-
and-fire neurons to modulated current-based and conductance-based synaptic
drive. Physical Review E, 76(2), 2007.

F. Rieke, D. Warland, R. d. R. van Steveninck, and W. Bialek. Spikes: exploring
the neural code. MIT Press, 1st paperback edition, 1999.

C. P. Robert and G. Casella. The multi-stage Gibbs sampler. In Monte Carlo
statistical methods, pages 337–370. Springer, 2nd edition, 2004.

R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New
directions in the theory of graphs, pages 239–273. Academic Press, New York,
1973.

S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models.
Neural Computation, 11(2):305–45, 1999.

K. Sameshima and L. A. Baccalá. Using partial directed coherence to describe
neuronal ensemble interactions. Journal of Neuroscience Methods, 94:93–103,
1999.

215

G. Schwarz. Estimating dimension of a model. Annals of Statistics, 6(2):461–
464, 1978.

P. H. Sellers. On the theory and computation of evolutionary distances. SIAM
Journal on Applied Mathematics, 26(4):787–793, 1974.

E. Sernagor, S. Eglen, B. Harris, and R. Wong. Retinal Development. Cambridge
University Press, 1st edition, 2006.

C. E. Shannon. Communication in the presence of noise. Proceedings of the
IRE, 37(1):10–21, 1949.

A. Siegel and H. N. Sapru. Essential Neuroscience. Lippincott Williams &
Wilkins, 2007.

P. Smith. Applied data structures with C++. Jones & Bartlett Publishers, 1st
edition, 2004.

V. A. Smith, J. Yu, T. V. Smulders, A. J. Hartemink, and E. D. Jarvis. Compu-
tational inference of neural information flow networks. PLoS Computational
Biology, 2(11):e161, 2006.

O. Sporns. Graph theory methods for the analysis of neural connectivity pat-
terns. In R. Kötter, editor, Neuroscience Databases: A Practical Guide, pages
169–183. Springer, 2003.

O. Sporns and G. Tononi. Classes of network connectivity and dynamics. Com-
plexity, 7(1):28–38, 2002.

O. Sporns, G. Tononi, and G. M. Edelman. Connectivity and complexity: the
relationship between neuroanatomy and brain dynamics. Neural Networks,
13(8-9):909–22, 2000.

O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, develop-
ment and function of complex brain networks. Trends in Cognitive Sciences,
8(9):418–25, 2004.

R. P. Stanley. Acyclic orientations of graphs (reprinted from discrete mathe-
matics, vol 5, pg 171-178, 1973). Discrete Mathematics, 306(10-11):905–909,
2006.

R. B. Stein. A theoretical analysis of neuronal variability. Biophysical Journal,
5:173–94, 1965.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth. In vivo two-photon
calcium imaging of neuronal networks. Proceedings of the National Academy
of Sciences of the United States of America, 100(12):7319–7324, 2003.

S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–76, 2001.

D. Y. Takahashi, L. A. Baccalá, and K. Sameshima. Connectivity inference
between neural structures via partial directed coherence. Journal of Applied
Statistics, 34(10):1259–1273, 2007.

H. Tanizaki. Nonlinear Filters: Estimation and Applications. Springer, 1996.

216

R. D. Traub, D. Contreras, M. O. Cunningham, H. Murray, F. E. LeBeau,
A. Roopun, A. Bibbig, W. B. Wilent, M. J. Higley, and M. A. Whittington.
Single-column thalamocortical network model exhibiting gamma oscillations,
sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93(4):
2194–232, 2005.

W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A
point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology,
93(2):1074–1089, 2005.

M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli. Linking spontaneous activity
of single cortical neurons and the underlying functional architecture. Science,
286(5446):1943–6, 1999.

A. Tucker, Y. H. Liu, and D. Garway-Heath. Spatial operators for evolving
dynamic Bayesian networks from spatio-temporal data. In Genetic and Evo-
lutionary Computation (GECCO), Part II, volume 2724, pages 2360–2371,
Chicago, IL, 2003.

G. van Rossum and et al. Python language website, http://www.python.org/.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In P. Bonis-
sone, M. Henrion, L. Kanal, and J. Lemmer, editors, Sixth Conference on Un-
certainty in Artificial Intelligence, pages 220–227, Boston, MA, 1990. Morgan
Kaufmann.

R. P. Vertes. Hippocampal theta rhythm: a tag for short-term memory. Hip-
pocampus, 15(7):923–35, 2005.

J. D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15(5):
585–92, 2005.

J. D. Victor and K. P. Purpura. Nature and precision of temporal coding in
visual cortex: a metric-space analysis. Journal of Neurophysiology, 76(2):
1310–26, 1996.

J. D. Victor and K. P. Purpura. Metric-space analysis of spike trains: Theory,
algorithms, and application. Network, 8:127–164, 1997.

T. P. Vogels, K. Rajan, and L. F. Abbott. Neural network dynamics. Annual
Review of Neuroscience, 28:357–76, 2005.

C. S. Wallace and D. M. Boulton. An information measure for classification.
The Computer Journal, 11(2):185–194, 1968.

S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85,
1994.

M. A. Wilson and B. L. McNaughton. Dynamics of the hippocampal ensemble
code for space. Science, 261(5124):1055–8, 1993.

217

R. O. Wong. Retinal waves and visual system development. Annual Review of
Neuroscience, 22:29–47, 1999.

R. O. Wong, M. Meister, and C. J. Shatz. Transient period of correlated bursting
activity during development of the mammalian retina. Neuron, 11(5):923–38,
1993.

R. O. Wong, A. Chernjavsky, S. J. Smith, and C. J. Shatz. Early functional
neural networks in the developing retina. Nature, 374(6524):716–8, 1995.

E. R. Wood, P. A. Dudchenko, R. J. Robitsek, and H. Eichenbaum. Hippocam-
pal neurons encode information about different types of memory episodes
occurring in the same location. Neuron, 27(3):623–33, 2000.

S. Wright. Correlation and causation. The Journal of Agricultural Research, 20
(7):557–585, 1921.

S. Yamaoka and N. Hagino. Spontaneous septal neuron activity in the rat. Brain
research, 67(1):147–52, 1974.

J. Yu. Developing Bayesian Network Inference Algorithms to Predict Causal
Functional Pathways in Biological Systems. PhD thesis, 2005.

R. Yuste and D. W. Tank. Dendritic integration in mammalian neurons, a
century after Cajal. Neuron, 16(4):701–16, 1996.

K. Zhang, I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski. Interpreting
neuronal population activity by reconstruction: unified framework with appli-
cation to hippocampal place cells. Journal of Neurophysiology, 79(2):1017–44,
1998.

M. Zou and S. D. Conzen. A new dynamic Bayesian network (DBN) approach
for identifying gene regulatory networks from time course microarray data.
Bioinformatics, 21(1):71–9, 2005.

218

