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ABSTRACT Wildlife home ranges continue to be a common spatial unit for modeling animal habitat 12 

selection. Telemetry data are increasing in spatial and temporal detail and new methods are being 13 

developed to incorporate fine resolution data into home range delineation. We extended a previously 14 

developed home range estimation technique that incorporates theory from time geography, the potential 15 

path area (PPA) home range, to allow the home range to be defined at multiple spatial scales depending 16 

on the observed rate of movement within the data. The benefits of this approach are demonstrated with 17 

a simulation study, which uses multi-state correlated random walks to represent dynamic movement 18 

phases to compare the modified PPA home range technique with a suite of other home range estimation 19 

methods (PPA home range, kernel density estimation, Brownian bridges, and dynamic Brownian 20 

bridges). We used a case study on caribou (Rangifer tarandus) movement from northern Canada to 21 

highlight the value of this approach for characterizing habitat conditions associated with wildlife 22 

habitat analysis. We used a simple habitat covariate, percent forest cover, to explore the potential for 23 

misleading habitat estimates when home ranges do not include potentially visited locations (omission 24 

area) or include areas not possibly visited (commission area). We highlight the advantages of the 25 

dynamic PPA home range in the context of quantifying omission and commission areas in other home 26 

range techniques. Finally, we provide our R code for calculating dynamic PPA home range estimates.  27 

KEY WORDS caribou (Rangifer tarandus), commission area, correlated random walk, omission area, 28 

telemetry. 29 

 30 
  31 
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With continued development of spatial tracking technologies (e.g., global positioning system [GPS], 32 

Argos), unprecedented datasets are facilitating novel research on wildlife movement and behavior. 33 

These improvements have resulted in wildlife telemetry data with finer sampling intervals, over longer 34 

temporal extents, and with better spatial accuracy (Cagnacci et al. 2010). Improved spatial and 35 

temporal resolution of telemetry data have provided scientists the opportunity to conduct increasingly 36 

detailed analysis of animal movement and the potential to answer increasingly sophisticated questions 37 

regarding wildlife biology, behavior, and response to change (Patterson et al. 2008).  38 

The home range continues to be a primary spatial unit for wildlife analysis and modeling (Beyer 39 

et al. 2010). The most oft-cited definition of a home range is the area to which an animal confines its 40 

normal movements (Burt 1943). However, a robust mathematical formulation of this definition is still 41 

absent, and the practical definition of a home range is dependent on the chosen method for estimating it 42 

(Fieberg and Börger 2012). Thus, there are many approaches for estimating wildlife home ranges, for 43 

example minimum convex polygons, kernel density estimation (Worton 1989), local convex hulls (Getz 44 

and Wilmers 2004), and Brownian bridges (Horne et al. 2007).  45 

Home ranges are a useful summary unit for spatial analysis of wildlife movement because they 46 

explicitly relate to processes (such as territoriality, spatial memory, and habitat preference) associated 47 

with space-selection patterns in many wildlife species (Börger et al. 2008, Van Moorter et al. 2009). As 48 

a conservation tool, home ranges represent a useful spatial unit for management decision-making and 49 

analysis (Reynolds et al. 1992, Bull and Holthausen 1993, Linnell et al. 2001). Home ranges are 50 

commonly used in 2 areas of spatial analysis: to quantify differences in home range areas and to study 51 

habitat selection. Quantifying differences in home range areas, for example between sexes (Swihart and 52 

Slade 1989), or over time (Smulders et al. 2012) provides insight into wildlife movement processes 53 

associated with spatial selection and mobility. Habitat analysis using home ranges links spatial 54 

selection to underlying environmental covariates and habitat types being used by the individual. 55 
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Analyzing changes in home range estimates, or the habitat variables associated with them, is 56 

complicated by the presence of areas of omission and commission error. Omission and commission 57 

areas are defined, respectively, as habitat used by the animal that is excluded from the home range and 58 

habitat that is unused but included in the home range (Sanderson 1966). Similarly, Getz and Wilmers 59 

(2004) refer to Type I error as including invalid areas and Type II error as excluding valid areas in 60 

home range estimates. Home range estimation methods that reduce omission and commission areas, or 61 

methods that can be used to quantify these areas in existing methods, are necessary to improve wildlife 62 

home range studies. However making comparisons across home ranges is difficult with empirical data 63 

because there is no truth for comparison and each method places different assumptions on the data.  64 

The potential path area (PPA; Long and Nelson 2012) approach takes an alternative view on 65 

home range estimation, one based on a time geographic view of individual movement (Hägerstrand 66 

1970). Within the time geographic framework, movement opportunities are represented using a space-67 

time prism, which is a 3-dimensional (space and time) volume that contains all potential movement 68 

paths between 2 known telemetry fix locations (Fig. 1). The space-time prism represents a useful 69 

measure for understanding the spatial-temporal constraints on individual movement opportunity (Kwan 70 

1999) and for this reason is commonly referred to as the accessibility space (Kwan 1998). The PPA is 71 

the projection of the space-time prism onto the spatial plane, and represents a purely spatial measure of 72 

accessibility (Fig. 1). The PPA home range is calculated by recursively computing PPA ellipses for 73 

consecutive pairs of telemetry locations, which are then combined (using a spatial union) to estimate 74 

the home range (see Long and Nelson 2012). The PPA home range estimate focuses explicitly on the 75 

delineation of the accessibility space of the individual, which makes it a useful spatial unit for 76 

comparing across methods in the context of omission and commission areas. 77 

The size and shape of the space-time prism, and thus the PPA home range estimate, depends on 78 

the time between locations and a mobility parameter vmax, which can be interpreted as a maximum 79 
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travel velocity. In some cases, vmax may be known based on a fine understanding of organism biology. 80 

In most cases, vmax must be estimated from the telemetry data; for example Long and Nelson (2012) 81 

outline several statistical procedures that can be used to estimate vmax, which are derived from methods 82 

for estimating the upper bound of a distribution given a set of values. With the PPA approach, vmax is a 83 

global parameter applied to the entire telemetry dataset (i.e., all pairs of points). With organisms that 84 

exhibit highly variable mobility levels, PPA home range estimates will overestimate home range area 85 

for periods of lower mobility, leading to increased commission areas, a problem also encountered with 86 

other methods (e.g., from over-smoothing; Gitzen et al. 2006, Downs and Horner 2008). A dynamic 87 

vmax parameterization incorporating higher and lower mobility levels will reduce over-estimation of 88 

home range areas associated with low mobility phases, and reduce commission area. 89 

 Explicitly considering wildlife movement phases is one approach to reducing omission and 90 

commission areas (Kranstauber et al. 2012). Kernel and minimum convex polygon approaches, for 91 

instance, cannot include movement phases because they ignore the temporal component of telemetry 92 

data. Most wildlife species exhibit multiple movement phases, often linked to different behaviors, 93 

resulting in variation in patterns and scales of movement, as well as habitat selection. A number of 94 

robust statistical techniques currently exist that can be used to identify different movement phases 95 

within a telemetry dataset (e.g., latent models: Morales et al. 2004, Jonsen, Flemming and Myers 2005; 96 

change-point analysis: Gurarie et al. 2009). Within each phase, movement parameters should follow a 97 

similar pattern, whereas between phases movement parameters shift dramatically from, for example, 98 

low motion (resting) to high motion (migration) states. To reduce omission and commission areas, 99 

space-time variation associated with different movement phases may be useful for refining home range 100 

estimates, and subsequently, habitat selection studies. 101 

We extended the PPA approach by dynamically modeling the mobility parameter (vmax) so that 102 

variation in mobility, based on observed movement phases is incorporated into home range estimation.  103 
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We call the extension the dynamic potential path area home range (dynPPA). Using simulated data and 104 

empirical caribou (Rangifer tarandus) telemetry data, we demonstrate how the dynPPA approach 105 

provides an alternative measure of animal space use and a useful comparison metric among existing 106 

home range techniques for quantifying omission and commission areas. Finally, we provide an R-based 107 

toolset for performing dynPPA analysis. 108 

METHODS 109 

Dynamic PPA Home Range (dynPPA) 110 

We follow Long and Nelson's (2012) method of estimating vmax from a telemetry dataset of n fix 111 

locations for a single individual. Estimates of vmax are a function of the distribution of individual 112 

segment velocities (vi) given by: 113 

i
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where 1 < k < m represents the kth ordered value of vi. We extend the vmax estimation procedure from 121 

Long and Nelson (2012) to account for behavioral shifts throughout the tracking period. Thus, dynamic 122 

vmax is defined by a similar function: 123 

 
pip

vFv
,max,

   [3]  124 

Where vmax,p is the vmax estimate for the pth dynamic phase comprising of a subset of the n telemetry 125 

fixes and F(vi, p) is a statistical technique (e.g., [2]) for estimating the upper-bound of a distribution 126 
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applied to the vi in phase p. The phases (p) may be from a temporally dynamic moving window, or 127 

associated with discrete behavioral phases. Although we used the technique described in van der Watt 128 

(1980), this approach can be used with other functions for estimating the upper-bound of a distribution. 129 

Importantly, such a dynamic calculation of the PPA (dynPPA) home range estimate allows for 130 

variations in the vmax parameter through time resulting from changes in movement behavior.  131 

The construction of the dynPPA home range explicitly considers the movement ability of the 132 

individual animal to delineate their accessibility space throughout the movement trajectory. Thus, by 133 

taking a spatial overlay of the dynPPA and other home range estimators, we define areas included in the 134 

dynPPA home range but not included in home range estimates from other methods as omission area 135 

(Fig. 2); these are areas that were accessible to the animal but not included in the home range estimates 136 

from the other methods. Omission area is prevalent in most methods, and is included in the commonly 137 

accepted definition of a home range (i.e., the occasional sallies described by Burt 1943). Quantifying 138 

commission area is not as straightforward, because all home range estimates are likely to include 139 

locations not actually visited by the animal because of the incomplete nature of telemetry data. We 140 

define areas included in the home range estimates from other methods but not included in the dynPPA 141 

home range as observable-commission areas, which represent areas included in the home range but 142 

outside of the accessibility space of the animal (Fig. 2). Observable-commission areas represent 143 

locations the animal could not possibly have visited given the known fix locations and an upper-bound 144 

on mobility (vmax). For example, the presence of high-levels of observable-commission area is one of 145 

the main reasons why minimum convex polygons are problematic with irregularly shaped patterns of 146 

animal telemetry data (Harris et al. 1990, Barg et al. 2004). Through the analysis of these spatial 147 

differences, we show how the dynPPA home range method improves upon the original PPA model and 148 

provides a unique and complementary view to home range estimation by explicitly delineating the 149 

accessibility space of an individual animal. The dynPPA approach improves upon the PPA approach by 150 
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accounting for changes in mobility relating to dynamic movement behavior. Further, dynPPA home 151 

range can be used to evaluate and refine home range estimates from other methods through the 152 

quantification of spatial differences, which we define as omission and observable-commission areas. 153 

Other Home Range Methods 154 

Many methods exist for computing wildlife home ranges; we focus on comparing the original PPA 155 

method, 3 more popular current approaches – kernel density estimation (KDE; Worton 1989), 156 

Brownian bridges (BB; Horne et al. 2007), and dynamic Brownian bridges (dynBB; Kranstauber et al. 157 

2012) – and the new dynPPA approach. With KDE, BB, and dynBB, the home range is a 2-dimensional 158 

projection of the utilization distribution of the animal from which a percent volume contour is extracted 159 

to delineate home range as a polygon. Kernel density estimation relies on the selection of a suitable 160 

kernel bandwidth, which remains a highly contentious issue in home range analysis (Hemson et al. 161 

2005, Fieberg 2007).  The Brownian bridge approach models movement as a Brownian diffusion 162 

process anchored on 2 consecutive fixes. The n-1 Brownian bridges are combined to produce the BB 163 

home range, and in this sense it is comparable to the PPA approach. The BB home range requires the 164 

selection of 2 variance parameters, one related to uncertainty in fix locations, and the other termed the 165 

Brownian motion variance, which is related to the mobility of the animal. The Brownian motion 166 

variance parameter is estimated globally from the entire telemetry dataset (of an individual) using a 167 

leave-one-out estimation process (Horne et al. 2007). To generalize the BB approach, Kranstauber et al. 168 

(2012) developed the dynBB, which uses a temporally varying estimate of the Brownian motion 169 

parameter to account for dynamic movement phases. 170 

Simulation Study 171 

We simulated 1,000 correlated random walks (CRW) to compare home range estimation techniques. 172 

Correlated random walks rely on 2 parameters. The first (r) governs the level of serial correlation in 173 

turning angles and the second (h) is a scaling factor for the step-length distribution. To simulate 174 



9 

 

dynamic movement behavior, we varied the number of distinct movement phases (p) within each 175 

simulated CRW between 5 and 10. For each movement phase, CRW parameters were chosen randomly 176 

but restricted in such a way that higher mobility phases (h = 3 to 5) were associated with more directed 177 

(i.e., correlated) movements (r = 0.3 to 0.7), and lower mobility phases (h = 1 to 3) were associated 178 

with more random movements (r = 0 to 0.4).   179 

For each simulated CRW, we computed the potential path area home range (PPA), the 95% 180 

volume contour kernel density home range estimate, the 99% volume contour Brownian bridge home 181 

range, the 99% volume contour dynamic Brownian bridge home range, and the dynamic PPA home 182 

range. We computed kernel bandwidth for KDE using the half the reference bandwidth, a modification 183 

that can reduce the effect of over-smoothing in KDE when data exhibits clumpy patterns (Worton 184 

1995). We selected the 95% volume contour because  it is the most commonly chosen level in past 185 

home range studies (Laver and Kelly 2008) and is typically used to estimate the home range, whereas 186 

lower values (e.g., 50%) are used to delineate core area. We computed the variance parameter for the 187 

BB and dynBB models using the maximum likelihood method outlined by Horne et al. (2007) and 188 

assumed the error parameter to be appropriately small. We chose a 99% volume contour level for the 189 

BB and dynBB methods following Horne et al. (2007). 190 

For each technique, we computed the home range area, plus the intersection area with the 191 

dynPPA to examine spatial differences among methods. Results from the simulated study are presented 192 

as percentages of the dynPPA for comparison purposes, thus making the area of the dynPPA home 193 

range estimate the baseline areal measurement.  194 

Case Study – Caribou in Northern British Columbia, Canada 195 

To further demonstrate the dynPPA approach, we used a dataset of the movements of 4 caribou over the 196 

course of a year (2001). The telemetry data were collected with a regular, 4-hour sampling interval, 197 

with < 5% fixes missing. Unlike the simulation examples, in telemetry studies the number and duration 198 



10 

 

of movement phases are generally unknown. We use the behavioral change point algorithm (BCPA: 199 

Gurarie et al. 2009) to identify different movement phases for each individual caribou. The BCPA 200 

requires 2 parameters. The first is the BCPA search window (w; Gurarie et al. [2009] suggest w > 30); 201 

we used w = 43, approximately a 1-week interval in this example. The second parameter is a threshold 202 

that identifies significant change points; we used 21, which is half of w, similar to that used by Gurarie 203 

et al. (2009). We then computed the PPA, KDE, BB, dynBB, and dynPPA home ranges following the 204 

methods for parameter estimation outlined in the simulation study. We again explore the presence of 205 

omission and observable-commission area in various home range techniques in the caribou example 206 

through area overlap comparisons with dynPPA.  207 

We estimated the habitat composition (i.e., land cover) for each home range based on each 208 

home range estimation method to examine the effect of method on the composition estimates. To 209 

represent land cover, we used the Canada’s Earth Observation for Sustainable Development (EOSD) 210 

dataset (Wulder et al. 2008), which was derived from Landsat satellite imagery. We selected percent 211 

forest cover as an indicator of habitat because wooded areas are a primary habitat type for caribou, 212 

especially outside of summer months (Wood 1994, Seip 1998). We focus on the percent forest cover 213 

within each home range along with the sub-areas of the home range delineated as omission area and 214 

observable-commission area to examine whether the composition of these sub-areas differed from the 215 

overall home range, resulting in misleading composition estimates from home range methods.  216 

RESULTS 217 

Simulation Study 218 

Our simulations revealed differences between estimated home range areas and the presence of omission 219 

and observable-commission area across different home range methods (Fig. 3). The PPA approach 220 

produced larger estimated home range sizes, as expected, whereas the BB and dynBB methods 221 

produced smaller home range estimates than dynPPA. Kernel density estimation produced home range 222 
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estimates that could be either larger or smaller than dynPPA (Fig. 3). Omission area was greatest in the 223 

BB and dynBB methods, but this is expected because these methods produced the smallest home range 224 

estimates. In many situations, KDE also produced a substantial level of omission area, which is 225 

surprising given that in general KDE produced the largest home range size estimates. As expected 226 

based on definitions, omission area in the PPA was 0 because the PPA home range contains the dynPPA 227 

home range. 228 

In all simulations, PPA and KDE produced an observable-commission area (Fig. 3). Of these, 229 

790/1,000 of the simulation PPA home ranges and 975/1,000 of the simulation KDE home ranges 230 

contained observable-commission area comprising greater than 10.0% of the estimated home range. 231 

The average percentage of observable-commission area was highest in KDE at 36.2%, with an average 232 

of 14.6% for PPA. The BB and dynBB methods also produced some level of observable-commission 233 

area in nearly all simulations (998/1,000 and 997/1,000 simulations, respectively). However, neither 234 

method produced a simulation where the amount of observable-commission area was greater than 10% 235 

proportionally of the home range area. The average observable-commission area was small in BB and 236 

dynBB (1.2% and 0.7%, respectively). Overall, BB and dynBB compare best with dynPPA, likely 237 

owing to similar derivations based on the sequence of telemetry fixes (path-based), producing similar 238 

sizes and minimizing observable-commission area. 239 

Case Study – Caribou in Northern British Columbia, Canada 240 

The 4 caribou in northern British Columbia, whose data we analyzed, exhibited similar movement 241 

patterns consisting of 2 spatially disjoint seasonal ranges connected via movement corridors (Fig. 4). 242 

Estimated home range areas had similar patterns as seen in the simulation study, with larger estimated 243 

home ranges from the PPA and KDE methods, and smaller estimated home ranges from the BB and 244 

dynBB methods (Fig. 4). Kernel density estimation produced the largest estimated home ranges but 245 

also produced estimates that differed in shape and structure from the path-based methods. 246 
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With the caribou dataset, the trend in estimated home range areas showed PPA or KDE being 247 

largest, followed by dynPPA, BB, and dynBB (Fig. 5). In the case of caribou C4, the KDE home range 248 

estimate was much larger owing to difficulty in specifying a suitable bandwidth using the objective 249 

method chosen. The dynBB and BB methods are excellent at minimizing observable-commission areas, 250 

and produce estimated home range sizes similar to each other. The KDE and PPA approaches both 251 

produced substantial areas of observable-commission area, which is problematic in home range studies 252 

because these areas are outside of the defined accessibility space of the animal.  253 

Estimated habitat composition revealed the potentially misleading effect of observable-254 

commission areas (Fig. 6). For example, with the KDE method with data from caribou C2, the 255 

observable-commission area was a substantial portion of the estimated home range, and the percent 256 

forest cover was relatively high for this area. The high percent forest cover in the observable 257 

commission area portion of the home range in C2 resulted in the highest observed percent forest cover 258 

of all the home range methods, noticeably higher than any other estimates (Fig. 6). Conversely, in 259 

caribou C4, the percent forest cover was similar in the observable-commission area to that of the 260 

dynPPA home range, in this case leading to equivalent measures of percent forest cover, despite the 261 

substantial overlap of home range size by the KDE method. The BB and dynBB methods produced 262 

relatively small areas of observable-commission area, despite having substantial differences in percent 263 

forest cover between the home range and observable-commission areas. However, in caribou C3, 264 

estimates for percent forest cover were lower for the BB and dynBB methods because the omission 265 

area had a higher percent forest cover, which shows the potentially misleading effect of omission area.  266 

DISCUSSION 267 

Concepts from time geography can be used to explicitly consider the elapsed time between telemetry 268 

fixes, allowing home range estimation to use a path-based data representation (Long and Nelson 2012). 269 

Traditionally, home range estimation techniques borrowed from computational geometry or statistics, 270 
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are point-based approaches, and define an enclosure or smooth a set of telemetry fixes. Point-based 271 

methods use only the spatial geometry of telemetry fixes and thus may be hindered by the serially 272 

correlated structure of modern telemetry datasets (Dray et al. 2010). Path-based methods for estimating 273 

the home range leverage the temporal structure inherent in telemetry datasets. For example, methods 274 

may consider consecutive telemetry fixes as anchor points in a diffusion (Brownian bridge) or 275 

diffusion-drift process (biased random bridge; Benhamou 2011). The Brownian bridge and biased 276 

random bridge methods delineate the utilization distribution of an individual based on random walk 277 

theory, whereas the dynPPA home range method focuses on quantifying the polygon area accessible to 278 

an individual given n telemetry fixes and a time-varying mobility parameter.  279 

The dynPPA method takes an alternative view on estimating the home range, one that explicitly 280 

considers that accessibility can be used to directly estimate the home range. That is, the dynPPA 281 

delineates the area an animal could have visited based on a set of telemetry fixes and a time varying 282 

mobility parameter vmax. We have demonstrated that dynPPA home range estimates can provide useful 283 

stand-alone measures for estimating home range areas, comparable with popular existing methods. We 284 

highlight the dynPPA approach as being simple and intuitive, but also stress how it can be used to 285 

identify omission and observable-commission areas when comparing across multiple methods, a 286 

practice increasingly common given the ease at which multiple methods can be implemented within a 287 

single software (e.g., Calenge 2006). Specifically, because the dynPPA home range estimate focuses on 288 

accessibility in its definition, we demonstrate how dynPPA can be used to quantify omission and 289 

observable-commission area in other estimation techniques. Such comparisons are conditional on the 290 

predication that the dynPPA estimate, which defines the individual accessibility space, represents a 291 

suitable baseline for identifying omission and observable-commission area. 292 

Wildlife researchers now have an array of computational tools from which to choose for 293 

carrying out sophisticated spatial-temporal analyses on wildlife telemetry datasets. However, there 294 
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remains a need to define relatively straightforward spatial analysis units, drawing on the foundational 295 

concept of the home range. The dynPPA home range method is based on different assumptions from 296 

other home range approaches. We propose that because dynPPA explicitly considers accessibility in its 297 

definition, it can be used for quantifying omission and observable-commission areas through direct 298 

spatial comparisons of home range polygons. Further, many studies are interested in studying habitat 299 

use versus habitat availability from telemetry data (Beyer et al. 2010). In use versus availability study 300 

designs, the researcher must carefully consider how they define available habitat. At some scales, a 301 

home range estimate (or a spatial extension of the home range such as a buffer around the home range) 302 

is used to define potentially available habitat (Long et al. 2010).  A time geographic approach (i.e., 303 

dynPPA) is a logical method for identifying what constitutes available habitat in use versus availability 304 

studies because dynPPA explicitly delineates accessible areas. 305 

Our simulation study highlights the challenges with home range analyses that researchers have 306 

been grappling with for decades: that different home range methods can lead to highly variable 307 

estimates of home range size and configuration. When compared to other home range estimation 308 

methods, dynPPA is generally larger than produced by BB or dynBB methods but smaller than for KDE 309 

and the original PPA approach. From comparisons between home range estimates from other methods 310 

with dynPPA, a researcher can decide whether a home range method is appropriate with a given 311 

dataset, or re-evaluate the chosen parameter combinations. Our simulations can also be seen as further 312 

evidence of the difficulty with KDE home range methods or more specifically the problem of 313 

automated selection of the bandwidth (Hemson et al. 2005). In the simulation study, we use a popular 314 

ad hoc method for identifying the kernel bandwidth (i.e., half the reference bandwidth), but the 315 

resulting home range estimates were highly variable in size. When the home range is overestimated, the 316 

result is substantial observable-commission area, which can be problematic when using home ranges 317 

for habitat composition analysis. 318 
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The results (both from the simulations and caribou study) confirmed that, like many home range 319 

estimation methods, the original PPA approach (Long and Nelson 2012) may be overestimating home 320 

range areas. We built on the ideas proposed by Kranstauber et al. (2012), that home range estimation 321 

methods should consider different movement phases associated with variable movement parameters. 322 

Thus, dynPPA is a generalization of the original PPA approach, where vmax is estimated independently 323 

for each movement phase. This approach considers movement phases as discrete segments along the 324 

trajectory, such that changes in movement parameters occur abruptly between phases (Kranstauber et 325 

al. 2012) and typically represent a change in movement behavior (e.g., migrating vs. foraging). 326 

Alternatively, movement parameters may vary continuously over time, and we have also implemented 327 

a temporal moving-window approach for estimating vmax dynamically over time. We did not evaluate 328 

the temporal moving-window method here but make it available with the R code provided to allow 329 

researchers to use a moving-window approach should it be appropriate with their research (see 330 

Supporting Information).  331 

Methods for estimating movement parameters are complicated by missing fixes and irregular 332 

fix intervals (see Laube and Purves 2011), issues commonly encountered in empirical wildlife 333 

telemetry studies. Shorter than average fix intervals may be associated with higher segment velocities 334 

(vi), which would be unrealistic with longer fix intervals. Many tracking devices are programmed to 335 

obtain fixes at specific intervals, which if they fail, continue to re-attempt fixes until successful. This 336 

can result in fixes that were programmed at regular intervals being collected at irregular intervals, some 337 

of which may be relatively short. If these short fix intervals are associated with a burst of movement, a 338 

relatively high vmax estimate will result, which will be inappropriate with longer intervals. Also, many 339 

modern telemetry studies are programming wildlife tracking devices to vary the tracking interval 340 

depending on time of day (e.g., 15-min tracking interval during the day and 2-hr interval at night). In 341 

such cases, estimates of vmax associated with the shorter interval would not reflect the estimates during 342 
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the 2-hour period. Such discrepancies are due to the fact that animals are limited in their ability to 343 

maintain faster movement speeds over longer time intervals. When unrealistically high vi values are 344 

included in the distribution of the vi, it will become positively-skewed, and the vmax parameter will be 345 

overestimated. Overestimation of vmax results in a home range area that is unexpectedly large when 346 

using the dynPPA approach. A similar process occurs with other home range techniques, such as when 347 

the bandwidth (in kernel density estimation) or the variance parameter (in Brownian bridge models) is 348 

overestimated. When using the dynPPA home range method on wildlife datasets with irregular or 349 

missing fixes, the over-estimation of vmax can be reduced by examining the skewness of the vi 350 

distribution and analyzing those segments above a chosen threshold independently. Long and Nelson 351 

(2012) suggested that the PPA approach was useful only with relatively dense and regularly sampled 352 

telemetry data. However, dynPPA is more suitable with irregular tracking schemes because the tracking 353 

interval can be directly related to movement phases (e.g., p in [3]) in the calculation of vmax. However, 354 

more research is needed to study the effect of variable and missing data on the vmax estimation 355 

procedure associated with dynPPA home range estimates.  356 

Wildlife exhibit different movement phases associated with different movement behaviors (e.g., 357 

migration, foraging, searching). Distinct movement phases result in different movement patterns, and 358 

thus influence the patterns observed in telemetry data from wildlife tracking systems. Mathematical 359 

models for examining variations in animal movement behavior have become increasingly sophisticated 360 

and provide novel insights into fine-scale variations in animal behavior (Langrock et al. 2012, 361 

McClintock et al. 2012). However, methods incorporating dynamic behavior into analysis of wildlife 362 

space use (i.e., home range analysis) remain limited. The inclusion of changing behavior in wildlife 363 

movement models and spatial analysis is essential for improving space-use estimates (Kranstauber et 364 

al. 2012), and the subsequent analysis of underlying environmental variables. The dynPPA represents a 365 

new approach that can easily incorporate animal movement behavior phases,  estimated via robust 366 
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statistical models, directly into the home range estimation procedure. 367 

Each technique for home range estimation is based on unique methods and assumptions and as a 368 

result is likely to produce different home range shapes and sizes (Fieberg and Börger 2012). Variation 369 

between methods has led many authors to compare across home range methods (Huck et al. 2008), 370 

often to highlight the deficiencies in existing approaches in specific scenarios (Downs and Horner 371 

2008). The difficulty in selecting a method for home range estimation, especially with empirical data, is 372 

that there is no truth. Our comparisons, across 5 home range estimation methods, emphasize the unique 373 

information content of each method and how these approaches can be chosen based on research 374 

questions and the nature (i.e., resolution and extent) of the data from which the home range is to be 375 

estimated (Fieberg and Börger 2012, Powell and Mitchell 2012). When research questions emphasize 376 

accessibility (in space and time), dynPPA represents an appropriate home range estimator, given 377 

relatively high-resolution telemetry data. The concept of accessibility is useful when researchers wish 378 

to study whether animals have the potential to interact with features on the landscape (e.g., well sites, 379 

Sawyer et al. 2006, or roads, Long et al. 2010). With other research questions or data types, other home 380 

range estimation techniques may be more appropriate. For example, with coarse tracking data 381 

associated with satellite very high frequency (VHF) radio collars where serial correlation is lower, 382 

KDE methods are more appropriate. With animals that exhibit compact and regular shaped territories, 383 

simpler methods, such as minimum convex polygons, may be sufficient for estimating home range size 384 

and shape (Downs and Horner 2008). Further, when comparisons among multiple home range 385 

estimates are being made, in either an exploratory or analytical stage, we demonstrate the value of 386 

including the dynPPA method, where appropriate, because dynPPA can serve as a baseline from which 387 

to quantify omission and observable-commission area.  388 

MANAGEMENT IMPLICATIONS 389 

Home ranges are a typical spatial unit for conservation. The presence of omission and observable-390 
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commission areas in home range estimation and subsequent habitat analysis can be misleading. In an 391 

era of increasing geographical pressures on conservation activities, tools such as the dynPPA home 392 

range can assist in the conservation of wildlife by refining spatial estimates of home range. Simply, the 393 

dynPPA home range method can be used to assess if areas within a home range were accessible to an 394 

animal given spatial-temporal constraints. We provide some guidelines for conducting home range 395 

analysis using dynPPA and further demonstrate how to use dynPPA to investigate omission and 396 

observable-commission area in comparisons with other home range methods. Home ranges containing 397 

substantial omission or observable-commission areas should be used with caution because they may 398 

misrepresent the size of the home range, which can result in misleading habitat analyses. By carefully 399 

considering the presence of omission and observable-commission area in home range estimates, 400 

wildlife managers can improve the geographic focus of conservation efforts. Finally, we provide a free 401 

and open tool for computing the dynPPA, in the statistical software R, to make the calculation of 402 

dynPPA available to other researchers. 403 
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FIGURE CAPTIONS 519 

 520 

Figure 1. The space-time prism from time geography that delineates the accessibility space for 521 

movement between 2 constraint fixes, based on a known mobility parameter (vmax), which controls the 522 

size of the prism. The potential path area (PPA) is the projection of the space-time prism onto the 523 

spatial plane, and geometrically can be represented as an ellipse. 524 

  525 
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 526 

Figure 2. Comparison of a typical home range, with a dynamic potential path area (PPA) home range 527 

demonstrating how omission and observable-commission areas can be quantified and mapped. 528 

  529 
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 530 

Figure 3. Boxplots showing the relative area of the potential path area (PPA), kernel density estimate 531 

(KDE), Brownian bridge (BB), and dynamic Brownian bridge (dynBB) home range estimation 532 

methods in comparison to the dynamic potential path area (dynPPA) method (panel 1), the amount of 533 

omission area in each method relative to the area of the individual home range (panel 2), and the 534 

amount of observable-commission area in each method relative to the area of the individual home 535 

range (panel 3). The median line is located within the boxes that delineate the interquartile range (25
th

 536 

and 75
th

 percentiles) of the data. Whiskers extend to 1.5 the interquartile range, with outliers plotted as 537 

points. 538 
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 540 

Figure 4.  The potential path area (PPA), kernel density estimate (KDE), Brownian bridge (BB), and 541 

dynamic Brownian bridge (dynBB), and dynamic potential path area (dynPPA) home range estimates 542 

for each of 4 caribou: a) caribou C1, b) caribou C2, c) caribou C3, and d) caribou C4. 543 
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 545 

Figure 5. The potential path area (PPA), kernel density estimate (KDE), Brownian bridge (BB), and 546 

dynamic Brownian bridge (dynBB), and dynamic potential path area (dynPPA) home range areas for 547 

each of 4 caribou (C1, C2, C3, and C4) compared, along with the area of omission and observable-548 

commission area for each home range method. 549 
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 551 

Figure 6. Percent forest cover  within  the potential path area (PPA), kernel density estimate (KDE), 552 

Brownian bridge (BB), and dynamic Brownian bridge (dynBB), and dynamic potential path area 553 

(dynPPA) home ranges for each of 4 caribou (C1, C2, C3, and C4), along with the percent forest cover 554 

within the omission and observable-commission areas within each home range.  555 
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